

1 **Manuscript for**

2 **Topological properties accurately predict cell division events**
3 **and organization of *Arabidopsis thaliana*'s shoot apical**
4 **meristem**

5 Timon W. Matz^{1,2}, Yang Wang³, Ritika Kulshreshtha³, Arun Sampathkumar³, Zoran Nikoloski^{1,2,*}

6 ¹Bioinformatics, Institute of Biochemistry and Biology, University of Potsdam, 14476 Potsdam,
7 Germany; ²Systems Biology and Mathematical Modelling, Max Planck Institute of Molecular Plant
8 Physiology, 14476 Potsdam, Germany; ³Plant Cell Biology and Microscopy, Max Planck Institute
9 of Molecular Plant Physiology, 14476 Potsdam, Germany

10 * **Correspondence:** nikoloski@mpimp-golm.mpg.de

11 **This PDF file includes:**

12 Main Text
13 Figures 1 to 5
14 Supplementary Figures 1 to 9
15 Supplementary Table 1 to 4
16

17 **Abstract**

18 Cell division and the resulting changes to the cell organization affect the shape and functionality
19 of all tissues. Thus, understanding the determinants of the tissue-wide changes imposed by cell
20 division is a key question in developmental biology. Here, we use a network representation of live
21 cell imaging data from shoot apical meristems (SAMs) in *Arabidopsis thaliana* to predict cell
22 division events and their consequences at a tissue level. We show that a classifier based on the
23 SAM network properties is predictive of cell division events, with validation accuracy of 82%, on
24 par with that based on cell size alone. Further, we demonstrate that the combination of
25 topological and biological properties, including: cell size, perimeter, distance, and shared cell wall
26 between cells, can further boost the prediction accuracy of resulting changes in topology
27 triggered by cell division. Using our classifiers, we demonstrate the importance of microtubule
28 mediated cell-to-cell growth coordination in influencing tissue-level topology. Altogether, the
29 results from our network-based analysis demonstrates a feedback mechanism between tissue
30 topology and cell division in *A. thaliana*'s SAMs.

31

32 **Summary statement**

33 we use a network representation of live cell imaging data from SAMs in *Arabidopsis*
34 *thaliana* to predict cell division events and their consequences at a tissue level.

35

36 **Introduction**

37 The adjacency of cells, specifying the tissue topology, defines the organization of cells and
38 affects function of organs in multicellular organisms. Therefore, deciphering the organizational
39 principles of cellular connectivity networks are fundamental to improve our understanding of the
40 development of multicellular organisms. The shoot apical meristem (SAM) of plants is a highly
41 organized structure composed of continuously proliferating cells that differentiate and give rise to
42 all aerial organs and is under the control of an intricate signaling network influencing plant growth
43 and response to different stimuli. The SAM epidermis in plants serves as an excellent system to
44 identify organizational principles of cellular connectivity networks (Varner and Lin, 1989).

45 Since the cells in the SAM are glued to each other by a rigid cell wall, changes in the topology
46 of SAMs are only brought about by cell division events. Cell division in plants is a cell-size-
47 dependent, cell autonomous process (Jones et al., 2017), and crossing multiple checkpoints
48 allows the final transition towards cell division (Veylder et al., 2007; Qi and Zhang, 2019). Willis et
49 al. (2016) recently showed that initial cell size at birth influences the increase in size (sizer
50 model), even though there seems to also be a component of constant size increase (adder
51 model) in the shoot apical meristem (SAM) of *Arabidopsis thaliana*. This study has hinted at the
52 possibility that a combination of both models may best describe cell division (see D'Ario and

53 Sablowski (2019) for a comparison of models). Although size-dependent cell division seems to be
54 independent from position and cell to cell contact (Willis et al., 2016), recent study of Jackson et
55 al. (2019) has pointed out that dividing cells display higher centralities in the network
56 representation of the *A. thaliana*'s SAM; however, this observation was not sufficient to accurately
57 predict cell division from network properties alone.

58 Since biochemical and physical signals are transmitted across tissues and affect cell division,
59 growth, and morphology in a spatio-temporal fashion, the question arises of how tissue topology
60 could influence such processes to help the plant respond to a variety of stimuli. In the context of
61 physical signals, the ability of plant cells to respond to growth driven mechanical signals requires
62 the activity of microtubule severing protein KATANIN (Uyttewaal et al., 2012). It has been shown
63 that the lack of mechanical feedback, as in the *katanin1-2* mutant, results in changes to the
64 topological features as a consequence of modified cell shape (Jackson et al., 2019). Therefore,
65 this mutant can be employed to test if topological features are indeed relevant for cell division and
66 related processes.

67 This question can be readily addressed due to the availability of plant lines expressing stable
68 fluorescence reporters that allow for monitoring cellular outlines in combination with confocal
69 imaging techniques (Reddy et al., 2004). In addition, the combination of user-friendly tools for
70 accurate segmentation, like MorphoGraphX (Barbier de Reuille et al., 2015), with different
71 machine learning (Bhavsar and Panchal, 2012; Pisner and Schnyer, 2020) and deep learning
72 techniques (Camacho et al., 2018) has led to massive advances in the analysis of high-
73 throughput imaging data. Further, the analysis of imaging phenotypes has been facilitated by
74 adopting the network paradigm (Breuer et al., 2017; Nowak et al., 2021). To this end, topological
75 features have been employed in cell wall placement models for dividing cells, by using the degree
76 (i.e. number of neighbors) in combination with a spring based model (Gibson et al., 2011) or other
77 individual topological features (Jackson et al., 2019). It has been shown that some of these
78 individual topological features can better predict the placement of certain cell walls compared with
79 more traditional approaches (Jackson et al., 2019), such as: dividing cells using the shortest wall
80 placement, generalized Errera's rule (Besson and Dumais, 2011) or by minimization of tensile
81 stress in other models (Louveaux et al., 2016). Although these models present an important step
82 to solve the problem of cell wall placement, each model underperforms on some cells in the
83 central region of the SAM (Shapiro et al., 2015; Jackson et al., 2019).

84 Although there are attempts of combining network properties with imaging data from SAMs,
85 minor progress has been achieved in predicting individual cells divisions in this plant tissue. Here,
86 we provide a network-based perspective to model cell division and cell wall placement in the SAM
87 of *Arabidopsis thaliana*, a well-established system for studying cell division. To this end, we
88 combine network-based analysis of live cell imaging data with classifiers that allow us to simulate

89 tissue-wise topological changes of the *A. thaliana* SAMs and test these classifiers independently
90 on the *katanin1-2* mutant.

91

92 **Results**

93

94 **Topology and surface area accurately predict cell division events**

95 The question of whether division of a cell embedded in a tissue is driven by the topology of the
96 neighboring cells, the area of the cell, or combination of the two is still open. To address this
97 question, we imaged SAMs of five *A. thaliana* expressing a plasma membrane reporter
98 (pUBQ10:acyl-YFP) every 24 hours over five days using confocal microscopy (Figure 1A). First,
99 we manually determined the number of dividing and non-dividing cells between two consecutive
100 time points in the central zone of the SAM. We defined the central zone of a SAM as the area
101 covered by a circle of 30 μm radius around the highest point in the analyzed SAM (Figure 1B),
102 and found that $24.3\% \pm 3.5\%$ of cells divided per tissue between two successive time points, with a
103 total number of 329 dividing cells and 896 non-dividing cells (Figure 1B).

104 Next, we represented the topology of the central zone as a network, in which every node
105 corresponds to a cell and two nodes are connected by an edge if the cells share cell wall. For
106 each cell we calculated 16 properties, referred to as topological features (Supplementary Table
107 1), in an unweighted network, in which every edge is of weight 1. We also applied different edge
108 weights based on the mean surface area, shared cell wall, and distance of the cell centroid
109 between two nodes representing those cells (Figure 1C). In addition, we considered the surface
110 area of each cell in the central zone as a biological feature.

111 Previous studies have shown that there exists a critical cell size threshold for cell division in
112 the SAM of *A. thaliana* (Jones et al., 2017). To show that topological features capture information
113 distinct from that provided by the cell surface area, we calculated its Pearson correlation with the
114 topological features (Supplementary Figure 2, Supplementary Table 2). Using the network with
115 edges weighted based on the cell surface area, we found that betweenness centrality, a measure
116 for the relative number of shortest paths passing through a node, exhibited the highest correlation
117 of 0.71 to the surface area. Nevertheless, the absolute value of the correlation with surface area
118 was smaller than 0.5 for 63% of the features (97% of features showing correlation smaller than
119 0.7). Therefore, topological features in the considered network scenarios carry information that is
120 different from that obtained by the cell surface area alone. To further show the predictive power of
121 the classifiers trained on the topological features, we considered two reduced feature sets that
122 only included features with absolute value of the Pearson correlation coefficient (r) smaller than
123 0.5 and 0.7, respectively (Supplementary Figure 2). In such a way, we aimed to remove bias due

124 to consideration of features which may, to a certain extent, include information about surface
125 area.

126 As a result of these considerations, we trained six classifiers based on non-linear support
127 vector machines (SVMs) with Gaussian kernel ((Bhavsar and Panchal, 2012)) to predict cell
128 division based on: all topological features (topo), surface area alone, the combination of
129 topological features and surface area (topo + area), topological features with low absolute value
130 of correlation with surface area ($r < 0.7$ and $r < 0.5$), and on unweighted topological features. To
131 this end, we selected an equal number of dividing and non-dividing cells from four SAM for
132 training the SVMs, to ensure balancing of cell labels. We kept the data from the remaining, fifth
133 SAM, as a testing set (Methods). Further, we partitioned the 502 selected cells into training and
134 validation sets composed of equal numbers of dividing and non-dividing cells, and used five-fold
135 cross validation to train the classifiers (see Methods).

136 While the training accuracy of the SVM using only the surface area was 79.4%, the training
137 accuracy solely based on topological features was significantly higher, at 88.7% (11.0% higher; p-
138 value=0.0011, one-way ANOVA); this was also the case when the combined set of topological
139 features and surface area was used, with training accuracy of 86.3% (8.3% higher; p-
140 value=0.0101, one-way ANOVA). However, we observed no difference in the validation
141 accuracies for the three types of SVMs (~81%). For the test SAM, the classifier based on the
142 combination of topological features and surface area exhibited the best performance, with an
143 accuracy of 78.9%, followed by the SVM that considered the topological features (76.9%) and the
144 surface area (72.4%) alone (see Figure 2, Supplementary Table 3). The area under the curve
145 (AUC) of the receiver operating characteristic (ROC) - curve, used as another measure of
146 performance, showed similar trends (Supplementary Figure 3A, Supplementary Table 3).

147 The removal of topological features that were highly correlated with area does not significantly
148 change the validation accuracy (Figure 2, Supplementary Table 3). Moreover, using only the
149 topological features from the unweighted network scenario (Figure 1C), resulted in 16.7% smaller
150 accuracy of the classifier on the validation set in comparison to that based on all topological
151 features (p-value < 0.001, one-way ANOVA). However, the classifier based on the features from
152 the unweighted topology only performs slightly worse (relative difference in accuracy of 5.5%)
153 compared with the classifier based on the surface area (Figure 2, Supplementary Table 3).
154 Inspection of the learning curves showed that the classifiers did not suffer from high bias and
155 variance and that the training set was sufficiently large (Supplementary Figure 4). Therefore, we
156 concluded that topological features led to marginally improved performance in predicting cell
157 division compared to the surface area alone, while the performance could be further increased by
158 the combination of both feature types.

159 To further corroborate the biological relevance of these findings, we randomly permuted the
160 labels and retrained the classifiers, repeating this procedure 1000 times for each feature set (see
161 Methods). All but the classifier based on surface area were able to partially predict training data.
162 However, no classifier was able to generalize on the validation or test set, exhibiting accuracies
163 expected by chance (Supplementary Figure 5A). Therefore, the classifiers trained on the
164 randomized labels demonstrated that the used features capture information important for
165 classification of dividing and non-dividing cells in the 1-day long intervals.

166 Independent testing of the trained SVMs with data from the *katanin1-2* (*ktn*) mutant to predict
167 cell division events showed reduced accuracy in comparison with data from the wild type (WT) for
168 all classifiers. The relative difference between the test accuracies for WT and *ktn* was smaller for
169 the classifier trained on surface area (2.0%) compared with all topological (6.0%) as well as the
170 topological and biological features combined (7.2%). Removing the features with Pearson
171 correlation to surface area higher than 0.7 led to relative decrease of 6.0% between the test
172 accuracies for WT and *ktn* (Figure 2). While these findings demonstrate the importance of surface
173 area as a determinant of cell division, they also support the claim that topology plays an important
174 role in predicting cell division events.

175

176 **Combination of topological and biological features enables recreation of the local
177 topology after cell division**

178 To examine whether properties derived from the tissue connectivity network as well as biological
179 properties (i.e. cell size and perimeter, distance, and shared cell wall between cells) are
180 predictive in the time-dependent connectivity of daughter cells, we trained classifiers based on
181 SVMs (with Gaussian kernel) to predict which of the cells adjacent to a dividing (parent) cell are
182 neighbors of the divided (daughter) cells. We distinguished neighbors that were only adjacent to
183 one daughter cell: adjacent to the daughter cell closer to the SAM center are labelled as class 0,
184 while those adjacent to the daughter farther from the center were classified as class 1;
185 neighboring cells adjacent to both daughter cells were considered to be of class 2
186 (Supplementary Figure 1C).

187 To predict changes of cell divisions based on local topology from the data collected at 1-day
188 time interval, we first determined all neighbor-parent pairs and then predicted the adjacency of
189 the neighbor to the daughter cells. To this end, we considered the topological features as well as
190 biological properties of the parent and the neighbor cells in the preceding time point. We used the
191 topological features of the neighbor cell to distinguish neighbor-parent pairs in which a neighbor is
192 adjacent to two dividing cells. We also included the difference between the topological features of
193 the neighbor and the parent, thus generating 100 unique topological-based properties for each
194 neighbor-parent-pair (Supplementary Figure 1B). For the biological feature set, we extracted the

195 surface area and perimeter of both the parent cell and neighbors as well as their shared cell wall
196 and distance between the centers of mass. For the combined features, we concatenated both
197 topological and biological features. Given a parent cell, we determined the class of its neighbors
198 in the next time point by aligning the tissues between 1-day time intervals manually, and
199 determining their adjacency of the neighbor with respect to the daughter cells (see Methods and
200 Supplementary Figure 1B).

201 We excluded neighbor-parent-pairs for which the neighbor also divided in the considered 1-
202 day interval to avoid bias due to guessing which cell divides first (Figure 3A). Following this
203 procedure, we created 1638 neighbor-parent pairs with 546 representatives (balanced classes) in
204 each of the three classes (0, 1, and 2) from five different SAMs, tracked every 24 hours over 5
205 days. The data was split into three parts: training, validation, and test data, such that the SAM of
206 one plant was kept as test data, while the rest of the plants were used in a nested five-fold cross
207 validation for training the SVM.

208 The training and validation accuracy was best for the SVM based on the topological features
209 combined with biological features, at 70.4% and 64.0%, respectively. The topological and
210 biological features alone showed 12.7% or 17.0% reduction in validation accuracy compared to
211 the combined classifier, and similar reduction in training accuracies. Regarding the performance
212 on the test set, the combined classifier performed best, with an accuracy of 65.7%, followed by
213 the classifier based on topological features alone with 60.6%, and that using biological features
214 alone, with the worst accuracy (equivalent to guessing) of 50.3% (Figure 3B, Supplementary
215 Table 4).

216 Investigating the area under the ROC-curve (AUC) measure for individual classes highlighted
217 the differences between the two classifiers trained on topological or biological features alone: The
218 SVM based on the topological features showed better performance for the neighbors only
219 adjacent to one cell (class 0 and 1) in comparison with the classifier based on the biological
220 features (i.e. relative increase of 10.7% and 23.9% for class 0 and 1, respectively). In contrast,
221 the SVM based on the biological features performed 22.6% better for neighbors adjacent to both
222 daughter cells in comparison with the classifier based on the topological features. Combining both
223 feature sets improved the average AUC on the validation data of the classifier by 9.4% and
224 13.0% (relative increase compared to topological and biological features alone, respectively)
225 while retaining high performance for all classes (Figure 3C, Supplementary Figure 6).
226 Investigating the reduced topological feature set (i.e. removing features with Pearson correlation
227 coefficients larger than 0.5 or 0.7 with any biological feature) as well as only considering
228 unweighted features resulted in almost identical training, validation, and test accuracies
229 compared with all topological feature trained classifiers. The training accuracy of the unweighted
230 set showed a slight relative reduction of 7.0% (p-value: 0.013, one-way ANOVA) (Figure 3A,

231 Supplementary Table 4). These findings indicated the importance of both topological as well as
232 biological properties to predict local topology after a division event.

233 To further corroborate the biological relevance of these results, we randomly permuted the
234 labels and retrained the classifiers, repeating this procedure 1000 times for each feature set.
235 While the resulting classifiers showed performance better than expected at random on the
236 training data with the three sets of features, they did not generalize well and exhibited accuracy
237 on the validation set similar to expected by chance (Supplementary Figure 5B). Further, we
238 investigated the more difficult scenario of including neighbor-parent-pairs whose neighbors also
239 divide and repeat the topology prediction procedure. Here, we found similar performance to that
240 on the training, validation, and test sets for all combinations of feature sets (Supplementary Table
241 4). Therefore, our findings demonstrated that the used features capture information important to
242 classify changes in local topology predictions surrounding dividing cells in 24-hour intervals.

243 We tested how well the trained classifiers based on the wild-type data performed on the *ktn*
244 mutant. With the data from the *ktn* mutant, we found a reduction in accuracy for all classifiers for
245 local topology prediction, trained on the wild type data, except for those using the biological
246 feature set (50.3% WT testing vs 51.6% *ktn* testing). All classifiers trained on topology-related
247 feature sets showed strong relative reduction in test accuracy between WT and *ktn* (topo: 31.6%;
248 topo + bio: 17.0%; $r < 0.7$: 33.3%; $r < 0.5$: 28.9%; unweighted: 25.5%; orange vs purple bars,
249 Figure 3B). The reduced performance on *ktn* data of classifiers trained on topological features
250 (feature sets: topo, topoAndBio) can be mainly attributed to the worse prediction of class 0 and 1
251 (cells being predicted to be adjacency to only one of the divided daughter cells, Supplementary
252 Figure 1C). In contrast, the classifiers trained on biological features performed similarly on *ktn*
253 test as those based on the WT test data (Figure 3B). These results highlight the importance of
254 both topological and biological information in local topology rearrangement after cell division.

255

256 **Combined application of division event and local topology prediction enables to predict 257 tissue topologies**

258 To apply the classifiers and compare the resulting topologies, we used the data from the test
259 plant and successively predicted division events and changes in local topology using classifiers
260 trained on the combined biological and topological features (see following procedure in Figure
261 4A). We compared the predicted and observed topologies by investigating the unweighted
262 topological features (Figure 1C, Supplementary Table 1) of non-dividing cells in the next time
263 points of both scenarios. We selected non-dividing cells of both scenarios, i.e. predicted and
264 observed, to pairwisely compare their unweighted topological features. We did not consider other
265 network scenarios (see Figure 1C) since we would need to estimate the weights for the topology,
266 adding a layer of uncertainty. Here, 126 of the possible 155 non-dividing cells in the observed

267 topology were also non-dividing in the predicted topology. For these cells, we calculated the
268 Pearson correlation coefficient (r) of all unweighted features between observed and predicted
269 topologies, with the harmonic centrality showing the largest value of $r = 0.80$ and eight of 16
270 features having Pearson correlation larger than 0.5 (Figure 4D, blue bars). We compared the
271 predicted and observed values of harmonic centrality of the non-dividing cells of the next time
272 step, and found strong correlation (Figure 4E, Supplementary Figure 8).

273 For comparison, given the same test plants observed topologies, we selected all predicted
274 non-dividing cells to divide and randomly connected the neighbors with the divided cells
275 reorienting their local neighborhood; we then repeated the correlation analysis of the resulting
276 topology with the observed one. This “random propagation” scenario allowed us to construct and
277 investigate the most opposite example to our predictions (Figure 4D, orange bars). Comparing
278 the predicted and random propagations correlations shows that only five out of 16 topological
279 features showed higher correlation in the random propagation. The random propagation showed
280 the lowest correlating features and the trained classifiers showed the highest correlations with a
281 total of eight being higher (Figure 4D, blue vs orange bars).

282 To further investigate the performance of the local topology prediction on the test plant, we
283 calculated the percentage of correctly predicted neighbors for each cell dividing in the predicted
284 and observed tissue (example in Figure 4B). The distribution of correctly labelled neighbors per
285 dividing cell was significantly shifted towards higher accuracy when comparing the predicted and
286 random topology predictions (Figure 4C).

287

288 **Discussion**

289 The biochemical pathway of cell division control has been extensively studied (Dewitte and
290 Murray, 2003), but only recently external cues have also been considered to understand the
291 effect of cell divisions in a tissue context (Hartig and Beck, 2006; Shimotohno et al., 2021). It has
292 been known that the outer epidermal cell wall resists most forces (Beauzamy et al., 2015) and,
293 thus, division in the SAM outer-layer needs to serve both meristematic functions. This raises the
294 question if cell division and their subsequent local topology rearrangement are affected by the
295 tissue topology and if tissue topology contains sufficient information for their accurate prediction.

296 Based on our extensive network-based modelling, we showed that both surface area, as an
297 approximation of cell size, as well as the characteristics of topology allow for prediction of cell
298 division events in the central epidermal region of *A. thaliana* SAM, in contrast to earlier reports
299 (Jackson et al., 2019). The cyclin-dependent kinase (CDK) G1 is known to bind DNA and serves
300 as a ruler after cell division, allowing for size dependent division in *C. reinhardtii* (Li et al., 2016),
301 while KIP-related protein 4 has a similar function in the *A. thaliana* SAM niche (D'Ario et al.,
302 2021). Modelling cell division in the SAM of *A. thaliana* also revealed the importance of CDKs in

303 G1-S and G2-M phase transition (Jones et al., 2017). Further, the work of Willis et al. (2016)
304 showed that cell division events in SAMs of *Arabidopsis* treated with naphthylphthalamic acid, an
305 inhibitor of auxin transport that generates naked meristem, are influenced by both cell size
306 increase and a cell size threshold affecting cell division. Both models explain the importance of
307 surface area in predicting cell division events, but they do not explain the importance of
308 topological features. Here, the mechanical feedback loop, envisioned by the cells ability to react
309 to changes in turgor pressure with MT and cell wall rearrangement affecting cell divisions (for
310 detail of the feedback loop, see Sampathkumar (2020)) may serve as an explanation linking
311 topology with the summed turgor and supracellular mechanical stress. Alternatively, the predictive
312 ability of topological properties may result from long distance communication by different
313 phytohormones (Shimotohno et al., 2021), or due to cell-to-cell communication by
314 plasmodesmata (Kitagawa and Jackson, 2017).

315 However, not only the cell division, but also the cell wall positioning affects the tissue
316 organization; a prime example is the effect of division patterning in lateral root initiation
317 (Wangenheim et al., 2016). Our study relies on the adjacency of cells in the tissue topology, in
318 contrast to other cell wall models, such as: the generalized Errera's rule (Besson and Dumais,
319 2011), the spring-based model (Gibson et al., 2011), and the mechanical stress related model
320 (Louveaux et al., 2016), that predict the placement of the cell wall based on the individual cell
321 geometry. Our classifier employs the biological feature set composed of six cellular features,
322 having limited information about the dividing and neighbor cell geometry, and allows for reliable
323 prediction of the changes in the local topology. These local changes in the topology mirror the
324 effect of the cell wall placement on the tissue. In addition, we showed that topological features
325 alone sufficed to accurately predict local topological changes. While single topological properties
326 were already used to estimate cell wall placement (Jackson et al., 2019), the percentage of
327 dividing epidermal cells in this study was only 12% (total n=7/57 dividing and non-dividing cells)
328 per tissue every 22h. In contrast, our results rely on experiments in which cells divided more
329 regularly, with an average of 24% of dividing cells per tissue every 24h (total n=329/896 dividing
330 and non-dividing cells), allowing us to train robust classifiers. We showed that the combination of
331 both feature sets boosted performance of local topology reorientation prediction (Figure 3),
332 indicating that the inclusion of multiple viewpoints of information available to cells needed to be
333 involved to solve the problem of cell wall placement in the SAM. This raises the question how
334 information of the topology is biologically transferred to cells, either via mechanical stress,
335 hormones, or cell to cell communication with plasmodesmata.

336 To demonstrate the generalizability of the classifiers, we showed that they can be used to
337 make accurate predictions for *ktn* mutants that are defective in mechanical feedback regulation.
338 Our results indicated similar performance for the classifiers with biological feature sets from WT

339 and *ktn*. In contrast, the classifiers trained on topological features showed reductions in
340 performance in *ktn* compared to WT. This difference in performance is not due to differences in
341 topological features, since the normalized features showed similar distributions (Supplementary
342 Figure 9). These results suggest a potential role of KATANIN in linking sub- and supracellular
343 mechanical stress, known to affect leaf epidermal cells (Eng et al., 2021) and KATANINs role in
344 positioning of the preprophase band, spindle, and phragmoplast (Komis et al., 2017). In addition,
345 the cell geometry of the *ktn* mutant differs compared to the WT and might also influence the
346 topology. Therefore, the combination of network-based modelling with machine learning provides
347 a method to screen SAMs under different conditions and mutants. More specifically, reduction in
348 test performance of either the classifiers trained on surface area or on topological features
349 compared to the wild type may hint to effects only disturbing function related to the cell cycle or to
350 a topological effect (in the case of classifier trained on area or topological features being lower,
351 respectively).

352 When combining division prediction and the resulting changes to the tissue, previous studies
353 mostly focus on single cell division or propagating tissues based on division likelihoods using the
354 number of neighbors (Gibson et al., 2011) or just using area as a fixed threshold (Sahlin and
355 Jönsson, 2010; Alim et al., 2012), while our classifier incorporates more diverse tissue-level
356 information. Here, we combined our best classifiers to predict future tissue topology using the
357 combined topological and biological features. Although the results of this propagation of
358 classifiers is promising, the careful inspection of the finding, particularly with respect to planarity
359 and topological properties of the reconstructed topologies point out that further research should
360 consider simultaneous modelling of cell neighborhoods of higher order to improve the
361 reconstruction.

362 Furthermore, as information is not only be passed along the epidermis (L1-layer), the
363 assessment of cell division events and their changes on the topology could be expanded beyond
364 the epidermis of the SAM as we know that the L2- and L3-layer play a vital role in supporting the
365 meristematic function through the feedback of CLAVATA 1, 2, and 3 and WUSCHEL (Schoof et
366 al., 2000). Transferring the classifiers to other plant species, such as maize (that has only two
367 distinct layers forming the SAM), may provide insights into how meristematic function can be
368 conserved with fewer cells. As other tissues and organs are also experiencing mechanical
369 stresses, hormone gradients and other transport related feedbacks, e.g. growth resulting stress
370 (Sampathkumar et al., 2014), auxin gradients (due to PIN; Shi et al., (2018)), soil thickness in
371 roots, and bending through wind in the stem, there are bound to be feedback loops of cells and
372 tissues to sense and react to those cues on a topological level to integrate this information into
373 the plants development.

374

375 **Material and Methods**

376

377 **Plant materials and growth condition**

378 We grew *Arabidopsis thaliana* wild-type (WT; Wassilewskija ecotype) plants with the membrane
379 reporter pUBQ10::acyl-YFP (previously described in (Willis et al., 2016)) and katanin1-2 mutant in
380 Columbia-0 background with the membrane reporter Lti6b-GFP (Eng et al., 2021) in short day (8
381 h/16 h day/night), 20 °C/16 °C conditions for 3 weeks and then transferred to long day (16 h/8 h
382 day/night), 20 °C/16 °C conditions till shoot apical meristem sampling. We cultured sampled
383 shoot apical meristems (SAMs) in transparent imaging boxes containing apex culture media
384 under long day, 22 °C conditions as previously described (Wang and Sampathkumar, 2020).

385

386 **Time-lapse data acquisition and pre-processing**

387 We acquired confocal Z-stacks (3D images) at an excitation wavelength of 514 nm and 488 nm
388 for imaging YFP and GFP respectively with a 40X/0.8 water immersion objective every 24 hours
389 for 5 days (WT) or 3 days (*ktn*). Next, we used MorphoGraphX (MGX) (Barbier de Reuille et al.,
390 2015) to obtain 2 ½ D surface mesh of the meristem L1 layer from the 3D images and from there
391 we extract the cellular connectivity network (topology). In addition, we measured the shared cell
392 wall of the neighboring cells (MGX function: Mesh/Export/Save Cell Neighborhood 2D), the
393 surface area, and cell positions (MGX: Mesh/Heat Map/Heat Map Classic). The cellular
394 connectivity network is composed of nodes, representing the centroids of the extracted cells.
395 Edges connect two nodes if the corresponding cells are adjacent to each other. We lineage-
396 tracked all cells between 1-day time steps manually in MGX (Figure 1A). We refer to dividing
397 cells, at time t (days), as parent cells and their descendants, at time t + 1 (days), as daughter
398 cells. To select the cells for the downstream analysis, we first manually determined the cells
399 closest to the center of the SAM surface, given by the highest curvature. To this end, we
400 compared the positions of cells to the average position over all cells.

401

402 **Prediction of dividing cells**

403 To predict cell division events of central and non-peripheral cells, we selected all cells in a radius
404 of 30 µm around the center (Figure 1B). In such a way, we only analyzed central and exclude
405 peripheral cells. We considered a cell as peripheral with respect to a connectivity network in case
406 the graph induced by the adjacent nodes does not form a cycle. We then labelled each of the
407 selected cells as dividing (label: 1) or non-dividing (label: -1) cell within 24 hours (one day). In
408 addition, we determined six sets of features (see below; for unreduced sets see Supplementary
409 Figure 1) for each cell.

410 Five of six feature sets are based on the entire tissue (i.e. including peripheral cells as well as
411 cells outside of the central region from the cellular connectivity network) and consist of topological
412 features for all central cells; the sixth set includes only the surface area of the central cell. While
413 calculating the topological properties, we considered different scenarios for weighting the edges.
414 In the case of the unweighted topology, we weighted all edges equally (edge weight = 1). For the
415 area-induced topology, we used the inverse of the mean surface areas of the two adjacent cells
416 as edge weight. For the wall-induced topology, we defined the edge weights as the inverse of the
417 shared cell wall area between two cells. For the distance-induced topology, we determined the
418 inverse of the distance between the centroid positions of two adjacent cells as the edge weight
419 (Figure 1C). We calculated ten topological properties for each central cell and network scenario
420 (see Supplementary Table 1). Furthermore, we considered topological properties based on the
421 induced subgraph of the first neighborhood (see Supplementary Table 1). We estimated all
422 properties in python 3.8.1 using the networkx 2.4 package.

423 To train the classifiers for prediction of division events between two successive time points, we
424 split the WT data from the five plants into two data sets, a training-validation and a testing set with
425 four and one plant, respectively, while keeping three *ktn* plants as a separate test set. As there
426 are fewer dividing cells, their class is the minority class. As a result, we down-sampled the
427 majority class of non-dividing cells to balance the two classes. We applied a support vector
428 machine (SVM) with a Gaussian kernel to predict the occurrence of cell division events within 1
429 day. To this end, we used the six different feature sets, namely: the unweighted topological
430 features (unweighted topology), all topological features combined (topo), the surface area
431 (surface area), topological features and area (topo + area), as well as two reduced feature sets
432 including only topological features with Pearson correlation coefficients with surface area smaller
433 than 0.5 or 0.7 (denoted by $r < 0.5$ and $r < 0.7$) (Supplementary Figure 1A). We trained each
434 classifier with the topological properties as features of the training-validation set using five-fold
435 cross-validation.

436 To this end, we z-normalised $((X-\text{mean})/\text{std})$ the topological properties with the corresponding
437 mean and standard deviation (std) for the train-validation and the WT test data sets, respectively.
438 The *ktn* data is z-normalised using its mean and standard deviations. We estimated the
439 hyperparameters on the training set using another five-fold cross-validation using grid search
440 (sklearn 0.22.1, GridSearchCV) regularly spacing 50 hyper-parameters for each power of 10. We
441 further tested the classifiers by retraining the SVMs on all training-validation data with newly
442 selected parameters and applied them on the unseen test data. We quantified the performance of
443 the classifiers by calculating five measures of performance, including: the accuracy, F1-score,
444 true positive rate, false positive rate, and area under the curve (AUC) of the receiver-operator

445 characteristic (ROC). For comparative analysis between two performance measures p_1 and p_2 ,
446 we used the relative difference $(100 \cdot \frac{|p_1 - p_2|}{\text{mean}(p_1, p_2)})$.

447 To further inspect the training of the classifiers, we generated the learning curves by retraining
448 each classifier on a different number of training data (keeping the hyper-parameters from above).
449 We further determined the feature sets information content by shuffling the labels 1000 times,
450 retraining the classifier using the default RBF SVM parameters (sklearn 0.22.1, svm.SVC) on
451 each set of shuffled labels, and calculating the performance of the resulting classifiers.

452

453 **Recreating of local topology after cell division**

454 For the prediction of the changes in local topology of dividing cells, we selected all non-peripheral
455 neighbor-parent-pairs of dividing cells. Next, we categorized the adjacency of these neighbors
456 with respect to the newly divided (daughter) cells. To this end, we inspected if the neighbor of a
457 neighbor-parent pair is adjacent to only one or both of the daughter cells.

458 To automate the procedure, we distinguished the divided daughter cells into the daughter
459 closer to the center of the SAM which we termed cell "A" and the second daughter cell we named
460 cell "B". We labelled each neighbor cell in a neighbor-parent-pair with class 0, 1, or 2 according to
461 whether it is connected only to cell "A", cell "B", or both. We then predicted the local topology
462 excluding and including dividing neighbors using six feature sets, similar to the analysis above.

463 To distinguish neighbor-parent-pairs which are adjacent to two dividing cells, we considered
464 the difference of topological features between neighbor and dividing parental cells in addition to
465 the parental topological properties as features (Supplementary Figure 1B). As a result, we
466 obtained the following feature sets: unweighted topology, topological features from all weightings
467 (topo), biological features (bio, consisting of surface area and perimeter from neighbor and
468 parent, as well as the shared cell wall and distance between the two), the combination of all
469 topological and biological features (topo + bio), and two reduced feature sets ($r < 0.5$ and $r < 0.7$)
470 including only topological features with Pearson correlation coefficients of smaller than 0.5 or 0.7
471 with all biological features. We performed training, validation, and testing as well as inspected the
472 learning curves and estimated the information content of the used features as specified in the
473 analysis above for wild type data. Additionally, we tested the classifiers on the *ktn* data.

474

475 **Application of the classifiers for division event and local topology**

476 To combine the predictions of division events and local topology changes, we used the previously
477 developed classifiers and applied them to predict how the topology of the test plants would
478 change. To this end, we selected the classifiers including both topological and biological features
479 (based on validation performance) and applied them one after another on to the test tissues to
480 generate the topology of the next time points. Here, the predictions were only made for one time

481 step (24 hours), since longer periods required us to estimate changes in the biological features as
482 cells predicted to divide would not necessarily divide in the observed tissue one step later.

483 To arrive at the predicted cellular connectivity network, we determined the cells predicted to
484 divide and divided cells' future adjacency with their neighbors. Next, we repeated the following
485 four steps for all cells predicted to divide at time t , starting with a random cell: (1) We removed the
486 dividing cell along with the edges connecting the neighbors that is dividing. (2) We added the
487 daughter cells representing the cell closer (cell A) and farther (cell B) away from the SAM center.
488 (3) We connected the daughter cells with their neighbors based on the prediction from the local
489 topology classifier (Figure 4A).

490 To evaluate the performance of the combined application of division and topology prediction,
491 we calculated all unweighted topology features for the cells which are neither dividing in the
492 predicted nor in the observed topology. Next, we plotted the non-dividing cells observed against
493 the predicted features, determined best linear fit, and the Pearson correlation coefficient of all
494 unweighted topological properties. In addition, we divided all predicted non-dividing cells,
495 randomly assigned labels to the neighbors of dividing cells how they will be connected to the
496 divided cells based on the training-validation set representation. Then, we repeated the
497 correlation analysis from above 1000 times (differently reconnecting topologies), and compared
498 the correlations between predicted and random topology propagation.

499 To also evaluate the local recreation of the topology around dividing cells, we compare the
500 first neighborhoods of cells dividing in the predicted and observed tissue of the test plant by
501 calculating the percentage of correctly labelled neighbors. The distributions of predicted
502 accuracies are compared with an estimated random labelling of the neighbors using Kolmogorov-
503 Smirnov-Test (scipy 1.4.1, ks_2samp).

504

505 **Code availability**

506 The entire code to reproduce the findings is available at
507 https://github.com/matz2532/SAM_division_prediction

508

509 **Acknowledgments**

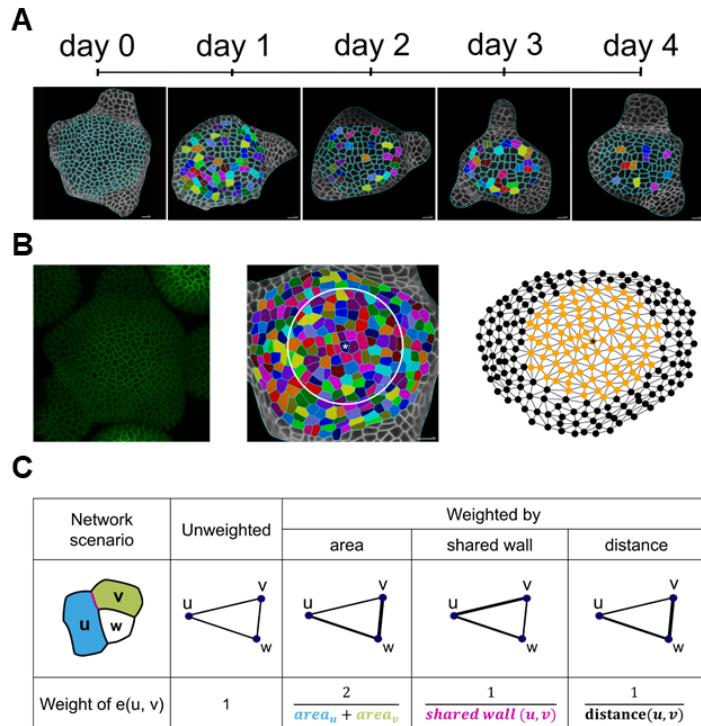
510 Z.N., T.M., A.S., Y.W., and R.K. acknowledge the support by the project SHAPENET, 031L0177A
511 (to Z.N.) and 031L0177B (to A.S.), of the German Federal Ministry of Education and Research.

512

513 **Author Contributions:** Z.N. and A.S. designed the research. T.W.M. implemented the
514 computational approaches and performed the computational experiments. Y.W. and T.W.M.
515 performed segmentation. Y.W. and R.K. performed the image generation. T.W.M. and Z.N.
516 prepared the manuscript. All co-authors contributed to the final version of the manuscript.

517 **Competing Interest Statement:** The authors declare no competing interests.

518 **Figures**

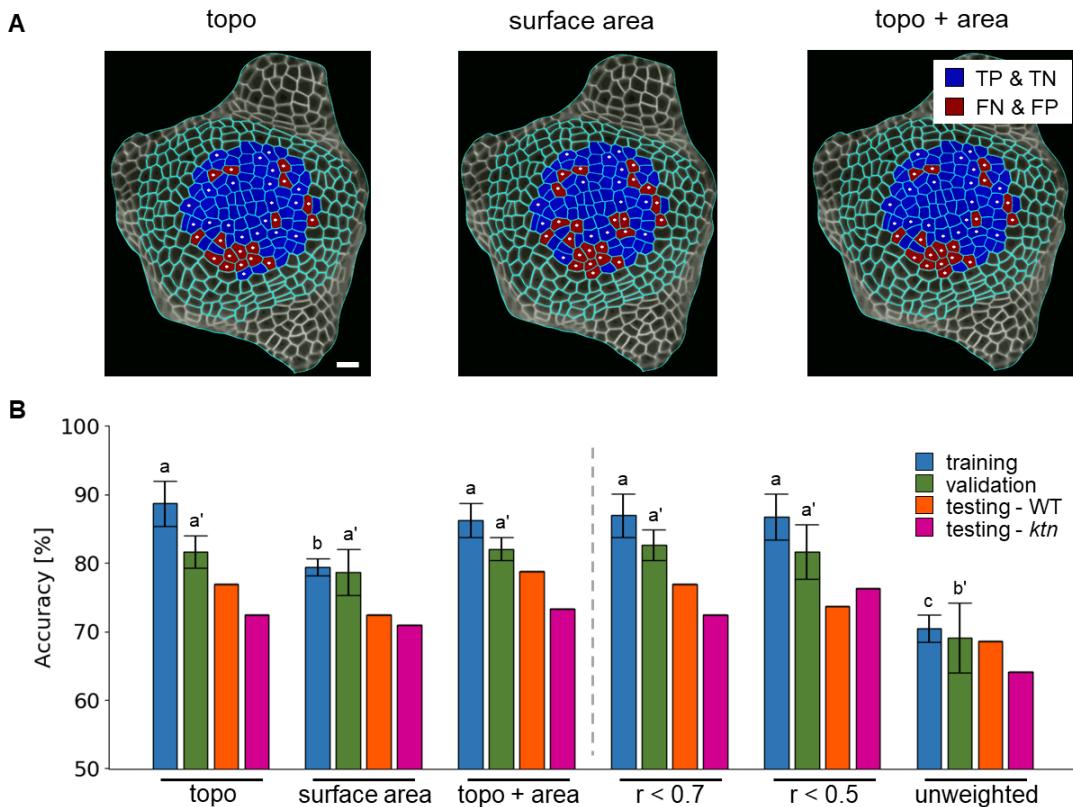


519

520 **Figure 1. Feature generation from three-dimensional (3D) images of the shoot apical
521 meristem (SAM).** (A) The surface of *A. thaliana* SAM is imaged every 24 hours over four days.
522 Pairs of dividing cells, depicted with the same colors, are determined manually (see Methods). (B)
523 The 3D images of SAMs are converted to 2½D surfaces by employing MGX (de Reuille et al.,
524 2015) (left panel). The surface is abstracted by its topology, capturing the connectivity of
525 neighboring cells in a radius of 30 μm (white circle) around the central cell, marked with * (center
526 panel). The topology of the analyzed cells inside the circle is colored in orange (right panel). Two
527 nodes are connected by an edge if the cells they represent share cell wall. (C) Four different
528 network scenarios are considered: (i) unweighted edges and edges weighted by (ii) area, (iii)
529 shared cell wall, and (iv) distance, illustrated for the case of three cells u (blue), v (green), and w
530 (white). In the unweighted network scenario, all edge weights have a value of one. The edge
531 weight for the network weighted on area, shared wall, and distance is the inverse of the mean cell
532 areas of u and v, of the shared cell wall area (magenta), and of the inverse distance of the center
533 of mass for the graph weighted on the distance (black). The weights of the edge $e(u, v)$ in the four
534 scenarios are illustrated with different line widths.

535

536



537

538

Figure 2. Surface area and topology-based features generate different predictions for cell

division in the SAM. (A) Comparison of predicted and observed labels on one test plant tissue from Figure 1A day 0 highlighting the difference between predicted and observed division events. The predictions are from classifiers trained on different feature sets: combined topological features (topo), surface area, combined topological features and surface area (topo + area; from left to right) with the coloring scheme of correct predictions in blue and wrong prediction in red. The combined topological features include 16 centrality measures (see Methods) calculated based on the four network scenarios (see Figure 1C). Dividing cells are marked with a white star. Scale bar is 10 μ m. (B) Accuracy of the support vector machine classifier to predict cell division for the training (blue), validation (green), and testing of wild type (orange) and *ktn* mutant (purple) data sets using: topo, surface area, and topo + area, reduced set of topological features that show an absolute Pearson correlation coefficient with surface area smaller than 0.7 or 0.5 ($r < 0.7$ and $r < 0.5$), as well as only the topological features derived from the unweighted network scenario (unweighted). The performance on the training and validation set is determined from five-fold cross-validation with mean and the standard deviation shown as error bars. Different letters indicate significance between groups using one-way ANOVA with Tukey's pairwise comparison: p-value < 0.05. Statistical testing for differences of classifier performance for the

556 training and validation sets was conducted separately (letter without and with apostrophe,
557 respectively). $N_{WT} = 5$ plants, 4 time steps (4 plants for training-validation and 1 plant for testing);
558 $N_{ktn} = 3$ plants, 3 time steps; $n_{WT} = 502$ and 156, train-validation and test cells respectively; $n_{ktn} =$
559 334 (balanced data).

560

561

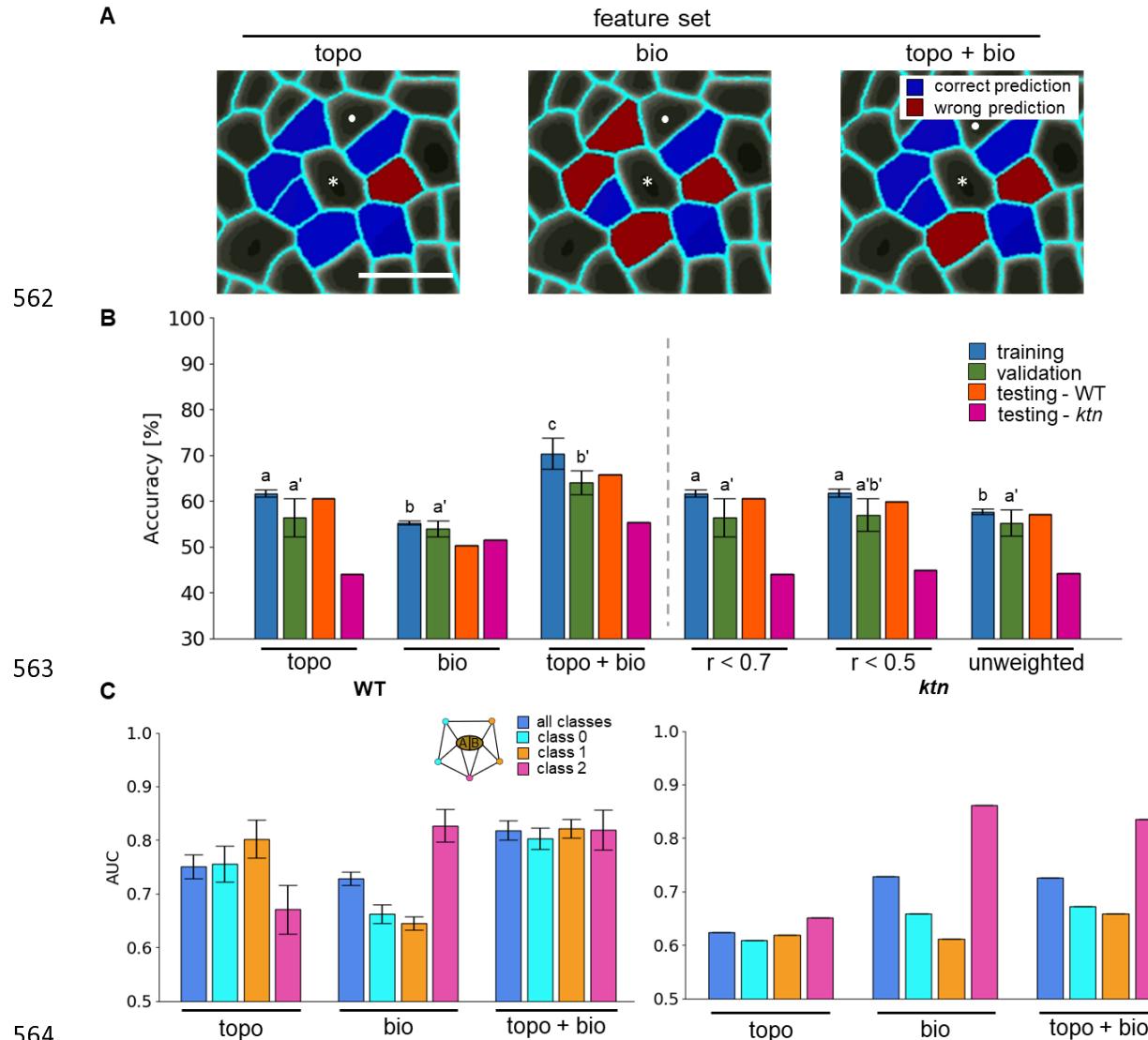
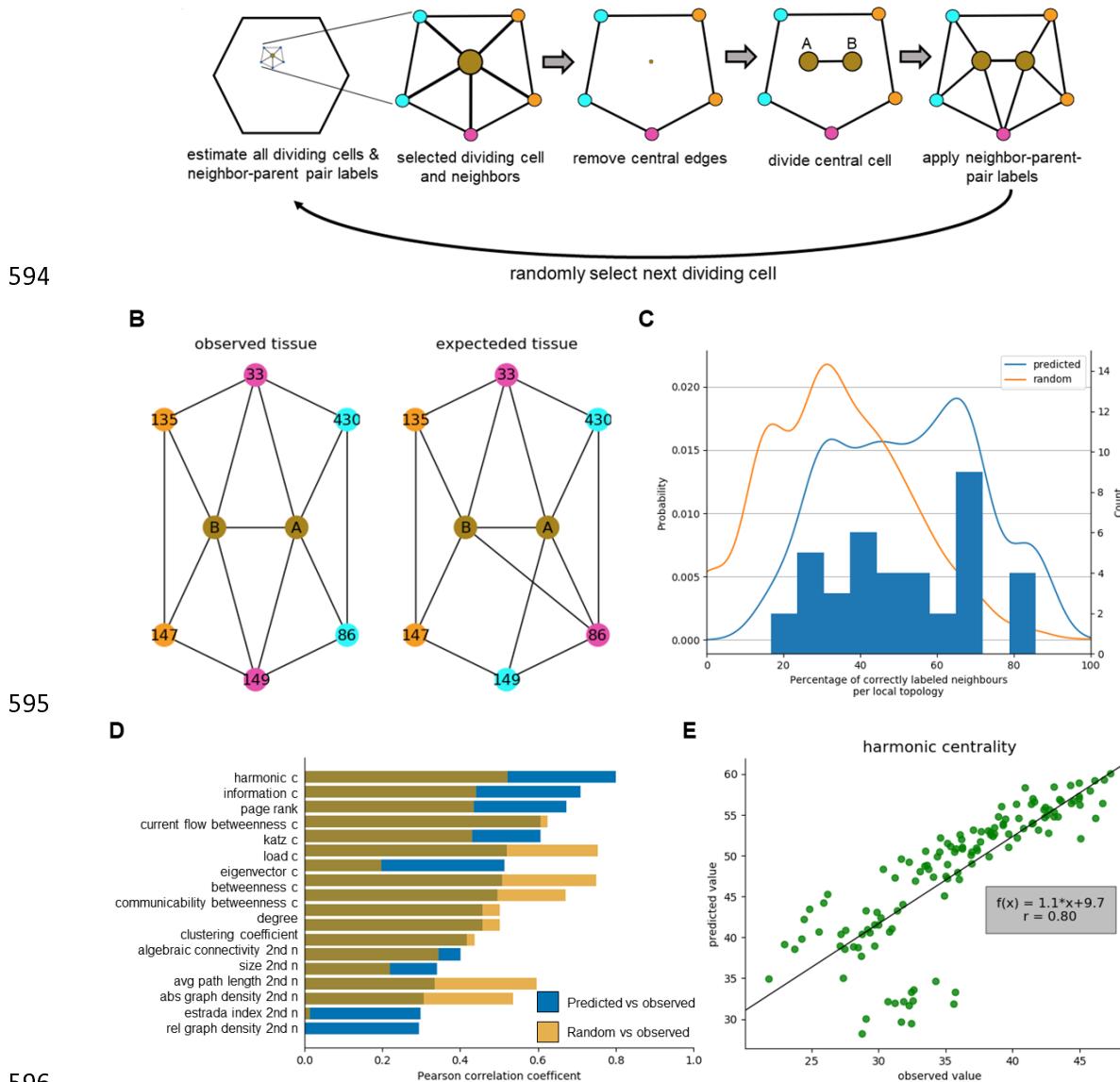


Figure 3. Topological and biological features are required for accurate prediction of the local neighborhood after cell division in the SAM. (A) Comparison of predicted and observed local neighborhoods on one local topology from Figure 1A, day 0. The predictions are made with classifiers trained on different feature sets: combined topological (topo, including features of the four network scenarios, see Figure 1C, Supplementary Figure 1), biological (bio, including area, perimeter, shared cell wall, and distance), and combined topological and biological features (topo + bio; from left to right) with the coloring scheme of correct predictions in blue and wrong prediction in red. The combined topological features include 16 centrality measures (see Methods) calculated based on the four network scenarios (see Figure 1C). The central and neighboring dividing cells are marked with a white star and circle, respectively. No color is displayed on the dividing neighbor cell as all dividing neighbors were removed. Scale bar is 10 μm . (B) Accuracy of classification on the training (blue), validation (green), and testing of wild

577 type (orange) and *ktn* mutant (purple) and (C) Area under the curve (AUC) of the ROC based on
578 the wild-type validation (left) and *ktn* test data (right) for the classification of all classes (blue), for
579 the class of neighbors adjacent to the daughter cell (cell A, see legend in B) closer to the SAM
580 center (denoted as class 0; cyan), adjacent to the daughter (cell B, see legend in C) farther from
581 the center (denoted as class 1; orange), or adjacent to both cells (denoted as class 2; magenta).
582 The classifiers are based on topo, bio, topo + bio, reduced set of topological features that show
583 an absolute Pearson correlation coefficient with all biological features smaller than 0.7 or 0.5 ($r <$
584 0.7 and $r < 0.5$), as well as topological features derived from the unweighted network scenario
585 (unweighted). The performance on the training and validation set is determined from five-fold
586 cross-validation with mean and the standard deviation shown as error bars. Different letters
587 indicate significance between groups using one-way ANOVA with Tukey's pairwise comparison
588 (p -value < 0.05). Statistical testing for differences of classifier performance for the training and
589 validation sets was conducted separately (letter without and with apostrophe, respectively). $N_{WT} =$
590 5 plants, 4 time steps (4 plants for training-validation and 1 plant for testing); $N_{ktn} =$ 3 plants, 3
591 time steps; $n_{WT} =$ 1317 and 312, train-validation and test cells respectively; $n_{ktn} =$ 888 (balanced
592 data).
593



596 **Figure 4. Concordance between observed and predicted topologies.** The cell connectivity network of the test plant was predicted by applying classifiers for division event and topology prediction. (A) Illustration of the procedure applying the division and local topology classifiers to generate the topology of the next time point (24-hour time interval). After division and topology prediction, a dividing cell (dot in brown) is selected along with its neighbors (blue circles) and its adjacency relationship (edges, black lines) (left). The selected cell (predicted to divide) along with the edges incident to the corresponding node are removed and replaced by the divided daughter cells (A, B: representing the cell closer and farther away from the SAM center) that are adjacent to each other (three in the middle). The daughter cells are connected with their neighbors based on the prediction from the local topology classifier (right). The next dividing cell is randomly selected and the previous steps are repeated until all dividing cells are selected. (B) One example

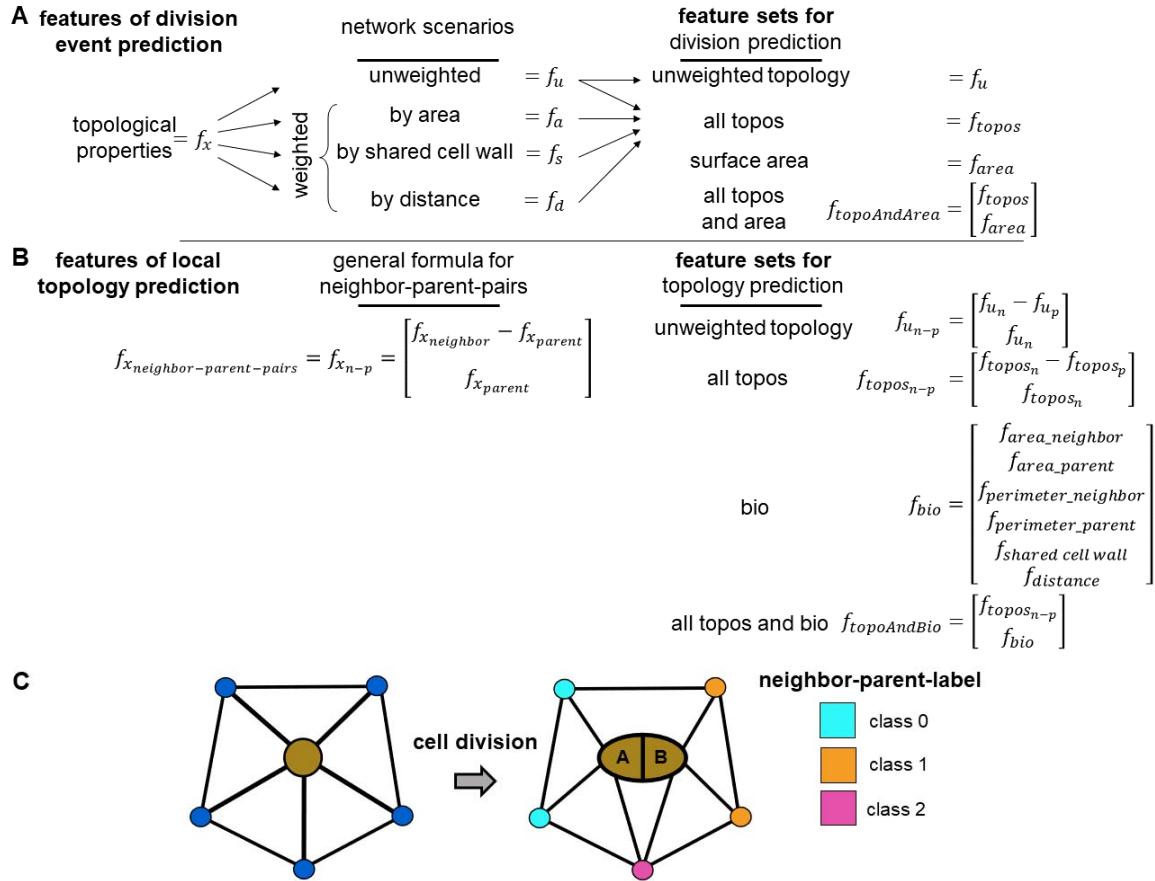
608 of the predicted local topology with an overall accuracy of 66.6% for the full local topology is
609 compared with the observed local topology. The divided daughter cells “A” and “B” (brown) are
610 adjacent with the predicted or observed cells (numbers display the same cells) coloring their
611 respective parent-neighbor-class (cyan/orange: cell connected only with daughter A or B,
612 respectively; magenta: cell adjacent with both daughter cells) (C) Histogram and density plot of
613 the percentage of correctly estimated neighbors per local topology of cells predicted as dividing in
614 the test plant (blue) are compared with the density plot of randomly assigning parent-neighbor-
615 classes (orange). Difference between distributions is tested using Kolmogorov-Smirnov-Test, p-
616 value < 0.01. N = 1 plant, 4 time steps, n = 39 local topologies. (D) The concordance between the
617 observed and predicted topologies was quantified (blue) for non-dividing cells in both topologies
618 by calculating and ranking the Pearson correlation coefficient based on 16 topological features
619 from the unweighted networks (see Figure 1C; Supplementary Table 1). The procedure was
620 repeated dividing all cells predicted to be non-dividing, randomly assigning classes to the
621 neighbors, and calculating the correlation as described before (yellow). (E) The observed
622 harmonic centrality is plotted against the predicted harmonic centrality for all non-dividing cells
623 and the best linear fit (solid line) with its function $f(x)$ and the respective Pearson correlation
624 coefficient r is overlaid. $N_{WT} = 1$ plant, 4 time steps, $n_{WT} = 126$ cells not dividing in both observed
625 and predicted tissue.

626

627

628 **Supplementary Information**

629



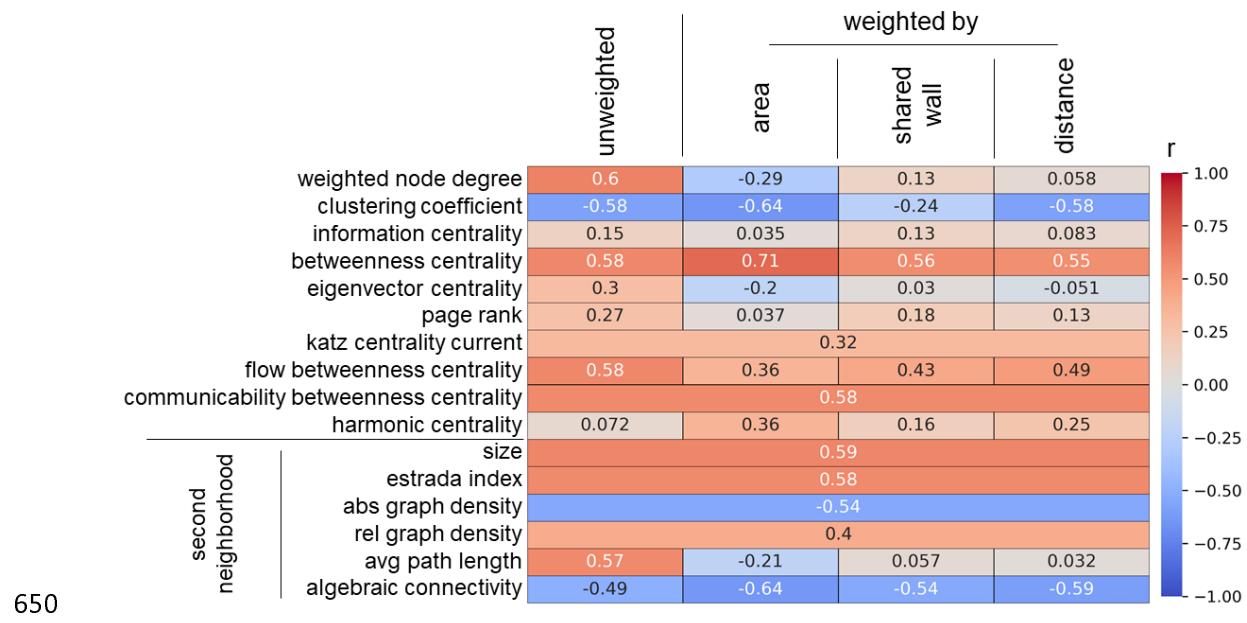
630

631

632 **Supplementary Figures 1. Overview about feature sets for division event and local**
 633 **topology prediction as well as an example for local topology class assignment.** (A) For
 634 division event prediction, we consider 16 topological features (Supplementary Table 1) calculated
 635 from four network scenarios (unweighted, weighted by area, shared cell wall, and distance),
 636 creating four different feature sets: unweighted topology, all topologies (all topos), surface area,
 637 as well as topological features and surface area combined (all topos and area) for all central cells.
 638 (B) For local topology prediction, we calculate features for each neighbor-parent-pair of dividing
 639 parent cells using the difference in topological features of the neighbor and parent features as
 640 well as the features of the neighbor. Using this general formula, we generated four feature sets:
 641 unweighted topology, all topos, biological features (bio, including surface area, perimeter, shared
 642 cell wall, and distance), as well as topological and biological features combined (all topos and
 643 bio). (C) Parent cell (brown circle) divides into two daughter cells (A, B: representing the cell
 644 closer and farther away from the SAM center) changing the local topology in the process. The

645 colors of the neighbors after division of the central cell represents the adjacency of the neighbor
646 with the daughter cells: class 0 (cyan) neighbor is adjacent to cell A, class 1 (orange) pair
647 neighbor is adjacent cell B, and class 2 (magenta) neighbors are adjacent to both cells. The
648 classes are then used to be predicted from the earlier time point.

649



650

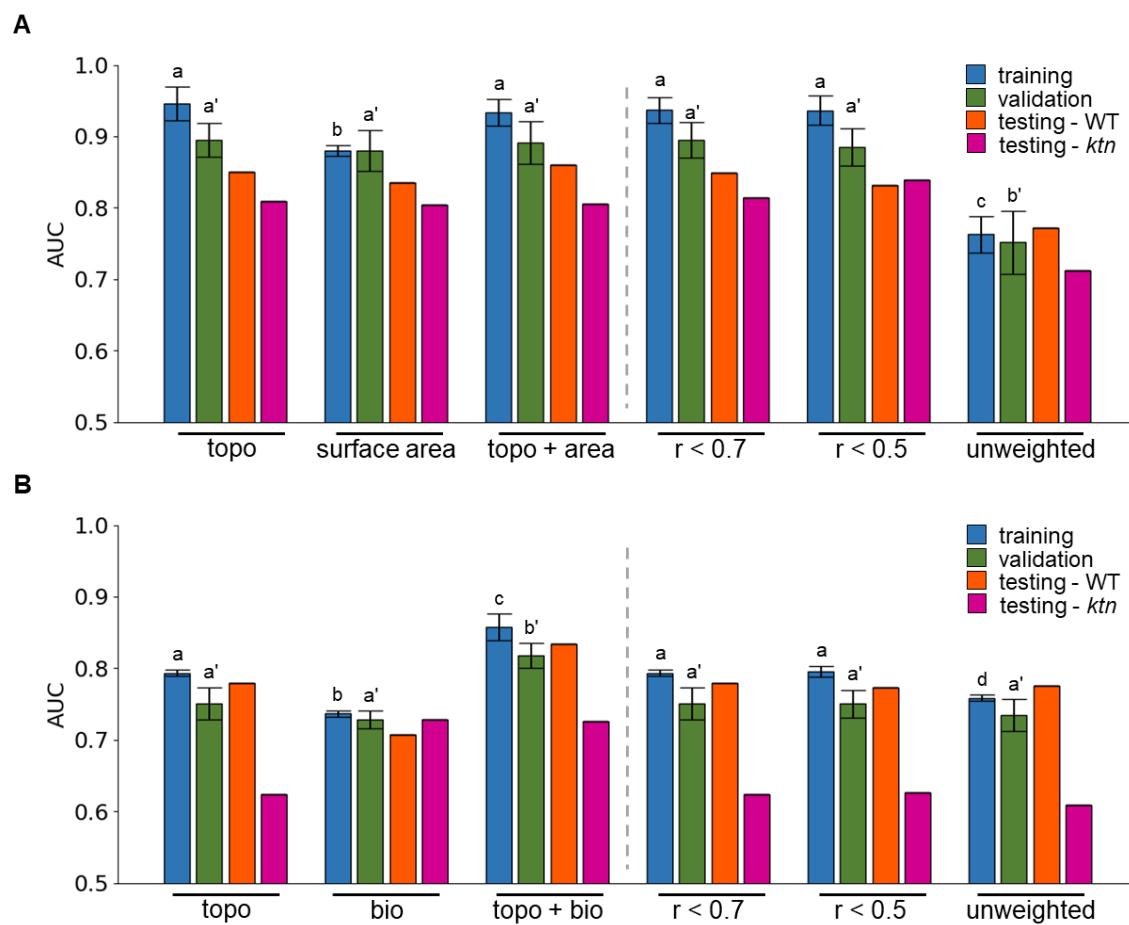
651 **Supplementary Figures 2. Heat map of Pearson correlation coefficients between**
652 **topological features and surface area.** We consider the 16 topological features calculated from
653 the four network scenarios (see Figure 1C): unweighted edges and edges weighted by area,
654 shared wall, and distance. Majority of topological features exhibit small Pearson correlation
655 coefficients (r , legend range from -1 (blue) to 1 (red)). $N_{WT} = 5$ plants, 4 time steps, $n_{WT} = 1225$
656 cells.

657

658

659

660



661

662

663

664

665

666

667

668

669

670

671

672

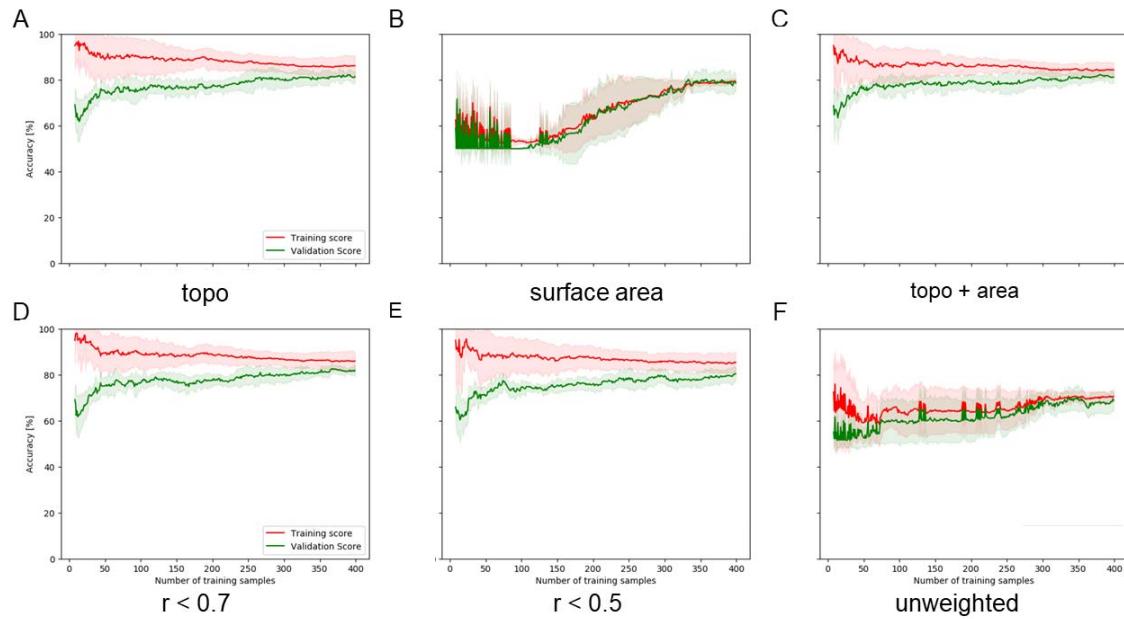
673

674

675

Supplementary Figure 3. Comparative analysis of predictions based on reduced sets of features. Area under the curve (AUC) of the ROC of the support vector machine (SVM) classifier on the training (blue), validation (green), and testing of wild type (orange) and ktn mutant (purple) set of (A) division event and (B) local topology prediction. SVMs are trained on the combined topological features (topo), (A) surface area or (B) (bio, including surface area, perimeter, shared cell wall, and distance), topological features with (A) surface area (topo + area) or (B) bio (topo + bio), reduced set of topological features that show an absolute Pearson correlation coefficient with (A) surface area or (B) bio smaller than 0.7 or 0.5 ($r < 0.7$ and $r < 0.5$), as well as only the topological features derived from the unweighted network scenario (unweighted). The performance on the training and validation set is determined from five-fold cross-validation with mean and the standard deviation shown as error bars. Different letters indicate significance between groups using one-way ANOVA with Tukey's pairwise comparison (p -value < 0.05). Statistical testing for differences of classifier performance for the training and validation sets was conducted separately (letter without and with apostrophe, respectively). $N_{WT} = 5$ plants, 4 time steps (4 plants for training-validation and 1 plant for testing); $N_{ktn} = 3$ plants, 3 time steps; (A) n_{WT}

676 = 502 and 156, train-validation and test cells, $n_{\text{ktn}} = 334$ (balanced data) and (B) $n_{\text{WT}} = 1317$ and
677 321, train-validation and test cells, $n_{\text{ktn}} = 888$ (balanced data).
678

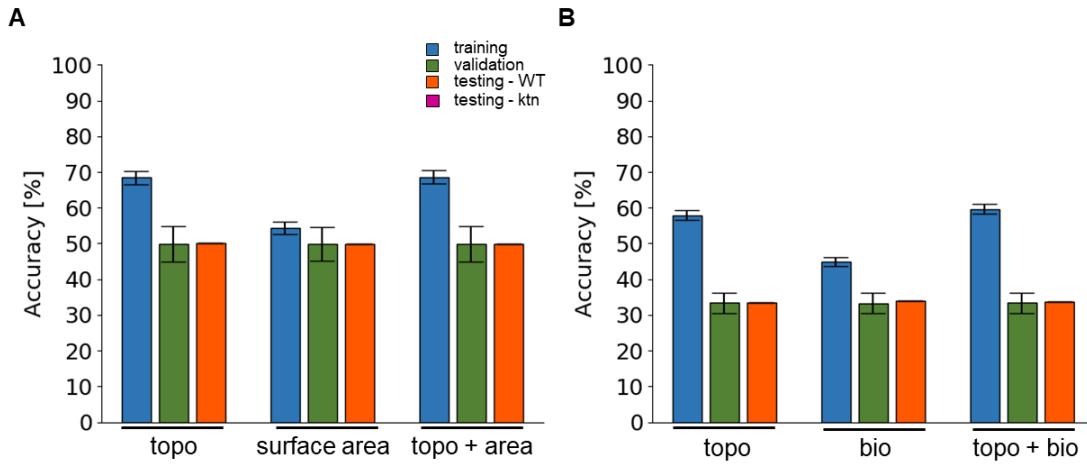


679

680 **Supplementary Figure 4. Learning curves for the classifiers that predict division events.**

681 Learning curves of SVMs predicting cell division events, based on four different feature sets,
682 showing the accuracy in the validation (green) and training (red) set (line: mean, area: ± 1
683 standard deviation). Feature sets: (A) combined topological features (topo; including features
684 calculated from the four network scenarios, see Figure 1C), (B) surface area as a single feature,
685 (C) topo with surface area (topo + area), (D, E) topological features which have an absolute
686 Pearson correlation coefficient (r) with surface area smaller than 0.7 and 0.5, respectively, and
687 (F) unweighted topological features (unweighted topology). $N_{WT} = 4$ plants, 4 time steps; $n_{WT} =$
688 502 train-validation cells (balanced data), one-way ANOVA.

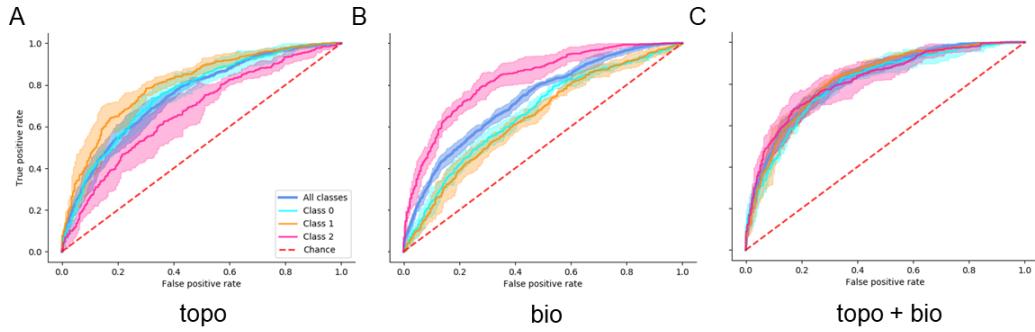
689



690

691 **Supplementary Figure 5. Performance of classifiers trained on randomized labels.** Support
692 vector machines (SVMs) trained on surface area/biological features and unweighted topological
693 features perform similarly with respect to the prediction of a division event and local topology of
694 shoot apical meristems (SAM). Accuracy of the SVM classifier on the training (blue), validation
695 (green), and testing (orange) set for a division event (A) and local topology prediction (B) based
696 on unweighted topological features (unweighted topology), surface area, or biological features
697 (bio). Shown are the mean and standard deviation on the training and validation sets from five-
698 fold cross-validation. The performance on the training and validation set is determined from five-
699 fold cross-validation with mean and the standard deviation shown as error bars. Different letters
700 indicate significance between groups using one-way ANOVA with Tukey's pairwise comparison:
701 p-value < 0.05. Statistical testing for differences of classifier performance for the training and
702 validation sets was conducted separately (letter without and with apostrophe, respectively). $N_{WT} =$
703 5 plants, 4 time steps (4 plants for training-validation and 1 plant for testing); (A) $n_{WT} = 502$ and
704 156, and (B) $n_{WT} = 1317$ and 321 train-validation and test cells respectively (balanced data)
705 shuffling labels 1000 times.

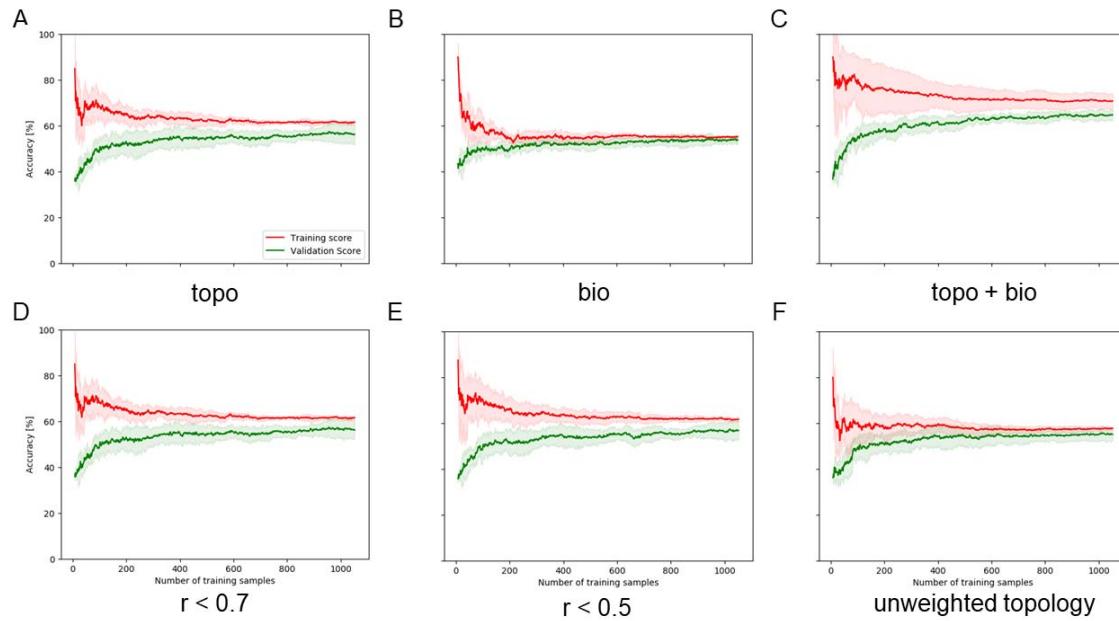
706



707

708 **Supplementary Figure 6. Difference between classifiers trained on topological and**
709 **biological features to predict local topology.** Classifiers based on topological and biological
710 features predict the three different classes of cells that are neighbors of cells that have divided in
711 comparison to the previous time point. Receiver operating characteristic-curve predicting cell
712 division events on five-fold cross-validation of (A) combined topological features (topo), including
713 features calculated from the four network scenarios (see Figure 1C), (B) biological features (bio),
714 including surface area, perimeter, shared cell wall, and distance, and (C) topological and
715 biological features combined (topo + bio). The mean performance is shown as a straight line,
716 together with the area of ± 1 standard deviation obtained from the five-fold cross validation of the
717 average ROC-curve combining all classes (blue), of class 0 (cyan), class 1 (orange), and class 2
718 (magenta). The performance expected by chance is marked with a red dashed line. $N_{WT} = 4$
719 plants, 4 time steps; $n_{WT} = 1317$ train-validation cells (balanced data).

720



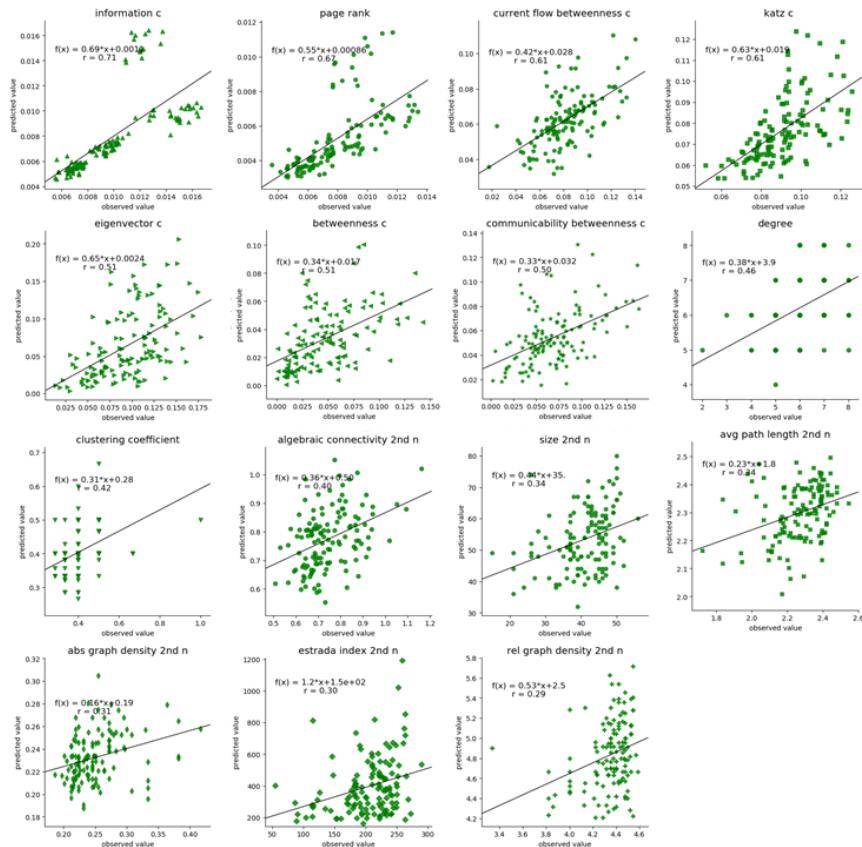
721

722 **Supplementary Figure 7. Learning curves for the classifiers predicting local topological**
723 **changes.** Learning curves of support vector machines (SVMs) that predict local topology based
724 on six different feature sets: (A) combined topological features (topo, including features calculated
725 from the four network scenarios, see Figure 1C), (B) biological features (bio), including surface
726 area, perimeter, shared cell wall, and distance, (C) topological and biological features combined
727 (topo+bio), (D, E) topological features which have an absolute value of Pearson correlation
728 coefficients with all biological features (cor) smaller than 0.7 or 0.5, and (F) only unweighted
729 features showing validation (green) and training (red) accuracy (line: mean, area: ± 1 standard
730 deviation). $N_{WT} = 4$ plants, 4 time steps; $n_{WT} = 1317$ train-validation cells (balanced data).

731

732

733



734

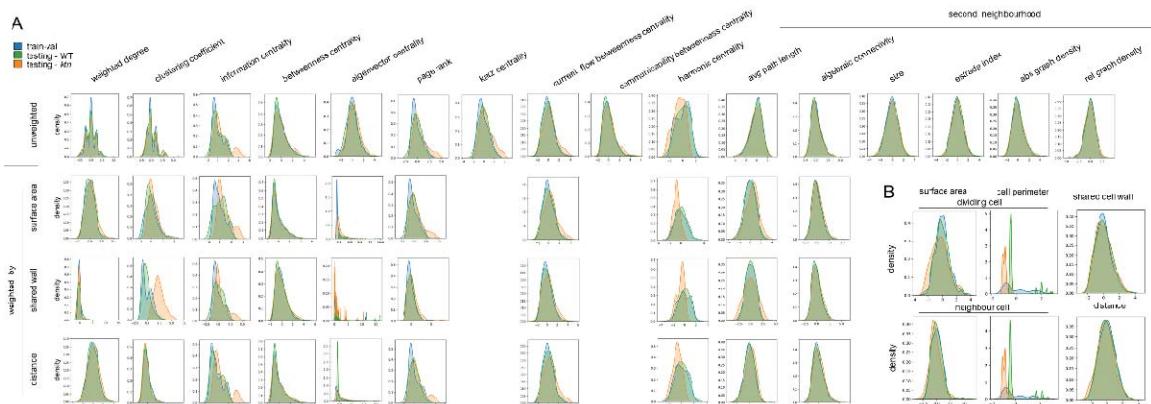
735 **Supplementary Figure 8. Observed and predicted features from non-dividing cells plotted**
736 **against each other.** The observed feature values are plotted against the predicted features
737 values for each cell non-dividing in the observed and predicted tissue. A line fitting the linear
738 regression line is plotted to the data including its function $f(x)$ and Pearson correlation coefficient r
739 for the unweighted topological features: information c (centrality), page rank, current flow
740 betweenness c, katz c, communicability betweenness c, load c, betweenness c, eigenvector c,
741 clustering coefficient, degree, avg. path length on 2 neighborhood (2nd n), abs graph density 2nd
742 n, size 2nd n, algebraic connectivity 2nd n, rel. graph density 2nd n, estrada index 2nd n. The
743 predicted tissue is estimated using the division and topology prediction classifiers trained on
744 topological and biological features of the training-validation data (see Figure 4E). $N_{WT} = 1$ plant
745 (test), 4 time steps; $n_{WT} = 126$.

746

747

748

749



750

751 **Supplementary Figure 9. Density distributions of topological and biological features of WT**
752 **and ktn data.** The density distributions of the normalized (A) topological and (B) biological
753 features are plotted to differentiate between pooled samples used during training and validation
754 from wild-type (WT; blue), and testing from WT (green), and ktn (orange). The topological
755 features are grouped into unweighted and weighted by area, shared cell wall, and distance (see
756 Figure 1C), while topological features independent of the network scenario are only displayed in
757 the unweighted row. The columns are further grouped into features calculated on the second
758 neighborhood and features from the dividing cell or its neighbor. (A) $n_{WT} = 502$, 156 , train-
759 validation and test cells respectively; $n_{ktn} = 334$ (balanced data) (B) $n_{WT} = 1317$ and 312 , train-
760 validation and test cells respectively; $n_{ktn} = 888$ (balanced data).

761

762

763 **Supplementary Table 1. Definition of network centralities applied on**
764 **differently weighted network scenarios to be used as feature sets for cell**
765 **division and local topology prediction.** Each network centrality was applied on
766 the unweighted, weighted by area, shared cell wall, and distance network
767 scenario. The network centralities were concatenated together for each cell and
768 used to train and predict different classifiers.

769

Network centrality	Definition	Reference
weighted node degree	$C_D(v) = \frac{\deg(v)}{ V - 1}$	Freeman, 1979
clustering coefficient	$C_u = \frac{1}{\deg(u)(\deg(u) - 1)} \sum_{vw} \hat{w}_{uv} \hat{w}_{uw} \hat{w}_{vw}$	Saramäki, 2007
information centrality	$C_I(v) = \frac{ V - 1}{\sum_{u \in V} p_{uv}(v) / p_{uv}(u)}$	Sabidussi, 1966
betweenness centrality	$C_B(v) = \frac{2}{(V - 1)(V - 2)} \sum_{s,t \in V} \frac{\sigma_{st}(s,t)}{\sigma(s,t)}$	Freeman, 1977
eigenvector centrality	$C_E(v) = \frac{1}{\lambda} \sum_{u \in V} \alpha_{vu} C_E(u)$	Bonacich, 1987
PageRank	$R'(u) = c \sum_{v \in B_u} \frac{R'(v)}{N_v} + cE(u)$	Page, 1999
Katz centrality	$x_i = \alpha \sum_j A_{ij} + \beta$	Katz, 1953
current flow betweenness centrality	$C_{CB}(v) = \frac{1}{(n-1)(n-2)} \sum_{s,t \in V} \tau_{st}(v)$	Newman, 2005
communicability betweenness centrality	$C_{CB}(v) = \frac{2}{(V - 1)(V - 2)} \sum_{s,t \in V} \tau_{st}(v)$	Newman, 2005
harmonic centrality	$C_H(v) = \frac{1}{\sum_{u \in V} d(u,v)} / V - 1$	Marchiori & Latora, 2000
size	number of edges in a graph	
Estrada index	$EEG(G) = \sum_{j=1}^n e^{\lambda_j}$	Estrada, 2000
absolute graph density	$C = \frac{2m}{n(n-q)}$	Wilkins & Meara, 2002
relative graph density	$C = \frac{2m}{n}$	
average path length	$a = \sum_{s,t \in V} \frac{d(s,t)}{n(n-1)}$	Mao & Zhang, 2013
algebraic connectivity	second smallest eigenvalue of Laplacian matrix	Fiedler, 1973

773 **Supplementary Table 2. Features ordered by Pearson correlation**
774 **coefficient with area.** Each network centrality was applied on the unweighted,
775 weighted by area, shared cell wall, and distance network scenario. The Pearson
776 correlation coefficient with area was calculated and were ordered from highest to
777 lowest.

Feature name	Pearson correlation coefficient	p-value
betweenness centrality weighted by area	0.711959318	4.858135677288066e-211
degree	0.603854449	4.04599560747419e-136
size on 2 neighborhood	0.592735441	5.437779671764918e-130
betweenness centrality	0.583915039	2.6889326200117693e-125
current flow betweenness centrality	0.580737704	1.217610917275356e-123
load centrality	0.579975133	3.0215367111277033e-123
estrada index on 2 neighborhood	0.577117774	8.912704904812637e-122
estrada index on 2 neighborhood weighted by area	0.577117774	8.912704904812637e-122
communicability betweenness centrality	0.57662665	1.5891934730974062e-121
communicability betweenness centrality weighted by area	0.57662665	1.5891934731075239e-121
avg path length on 2 neighborhood	0.571341971	7.534891764175505e-119
betweenness centrality weighted by shared wall	0.562314483	2.17398436729873e-114
betweenness centrality weighted by distance	0.551932822	1.9924782594347459e-109
current flow betweenness centrality weighted by distance	0.49002158	3.548421338397669e-83
current flow betweenness centrality weighted by shared wall	0.425038752	7.271052967178761e-61
rel graph density on 2 neighborhood	0.402000467	4.72658491702921e-54
current flow betweenness centrality weighted by area	0.357475281	2.5263809251463147e-42
harmonic centrality weighted by area	0.356480643	4.4059338421761555e-42
katz centrality weighted by area	0.318100276	2.1117164600213396e-33
katz centrality	0.318100276	2.1117164600213396e-33
eigenvector centrality	0.296303239	5.28165100633828e-29
page rank	0.268477018	6.447099545102352e-24
harmonic centrality weighted by distance	0.247926272	1.5906836425501315e-20
page rank weighted by shared wall	0.181567285	1.4700578049314804e-11
harmonic centrality weighted by shared wall	0.164231644	1.0815009609397551e-09
information centrality	0.14740273	4.633731043029875e-08
information centrality weighted by shared wall	0.13173255	1.0692961604944774e-06
weighted node degree weighted by shared wall	0.128973752	1.7935045888103348e-06
page rank weighted by distance	0.127130861	2.5188037924397987e-06
information centrality weighted by distance	0.082746096	0.002241568
harmonic centrality	0.071745324	0.008078663

779

weighted node degree weighted by distance	0.057524217	0.033774282
avg path length on 2 neighborhood weighted by shared wall	0.056763189	0.03620415
page rank weighted by area	0.037413208	0.167598817
information centrality weighted by area	0.035267233	0.19334169
avg path length on 2 neighborhood weighted by distance	0.0323718	0.232514552
eigenvector centrality weighted by shared wall	0.03031164	0.263614219
eigenvector centrality weighted by distance	-0.051181347	0.05897689
eigenvector centrality weighted by area	-0.203077703	3.8271343446663024e-14
avg path length on 2 neighborhood weighted by area	-0.214150561	1.361632834653018e-15
clustering coefficient weighted by shared wall	-0.236129215	1.0319617716515097e-18
weighted node degree weighted by area	-0.289769264	9.320458571568519e-28
algebraic connectivity on 2 neighborhood	-0.493010144	2.5317849899442773e-84
algebraic connectivity on 2 neighborhood weighted by shared wall	-0.535130612	9.326326866241923e-102
abs graph density on 2 neighborhood	-0.54315277	2.3001423114310698e-105
clustering coefficient	-0.580538544	1.544179245441756e-123
clustering coefficient weighted by distance	-0.584348465	1.5932034339322458e-125
algebraic connectivity on 2 neighborhood weighted by distance	-0.594101302	9.896429835985306e-131
algebraic connectivity on 2 neighborhood weighted by area	-0.639772476	1.1317137430247356e-157
clustering coefficient weighted by area	-0.642874421	1.1369324719240177e-159

780
781

782

783

784 **Supplementary Table 3. Performance measures of division event prediction**
785 **from SVMs trained on features from four differently weighted topologies**
786 **and/or area.** F1-score (F1), accuracy (Acc), true positive rate (TPR), false
787 positive rate (FPR), and area under the ROC-curve (Auc) of training (train) and
788 unseen data (val) on the splits of the five-fold cross-validations, as well as
789 retraining on train+val data testing on test data (testing), their mean and standard
790 deviation (std) as well as the performance of testing on a never seen plant
791 training on the full training-validation data set. Feature sets: combined topological
792 features (topo; including features of unweighted, weighted by area-, shared cell
793 wall-, and distance topologies), area as a single feature, topo with area,
794 topological features which have an absolute Pearson correlation coefficient with
795 area smaller than 0.7 or 0.5 (cor < 0.7 and cor < 0.5, respectively) and
796 unweighted topological features (unweighted topology).

797

798 topo

	train F1	train Acc	train TPR	train FPR	train Auc	val F1	val Acc	val TPR	val FPR	val Auc
split 0	91.36	91.25	92.50	10.00	0.9697	82.69	82.35	84.31	19.61	0.9250
split 1	85.31	84.58	89.55	20.40	0.9133	80.00	80.00	80.00	20.00	0.8708
split 2	93.63	93.53	95.02	7.96	0.9702	78.85	78.00	82.00	26.00	0.8724
split 3	86.46	85.82	90.55	18.91	0.9244	84.62	84.00	88.00	20.00	0.9220
split 4	88.45	88.31	89.55	12.94	0.9511	84.62	84.00	88.00	20.00	0.8836
mean	89.04	88.70	91.44	14.04	0.9457	82.15	81.67	84.46	21.12	0.8948
std	3.08	3.33	2.09	4.87	0.0233	2.37	2.35	3.19	2.44	0.0239
testing	82.17	81.67	84.46	21.12	0.8922	76.62	76.92	75.64	21.79	0.8498
ktn testing						69.93	72.46	64.07	19.16	0.8087

799
800

801 area

	train F1	train Acc	train TPR	train FPR	train Auc	val F1	val Acc	val TPR	val FPR	val Auc
split 0	76.60	78.00	72.00	16.00	0.8674	80.00	81.37	74.51	11.76	0.9285
split 1	78.43	78.11	79.60	23.38	0.8773	82.83	83.00	82.00	16.00	0.8940
split 2	80.60	80.85	79.60	17.91	0.8873	74.51	74.00	76.00	28.00	0.8536
split 3	78.97	79.60	76.62	17.41	0.8836	78.35	79.00	76.00	18.00	0.8664
split 4	80.40	80.60	79.60	18.41	0.8864	75.00	76.00	72.00	20.00	0.8556
mean	79.00	79.43	77.48	18.62	0.8804	78.14	78.67	76.10	18.75	0.8796
std	1.46	1.20	2.98	2.51	0.0074	3.12	3.32	3.29	5.37	0.0284
testing	79.36	79.48	78.88	19.92	0.8804	69.06	72.44	61.54	16.67	0.8358
ktn testing						67.34	70.96	59.88	17.96	0.8046

802
803

804 topo with area

	train F1	train Acc	train TPR	train FPR	train Auc	val F1	val Acc	val TPR	val FPR	val Auc
split 0	89.43	89.25	91.00	12.50	0.9594	83.81	83.33	86.27	19.61	0.9319
split 1	85.37	84.83	88.56	18.91	0.9172	82.00	82.00	82.00	18.00	0.8804
split 2	86.34	86.07	88.06	15.92	0.9307	80.00	79.00	84.00	26.00	0.8424
split 3	83.25	82.59	86.57	21.39	0.9093	84.31	84.00	86.00	18.00	0.9072
split 4	88.89	88.81	89.55	11.94	0.9498	82.35	82.00	84.00	20.00	0.8924
mean	86.66	86.31	88.75	16.13	0.9333	82.50	82.07	84.45	20.32	0.8909
std	2.28	2.49	1.48	3.64	0.0189	1.52	1.72	1.56	2.95	0.0297
testing	80.94	80.68	82.07	20.72	0.8935	77.85	78.85	74.36	16.67	0.8601
ktn testing						71.01	73.35	65.27	18.56	0.8056

805
806

807 cor < 0.7

	train F1	train Acc	train TPR	train FPR	train Auc	val F1	val Acc	val TPR	val FPR	val Auc
split 0	85.57	85.25	87.50	17.00	0.9343	84.91	84.31	88.24	19.61	0.9239
split 1	85.58	84.83	90.05	20.40	0.9182	81.19	81.00	82.00	20.00	0.8696
split 2	93.37	93.28	94.53	7.96	0.9706	80.00	79.00	84.00	26.00	0.8688
split 3	86.26	85.57	90.55	19.40	0.9253	85.44	85.00	88.00	18.00	0.9236
split 4	86.47	86.07	89.05	16.92	0.9358	84.91	84.00	90.00	22.00	0.8884
mean	87.45	87.00	90.34	16.34	0.9369	83.29	82.66	86.45	21.12	0.8949
std	2.98	3.17	2.34	4.40	0.0181	2.24	2.29	2.97	2.75	0.0246
testing	81.78	81.27	84.06	21.51	0.8960	77.22	76.92	78.21	24.36	0.8488
ktn testing						69.13	72.46	61.68	16.77	0.8145

808
809

810

811 cor < 0.5

	train F1	train Acc	train TPR	train FPR	train Auc	val F1	val Acc	val TPR	val FPR	val Auc
split 0	68.50	68.50	68.50	31.50	0.7510	72.00	72.55	70.59	25.49	0.7559
split 1	75.41	73.88	80.10	32.34	0.8109	62.96	60.00	68.00	48.00	0.6796
split 2	69.52	69.90	68.66	28.86	0.7602	69.31	69.00	70.00	32.00	0.7288
split 3	69.44	68.91	70.65	32.84	0.7396	76.19	75.00	80.00	30.00	0.8012
split 4	70.26	71.14	68.16	25.87	0.7509	65.93	69.00	60.00	22.00	0.7920
mean	70.63	70.47	71.21	30.28	0.7625	69.28	69.11	69.72	31.50	0.7515
std	2.46	1.94	4.53	2.60	0.0251	4.61	5.09	6.39	8.96	0.0443
testing	68.94	69.12	68.53	30.28	0.7512	70.66	68.59	75.64	38.46	0.7720
ktn testing						64.71	64.07	65.87	37.72	0.7115

812
813

814 **Supplementary Table 4. Performance measures of local topology prediction**
815 **from SVMs trained from four different topologies and/or biological features.**
816 F1-score (F1), accuracy (Acc), true positive rate (TPR), false positive rate (FPR),
817 and area under the ROC-curve (Auc) of training (train) and unseen data (val) on
818 the splits of the five-fold cross-validations, as well as retraining on train+val data
819 testing on test data (testing) (A) excluding or (B) including dividing neighbours,
820 their mean and standard deviation (dev) as well as the performance of testing on
821 a never seen plant training on the full training-validation data set. Feature sets:
822 combined topological features (topo; including features of unweighted, weighted
823 by area-, shared cell wall-, and distance topologies), biological features (bio;
824 including area, perimeter, shared cell wall, and distance), topo with bio,
825 topological features which have an absolute value of the Pearson correlation
826 coefficients with all biological features (cor) smaller than 0.7 and 0.5,
827 respectively, and unweighted topological features (unweighted topology).

828

exclude dividing neighbors

	train F1	train c0F1	train c1 F1	train c2 F1	train Acc	train TPR	train FPR	train Auc	val F1	val c0F1	val c1 F1	val c2 F1	val Acc	val TPR	val FPR	val Auc	
topos	split 0	61.91	60.89	68.74	56.09	61.92	69.23	19.04	0.7979	51.58	53.93	60.12	40.68	51.52	59.09	24.24	0.7215
	split 1	61.96	62.57	68.34	54.98	62.11	69.80	18.95	0.7880	52.80	57.78	56.04	44.58	53.03	57.95	23.48	0.7388
	split 2	62.29	63.28	69.57	54.01	62.39	70.66	18.80	0.7992	60.70	63.16	65.54	53.42	60.98	65.91	19.51	0.7790
	split 3	61.67	63.10	68.90	53.02	61.82	70.37	19.09	0.7909	54.43	48.48	64.80	50.00	54.55	65.91	22.73	0.7402
	split 4	60.25	61.34	65.54	53.86	60.23	66.19	19.89	0.7897	61.70	55.00	71.76	58.33	61.69	70.11	19.16	0.7729
	mean	61.61	62.24	68.22	54.39	61.69	69.25	19.15	0.7933	56.24	55.67	63.65	49.40	56.35	63.80	21.82	0.7505
	std	0.71	0.95	1.39	1.05	0.76	1.60	0.38	0.0045	4.16	4.81	5.31	6.25	4.19	4.59	2.09	0.0219
ktn testing	62.92	64.57	69.34	54.84	62.95	69.02	18.53	0.7969	60.62	60.58	66.99	54.29	60.58	66.35	19.71	0.7789	
	ktn testing								43.96	41.85	42.62	47.42	44.03	39.53	27.98	0.6243	
	train F1	train c0F1	train c1 F1	train c2 F1	train Acc	train TPR	train FPR	train Auc	val F1	val c0F1	val c1 F1	val c2 F1	val Acc	val TPR	val FPR	val Auc	
bio	split 0	54.59	48.47	46.92	68.39	55.27	45.58	22.36	0.7406	51.80	46.34	46.24	62.83	52.27	45.45	23.86	0.7084
	split 1	54.99	51.61	46.43	66.93	55.66	43.59	22.22	0.7365	53.45	49.16	42.77	68.42	54.17	38.64	22.92	0.7331
	split 2	54.76	49.63	46.70	67.96	55.46	43.30	22.27	0.7412	52.51	48.24	44.30	65.00	53.41	39.77	23.30	0.7210
	split 3	53.75	48.16	45.75	67.36	54.42	44.44	22.79	0.7295	56.52	51.76	49.08	68.72	57.20	45.45	21.40	0.7466
	split 4	54.96	49.48	49.17	66.23	55.49	46.31	22.25	0.7342	52.26	43.31	43.58	69.89	52.87	44.83	23.56	0.7317
	mean	54.61	49.47	46.99	67.37	55.24	44.65	22.38	0.7364	53.31	47.76	45.19	66.97	53.98	42.83	23.01	0.7281
	std	0.45	1.21	1.16	0.76	0.42	1.15	0.21	0.0043	1.69	2.83	2.26	2.64	1.72	2.99	0.86	0.0128
ktn testing	56.48	52.42	49.64	67.37	56.95	47.15	21.53	0.7521	49.18	44.24	35.75	67.54	50.32	30.77	24.84	0.7067	
	ktn testing								50.39	41.61	38.87	70.69	51.58	37.16	24.21	0.7281	
	train F1	train c0F1	train c1 F1	train c2 F1	train Acc	train TPR	train FPR	train Auc	val F1	val c0F1	val c1 F1	val c2 F1	val Acc	val TPR	val FPR	val Auc	
topo And Bio	split 0	67.70	65.89	68.44	68.76	67.71	69.80	16.14	0.8426	60.25	61.54	60.44	58.76	60.23	62.50	19.89	0.7886
	split 1	70.28	68.75	70.35	71.74	70.28	70.66	14.86	0.8539	62.66	59.65	66.29	62.88	57.95	18.56	0.8187	
	split 2	77.11	76.86	77.47	77.01	77.11	76.92	11.44	0.8943	63.64	62.15	64.33	63.64	62.50	18.18	0.8165	
	split 3	68.38	68.25	67.62	69.29	68.38	67.52	15.81	0.8457	65.36	61.82	62.92	71.35	65.53	63.64	17.23	0.8249
	split 4	68.47	68.19	67.97	69.25	68.47	69.32	15.77	0.8552	67.83	63.16	68.13	72.19	67.82	71.26	16.09	0.8430
	mean	70.39	68.59	70.37	71.21	70.39	70.84	14.81	0.8579	63.99	62.26	63.09	66.61	64.02	63.57	17.99	0.8183
	std	5.47	3.77	3.68	3.08	3.47	3.21	1.73	0.0187	2.53	0.58	3.03	4.90	2.55	4.31	1.28	0.0175
ktn testing	71.99	71.06	72.50	72.41	71.98	72.67	14.01	0.8676	65.70	66.35	65.70	65.05	65.71	65.38	17.15	0.8344	
	ktn testing								54.78	51.01	45.84	67.50	55.41	41.89	22.30	0.7255	
	train F1	train c0F1	train c1 F1	train c2 F1	train Acc	train TPR	train FPR	train Auc	val F1	val c0F1	val c1 F1	val c2 F1	val Acc	val TPR	val FPR	val Auc	
cor 0.7	split 0	61.91	60.89	68.74	56.09	61.92	69.23	19.04	0.7979	51.58	53.93	60.12	40.68	51.52	59.09	24.24	0.7215
	split 1	61.96	62.57	68.34	54.98	62.11	69.80	18.95	0.7880	52.80	57.78	56.04	44.58	53.03	57.95	23.48	0.7388
	split 2	62.29	63.28	69.57	54.01	62.39	70.66	18.80	0.7992	60.70	63.16	65.54	53.42	60.98	65.91	19.51	0.7790
	split 3	61.67	63.10	68.90	53.02	61.82	70.37	19.09	0.7909	54.43	48.48	64.80	50.00	54.55	65.91	22.73	0.7402
	split 4	60.25	61.34	65.54	53.86	60.23	66.19	19.89	0.7897	61.70	55.00	71.76	58.33	61.69	70.11	19.16	0.7729
	mean	61.61	62.24	68.22	54.39	61.69	69.25	19.15	0.7931	56.24	55.67	63.65	49.40	56.35	63.80	21.82	0.7505
	std	0.71	0.95	1.39	1.05	0.76	1.60	0.38	0.0045	4.16	4.81	5.31	6.25	4.19	4.59	2.09	0.0219
ktn testing	62.92	64.57	69.34	54.84	62.95	69.02	18.53	0.7969	60.62	60.62	66.99	54.29	60.58	66.35	19.71	0.7789	
	ktn testing								43.96	41.85	42.62	47.42	44.03	39.53	27.98	0.6243	
	train F1	train c0F1	train c1 F1	train c2 F1	train Acc	train TPR	train FPR	train Auc	val F1	val c0F1	val c1 F1	val c2 F1	val Acc	val TPR	val FPR	val Auc	
cor 0.5	split 0	62.38	61.10	69.02	57.02	62.39	69.52	18.80	0.7985	53.36	56.04	62.43	41.62	53.41	61.36	23.30	0.7258
	split 1	61.73	62.01	67.89	55.29	61.82	68.66	19.09	0.7886	53.98	58.56	56.67	46.71	54.17	57.95	22.92	0.7418
	split 2	62.78	64.15	69.21	54.97	62.87	69.80	18.57	0.8080	60.81	62.43	66.67	53.33	60.98	65.91	19.51	0.7730
	split 3	61.63	62.91	68.35	53.64	61.73	69.23	19.14	0.7903	54.48	49.10	65.17	49.18	54.55	65.91	22.73	0.7387
	split 4	60.35	61.67	65.72	53.65	60.32	65.91	19.84	0.7907	61.70	55.00	71.76	58.33	61.69	70.11	19.16	0.7722
	mean	61.77	62.37	68.04	54.92	61.83	68.62	19.09	0.7952	56.87	56.23	64.54	49.83	56.96	64.25	21.52	0.7503
	std	0.83	1.07	1.25	0.86	1.41	0.43	0.0072	3.61	4.39	4.97	5.70	3.80	4.19	1.80	0.0190	
ktn testing	62.35	63.67	68.63	54.76	62.41	69.02	18.79	0.7926	60.07	58.54	67.98	53.70	59.94	66.35	20.03	0.7734	
	ktn testing								44.77	43.30	42.99	48.03	44.82	38.86	27.99	0.6265	
	train F1	train c0F1	train c1 F1	train c2 F1	train Acc	train TPR	train FPR	train Auc	val F1	val c0F1	val c1 F1	val c2 F1	val Acc	val TPR	val FPR	val Auc	
unweight topology	split 0	58.07	61.08	64.43	48.71	58.40	68.38	20.80	0.7647	54.61	62.64	56.35	44.85	54.92	57.95	22.54	0.7241
	split 1	57.92	61.37	64.02	48.37	58.31	66.67	20.85	0.7617	50.66	58.51	55.32	38.16	51.52	59.09	24.24	0.7237
	split 2	56.83	59.31	62.72	48.46	56.98	64.96	21.51	0.7538	59.05	62.86	64.92	49.38	59.47	70.45	20.27	0.7604
	split 3	57.03	61.71	61.52	47.87	57.17	62.39	21.42	0.7564	52.88	51.39	59.46	48.00	53.03	62.50	23.48	0.7033
	split 4	56.90	61.67	62.93	46.11	57.39	67.05	21.31	0.7552	57.11	56.00	68.21	47.13	57.09	67.82	21.46	0.7597
	mean	57.35	61.03	63.13	47.90	57.65	65.89	21.17	0.7584	54.86	58.24	60.85	45.50	55.21	63.56	22.40	0.7342
	std	0.53	0.89	1.03	0.94	0.59	2.06	0.30	0.0042	2.97	4.37	4.97	3.96	2.83	4.86	1.42	0.0224
ktn testing	58.24	62.28	65.07	47.37	58.62	68.11	20.69	0.7684	56.75	60.10	65.16	45.00	57.05	69.23	21.47	0.7757	
	ktn testing								44.14	44.63	43.78	44.01	44.14	44.59	27.93	0.6093	

829

830

including dividing neighbors

		train F1	train c0F1	train c1 F1	train c2 F1	train Acc	train TPR	train FPR	train Auc	val F1	val c0F1	val c1 F1	val c2 F1	val Acc	val TPR	val FPR	val Auc
topos	split 0	59.86	64.54	65.50	49.54	60.22	67.12	19.89	0.7862	59.11	59.21	69.96	48.25	59.18	69.39	20.41	0.7756
	split 1	61.88	64.41	68.06	53.16	62.11	69.40	18.95	0.7959	58.58	64.36	63.12	48.25	58.68	65.07	20.66	0.7741
	split 2	63.08	66.94	69.51	52.79	63.48	71.11	18.26	0.8037	56.29	60.55	62.76	45.56	56.85	62.33	21.58	0.7657
	split 3	65.81	67.95	70.25	59.22	65.98	71.45	17.04	0.8199	53.38	56.87	62.95	40.31	54.11	65.75	22.95	0.7375
	split 4	63.82	66.34	70.21	54.93	64.10	72.31	17.95	0.8100	55.02	59.66	61.54	43.87	55.48	65.75	22.26	0.7472
	mean	62.89	66.03	68.71	53.93	63.17	70.28	18.42	0.8033	56.47	60.13	64.05	45.25	56.86	65.66	21.57	0.7600
	std	1.98	1.38	1.79	3.17	1.92	1.84	0.96	0.0116	2.15	2.44	2.96	1.91	2.25	0.95	0.0151	
	testing	68.82	71.97	73.21	61.28	68.01	74.01	15.48	0.8402	49.86	46.88	60.48	42.24	50.68	71.43	24.66	0.7093
bio	train F1	train c0F1	train c1 F1	train c2 F1	train Acc	train TPR	train FPR	train Auc	val F1	val c0F1	val c1 F1	val c2 F1	val Acc	val TPR	val FPR	val Auc	
	split 0	54.15	50.94	42.95	68.56	54.62	40.41	22.69	0.7445	54.18	49.84	39.69	73.02	55.10	35.37	22.45	0.7507
	split 1	55.37	52.84	43.89	69.38	55.95	39.32	22.02	0.7515	50.77	47.14	35.96	69.23	51.60	32.88	24.20	0.7247
	split 2	53.74	48.70	43.94	68.58	54.30	41.54	22.85	0.7436	54.04	48.08	44.06	69.97	54.34	43.15	22.83	0.7491
	split 3	54.20	50.13	42.54	68.93	54.81	39.49	22.59	0.7498	52.70	48.30	43.57	66.23	52.97	41.78	23.52	0.7305
	split 4	54.45	52.87	41.00	69.50	55.38	35.21	22.31	0.7500	52.05	50.66	36.14	69.35	53.42	30.82	23.29	0.7342
	mean	54.38	51.09	42.86	69.19	55.02	39.19	22.49	0.7479	52.75	48.80	39.88	69.56	53.49	36.80	23.26	0.7379
	std	0.54	1.61	1.08	0.54	0.59	2.14	0.29	0.0032	1.27	1.27	3.48	2.16	1.20	4.86	0.60	0.0103
	testing	55.60	52.15	45.49	69.15	56.18	41.04	21.91	0.7549	46.26	53.38	17.50	68.11	51.19	10.71	24.40	0.7158
topo And Bio	train F1	train c0F1	train c1 F1	train c2 F1	train Acc	train TPR	train FPR	train Auc	val F1	val c0F1	val c1 F1	val c2 F1	val Acc	val TPR	val FPR	val Auc	
	split 0	67.78	66.95	66.81	69.78	67.75	67.47	16.12	0.8424	68.93	65.33	68.07	73.40	68.93	65.99	15.53	0.8579
	split 1	70.67	70.07	68.98	72.97	70.65	68.03	14.67	0.8657	67.36	67.60	66.22	68.28	67.81	16.32	0.8517	
	split 2	71.06	70.05	70.32	72.82	71.05	70.26	14.47	0.8636	69.68	69.28	65.74	74.02	69.63	65.07	15.18	0.8565
	split 3	70.77	68.95	70.01	73.35	70.77	70.43	14.62	0.8703	64.38	63.70	64.67	64.79	64.38	16.44	17.81	0.8240
	split 4	70.55	69.27	69.62	72.77	70.54	69.91	14.73	0.8663	66.62	65.07	65.71	69.08	66.67	63.01	16.67	0.8288
	mean	70.17	69.06	69.11	72.34	70.15	69.22	14.92	0.8617	67.40	66.20	66.08	69.91	67.39	65.66	16.30	0.8438
	std	1.21	1.14	1.33	1.30	1.21	1.22	0.61	0.0099	1.86	1.99	1.12	3.43	1.84	1.59	0.92	0.0144
	testing	70.01	69.05	69.58	71.38	70.00	69.63	15.00	0.8619	67.69	68.38	67.20	67.48	67.69	64.29	16.16	0.8442
cor 0.7	train F1	train c0F1	train c1 F1	train c2 F1	train Acc	train TPR	train FPR	train Auc	val F1	val c0F1	val c1 F1	val c2 F1	val Acc	val TPR	val FPR	val Auc	
	split 0	59.86	64.54	65.50	49.54	60.22	67.12	19.89	0.7862	59.11	59.21	69.96	48.25	59.18	69.39	20.41	0.7756
	split 1	61.88	64.41	68.06	53.16	62.11	69.40	18.95	0.7959	58.58	64.36	63.12	48.25	58.68	65.07	20.66	0.7741
	split 2	63.08	66.94	69.51	52.79	63.48	71.11	18.26	0.8037	56.29	60.55	62.76	45.56	56.85	62.33	21.58	0.7657
	split 3	65.81	67.95	70.25	59.22	65.98	71.45	17.04	0.8199	53.38	56.87	62.95	40.31	54.11	65.75	22.95	0.7375
	split 4	63.82	66.34	70.21	54.93	64.10	72.31	17.95	0.8100	55.02	59.66	61.54	43.87	55.48	65.75	22.26	0.7472
	mean	62.89	66.03	68.71	53.93	63.17	70.28	18.42	0.8033	56.47	60.13	64.05	45.25	56.86	65.66	21.57	0.7600
	std	1.98	1.38	1.79	3.17	1.92	1.84	0.96	0.0116	2.15	2.44	2.96	1.91	2.25	0.95	0.0151	
	testing	68.82	71.97	73.21	61.28	68.01	74.01	15.48	0.8402	49.86	46.88	60.48	42.24	50.68	71.43	24.66	0.7093
cor 0.5	train F1	train c0F1	train c1 F1	train c2 F1	train Acc	train TPR	train FPR	train Auc	val F1	val c0F1	val c1 F1	val c2 F1	val Acc	val TPR	val FPR	val Auc	
	split 0	59.55	63.78	65.10	49.77	58.87	66.44	20.06	0.7765	59.38	56.71	69.44	50.00	59.41	66.03	20.29	0.7751
	split 1	59.98	63.36	66.67	49.91	60.40	68.03	19.80	0.7850	56.75	62.94	63.26	44.04	57.08	67.81	21.46	0.7653
	split 2	64.20	66.94	70.53	55.15	64.50	71.79	17.75	0.8096	56.76	60.74	65.10	44.44	57.53	66.44	21.23	0.7672
	split 3	63.92	67.27	68.64	55.83	64.10	69.40	17.95	0.8091	52.19	54.78	61.33	40.46	52.74	63.01	23.63	0.7363
	split 4	66.18	68.26	71.92	56.36	66.38	73.33	16.81	0.8203	54.57	59.41	61.18	43.12	55.02	63.70	22.49	0.7457
	mean	62.77	65.92	68.57	53.80	63.05	69.80	18.47	0.8001	55.93	59.31	64.06	44.41	56.36	65.80	21.82	0.7579
	std	2.58	1.97	2.48	3.41	2.51	2.49	1.25	0.0165	2.41	2.69	3.05	3.12	2.28	2.08	1.14	0.0145
	testing	69.13	71.73	73.50	62.17	69.36	74.56	15.32	0.8439	51.04	47.53	60.35	45.23	51.70	69.90	24.15	0.7154
unweight topolog	train F1	train c0F1	train c1 F1	train c2 F1	train Acc	train TPR	train FPR	train Auc	val F1	val c0F1	val c1 F1	val c2 F1	val Acc	val TPR	val FPR	val Auc	
	split 0	55.18	61.71	62.55	41.28	56.16	67.64	21.92	0.7459	53.36	58.57	64.13	37.40	54.65	68.71	22.68	0.7484
	split 1	55.99	61.93	63.29	42.76	56.87	67.18	21.57	0.7626	56.15	62.98	61.89	43.57	56.39	65.07	21.80	0.7423
	split 2	56.15	64.01	64.56	39.88	57.38	69.74	21.31	0.7687	54.60	61.03	61.94	40.85	55.94	65.75	22.03	0.7455
	split 3	55.44	62.47	63.01	40.83	56.41	66.84	21.79	0.7598	52.17	58.49	62.38	35.63	53.42	66.44	23.29	0.7316
	split 4	58.84	62.41	66.07	48.03	59.43	69.57	20.28	0.7754	52.18	62.34	59.91	34.26	53.42	65.07	23.29	0.7324
	mean	56.32	62.51	63.90	42.55	57.25	68.19	21.38	0.7625	53.69	60.68	62.05	38.34	54.77	66.21	22.62	0.7400
	std	1.31	0.80	1.28	2.89	1.17	1.22	0.58	0.0099	1.52	1.87	1.34	3.42	1.24	1.35	0.62	0.0068
	testing	58.80	65.42	65.44	45.53	59.69	70.31	20.16	0.7778	56.13	61.58	63.87	42.94	56.80	69.90	21.60	0.7620

831

833

834

835

836 **References**

837 Alim, K., Hamant, O., Boudaoud, A., 2012. Regulatory role of cell division rules on tissue growth
838 heterogeneity. *Frontiers in plant science* 3, 174.

839 Barbier de Reuille, P., Routier-Kierzkowska, A.-L., Kierzkowski, D., Bassel, G.W., Schüpbach, T.,
840 Tauriello, G., Bajpai, N., Strauss, S., Weber, A., Kiss, A., Burian, A., Hofhuis, H., Sapala, A.,
841 Lipowczan, M., Heimlicher, M.B., Robinson, S., Bayer, E.M., Basler, K., Koumoutsakos, P.,
842 Roeder, A.H.K., Aegerter-Wilmsen, T., Nakayama, N., Tsiantis, M., Hay, A., Kwiatkowska, D.,
843 Xenarios, I., Kuhlemeier, C., Smith, R.S., 2015. MorphoGraphX: A platform for quantifying
844 morphogenesis in 4D. *eLife* 4, 5864.

845 Beauzamy, L., Louveaux, M., Hamant, O., Boudaoud, A., 2015. Mechanically, the Shoot Apical
846 Meristem of *Arabidopsis* Behaves like a Shell Inflated by a Pressure of About 1 MPa.
847 *Frontiers in plant science* 6, 1038.

848 Besson, S., Dumais, J., 2011. Universal rule for the symmetric division of plant cells. *Proceedings*
849 *of the National Academy of Sciences of the United States of America* 108, 6294–6299.

850 Bhavsar, H., Panchal, M.H., 2012. A review on support vector machine for data classification.
851 *International Journal of Advanced Research in Computer Engineering & Technology*
852 (IJARCET) 1, 185–189.

853 Breuer, D., Nowak, J., Ivakov, A., Somssich, M., Persson, S., Nikoloski, Z., 2017. System-wide
854 organization of actin cytoskeleton determines organelle transport in hypocotyl plant cells.
855 *Proceedings of the National Academy of Sciences of the United States of America* 114,
856 E5741-E5749.

857 Camacho, D.M., Collins, K.M., Powers, R.K., Costello, J.C., Collins, J.J., 2018. Next-Generation
858 Machine Learning for Biological Networks. *Cell* 173, 1581–1592.

859 D'Ario, M., Sablowski, R., 2019. Cell Size Control in Plants. *Annual review of genetics* 53, 45–65.

860 D'Ario, M., Tavares, R., Schiessl, K., Desvoyes, B., Gutierrez, C., Howard, M., Sablowski, R., 2021.
861 Cell size controlled in plants using DNA content as an internal scale. *Science (New York, N.Y.)*
862 372, 1176–1181.

863 Dewitte, W., Murray, J.A., 2003. The Plant Cell Cycle. *Annual Review of Plant Biology* 54, 235–
864 264.

865 Eng, R.C., Schneider, R., Matz, T.W., Carter, R., Ehrhardt, D.W., Jönsson, H., Nikoloski, Z.,
866 Sampathkumar, A., 2021. KATANIN and CLASP function at different spatial scales to mediate
867 microtubule response to mechanical stress in *Arabidopsis* cotyledons. *Current biology* : CB.
868 <https://doi.org/10.1016/j.cub.2021.05.019>.

869 Gibson, W.T., Veldhuis, J.H., Rubinstein, B., Cartwright, H.N., Perrimon, N., Brodland, G.W.,
870 Nagpal, R., Gibson, M.C., 2011. Control of the mitotic cleavage plane by local epithelial
871 topology. *Cell* 144, 427–438.

872 Hartig, K., Beck, E., 2006. Crosstalk between auxin, cytokinins, and sugars in the plant cell cycle.
873 *Plant biology* (Stuttgart, Germany) 8, 389–396.

874 Jackson, M.D.B., Duran-Nebreda, S., Kierzkowski, D., Strauss, S., Xu, H., Landrein, B., Hamant, O.,
875 Smith, R.S., Johnston, I.G., Bassel, G.W., 2019. Global Topological Order Emerges through
876 Local Mechanical Control of Cell Divisions in the *Arabidopsis* Shoot Apical Meristem. *Cell*
877 systems 8, 53-65.e3.

878 Jones, A.R., Forero-Vargas, M., Withers, S.P., Smith, R.S., Traas, J., Dewitte, W., Murray, J.A.H.,
879 2017. Cell-size dependent progression of the cell cycle creates homeostasis and flexibility of
880 plant cell size. *Nature communications* 8, 15060.

881 Kitagawa, M., Jackson, D., 2017. Plasmodesmata-Mediated Cell-to-Cell Communication in the
882 Shoot Apical Meristem: How Stem Cells Talk. *Plants* (Basel, Switzerland) 6.

883 Komis, G., Luptovčiak, I., Ovečka, M., Samakovli, D., Šamajová, O., Šamaj, J., 2017. Katanin
884 Effects on Dynamics of Cortical Microtubules and Mitotic Arrays in *Arabidopsis thaliana*
885 Revealed by Advanced Live-Cell Imaging. *Frontiers in plant science* 8, 866.

886 Li, Y., Liu, D., López-Paz, C., Olson, B.J., Umen, J.G., 2016. A new class of cyclin dependent kinase
887 in *Chlamydomonas* is required for coupling cell size to cell division. *eLife* 5, e10767.

888 Louveaux, M., Julien, J.-D., Mirabet, V., Boudaoud, A., Hamant, O., 2016. Cell division plane
889 orientation based on tensile stress in *Arabidopsis thaliana*. *Proceedings of the National*
890 *Academy of Sciences of the United States of America* 113, E4294-303.

891 Nowak, J., Eng, R.C., Matz, T., Waack, M., Persson, S., Sampathkumar, A., Nikoloski, Z., 2021. A
892 network-based framework for shape analysis enables accurate characterization of leaf
893 epidermal cells. *Nature communications* 12, 458.

894 Pisner, D.A., Schnyer, D.M., 2020. Support vector machine. In: *Machine Learning*. Elsevier,
895 pp. 101–121.

896 Qi, F., Zhang, F., 2019. Cell Cycle Regulation in the Plant Response to Stress. *Frontiers in plant*
897 *science* 10, 1765.

898 Reddy, G.V., Heisler, M.G., Ehrhardt, D.W., Meyerowitz, E.M., 2004. Real-time lineage analysis
899 reveals oriented cell divisions associated with morphogenesis at the shoot apex of
900 *Arabidopsis thaliana*. *Development (Cambridge, England)* 131, 4225–4237.

901 Sahlin, P., Jönsson, H., 2010. A modeling study on how cell division affects properties of
902 epithelial tissues under isotropic growth. *PLoS one* 5, e11750.

903 Sampathkumar, A., 2020. Mechanical feedback-loop regulation of morphogenesis in plants.
904 *Development (Cambridge, England)* 147.

905 Sampathkumar, A., Krupinski, P., Wightman, R., Milani, P., Berquand, A., Boudaoud, A., Hamant,
906 O., Jönsson, H., Meyerowitz, E.M., 2014. Subcellular and supracellular mechanical stress
907 prescribes cytoskeleton behavior in *Arabidopsis* cotyledon pavement cells. *eLife* 3, e01967.

908 Schoof, H., Lenhard, M., Haecker, A., Mayer, K.F., Jürgens, G., Laux, T., 2000. The Stem Cell
909 Population of *Arabidopsis* Shoot Meristems Is Maintained by a Regulatory Loop between the
910 CLAVATA and WUSCHEL Genes. *Cell* 100, 635–644.

911 Shapiro, B.E., Tobin, C., Mjolsness, E., Meyerowitz, E.M., 2015. Analysis of cell division patterns
912 in the *Arabidopsis* shoot apical meristem. *Proceedings of the National Academy of Sciences*
913 112, 4815–4820.

914 Shi, B., Guo, X., Wang, Y., Xiong, Y., Wang, J., Hayashi, K.-I., Lei, J., Zhang, L., Jiao, Y., 2018.
915 Feedback from Lateral Organs Controls Shoot Apical Meristem Growth by Modulating Auxin
916 Transport. *Developmental cell* 44, 204-216.e6.

917 Shimotohno, A., Aki, S.S., Takahashi, N., Umeda, M., 2021. Regulation of the Plant Cell Cycle in
918 Response to Hormones and the Environment. *Annual Review of Plant Biology* 72, 273–296.

919 Uyttewaal, M., Burian, A., Alim, K., Landrein, B., Borowska-Wykręt, D., Dedieu, A., Peaucelle, A.,
920 Ludynia, M., Traas, J., Boudaoud, A., Kwiatkowska, D., Hamant, O., 2012. Mechanical stress
921 acts via katanin to amplify differences in growth rate between adjacent cells in *Arabidopsis*.
922 *Cell* 149, 439–451.

923 Varner, J.E., Lin, L.-S., 1989. Plant cell wall architecture. *Cell* 56, 231–239.

924 Veylder, L. de, Beeckman, T., Inzé, D., 2007. The ins and outs of the plant cell cycle. *Nature*
925 reviews. *Molecular cell biology* 8, 655–665.

926 Wang, Y., Sampathkumar, A., 2020. Live Cell Imaging of Microtubule Cytoskeleton and
927 Micromechanical Manipulation of the *Arabidopsis* Shoot Apical Meristem. *Journal of*
928 *visualized experiments* : JoVE.

929 Wangenheim, D. von, Fangerau, J., Schmitz, A., Smith, R.S., Leitte, H., Stelzer, E.H.K., Maizel, A.,
930 2016. Rules and Self-Organizing Properties of Post-embryonic Plant Organ Cell Division
931 Patterns. *Current biology* : CB 26, 439–449.

932 Willis, L., Refahi, Y., Wightman, R., Landrein, B., Teles, J., Huang, K.C., Meyerowitz, E.M., Jönsson,
933 H., 2016. Cell size and growth regulation in the *Arabidopsis thaliana* apical stem cell niche.
934 *Proceedings of the National Academy of Sciences of the United States of America* 113,
935 E8238-E8246.

936

937

938