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Abstract 17 

Cell division and the resulting changes to the cell organization affect the shape and functionality 18 

of all tissues. Thus, understanding the determinants of the tissue-wide changes imposed by cell 19 

division is a key question in developmental biology. Here, we use a network representation of live 20 

cell imaging data from shoot apical meristems (SAMs) in Arabidopsis thaliana to predict cell 21 

division events and their consequences at a tissue level. We show that a classifier based on the 22 

SAM network properties is predictive of cell division events, with validation accuracy of 82%, on 23 

par with that based on cell size alone. Further, we demonstrate that the combination of 24 

topological and biological properties, including: cell size, perimeter, distance, and shared cell wall 25 

between cells, can further boost the prediction accuracy of resulting changes in topology 26 

triggered by cell division. Using our classifiers, we demonstrate the importance of microtubule 27 

mediated cell-to-cell growth coordination in influencing tissue-level topology. Altogether, the 28 

results from our network-based analysis demonstrates a feedback mechanism between tissue 29 

topology and cell division in A. thaliana’s SAMs.     30 

 31 

Summary statement 32 

we use a network representation of live cell imaging data from SAMs in Arabidopsis  33 

thaliana to predict cell division events and their consequences at a tissue level. 34 

 35 

Introduction 36 

The adjacency of cells, specifying the tissue topology, defines the organization of cells and 37 

affects function of organs in multicellular organisms. Therefore, deciphering the organizational 38 

principles of cellular connectivity networks are fundamental to improve our understanding of the 39 

development of multicellular organisms. The shoot apical meristem (SAM) of plants is a highly 40 

organized structure composed of continuously proliferating cells that differentiate and give rise to 41 

all aerial organs and is under the control of an intricate signaling network influencing plant growth 42 

and response to different stimuli. The SAM epidermis in plants serves as an excellent system to 43 

identify organizational principles of cellular connectivity networks (Varner and Lin, 1989).  44 

Since the cells in the SAM are glued to each other by a rigid cell wall, changes in the topology 45 

of SAMs are only brought about by cell division events. Cell division in plants is a cell-size-46 

dependent, cell autonomous process (Jones et al., 2017), and crossing multiple checkpoints 47 

allows the final transition towards cell division (Veylder et al., 2007; Qi and Zhang, 2019). Willis et 48 

al. (2016) recently showed that initial cell size at birth influences the increase in size (sizer 49 

model), even though there seems to also be a component of constant size increase (adder 50 

model) in the shoot apical meristem (SAM) of Arabidopsis thaliana. This study has hinted at the 51 

possibility that a combination of both models may best describe cell division (see D'Ario and 52 
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Sablowski (2019) for a comparison of models). Although size-dependent cell division seems to be 53 

independent from position and cell to cell contact (Willis et al., 2016), recent study of Jackson et 54 

al. (2019) has pointed out that dividing cells display higher centralities in the network 55 

representation of the A. thaliana’s SAM; however, this observation was not sufficient to accurately 56 

predict cell division from network properties alone.  57 

Since biochemical and physical signals are transmitted across tissues and affect cell division, 58 

growth, and morphology in a spatio-temporal fashion, the question arises of how tissue topology 59 

could influence such processes to help the plant respond to a variety of stimuli. In the context of 60 

physical signals, the ability of plant cells to respond to growth driven mechanical signals requires 61 

the activity of microtubule severing protein KATANIN (Uyttewaal et al., 2012). It has been shown 62 

that the lack of mechanical feedback, as in the katanin1-2 mutant, results in changes to the 63 

topological features as a consequence of modified cell shape (Jackson et al., 2019). Therefore, 64 

this mutant can be employed to test if topological features are indeed relevant for cell division and 65 

related processes.  66 

This question can be readily addressed due to the availability of plant lines expressing stable 67 

fluorescence reporters that allow for monitoring cellular outlines in combination with confocal 68 

imaging techniques (Reddy et al., 2004). In addition, the combination of user-friendly tools for 69 

accurate segmentation, like MorphoGraphX (Barbier de Reuille et al., 2015), with different 70 

machine learning (Bhavsar and Panchal, 2012; Pisner and Schnyer, 2020) and deep learning 71 

techniques (Camacho et al., 2018) has led to massive advances in the analysis of high-72 

throughput imaging data. Further, the analysis of imaging phenotypes has been facilitated by 73 

adopting the network paradigm (Breuer et al., 2017; Nowak et al., 2021). To this end, topological 74 

features have been employed in cell wall placement models for dividing cells, by using the degree 75 

(i.e. number of neighbors) in combination with a spring based model (Gibson et al., 2011) or other 76 

individual topological features (Jackson et al., 2019). It has been shown that some of these 77 

individual topological features can better predict the placement of certain cell walls compared with 78 

more traditional approaches (Jackson et al., 2019), such as: dividing cells using the shortest wall 79 

placement, generalized Errera’s rule (Besson and Dumais, 2011) or by minimization of tensile 80 

stress in other models (Louveaux et al., 2016). Although these models present an important step 81 

to solve the problem of cell wall placement, each model underperforms on some cells in the 82 

central region of the SAM (Shapiro et al., 2015; Jackson et al., 2019).  83 

Although there are attempts of combining network properties with imaging data from SAMs, 84 

minor progress has been achieved in predicting individual cells divisions in this plant tissue. Here, 85 

we provide a network-based perspective to model cell division and cell wall placement in the SAM 86 

of Arabidopsis thaliana, a well-established system for studying cell division. To this end, we 87 

combine network-based analysis of live cell imaging data with classifiers that allow us to simulate 88 
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tissue-wise topological changes of the A. thaliana SAMs and test these classifiers independently 89 

on the katanin1-2 mutant. 90 

 91 

Results 92 

 93 

Topology and surface area accurately predict cell division events 94 

The question of whether division of a cell embedded in a tissue is driven by the topology of the 95 

neighboring cells, the area of the cell, or combination of the two is still open. To address this 96 

question, we imaged SAMs of five A. thaliana expressing a plasma membrane reporter 97 

(pUBQ10:acyl-YFP) every 24 hours over five days using confocal microscopy (Figure 1A). First, 98 

we manually determined the number of dividing and non-dividing cells between two consecutive 99 

time points in the central zone of the SAM. We defined the central zone of a SAM as the area 100 

covered by a circle of 30 µm radius around the highest point in the analyzed SAM (Figure 1B), 101 

and found that 24.3%±3.5% of cells divided per tissue between two successive time points, with a 102 

total number of 329 dividing cells and 896 non-dividing cells (Figure 1B).  103 

Next, we represented the topology of the central zone as a network, in which every node 104 

corresponds to a cell and two nodes are connected by an edge if the cells share cell wall. For 105 

each cell we calculated 16 properties, referred to as topological features (Supplementary Table 106 

1), in an unweighted network, in which every edge is of weight 1. We also applied different edge 107 

weights based on the mean surface area, shared cell wall, and distance of the cell centroid 108 

between two nodes representing those cells (Figure 1C). In addition, we considered the surface 109 

area of each cell in the central zone as a biological feature. 110 

Previous studies have shown that there exists a critical cell size threshold for cell division in 111 

the SAM of A. thaliana (Jones et al., 2017). To show that topological features capture information 112 

distinct from that provided by the cell surface area, we calculated its Pearson correlation with the 113 

topological features (Supplementary Figure 2, Supplementary Table 2). Using the network with 114 

edges weighted based on the cell surface area, we found that betweenness centrality, a measure 115 

for the relative number of shortest paths passing through a node, exhibited the highest correlation 116 

of 0.71 to the surface area. Nevertheless, the absolute value of the correlation with surface area 117 

was smaller than 0.5 for 63% of the features (97% of features showing correlation smaller than 118 

0.7). Therefore, topological features in the considered network scenarios carry information that is 119 

different from that obtained by the cell surface area alone. To further show the predictive power of 120 

the classifiers trained on the topological features, we considered two reduced feature sets that 121 

only included features with absolute value of the Pearson correlation coefficient (r) smaller than 122 

0.5 and 0.7, respectively (Supplementary Figure 2). In such a way, we aimed to remove bias due 123 
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to consideration of features which may, to a certain extent, include information about surface 124 

area.  125 

As a result of these considerations, we trained six classifiers based on non-linear support 126 

vector machines (SVMs) with Gaussian kernel ((Bhavsar and Panchal, 2012)) to predict cell 127 

division based on: all topological features (topo), surface area alone, the combination of 128 

topological features and surface area (topo + area), topological features with low absolute value 129 

of correlation with surface area (r < 0.7 and r < 0.5), and on unweighted topological features. To 130 

this end, we selected an equal number of dividing and non-dividing cells from four SAM for 131 

training the SVMs, to ensure balancing of cell labels. We kept the data from the remaining, fifth 132 

SAM, as a testing set (Methods). Further, we partitioned the 502 selected cells into training and 133 

validation sets composed of equal numbers of dividing and non-dividing cells, and used five-fold 134 

cross validation to train the classifiers (see Methods). 135 

While the training accuracy of the SVM using only the surface area was 79.4%, the training 136 

accuracy solely based on topological features was significantly higher, at 88.7% (11.0% higher; p-137 

value=0.0011, one-way ANOVA); this was also the case when the combined set of topological 138 

features and surface area was used, with training accuracy of 86.3% (8.3% higher; p-139 

value=0.0101, one-way ANOVA). However, we observed no difference in the validation 140 

accuracies for the three types of SVMs (~81%). For the test SAM, the classifier based on the 141 

combination of topological features and surface area exhibited the best performance, with an 142 

accuracy of 78.9%, followed by the SVM that considered the topological features (76.9%) and the 143 

surface area (72.4%) alone (see Figure 2, Supplementary Table 3). The area under the curve 144 

(AUC) of the receiver operating characteristic (ROC) - curve, used as another measure of 145 

performance, showed similar trends (Supplementary Figure 3A, Supplementary Table 3). 146 

The removal of topological features that were highly correlated with area does not significantly 147 

change the validation accuracy (Figure 2, Supplementary Table 3). Moreover, using only the 148 

topological features from the unweighted network scenario (Figure 1C), resulted in 16.7% smaller 149 

accuracy of the classifier on the validation set in comparison to that based on all topological 150 

features (p-value < 0.001, one-way ANOVA). However, the classifier based on the features from 151 

the unweighted topology only performs slightly worse (relative difference in accuracy of 5.5%) 152 

compared with the classifier based on the surface area (Figure 2, Supplementary Table 3). 153 

Inspection of the learning curves showed that the classifiers did not suffer from high bias and 154 

variance and that the training set was sufficiently large (Supplementary Figure 4). Therefore, we 155 

concluded that topological features led to marginally improved performance in predicting cell 156 

division compared to the surface area alone, while the performance could be further increased by 157 

the combination of both feature types. 158 
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To further corroborate the biological relevance of these findings, we randomly permuted the 159 

labels and retrained the classifiers, repeating this procedure 1000 times for each feature set (see 160 

Methods). All but the classifier based on surface area were able to partially predict training data. 161 

However, no classifier was able to generalize on the validation or test set, exhibiting accuracies 162 

expected by chance (Supplementary Figure 5A). Therefore, the classifiers trained on the 163 

randomized labels demonstrated that the used features capture information important for 164 

classification of dividing and non-dividing cells in the 1-day long intervals.  165 

Independent testing of the trained SVMs with data from the katanin1-2 (ktn) mutant to predict 166 

cell division events showed reduced accuracy in comparison with data from the wild type (WT) for 167 

all classifiers. The relative difference between the test accuracies for WT and ktn was smaller for 168 

the classifier trained on surface area (2.0%) compared with all topological (6.0%) as well as the 169 

topological and biological features combined (7.2%). Removing the features with Pearson 170 

correlation to surface area higher than 0.7 led to relative decrease of 6.0% between the test 171 

accuracies for WT and ktn (Figure 2). While these findings demonstrate the importance of surface 172 

area as a determinant of cell division, they also support the claim that topology plays an important 173 

role in predicting cell division events. 174 

 175 

Combination of topological and biological features enables recreation of the local 176 

topology after cell division 177 

To examine whether properties derived from the tissue connectivity network as well as biological 178 

properties (i.e. cell size and perimeter, distance, and shared cell wall between cells) are 179 

predictive in the time-dependent connectivity of daughter cells, we trained classifiers based on 180 

SVMs (with Gaussian kernel) to predict which of the cells adjacent to a dividing (parent) cell are 181 

neighbors of the divided (daughter) cells. We distinguished neighbors that were only adjacent to 182 

one daughter cell: adjacent to the daughter cell closer to the SAM center are labelled as class 0, 183 

while those adjacent to the daughter farther from the center were classified as class 1; 184 

neighboring cells adjacent to both daughter cells were considered to be of class 2 185 

(Supplementary Figure 1C).  186 

To predict changes of cell divisions based on local topology from the data collected at 1-day 187 

time interval, we first determined all neighbor-parent pairs and then predicted the adjacency of 188 

the neighbor to the daughter cells. To this end, we considered the topological features as well as 189 

biological properties of the parent and the neighbor cells in the preceding time point. We used the 190 

topological features of the neighbor cell to distinguish neighbor-parent pairs in which a neighbor is 191 

adjacent to two dividing cells. We also included the difference between the topological features of 192 

the neighbor and the parent, thus generating 100 unique topological-based properties for each 193 

neighbor-parent-pair (Supplementary Figure 1B). For the biological feature set, we extracted the 194 
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surface area and perimeter of both the parent cell and neighbors as well as their shared cell wall 195 

and distance between the centers of mass. For the combined features, we concatenated both 196 

topological and biological features. Given a parent cell, we determined the class of its neighbors 197 

in the next time point by aligning the tissues between 1-day time intervals manually, and 198 

determining their adjacency of the neighbor with respect to the daughter cells (see Methods and 199 

Supplementary Figure 1B).  200 

We excluded neighbor-parent-pairs for which the neighbor also divided in the considered 1-201 

day interval to avoid bias due to guessing which cell divides first (Figure 3A). Following this 202 

procedure, we created 1638 neighbor-parent pairs with 546 representatives (balanced classes) in 203 

each of the three classes (0, 1, and 2) from five different SAMs, tracked every 24 hours over 5 204 

days. The data was split into three parts: training, validation, and test data, such that the SAM of 205 

one plant was kept as test data, while the rest of the plants were used in a nested five-fold cross 206 

validation for training the SVM.  207 

The training and validation accuracy was best for the SVM based on the topological features 208 

combined with biological features, at 70.4% and 64.0%, respectively. The topological and 209 

biological features alone showed 12.7% or 17.0% reduction in validation accuracy compared to 210 

the combined classifier, and similar reduction in training accuracies. Regarding the performance 211 

on the test set, the combined classifier performed best, with an accuracy of 65.7%, followed by 212 

the classifier based on topological features alone with 60.6%, and that using biological features 213 

alone, with the worst accuracy (equivalent to guessing) of 50.3% (Figure 3B, Supplementary 214 

Table 4).  215 

Investigating the area under the ROC-curve (AUC) measure for individual classes highlighted 216 

the differences between the two classifiers trained on topological or biological features alone: The 217 

SVM based on the topological features showed better performance for the neighbors only 218 

adjacent to one cell (class 0 and 1) in comparison with the classifier based on the biological 219 

features (i.e. relative increase of 10.7% and 23.9% for class 0 and 1, respectively). In contrast, 220 

the SVM based on the biological features performed 22.6% better for neighbors adjacent to both 221 

daughter cells in comparison with the classifier based on the topological features. Combining both 222 

feature sets improved the average AUC on the validation data of the classifier by 9.4% and 223 

13.0% (relative increase compared to topological and biological features alone, respectively) 224 

while retaining high performance for all classes (Figure 3C, Supplementary Figure 6). 225 

Investigating the reduced topological feature set (i.e. removing features with Pearson correlation 226 

coefficients larger than 0.5 or 0.7 with any biological feature) as well as only considering 227 

unweighted features resulted in almost identical training, validation, and test accuracies 228 

compared with all topological feature trained classifiers. The training accuracy of the unweighted 229 

set showed a slight relative reduction of 7.0% (p-value: 0.013, one-way ANOVA) (Figure 3A, 230 
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Supplementary Table 4). These findings indicated the importance of both topological as well as 231 

biological properties to predict local topology after a division event. 232 

To further corroborate the biological relevance of these results, we randomly permuted the 233 

labels and retrained the classifiers, repeating this procedure 1000 times for each feature set. 234 

While the resulting classifiers showed performance better than expected at random on the 235 

training data with the three sets of features, they did not generalize well and exhibited accuracy 236 

on the validation set similar to expected by chance (Supplementary Figure 5B). Further, we 237 

investigated the more difficult scenario of including neighbor-parent-pairs whose neighbors also 238 

divide and repeat the topology prediction procedure. Here, we found similar performance to that 239 

on the training, validation, and test sets for all combinations of feature sets (Supplementary Table 240 

4). Therefore, our findings demonstrated that the used features capture information important to 241 

classify changes in local topology predictions surrounding dividing cells in 24-hour intervals. 242 

We tested how well the trained classifiers based on the wild-type data performed on the ktn 243 

mutant. With the data from the ktn mutant, we found a reduction in accuracy for all classifiers for 244 

local topology prediction, trained on the wild type data, except for those using the biological 245 

feature set (50.3% WT testing vs 51.6% ktn testing). All classifiers trained on topology-related 246 

feature sets showed strong relative reduction in test accuracy between WT and ktn (topo: 31.6%; 247 

topo + bio: 17.0%; r < 0.7: 33.3%; r < 0.5: 28.9%; unweighted: 25.5%; orange vs purple bars, 248 

Figure 3B). The reduced performance on ktn data of classifiers trained on topological features 249 

(feature sets: topo, topoAndBio) can be mainly attributed to the worse prediction of class 0 and 1 250 

(cells being predicted to be adjacency to only one of the divided daughter cells, Supplementary 251 

Figure 1C). In contrast, the classifiers trained on biological features performed similarly on ktn 252 

test as those based on the WT test data (Figure 3B). These results highlight the importance of 253 

both topological and biological information in local topology rearrangement after cell division. 254 

 255 

Combined application of division event and local topology prediction enables to predict 256 

tissue topologies 257 

To apply the classifiers and compare the resulting topologies, we used the data from the test 258 

plant and successively predicted division events and changes in local topology using classifiers 259 

trained on the combined biological and topological features (see following procedure in Figure 260 

4A). We compared the predicted and observed topologies by investigating the unweighted 261 

topological features (Figure 1C, Supplementary Table 1) of non-dividing cells in the next time 262 

points of both scenarios. We selected non-dividing cells of both scenarios, i.e. predicted and 263 

observed, to pairwisely compare their unweighted topological features. We did not consider other 264 

network scenarios (see Figure 1C) since we would need to estimate the weights for the topology, 265 

adding a layer of uncertainty. Here, 126 of the possible 155 non-dividing cells in the observed 266 
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topology were also non-dividing in the predicted topology. For these cells, we calculated the 267 

Pearson correlation coefficient (r) of all unweighted features between observed and predicted 268 

topologies, with the harmonic centrality showing the largest value of r = 0.80 and eight of 16 269 

features having Pearson correlation larger than 0.5 (Figure 4D, blue bars). We compared the 270 

predicted and observed values of harmonic centrality of the non-dividing cells of the next time 271 

step, and found strong correlation (Figure 4E, Supplementary Figure 8).  272 

For comparison, given the same test plants observed topologies, we selected all predicted 273 

non-dividing cells to divide and randomly connected the neighbors with the divided cells 274 

reorienting their local neighborhood; we then repeated the correlation analysis of the resulting 275 

topology with the observed one. This “random propagation” scenario allowed us to construct and 276 

investigate the most opposite example to our predictions (Figure 4D, orange bars). Comparing 277 

the predicted and random propagations correlations shows that only five out of 16 topological 278 

features showed higher correlation in the random propagation. The random propagation showed 279 

the lowest correlating features and the trained classifiers showed the highest correlations with a 280 

total of eight being higher (Figure 4D, blue vs orange bars).  281 

To further investigate the performance of the local topology prediction on the test plant, we 282 

calculated the percentage of correctly predicted neighbors for each cell dividing in the predicted 283 

and observed tissue (example in Figure 4B). The distribution of correctly labelled neighbors per 284 

dividing cell was significantly shifted towards higher accuracy when comparing the predicted and 285 

random topology predictions (Figure 4C). 286 

 287 

Discussion  288 

The biochemical pathway of cell division control has been extensively studied (Dewitte and 289 

Murray, 2003), but only recently external cues have also been considered to understand the 290 

effect of cell divisions in a tissue context (Hartig and Beck, 2006; Shimotohno et al., 2021). It has 291 

been known that the outer epidermal cell wall resists most forces (Beauzamy et al., 2015) and, 292 

thus, division in the SAM outer-layer needs to serve both meristematic functions. This raises the 293 

question if cell division and their subsequent local topology rearrangement are affected by the 294 

tissue topology and if tissue topology contains sufficient information for their accurate prediction.   295 

Based on our extensive network-based modelling, we showed that both surface area, as an 296 

approximation of cell size, as well as the characteristics of topology allow for prediction of cell 297 

division events in the central epidermal region of A. thaliana SAM, in contrast to earlier reports 298 

(Jackson et al., 2019). The cyclin-dependent kinase (CDK) G1 is known to bind DNA and serves 299 

as a ruler after cell division, allowing for size dependent division in C. reinhardtii (Li et al., 2016), 300 

while KIP-related protein 4 has a similar function in the A. thaliana SAM niche (D'Ario et al., 301 

2021). Modelling cell division in the SAM of A. thaliana also revealed the importance of CDKs in 302 
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G1-S and G2-M phase transition (Jones et al., 2017). Further, the work of Willis et al. (2016) 303 

showed that cell division events in SAMs of Arabidopsis treated with naphthylphthalamic acid, an 304 

inhibitor of auxin transport that generates naked meristem, are influenced by both cell size 305 

increase and a cell size threshold affecting cell division. Both models explain the importance of 306 

surface area in predicting cell division events, but they do not explain the importance of 307 

topological features. Here, the mechanical feedback loop, envisioned by the cells ability to react 308 

to changes in turgor pressure with MT and cell wall rearrangement affecting cell divisions (for 309 

detail of the feedback loop, see Sampathkumar (2020)) may serve as an explanation linking 310 

topology with the summed turgor and supracellular mechanical stress. Alternatively, the predictive 311 

ability of topological properties may result from long distance communication by different 312 

phytohormones (Shimotohno et al., 2021), or due to cell-to-cell communication by 313 

plasmodesmata (Kitagawa and Jackson, 2017). 314 

However, not only the cell division, but also the cell wall positioning affects the tissue 315 

organization; a prime example is the effect of division patterning in lateral root initiation 316 

(Wangenheim et al., 2016). Our study relies on the adjacency of cells in the tissue topology, in 317 

contrast to other cell wall models, such as: the generalized Errera’s rule (Besson and Dumais, 318 

2011),  the spring-based model (Gibson et al., 2011), and the mechanical stress related model 319 

(Louveaux et al., 2016), that predict the placement of the cell wall based on the individual cell 320 

geometry. Our classifier employs the biological feature set composed of six cellular features, 321 

having limited information about the dividing and neighbor cell geometry, and allows for reliable 322 

prediction of the changes in the local topology. These local changes in the topology mirror the 323 

effect of the cell wall placement on the tissue. In addition, we showed that topological features 324 

alone sufficed to accurately predict local topological changes. While single topological properties 325 

were already used to estimate cell wall placement (Jackson et al., 2019), the percentage of 326 

dividing epidermal cells in this study was only 12% (total n=7/57 dividing and non-dividing cells) 327 

per tissue every 22h. In contrast, our results rely on experiments in which cells divided more 328 

regularly, with an average of 24% of dividing cells per tissue every 24h (total n=329/896 dividing 329 

and non-dividing cells), allowing us to train robust classifiers. We showed that the combination of 330 

both feature sets boosted performance of local topology reorientation prediction (Figure 3), 331 

indicating that the inclusion of multiple viewpoints of information available to cells needed to be 332 

involved to solve the problem of cell wall placement in the SAM. This raises the question how 333 

information of the topology is biologically transferred to cells, either via mechanical stress, 334 

hormones, or cell to cell communication with plasmodesmata.  335 

To demonstrate the generalizability of the classifiers, we showed that they can be used to 336 

make accurate predictions for ktn mutants that are defective in mechanical feedback regulation. 337 

Our results indicated similar performance for the classifiers with biological feature sets from WT 338 
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and ktn. In contrast, the classifiers trained on topological features showed reductions in 339 

performance in ktn compared to WT. This difference in performance is not due to differences in 340 

topological features, since the normalized features showed similar distributions (Supplementary 341 

Figure 9). These results suggest a potential role of KATANIN in linking sub- and supracellular 342 

mechanical stress, known to affect leaf epidermal cells (Eng et al., 2021) and KATANINs role in 343 

positioning of the preprophase band, spindle, and phragmoplast (Komis et al., 2017). In addition, 344 

the cell geometry of the ktn mutant differs compared to the WT and might also influence the 345 

topology. Therefore, the combination of network-based modelling with machine learning provides 346 

a method to screen SAMs under different conditions and mutants. More specifically, reduction in 347 

test performance of either the classifiers trained on surface area or on topological features 348 

compared to the wild type may hint to effects only disturbing function related to the cell cycle or to 349 

a topological effect (in the case of classifier trained on area or topological features being lower, 350 

respectively). 351 

When combining division prediction and the resulting changes to the tissue, previous studies 352 

mostly focus on single cell division or propagating tissues based on division likelihoods using the 353 

number of neighbors (Gibson et al., 2011) or just using area as a fixed threshold (Sahlin and 354 

Jönsson, 2010; Alim et al., 2012), while our classifier incorporates more diverse tissue-level 355 

information. Here, we combined our best classifiers to predict future tissue topology using the 356 

combined topological and biological features. Although the results of this propagation of 357 

classifiers is promising, the careful inspection of the finding, particularly with respect to planarity 358 

and topological properties of the reconstructed topologies point out that further research should 359 

consider simultaneous modelling of cell neighborhoods of higher order to improve the 360 

reconstruction. 361 

Furthermore, as information is not only be passed along the epidermis (L1-layer), the 362 

assessment of cell division events and their changes on the topology could be expanded beyond 363 

the epidermis of the SAM as we know that the L2- and L3-layer play a vital role in supporting the 364 

meristematic function through the feedback of CLAVATA 1, 2, and 3 and WUSCHEL (Schoof et 365 

al., 2000). Transferring the classifiers to other plant species, such as maize (that has only two 366 

distinct layers forming the SAM), may provide insights into how meristematic function can be 367 

conserved with fewer cells. As other tissues and organs are also experiencing mechanical 368 

stresses, hormone gradients and other transport related feedbacks, e.g. growth resulting stress 369 

(Sampathkumar et al., 2014), auxin gradients (due to PIN; Shi et al., (2018)), soil thickness in 370 

roots, and bending through wind in the stem, there are bound to be feedback loops of cells and 371 

tissues to sense and react to those cues on a topological level to integrate this information into 372 

the plants development. 373 

  374 
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Material and Methods 375 

 376 

Plant materials and growth condition  377 

We grew Arabidopsis thaliana wild-type (WT; Wassilewskija ecotype) plants with the membrane 378 

reporter pUBQ10::acyl-YFP (previously described in (Willis et al., 2016)) and katanin1-2 mutant in 379 

Columbia-0 background with the membrane reporter Lti6b-GFP (Eng et al., 2021) in short day (8 380 

h/16 h day/night), 20 °C/16 °C conditions for 3 weeks and then transferred to long day (16 h/8 h 381 

day/night), 20 °C/16 °C conditions till shoot apical meristem sampling. We cultured sampled 382 

shoot apical meristems (SAMs) in transparent imaging boxes containing apex culture media 383 

under long day, 22 °C conditions as previously described (Wang and Sampathkumar, 2020). 384 

 385 

Time-lapse data acquisition and pre-processing 386 

We acquired confocal Z-stacks (3D images) at an excitation wavelength of 514 nm and 488 nm 387 

for imaging YFP and GFP respectively with a 40X/0.8 water immersion objective every 24 hours 388 

for 5 days (WT) or 3 days (ktn). Next, we used MorphoGraphX (MGX) (Barbier de Reuille et al., 389 

2015) to obtain 2 ½ D surface mesh of the meristem L1 layer from the 3D images and from there 390 

we extract the cellular connectivity network (topology). In addition, we measured the shared cell 391 

wall of the neighboring cells (MGX function: Mesh/Export/Save Cell Neighborhood 2D), the 392 

surface area, and cell positions (MGX: Mesh/Heat Map/Heat Map Classic). The cellular 393 

connectivity network is composed of nodes, representing the centroids of the extracted cells. 394 

Edges connect two nodes if the corresponding cells are adjacent to each other. We lineage-395 

tracked all cells between 1-day time steps manually in MGX (Figure 1A). We refer to dividing 396 

cells, at time t (days), as parent cells and their descendants, at time t + 1 (days), as daughter 397 

cells. To select the cells for the downstream analysis, we first manually determined the cells 398 

closest to the center of the SAM surface, given by the highest curvature. To this end, we 399 

compared the positions of cells to the average position over all cells.  400 

 401 

Prediction of dividing cells 402 

To predict cell division events of central and non-peripheral cells, we selected all cells in a radius 403 

of 30 µm around the center (Figure 1B). In such a way, we only analyzed central and exclude 404 

peripheral cells. We considered a cell as peripheral with respect to a connectivity network in case 405 

the graph induced by the adjacent nodes does not form a cycle. We then labelled each of the 406 

selected cells as dividing (label: 1) or non-dividing (label: -1) cell within 24 hours (one day). In 407 

addition, we determined six sets of features (see below; for unreduced sets see Supplementary 408 

Figure 1) for each cell. 409 
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Five of six feature sets are based on the entire tissue (i.e. including peripheral cells as well as 410 

cells outside of the central region from the cellular connectivity network) and consist of topological 411 

features for all central cells; the sixth set includes only the surface area of the central cell. While 412 

calculating the topological properties, we considered different scenarios for weighting the edges. 413 

In the case of the unweighted topology, we weighted all edges equally (edge weight = 1). For the 414 

area-induced topology, we used the inverse of the mean surface areas of the two adjacent cells 415 

as edge weight. For the wall-induced topology, we defined the edge weights as the inverse of the 416 

shared cell wall area between two cells. For the distance-induced topology, we determined the 417 

inverse of the distance between the centroid positions of two adjacent cells as the edge weight 418 

(Figure 1C). We calculated ten topological properties for each central cell and network scenario 419 

(see Supplementary Table 1). Furthermore, we considered topological properties based on the 420 

induced subgraph of the first neighborhood (see Supplementary Table 1). We estimated all 421 

properties in python 3.8.1 using the networkx 2.4 package.  422 

To train the classifiers for prediction of division events between two successive time points, we 423 

split the WT data from the five plants into two data sets, a training-validation and a testing set with 424 

four and one plant, respectively, while keeping three ktn plants as a separate test set. As there 425 

are fewer dividing cells, their class is the minority class. As a result, we down-sampled the 426 

majority class of non-dividing cells to balance the two classes. We applied a support vector 427 

machine (SVM) with a Gaussian kernel to predict the occurrence of cell division events within 1 428 

day. To this end, we used the six different feature sets, namely: the unweighted topological 429 

features (unweighted topology), all topological features combined (topo), the surface area 430 

(surface area), topological features and area (topo + area), as well as two reduced feature sets 431 

including only topological features with Pearson correlation coefficients with surface area smaller 432 

than 0.5 or 0.7 (denoted by r < 0.5 and r < 0.7) (Supplementary Figure 1A). We trained each 433 

classifier with the topological properties as features of the training-validation set using five-fold 434 

cross-validation.  435 

To this end, we z-normalised ((X-mean)/std) the topological properties with the corresponding 436 

mean and standard deviation (std) for the train-validation and the WT test data sets, respectively. 437 

The ktn data is z-normalised using its mean and standard deviations. We estimated the 438 

hyperparameters on the training set using another five-fold cross-validation using grid search 439 

(sklearn 0.22.1, GridSearchCV) regularly spacing 50 hyper-parameters for each power of 10. We 440 

further tested the classifiers by retraining the SVMs on all training-validation data with newly 441 

selected parameters and applied them on the unseen test data. We quantified the performance of 442 

the classifiers by calculating five measures of performance, including: the accuracy, F1-score, 443 

true positive rate, false positive rate, and area under the curve (AUC) of the receiver-operator 444 
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characteristic (ROC). For comparative analysis between two performance measures p1 and p2, 445 

we used the relative difference (100·
|����� |

����	��,���
). 446 

To further inspect the training of the classifiers, we generated the learning curves by retraining 447 

each classifier on a different number of training data (keeping the hyper-parameters from above). 448 

We further determined the feature sets information content by shuffling the labels 1000 times, 449 

retraining the classifier using the default RBF SVM parameters (sklearn 0.22.1, svm.SVC) on 450 

each set of shuffled labels, and calculating the performance of the resulting classifiers.  451 

 452 

Recreating of local topology after cell division 453 

For the prediction of the changes in local topology of dividing cells, we selected all non-peripheral 454 

neighbor-parent-pairs of dividing cells. Next, we categorized the adjacency of these neighbors 455 

with respect to the newly divided (daughter) cells. To this end, we inspected if the neighbor of a 456 

neighbor-parent pair is adjacent to only one or both of the daughter cells.  457 

To automate the procedure, we distinguished the divided daughter cells into the daughter 458 

closer to the center of the SAM which we termed cell “A” and the second daughter cell we named 459 

cell “B”. We labelled each neighbor cell in a neighbor-parent-pair with class 0, 1, or 2 according to 460 

whether it is connected only to cell “A”, cell “B”, or both. We then predicted the local topology 461 

excluding and including dividing neighbors using six feature sets, similar to the analysis above. 462 

To distinguish neighbor-parent-pairs which are adjacent to two dividing cells, we considered 463 

the difference of topological features between neighbor and dividing parental cells in addition to 464 

the parental topological properties as features (Supplementary Figure 1B). As a result, we 465 

obtained the following feature sets: unweighted topology, topological features from all weightings 466 

(topo), biological features (bio, consisting of surface area and perimeter from neighbor and 467 

parent, as well as the shared cell wall and distance between the two), the combination of all 468 

topological and biological features (topo + bio), and two reduced feature sets (r < 0.5 and r < 0.7) 469 

including only topological features with Pearson correlation coefficients of smaller than 0.5 or 0.7 470 

with all biological features. We performed training, validation, and testing as well as inspected the 471 

learning curves and estimated the information content of the used features as specified in the 472 

analysis above for wild type data. Additionally, we tested the classifiers on the ktn data. 473 

  474 

Application of the classifiers for division event and local topology  475 

To combine the predictions of division events and local topology changes, we used the previously 476 

developed classifiers and applied them to predict how the topology of the test plants would 477 

change. To this end, we selected the classifiers including both topological and biological features 478 

(based on validation performance) and applied them one after another on to the test tissues to 479 

generate the topology of the next time points. Here, the predictions were only made for one time 480 
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step (24 hours), since longer periods required us to estimate changes in the biological features as 481 

cells predicted to divide would not necessarily divide in the observed tissue one step later.  482 

To arrive at the predicted cellular connectivity network, we determined the cells predicted to 483 

divide and divided cells' future adjacency with their neighbors. Next, we repeated the following 484 

four steps for all cells predicted to divide at time t, starting with a random cell: (1) We removed the 485 

dividing cell along with the edges connecting the neighbors that is dividing. (2) We added the 486 

daughter cells representing the cell closer (cell A) and farther (cell B) away from the SAM center. 487 

(3) We connected the daughter cells with their neighbors based on the prediction from the local 488 

topology classifier (Figure 4A).  489 

To evaluate the performance of the combined application of division and topology prediction, 490 

we calculated all unweighted topology features for the cells which are neither dividing in the 491 

predicted nor in the observed topology. Next, we plotted the non-dividing cells observed against 492 

the predicted features, determined best linear fit, and the Pearson correlation coefficient of all 493 

unweighted topological properties. In addition, we divided all predicted non-dividing cells, 494 

randomly assigned labels to the neighbors of dividing cells how they will be connected to the 495 

divided cells based on the training-validation set representation. Then, we repeated the 496 

correlation analysis from above 1000 times (differently reconnecting topologies), and compared 497 

the correlations between predicted and random topology propagation. 498 

To also evaluate the local recreation of the topology around dividing cells, we compare the 499 

first neighborhoods of cells dividing in the predicted and observed tissue of the test plant by 500 

calculating the percentage of correctly labelled neighbors. The distributions of predicted 501 

accuracies are compared with an estimated random labelling of the neighbors using Kolmogorov-502 

Smirnov-Test (scipy 1.4.1, ks_2samp). 503 

 504 

Code availability 505 

The entire code to reproduce the findings is available at 506 

 https://github.com/matz2532/SAM_division_prediction 507 
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Figures 518 

 519 

Figure 1. Feature generation from three-dimensional (3D) images of the shoot apical 520 

meristem (SAM). (A) The surface of A. thaliana SAM is imaged every 24 hours over four days. 521 

Pairs of dividing cells, depicted with the same colors, are determined manually (see Methods). (B) 522 

The 3D images of SAMs are converted to 2½D surfaces by employing MGX (de Reuille et al., 523 

2015) (left panel). The surface is abstracted by its topology, capturing the connectivity of 524 

neighboring cells in a radius of 30 μm (white circle) around the central cell, marked with * (center 525 

panel). The topology of the analyzed cells inside the circle is colored in orange (right panel). Two 526 

nodes are connected by an edge if the cells they represent share cell wall. (C) Four different 527 

network scenarios are considered: (i) unweighted edges and edges weighted by (ii) area, (iii) 528 

shared cell wall, and (iv) distance, illustrated for the case of three cells u (blue), v (green), and w 529 

(white). In the unweighted network scenario, all edge weights have a value of one. The edge 530 

weight for the network weighted on area, shared wall, and distance is the inverse of the mean cell 531 

areas of u and v, of the shared cell wall area (magenta), and of the inverse distance of the center 532 

of mass for the graph weighted on the distance (black). The weights of the edge e(u, v) in the four 533 

scenarios are illustrated with different line widths. 534 

  535 
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 536 

 537 

 538 

Figure 2. Surface area and topology-based features generate different predictions for cell 539 

division in the SAM. (A) Comparison of predicted and observed labels on one test plant tissue 540 

from Figure 1A day 0 highlighting the difference between predicted and observed division events. 541 

The predictions are from classifiers trained on different feature sets: combined topological 542 

features (topo), surface area, combined topological features and surface area (topo + area; from 543 

left to right) with the coloring scheme of correct predictions in blue and wrong prediction in red. 544 

The combined topological features include 16 centrality measures (see Methods) calculated 545 

based on the four network scenarios (see Figure 1C). Dividing cells are marked with a white star. 546 

Scale bar is 10 µm. (B) Accuracy of the support vector machine classifier to predict cell division 547 

for the training (blue), validation (green), and testing of wild type (orange) and ktn mutant (purple) 548 

data sets using: topo, surface area, and topo + area, reduced set of topological features that 549 

show an absolute Pearson correlation coefficient with surface area smaller than 0.7 or 0.5 (r < 0.7 550 

and r < 0.5), as well as only the topological features derived from the unweighted network 551 

scenario (unweighted). The performance on the training and validation set is determined from 552 

five-fold cross-validation with mean and the standard deviation shown as error bars. Different 553 

letters indicate significance between groups using one-way ANOVA with Tukey's pairwise 554 

comparison: p-value < 0.05. Statistical testing for differences of classifier performance for the 555 
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training and validation sets was conducted separately (letter without and with apostrophe, 556 

respectively). NWT = 5 plants, 4 time steps (4 plants for training-validation and 1 plant for testing); 557 

Nktn = 3 plants, 3 time steps; nWT = 502 and 156, train-validation and test cells respectively; nktn = 558 

334 (balanced data).  559 

 560 

  561 
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562 

563 

 564 

Figure 3. Topological and biological features are required for accurate prediction of the 565 

local neighborhood after cell division in the SAM. (A) Comparison of predicted and observed 566 

local neighborhoods on one local topology from Figure 1A, day 0. The predictions are made with 567 

classifiers trained on different feature sets: combined topological (topo, including features of the 568 

four network scenarios, see Figure 1C, Supplementary Figure 1), biological (bio, including area, 569 

perimeter, shared cell wall, and distance), and combined topological and biological features (topo 570 

+ bio; from left to right) with the coloring scheme of correct predictions in blue and wrong 571 

prediction in red. The combined topological features include 16 centrality measures (see 572 

Methods) calculated based on the four network scenarios (see Figure 1C). The central and 573 

neighboring dividing cells are marked with a white star and circle, respectively. No color is 574 

displayed on the dividing neighbor cell as all dividing neighbors were removed. Scale bar is 10 575 

µm. (B) Accuracy of classification on the training (blue), validation (green), and testing of wild 576 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 5, 2021. ; https://doi.org/10.1101/2021.10.05.463218doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.05.463218
http://creativecommons.org/licenses/by/4.0/


 

 

20 

 

type (orange) and ktn mutant (purple) and (C) Area under the curve (AUC) of the ROC based on 577 

the wild-type validation (left) and ktn test data (right) for the classification of all classes (blue), for 578 

the class of neighbors adjacent to the daughter cell (cell A, see legend in B) closer to the SAM 579 

center (denoted as class 0; cyan), adjacent to the daughter (cell B, see legend in C) farther from 580 

the center (denoted as class 1; orange), or adjacent to both cells (denoted as class 2; magenta). 581 

The classifiers are based on topo, bio, topo + bio, reduced set of topological features that show 582 

an absolute Pearson correlation coefficient with all biological features smaller than 0.7 or 0.5 (r < 583 

0.7 and r < 0.5), as well as topological features derived from the unweighted network scenario 584 

(unweighted). The performance on the training and validation set is determined from five-fold 585 

cross-validation with mean and the standard deviation shown as error bars. Different letters 586 

indicate significance between groups using one-way ANOVA with Tukey's pairwise comparison 587 

(p-value < 0.05). Statistical testing for differences of classifier performance for the training and 588 

validation sets was conducted separately (letter without and with apostrophe, respectively). NWT = 589 

5 plants, 4 time steps (4 plants for training-validation and 1 plant for testing); Nktn = 3 plants, 3 590 

time steps; nWT = 1317 and 312, train-validation and test cells respectively; nktn = 888 (balanced 591 

data).  592 

  593 
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 594 

595 

 596 

Figure 4. Concordance between observed and predicted topologies. The cell connectivity 597 

network of the test plant was predicted by applying classifiers for division event and topology 598 

prediction. (A) Illustration of the procedure applying the division and local topology classifiers to 599 

generate the topology of the next time point (24-hour time interval). After division and topology 600 

prediction, a dividing cell (dot in brown) is selected along with its neighbors (blue circles) and its 601 

adjacency relationship (edges, black lines) (left). The selected cell (predicted to divide) along with 602 

the edges incident to the corresponding node are removed and replaced by the divided daughter 603 

cells (A, B: representing the cell closer and farther away from the SAM center) that are adjacent 604 

to each other (three in the middle). The daughter cells are connected with their neighbors based 605 

on the prediction from the local topology classifier (right). The next dividing cell is randomly 606 

selected and the previous steps are repeated until all dividing cells are selected. (B) One example 607 
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of the predicted local topology with an overall accuracy of 66.6% for the full local topology is 608 

compared with the observed local topology. The divided daughter cells “A” and “B” (brown) are 609 

adjacent with the predicted or observed cells (numbers display the same cells) coloring their 610 

respective parent-neighbor-class (cyan/orange: cell connected only with daughter A or B, 611 

respectively; magenta: cell adjacent with both daughter cells) (C) Histogram and density plot of 612 

the percentage of correctly estimated neighbors per local topology of cells predicted as dividing in 613 

the test plant (blue) are compared with the density plot of randomly assigning parent-neighbor-614 

classes (orange). Difference between distributions is tested using Kolmogorov-Smirnov-Test, p-615 

value < 0.01. N = 1 plant, 4 time steps, n = 39 local topologies. (D) The concordance between the 616 

observed and predicted topologies was quantified (blue) for non-dividing cells in both topologies 617 

by calculating and ranking the Pearson correlation coefficient based on 16 topological features 618 

from the unweighted networks (see Figure 1C; Supplementary Table 1). The procedure was 619 

repeated dividing all cells predicted to be non-dividing, randomly assigning classes to the 620 

neighbors, and calculating the correlation as described before (yellow). (E) The observed 621 

harmonic centrality is plotted against the predicted harmonic centrality for all non-dividing cells 622 

and the best linear fit (solid line) with its function f(x) and the respective Pearson correlation 623 

coefficient r is overlaid. NWT = 1 plant, 4 time steps, nWT = 126 cells not dividing in both observed 624 

and predicted tissue. 625 

 626 

627 
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Supplementary Information 628 

 629 

630 

 631 

Supplementary Figures 1. Overview about feature sets for division event and local 632 

topology prediction as well as an example for local topology class assignment. (A) For 633 

division event prediction, we consider 16 topological features (Supplementary Table 1) calculated 634 

from four network scenarios (unweighted, weighted by area, shared cell wall, and distance), 635 

creating four different feature sets: unweighted topology, all topologies (all topos), surface area, 636 

as well as topological features and surface area combined (all topos and area) for all central cells. 637 

(B) For local topology prediction, we calculate features for each neighbor-parent-pair of dividing 638 

parent cells using the difference in topological features of the neighbor and parent features as 639 

well as the features of the neighbor. Using this general formula, we generated four feature sets: 640 

unweighted topology, all topos, biological features (bio, including surface area, perimeter, shared 641 

cell wall, and distance), as well as topological and biological features combined (all topos and 642 

bio). (C) Parent cell (brown circle) divides into two daughter cells (A, B: representing the cell 643 

closer and farther away from the SAM center) changing the local topology in the process. The 644 
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colors of the neighbors after division of the central cell represents the adjacency of the neighbor 645 

with the daughter cells: class 0 (cyan) neighbor is adjacent to cell A, class 1 (orange) pair 646 

neighbor is adjacent cell B, and class 2 (magenta) neighbors are adjacent to both cells. The 647 

classes are then used to be predicted from the earlier time point. 648 
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 650 

Supplementary Figures 2. Heat map of Pearson correlation coefficients between 651 

topological features and surface area. We consider the 16 topological features calculated from 652 

the four network scenarios (see Figure 1C): unweighted edges and edges weighted by area, 653 

shared wall, and distance. Majority of topological features exhibit small Pearson correlation 654 

coefficients (r, legend range from -1 (blue) to 1 (red)). NWT = 5 plants, 4 time steps, nWT = 1225 655 

cells. 656 
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 658 

659 

 660 

Supplementary Figure 3. Comparative analysis of predictions based on reduced sets of 661 

features. Area under the curve (AUC) of the ROC of the support vector machine (SVM) classifier 662 

on the training (blue), validation (green), and testing of wild type (orange) and ktn mutant (purple) 663 

set of (A) division event and (B) local topology prediction. SVMs are trained on the combined 664 

topological features (topo), (A) surface area or (B) (bio, including surface area, perimeter, shared 665 

cell wall, and distance), topological features with (A) surface area (topo + area) or (B) bio (topo + 666 

bio), reduced set of topological features that show an absolute Pearson correlation coefficient 667 

with (A) surface area or (B) bio smaller than 0.7 or 0.5 (r < 0.7 and r < 0.5), as well as only the 668 

topological features derived from the unweighted network scenario (unweighted). The 669 

performance on the training and validation set is determined from five-fold cross-validation with 670 

mean and the standard deviation shown as error bars. Different letters indicate significance 671 

between groups using one-way ANOVA with Tukey's pairwise comparison (p-value < 0.05). 672 

Statistical testing for differences of classifier performance for the training and validation sets was 673 

conducted separately (letter without and with apostrophe, respectively). NWT = 5 plants, 4 time 674 

steps (4 plants for training-validation and 1 plant for testing); Nktn = 3 plants, 3 time steps; (A) nWT 675 
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= 502 and 156, train-validation and test cells, nktn = 334 (balanced data) and (B) nWT = 1317 and 676 

321, train-validation and test cells, nktn = 888 (balanced data). 677 
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 679 

Supplementary Figure 4. Learning curves for the classifiers that predict division events. 680 

Learning curves of SVMs predicting cell division events, based on four different feature sets, 681 

showing the accuracy in the validation (green) and training (red) set (line: mean, area: ± 1 682 

standard deviation). Feature sets: (A) combined topological features (topo; including features 683 

calculated from the four network scenarios, see Figure 1C), (B) surface area as a single feature, 684 

(C) topo with surface area (topo + area), (D, E) topological features which have an absolute 685 

Pearson correlation coefficient (r) with surface area smaller than 0.7 and 0.5, respectively, and 686 

(F) unweighted topological features (unweighted topology). NWT = 4 plants, 4 time steps; nWT = 687 

502 train-validation cells (balanced data), one-way ANOVA. 688 

  689 
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 690 

Supplementary Figure 5. Performance of classifiers trained on randomized labels. Support 691 

vector machines (SVMs) trained on surface area/biological features and unweighted topological 692 

features perform similarly with respect to the prediction of a division event and local topology of 693 

shoot apical meristems (SAM). Accuracy of the SVM classifier on the training (blue), validation 694 

(green), and testing (orange) set for a division event (A) and local topology prediction (B) based 695 

on unweighted topological features (unweighted topology), surface area, or biological features 696 

(bio). Shown are the mean and standard deviation on the training and validation sets from five-697 

fold cross-validation. The performance on the training and validation set is determined from five-698 

fold cross-validation with mean and the standard deviation shown as error bars. Different letters 699 

indicate significance between groups using one-way ANOVA with Tukey's pairwise comparison: 700 

p-value < 0.05. Statistical testing for differences of classifier performance for the training and 701 

validation sets was conducted separately (letter without and with apostrophe, respectively). NWT = 702 

5 plants, 4 time steps (4 plants for training-validation and 1 plant for testing); (A) nWT = 502 and 703 

156, and (B) nWT = 1317 and 321 train-validation and test cells respectively (balanced data) 704 

shuffling labels 1000 times. 705 
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  707 

Supplementary Figure 6. Difference between classifiers trained on topological and 708 

biological features to predict local topology. Classifiers based on topological and biological 709 

features predict the three different classes of cells that are neighbors of cells that have divided in 710 

comparison to the previous time point. Receiver operating characteristic-curve predicting cell 711 

division events on five-fold cross-validation of (A) combined topological features (topo), including 712 

features calculated from the four network scenarios (see Figure 1C), (B) biological features (bio), 713 

including surface area, perimeter, shared cell wall, and distance, and (C) topological and 714 

biological features combined (topo + bio). The mean performance is shown as a straight line, 715 

together with the area of ± 1 standard deviation obtained from the five-fold cross validation of the 716 

average ROC-curve combining all classes (blue), of class 0 (cyan), class 1 (orange), and class 2 717 

(magenta). The performance expected by change is marked with a red dashed line. NWT = 4 718 

plants, 4 time steps; nWT = 1317 train-validation cells (balanced data). 719 
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 721 

Supplementary Figure 7. Learning curves for the classifiers predicting local topological 722 

changes.  Learning curves of support vector machines (SVMs) that predict local topology based 723 

on six different feature sets: (A) combined topological features (topo, including features calculated 724 

from the four network scenarios, see Figure 1C), (B) biological features (bio), including surface 725 

area, perimeter, shared cell wall, and distance, (C) topological and biological features combined 726 

(topo+bio), (D, E) topological features which have an absolute value of Pearson correlation 727 

coefficients with all biological features (cor) smaller than 0.7 or 0.5, and (F) only unweighted 728 

features showing validation (green) and training (red) accuracy (line: mean, area: ± 1 standard 729 

deviation). NWT = 4 plants, 4 time steps; nWT = 1317 train-validation cells (balanced data). 730 

  731 
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 733 

 734 

Supplementary Figure 8. Observed and predicted features from non-dividing cells plotted 735 

against each other. The observed feature values are plotted against the predicted features 736 

values for each cell non-dividing in the observed and predicted tissue. A line fitting the linear 737 

regression line is plotted to the data including its function f(x) and Pearson correlation coefficient r 738 

for the unweighted topological features: information c (centrality), page rank, current flow 739 

betweenness c, katz c, communicability betweenness c, load c, betweenness c, eigenvector c, 740 

clustering coefficient, degree, avg. path length on 2 neighborhood (2nd n), abs graph density 2nd 741 

n, size 2nd n, algebraic connectivity 2nd n, rel. graph density 2nd n, estrada index 2nd n. The 742 

predicted tissue is estimated using the division and topology prediction classifiers trained on 743 

topological and biological features of the training-validation data (see Figure 4E). NWT = 1 plant 744 

(test), 4 time steps; nWT = 126. 745 

 746 
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 749 

 750 

Supplementary Figure 9. Density distributions of topological and biological features of WT 751 

and ktn data. The density distributions of the normalized (A) topological and (B) biological 752 

features are plotted to differentiate between pooled samples used during training and validation 753 

from wild-type (WT; blue), and testing from WT (green), and ktn (orange). The topological 754 

features are grouped into unweighted and weighted by area, shared cell wall, and distance (see 755 

Figure 1C), while topological features independent of the network scenario are only displayed in 756 

the unweighted row. The columns are further grouped into features calculated on the second 757 

neighborhood and features from the dividing cell or its neighbor. (A) nWT = 502, 156, train-758 

validation and test cells respectively; nktn = 334 (balanced data) (B) nWT = 1317 and 312, train-759 

validation and test cells respectively; nktn = 888 (balanced data). 760 

 761 
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Supplementary Table 1. Definition of network centralities applied on 763 

differently weighted network scenarios to be used as feature sets for cell 764 

division and local topology prediction. Each network centrality was applied on 765 

the unweighted, weighted by area, shared cell wall, and distance network 766 

scenario. The network centralities were concatenated together for each cell and 767 

used to train and predict different classifiers. 768 

 769 
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Network centrality Definition Reference
weighted node degree Freeman, 1979

clustering coefficient Saramäki, 2007

information centrality Sabidussi, 1966

betweenness centrality Freeman, 1977

eigenvector centrality Bonacich, 1987

PageRank Page, 1999

Katz centrality Katz, 1953

current flow 
betweenness centrality

Newman, 2005

communicability 
betweenness centrality 

Newman, 2005

harmonic centrality Marchiori & Latora, 2000

size number of edges in a graph

Estrada index Estrada, 200

absolute graph density Wilkis & Meara, 2002

relative graph density 

average path length Mao & Zhang, 2013

algebraic connectivity
second smallest eigenvalue 

of Laplacian matrix Fiedler, 1973
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Supplementary Table 2. Features ordered by Pearson correlation 773 

coefficient with area. Each network centrality was applied on the unweighted, 774 

weighted by area, shared cell wall, and distance network scenario. The Pearson 775 

correlation coefficient with area was calculated and were ordered from highest to 776 

lowest. 777 
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Feature name
Pearson 

correlation
 coefficient

p-value

betweenness centrality 
weighted by area

0.711959318 4.858135677288066e-211

degree 0.603854449 4.04599560747419e-136
size on 2 neighborhood 0.592735441 5.437779671764918e-130
betweenness centrality 0.583915039 2.6889326200117693e-125

current flow betweenness centrality 0.580737704 1.217610917275356e-123
load centrality 0.579975133 3.0215367111277033e-123

estrada index on 2 neighborhood 0.577117774 8.912704904812637e-122
estrada index on 2 neighborhood 

weighted by area
0.577117774 8.912704904812637e-122

communicability betweenness centrality 0.57662665 1.5891934730974062e-121
communicability betweenness centrality

 weighted by area
0.57662665 1.5891934731075239e-121

avg path length on 2 neighborhood 0.571341971 7.534891764175505e-119
betweenness centrality 
weighted by shared wall

0.562314483 2.17398436729873e-114

betweenness centrality weighted by distance 0.551932822 1.9924782594347459e-109
current flow betweenness centrality 

weighted by distance
0.49002158 3.548421338397669e-83

current flow betweenness centrality 
weighted by shared wall

0.425038752 7.271052967178761e-61

rel graph density on 2 neighborhood 0.402000467 4.72658491702921e-54
current flow betweenness centrality 

weighted by area
0.357475281 2.5263809251463147e-42

harmonic centrality weighted by area 0.356480643 4.4059338421761555e-42
katz centrality weighted by area 0.318100276 2.1117164600213396e-33

katz centrality 0.318100276 2.1117164600213396e-33
eigenvector centrality 0.296303239 5.28165100633828e-29

page rank 0.268477018 6.447099545102352e-24
harmonic centrality weighted by distance 0.247926272 1.5906836425501315e-20

page rank weighted by shared wall 0.181567285 1.4700578049314804e-11
harmonic centrality weighted by shared wall 0.164231644 1.0815009609397551e-09

information centrality 0.14740273 4.633731043029875e-08
information centrality 

weighted by shared wall
0.13173255 1.0692961604944774e-06

weighted node degree 
weighted by shared wall

0.128973752 1.7935045888103348e-06

page rank weighted by distance 0.127130861 2.5188037924397987e-06
information centrality weighted by distance 0.082746096 0.002241568

harmonic centrality 0.071745324 0.008078663778 
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 779 

weighted node degree weighted by distance 0.057524217 0.033774282
avg path length on 2 neighborhood 

weighted by shared wall
0.056763189 0.03620415

page rank weighted by area 0.037413208 0.167598817
information centrality weighted by area 0.035267233 0.19334169

avg path length on 2 neighborhood 
weighted by distance

0.0323718 0.232514552

eigenvector centrality 
weighted by shared wall

0.03031164 0.263614219

eigenvector centrality weighted by distance -0.051181347 0.05897689
eigenvector centrality weighted by area -0.203077703 3.8271343446663024e-14

avg path length on 2 neighborhood 
weighted by area

-0.214150561 1.361632834653018e-15

clustering coefficient 
weighted by shared wall

-0.236129215 1.0319617716515097e-18

weighted node degree weighted by area -0.289769264 9.320458571568519e-28
algebraic connectivity on 2 neighborhood -0.493010144 2.5317849899442773e-84
algebraic connectivity on 2 neighborhood 

weighted by shared wall
-0.535130612 9.326326866241923e-102

abs graph density on 2 neighborhood -0.54315277 2.3001423114310698e-105
clustering coefficient -0.580538544 1.544179245441756e-123

clustering coefficient weighted by distance -0.584348465 1.5932034339322458e-125
algebraic connectivity on 2 neighborhood 

weighted by distance
-0.594101302 9.896429835985306e-131

algebraic connectivity on 2 neighborhood 
weighted by area

-0.639772476 1.1317137430247356e-157

clustering coefficient weighted by area -0.642874421 1.1369324719240177e-159780 
 781 

 782 
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Supplementary Table 3. Performance measures of division event prediction 784 

from SVMs trained on features from four differently weighted topologies 785 

and/or area. F1-score (F1), accuracy (Acc), true positive rate (TPR), false 786 

positive rate (FPR), and area under the ROC-curve (Auc) of training (train) and 787 

unseen data (val) on the splits of the five-fold cross-validations, as well as 788 

retraining on train+val data testing on test data (testing), their mean and standard 789 

deviation (std) as well as the performance of testing on a never seen plant 790 

training on the full training-validation data set. Feature sets: combined topological 791 

features (topo; including features of unweighted, weighted by area-, shared cell 792 

wall-, and distance topologies), area as a single feature, topo with area, 793 

topological features which have an absolute Pearson correlation coefficient with 794 

area smaller than 0.7 or 0.5 (cor < 0.7 and cor < 0.5, respectively) and 795 

unweighted topological features (unweighted topology). 796 

 797 

topo 798 

train F1 train Acc train TPR train FPR train Auc val F1 val Acc val TPR val FPR val Auc
split 0 91.36 91.25 92.50 10.00 0.9697 82.69 82.35 84.31 19.61 0.9250
split 1 85.31 84.58 89.55 20.40 0.9133 80.00 80.00 80.00 20.00 0.8708
split 2 93.63 93.53 95.02 7.96 0.9702 78.85 78.00 82.00 26.00 0.8724
split 3 86.46 85.82 90.55 18.91 0.9244 84.62 84.00 88.00 20.00 0.9220
split 4 88.45 88.31 89.55 12.94 0.9511 84.62 84.00 88.00 20.00 0.8836
mean 89.04 88.70 91.44 14.04 0.9457 82.15 81.67 84.46 21.12 0.8948
std 3.08 3.33 2.09 4.87 0.0233 2.37 2.35 3.19 2.44 0.0239

testing 82.17 81.67 84.46 21.12 0.8922 76.62 76.92 75.64 21.79 0.8498
ktn testing 69.93 72.46 64.07 19.16 0.8087799 

 800 

area 801 

train F1 train Acc train TPR train FPR train Auc val F1 val Acc val TPR val FPR val Auc
split 0 76.60 78.00 72.00 16.00 0.8674 80.00 81.37 74.51 11.76 0.9285
split 1 78.43 78.11 79.60 23.38 0.8773 82.83 83.00 82.00 16.00 0.8940
split 2 80.60 80.85 79.60 17.91 0.8873 74.51 74.00 76.00 28.00 0.8536
split 3 78.97 79.60 76.62 17.41 0.8836 78.35 79.00 76.00 18.00 0.8664
split 4 80.40 80.60 79.60 18.41 0.8864 75.00 76.00 72.00 20.00 0.8556
mean 79.00 79.43 77.48 18.62 0.8804 78.14 78.67 76.10 18.75 0.8796
std 1.46 1.20 2.98 2.51 0.0074 3.12 3.32 3.29 5.37 0.0284

testing 79.36 79.48 78.88 19.92 0.8804 69.06 72.44 61.54 16.67 0.8358
ktn testing 67.34 70.96 59.88 17.96 0.8046802 

 803 

topo with area 804 
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train F1 train Acc train TPR train FPR train Auc val F1 val Acc val TPR val FPR val Auc

split 0 89.43 89.25 91.00 12.50 0.9594 83.81 83.33 86.27 19.61 0.9319

split 1 85.37 84.83 88.56 18.91 0.9172 82.00 82.00 82.00 18.00 0.8804

split 2 86.34 86.07 88.06 15.92 0.9307 80.00 79.00 84.00 26.00 0.8424

split 3 83.25 82.59 86.57 21.39 0.9093 84.31 84.00 86.00 18.00 0.9072

split 4 88.89 88.81 89.55 11.94 0.9498 82.35 82.00 84.00 20.00 0.8924

mean 86.66 86.31 88.75 16.13 0.9333 82.50 82.07 84.45 20.32 0.8909

std 2.28 2.49 1.48 3.64 0.0189 1.52 1.72 1.56 2.95 0.0297

testing 80.94 80.68 82.07 20.72 0.8935 77.85 78.85 74.36 16.67 0.8601

ktn testing 71.01 73.35 65.27 18.56 0.8056805 
 806 

cor < 0.7 807 

train F1 train Acc train TPR train FPR train Auc val F1 val Acc val TPR val FPR val Auc

split 0 85.57 85.25 87.50 17.00 0.9343 84.91 84.31 88.24 19.61 0.9239

split 1 85.58 84.83 90.05 20.40 0.9182 81.19 81.00 82.00 20.00 0.8696

split 2 93.37 93.28 94.53 7.96 0.9706 80.00 79.00 84.00 26.00 0.8688

split 3 86.26 85.57 90.55 19.40 0.9253 85.44 85.00 88.00 18.00 0.9236

split 4 86.47 86.07 89.05 16.92 0.9358 84.91 84.00 90.00 22.00 0.8884

mean 87.45 87.00 90.34 16.34 0.9369 83.29 82.66 86.45 21.12 0.8949

std 2.98 3.17 2.34 4.40 0.0181 2.24 2.29 2.97 2.75 0.0246

testing 81.78 81.27 84.06 21.51 0.8960 77.22 76.92 78.21 24.36 0.8488

ktn testing 69.13 72.46 61.68 16.77 0.8145808 
 809 

 810 

cor < 0.5 811 

train F1 train Acc train TPR train FPR train Auc val F1 val Acc val TPR val FPR val Auc

split 0 68.50 68.50 68.50 31.50 0.7510 72.00 72.55 70.59 25.49 0.7559

split 1 75.41 73.88 80.10 32.34 0.8109 62.96 60.00 68.00 48.00 0.6796

split 2 69.52 69.90 68.66 28.86 0.7602 69.31 69.00 70.00 32.00 0.7288

split 3 69.44 68.91 70.65 32.84 0.7396 76.19 75.00 80.00 30.00 0.8012

split 4 70.26 71.14 68.16 25.87 0.7509 65.93 69.00 60.00 22.00 0.7920

mean 70.63 70.47 71.21 30.28 0.7625 69.28 69.11 69.72 31.50 0.7515

std 2.46 1.94 4.53 2.60 0.0251 4.61 5.09 6.39 8.96 0.0443

testing 68.94 69.12 68.53 30.28 0.7512 70.66 68.59 75.64 38.46 0.7720

ktn testing 64.71 64.07 65.87 37.72 0.7115812 
  813 
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Supplementary Table 4. Performance measures of local topology prediction 814 

from SVMs trained from four different topologies and/or biological features. 815 

F1-score (F1), accuracy (Acc), true positive rate (TPR), false positive rate (FPR), 816 

and area under the ROC-curve (Auc) of training (train) and unseen data (val) on 817 

the splits of the five-fold cross-validations, as well as retraining on train+val data 818 

testing on test data (testing) (A) excluding or (B) including dividing neighbours, 819 

their mean and standard deviation (dev) as well as the performance of testing on 820 

a never seen plant training on the full training-validation data set. Feature sets: 821 

combined topological features (topo; including features of unweighted, weighted 822 

by area-, shared cell wall-, and distance topologies), biological features (bio; 823 

including area, perimeter, shared cell wall, and distance), topo with bio, 824 

topological features which have an absolute value of the Pearson correlation 825 

coefficients with all biological features (cor) smaller than 0.7 and 0.5, 826 

respectively, and unweighted topological features (unweighted topology). 827 

 828 
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 829 

 830 

exclude dividing  neighbors

train F1 train c0 F1 train c1 F1 train c2 F1 train Acc train TPR train FPR train Auc val F1 val c0 F1 val c1 F1 val c2 F1 val Acc val TPR val FPR val Auc

split 0 61.91 60.89 68.74 56.09 61.92 69.23 19.04 0.7979 51.58 53.93 60.12 40.68 51.52 59.09 24.24 0.7215

split 1 61.96 62.57 68.34 54.98 62.11 69.80 18.95 0.7880 52.80 57.78 56.04 44.58 53.03 57.95 23.48 0.7388

split 2 62.29 63.28 69.57 54.01 62.39 70.66 18.80 0.7992 60.70 63.16 65.54 53.42 60.98 65.91 19.51 0.7790

topos split 3 61.67 63.10 68.90 53.02 61.82 70.37 19.09 0.7909 54.43 48.48 64.80 50.00 54.55 65.91 22.73 0.7402

split 4 60.25 61.34 65.54 53.86 60.23 66.19 19.89 0.7897 61.70 55.00 71.76 58.33 61.69 70.11 19.16 0.7729

mean 61.61 62.24 68.22 54.39 61.69 69.25 19.15 0.7931 56.24 55.67 63.65 49.40 56.35 63.80 21.82 0.7505

std 0.71 0.95 1.39 1.05 0.76 1.60 0.38 0.0045 4.16 4.81 5.31 6.25 4.19 4.59 2.09 0.0219

testing 62.92 64.57 69.34 54.84 62.95 69.02 18.53 0.7969 60.62 60.58 66.99 54.29 60.58 66.35 19.71 0.7789

ktn testing 43.96 41.85 42.62 47.42 44.03 39.53 27.98 0.6243

train F1 train c0 F1 train c1 F1 train c2 F1 train Acc train TPR train FPR train Auc val F1 val c0 F1 val c1 F1 val c2 F1 val Acc val TPR val FPR val Auc

split 0 54.59 48.47 46.92 68.39 55.27 45.58 22.36 0.7406 51.80 46.34 46.24 62.83 52.27 45.45 23.86 0.7084

split 1 54.99 51.61 46.43 66.93 55.56 43.59 22.22 0.7365 53.45 49.16 42.77 68.42 54.17 38.64 22.92 0.7331

split 2 54.76 49.63 46.70 67.96 55.46 43.30 22.27 0.7412 52.51 48.24 44.30 65.00 53.41 39.77 23.30 0.7210

bio split 3 53.75 48.16 45.75 67.36 54.42 44.44 22.79 0.7295 56.52 51.76 49.08 68.72 57.20 45.45 21.40 0.7466

split 4 54.96 49.48 49.17 66.23 55.49 46.31 22.25 0.7342 52.26 43.31 43.58 69.89 52.87 44.83 23.56 0.7317

mean 54.61 49.47 46.99 67.37 55.24 44.65 22.38 0.7364 53.31 47.76 45.19 66.97 53.98 42.83 23.01 0.7281

std 0.45 1.21 1.16 0.76 0.42 1.15 0.21 0.0043 1.69 2.83 2.26 2.64 1.72 2.99 0.86 0.0128

testing 56.48 52.42 49.64 67.37 56.95 47.15 21.53 0.7521 49.18 44.24 35.75 67.54 50.32 30.77 24.84 0.7067

ktn testing 50.39 41.61 38.87 70.69 51.58 37.16 24.21 0.7281

train F1 train c0 F1 train c1 F1 train c2 F1 train Acc train TPR train FPR train Auc val F1 val c0 F1 val c1 F1 val c2 F1 val Acc val TPR val FPR val Auc

split 0 67.70 65.89 68.44 68.76 67.71 69.80 16.14 0.8426 60.25 61.54 60.44 58.76 60.23 62.50 19.89 0.7886

split 1 70.28 68.75 70.35 71.74 70.28 70.66 14.86 0.8539 62.86 62.64 59.65 66.29 62.88 57.95 18.56 0.8187

topo split 2 77.11 76.86 77.47 77.01 77.11 76.92 11.44 0.8943 63.64 62.15 64.33 64.44 63.64 62.50 18.18 0.8165

And split 3 68.38 68.25 67.62 69.29 68.38 67.52 15.81 0.8457 65.36 61.82 62.92 71.35 65.53 63.64 17.23 0.8249

Bio split 4 68.47 68.19 67.97 69.25 68.47 69.32 15.77 0.8532 67.83 63.16 68.13 72.19 67.82 71.26 16.09 0.8430

mean 70.39 69.59 70.37 71.21 70.39 70.84 14.81 0.8579 63.99 62.26 63.09 66.61 64.02 63.57 17.99 0.8183

std 3.47 3.77 3.68 3.08 3.47 3.21 1.73 0.0187 2.53 0.58 3.03 4.90 2.55 4.31 1.28 0.0175

testing 71.99 71.06 72.50 72.41 71.98 72.67 14.01 0.8676 65.70 66.35 65.70 65.05 65.71 65.38 17.15 0.8344

ktn testing 54.78 51.01 45.84 67.50 55.41 41.89 22.30 0.7255

train F1 train c0 F1 train c1 F1 train c2 F1 train Acc train TPR train FPR train Auc val F1 val c0 F1 val c1 F1 val c2 F1 val Acc val TPR val FPR val Auc

split 0 61.91 60.89 68.74 56.09 61.92 69.23 19.04 0.7979 51.58 53.93 60.12 40.68 51.52 59.09 24.24 0.7215

split 1 61.96 62.57 68.34 54.98 62.11 69.80 18.95 0.7880 52.80 57.78 56.04 44.58 53.03 57.95 23.48 0.7388

split 2 62.29 63.28 69.57 54.01 62.39 70.66 18.80 0.7992 60.70 63.16 65.54 53.42 60.98 65.91 19.51 0.7790

cor 0.7 split 3 61.67 63.10 68.90 53.02 61.82 70.37 19.09 0.7909 54.43 48.48 64.80 50.00 54.55 65.91 22.73 0.7402

split 4 60.25 61.34 65.54 53.86 60.23 66.19 19.89 0.7897 61.70 55.00 71.76 58.33 61.69 70.11 19.16 0.7729

mean 61.61 62.24 68.22 54.39 61.69 69.25 19.15 0.7931 56.24 55.67 63.65 49.40 56.35 63.80 21.82 0.7505

std 0.71 0.95 1.39 1.05 0.76 1.60 0.38 0.0045 4.16 4.81 5.31 6.25 4.19 4.59 2.09 0.0219

testing 62.92 64.57 69.34 54.84 62.95 69.02 18.53 0.7969 60.62 60.58 66.99 54.29 60.58 66.35 19.71 0.7789

ktn testing 43.96 41.85 42.62 47.42 44.03 39.53 27.98 0.6243

train F1 train c0 F1 train c1 F1 train c2 F1 train Acc train TPR train FPR train Auc val F1 val c0 F1 val c1 F1 val c2 F1 val Acc val TPR val FPR val Auc

split 0 62.38 61.10 69.02 57.02 62.39 69.52 18.80 0.7985 53.36 56.04 62.43 41.62 53.41 61.36 23.30 0.7258

split 1 61.73 62.01 67.89 55.29 61.82 68.66 19.09 0.7886 53.98 58.56 56.67 46.71 54.17 57.95 22.92 0.7418

split 2 62.78 64.15 69.21 54.97 62.87 69.80 18.57 0.8080 60.81 62.43 66.67 53.33 60.98 65.91 19.51 0.7730

cor 0.5 split 3 61.63 62.91 68.35 53.64 61.73 69.23 19.14 0.7903 54.48 49.10 65.17 49.18 54.55 65.91 22.73 0.7387

split 4 60.35 61.67 65.72 53.65 60.32 65.91 19.84 0.7907 61.70 55.00 71.76 58.33 61.69 70.11 19.16 0.7722

mean 61.77 62.37 68.04 54.92 61.83 68.62 19.09 0.7952 56.87 56.23 64.54 49.83 56.96 64.25 21.52 0.7503

std 0.83 1.07 1.25 1.25 0.86 1.41 0.43 0.0072 3.61 4.39 4.97 5.70 3.60 4.19 1.80 0.0190

testing 62.35 63.67 68.63 54.76 62.41 69.02 18.79 0.7926 60.07 58.54 67.98 53.70 59.94 66.35 20.03 0.7734

ktn testing 44.77 43.30 42.99 48.03 44.82 39.86 27.59 0.6265

train F1 train c0 F1 train c1 F1 train c2 F1 train Acc train TPR train FPR train Auc val F1 val c0 F1 val c1 F1 val c2 F1 val Acc val TPR val FPR val Auc

split 0 58.07 61.08 64.43 48.71 58.40 68.38 20.80 0.7647 54.61 62.64 56.35 44.85 54.92 57.95 22.54 0.7241

split 1 57.92 61.37 64.02 48.37 58.31 66.67 20.85 0.7617 50.66 58.51 55.32 38.16 51.52 59.09 24.24 0.7237

split 2 56.83 59.31 62.72 48.46 56.98 64.96 21.51 0.7538 59.05 62.86 64.92 49.38 59.47 70.45 20.27 0.7604

unweight split 3 57.03 61.71 61.52 47.87 57.17 62.39 21.42 0.7564 52.88 51.19 59.46 48.00 53.03 62.50 23.48 0.7033

topology split 4 56.90 61.67 62.93 46.11 57.39 67.05 21.31 0.7552 57.11 56.00 68.21 47.13 57.09 67.82 21.46 0.7597

mean 57.35 61.03 63.13 47.90 57.65 65.89 21.17 0.7584 54.86 58.24 60.85 45.50 55.21 63.56 22.40 0.7342

std 0.53 0.89 1.03 0.94 0.59 2.06 0.30 0.0042 2.97 4.37 4.97 3.96 2.83 4.86 1.42 0.0224

testing 58.24 62.28 65.07 47.37 58.62 68.11 20.69 0.7684 56.75 60.10 65.16 45.00 57.05 69.23 21.47 0.7757

ktn testing 44.14 44.63 43.78 44.01 44.14 44.59 27.93 0.6093
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 831 

 832 

 833 

  834 

including dividing neighbors

train F1 train c0 F1 train c1 F1 train c2 F1 train Acc train TPR train FPR train Auc val F1 val c0 F1 val c1 F1 val c2 F1 val Acc val TPR val FPR val Auc

split 0 59.86 64.54 65.50 49.54 60.22 67.12 19.89 0.7862 59.11 59.21 69.86 48.25 59.18 69.39 20.41 0.7756

split 1 61.88 64.41 68.06 53.16 62.11 69.40 18.95 0.7959 58.58 64.36 63.12 48.25 58.68 65.07 20.66 0.7741

split 2 63.08 66.94 69.51 52.79 63.48 71.11 18.26 0.8037 56.29 60.55 62.76 45.56 56.85 62.33 21.58 0.7657

topos split 3 65.81 67.95 70.25 59.22 65.93 71.45 17.04 0.8199 53.38 56.87 62.95 40.31 54.11 65.75 22.95 0.7375

split 4 63.82 66.34 70.21 54.93 64.10 72.31 17.95 0.8100 55.02 59.66 61.54 43.87 55.48 65.75 22.26 0.7472

mean 62.89 66.03 68.71 53.93 63.17 70.28 18.42 0.8031 56.47 60.13 64.05 45.25 56.86 65.66 21.57 0.7600

std 1.98 1.38 1.79 3.17 1.92 1.84 0.96 0.0116 2.15 2.44 2.96 2.98 1.91 2.25 0.95 0.0151

testing 68.82 71.97 73.21 61.28 69.04 74.01 15.48 0.8402 49.86 46.88 60.48 42.24 50.68 71.43 24.66 0.7093

train F1 train c0 F1 train c1 F1 train c2 F1 train Acc train TPR train FPR train Auc val F1 val c0 F1 val c1 F1 val c2 F1 val Acc val TPR val FPR val Auc

split 0 54.15 50.94 42.95 68.56 54.62 40.41 22.69 0.7445 54.18 49.84 39.69 73.02 55.10 35.37 22.45 0.7507

split 1 55.37 52.84 43.89 69.38 55.95 39.32 22.02 0.7515 50.77 47.14 35.96 69.23 51.60 32.88 24.20 0.7247

split 2 53.74 48.70 43.94 68.58 54.30 41.54 22.85 0.7436 54.04 48.08 44.06 69.97 54.34 43.15 22.83 0.7491

bio split 3 54.20 50.13 42.54 69.93 54.81 39.49 22.59 0.7498 52.70 48.30 43.57 66.23 52.97 41.78 23.52 0.7305

split 4 54.45 52.87 41.00 69.50 55.38 35.21 22.31 0.7500 52.05 50.66 36.14 69.35 53.42 30.82 23.29 0.7342

mean 54.38 51.09 42.86 69.19 55.02 39.19 22.49 0.7479 52.75 48.80 39.88 69.56 53.49 36.80 23.26 0.7379

std 0.54 1.61 1.08 0.54 0.59 2.14 0.29 0.0032 1.27 1.27 3.48 2.16 1.20 4.86 0.60 0.0103

testing 55.60 52.15 45.49 69.15 56.18 41.04 21.91 0.7549 46.26 53.18 17.50 68.11 51.19 10.71 24.40 0.7158

train F1 train c0 F1 train c1 F1 train c2 F1 train Acc train TPR train FPR train Auc val F1 val c0 F1 val c1 F1 val c2 F1 val Acc val TPR val FPR val Auc

split 0 67.78 66.95 66.61 69.78 67.75 67.47 16.12 0.8424 68.93 65.33 68.07 73.40 68.93 65.99 15.53 0.8579

split 1 70.67 70.07 68.98 72.97 70.66 68.03 14.67 0.8657 67.36 67.60 66.22 68.28 67.35 67.81 16.32 0.8517

topo split 2 71.06 70.05 70.32 72.82 71.05 70.26 14.47 0.8636 69.68 69.28 65.74 74.02 69.63 65.07 15.18 0.8565

And split 3 70.77 68.95 70.01 73.35 70.77 70.43 14.62 0.8703 64.38 63.70 64.67 64.79 64.38 66.44 17.81 0.8240

Bio split 4 70.55 69.27 69.62 72.77 70.54 69.91 14.73 0.8663 66.62 65.07 65.71 69.08 66.67 63.01 16.67 0.8288

mean 70.17 69.06 69.11 72.34 70.15 69.22 14.92 0.8617 67.40 66.20 66.08 69.91 67.39 65.66 16.30 0.8438

std 1.21 1.14 1.33 1.30 1.21 1.22 0.61 0.0099 1.86 1.99 1.12 3.43 1.84 1.59 0.92 0.0144

testing 70.01 69.05 69.58 71.38 70.00 69.63 15.00 0.8619 67.69 68.38 67.20 67.48 67.69 64.29 16.16 0.8442

train F1 train c0 F1 train c1 F1 train c2 F1 train Acc train TPR train FPR train Auc val F1 val c0 F1 val c1 F1 val c2 F1 val Acc val TPR val FPR val Auc

split 0 59.86 64.54 65.50 49.54 60.22 67.12 19.89 0.7862 59.11 59.21 69.86 48.25 59.18 69.39 20.41 0.7756

split 1 61.88 64.41 68.06 53.16 62.11 69.40 18.95 0.7959 58.58 64.36 63.12 48.25 58.68 65.07 20.66 0.7741

split 2 63.08 66.94 69.51 52.79 63.48 71.11 18.26 0.8037 56.29 60.55 62.76 45.56 56.85 62.33 21.58 0.7657

cor 0.7 split 3 65.81 67.95 70.25 59.22 65.93 71.45 17.04 0.8199 53.38 56.87 62.95 40.31 54.11 65.75 22.95 0.7375

split 4 63.82 66.34 70.21 54.93 64.10 72.31 17.95 0.8100 55.02 59.66 61.54 43.87 55.48 65.75 22.26 0.7472

mean 62.89 66.03 68.71 53.93 63.17 70.28 18.42 0.8031 56.47 60.13 64.05 45.25 56.86 65.66 21.57 0.7600

std 1.98 1.38 1.79 3.17 1.92 1.84 0.96 0.0116 2.15 2.44 2.96 2.98 1.91 2.25 0.95 0.0151

testing 68.82 71.97 73.21 61.28 69.04 74.01 15.48 0.8402 49.86 46.88 60.48 42.24 50.68 71.43 24.66 0.7093

train F1 train c0 F1 train c1 F1 train c2 F1 train Acc train TPR train FPR train Auc val F1 val c0 F1 val c1 F1 val c2 F1 val Acc val TPR val FPR val Auc

split 0 59.55 63.78 65.10 49.77 59.87 66.44 20.06 0.7765 59.38 58.71 69.44 50.00 59.41 68.03 20.29 0.7751

split 1 59.98 63.36 66.67 49.91 60.40 68.03 19.80 0.7850 56.75 62.94 63.26 44.04 57.08 67.81 21.46 0.7653

split 2 64.20 66.94 70.53 55.15 64.50 71.79 17.75 0.8096 56.76 60.74 65.10 44.44 57.53 66.44 21.23 0.7672

cor 0.5 split 3 63.92 67.27 68.64 55.83 64.10 69.40 17.95 0.8091 52.19 54.78 61.33 40.46 52.74 63.01 23.63 0.7363

split 4 66.18 68.26 71.92 58.36 66.38 73.33 16.81 0.8203 54.57 59.41 61.18 43.12 55.02 63.70 22.49 0.7457

mean 62.77 65.92 68.57 53.80 63.05 69.80 18.47 0.8001 55.93 59.31 64.06 44.41 56.36 65.80 21.82 0.7579

std 2.58 1.97 2.48 3.41 2.51 2.49 1.25 0.0165 2.41 2.69 3.05 3.12 2.28 2.08 1.14 0.0145

testing 69.13 71.73 73.50 62.17 69.36 74.56 15.32 0.8439 51.04 47.53 60.35 45.23 51.70 69.90 24.15 0.7154

train F1 train c0 F1 train c1 F1 train c2 F1 train Acc train TPR train FPR train Auc val F1 val c0 F1 val c1 F1 val c2 F1 val Acc val TPR val FPR val Auc

split 0 55.18 61.71 62.55 41.28 56.16 67.64 21.92 0.7459 53.36 58.57 64.13 37.40 54.65 68.71 22.68 0.7484

split 1 55.99 61.93 63.29 42.76 56.87 67.18 21.57 0.7628 56.15 62.98 61.89 43.57 56.39 65.07 21.80 0.7423

split 2 56.15 64.01 64.56 39.88 57.38 69.74 21.31 0.7687 54.60 61.03 61.94 40.85 55.94 65.75 22.03 0.7455

unweight split 3 55.44 62.47 63.01 40.83 56.41 66.84 21.79 0.7598 52.17 58.49 62.38 35.63 53.42 66.44 23.29 0.7316

topology split 4 58.84 62.41 66.07 48.03 59.43 69.57 20.28 0.7754 52.18 62.34 59.94 34.26 53.42 65.07 23.29 0.7324

mean 56.32 62.51 63.90 42.55 57.25 68.19 21.38 0.7625 53.69 60.68 62.05 38.34 54.77 66.21 22.62 0.7400

std 1.31 0.80 1.28 2.89 1.17 1.22 0.58 0.0099 1.52 1.87 1.34 3.42 1.24 1.35 0.62 0.0068

testing 58.80 65.42 65.44 45.53 59.69 70.31 20.16 0.7778 56.13 61.58 63.87 42.94 56.80 69.90 21.60 0.7620
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