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17  Abstract

18 Cell division and the resulting changes to the cell organization affect the shape and functionality
19 of all tissues. Thus, understanding the determinants of the tissue-wide changes imposed by cell
20  division is a key question in developmental biology. Here, we use a network representation of live
21 cell imaging data from shoot apical meristems (SAMSs) in Arabidopsis thaliana to predict cell

22 division events and their consequences at a tissue level. We show that a classifier based on the
23 SAM network properties is predictive of cell division events, with validation accuracy of 82%, on
24 par with that based on cell size alone. Further, we demonstrate that the combination of

25 topological and biological properties, including: cell size, perimeter, distance, and shared cell wall
26 between cells, can further boost the prediction accuracy of resulting changes in topology

27  triggered by cell division. Using our classifiers, we demonstrate the importance of microtubule

28 mediated cell-to-cell growth coordination in influencing tissue-level topology. Altogether, the

29 results from our network-based analysis demonstrates a feedback mechanism between tissue

30  topology and cell division in A. thaliana’s SAMs.

31

32 Summary statement

33  we use a network representation of live cell imaging data from SAMs in Arabidopsis

34  thaliana to predict cell division events and their consequences at a tissue level.

35

36 Introduction

37  The adjacency of cells, specifying the tissue topology, defines the organization of cells and
38 affects function of organs in multicellular organisms. Therefore, deciphering the organizational
39 principles of cellular connectivity networks are fundamental to improve our understanding of the
40  development of multicellular organisms. The shoot apical meristem (SAM) of plants is a highly
41 organized structure composed of continuously proliferating cells that differentiate and give rise to
42 all aerial organs and is under the control of an intricate signaling network influencing plant growth
43 and response to different stimuli. The SAM epidermis in plants serves as an excellent system to
44 identify organizational principles of cellular connectivity networks (Varner and Lin, 1989).

45 Since the cells in the SAM are glued to each other by a rigid cell wall, changes in the topology
46 of SAMs are only brought about by cell division events. Cell division in plants is a cell-size-
a7 dependent, cell autonomous process (Jones et al.,, 2017), and crossing multiple checkpoints
48 allows the final transition towards cell division (Veylder et al., 2007; Qi and Zhang, 2019). Willis et
49 al. (2016) recently showed that initial cell size at birth influences the increase in size (sizer
50 model), even though there seems to also be a component of constant size increase (adder
51 model) in the shoot apical meristem (SAM) of Arabidopsis thaliana. This study has hinted at the
52 possibility that a combination of both models may best describe cell division (see D'Ario and
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53 Sablowski (2019) for a comparison of models). Although size-dependent cell division seems to be
54 independent from position and cell to cell contact (Willis et al., 2016), recent study of Jackson et
55 al. (2019) has pointed out that dividing cells display higher centralities in the network
56  representation of the A. thaliana’s SAM; however, this observation was not sufficient to accurately
57 predict cell division from network properties alone.

58 Since biochemical and physical signals are transmitted across tissues and affect cell division,
59 growth, and morphology in a spatio-temporal fashion, the question arises of how tissue topology
60  could influence such processes to help the plant respond to a variety of stimuli. In the context of
61 physical signals, the ability of plant cells to respond to growth driven mechanical signals requires
62 the activity of microtubule severing protein KATANIN (Uyttewaal et al., 2012). It has been shown
63 that the lack of mechanical feedback, as in the kataninl-2 mutant, results in changes to the
64  topological features as a consequence of modified cell shape (Jackson et al., 2019). Therefore,
65  this mutant can be employed to test if topological features are indeed relevant for cell division and
66  related processes.

67 This question can be readily addressed due to the availability of plant lines expressing stable
68  fluorescence reporters that allow for monitoring cellular outlines in combination with confocal
69 imaging techniques (Reddy et al., 2004). In addition, the combination of user-friendly tools for
70  accurate segmentation, like MorphoGraphX (Barbier de Reuille et al., 2015), with different
71 machine learning (Bhavsar and Panchal, 2012; Pisner and Schnyer, 2020) and deep learning
72 techniques (Camacho et al., 2018) has led to massive advances in the analysis of high-
73 throughput imaging data. Further, the analysis of imaging phenotypes has been facilitated by
74  adopting the network paradigm (Breuer et al., 2017; Nowak et al., 2021). To this end, topological
75 features have been employed in cell wall placement models for dividing cells, by using the degree
76 (i.e. number of neighbors) in combination with a spring based model (Gibson et al., 2011) or other
77  individual topological features (Jackson et al., 2019). It has been shown that some of these
78 individual topological features can better predict the placement of certain cell walls compared with
79 more traditional approaches (Jackson et al., 2019), such as: dividing cells using the shortest wall
80 placement, generalized Errera’s rule (Besson and Dumais, 2011) or by minimization of tensile
81 stress in other models (Louveaux et al., 2016). Although these models present an important step
82 to solve the problem of cell wall placement, each model underperforms on some cells in the
83 central region of the SAM (Shapiro et al., 2015; Jackson et al., 2019).

84 Although there are attempts of combining network properties with imaging data from SAMs,
85 minor progress has been achieved in predicting individual cells divisions in this plant tissue. Here,
86  we provide a network-based perspective to model cell division and cell wall placement in the SAM
87 of Arabidopsis thaliana, a well-established system for studying cell division. To this end, we
88  combine network-based analysis of live cell imaging data with classifiers that allow us to simulate
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89 tissue-wise topological changes of the A. thaliana SAMs and test these classifiers independently

90  on the kataninl-2 mutant.

91

92 Results

93

94  Topology and surface area accurately predict cell division events

95 The question of whether division of a cell embedded in a tissue is driven by the topology of the

96 neighboring cells, the area of the cell, or combination of the two is still open. To address this

97 guestion, we imaged SAMs of five A. thaliana expressing a plasma membrane reporter

98 (pUBQ10:acyl-YFP) every 24 hours over five days using confocal microscopy (Figure 1A). First,

99  we manually determined the number of dividing and non-dividing cells between two consecutive
100 time points in the central zone of the SAM. We defined the central zone of a SAM as the area
101  covered by a circle of 30 um radius around the highest point in the analyzed SAM (Figure 1B),
102  and found that 24.3%=3.5% of cells divided per tissue between two successive time points, with a
103  total number of 329 dividing cells and 896 non-dividing cells (Figure 1B).
104 Next, we represented the topology of the central zone as a network, in which every node
105 corresponds to a cell and two nodes are connected by an edge if the cells share cell wall. For
106  each cell we calculated 16 properties, referred to as topological features (Supplementary Table
107 1), in an unweighted network, in which every edge is of weight 1. We also applied different edge
108  weights based on the mean surface area, shared cell wall, and distance of the cell centroid
109 between two nodes representing those cells (Figure 1C). In addition, we considered the surface
110  area of each cell in the central zone as a biological feature.
111 Previous studies have shown that there exists a critical cell size threshold for cell division in
112 the SAM of A. thaliana (Jones et al., 2017). To show that topological features capture information
113  distinct from that provided by the cell surface area, we calculated its Pearson correlation with the
114  topological features (Supplementary Figure 2, Supplementary Table 2). Using the network with
115  edges weighted based on the cell surface area, we found that betweenness centrality, a measure
116  for the relative number of shortest paths passing through a node, exhibited the highest correlation
117  of 0.71 to the surface area. Nevertheless, the absolute value of the correlation with surface area
118 was smaller than 0.5 for 63% of the features (97% of features showing correlation smaller than
119 0.7). Therefore, topological features in the considered network scenarios carry information that is
120  different from that obtained by the cell surface area alone. To further show the predictive power of
121 the classifiers trained on the topological features, we considered two reduced feature sets that
122 only included features with absolute value of the Pearson correlation coefficient (r) smaller than

123 0.5 and 0.7, respectively (Supplementary Figure 2). In such a way, we aimed to remove bias due
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124  to consideration of features which may, to a certain extent, include information about surface
125 area.

126 As a result of these considerations, we trained six classifiers based on non-linear support
127  vector machines (SVMs) with Gaussian kernel ((Bhavsar and Panchal, 2012)) to predict cell
128 division based on: all topological features (topo), surface area alone, the combination of
129 topological features and surface area (topo + area), topological features with low absolute value
130  of correlation with surface area (r < 0.7 and r < 0.5), and on unweighted topological features. To
131 this end, we selected an equal number of dividing and non-dividing cells from four SAM for
132 training the SVMs, to ensure balancing of cell labels. We kept the data from the remaining, fifth
133 SAM, as a testing set (Methods). Further, we partitioned the 502 selected cells into training and
134  validation sets composed of equal numbers of dividing and non-dividing cells, and used five-fold
135 cross validation to train the classifiers (see Methods).

136 While the training accuracy of the SVM using only the surface area was 79.4%, the training
137  accuracy solely based on topological features was significantly higher, at 88.7% (11.0% higher; p-
138  value=0.0011, one-way ANOVA); this was also the case when the combined set of topological
139  features and surface area was used, with training accuracy of 86.3% (8.3% higher; p-
140  value=0.0101, one-way ANOVA). However, we observed no difference in the validation
141 accuracies for the three types of SVMs (~81%). For the test SAM, the classifier based on the
142 combination of topological features and surface area exhibited the best performance, with an
143 accuracy of 78.9%, followed by the SVM that considered the topological features (76.9%) and the
144  surface area (72.4%) alone (see Figure 2, Supplementary Table 3). The area under the curve
145 (AUC) of the receiver operating characteristic (ROC) - curve, used as another measure of
146 performance, showed similar trends (Supplementary Figure 3A, Supplementary Table 3).

147 The removal of topological features that were highly correlated with area does not significantly
148 change the validation accuracy (Figure 2, Supplementary Table 3). Moreover, using only the
149  topological features from the unweighted network scenario (Figure 1C), resulted in 16.7% smaller
150 accuracy of the classifier on the validation set in comparison to that based on all topological
151  features (p-value < 0.001, one-way ANOVA). However, the classifier based on the features from
152  the unweighted topology only performs slightly worse (relative difference in accuracy of 5.5%)
153 compared with the classifier based on the surface area (Figure 2, Supplementary Table 3).
154 Inspection of the learning curves showed that the classifiers did not suffer from high bias and
155  variance and that the training set was sufficiently large (Supplementary Figure 4). Therefore, we
156 concluded that topological features led to marginally improved performance in predicting cell
157 division compared to the surface area alone, while the performance could be further increased by

158 the combination of both feature types.
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159 To further corroborate the biological relevance of these findings, we randomly permuted the
160 labels and retrained the classifiers, repeating this procedure 1000 times for each feature set (see
161 Methods). All but the classifier based on surface area were able to partially predict training data.
162 However, no classifier was able to generalize on the validation or test set, exhibiting accuracies
163 expected by chance (Supplementary Figure 5A). Therefore, the classifiers trained on the
164 randomized labels demonstrated that the used features capture information important for
165 classification of dividing and non-dividing cells in the 1-day long intervals.

166 Independent testing of the trained SVMs with data from the kataninl1-2 (ktn) mutant to predict
167 cell division events showed reduced accuracy in comparison with data from the wild type (WT) for
168  all classifiers. The relative difference between the test accuracies for WT and ktn was smaller for
169 the classifier trained on surface area (2.0%) compared with all topological (6.0%) as well as the
170  topological and biological features combined (7.2%). Removing the features with Pearson
171  correlation to surface area higher than 0.7 led to relative decrease of 6.0% between the test
172 accuracies for WT and ktn (Figure 2). While these findings demonstrate the importance of surface
173  area as a determinant of cell division, they also support the claim that topology plays an important
174  role in predicting cell division events.

175

176  Combination of topological and biological features enables recreation of the local
177  topology after cell division

178  To examine whether properties derived from the tissue connectivity network as well as biological
179 properties (i.e. cell size and perimeter, distance, and shared cell wall between cells) are
180 predictive in the time-dependent connectivity of daughter cells, we trained classifiers based on
181 SVMs (with Gaussian kernel) to predict which of the cells adjacent to a dividing (parent) cell are
182 neighbors of the divided (daughter) cells. We distinguished neighbors that were only adjacent to
183 one daughter cell: adjacent to the daughter cell closer to the SAM center are labelled as class 0,
184  while those adjacent to the daughter farther from the center were classified as class 1;
185 neighboring cells adjacent to both daughter cells were considered to be of class 2
186 (Supplementary Figure 1C).

187 To predict changes of cell divisions based on local topology from the data collected at 1-day
188 time interval, we first determined all neighbor-parent pairs and then predicted the adjacency of
189 the neighbor to the daughter cells. To this end, we considered the topological features as well as
190 biological properties of the parent and the neighbor cells in the preceding time point. We used the
191 topological features of the neighbor cell to distinguish neighbor-parent pairs in which a neighbor is
192 adjacent to two dividing cells. We also included the difference between the topological features of
193 the neighbor and the parent, thus generating 100 unique topological-based properties for each
194  neighbor-parent-pair (Supplementary Figure 1B). For the biological feature set, we extracted the
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195 surface area and perimeter of both the parent cell and neighbors as well as their shared cell wall
196  and distance between the centers of mass. For the combined features, we concatenated both
197  topological and biological features. Given a parent cell, we determined the class of its neighbors
198 in the next time point by aligning the tissues between 1-day time intervals manually, and
199 determining their adjacency of the neighbor with respect to the daughter cells (see Methods and
200  Supplementary Figure 1B).

201 We excluded neighbor-parent-pairs for which the neighbor also divided in the considered 1-
202 day interval to avoid bias due to guessing which cell divides first (Figure 3A). Following this
203 procedure, we created 1638 neighbor-parent pairs with 546 representatives (balanced classes) in
204  each of the three classes (0, 1, and 2) from five different SAMSs, tracked every 24 hours over 5
205 days. The data was split into three parts: training, validation, and test data, such that the SAM of
206 one plant was kept as test data, while the rest of the plants were used in a nested five-fold cross
207  validation for training the SVM.

208 The training and validation accuracy was best for the SVM based on the topological features
209  combined with biological features, at 70.4% and 64.0%, respectively. The topological and
210  biological features alone showed 12.7% or 17.0% reduction in validation accuracy compared to
211  the combined classifier, and similar reduction in training accuracies. Regarding the performance
212 on the test set, the combined classifier performed best, with an accuracy of 65.7%, followed by
213 the classifier based on topological features alone with 60.6%, and that using biological features
214  alone, with the worst accuracy (equivalent to guessing) of 50.3% (Figure 3B, Supplementary
215 Table 4).

216 Investigating the area under the ROC-curve (AUC) measure for individual classes highlighted
217  the differences between the two classifiers trained on topological or biological features alone: The
218 SVM based on the topological features showed better performance for the neighbors only
219 adjacent to one cell (class 0 and 1) in comparison with the classifier based on the biological
220  features (i.e. relative increase of 10.7% and 23.9% for class 0 and 1, respectively). In contrast,
221 the SVM based on the biological features performed 22.6% better for neighbors adjacent to both
222 daughter cells in comparison with the classifier based on the topological features. Combining both
223 feature sets improved the average AUC on the validation data of the classifier by 9.4% and
224 13.0% (relative increase compared to topological and biological features alone, respectively)
225  while retaining high performance for all classes (Figure 3C, Supplementary Figure 6).
226 Investigating the reduced topological feature set (i.e. removing features with Pearson correlation
227 coefficients larger than 0.5 or 0.7 with any biological feature) as well as only considering
228 unweighted features resulted in almost identical training, validation, and test accuracies
229 compared with all topological feature trained classifiers. The training accuracy of the unweighted
230  set showed a slight relative reduction of 7.0% (p-value: 0.013, one-way ANOVA) (Figure 3A,
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231 Supplementary Table 4). These findings indicated the importance of both topological as well as
232 biological properties to predict local topology after a division event.

233 To further corroborate the biological relevance of these results, we randomly permuted the
234 labels and retrained the classifiers, repeating this procedure 1000 times for each feature set.
235  While the resulting classifiers showed performance better than expected at random on the
236  training data with the three sets of features, they did not generalize well and exhibited accuracy
237 on the validation set similar to expected by chance (Supplementary Figure 5B). Further, we
238 investigated the more difficult scenario of including neighbor-parent-pairs whose neighbors also
239 divide and repeat the topology prediction procedure. Here, we found similar performance to that
240  on the training, validation, and test sets for all combinations of feature sets (Supplementary Table
241 4). Therefore, our findings demonstrated that the used features capture information important to
242 classify changes in local topology predictions surrounding dividing cells in 24-hour intervals.

243 We tested how well the trained classifiers based on the wild-type data performed on the ktn
244 mutant. With the data from the ktn mutant, we found a reduction in accuracy for all classifiers for
245 local topology prediction, trained on the wild type data, except for those using the biological
246  feature set (50.3% WT testing vs 51.6% ktn testing). All classifiers trained on topology-related
247  feature sets showed strong relative reduction in test accuracy between WT and ktn (topo: 31.6%;
248  topo + bio: 17.0%; r < 0.7: 33.3%; r < 0.5: 28.9%; unweighted: 25.5%; orange vs purple bars,
249 Figure 3B). The reduced performance on ktn data of classifiers trained on topological features
250 (feature sets: topo, topoAndBio) can be mainly attributed to the worse prediction of class 0 and 1
251 (cells being predicted to be adjacency to only one of the divided daughter cells, Supplementary
252 Figure 1C). In contrast, the classifiers trained on biological features performed similarly on ktn
253 test as those based on the WT test data (Figure 3B). These results highlight the importance of
254 both topological and biological information in local topology rearrangement after cell division.

255

256 Combined application of division event and local topology prediction enables to predict
257  tissuetopologies

258  To apply the classifiers and compare the resulting topologies, we used the data from the test
259 plant and successively predicted division events and changes in local topology using classifiers
260 trained on the combined biological and topological features (see following procedure in Figure
261 4A). We compared the predicted and observed topologies by investigating the unweighted
262 topological features (Figure 1C, Supplementary Table 1) of non-dividing cells in the next time
263 points of both scenarios. We selected non-dividing cells of both scenarios, i.e. predicted and
264  observed, to pairwisely compare their unweighted topological features. We did not consider other
265 network scenarios (see Figure 1C) since we would need to estimate the weights for the topology,
266  adding a layer of uncertainty. Here, 126 of the possible 155 non-dividing cells in the observed
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267  topology were also non-dividing in the predicted topology. For these cells, we calculated the
268 Pearson correlation coefficient (r) of all unweighted features between observed and predicted
269 topologies, with the harmonic centrality showing the largest value of r = 0.80 and eight of 16
270  features having Pearson correlation larger than 0.5 (Figure 4D, blue bars). We compared the
271 predicted and observed values of harmonic centrality of the non-dividing cells of the next time
272 step, and found strong correlation (Figure 4E, Supplementary Figure 8).

273 For comparison, given the same test plants observed topologies, we selected all predicted
274 non-dividing cells to divide and randomly connected the neighbors with the divided cells
275 reorienting their local neighborhood; we then repeated the correlation analysis of the resulting
276  topology with the observed one. This “random propagation” scenario allowed us to construct and
277 investigate the most opposite example to our predictions (Figure 4D, orange bars). Comparing
278 the predicted and random propagations correlations shows that only five out of 16 topological
279  features showed higher correlation in the random propagation. The random propagation showed
280  the lowest correlating features and the trained classifiers showed the highest correlations with a
281  total of eight being higher (Figure 4D, blue vs orange bars).

282 To further investigate the performance of the local topology prediction on the test plant, we
283  calculated the percentage of correctly predicted neighbors for each cell dividing in the predicted
284  and observed tissue (example in Figure 4B). The distribution of correctly labelled neighbors per
285 dividing cell was significantly shifted towards higher accuracy when comparing the predicted and
286 random topology predictions (Figure 4C).

287

288 Discussion

289 The biochemical pathway of cell division control has been extensively studied (Dewitte and
290 Murray, 2003), but only recently external cues have also been considered to understand the
291 effect of cell divisions in a tissue context (Hartig and Beck, 2006; Shimotohno et al., 2021). It has
292 been known that the outer epidermal cell wall resists most forces (Beauzamy et al., 2015) and,
293 thus, division in the SAM outer-layer needs to serve both meristematic functions. This raises the
294  question if cell division and their subsequent local topology rearrangement are affected by the
295 tissue topology and if tissue topology contains sufficient information for their accurate prediction.
296 Based on our extensive network-based modelling, we showed that both surface area, as an
297 approximation of cell size, as well as the characteristics of topology allow for prediction of cell
298 division events in the central epidermal region of A. thaliana SAM, in contrast to earlier reports
299 (Jackson et al., 2019). The cyclin-dependent kinase (CDK) G1 is known to bind DNA and serves
300 as aruler after cell division, allowing for size dependent division in C. reinhardtii (Li et al., 2016),
301  while KIP-related protein 4 has a similar function in the A. thaliana SAM niche (D'Ario et al.,
302  2021). Modelling cell division in the SAM of A. thaliana also revealed the importance of CDKs in
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303 G1-S and G2-M phase transition (Jones et al., 2017). Further, the work of Willis et al. (2016)
304  showed that cell division events in SAMs of Arabidopsis treated with naphthylphthalamic acid, an
305 inhibitor of auxin transport that generates naked meristem, are influenced by both cell size
306 increase and a cell size threshold affecting cell division. Both models explain the importance of
307 surface area in predicting cell division events, but they do not explain the importance of
308 topological features. Here, the mechanical feedback loop, envisioned by the cells ability to react
309 to changes in turgor pressure with MT and cell wall rearrangement affecting cell divisions (for
310 detail of the feedback loop, see Sampathkumar (2020)) may serve as an explanation linking
311 topology with the summed turgor and supracellular mechanical stress. Alternatively, the predictive
312 ability of topological properties may result from long distance communication by different
313 phytohormones (Shimotohno et al., 2021), or due to cell-to-cell communication by
314 plasmodesmata (Kitagawa and Jackson, 2017).

315 However, not only the cell division, but also the cell wall positioning affects the tissue
316  organization; a prime example is the effect of division patterning in lateral root initiation
317  (Wangenheim et al., 2016). Our study relies on the adjacency of cells in the tissue topology, in
318  contrast to other cell wall models, such as: the generalized Errera’s rule (Besson and Dumais,
319  2011), the spring-based model (Gibson et al., 2011), and the mechanical stress related model
320  (Louveaux et al., 2016), that predict the placement of the cell wall based on the individual cell
321 geometry. Our classifier employs the biological feature set composed of six cellular features,
322 having limited information about the dividing and neighbor cell geometry, and allows for reliable
323 prediction of the changes in the local topology. These local changes in the topology mirror the
324  effect of the cell wall placement on the tissue. In addition, we showed that topological features
325 alone sufficed to accurately predict local topological changes. While single topological properties
326  were already used to estimate cell wall placement (Jackson et al., 2019), the percentage of
327 dividing epidermal cells in this study was only 12% (total n=7/57 dividing and non-dividing cells)
328 per tissue every 22h. In contrast, our results rely on experiments in which cells divided more
329 regularly, with an average of 24% of dividing cells per tissue every 24h (total n=329/896 dividing
330 and non-dividing cells), allowing us to train robust classifiers. We showed that the combination of
331 both feature sets boosted performance of local topology reorientation prediction (Figure 3),
332 indicating that the inclusion of multiple viewpoints of information available to cells needed to be
333 involved to solve the problem of cell wall placement in the SAM. This raises the question how
334 information of the topology is biologically transferred to cells, either via mechanical stress,
335 hormones, or cell to cell communication with plasmodesmata.

336 To demonstrate the generalizability of the classifiers, we showed that they can be used to
337 make accurate predictions for ktn mutants that are defective in mechanical feedback regulation.
338  Our results indicated similar performance for the classifiers with biological feature sets from WT
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339 and ktn. In contrast, the classifiers trained on topological features showed reductions in
340 performance in ktn compared to WT. This difference in performance is not due to differences in
341  topological features, since the normalized features showed similar distributions (Supplementary
342 Figure 9). These results suggest a potential role of KATANIN in linking sub- and supracellular
343 mechanical stress, known to affect leaf epidermal cells (Eng et al., 2021) and KATANINS role in
344 positioning of the preprophase band, spindle, and phragmoplast (Komis et al., 2017). In addition,
345 the cell geometry of the ktn mutant differs compared to the WT and might also influence the
346  topology. Therefore, the combination of network-based modelling with machine learning provides
347 a method to screen SAMs under different conditions and mutants. More specifically, reduction in
348 test performance of either the classifiers trained on surface area or on topological features
349 compared to the wild type may hint to effects only disturbing function related to the cell cycle or to
350 a topological effect (in the case of classifier trained on area or topological features being lower,
351 respectively).

352 When combining division prediction and the resulting changes to the tissue, previous studies
353 mostly focus on single cell division or propagating tissues based on division likelihoods using the
354  number of neighbors (Gibson et al., 2011) or just using area as a fixed threshold (Sahlin and
355  Jonsson, 2010; Alim et al., 2012), while our classifier incorporates more diverse tissue-level
356  information. Here, we combined our best classifiers to predict future tissue topology using the
357 combined topological and biological features. Although the results of this propagation of
358 classifiers is promising, the careful inspection of the finding, particularly with respect to planarity
359 and topological properties of the reconstructed topologies point out that further research should
360 consider simultaneous modelling of cell neighborhoods of higher order to improve the
361 reconstruction.

362 Furthermore, as information is not only be passed along the epidermis (L1-layer), the
363  assessment of cell division events and their changes on the topology could be expanded beyond
364  the epidermis of the SAM as we know that the L2- and L3-layer play a vital role in supporting the
365 meristematic function through the feedback of CLAVATA 1, 2, and 3 and WUSCHEL (Schoof et
366 al., 2000). Transferring the classifiers to other plant species, such as maize (that has only two
367  distinct layers forming the SAM), may provide insights into how meristematic function can be
368 conserved with fewer cells. As other tissues and organs are also experiencing mechanical
369 stresses, hormone gradients and other transport related feedbacks, e.g. growth resulting stress
370 (Sampathkumar et al., 2014), auxin gradients (due to PIN; Shi et al., (2018)), soil thickness in
371 roots, and bending through wind in the stem, there are bound to be feedback loops of cells and
372 tissues to sense and react to those cues on a topological level to integrate this information into
373 the plants development.

374
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375 Material and Methods

376

377 Plant materials and growth condition

378  We grew Arabidopsis thaliana wild-type (WT; Wassilewskija ecotype) plants with the membrane
379 reporter pUBQ10::acyl-YFP (previously described in (Willis et al., 2016)) and katanin1-2 mutant in
380  Columbia-0 background with the membrane reporter Lti6b-GFP (Eng et al., 2021) in short day (8
381 h/16 h day/night), 20 °C/16 °C conditions for 3 weeks and then transferred to long day (16 h/8 h
382 day/night), 20 °C/16 °C conditions till shoot apical meristem sampling. We cultured sampled
383 shoot apical meristems (SAMS) in transparent imaging boxes containing apex culture media
384 under long day, 22 °C conditions as previously described (Wang and Sampathkumar, 2020).

385

386 Time-lapse data acquisition and pre-processing

387  We acquired confocal Z-stacks (3D images) at an excitation wavelength of 514 nm and 488 nm
388  for imaging YFP and GFP respectively with a 40X/0.8 water immersion objective every 24 hours
389  for 5 days (WT) or 3 days (ktn). Next, we used MorphoGraphX (MGX) (Barbier de Reuille et al.,
390  2015) to obtain 2 ¥2 D surface mesh of the meristem L1 layer from the 3D images and from there
391  we extract the cellular connectivity network (topology). In addition, we measured the shared cell
392  wall of the neighboring cells (MGX function: Mesh/Export/Save Cell Neighborhood 2D), the
393 surface area, and cell positions (MGX: Mesh/Heat Map/Heat Map Classic). The cellular
394  connectivity network is composed of nodes, representing the centroids of the extracted cells.
395 Edges connect two nodes if the corresponding cells are adjacent to each other. We lineage-
396  tracked all cells between 1-day time steps manually in MGX (Figure 1A). We refer to dividing
397 cells, at time t (days), as parent cells and their descendants, at time t + 1 (days), as daughter
398 cells. To select the cells for the downstream analysis, we first manually determined the cells
399 closest to the center of the SAM surface, given by the highest curvature. To this end, we
400 compared the positions of cells to the average position over all cells.

401

402 Prediction of dividing cells

403 To predict cell division events of central and non-peripheral cells, we selected all cells in a radius
404  of 30 um around the center (Figure 1B). In such a way, we only analyzed central and exclude
405 peripheral cells. We considered a cell as peripheral with respect to a connectivity network in case
406  the graph induced by the adjacent nodes does not form a cycle. We then labelled each of the
407  selected cells as dividing (label: 1) or non-dividing (label: -1) cell within 24 hours (one day). In
408 addition, we determined six sets of features (see below; for unreduced sets see Supplementary

409 Figure 1) for each cell.
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410 Five of six feature sets are based on the entire tissue (i.e. including peripheral cells as well as
411 cells outside of the central region from the cellular connectivity network) and consist of topological
412 features for all central cells; the sixth set includes only the surface area of the central cell. While
413 calculating the topological properties, we considered different scenarios for weighting the edges.
414 In the case of the unweighted topology, we weighted all edges equally (edge weight = 1). For the
415  area-induced topology, we used the inverse of the mean surface areas of the two adjacent cells
416 as edge weight. For the wall-induced topology, we defined the edge weights as the inverse of the
417  shared cell wall area between two cells. For the distance-induced topology, we determined the
418 inverse of the distance between the centroid positions of two adjacent cells as the edge weight
419 (Figure 1C). We calculated ten topological properties for each central cell and network scenario
420 (see Supplementary Table 1). Furthermore, we considered topological properties based on the
421 induced subgraph of the first neighborhood (see Supplementary Table 1). We estimated all
422 properties in python 3.8.1 using the networkx 2.4 package.

423 To train the classifiers for prediction of division events between two successive time points, we
424 split the WT data from the five plants into two data sets, a training-validation and a testing set with
425  four and one plant, respectively, while keeping three ktn plants as a separate test set. As there
426  are fewer dividing cells, their class is the minority class. As a result, we down-sampled the
427  majority class of non-dividing cells to balance the two classes. We applied a support vector
428 machine (SVM) with a Gaussian kernel to predict the occurrence of cell division events within 1
429 day. To this end, we used the six different feature sets, namely: the unweighted topological
430 features (unweighted topology), all topological features combined (topo), the surface area
431 (surface area), topological features and area (topo + area), as well as two reduced feature sets
432 including only topological features with Pearson correlation coefficients with surface area smaller
433 than 0.5 or 0.7 (denoted by r < 0.5 and r < 0.7) (Supplementary Figure 1A). We trained each
434  classifier with the topological properties as features of the training-validation set using five-fold
435 cross-validation.

436 To this end, we z-normalised ((X-mean)/std) the topological properties with the corresponding
437  mean and standard deviation (std) for the train-validation and the WT test data sets, respectively.
438 The ktn data is z-normalised using its mean and standard deviations. We estimated the
439 hyperparameters on the training set using another five-fold cross-validation using grid search
440 (sklearn 0.22.1, GridSearchCV) regularly spacing 50 hyper-parameters for each power of 10. We
441 further tested the classifiers by retraining the SVMs on all training-validation data with newly
442 selected parameters and applied them on the unseen test data. We quantified the performance of
443 the classifiers by calculating five measures of performance, including: the accuracy, F1-score,

444  true positive rate, false positive rate, and area under the curve (AUC) of the receiver-operator
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445 characteristic (ROC). For comparative analysis between two performance measures pl and p2,

|p1-p2 | )

446  we used the relative difference (100
mean(ps,p2)

447 To further inspect the training of the classifiers, we generated the learning curves by retraining
448 each classifier on a different number of training data (keeping the hyper-parameters from above).
449  We further determined the feature sets information content by shuffling the labels 1000 times,
450 retraining the classifier using the default RBF SVM parameters (sklearn 0.22.1, sym.SVC) on
451 each set of shuffled labels, and calculating the performance of the resulting classifiers.
452
453 Recreating of local topology after cell division
454 For the prediction of the changes in local topology of dividing cells, we selected all non-peripheral
455 neighbor-parent-pairs of dividing cells. Next, we categorized the adjacency of these neighbors
456  with respect to the newly divided (daughter) cells. To this end, we inspected if the neighbor of a
457  neighbor-parent pair is adjacent to only one or both of the daughter cells.
458 To automate the procedure, we distinguished the divided daughter cells into the daughter
459 closer to the center of the SAM which we termed cell “A” and the second daughter cell we named
460 cell “B". We labelled each neighbor cell in a neighbor-parent-pair with class 0, 1, or 2 according to
461  whether it is connected only to cell “A”, cell “B”, or both. We then predicted the local topology
462 excluding and including dividing neighbors using six feature sets, similar to the analysis above.
463 To distinguish neighbor-parent-pairs which are adjacent to two dividing cells, we considered
464  the difference of topological features between neighbor and dividing parental cells in addition to
465  the parental topological properties as features (Supplementary Figure 1B). As a result, we
466  obtained the following feature sets: unweighted topology, topological features from all weightings
467  (topo), biological features (bio, consisting of surface area and perimeter from neighbor and
468  parent, as well as the shared cell wall and distance between the two), the combination of all
469 topological and biological features (topo + bio), and two reduced feature sets (r < 0.5 and r < 0.7)
470 including only topological features with Pearson correlation coefficients of smaller than 0.5 or 0.7
471  with all biological features. We performed training, validation, and testing as well as inspected the
472 learning curves and estimated the information content of the used features as specified in the
473 analysis above for wild type data. Additionally, we tested the classifiers on the ktn data.
474
475  Application of the classifiers for division event and local topology
476  To combine the predictions of division events and local topology changes, we used the previously
477 developed classifiers and applied them to predict how the topology of the test plants would
478 change. To this end, we selected the classifiers including both topological and biological features
479 (based on validation performance) and applied them one after another on to the test tissues to
480  generate the topology of the next time points. Here, the predictions were only made for one time
14
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481 step (24 hours), since longer periods required us to estimate changes in the biological features as
482 cells predicted to divide would not necessarily divide in the observed tissue one step later.

483 To arrive at the predicted cellular connectivity network, we determined the cells predicted to
484  divide and divided cells' future adjacency with their neighbors. Next, we repeated the following
485 four steps for all cells predicted to divide at time t, starting with a random cell: (1) We removed the
486  dividing cell along with the edges connecting the neighbors that is dividing. (2) We added the
487 daughter cells representing the cell closer (cell A) and farther (cell B) away from the SAM center.
488 (3) We connected the daughter cells with their neighbors based on the prediction from the local
489 topology classifier (Figure 4A).

490 To evaluate the performance of the combined application of division and topology prediction,
491  we calculated all unweighted topology features for the cells which are neither dividing in the
492 predicted nor in the observed topology. Next, we plotted the non-dividing cells observed against
493  the predicted features, determined best linear fit, and the Pearson correlation coefficient of all
494  unweighted topological properties. In addition, we divided all predicted non-dividing cells,
495 randomly assigned labels to the neighbors of dividing cells how they will be connected to the
496  divided cells based on the training-validation set representation. Then, we repeated the
497  correlation analysis from above 1000 times (differently reconnecting topologies), and compared
498  the correlations between predicted and random topology propagation.

499 To also evaluate the local recreation of the topology around dividing cells, we compare the
500 first neighborhoods of cells dividing in the predicted and observed tissue of the test plant by
501 calculating the percentage of correctly labelled neighbors. The distributions of predicted
502 accuracies are compared with an estimated random labelling of the neighbors using Kolmogorov-
503 Smirnov-Test (scipy 1.4.1, ks_2samp).

504

505 Code availability

506  The entire code to reproduce the findings is available at

507 https://github.com/matz2532/SAM_division_prediction
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520 Figure 1. Feature generation from three-dimensional (3D) images of the shoot apical
521 meristem (SAM). (A) The surface of A. thaliana SAM is imaged every 24 hours over four days.
522 Pairs of dividing cells, depicted with the same colors, are determined manually (see Methods). (B)
523  The 3D images of SAMs are converted to 2¥2D surfaces by employing MGX (de Reuille et al.,
524  2015) (left panel). The surface is abstracted by its topology, capturing the connectivity of
525 neighboring cells in a radius of 30 ym (white circle) around the central cell, marked with * (center
526  panel). The topology of the analyzed cells inside the circle is colored in orange (right panel). Two
527  nodes are connected by an edge if the cells they represent share cell wall. (C) Four different
528 network scenarios are considered: (i) unweighted edges and edges weighted by (ii) area, (iii)
529 shared cell wall, and (iv) distance, illustrated for the case of three cells u (blue), v (green), and w
530 (white). In the unweighted network scenario, all edge weights have a value of one. The edge
531  weight for the network weighted on area, shared wall, and distance is the inverse of the mean cell
532 areas of u and v, of the shared cell wall area (magenta), and of the inverse distance of the center
533 of mass for the graph weighted on the distance (black). The weights of the edge e(u, v) in the four
534 scenarios are illustrated with different line widths.

535
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539 Figure 2. Surface area and topology-based features generate different predictions for cell
540  division in the SAM. (A) Comparison of predicted and observed labels on one test plant tissue
541  from Figure 1A day O highlighting the difference between predicted and observed division events.
542  The predictions are from classifiers trained on different feature sets: combined topological
543  features (topo), surface area, combined topological features and surface area (topo + area; from
544 left to right) with the coloring scheme of correct predictions in blue and wrong prediction in red.
545 The combined topological features include 16 centrality measures (see Methods) calculated
546 based on the four network scenarios (see Figure 1C). Dividing cells are marked with a white star.
547 Scale bar is 10 um. (B) Accuracy of the support vector machine classifier to predict cell division
548  for the training (blue), validation (green), and testing of wild type (orange) and ktn mutant (purple)
549 data sets using: topo, surface area, and topo + area, reduced set of topological features that
550 show an absolute Pearson correlation coefficient with surface area smaller than 0.7 or 0.5 (r < 0.7
551 and r < 0.5), as well as only the topological features derived from the unweighted network
552  scenario (unweighted). The performance on the training and validation set is determined from
553  five-fold cross-validation with mean and the standard deviation shown as error bars. Different
554  letters indicate significance between groups using one-way ANOVA with Tukey's pairwise

555  comparison: p-value < 0.05. Statistical testing for differences of classifier performance for the
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training and validation sets was conducted separately (letter without and with apostrophe,
respectively). Nwt = 5 plants, 4 time steps (4 plants for training-validation and 1 plant for testing);
Nwn = 3 plants, 3 time steps; nwr = 502 and 156, train-validation and test cells respectively; ng, =
334 (balanced data).
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565 Figure 3. Topological and biological features are required for accurate prediction of the
566 local neighborhood after cell division in the SAM. (A) Comparison of predicted and observed
567 local neighborhoods on one local topology from Figure 1A, day 0. The predictions are made with
568 classifiers trained on different feature sets: combined topological (topo, including features of the
569  four network scenarios, see Figure 1C, Supplementary Figure 1), biological (bio, including area,
570 perimeter, shared cell wall, and distance), and combined topological and biological features (topo
571 + bio; from left to right) with the coloring scheme of correct predictions in blue and wrong
572 prediction in red. The combined topological features include 16 centrality measures (see
573 Methods) calculated based on the four network scenarios (see Figure 1C). The central and
574  neighboring dividing cells are marked with a white star and circle, respectively. No color is
575  displayed on the dividing neighbor cell as all dividing neighbors were removed. Scale bar is 10
576 pm. (B) Accuracy of classification on the training (blue), validation (green), and testing of wild
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577  type (orange) and ktn mutant (purple) and (C) Area under the curve (AUC) of the ROC based on
578 the wild-type validation (left) and kin test data (right) for the classification of all classes (blue), for
579 the class of neighbors adjacent to the daughter cell (cell A, see legend in B) closer to the SAM
580  center (denoted as class 0; cyan), adjacent to the daughter (cell B, see legend in C) farther from
581 the center (denoted as class 1; orange), or adjacent to both cells (denoted as class 2; magenta).
582 The classifiers are based on topo, bio, topo + bio, reduced set of topological features that show
583 an absolute Pearson correlation coefficient with all biological features smaller than 0.7 or 0.5 (r <
584 0.7 and r < 0.5), as well as topological features derived from the unweighted network scenario
585 (unweighted). The performance on the training and validation set is determined from five-fold
586 cross-validation with mean and the standard deviation shown as error bars. Different letters
587 indicate significance between groups using one-way ANOVA with Tukey's pairwise comparison
588 (p-value < 0.05). Statistical testing for differences of classifier performance for the training and
589  validation sets was conducted separately (letter without and with apostrophe, respectively). Nyt =
590 5 plants, 4 time steps (4 plants for training-validation and 1 plant for testing); Nk = 3 plants, 3
591 time steps; nwr = 1317 and 312, train-validation and test cells respectively; n., = 888 (balanced
592  data).

593
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597 Figure 4. Concordance between observed and predicted topologies. The cell connectivity
598  network of the test plant was predicted by applying classifiers for division event and topology
599 prediction. (A) lllustration of the procedure applying the division and local topology classifiers to
600 generate the topology of the next time point (24-hour time interval). After division and topology
601 prediction, a dividing cell (dot in brown) is selected along with its neighbors (blue circles) and its
602  adjacency relationship (edges, black lines) (left). The selected cell (predicted to divide) along with
603  the edges incident to the corresponding node are removed and replaced by the divided daughter
604  cells (A, B: representing the cell closer and farther away from the SAM center) that are adjacent
605  to each other (three in the middle). The daughter cells are connected with their neighbors based
606  on the prediction from the local topology classifier (right). The next dividing cell is randomly
607  selected and the previous steps are repeated until all dividing cells are selected. (B) One example
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608 of the predicted local topology with an overall accuracy of 66.6% for the full local topology is
609 compared with the observed local topology. The divided daughter cells “A” and “B” (brown) are
610 adjacent with the predicted or observed cells (numbers display the same cells) coloring their
611 respective parent-neighbor-class (cyan/orange: cell connected only with daughter A or B,
612 respectively; magenta: cell adjacent with both daughter cells) (C) Histogram and density plot of
613 the percentage of correctly estimated neighbors per local topology of cells predicted as dividing in
614  the test plant (blue) are compared with the density plot of randomly assigning parent-neighbor-
615 classes (orange). Difference between distributions is tested using Kolmogorov-Smirnov-Test, p-
616 value < 0.01. N =1 plant, 4 time steps, n = 39 local topologies. (D) The concordance between the
617 observed and predicted topologies was quantified (blue) for non-dividing cells in both topologies
618 by calculating and ranking the Pearson correlation coefficient based on 16 topological features
619 from the unweighted networks (see Figure 1C; Supplementary Table 1). The procedure was
620 repeated dividing all cells predicted to be non-dividing, randomly assigning classes to the
621 neighbors, and calculating the correlation as described before (yellow). (E) The observed
622 harmonic centrality is plotted against the predicted harmonic centrality for all non-dividing cells
623  and the best linear fit (solid line) with its function f(x) and the respective Pearson correlation
624 coefficient r is overlaid. Nyt = 1 plant, 4 time steps, nwr = 126 cells not dividing in both observed
625  and predicted tissue.

626

627
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632 Supplementary Figures 1. Overview about feature sets for division event and local

633 topology prediction as well as an example for local topology class assignment. (A) For
634  division event prediction, we consider 16 topological features (Supplementary Table 1) calculated
635 from four network scenarios (unweighted, weighted by area, shared cell wall, and distance),
636  creating four different feature sets: unweighted topology, all topologies (all topos), surface area,
637  as well as topological features and surface area combined (all topos and area) for all central cells.
638  (B) For local topology prediction, we calculate features for each neighbor-parent-pair of dividing
639  parent cells using the difference in topological features of the neighbor and parent features as
640  well as the features of the neighbor. Using this general formula, we generated four feature sets:
641  unweighted topology, all topos, biological features (bio, including surface area, perimeter, shared
642  cell wall, and distance), as well as topological and biological features combined (all topos and
643 bio). (C) Parent cell (brown circle) divides into two daughter cells (A, B: representing the cell

644  closer and farther away from the SAM center) changing the local topology in the process. The
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colors of the neighbors after division of the central cell represents the adjacency of the neighbor
with the daughter cells: class 0 (cyan) neighbor is adjacent to cell A, class 1 (orange) pair
neighbor is adjacent cell B, and class 2 (magenta) neighbors are adjacent to both cells. The
classes are then used to be predicted from the earlier time point.
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651  Supplementary Figures 2. Heat map of Pearson correlation coefficients between
652  topological features and surface area. We consider the 16 topological features calculated from
653  the four network scenarios (see Figure 1C): unweighted edges and edges weighted by area,
654  shared wall, and distance. Majority of topological features exhibit small Pearson correlation
655 coefficients (r, legend range from -1 (blue) to 1 (red)). Nwt = 5 plants, 4 time steps, nyt = 1225
656 cells.

657
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661  Supplementary Figure 3. Comparative analysis of predictions based on reduced sets of
662  features. Area under the curve (AUC) of the ROC of the support vector machine (SVM) classifier
663  on the training (blue), validation (green), and testing of wild type (orange) and ktn mutant (purple)
664  set of (A) division event and (B) local topology prediction. SVMs are trained on the combined
665  topological features (topo), (A) surface area or (B) (bio, including surface area, perimeter, shared
666 cell wall, and distance), topological features with (A) surface area (topo + area) or (B) bio (topo +
667 bio), reduced set of topological features that show an absolute Pearson correlation coefficient
668  with (A) surface area or (B) bio smaller than 0.7 or 0.5 (r < 0.7 and r < 0.5), as well as only the
669  topological features derived from the unweighted network scenario (unweighted). The
670 performance on the training and validation set is determined from five-fold cross-validation with
671 mean and the standard deviation shown as error bars. Different letters indicate significance
672 between groups using one-way ANOVA with Tukey's pairwise comparison (p-value < 0.05).
673 Statistical testing for differences of classifier performance for the training and validation sets was
674  conducted separately (letter without and with apostrophe, respectively). Nyt = 5 plants, 4 time
675 steps (4 plants for training-validation and 1 plant for testing); Nk, = 3 plants, 3 time steps; (A) nwt
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676 = 502 and 156, train-validation and test cells, n, = 334 (balanced data) and (B) nyt = 1317 and
677 321, train-validation and test cells, ny, = 888 (balanced data).
678
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680 Supplementary Figure 4. Learning curves for the classifiers that predict division events.
681 Learning curves of SVMs predicting cell division events, based on four different feature sets,
682  showing the accuracy in the validation (green) and training (red) set (line: mean, area: + 1
683  standard deviation). Feature sets: (A) combined topological features (topo; including features
684  calculated from the four network scenarios, see Figure 1C), (B) surface area as a single feature,
685 (C) topo with surface area (topo + area), (D, E) topological features which have an absolute
686  Pearson correlation coefficient (r) with surface area smaller than 0.7 and 0.5, respectively, and
687 (F) unweighted topological features (unweighted topology). Nwr = 4 plants, 4 time steps; nwr =
688 502 train-validation cells (balanced data), one-way ANOVA.

689
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690
691  Supplementary Figure 5. Performance of classifiers trained on randomized labels. Support

692  vector machines (SVMs) trained on surface area/biological features and unweighted topological
693  features perform similarly with respect to the prediction of a division event and local topology of
694  shoot apical meristems (SAM). Accuracy of the SVM classifier on the training (blue), validation
695 (green), and testing (orange) set for a division event (A) and local topology prediction (B) based
696 on unweighted topological features (unweighted topology), surface area, or biological features
697 (bio). Shown are the mean and standard deviation on the training and validation sets from five-
698  fold cross-validation. The performance on the training and validation set is determined from five-
699  fold cross-validation with mean and the standard deviation shown as error bars. Different letters
700 indicate significance between groups using one-way ANOVA with Tukey's pairwise comparison:
701 p-value < 0.05. Statistical testing for differences of classifier performance for the training and
702  validation sets was conducted separately (letter without and with apostrophe, respectively). Nyt =
703 5 plants, 4 time steps (4 plants for training-validation and 1 plant for testing); (A) nwt = 502 and
704 156, and (B) nwr = 1317 and 321 train-validation and test cells respectively (balanced data)
705  shuffling labels 1000 times.

706
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Supplementary Figure 6. Difference between classifiers trained on topological and
biological features to predict local topology. Classifiers based on topological and biological
features predict the three different classes of cells that are neighbors of cells that have divided in
comparison to the previous time point. Receiver operating characteristic-curve predicting cell
division events on five-fold cross-validation of (A) combined topological features (topo), including
features calculated from the four network scenarios (see Figure 1C), (B) biological features (bio),
including surface area, perimeter, shared cell wall, and distance, and (C) topological and
biological features combined (topo + bio). The mean performance is shown as a straight line,
together with the area of + 1 standard deviation obtained from the five-fold cross validation of the
average ROC-curve combining all classes (blue), of class 0 (cyan), class 1 (orange), and class 2
(magenta). The performance expected by change is marked with a red dashed line. Nyt = 4

plants, 4 time steps; nyt = 1317 train-validation cells (balanced data).
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722 Supplementary Figure 7. Learning curves for the classifiers predicting local topological

723  changes. Learning curves of support vector machines (SVMs) that predict local topology based
724  on six different feature sets: (A) combined topological features (topo, including features calculated
725  from the four network scenarios, see Figure 1C), (B) biological features (bio), including surface
726  area, perimeter, shared cell wall, and distance, (C) topological and biological features combined
727  (topo+tbio), (D, E) topological features which have an absolute value of Pearson correlation
728  coefficients with all biological features (cor) smaller than 0.7 or 0.5, and (F) only unweighted
729 features showing validation (green) and training (red) accuracy (line: mean, area: £ 1 standard
730  deviation). Nwt = 4 plants, 4 time steps; nyt = 1317 train-validation cells (balanced data).

731

732
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735  Supplementary Figure 8. Observed and predicted features from non-dividing cells plotted
736  against each other. The observed feature values are plotted against the predicted features
737  values for each cell non-dividing in the observed and predicted tissue. A line fitting the linear
738  regression line is plotted to the data including its function f(x) and Pearson correlation coefficient r
739  for the unweighted topological features: information c (centrality), page rank, current flow
740 betweenness c, katz ¢, communicability betweenness c, load c, betweenness c, eigenvector c,
741 clustering coefficient, degree, avg. path length on 2 neighborhood (2nd n), abs graph density 2nd
742 n, size 2nd n, algebraic connectivity 2nd n, rel. graph density 2nd n, estrada index 2nd n. The
743 predicted tissue is estimated using the division and topology prediction classifiers trained on
744  topological and biological features of the training-validation data (see Figure 4E). Nyt = 1 plant
745 (test), 4 time steps; nyt = 126.
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751 Supplementary Figure 9. Density distributions of topological and biological features of WT
752  and ktn data. The density distributions of the normalized (A) topological and (B) biological
753  features are plotted to differentiate between pooled samples used during training and validation
754  from wild-type (WT; blue), and testing from WT (green), and ktn (orange). The topological
755  features are grouped into unweighted and weighted by area, shared cell wall, and distance (see
756 Figure 1C), while topological features independent of the network scenario are only displayed in
757  the unweighted row. The columns are further grouped into features calculated on the second
758  neighborhood and features from the dividing cell or its neighbor. (A) nwr = 502, 156, train-
759  validation and test cells respectively; ny, = 334 (balanced data) (B) nwt = 1317 and 312, train-

760  validation and test cells respectively; ny, = 888 (balanced data).

761

762
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Supplementary Table 1. Definition of network centralities applied on
differently weighted network scenarios to be used as feature sets for cell
division and local topology prediction. Each network centrality was applied on
the unweighted, weighted by area, shared cell wall, and distance network
scenario. The network centralities were concatenated together for each cell and

used to train and predict different classifiers.
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Supplementary Table 2. Features ordered by Pearson correlation
coefficient with area. Each network centrality was applied on the unweighted,
weighted by area, shared cell wall, and distance network scenario. The Pearson
correlation coefficient with area was calculated and were ordered from highest to
lowest.
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Feature name

Pearson
correlation
coefficient

p-value

betweenness centrality
weighted by area

0.711959318

7
4.858135677288066e-211

degree

0.603854449

4.04599560747419e-136

size on 2 neighborhood

0.592735441

5.437779671764918e-130

betweenness centrality

0.583915039

2.6889326200117693e-125

current flow betweenness centrality

0.580737704

1.217610917275356e-123

load centrality

0.579975133

3.0215367111277033e-123

estrada index on 2 neighborhood

0.577117774

8.912704904812637e-122

estrada index on 2 neighborhood
weighted by area

0.577117774

8.912704904812637e-122

communicability betweenness centrality

0.57662665

1.5891934730974062e-121

communicability betweenness centrality
weighted by area

0.57662665

1.5891934731075239e-121

avg path length on 2 neighborhood

0.571341971

7.534891764175505e-119

betweenness centrality
weighted by shared wall

0.562314483

2.17398436729873e-114

betweenness centrality weighted by distance

0.551932822

1.9924782594347459e-109

current flow betweenness centrality

: . 0.49002158 | 3.548421338397669e-83
weighted by distance
current flow betweenness centrallty | 1>5038752 | 7.271052967178761e-61
weighted by shared wall
rel graph density on 2 neighborhood 0.402000467 | 4.72658491702921e-54

current flow betweenness centrality
weighted by area

0.357475281

2.5263809251463147e-42

harmonic centrality weighted by area

0.356480643

4.4059338421761555e-42

katz centrality weighted by area

0.318100276

2.1117164600213396e-33

katz centrality

0.318100276

2.1117164600213396e-33

eigenvector centrality

0.296303239

5.28165100633828e-29

page rank

0.268477018

6.447099545102352e-24

harmonic centrality weighted by distance

0.247926272

1.5906836425501315e-20

page rank weighted by shared wall

0.181567285

1.4700578049314804e-11

harmonic centrality weighted by shared wall

0.164231644

1.0815009609397551e-09

information centrality

0.14740273

4.633731043029875e-08

information centrality
weighted by shared wall

0.13173255

1.0692961604944774e-06

weighted node degree
weighted by shared wall

0.128973752

1.7935045888103348e-06

page rank weighted by distance

0.127130861

2.5188037924397987e-06

information centrality weighted by distance

0.082746096

0.002241568

harmonic centrality

0.071745324

0.008078663
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779
weighted node degree weighted by distance | 0.057524217 0.033774282
avg path length on 2 neighborhood 0.056763189 0.03620415
weighted by shared wall
page rank weighted by area 0.037413208 0.167598817
information centrality weighted by area 0.035267233 0.19334169
avg path length on 2 neighborhood 0.0323718 0.232514552
weighted by distance
eigenvector centrality 0.03031164 0.263614219
weighted by shared wall
eigenvector centrality weighted by distance | -0.051181347 0.05897689
eigenvector centrality weighted by area -0.203077703 | 3.8271343446663024e-14
avg path length on 2 neighborhood -0.214150561 | 1.361632834653018e-15
weighted by area
clustering coefficient 10236129215 | 1.0319617716515097¢-18
weighted by shared wall
weighted node degree weighted by area [ -0.289769264 | 9.320458571568519e-28
algebraic connectivity on 2 neighborhood | -0.493010144 [ 2.5317849899442773e-84
algebraic connectivity on 2 neighborhood | | 35130615 | 9 326326866241923e-102
weighted by shared wall
abs graph density on 2 neighborhood -0.54315277 [2.3001423114310698e-105
clustering coefficient -0.580538544 [ 1.544179245441756e-123
clustering coefficient weighted by distance |-0.584348465 | 1.5932034339322458e-125
algebraic connectivity on 2 neighborhood | |, 5914130, | 9 896420835985306e-131
weighted by distance
algebraic connectivity on 2 neighborhood | | ¢35775476 [ 1.13171374302473566-157
weighted by area
780 clustering coefficient weighted by area -0.642874421 1.1369324719240177e-159
781
782
783
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784  Supplementary Table 3. Performance measures of division event prediction
785 from SVMs trained on features from four differently weighted topologies
786 and/or area. Fl-score (F1l), accuracy (Acc), true positive rate (TPR), false
787  positive rate (FPR), and area under the ROC-curve (Auc) of training (train) and
788 unseen data (val) on the splits of the five-fold cross-validations, as well as
789  retraining on train+val data testing on test data (testing), their mean and standard
790 deviation (std) as well as the performance of testing on a never seen plant
791 training on the full training-validation data set. Feature sets: combined topological
792  features (topo; including features of unweighted, weighted by area-, shared cell
793 wall-, and distance topologies), area as a single feature, topo with area,
794  topological features which have an absolute Pearson correlation coefficient with
795 area smaller than 0.7 or 0.5 (cor < 0.7 and cor < 0.5, respectively) and

796  unweighted topological features (unweighted topology).

797
798  topo

train F1 train Acc | train TPR | train FPR | train Auc val F1 val Acc val TPR val FPR val Auc

split O 91.36 91.25 92.50 10.00 0.9697 82.69 82.35 84.31 19.61 0.9250

split 1 85.31 84.58 89.55 20.40 0.9133 80.00 80.00 80.00 20.00 0.8708

split 2 93.63 93.53 95.02 7.96 0.9702 78.85 78.00 82.00 26.00 0.8724

split 3 86.46 85.82 90.55 18.91 0.9244 84.62 84.00 88.00 20.00 0.9220

split 4 88.45 88.31 89.55 12.94 0.9511 84.62 84.00 88.00 20.00 0.8836

mean 89.04 88.70 91.44 14.04 0.9457 82.15 81.67 84.46 21.12 0.8948

std 3.08 3.33 2.09 4.87 0.0233 2.37 2.35 3.19 2.44 0.0239

testing 82.17 81.67 84.46 21.12 0.8922 76.62 76.92 75.64 21.79 0.8498

799 ktn testing 69.93 72.46 64.07 19.16 0.8087
800

801 area

train F1 train Acc | train TPR | train FPR | train Auc val F1 val Acc val TPR val FPR val Auc

split O 76.60 78.00 72.00 16.00 0.8674 80.00 81.37 74.51 11.76 0.9285

split 1 78.43 78.11 79.60 23.38 0.8773 82.83 83.00 82.00 16.00 0.8940

split 2 80.60 80.85 79.60 17.91 0.8873 74.51 74.00 76.00 28.00 0.8536

split 3 78.97 79.60 76.62 17.41 0.8836 78.35 79.00 76.00 18.00 0.8664

split 4 80.40 80.60 79.60 18.41 0.8864 75.00 76.00 72.00 20.00 0.8556

mean 79.00 79.43 77.48 18.62 0.8804 78.14 78.67 76.10 18.75 0.8796

std 1.46 1.20 2.98 2.51 0.0074 3.12 3.32 3.29 5.37 0.0284

testing 79.36 79.48 78.88 19.92 0.8804 69.06 72.44 61.54 16.67 0.8358

802 ktn testing 67.34 70.96 59.88 17.96 0.8046
803

804  topo with area
39


https://doi.org/10.1101/2021.10.05.463218
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.10.05.463218; this version posted October 5, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

train F1 train Acc train TPR train FPR train Auc val F1 val Acc val TPR val FPR val Auc

split 0 89.43 89.25 91.00 12.50 0.9594 83.81 83.33 86.27 19.61 0.9319

split 1 85.37 84.83 88.56 18.91 0.9172 82.00 82.00 82.00 18.00 0.8804

split 2 86.34 86.07 88.06 15.92 0.9307 80.00 79.00 84.00 26.00 0.8424

split 3 83.25 82.59 86.57 21.39 0.9093 84.31 84.00 86.00 18.00 0.9072

split 4 88.89 88.81 89.55 11.94 0.9498 82.35 82.00 84.00 20.00 0.8924

mean 86.66 86.31 88.75 16.13 0.9333 82.50 82.07 84.45 20.32 0.8909

std 2.28 2.49 1.48 3.64 0.0189 1.52 1.72 1.56 2.95 0.0297

testing 80.94 80.68 82.07 20.72 0.8935 77.85 78.85 74.36 16.67 0.8601

805 ktn testing 71.01 73.35 65.27 18.56 0.8056
806

807 cor<0.7

train F1 train Acc train TPR train FPR train Auc val F1 val Acc val TPR val FPR val Auc

split 0 85.57 85.25 87.50 17.00 0.9343 84.91 84.31 88.24 19.61 0.9239

split 1 85.58 84.83 90.05 20.40 0.9182 81.19 81.00 82.00 20.00 0.8696

split 2 93.37 93.28 94.53 7.96 0.9706 80.00 79.00 84.00 26.00 0.8688

split 3 86.26 85.57 90.55 19.40 0.9253 85.44 85.00 88.00 18.00 0.9236

split 4 86.47 86.07 89.05 16.92 0.9358 84.91 84.00 90.00 22.00 0.8834

mean 87.45 87.00 90.34 16.34 0.9369 83.29 82.66 86.45 21.12 0.8949

std 2.98 3.17 2.34 4.40 0.0181 2.24 2.29 2.97 2.75 0.0246

testing 81.78 81.27 84.06 21.51 0.8960 77.22 76.92 78.21 24.36 0.8488

308 ktn testing 69.13 72.46 61.68 16.77 0.8145
809
810

811 cor<0.5

train F1 train Acc train TPR train FPR train Auc val F1 val Acc val TPR val FPR val Auc

split 0 68.50 68.50 68.50 31.50 0.7510 72.00 72.55 70.59 25.49 0.7559

split 1 75.41 73.88 80.10 32.34 0.8109 62.96 60.00 68.00 48.00 0.6796

split 2 69.52 69.90 68.66 28.86 0.7602 69.31 69.00 70.00 32.00 0.7288

split 3 69.44 68.91 70.65 32.84 0.7396 76.19 75.00 80.00 30.00 0.8012

split 4 70.26 71.14 68.16 25.87 0.7509 65.93 69.00 60.00 22.00 0.7920

mean 70.63 70.47 71.21 30.28 0.7625 69.28 69.11 69.72 31.50 0.7515

std 2.46 1.94 4.53 2.60 0.0251 4.61 5.09 6.39 8.96 0.0443

testing 68.94 69.12 68.53 30.28 0.7512 70.66 68.59 75.64 38.46 0.7720

812 ktn testing 64.71 64.07 65.87 37.72 0.7115

813

40


https://doi.org/10.1101/2021.10.05.463218
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.10.05.463218; this version posted October 5, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

814 Supplementary Table 4. Performance measures of local topology prediction
815 from SVMs trained from four different topologies and/or biological features.
816  Fl-score (F1), accuracy (Acc), true positive rate (TPR), false positive rate (FPR),
817 and area under the ROC-curve (Auc) of training (train) and unseen data (val) on
818 the splits of the five-fold cross-validations, as well as retraining on train+val data
819 testing on test data (testing) (A) excluding or (B) including dividing neighbours,
820 their mean and standard deviation (dev) as well as the performance of testing on
821 a never seen plant training on the full training-validation data set. Feature sets:
822  combined topological features (topo; including features of unweighted, weighted
823 by area-, shared cell wall-, and distance topologies), biological features (bio;
824 including area, perimeter, shared cell wall, and distance), topo with bio,
825 topological features which have an absolute value of the Pearson correlation
826  coefficients with all biological features (cor) smaller than 0.7 and 0.5,
827  respectively, and unweighted topological features (unweighted topology).

828
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exclude dividing neighbors

train F1 train cOF1 | trainclF1 | train c2F1 | train Acc train TPR | train FPR train Auc val F1 val 0 F1 valclFl | valc2F1 val Acc val TPR val FPR val Auc

split0 61.91 60.89 68.74 56.09 61.92 69.23 19.04 0.7979 51.58 5393 60.12 40.68 5152 59.09 2424 07215

splitl 61.96 6257 68.34 54.98 62.11 69.80 18.95 0.7880 52.80 57.78 56.04 44.58 53.03 57.95 23.48 0.7388

split2 62.29 63.28 69.57 54.01 62.39 70.66 18.80 0.7992 60.70 63.16 65.54 53.42 60.98 65.91 19.51 0.7790

topos split3 61.67 63.10 68.90 53.02 61.82 70.37 19.08 0.7909 54.43 48.48 64.80 50.00 54.55 65.91 2273 0.7402
split4 60.25 6134 65.54 53.86 60.23 66.19 19.89 0.7897 61.70 55.00 7176 5833 61.69 7011 19.16 0.7729

mean 61.61 6224 68.22 54.39 61.69 69.25 19.15 07931 56.24 55.67 63.65 49.40 56.35 63.80 21.82 0.7505

std 071 0.95 139 1.05 0.76 1.60 0.38 0.0045 4.16 4.81 531 6.25 4.19 4.59 2.09 0.0219

testing 62.92 64.57 69.34 54.84 62.95 69.02 18.53 0.7969 60.62 60.58 66.99 54.29 60.58 66.35 19.71 0.7783

ktn testing 43.96 4185 4262 47.42 44.03 39.53 27.98 0.6243

train F1 train O F1 | trainclF1 | train 2 F1 train Acc train TPR train FPR train Auc val F1 valc0F1 valclF1 val c2 F1 val Acc val TPR val FPR val Auc

split0 54.59 48.47 46.92 68.39 55.27 45.58 22,36 0.7406 51.80 46.34 46.24 62.83 5227 45.45 23.86 0.7084

split1 54.99 51.61 46.43 66.93 55.56 43.59 22.22 0.7365 53.45 49.16 4277 68.42 54.17 3864 2292 0.7331

split2 54.76 49.63 4670 67.96 55.46 43.30 22.27 0.7412 52.51 4824 44.30 65.00 53.41 39.77 23.30 0.7210

bio split3 53.75 48.16 4575 67.36 54.42 44.44 22,79 0.7295 56.52 5176 49.08 6872 57.20 45.45 21.40 0.7466
split4 54.96 49.48 49.17 66.23 55.49 46.31 22,25 0.7342 52.26 4331 43.58 69.89 52.87 44.83 23.56 07317

mean 54.61 49.47 46.99 67.37 55.24 44.65 22,38 0.7364 53.31 47.76 45.19 66.97 53.98 42.83 23.01 0.7281

std 0.45 1.21 116 0.76 0.42 1.15 0.21 0.0043 1.69 2.83 2.26 2.64 172 2.99 0.86 0.0128

testing 56.48 52.42 49.64 67.37 56.95 47.15 2153 0.7521 49.18 4424 3575 67.54 50.32 3077 24.84 0.7067

ktn testing 50.39 4161 38.87 70.69 5158 37.16 24.21 0.7281

train F1 train cOFL | trainclF1 | train c2F1 | train Acc train TPR | train FPR train Auc val F1 val O F1 valclF1 | valc2F1 val Acc val TPR val FPR val Auc

split0 67.70 65.89 68.44 68.76 67.71 69.80 16.14 0.8426 60.25 61.54 60.44 58.76 60.23 62.50 19.89 0.7886

split1 70.28 68.75 7035 71.74 70.28 70.66 14.86 0.8539 62.86 62.64 59.65 66.29 62.88 57.95 1856 0.8187

topo split2 77.11 76.86 77.47 77.01 77.11 76.92 11.44 0.8943 63.64 62.15 64.33 64.44 63.64 62.50 1818 0.8165
And split3 68.38 68.25 67.62 69.29 68.38 67.52 15.81 0.8457 65.36 61.82 62.92 7135 65.53 63.64 17.23 0.8249
Bio split4 68.47 68.19 67.97 69.25 68.47 69.32 15.77 0.8532 67.83 63.16 68.13 72.19 67.82 7126 16.09 0.8430
mean 70.39 69.59 7037 71.21 70.39 70.84 14.81 0.8579 63.99 62.26 63.09 66.61 64.02 63.57 17.99 0.8183

std 3.47 377 368 3.08 3.47 3.21 173 0.0187 2.53 0.58 303 4.90 2,55 431 128 0.0175

testing 71.99 71.06 72.50 72.41 71.98 72.67 14.01 0.8676 65.70 66.35 65.70 65.05 6571 65.38 17.15 0.8344

ktn testing 54.78 5101 45.84 67.50 55.41 41.89 22.30 0.7255

train F1 train cOFL | trainclF1 | trainc2F1 | train Acc train TPR | train FPR train Auc val F1 val OF1 valclFl | valc2F1 val Acc val TPR val FPR val Auc

split0 61.91 60.89 68.74 56.08 61.92 69.23 19.04 0.7979 51.58 53.93 60.12 40.68 51,52 59.09 24.24 0.7215

split1 61.96 6257 68.34 54.98 62.11 69.80 18.95 0.7880 52.80 57.78 56.04 44.58 53.03 57.95 23.48 0.7388

split2 62.29 63.28 69.57 54.01 62.39 70.66 18.80 0.7992 60.70 63.16 65.54 53.42 60.98 65.91 19.51 0.7790

cor 0.7 split3 61.67 63.10 68.90 53.02 61.82 7037 19.09 0.7909 54.43 48.48 64.80 50.00 54.55 65.91 22.73 0.7402
split4 60.25 61.34 65.54 53.86 60.23 66.19 19.89 0.7897 61.70 55.00 7176 58.33 61.69 7011 19.16 0.7728

mean 61.61 62.24 68.22 54.33 61.69 69.25 19.15 07931 56.24 55.67 63.65 49.40 56.35 63.80 2182 0.7505

std 071 0.95 139 105 0.76 1.60 038 0.0045 4.16 4.81 531 6.25 4.19 4.59 2.09 0.0219

testing 62.92 64.57 69.34 54.84 62.95 69.02 18.53 0.7969 60.62 60.58 66.99 54.29 60.58 66.35 1971 0.7789

ktn testing 43.96 41.85 42.62 47.42 44.03 39.53 27.98 0.6243

train F1 train cOF1 | trainclF1 | train c2F1 | train Acc train TPR | train FPR train Auc val F1 val 0 F1 valclFl | valc2F1 val Acc val TPR val FPR val Auc

split0 62.38 61.10 69.02 57.02 62.39 69.52 18.80 0.7985 53.36 56.04 62.43 41.62 53.41 61.36 23.30 0.7258

splitl 61.73 62.01 67.89 55.29 61.82 68.66 19.09 0.7886 53.98 58.56 56.67 4671 54.17 57.95 22,92 0.7418

split2 62.78 64.15 69.21 54.97 62.87 69.80 18.57 0.8080 60.81 6243 66.67 53.33 60.98 65.91 19.51 0.7730

cor 0.5 split3 61.63 62,91 68.35 53.64 61.73 69.23 19.14 0.7903 54.48 49.10 65.17 49.18 54.55 65.91 2273 0.7387
split4 60.35 6167 65.72 53.65 60.32 65.91 19.84 0.7907 61.70 55.00 7176 5833 61.69 7011 19.16 0.7722

mean 61.77 6237 68.04 54.92 61.83 68.62 19.09 0.7952 56.87 56.23 64.54 49.83 56.96 64.25 21,52 0.7503

std 0.83 1.07 125 125 0.86 1.41 0.43 0.0072 3.61 4.39 4.97 570 3.60 4.19 1.80 0.0190

testing 62.35 63.67 68.63 54.76 62.41 69.02 18.79 07926 60.07 58.54 67.98 53.70 59.94 66.35 20.03 0.7734

ktn testing 44.77 43.30 4299 48.03 44.82 39.86 27.59 0.6265

train F1 train O F1 | trainclF1 | train c2F1 train Acc train TPR train FPR train Auc val F1 valc0F1 valclF1 val c2 F1 val Acc val TPR val FPR val Auc

split0 58.07 61.08 64.43 48.71 58.40 68.38 20.80 0.7647 54.61 62.64 56.35 44.85 54.92 57.95 22,54 0.7241

split1 57.92 61.37 64.02 48.37 58.31 66.67 20.85 07617 50.66 58,51 55.32 3816 5152 59.09 24.24 0.7237

split2 56.83 59.31 6272 48.46 56.98 64.96 2151 0.7538 59.05 62.86 64.92 49.38 59.47 70.45 20.27 0.7604

unweight split3 57.03 6171 6152 47.87 57.17 62.39 21.42 0.7564 52.88 5119 59.46 48.00 53.03 62.50 23.48 0.7033
topology splitd 56.90 61.67 6293 46.11 57.39 67.05 2131 0.7552 57.11 56.00 68.21 4713 57.09 67.82 21.46 0.7597
mean 57.35 61.03 63.13 47.90 57.65 65.89 2117 0.7584 54.86 5824 60.85 45.50 55.21 63.56 22.40 0.7342

std 0.53 0.89 103 0.94 0.59 2.06 0.30 0.0042 2.97 4.37 4.97 3.96 2.83 4.86 1.42 0.0224

testing 58.24 62.28 65.07 47.37 58.62 68.11 20.69 0.7684 56.75 60.10 65.16 45.00 57.05 69.23 21.47 0.7757

829 kin testing 44.14 44,63 43.78 44,01 44,14 44,59 27.93 0.6093

830
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including dividing

train F1 train cOF1 | trainclF1 | train c2F1 train Acc train TPR train FPR train Auc val F1 val 0 F1 valclF1 val 2 F1 val Acc val TPR val FPR val Auc

split0 59.86 64.54 65.50 49.54 60.22 67.12 19.89 0.7862 59.11 59.21 69.86 48.25 59.18 69.39 2041 0.7756

split1 61.88 64.41 68.06 53.16 62.11 69.40 18.95 0.7959 58.58 64.36 63.12 48.25 58.68 65.07 20.66 0.7741

split2 63.08 66.94 69.51 52.79 63.48 7111 18.26 0.8037 56.29 60.55 6276 45.56 56.85 6233 2158 0.7657

topos split3 65.81 67.95 70.25 59.22 65.93 7145 17.04 0.8199 53.38 56.87 62.95 4031 54.11 65.75 22,95 0.7375
split4 63.82 66.34 7021 54.93 64.10 7231 17.95 0.8100 55.02 59.66 61.54 43.87 55.48 65.75 2226 0.7472

mean 62.89 66.03 68.71 53.93 63.17 70.28 18.42 0.8031 56.47 60.13 64.05 45.25 56.86 65.66 2157 0.7600

std 198 138 179 317 1.92 1.84 0.96 0.0116 2.15 2.44 296 298 191 2.25 0.95 0.0151

testing 68.82 7197 7321 61.28 69.04 74.01 15.48 0.8402 49.86 46.88 60.48 4224 50.68 7143 24.66 0.7093

train F1 train cOFL | trainclF1 | trainc2F1 | train Acc train TPR | train FPR train Auc val F1 val OF1 valclFl | valc2F1 val Acc val TPR val FPR val Auc

split0 54.15 50.94 42,95 68.56 54.62 40.41 22.69 0.7445 54.18 49.84 39.69 73.02 55.10 3537 2245 0.7507

split1 55.37 52.84 43.89 69.38 55.95 39.32 22.02 0.7515 50.77 47.14 35.96 69.23 51.60 3288 24.20 0.7247

split2 53.74 48.70 43.94 68.58 54.30 4154 22,85 0.7436 54.04 48.08 44.06 69.97 54.34 43.15 22,83 0.7491

bio split3 54.20 50.13 4254 69.93 54.81 39.49 22,59 0.7498 52.70 48.30 43.57 66.23 5297 4178 23.52 0.7305
split4 54.45 52.87 41.00 69.50 55.38 3521 2231 0.7500 52.05 50.66 36.14 69.35 53.42 30.82 2329 0.7342

mean 54.38 51.09 42.86 69.18 55.02 39.19 22.49 0.7479 52.75 48.80 39.88 69.56 53.49 36.80 23.26 0.7379

std 0.54 161 108 0.54 0.59 2.14 0.29 0.0032 1.27 127 348 216 120 4.86 0.60 0.0103

testing 55.60 5215 45.49 69.15 56.18 41.04 2191 0.7549 46.26 53.18 17.50 68.11 5119 1071 24.40 0.7158

train F1 train cOFL | trainclF1 | train c2F1 | train Acc train TPR | train FPR train Auc val F1 val O F1 valclF1 | valc2F1 val Acc val TPR val FPR val Auc

split0 67.78 66.95 66.61 69.78 67.75 67.47 16.12 0.8424 68.93 65.33 68.07 73.40 68.93 65.99 15.53 0.8579

split1 70.67 70.07 68.98 72.97 70.66 68.03 14.67 0.8657 67.36 67.60 66.22 68.28 67.35 67.81 1632 0.8517

topo split2 71.06 70.05 7032 72.82 71.05 70.26 14.47 0.8636 69.68 69.28 65.74 74.02 69.63 65.07 1518 0.8565
And split3 70.77 68.95 70.01 73.35 70.77 70.43 14.62 0.8703 64.38 63.70 64.67 64.79 64.38 66.44 17.81 0.8240
Bio split4 70.55 69.27 69.62 72.77 70.54 69.91 14.73 0.8663 66.62 65.07 65.71 69.08 66.67 63.01 16.67 0.8288
mean 70.17 69.06 69.11 72.34 70.15 69.22 14.92 0.8617 67.40 66.20 66.08 69.91 67.39 65.66 16.30 0.8438

std 121 1.14 133 130 121 122 0.61 0.0099 1.86 1.99 112 343 1.84 159 0.92 0.0144

testing 70.01 69.05 69.58 71.38 70.00 69.63 15.00 0.8619 67.69 68.38 67.20 67.48 67.69 64.29 16.16 0.8442

train F1 traincOF1 | trainclF1 | train ¢2F1 train Acc train TPR train FPR train Auc val F1 val 0 F1 valclF1 val 2 F1 val Acc val TPR val FPR val Auc

split0 59.86 64.54 65.50 49.54 60.22 67.12 19.89 0.7862 59.11 5921 69.86 48.25 59.18 69.39 20.41 0.7756

splitl 61.88 64.41 68.06 53.16 62.11 69.40 18.95 0.7959 58.58 64.36 63.12 48.25 58.68 65.07 20.66 0.7741

split2 63.08 66.94 69.51 52.79 63.48 7111 18.26 0.8037 56.29 60.55 62.76 45.56 56.85 62.33 2158 0.7657

cor 0.7 split3 65.81 67.95 70.25 59.22 65.93 71.45 17.04 0.8199 53.38 56.87 62.95 40.31 54.11 65.75 2295 0.7375
split4 63.82 66.34 7021 54.93 64.10 7231 17.95 0.8100 55.02 59.66 61.54 43.87 55.48 65.75 2226 0.7472

mean 62.89 66.03 6871 53.93 63.17 70.28 18.42 0.8031 56.47 6013 64.05 45.25 56.86 65.66 2157 0.7600

std 198 138 179 317 192 1.84 0.96 00116 2.15 2.44 296 298 191 2.25 0.95 0.0151

testing 68.82 71.97 7321 61.28 69.04 74.01 15.48 0.8402 49.86 46.88 60.48 42.24 50.68 71.43 24.66 0.7093

train F1 traincOF1 | trainclF1 | train ¢2F1 train Acc train TPR train FPR train Auc val F1 val 0 F1 valc1F1 val 2 F1 val Acc val TPR val FPR val Auc

split0 59.55 63.78 65.10 49.77 59.87 66.44 20.06 0.7765 59.38 5871 69.44 50.00 59.41 68.03 20.29 0.7751

splitl 59.98 63.36 66.67 49.91 60.40 68.03 19.80 0.7850 56.75 62.94 63.26 44.04 57.08 67.81 2146 0.7653

split2 64.20 66.94 70.53 55.15 64.50 7179 17.75 0.8096 56.76 60.74 65.10 44.44 57.53 66.44 2123 0.7672

cor 0.5 split3 63.92 67.27 68.64 55.83 64.10 69.40 17.95 0.8091 52.19 54.78 61.33 40.46 5274 63.01 2363 0.7363
split4 66.18 68.26 7192 58.36 66.38 7333 16.81 0.8203 54.57 59.41 6118 4312 55.02 63.70 22.49 0.7457

mean 62.77 65.92 68.57 53.80 63.05 69.80 18.47 0.8001 55.93 59.31 64.06 44.41 56.36 65.80 21.82 0.7579

std 258 197 248 3.41 2.51 2.49 125 0.0165 2.41 2.69 3.05 312 2.28 2.08 114 0.0145

testing 68.13 7173 73.50 62.17 69.36 74.56 15.32 0.8439 51.04 4753 60.35 45.23 5170 69.90 24.15 0.7154

train F1 traincOF1 | trainclF1 | train ¢2F1 train Acc train TPR train FPR train Auc val F1 val 0 F1 valclF1 val 2 F1 val Acc val TPR val FPR val Auc

splito 55.18 6171 62,55 41.28 56.16 67.64 2192 0.7459 53.36 58.57 64.13 37.40 54.65 6871 22,68 0.7484

split1 55.99 61.93 63.29 42.76 56.87 67.18 2157 07628 56.15 62.98 61.89 43,57 56.39 65.07 21.80 0.7423

split2 56.15 64.01 64.56 39.88 57.38 69.74 2131 0.7687 54.60 61.03 61.94 40.85 55.94 65.75 2203 0.7455

unweight split3 55.44 6247 63.01 40.83 56.41 66.84 2179 0.7598 52.17 58.49 6238 35.63 53.42 66.44 23.29 07316
topology split4 58.84 6241 66.07 48.03 59.43 69.57 20.28 0.7754 52.18 62.34 59.94 34.26 53.42 65.07 23.29 0.7324
mean 56.32 6251 63.90 42.55 57.25 68.19 2138 0.7625 53.69 60.68 62.05 3834 5477 66.21 22,62 0.7400

std 131 0.80 128 289 117 122 0.58 0.0099 1.52 1.87 134 342 1.24 135 0.62 0.0068

8 3 1 testing 58.80 65.42 65.44 45.53 59.69 70.31 20.16 07778 56.13 61.58 63.87 42.94 56.80 69.90 21.60 0.7620
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