bioRxiv preprint doi: https://doi.org/10.1101/2021.10.05.463202; this version posted October 7, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY-ND 4.0 International license.

Fast and compact matching statistics analytics

Fabio Cunial*

Abstract

Motivation: Fast, lightweight methods for
comparing the sequence of ever larger assem-
bled genomes from ever growing databases
are increasingly needed in the era of accu-
rate long reads and pan-genome initiatives.
Matching statistics is a popular method for
computing whole-genome phylogenies and for
detecting structural rearrangements between
two genomes, since it is amenable to fast
implementations that require a minimal setup
of data structures. However, current imple-
mentations use a single core, take too much
memory to represent the result, and do not
provide efficient ways to analyze the output in
order to explore local similarities between the
sequences.

Results: We develop practical tools for com-
puting matching statistics between large-scale
strings, and for analyzing its values, faster and
using less memory than the state of the art.
Specifically, we design a parallel algorithm
for shared-memory machines that computes
matching statistics 30 times faster with 48
cores in the cases that are most difficult to par-

*Max Planck Institute for Molecular Cell Biology
and Genetics (MPI-CBG and CSBD), Dresden, 01307,
Germany. cunial@mpi-cbg.de

fBlue River Technology, Sunnyvale, CA 94086,
USA.

fCAPA, DTISI, Centre de Recherche sur
I'Information Scientifique et Techique, Algiers,
Algeria.

Olgert Denas'

Djamal Belazzougui*

allelize. We design a lossy compression scheme
that shrinks the matching statistics array to a
bitvector that takes from 0.8 to 0.2 bits per
character, depending on the dataset and on
the value of a threshold, and that achieves
0.04 bits per character in some variants.
And we provide efficient implementations of
range-maximum and range-sum queries that
take a few tens of milliseconds while operating
on our compact representations, and that
allow computing key local statistics about the
similarity between two strings. Our toolkit
makes construction, storage, and analysis
of matching statistics arrays practical for
multiple pairs of the largest genomes available
today, possibly enabling new applications in
comparative genomics.

Availability ad implementation:
Our C/C++ code is available at
https://github.com/odenas/indexed ms
under GPL-3.0.

1 Introduction

Several large-scale projects are under way
to assemble the genome of hundreds of new
species, and comparing such genomes is cru-
cial for understanding the genetic basis and
origin of complex traits and related diseases
(for a small sampler, see e.g. [39, 34, 14,
37, 16, 44, 26, 25]). Efficient tools for com-
paring genome-scale sequences are thus be-

Page 1

https://doi.org/10.1101/2021.10.05.463202
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.10.05.463202; this version posted October 7, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY-ND 4.0 International license.

coming increasingly necessary. The match-
ing statistics of a string S, called the query,
with respect to another string T, called the
text, is an array MSgr[0..|S| — 1] such that
MSs r[i] is the length of the longest prefix of
S[i..]S| —1] that occurs anywhere in 7" without
errors. Since the match can occur anywhere
in T, matching statistics is robust to large-
scale rearrangements and horizontal transfers
that are common in genomes, and the average
matching statistics length over the whole se-
quence has been used for building consistent
whole-genome phylogenies without alignment
— and, unlike k-mer methods, without param-
eters [8, 43]. The effectiveness of matching
statistics in alignment-free phylogenetics has
even motivated variants that allow for a user-
specified number of mismatches (for a small
sampler see e.g. [2, 27, 30, 40, 41]); and
other, seemingly different, distances can be ex-
pressed in terms of matching statistics as well
(13, 42, 7]. For genomes from the same or
from closely related species, matching statis-
tics has been used for computing estimators
of the number of substitutions per site, of the
number of pairwise mismatches, and of the
occurrence of recombination events (see e.g.
[23, 21, 19, 20, 10]); finally, the related notion
of shortest unique substring, defined on a sin-
gle sequence, has been employed for computing
measures of genome repetitiveness [24, 22|, and
it could be used as a parameter-free method for
detecting segmental duplications [31]. Since
every position of the query S is assigned a
match length, matching statistics can reveal
ranges of locally high similarity (i.e. of large
average matching statistics in the range) in-
duced e.g. by horizontal gene transfer, or con-
versely ranges of locally low similarity induced
by chromosomes of S missing from 7T, or by
horizontal transfer events that affected S but
not T [24, 23, 20, 11, 12]. See Figures 6 and
7 in the supplement for a concrete example.
This idea has been recently applied to targeted
Nanopore sequencing, using online matching
statistics to eject from the pore a long DNA

molecule that is not likely to belong to the
species of interest, after having read just a
short segment of the molecule [1].

Computing MSg r is a classical problem in
string processing, and in practice it involves
building an index on a fixed T" to answer a
large number of queries S. Thus, solutions
typically differ on the index they use, which
can be the textbook suffix tree, the compressed
suffix tree [29] or compressed suffix array, the
colored longest common prefix array [17], a
Burrows-Wheeler index combined with the suf-
fix tree topology [3, 4], or the r-index com-
bined with balanced grammars [6]. In the fre-
quent case where T consists of one genome (or
proteome), or of the concatenation of few sim-
ilar genomes or of many dissimilar genomes,
the Burrows-Wheeler transform of 7' does not
compress well, and the best space-time trade-
offs are achieved by the implementation in [4]
(see [6] for a runtime comparison, and see Fig-
ure 2 in the supplement for a memory compari-
son). In this paper we develop several practical
tools for computing the matching statistics ar-
ray between genome-scale strings, and for ana-
lyzing its values, faster and using less memory
than the state of the art.

Specifically, we design a practical variant of
the algorithm by [4] that computes MS in par-
allel on a shared-memory machine, and that
achieves approximately a 41-fold speedup of
the core procedures and a 30-fold speedup of
the entire program with 48 cores on the in-
stances that are most difficult to parallelize.
Our implementation takes around 12 min-
utes to compute the MS between the Homo
sapiens and the Pan troglodytes genomes on
a standard 48-core server. We also de-
scribe a theoretical variant with better asymp-
totic complexity, which takes O(|S|logo/t +
(log|T|logo)(logt + loglogtloglog|T|)) time
and 2|T'|logo 4+ O(n) bits of space when ex-
ecuted on t processors, where o is the inte-
ger alphabet of S and T. To the best of our
knowledge, no algorithm for computing match-
ing statistics in parallel existed before.

Page 2

https://doi.org/10.1101/2021.10.05.463202
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.10.05.463202; this version posted October 7, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY-ND 4.0 International license.

Then, we implement fast range queries for
computing the average and maximum match-
ing statistic value inside a substring of S,
taking advantage of the compact encoding of
MSgs 1 introduced by [3]: this encoding takes
just 2|S| bits, and allows one to retrieve MSJ]
in constant time for any 4 using just o(]S|)
more bits. In some cases this bitvector is com-
pressible, so our code can operate both on the
plain encoding and on its compressed versions.
Overall, we can answer queries over arbitrary
ranges of the human genome in a few tens of
milliseconds, taking just a few extra megabytes
of space. No tool for fast range queries over a
compact matching statistics encoding existed
before.

Finally, we describe a lossy compression
scheme that can reduce the size of our compact
encoding to much less than 2|S| bits when S
and T are dissimilar, by replacing small match-
ing statistics values (that typically arise from
random matches) with other, suitably chosen
small values. In practice this is most useful
in applications that need the matching statis-
tics array of every pair of genomes in a large
dataset. The threshold of our lossy compres-
sion can be set according to some expected
length of matches (see e.g. [20, 21, 23]), or it
could be learnt from the distribution of match
lengths itself, which usually peaks at noisy val-
ues (see e.g. Figure 4 in the supplement).
Depending on the threshold, our scheme can
shrink the encoding from 40% to 10% of its
original size of 2 bits per character, and one
of our variants achieves 2% for large thresh-
olds. Another popular data structure in string
indexing, the permuted longest common pre-
fiz array [35], has a similar bitvector encoding
and shrinks at similar rates under our scheme
in practice.

Our compression method bears some simi-
larities to the lossless algorithm by [5], which
builds an approximation of the select function
on arbitrary bitvectors, and stores corrections:
in our case, discarding the corrections would
amount to replacing every matching statistics

value (regardless of whether it is small or large)
with another value (which could be either big-
ger or smaller) within a user-specified error.
This might be undesirable for matching statis-
tics, since there is often an expected length of
random matches, and large values that carry
information should better be kept intact for
downstream analysis. The two lossy schemes
are incomparable. In practice the one by [5]
tends to produce smaller files, since it has more
degrees of freedom; our methods manage to
achieve compression rates of similar magnitude
in several cases (see Figure 15 in the supple-
ment). The lossless version of [5] expands our
bitvectors for all settings (see Figure 3 in the
supplement).

2 Preliminaries and nota-
tion

2.1 Strings and string indexes

Let ¥ = [1..0] be an integer alphabet, and let
T € X be a string. We call the reverse of T
the string T obtained by reading T" from right
to left, and we denote by f7(W) the number
of occurrences (or frequency) of string W in
T. For reasons of space we assume the reader
to be already familiar with the notion of suffiz
tree STy = (V, E) of T, which we do not define
here. We just recall that every edge in E is la-
belled with a string of length possibly greater
than one, and that a substring W of T' can be
extended to the right with at least two distinct
characters iff W = £(v) for some internal node
v of the suffix tree, where £(v) is the string label
of node v € V obtained by concatenating the
label of every edge in the path from the root to
v. It is well-known that all the nodes in a suffix
tree path have distinct frequencies, which de-
crease from top to bottom. If u is a node of the
suffix tree of T', we use fr(u) as a shorthand
for fr(¢(u)). We assume the reader to be fa-
miliar with the notion of suffix link connecting
a node v with ¢(v) = aW for some a € [1..0],

Page 3

https://doi.org/10.1101/2021.10.05.463202
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.10.05.463202; this version posted October 7, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY-ND 4.0 International license.

to a node w with ¢(w) = W. Here we just
recall that inverting the direction of all suffix
links yields the so-called explicit Weiner links.
Given an internal node v of ST¢ and a symbol
a € [l..0], it might happen that string af(v)
occurs in T', but that it is not the label of any
internal node: all such left extensions of inter-
nal nodes that end in the middle of an edge or
in a leaf are called implicit Weiner links. An
internal node of ST can have several outgoing
Weiner links, and every one of them is labelled
with a distinct character.

We call suffix tree topology a data struc-
ture that supports operations on the shape
of STy, like parent(v), which returns the
parent of a node v; lca(u,v), which returns
the lowest common ancestor of nodes uw and
v; leftmostLeaf(v) and rightmostLeaf(v),
which compute the identifier of the leftmost
(respectively, rightmost) leaf in the subtree
rooted at node v; selectLeaf(i), which re-
turns the identifier of the i-th leaf in preorder
traversal; leafRank(v), which computes the
number of leaves that occur before leaf v in
preorder traversal. It is known that the topol-
ogy of an ordered tree with n nodes can be
represented using 2n + o(n) bits as a sequence
of 2n balanced parentheses, and that 2n+o(n)
more bits suffice to support every operation
described above in constant time [28, 36]. We
assume the reader to be familiar also with
the Burrows-Wheeler transform of 7' (denoted
BWTr in what follows). Here we just recall
that every suffix tree node corresponds to a
compact lexicographic interval in the BWT,
and that following a Weiner link in the suf-
fix tree, i.e. extending a string W = {(v) to
the left with one character, corresponds to the
well-known backward step from the BWT inter-
val of W. We also mention the classical oper-
ations rank(T, a, %), which returns the number
of occurrences of character a in string T up to
position 4, inclusive; and select(T, a, i), which
returns the position of the i-th occurrence of a
inT.

In what follows we omit subscripts that are

200 -

100

0 ! ! ! T
0 20000 40000 60000 80000 100000 °

44900 45000 45100 45200 45300 45400

Figure 1: Values of matching statistics (ver-
tical axis) in a range of positions along hu-
man chromosome 1 (horizontal axis). Query:
Homo sapiens. Text: Pan troglodytes. The
right panel is a zoom-in of the left panel. See
Figure 6 in the supplement for a bigger range.
The PLCP array of a single genome (defined
in Section 4) has a similar shape.

clear from the context, and we use ST and
BWT as shorthands for ST and BWT7, re-
spectively.

2.2 Matching statistics in small
space

As mentioned, given a query string S € ™,
we call matching statistics MSg p[0.m — 1]
an array such that MSgp[i] is the length of
the longest prefix of S[i..m — 1] that occurs
somewhere in 1" without errors. In this paper
we work with the compact representation of
MSs r as a bitvector msgp of 2|S| bits, which
is built by appending, for each ¢ € [0..|S] — 1]
in increasing order, MSg r[i]| —MSg p[i — 1] +1
zeros followed by a one [3]. MSgr[—1] is as-
sumed to be one. Since the number of zeros
before the i-th one in ms equals i + MS[é], one
can compute MS[i] for any ¢ € [0..|S]| —1] using
select operations on ms. We also work with the
algorithm by [3], which we summarize here for
completeness. This offline algorithm computes
ms using both a backward and a forward scan
over S, and it needs in each scan just BWT
with rank support, and the topology of ST, or
just BWT with rank support, and the topol-

Page 4

https://doi.org/10.1101/2021.10.05.463202
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.10.05.463202; this version posted October 7, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY-ND 4.0 International license.

ogy of ST. The two phases are connected via a
bitvector runs[1..|T| —1], such that runs[i] = 1
iff MS[i] = MS[i — 1] —1, i.e. iff there is no zero
between the i-th and the (i — 1)-th ones in ms.

First, we scan S from right to left, using
BWT with rank support, and the suffix tree
topology of T', to determine the runs of con-
secutive ones in ms. Assume that we know the
interval [i..5] in BWT that corresponds to sub-
string W = S[k..k + MS[k] — 1], as well as the
identifier of the proper locus v of W in the
topology of ST. We try to perform a back-
ward step using character a = S[k — 1]: if
the resulting interval [¢'..j] is nonempty, we
set runs[k] = 1 and we reset [i..j] to [i'..5'].
Otherwise, we set runs[k] = 0, we update the
BWT interval to the interval of parent(v) us-
ing the topology, and we try another backward
step with character a.

In the second phase we scan S from left to
right, and we build ms using BWT with rank
support, the suffix tree topology of T, and
bitvector runs. Assume that we know the in-
terval [i..7] in BWT that corresponds to sub-
string W = S[k..h — 1] such that MS[k — 1] =
h —k but MS[k] > h — k. We try to per-
form a backward step with character S[h]: if
the backward step succeeds, we continue issu-
ing backward steps with the following char-
acters of S, until we reach a position h* in
S such that a backward step with character
S[h*] from the interval [i*..5*] of substring
W* = S[k..h* — 1] in BWT fails. At this point
we know that MS[k] = h* — k, so we append
h* —k —MS[k—-1]4+1 = h* — h + 1 zeros
and a one to ms. Moreover, we iteratively re-
set the current interval in BWT to the inter-
val of parent(v*), where v* is the proper lo-
cus of W* in ST, and we try another back-
ward step with character S[h*], until we reach
an interval [¢..5'] for which the backward step
succeeds. Let this interval correspond to sub-
string W’ = S[k’..h* — 1]. Note that MS[k'] >
MS[k’ — 1] — 1 and MS[z] = MS[z — 1] — 1 for
all x € [k + 1..k" — 1], so k' is the position
of the first zero to the right of position £ in

runs, and we can append k' — k — 1 ones to
ms. Finally, we repeat the whole process from
substring S[k’..h*] and its interval in BWT.

3 Computing MS in paral-
lel

It is natural to try and parallelize the construc-
tion of MS when query strings are long. In
the case of proteomes, or of concatenations of
several small genomes, reads, or contigs, one
could just split the query in chunks of approx-
imately equal size along concatenation bound-
aries, and process each chunk in parallel. For
the large, contiguous genome assemblies that
are increasingly achievable with long reads, one
could compute MS in parallel for each chromo-
some, but chromosomes might have widely dif-
ferent lengths and their number might be much
smaller than the number of cores available. In
this section we describe algorithms for com-
puting MS in parallel for long query strings,
without assuming that they are the concate-
nation of shorter strings.

We work in the concurrent read, exclusive
write (CREW) model of a parallel random ac-
cess machine, in which multiple processors are
allowed to read from the same memory loca-
tion at the same time, but only one processor
is allowed to write to a memory location at any
given time. Let S°,...,S'"! be a partition of
S into t blocks of equal size, and let p; be the
first position of block S?. Once S and runs are
loaded in memory, one can build ms in parallel
with ¢ threads, by computing MS[p;, ..., pi+1—
1] independently for each 4: this works since
every thread can safely read the suffix of S to
the right of its own block, as well as the cor-
responding positions of runs. Recall however
that the algorithm outputs a compact repre-
sentation of array MS, rather than array MS
itself. Let ms’ be the bitvector representation
of MS[p;,...,pi+1 —1]. Thread i computes ms’
starting from position p; of S, and it appends
to the beginning of ms’ a sequence of MS|p;]

Page 5

https://doi.org/10.1101/2021.10.05.463202
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.10.05.463202; this version posted October 7, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY-ND 4.0 International license.

Construction of runs Correction of runs

Construction of ms Total

1.00

°
o

o o
@ 5
3 of

Time ratio (log2)

Fraction of total time for runs
8
b

o
=
38
[}
(]

o 000

o P Y Y]

Time ratio (log2)

o 5 o o ©o0o0 o ° o o %o

|
n

Time ratio (log2)
b
o

!
A
o

16 24 324048 2 4 8

2 4 8

16 24 324048

2 4 8 16 24 324048 2 4 8 16 24 324048

Figure 2: Scaling of our parallel implementation as the number of threads ¢ increases. Line: ideal
scaling 1/t. Circles along the line: genomes of similar species, proteomes of similar species, pairs of
human chromosome 1 from distinct random individuals. Circles far from the line: identical query
and text (human chromosome 1 from two random individuals). Vertical axis: time of the parallel
implementation divided by the time of the sequential implementation. Correction of ms is not shown
since it is negligible. See Figure 1 in the supplement for more details.

zeros and a one; however, in the final bitvector
ms, such a sequence of bits should be replaced
by a sequence of MS[p;] — MS[p; — 1] + 1 ze-
ros and a one. We perform this correction in
a final pass, in which a single thread concate-
nates all output bitvectors. Specifically, we use
MS][|S°| — 1] = [ms®| — 2|S°| + 1 to correct the
first run of zeros of ms', and so on for the other
blocks.

We compute bitvector runs with ¢ par-
allel threads, as follows. Let RO, ... Rt™!
be the partition of runs induced by blocks
S0, ...,8' 1. Thread i executes the algorithm
for computing runs independently just inside
blocks S* and R?, starting with filling the last
bit of R'. Assume that thread i, while pro-
ceeding from right to left, sets bit b; of R' to
zero, and that it sets R'[b; + 1..|R?| — 1] to all
ones. All the bits that thread i sets in R'[0..b;]
are correct, since they can be decided without
looking at blocks S**! ..., S*~!. However, to
decide the value of bits R'[b; + 1..|R?| — 1] one
needs to look at the blocks that follow S¢. We
call marked the last block R'™!, as well as any
block R’ that contains a zero after this phase.
If R is marked, let W% = S[p;..p; + MS[p;] — 1]:
then, thread ¢ stores the BWT interval and the
topology identifier of the locus of W; in STr.

In practice we expect b; to be close to |RY| —1,
and we expect most blocks to be marked. How-
ever, there could be an R? that contains no zero
after this phase. Thus, we have to run a sec-
ond phase in which, for every marked block R?,
we start a thread that updates all the one-bits,
in all blocks between R‘~! and the rightmost
marked block R7 before R?, including the suf-
fix of R’ after its last zero. We perform this
correction using the information stored in the
previous phase. Note that this strategy might
result both in using fewer than ¢ threads (since
we issue just one thread per marked block),
and in linear time per thread, since the num-
ber of one-bits that a thread might have to
update could be proportional to |S].

These problems occur when S and T have
long exact matches, and they become extreme
when S = T. Thus, we experiment with the
pairs of similar genomes and proteomes de-
scribed in Section 1 of the supplement. The
construction of both runs and ms scales well
on genomes and proteomes of similar species,
although achieving the ideal speedup gets more
difficult as the number of threads increases
(Figure 2). Correcting the runs bitvector takes
a negligible fraction of the total time for pro-
cessing runs, even for similar genomes, and

Page 6

https://doi.org/10.1101/2021.10.05.463202
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.10.05.463202; this version posted October 7, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY-ND 4.0 International license.

it takes more time for proteomes than for
genomes, probably because the proteomes of
related species are more similar to one another
than their genomes (see Figure 1 in the supple-
ment). The fraction of time spent in correcting
runs grows with the number of threads, proba-
bly because more threads imply shorter blocks,
and shorter blocks are more likely to intersect
with exact matches between S and T, or to
be fully contained in them. Correcting the ms
bitvector takes even less time than correcting
runs. Even running the algorithm on the very
similar pairs of chromosome 1 from different
human individuals shows the same trends (Fig-
ure 1 in the supplement). When S = T, cor-
recting runs uses just one thread, since only
the last block is marked, and it takes time pro-
portional to |S|(t—1)/t (Figure 2); building ms
uses all threads, but each one of them has to
process the whole suffix of S that starts from
its block, thus there is no speedup with re-
spect to the sequential version. In the follow-
ing section we describe a way to achieve better
asymptotic complexity even when S =T.

3.1 Better asymptotic complex-
ity

Another way of computing runs in parallel
could be by performing a backward search from
the end of every block S using BWT, by map-
ping the resulting interval to the corresponding
interval in BWT, and by starting the compu-
tation of each block from such intervals. This
naive approach has the disadvantage of requir-
ing linear time per thread in the worst case
to compute the initial BWT intervals of the
blocks, and of needing to translate intervals
from one BWT to the other. However, the
general idea can be used to achieve better com-
plexity, as follows:

Lemma 1. Let T be a string on alphabet [1..0],
and assume that we have a representation of
SA7 that support suffiz array and inverse suf-
fiz array queries in O(p) time, and a repre-
sentation of ST that support weinerLink and

parent queries in O(q) time. Given a query
string S and t processors, we can compute
msgr in time O(|S| - ¢/t + loglog|T| - plogt)
using O(|S| + tlog|T|) bits of working space.

Proof. Without loss of generality, we assume
that t is a power of two. To compute the runs
bitvector, we proceed as follows. First, we
split S into ¢ blocks S?, ..., 5! and we build
the BWT interval of every block S* in paral-
lel, spending O(]S|q/t) time overall. Then, we
build the BWT interval of every disjoint su-
perblock that consists of 27 adjacent blocks,
for all j € [0..log¢ — 1], in logt phases. In
phase j we compute the BWT interval of ev-
ery one of the /27 superblocks in parallel, by
merging the BWT intervals of the two smaller
superblocks from the previous phase that com-
pose it. Every such merge can be performed
in O(ploglog|T|) time using a data structure
that takes O(|S]) additional bits of space [15],
so all merging phases take O(logt-ploglog|T|)
time in total. Note that storing the BWT in-
tervals of all superblocks from all phases takes
just O(tlog |T|) bits of working space. Then
we compute, for every i € [0..t — 1], the largest
j > i such that S**!...87 occurs in T (we
call g(i) such a value of j in what follows).
This can be done by assigning a processor to
every block S?, and by making the processor
merge the BWT intervals of O(logt) pairs of
superblocks computed previously. This takes
again O(logt - ploglog|T|) time overall. Fi-
nally, for every S? in parallel, we try to ex-
tend the BWT interval of S**!... 59 inside
the next block S9()+1 by performing O(|S|/t)
backward steps in overall O(|S|g/t) time.

We use the resulting intervals for comput-
ing the block of runs that corresponds to ev-
ery block S?, independently and in parallel, in
overall O(|S|q/t) time. To compute the block
of ms that corresponds to each S?, indepen-
dently and in parallel, we first need to com-
pute the interval in BWT of the longest prefix
of S%,...,S*! that occurs in T: we compute
all such intervals using the same superblock
approach described above. O

Page 7

https://doi.org/10.1101/2021.10.05.463202
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.10.05.463202; this version posted October 7, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY-ND 4.0 International license.

Plugging into Lemma 1 some well-known
suffix array representations, we can get
O(|S|loga/t + loglog|T|log|T|logologt)
time and 2|T|logo + O(n) bits of
space for an integer alphabet of size o,
or O(|S|/t + loglog|T|logt) time and
O(|T|1log|T|) bits of space for an alphabet
that is polynomial in |T.

We can further improve on the complexity
of every step of Lemma 1, by using a paral-
lel rather than a sequential algorithm for com-
puting the BWT interval of VW, given the
BWT intervals of V' and of W. Specifically,
we use the algorithm by [15], which runs in
O(plog,log |T|) time with ¢ processors, taking
again O(|S]) bits of working space:

Lemma 2. Given the assumptions of Lemma
1, we can compute msgr in time O(|S|- ¢/t +
loglog|T| - ploglogt + plogt) using O(|S| +
tlog |T|) bits of working space.

Proof. To build the BWT interval of every su-
perblock, we proceed as follows. In phase j
we have to merge t/27 pairs of BWT inter-
vals (one for each superblock of 27 blocks),
thus we can afford to allocate 27 processors to
each merge: it is easy to see that this yields
O(loglog|T| - ploglogt + plogt) time overall.

Then, to compute g(¢) for each ¢, we proceed
as follows. If we had to solve the problem just
for the blocks whose ID is a multiple of v/%,
we could allocate v/t processors to each task
and be done in O(logt - plog, ;log|T|) time,
which is O(ploglog|T|). More generally, we
could organize the computation in O(loglogt)
iterations: at iteration j we solve the problem
for all remaining blocks whose ID is a multi-
ple of £~ for increasing j (i.e. from larger to
smaller offsets). Thus, every block i that we
want to solve at iteration j lies between two
blocks i, < @ < 4,41 that we solved at itera-
tion j — 1. Clearly there are 2777 _ 1 total
blocks between S% and S%+! (excluded), thus
in the current iteration we have to compute the
solution for t*~” —1 blocks that lie between S*
and S%+1. Moreover, since we are dealing with

matching statistics, ¢(i,) < g(#) < g(izt1),
and the sum of ¢(iy+1) — g(i,) over all z is
at most t. It follows that, if we assigned
9(izt1) — g(iz) processors to compute each so-
lution between S% and S%+!, we would end up
using ¢- (> * — 1) processors in total: since we
have just t processors, we should thus assign
r = (g(iz41) — g(iz))/(t>" — 1) processors to
each solution!. Since g(i,) < g(i) < g(izt1),
we need to merge just O(log(g(iz+1) — g(iz)))
pairs of superblocks to compute the solution
for any S?, thus the total running time of one
iteration is O(log(g(iz+1)—g(iz))-plog, log|T|)
using the parallel algorithm by [15]: it is easy
to see that this is O(ploglog|T|), thus we
get the claimed bound over O(loglogt) iter-
ations. O

By plugging into Lemma 2 the same
data structures as before, we can get
O(|S|log o /t+1oglog|T|log |T|log o loglog t +
log |T'|logologt) time and 2|T|logo + O(n)
bits of space, or O(|S|/t +loglog |T|loglogt +
logt) time and O(|T|log|T|) bits of space,
which is comparable to the complexity of prefix
matching queries described by [15].

4 Compressing the MS
bitvector

Even though msg r takes just 2|S| bits, stor-
ing the bitvector of every pair of genomes in
a large dataset for later analysis and query-
ing might still require too much space overall.
Real ms bitvectors, however, have several fea-
tures that could be exploited for lossless com-
pression. Specifically, if S and T are similar,
they are likely to contain long mazimal exact
matches (MEMS), i.e. triplets (4, j, £) such that
Sli.i+€—1] =T[j..j+€—1], S[i—1] # T[j—1]
and S[i+/{] # T[j+/{]. In practice, MEMs tend

1A»ctua,lly7 since at iteration j we compute up to
t/tzﬁ total solutions, we could afford to allocate r =

((g(iz+1) — g(iz))/(t27j -1)+ 277)/2 processors per
solution.

Page 8

https://doi.org/10.1101/2021.10.05.463202
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.10.05.463202; this version posted October 7, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY-ND 4.0 International license.

Species, non-negative

Species, negative

Individuals, non-negative

compressed / uncompressed

o Loh
04 go ¥ e 003 -
[] . z ¥ v @ o
Ca — ... ®
3] R HHITHIET
$ x5 !-
02 a0 '
© o
0.01 - !
‘ IRy $82
i-- Fag
Y S S S S T U T S T S S T T T S T S S S S S S O A M
32 32 32 64 64 64 128 128 128 256 256 256 32 32 32 64 64 64 128 128 128 256 256 256 RLEE 8 8 8 16 16 16 32 32 32 64 64 64 128 128 128 256 256 256
D DL ND D DL ND D DL ND D DL ND D DL ND D DL ND D DL ND D DL ND D DLND D DLND D DL ND D DLND D DL ND D DL ND

Figure 3: Ratio between the size of the RLEVector data structure by [38] built on a permuted
ms bitvector, and the size of the bit_vector data structure from SDSL built on the original ms
bitvector, for the D, DL, and ND lossy variants on pairs of genomes from different species and
on pairs of genomes from human individuals, allowing and disallowing negative MS values. Size is
measured on disk. The vertical axis in the middle panel shows negative powers of ten. Computation
is exact for windows with up to 300 zeros and 300 ones, then it uses the first greedy strategy

described in the text.

to be surrounded in S by regions with short
matches with T (see the example in Figure 1),
so MS[i—1] is likely to be short, and the run of
£ —MS[i—1]+1 zeros induced by S[i..i+£—1]
in ms is likely to be long; moreover, in practice
MS[i'] = MS[¢' — 1] for all ¢ € [i + 1..i + £ — k]
for some small k (see again Figure 1). Thus,
every MEM is likely to induce a long run of ze-
ros followed by a long run of ones in ms, and if
S and T share several long MEMs, run-length
encoding ms might save space. Another prop-
erty of real ms bitvectors is that the length of
a long run of zeros tends to be similar to the
length of the following long run of ones, since
L—MS[i —1]+1—-4+k=k—-MS[i—1]+1
is likely to be small (see Figures 18 and 19 in
the supplement). So, given a pair (z;, 0;) repre-
senting a run of z; zeros and the following run
of 0; ones, and given an encoder §, one might
encode the pair as 6(z;)0(0; — z;) if 2; is large,
and as d(z;)0(0;) otherwise.

Run-length encoding the bitvectors of pairs

of genomes from human individuals using e.g.
the RLEVector data structure by [38] yields

compression rates of about 20 (Figure 3, right
panel), and compressing the same bitvectors
with the rrr_vector data structure from the
SDSL library [18] (which implements the RRR
scheme by [33]) yields compression rates of
about 6 (see Figure 8 in the supplement). How-
ever, the bitvectors of pairs of genomes from
different species are recalcitrant to compres-
sion, even when the species are related: run-
length encoding expands those files by a factor
of two (Figure 3, insert in the left panel), and
RRR expands most of them slightly (by a fac-
tor of 1.1), and manages to compress just few
pairs with rate 1.25 (Figure 8 in the supple-
ment). The same happens with pairs of artifi-
cial strings with controlled mutation rate (see
Figures 16, 17 in the supplement).

In some applications, including genome com-
parison, short matches are considered noise by
the user, and the precise length of a match can
be discarded safely as long as we keep track
that at that position the match was short.
Given an array MSgr and a user-defined
threshold 7, let a thresholded matching statis-

Page 9

https://doi.org/10.1101/2021.10.05.463202
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.10.05.463202; this version posted October 7, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY-ND 4.0 International license.

tics array MSg ., be such that MSg r -[i] =
MSg r[i] if MSg r[i] > 7, and MSg 1, [i] equals
an arbitrary (possibly negative) value smaller
than 7 otherwise?. This notion is symmetri-
cal to the one defined by [9], which discards
instead long MS values in order to prune the
suffix tree topologies and to make the data
structures smaller. Given an encoder 9, we are
interested in the MSg r » array whose msg 1 -
bitvector takes the smallest amount of space
when encoded with §. In what follows, we drop
S and T from the subscripts whenever they are
clear from the context.

Note that every msg 7, is a permutation of
msg 7, since the two bitvectors must contain
the same number of zeros and ones. Moreover,
if MS[z] > 7 corresponds to the one-bit at po-
sition y in ms, then every ms, must also have a
one at position y, which corresponds to MS; [z]
and is preceded by the same number of ones
and zeros as position y in ms (this follows from
the fact that MS[z] = select(ms,z,1) — 2z).
Let zg, ..., zg—1 be the sequence of all and only
the positions of S whose MS value is at least
7, and let yo,...,yx_1 be the sequence of the
corresponding one-bits y; = select(ms, z;,1)
inms. Clearly it can happen that z; 11 = x;+1;
if this does not happen, then MS[z;] must be
equal to 7, and ms[y; + 1] must be a one and
ms|[y;+1 — 1] must be a zero, both in ms and in
any ms,. Thus, if we compress ms, by delta-
coding the length of every run, we can build
an ms, that is smallest after compression, by
concatenating a permutation of every such in-
terval [y;..y;+1 — 1] of ms that is smallest after
compression, as well as of the non-empty inter-
vals [0..y9 —1] and [yx—1+1..2]S]|] (and all such
permutations can be computed in parallel).

Assume that we want to compute a small-
est permutation of window [y;..y;+1 — 1], where
MS[z;] = 7 and every run is delta-coded in iso-
lation. Clearly we could just replace the win-
dow with 1709, where p (respectively, ¢) is to-

2In some applications T might even change along S,
e.g. when S is the concatenation of several genomes
with different similarity to 7'.

tal the number of ones (respectively, zeros) in
the window; this could make some MS values
negative, thus the resulting ms, might not be
a valid MS bitvector, and before replacing ms
with ms; one should make sure that any imple-
mentation that used ms handles negative values
correctly. Building an MS bitvector without
negative values is easy:

Lemma 3. Given an interval [y; + 1..y;41] of
ms, with z total zeros and o total ones, we can
compute a smallest permutation with no nega-
tive value in O(zot?) time and words of space.

Proof. Every permutation of the interval
can be represented as a sequence of pairs
(20,00), (#1,01), ..., (2K, 0r) for some k& > 0,
where z; is the length of a run of zeros, o; is
the length of a run of ones, zg > 0, z; > 0
for all ¢ > 0, and o; > 0 for all ¢ > 0. We
work with the sequence of cumulative pairs
(Zo, O()), (Zl, 01), ey (Zk, Ok), where Z1 =
Z;:o z and O; = Z;:O 0;. Given a pair
(Z;,0;), we use MS(Z;, 0;) as a shorthand for
T+ Z;—O; (i.e. the MS value that corresponds
to the last one-bit of the pair), and we say that
the pair is wvalid iff it satisfies Z; < z, O; < o,
and MS(Z;,0;) € [0.71 — 1]. We draw a di-
rected arc from every valid pair (Z;, O;) to ev-
ery other valid pair (Z;, O;) such that Z; > Z,,
Oj > O;, and MS(Z“OZ) + Zj —Zi—1<rT
(this is the MS value of the first one-bit in the
last run of ones in the pair), and we assign
cost 6(Z; — Z;) +6(0; — O;) to the arc. More-
over, we add the invalid pair (z,0), we connect
it to every valid pair (Z;,0 — 1), and we as-
sign cost d(z — Z;) to the arc. A start pair
(Zi,0;) is a valid pair with Z; = 0, and it is
assigned cost §(0;). A permutation of smallest
size corresponds to a path in the resulting DAG
G = (V,E), from a start pair to pair (z,0),
that minimizes the sum of the costs of its arcs
plus the cost of the start pair. This can be de-
rived by computing, for every node v € V that
does not correspond to a start pair, quantity
f() = min{f(u) + c(u,v) : (u,v) € E}, using
dynamic programming over the topologically-

Page 10

https://doi.org/10.1101/2021.10.05.463202
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.10.05.463202; this version posted October 7, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY-ND 4.0 International license.

sorted DAG. O

One can easily modify this construction to
enforce MS values in the permuted interval to
be at least a positive number, rather than zero.
To make compression faster in practice, we fix
z and o to a large value and, for every 7 used
by the target application, we precompute and
store a variant of the DAG that answers ev-
ery possible query of length at most z 4+ o: in
addition to (z,0), this variant includes every
pair (Z;,0;) with MS(Z;,0;) > 7, it connects
it to all valid pairs (Z;,0; — 1) as described
for (z,0), and it computes the min-cost path
to every node. To permute a window with 2z’
zeros and o ones such that 2’ < z, o’ < o0, and
2'+0' < z+o0, we go to node (2/,0’) in the DAG
and we backtrack along an optimal precom-
puted path. If (2,0’) does not belong to the
DAG, we select a valid in-neighbor (Z;, O;) of
(7', 0") using a greedy strategy (for example the
neighbor that maximizes g; = 2’ — Z; + 0 — O;
or g;/(6(2' — Z;) + 6(0' — Oy))): if (Z;, 0;) be-
longs to the DAG, we backtrack, otherwise we
take another greedy step. In what follows, we
label this approach “ND”.

As mentioned, in real MS bitvectors the
length of a run of zeros and of the following
run of ones tend to be similar: we can take this
into account by setting the cost of an arc be-
tween (Z;,0;) and (Z;, 0;) to §(x)+d(g9(y|x)),
where v = Z; — Z;, y = O; — O;, and g(y|z) is
the following map: since y —x > 1 —x, we map
all the negative values of y —x to the even inte-
gers up to 2(x—1) in increasing order of |y —z|,
we map the positive values of y —x up to x — 2
to the odd integers > 3, and we map every re-
maining value of y — x to y. We use integer
one to encode y = x. Recall that the interval
of ms that we want to permute is [y;..y;+1 — 1],
where y; belongs to a (possibly long) run of
one-bits, and y;41 is the first one-bit of a (pos-
sibly long) run. We might not want to alter
the lengths of such runs of ones, so we might
be interested in permuting just the subinterval
[p..q] where p is the first zero after y; and q is

the last one before y; 1 (if negative values of
MS are allowed, the trivial scheme of writing
all the ones at the beginning of [p..g] cannot be
used, since it would alter the length of the run
of y;). We call this variant “D” in what fol-
lows. Since in practice the correlation between
the length of a run of zeros and the following
run of ones is strong only for long runs, one
might want to encode a run of x zeros ad the
following run of y ones as 6(x) +d(g(y|z)) only
when = > 7, and to encode it as §(z) + d(y)
otherwise. This would require permuting just
[p..q], but in an optimal way with respect to
the latter encoding. We call this variant “DL”
in what follows.

When S and T are dissimilar, run-length
compressing the permuted ms bitvectors ex-
pands them for small values of 7 when neg-
ative MS values are not allowed (Figure 3, in-
sert in the left panel). For 7 = 32, run-length
encoding most of our ms, variants shrinks the
bitvector to approximately 40% of its original
size, and increasing 7 progressively brings its
size down to 10% of the original. We do not
detect any clear difference in performance be-
tween the variants, with D being significantly
smaller in some but not all cases (Figure 11 in
the supplement). A detailed analysis of how
the permutation schemes compare when vary-
ing the similarity between query and text is
provided in Figures 16, 17 in the supplement.
For pairs of genomes from human individuals,
run-length encoding the original ms bitvector
already brings its size down to approximately
4.5% of the original, and increasing 7 shrinks
the bitvectors to 2% of the input (Figure 3,
right panel). Allowing for negative MS values
compresses some pairs of genomes from differ-
ent species already at 7 = 16, and for 7 > 32 it
shrinks the bitvector to approximately 2% of
the original (Figure 3, center panel). Negative
MS values do not give any significant gain for
genomes of individuals (data not shown). Pairs
of proteomes display similar trends, but this
time run-length encoding is able to compress
some ms bitvectors, and 7 = 8 is enough to

Page 11

https://doi.org/10.1101/2021.10.05.463202
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.10.05.463202; this version posted October 7, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY-ND 4.0 International license.

compress most pairs (Figures 9, 10 in the sup-
plement). Finally, we test our lossy compres-
sion on the permuted longest common prefix
array (PLCP) of the genomes in our dataset,
since this data structure is amenable to a com-
pact encoding that is very similar to ms [35]:
we observe again a shrinkage from 40% to 10%
of the original size when setting 7 > 32 (Figure
14 in the supplement).

Clearly, when very few MS values are above
threshold, storing just those values might take
less space than compressing the ms bitvector.
We call A, a scheme that stores every MS value
at least 7 and its position in the minimum
number of bits necessary to encode the respec-
tive numbers, and we call B, a scheme in which
every MS value at least 7 is stored in [log M|
bits and every position is stored in [log L] bits,
where M is the maximum observed MS value
and L is the length of the query. Accessing
MS from such structures might be much slower
than using the ms bitvector with select queries.
For 7 > 32, large values are rare enough in the
MS arrays of genomes from different species
that most compressed bitvectors take much
more space than A, or B, (Figure 12 in the
supplement). When negative values of MS are
allowed, however, the permuted bitvectors of
several pairs of genomes become smaller than
or comparable to A, and B, (Figure 13 in the
supplement), and for pairs of individuals the
permuted bitvectors are always two or three
orders of magnitude smaller than A, and B,
since 80% or more of all MS values are above
threshold for every 7 (Figure 12 in the supple-
ment).

4.1 Compressing frequency and
position arrays

Given a position ¢ of the query S, knowing
the frequency of the matching statistics string
Sli..i+MSg r[i] — 1] in the text T' can be useful
in genome-genome and read-genome compari-
son, since it can tell for example whether the
longest match belongs to an exact repeat of T'

(see e.g. Figure 22 in the supplement). One
might also want to keep the exact values of
MS just for the positions with low frequency,
i.e. one might want to compute a frequency
thresholded MS array in which every window
of ms between two low-frequency one-bits can
be permuted to achieve compression. We de-
fine the frequency array Fgr[0..m — 1] to be
such that Fgr[i] = fr(S[i..i + MSgp[i] — 1]).

The algorithm for computing ms described in
Section 2.2 can be easily adapted to compute
the F array as well. Specifically, during the first
scan of S (from right to left), we set runs[i] = 0
iff either: (1) MS[é] # MS[i—1]—1, as before, or
(2) if MS[i] = MS[i — 1] — 1 but F[i] # F[i — 1].
We can detect the latter case since we know
the frequency of the current string after every
backward step. Consider now the first few op-
erations of the second scan of S (from left to
right): we managed to match some prefix of
S, and we are now witnessing a Weiner link
fail from some node v of ST, thus we move to
the parent v of v. Node uw must have a dif-
ferent frequency in 7' than v, so we know that
the first parent operation we take leads to the
position ¢ of the first zero-bit from the left in
the runs bitvector. We can measure f(u) with
the topology, and we know that F[j] = f(v)
for all j € [0..i — 1]. We repeat this process
after every parent operation. At some point
the Weiner link succeeds, so we derive the up-
dated frequency from the BWT and we restart
the whole process. This algorithm can be par-
allelized using the same methods as in Section
3.

When S and T are similar, most matches
are long and the values of F are more likely to
be small or equal to one (and vice versa when
S and T are dissimilar), thus delta-coding F
achieves better compression when S and T are
similar. Moreover, assume that most edges of
ST are labelled by long strings. If S and T are
dissimilar, they mostly have short matches, the
loci of such short matches have low tree depth
in ST, and they do not create long runs in
F. If S and T are similar, they have many long

Page 12

https://doi.org/10.1101/2021.10.05.463202
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.10.05.463202; this version posted October 7, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY-ND 4.0 International license.

matches, the loci of such long matches are more
likely to have large tree depth in ST, and this
can induce long runs in F. If the edges of ST
have short labels, there is little to be gained
in having S similar to 7. In practice, for pairs
of genomes from different species, represent-
ing F as a delta coding of its runs produces
bigger files than just delta-coding every entry
of F in isolation; but for pairs of human in-
dividuals, the run-length encoded F is about
15 times smaller (data not shown for brevity).
Note that the values in the run-length encoded
F can be accessed easily using the runs bitvec-
tor.

We conclude this section by mentioning one
more array that is easy to compress. Let
Psr[1..|S|] be the array that stores at po-
sition ¢ an arbitrary location of T at which
S[i..i+MS[i] — 1] starts® [6]. Rather than stor-
ing all locations, it suffices to store just those
of the informative positions, i.e. of positions
i such that MS[i] > MS[i — 1] — 1: for every
other position j, P[j] can be reconstructed by
recurring on P[j — 1]+ 1. Statistical properties
of informative positions in random sequences
were described by [32]. In practice, when com-
paring genomes from different species, approx-
imately half of all positions are informative;
this fraction ranges from 0.7 to 0.2 in pro-
teomes, whereas in human individuals it be-
comes smaller than 0.01 (see Figure 5 in the
supplement). One can imagine other position
arrays that might be useful in genome compar-
ison, for example an array that stores zero if
a match occurs in distinct chromosomes of the
text, or the identifier of the only chromosome
that contains the match otherwise.

5 Querying the MS bitvec-
tor

As mentioned, it is natural to formulate ques-
tions on the similarity between a substring

30ne could of course define lossy variants in which
the locations of short matches are discarded.

of the query and the whole text in terms of
matching statistics, and this approach has al-
ready been used in bioinformatics for detect-
ing horizontal gene transfer and other struc-
tural variations between two genomes. In this
section we focus on two types of range query,
which we implement on the ms bitvector: given
an interval [i..j], we want to return either

7—; MS[k] (e.g. to compute a local version
of the score by [43]) or max{MS[k] : k € [i..j]}
(e.g. to detect the presence of significant
matches).

We answer the max query using the stan-
dard approach of dividing the ms bitvector into
blocks with a fixed number of bits, extracting
for each block the maximum MS value that cor-
responds to a one-bit in the block, and building
a range-maximum query (RMQ) data struc-
ture on such values?. Given a range MS[i..j] in
the query, we find the block ' of ms that con-
tains the i-th one-bit, the block j’ that contains
the j-th one-bit, and we query the RMQ data
structure on the range of blocks i + 1..5' — 1
(if it is not empty): this returns the index of
a block with largest value, thus we perform a
linear scan of the returned block, as well as
of the suffix of block i’ and of the prefix of
block j' (if any). We implement this approach
using the rmg-succinct_sct and bit_vector
data structures from the SDSL library [18].
For ranges i..j approximately equal to two
blocks or larger, this method allows answering
a range-max query in the same time as scan-
ning two full blocks and querying the RMQ
(see Figure 4); for shorter ranges, it takes the
same time as a linear scan of the range. In
practice, when the query is the human genome
and the block size is, say, 1024 bits, we can
answer arbitrary range-max queries in a few
milliseconds using just two megabytes for the
RMQ and 12 megabytes for the precomputed
maximum of each block (if we do not want
to compute it on the fly). Other space/time

4Clearly the maximum of each block is assumed by
an informative position defined in Section 4.1, thus it
suffices to consider just those during construction.

Page 13

https://doi.org/10.1101/2021.10.05.463202
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.10.05.463202; this version posted October 7, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY-ND 4.0 International license.

tradeoffs are possible, but we omit a detailed
analysis for brevity.

After taking care of some details, this ap-
proach can be applied to compressed versions
of the ms bitvector as well: our implementation
supports RRR and run-length encoding (RLE)
using the rrr_vector and RLEVector data
structures, from SDSL and from the RLCSA
code by [38], respectively. During a scan, issu-
ing one access operation for every bit is clearly
suboptimal: instead, in the uncompressed and
in the RRR-~compressed ms, we extract 64 bits
at a time and we look up every byte in a pre-
computed table. This gives speedups between
2 and 8, depending on dataset and range size
(see Figure 20 in the supplement). In the RLE-
compressed ms we process one run at a time,
and in very similar strings scanning becomes
from a hundred to a thousand times faster than
accessing every bit, or more. Overall, scanning
the RLE-compressed bitvector of very similar
strings processing one run at a time, is approxi-
mately ten times faster than scanning the cor-
responding uncompressed bitvector processing
64 bits at a time (see Figure 21 in the supple-
ment). Thus, if the target application is not
interested in MS values below some threshold,
one might swap the uncompressed bitvector
with one of the permuted and RLE-compressed
variants described in Section 4, and this might
speed up range-max queries at no cost.

As customary, by recurring on the output
of RMQ queries one can report all blocks in
the range with maximum MS value, or all
blocks with MS value at least 7, in linear time
in the size of the output. Setting the block
size to log|S| gives an RMQ data structure
of O(]S|/1og|S]) bits, and it allows replacing
the linear scan of a block with a constant-time
lookup from a table of o(|S|) bits in which we
store the relative location of a largest value in-
side each block. We use the RMQ to detect
all blocks in the range that contain at least
one large value, and we use lookups from an-
other table of o(]S|) bits (which stores offsets
between one-bits with MS value at least 7) to

report all locations with MS value at least 7 in
linear time on their number.

The optimized scanning can be applied
to range-sum queries as well, with similar
speedups (see Figure 21 in the supplement).
To implement a range-sum query [¢..j] over an
arbitrary range, we just store the prefix sums
that correspond to the last one-bit in every
block, and we scan the two blocks that contain
the one-bit that corresponds to ¢ and the one-
bit that corresponds to j. Scanning can also
be used to implement other primitives in ana-
lytics, like plotting all MS values in a range or
their histogram, computing the position k of a
longest interval [k..k 4+ MS[k] — 1] that contains
[i..7], or finding all windows of fixed length &
inside [i..j] with maximum sum.

Acknowledgements

We thank Giorgio Vinciguerra for help with
the software by [5], and Massimiliano Rossi
and Dominik Koeppl for help with the soft-
ware by [6].

References

[1] Omar Ahmed, Massimiliano Rossi, Sam
Kovaka, Michael C Schatz, Travis Gagie,
Christina Boucher, and Ben Langmead.
Pan-genomic matching statistics for tar-
geted Nanopore sequencing. iScience,
page 102696, 2021.

[2] Alberto Apostolico, Concettina Guerra,
Gad M. Landau, and Cinzia Pizzi. Se-
quence similarity measures based on
bounded Hamming distance. Theoretical
Computer Science, 638:76-90, 2016.

[3] Djamal Belazzougui and Fabio Cunial.
Indexed matching statistics and shortest
unique substrings. In International Sym-
posium on String Processing and Informa-
tion Retrieval, pages 179-190. Springer,
2014.

Page 14

https://doi.org/10.1101/2021.10.05.463202
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.10.05.463202; this version posted October 7, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY-ND 4.0 International license.

261
2,039
131,061

le+05-

1,048,577
2,097,128

B = 1e6
673 B =5e5
338

1le+03-

B = 5e4
38

le+01-
B <1024

' ' '
le+02 1le+05 1le+08

Figure 4: Running time (vertical axis, mil-
liseconds) as a function of range size (hori-
zontal axis) in range-max queries. Diagonal
line: baseline, non-optimized scanning of the
bit_vector data structure from SDSL, with-
out an index. Curves with plateaus: scanning
combined with an RMQ index for several set-
tings of block size (indicated by B). Every
point is the average of 20 random queries of the
same size. Vertical dashed lines: query sizes
that are approximately equal to two blocks of
the ms bitvector (the label of a vertical line is
the average size in bits of the query range when
mapped to the bitvector). Dataset: Homo
sapiens and Mus musculus genomes. Similar
trends appear for pairs of genomes from hu-
man individuals.

[4] Djamal Belazzougui, Fabio Cunial, and
Olgert Denas. Fast matching statistics
in small space. In Proceedings of the
17th International Symposium on Exper-
imental Algorithms (SEA 2018), volume
103. Schloss Dagstuhl-Leibniz-Zentrum
fuer Informatik, 2018.

[5] Antonio Boffa, Paolo Ferragina, and Gior-
gio Vinciguerra. A “learned” approach
to quicken and compress rank/select dic-
tionaries. In 2021 Proceedings of the
Workshop on Algorithm Engineering and

[10]

[11]

[12]

[13]

Ezperiments (ALENEX), pages 46-59.
SIAM, 2021.

Christina Boucher, Travis Gagie, I To-
mohiro, Dominik K&ppl, Ben Langmead,
Giovanni Manzini, Gonzalo Navarro, Ale-
jandro Pacheco, and Massimiliano Rossi.
PHONI: Streamed matching statistics
with multi-genome references. In 2021
Data Compression Conference (DCC),
pages 193-202. IEEE, 2021.

Giuseppa Castiglione, Sabrina Mantaci,
and Antonio Restivo. Some investigations
on similarity measures based on absent
words. Fundamenta Informaticae, 171(1-
4):97-112, 2020.

Eyal Cohen and Benny Chor. Detecting
phylogenetic signals in eukaryotic whole
genome sequences. Journal of Computa-
tional Biology, 19(8):945-956, 2012.

Fabio Cunial, Jarno Alanko, and Dja-
mal Belazzougui. A framework for space-
efficient variable-order markov models.
Bioinformatics, 35(22):4607-4616, 2019.

Mirjana Domazet-Loso and Bernhard
Haubold. Efficient estimation of pairwise
distances between genomes. Bioinformat-
ics, 25(24):3221-3227, 20009.

Mirjana Domazet-LoSso and Bernhard
Haubold. Alignment-free detection of hor-
izontal gene transfer between closely re-
lated bacterial genomes. Mobile genetic
elements, 1(3):230-235, 2011.

Mirjana Domazet-Loso and Bernhard
Haubold. Alignment-free detection of lo-
cal similarity among viral and bacterial
genomes. Bioinformatics, 27(11):1466—
1472, 2011.

Andrzej Ehrenfeucht and David Haussler.
A new distance metric on strings com-

putable in linear time. Discrete Applied
Mathematics, 20(3):191-203, 1988.

Page 15

https://doi.org/10.1101/2021.10.05.463202
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.10.05.463202; this version posted October 7, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

[14]

[16]

[17]

[18]

[19]

available under aCC-BY-ND 4.0 International license.

Shaohong Feng, Josefin Stiller, Yuan
Deng, Joel Armstrong, Qi Fang, An-
drew Hart Reeve, Duo Xie, Guangji Chen,
Chunxue Guo, Brant C Faircloth, et al.
Dense sampling of bird diversity increases
power of comparative genomics. Nature,
587(7833):252-257, 2020.

Johannes Fischer, Dominik Ko6ppl, and
Florian Kurpicz. On the benefit of merg-
ing suffix array intervals for parallel pat-
tern matching. In 27th Annual Sympo-
sium on Combinatorial Pattern Matching,
CPM 2016, June 27-29, 2016, Tel Aviv,
Israel, pages 26:1-26:11, 2016.

Giulio Formenti, Arang Rhie, Jennifer
Balacco, Bettina Haase, Jacquelynq
Mountcastle, Olivier Fedrigo, Samara
Brown, Marco Capodiferro, Farooq O
Al-Ajli, Roberto Ambrosini, et al
Complete vertebrate mitogenomes re-
veal widespread gene duplications and
repeats. bioRxiv, 2020.

Fabio Garofalo, Giovanna Rosone,
Marinella Sciortino, and Davide Verzotto.
The colored longest common prefix
array computed via sequential scans.
In International Symposium on String
Processing and Information Retrieval,
pages 153-167. Springer, 2018.

Simon Gog, Timo Beller, Alistair Moffat,
and Matthias Petri. From theory to prac-
tice: plug and play with succinct data
structures. In 13th International Sympo-
sium on Ezperimental Algorithms, (SEA
2014), pages 326-337, 2014.

Bernhard Haubold, Linda Krause,
Thomas Horn, and Peter Pfaffelhuber.
An alignment-free test for recombination.
Bioinformatics, 29(24):3121-3127, 2013.

Bernhard Haubold and Peter Pfaffelhu-
ber. Alignment-free population genomics:

[21]

[22]

23]

[24]

[25]

[26]

[27]

[28]

an efficient estimator of sequence diver-
sity. G3: Genes— Genomes— Genetics,
2(8):883-889, 2012.

Bernhard Haubold, Peter Pfaffelhuber,
Mirjana Domazet-Loso, and Thomas
Wiehe. Estimating mutation distances
from unaligned genomes. Journal
of Computational Biology, 16(10):1487—
1500, 2009.

Bernhard Haubold, Nora Pierstorff,
Friedrich Moller, and Thomas Wiehe.
Genome comparison without alignment
using shortest unique substrings. BMC
Bioinformatics, 6(1):123, 2005.

Bernhard Haubold, Floyd A Reed, and
Peter Pfaffelhuber. Alignment-free esti-
mation of nucleotide diversity. Bioinfor-
matics, 27(4):449-455, 2011.

Bernhard Haubold and Thomas Wiehe.
How repetitive are genomes? BMC Bioin-
formatics, 7(1):1-10, 2006.

Nikolai Hecker and Michael Hiller. A
genome alignment of 120 mammals high-
lights ultraconserved element variability

and placenta-associated enhancers. Giga-
Science, 9(1):giz159, 2020.

David Jebb, Zixia Huang, Martin Pippel,
Graham M Hughes, Ksenia Lavrichenko,
Paolo Devanna, Sylke Winkler, Lars S
Jermiin, Emilia C Skirmuntt, Aris Kat-
zourakis, et al. Six reference-quality
genomes reveal evolution of bat adapta-
tions. Nature, 583(7817):578-584, 2020.

Chris-Andre Leimeister and Burkhard
Morgenstern. Kmacs: the k-mismatch
average common substring approach

to alignment-free sequence comparison.
Bioinformatics, 30(14):2000-2008, 2014.

Gonzalo Navarro and Kunihiko Sadakane.
Fully functional static and dynamic suc-
cinct trees. ACM Transactions on Algo-
rithms (TALG), 10(3):16, 2014.

Page 16

https://doi.org/10.1101/2021.10.05.463202
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.10.05.463202; this version posted October 7, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

[29]

[33]

available under aCC-BY-ND 4.0 International license.

Enno Ohlebusch, Simon Gog, and Adrian
Kiigel. Computing matching statistics
and maximal exact matches on com-
pressed full-text indexes. In SPIRFE, pages
347-358, 2010.

Cinzia Pizzi. Missmax: alignment-free
sequence comparison with mismatches
through filtering and heuristics. Algo-
rithms for Molecular Biology, 11(1):6,
2016.

Lianrong Pu, Yu Lin, and Pavel A
Pevzner. Detection and analysis of ancient
segmental duplications in mammalian
genomes. Genome research, 28(6):901-
909, 2018.

Sven Rahmann. Fast and sensitive probe
selection for dna chips using jumps in
matching statistics. In Computational
Systems Bioinformatics. CSB2003. Pro-
ceedings of the 2003 IEEE Bioinformat-
ics Conference. CSB2003, pages 57-64.
IEEE, 2003.

Rajeev Raman, Venkatesh Raman, and
Srinivasa Rao Satti. Succinct indexable
dictionaries with applications to encod-
ing k-ary trees, prefix sums and multi-
sets. ACM Transactions on Algorithms
(TALG), 3(4):43, 2007.

Arang Rhie et al. Towards complete and
error-free genome assemblies of all verte-
brate species. bioRziv, 2020.

Kunihiko Sadakane. Compressed suffix
trees with full functionality. Theory of
Computing Systems, 41(4):589-607, 2007.

Kunihiko Sadakane and Gonzalo Navarro.
Fully-functional succinct trees. In Pro-
ceedings of the twenty-first annual ACM-
SIAM symposium on Discrete Algorithms,
pages 134-149. STAM, 2010.

Aitor Serres Armero et al. A comparative
genomics multitool for scientific discovery

[38]

[43]

and conservation. Nature, 587(7833):240,
2020.

Jouni Sirén. Compressed suffix arrays for
massive data. In International Symposium
on String Processing and Information Re-
trieval, pages 63—74. Springer, 2009.

Emma C Teeling, Sonja C Vernes,
Liliana M Dévalos, David A Ray,
M Thomas P Gilbert, Eugene Myers,
Bat1lK Consortium, et al. Bat biology,
genomes, and the Bat1K project: to gen-
erate chromosome-level genomes for all
living bat species. 2018.

Sharma V Thankachan, Alberto Apos-
tolico, and Srinivas Aluru. A provably ef-
ficient algorithm for the k-mismatch aver-
age common substring problem. Journal
of Computational Biology, 23(6):472-482,
2016.

Sharma V. Thankachan, Sriram P. Chock-
alingam, Yongchao Liu, Ambujam Kr-
ishnan, and Srinivas Aluru. A greedy
alignment-free distance estimator for phy-
logenetic inference. BMC' Bioinformatics,
18(8):238, 2017.

Esko Ukkonen. Approximate string-
matching with ¢-grams and maximal
matches. Theoretical computer science,
92(1):191-211, 1992.

Igor Ulitsky, David Burstein, Tamir
Tuller, and Benny Chor. The average
common substring approach to phyloge-
nomic reconstruction. Journal of Compu-
tational Biology, 13(2):336-350, 2006.

Guojie Zhang, Cai Li, Qiye Li, Bo Li,
Denis M Larkin, Chul Lee, Jay F Storz,
Agostinho Antunes, Matthew J Green-
wold, Robert W Meredith, et al. Compar-
ative genomics reveals insights into avian
genome evolution and adaptation. Sci-
ence, 346(6215):1311-1320, 2014.

Page 17

https://doi.org/10.1101/2021.10.05.463202
http://creativecommons.org/licenses/by-nd/4.0/

