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Abstract 

Effective human movement requires the coordinated participation of the whole musculoskeletal 

system. Here we propose to represent the human body movements as a network (that we named 

“kinectome”), where nodes are body parts, and edges are defined as the correlations of the 

accelerations between each pair of body parts during gait. We apply this framework in healthy 

individuals and patients with Parkinson’s disease (PD). The network dynamics in Parkinson’s 

display high variability, as conveyed by the high variance and the modular structure in the patients’ 

kinectomes. Furthermore, our analysis identified a set of anatomical elements that are specifically 

related to the balance impairment in PD. Furthermore, each participant could be identified based 

on its kinectome patterns, akin to a “fingerprint” of movement, confirming that our approach 

captures relevant features of gait. We hope that applying network approaches to human kinematics 

yields new insights to characterize human movement. 
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Introduction 

Human voluntary movement requires spatially and temporally coordinated activations of specific 

muscular groups (1, 2), resulting in complex patterns, whose description requires taking into 

account a large number of interactions concurrently (3). Such patterns are fine-tuned, and small 

changes may lead to significant effects (4). As an example, the upright posture requires extremely 

refined control mechanisms in order to keep balance during gait (5, 6). Among such mechanisms, 

the different musculoskeletal segments developed hierarchical relationships (7). Therefore, an 

accurate characterization of movement requires precise measurements and appropriate 

mathematical methods, in order to capture small but physiologically relevant changes in movement 

patterns. 

To date, human movement, and notably gait, has been thoroughly studied focusing on specific 

body elements, or summarising multiple synergies into few synthetic parameters (8–11), that often 

describe the overall movement rather than the complex patterns of interactions that generated it. 

Indeed, since the human body is highly connected, whole-body interactions are needed to provide 

a comprehensive account of the complex movement dynamics (12, 13), on top of the fixed 

musculoskeletal structure. To overcome this limitation, network science, including graph theory 

(14), may provide useful tools to describe such complex patterns. Indeed, in the last decades, 

network science has been a major tool in exploring complex systems, and has allowed us to 

effectively represent them (15). Using the network science viewpoint, we can represent anatomical 

elements as nodes, and their relationships throughout movements as edges, defining the “network 

of human movement”. 

Recently, the first applications of network analysis to the study of the human body movement 

proved successful. Utilizing electromyography, Boonstra et al analysed the leg muscles network, 

highlighting the presence of lower and higher frequency components, related to between and 

within legs connectivity, respectively (16). The authors suggested that network analysis may be 

suitable to study the motor system also in clinical conditions. Moreover, a combined 

musculoskeletal network structure was investigated by Kerkman et al., which examined in depth 

the different frequency-specific networks during postural control (17). The study showed that the 

examined network presented frequency-specific relationships with the synaptic input to motor 

neurons. Yet, despite these first efforts in bridging the gap between network and motor sciences, to 

date there is no comprehensive description of the kinematics of movement. 

Here, we set out to identify the large-scale characteristics of the human gait. Indeed, human 

locomotion requires the coordination of the whole body, and cannot be accounted for by the lower 

limbs alone (18, 19). Hence, we considered the whole body as an integrated and synergistic 

system, whose individual elements are in a constant and reciprocal biomechanical relationship, 

constrained by the individual anatomical characteristics. To this end, we performed a three-
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dimensional motion analysis using a stereophotogrammetric system, which is the gold standard for 

quantitative analysis of movement (20), and widely applied for the assessment of motor skills in 

health and disease (10, 21–24). Specifically, we captured the position of reflective markers applied 

on specific bone reference points during gait. Each bone marker was considered as a node, and 

the edges linking these nodes were defined by the covariance of the acceleration and jerk (i.e., the 

first derivative of acceleration with respect to time) between each pair of bone markers. We name 

the resulting network the human “kinectome”.  

In this work, we explore the features of the human kinectome in a cohort of healthy subjects (HS). 

Furthermore, in order to explore the applicability of our framework to a clinical setup, we compared 

the kinectomes of individuals affected by Parkinson’s disease (PD), a neurodegenerative disorder 

which disrupts the motor patterns of the patient (25), to those of a group of matched healthy 

controls (HC). We hypothesized that PD patients would be less capable of maintaining the 

(presumably) optimal motor strategy seen in the HC. According to this hypothesis, we first explored 

the structure of the kinectomes, expecting a dysregulated (i.e., more variable) organisation in 

patients compared with controls. Secondly, to test the reliability of the kinectome in health and 

disease, we performed an identifiability (26) analysis, in order to check whether we could identify 

subjects by relying on their kinectomes, similarly to a “motion fingerprint”. This idea came from 

recent evidence that a dysregulated activity would make identifiability harder in patients (27). 

Finally, to check the clinical validity of our framework, we related nodal topological features of the 

kinectome to the clinical disability, measured using the Unified Parkinson's Disease Rating Scale 

part III (UPDRS) (28), and with the stability of gait, measured with the Trunk Displacement Index 

(TDI) (29). 

 

Results 

We investigated the covariance matrices of the motor patterns adopted during gait, i.e., the 

kinectomes (Fig. 1), constructed from the acceleration and jerk time series in the mediolateral and 

anteroposterior axes, in three groups: healthy individuals (HS), and subjects affected by PD (PD) 

and matched healthy controls (HC). Kinematic time series were collected from bone markers 

applied on the skin of the participants (Fig. 1A), through a stereophotogrammetric system. We 

aimed to test the hypothesis that kinectomes could serve as a global descriptor of human gait 

kinematics, both in health and disease. 
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Figure 1. Scheme of kinectome analysis. 

(A) Markers positions on the bone landmarks. Acceleration and jerk time series are computed based on the positions of 

the markers during the gait cycle, recorded by a stereophotogrammetric system. (B) Kinectomes: the covariance matrix 

computed correlating each pair of the bone markers time series; different kinectomes were built, based on the 

mediolateral and anteroposterior axis, separately taking into account the accelerations and the jerks during gait. (C) The 

functional network modularity was investigated through the Louvain method, an algorithm employed for community 

detection. (D) Schematic illustration of the fingerprint analysis. Two kinectomes (named test and retest) have been 

computed for each subject. The Identifiability matrix is obtained correlating the test and retest kinectomes of each 

subject. The main diagonal displays self-identifiability. (E) Graphical representation of the bone markers network used for 

the topological analysis. Note that the bone markers positioned on the back of the body are not visible. 

 

Kinectomes characteristics 

We started from a group-level analysis comparing the average kinectomes of healthy subjects and 

PD patients. Specifically, after building subject-specific kinectomes (Fig. 2A), we averaged them 

within each group, obtaining the group-specific (i.e., HS, HC, PD) kinectomes in which each 

element was the group-averaged correlations between the time-series derived from two bone 

markers during gait. Then, we compared the average values of the kinectomes in HC and PD 
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patients. The analysis was performed for both the anteroposterior and mediolateral axes, and for 

both acceleration and jerk-based time series (Fig. 2B). However, neither acceleration nor jerk 

kinectomes highlighted any significant difference between the two groups. That is, the acceleration 

and jerk patterns of the two groups were similar to each other. 

 

 

Figure 2. From bones to kinectomes 

(A) Illustration of the bone markers position on the kinectome. Each bone marker kinematic information is used as entry 

data for both rows and columns. The elements of the kinectome stem from the pairwise interaction between bone 

markers. (B) Acceleration and jerk kinectomes averaged among healthy subjects (HS) in the mediolateral (ML) and the 

anteroposterior (AP) axes. The interactions between body elements varies according to both the specific axis and 

measurement (acceleration or jerk) taken into account. 

 

Next, we checked the kinectomes’ within-group variability, by evaluating the standard deviation of 

kinectomes across HC and PD patients (Fig. 3). Notably, the variability in the whole-body 

movement patterns between the two groups showed higher standard deviation among PD patients 

in the anteroposterior acceleration (p = 0.0002, Bonferroni cut-off p < 0.0125), compared to the HC 
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group. Figure 3 shows the considerable variability expressed by the PD patients in the 

anteroposterior acceleration. This suggests augmented variability in movement patterns belonging 

to the PD population. 

 

 

Figure 3. Within group heterogeneity of the kinectomes 

Standard deviations of the acceleration and jerk kinectomes of the three groups (healthy subjects (HS), healthy controls 

(HC), Parkinson’s patients (PD). Both mediolateral (ML) and anteroposterior (AP) axes are shown. Higher values (i.e., 

yellow entries in the matrices) indicate greater heterogeneity. 

 

Modularity analysis 

We then set out to provide a principled description of the kinectomes’ topological structure, by 

investigating the emerging modular structure of the kinectomes (see Methods for further details). 

To this end, we computed the allegiance matrices (30), which contain the probability of any two 

bone markers being clustered in the same community across individuals. This means that two or 

more bone markers belonging to the same cluster refer to body parts which are likely to coordinate 

themselves toward the same motor pattern. Figure 4 shows that the HS and HC groups share the 
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same communities, while the PD group features a different clustering pattern. Specifically, in the 

healthy groups, the ML allegiance matrix showed three communities: 1) upper trunk and arms, 2) 

head, forearms and pelvis, 3) legs and feet; in the PD group, the same matrix showed four different 

communities: 1) upper trunk and right upper arm, 2) head, left upper arm, forearms and pelvis 

(upper portion), 3) legs and feet, 4) pelvis (lower portion). The AP allegiance matrix in the healthy 

groups highlighted three communities: 1) head, upper trunk and pelvis, 2) left leg and foot, and 

right upper arm and forearm, 3) right leg and foot, and left upper arm and forearm; in the PD group, 

the same matrix identified four communities: 1) head and upper trunk (upper portion), 2) left leg 

and foot, and right upper arm, 3) upper trunk (lower portion), pelvis and right forearm, 4) right leg 

and left upper arm and forearm. 

This approach allowed us to observe how the body kinematic is organised during gait, both in 

health and disease. It is noteworthy that the algorithm calculating the communities split the body 

parts symmetrically in healthy individuals, while the same result was not achieved for the PD 

patients, which might be related with the typically asymmetrical motor impairment in PD. 

 

 

Figure 4. Kinematic modular organization of the kinectomes 

Allegiance matrices for cluster analysis, based on the Louvain method and stabilised through 100 iterations. The 

algorithm automatically defines which body parts belong to the same community, suggesting a functional relationship 

among those elements. Each matrix includes clustering information from both accelerations and jerks. Healthy subjects 

(HS) and healthy controls (HC) share the same communities in both mediolateral and anteroposterior axes. Parkinson’s 

disease (PD) patients’ matrices show a different structural organisation. Body parts depicted with the same colour belong 

to the same functional community. 
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Fingerprint of human movement 

Can we identify humans based on their motion patterns? In other words, is there a “motion 

fingerprint” inherent to the kinectomes? To answer this question, we tried to identify individuals 

through their kinectomes, obtained from different gait sessions recorded during the same day. To 

this aim, we started by building an identifiability matrix based on kinectomes (26). In the 

identifiability matrix, the rows refer to kinectomes of the first recording (Test kinectomes in Fig. 1D), 

and the entries on the columns refer to the kinectomes of the second recording (Retest kinectomes 

in Fig. 1D). The entries of the Identifiability matrix are Pearson's correlation coefficients between 

the kinectomes derived from the first and the second recording sessions. Briefly, from the 

Identifiability matrix it was possible to calculate three parameters: I-self (self-similarity across the 

two sessions), I-others (similarity with other individuals within the group), and I-diff (differential 

identifiability), obtained subtracting the I-other from the I-self. Figure 5A displays the main results of 

the fingerprint analysis, focusing on the jerk-based identifiability matrix (see Fig. S2 for acceleration 

kinectomes identifiability). The identifiability matrix was firstly evaluated in the healthy population; 

thereafter, the same matrix was assessed in PD and matched control populations. AP and ML jerk 

resulted to be the best quantities for the gait identifiability (highest I-diff values) and this result is 

stable across the three groups. Specifically, the ML Jerk in the HS group showed an I-diff equal to 

37.8% (p < 0.0001), with a success rate (SR) to identify the subjects equal to 99.87%; AP jerk 

showed an I-diff and a SR rate equivalent to 25.89% and 99.34% respectively. This approach 

made it possible to recognise individuals from gait, relying on approximately two seconds of 

recording. Furthermore, these results indicate that our approach nearly always correctly identifies 

our participants.  

Comparing PD and HC groups (Bonferroni cut-off p < 0.0042), no difference was found in the I-self 

and I-diff. However, with respect to the I-others scores, the HC group showed higher values 

compared to PD patients (Fig. 5B) in AP acceleration (p < 0.0001), ML jerk (p < 0.0001) and AP 

jerk (p < 0.0001). Hence, the PD patients displayed more heterogeneous motor patterns with 

respect to the HC groups. However, concerning the identifiability matrices, both groups expressed 

I-diff and SR values similar to the HS group (PD ML Jerk: I-diff = 37.55%; SR = 99.8%. PD AP 

Jerk: I-diff = 28.11%; SR = 99.8%. HC ML Jerk: I-diff = 37.8%; SR = 99.41%. PD AP Jerk: I-diff = 

25.52%; SR = 99.8%). This result highlighted that an almost complete recognition is possible for 

PD patients as well as for the controls. 
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Figure 5. Motion fingerprinting - Identifiability based on kinectomes 

(A) Identifiability matrices of healthy subjects (HS), healthy controls (HC) and Parkinson’s disease (PD) patients, based 

on jerk kinectomes in mediolateral (ML) and anteroposterior (AP) axes. Highest values within the main diagonal convey 

successful subject identification. (B) Box plot for the comparison of the I-others between HC and PD. Low I-others values 

indicate less within-group similarity among the subjects. The box represents data from the 25 to the 75th percentiles; the 

horizontal line shows the median; error lines indicate the 10th and 90th percentiles. ‘*’ represents significant Bonferroni-

corrected p-values. 

 

Furthermore, we asked how this fingerprint analysis would perform when considering gait 

recordings performed on different days? To do this, for 11 participants we also used a second gait 

acquisition at a temporal distance (from the first acquisition) ranging from 19 to 164 days. Despite 

a slight decrease, the I-self, I-others, and I-diff scores did not show any statistical difference 

between the same-time gait recordings and the long-time gait recording. Moreover, even 

calculating the fingerprint between kinectomes related to the same subjects in two different time 

points, the ML Jerk showed an I-diff value equal to 28.52% and a SR equal to 98.18%; the AP Jerk 

identifiability displayed an I-diff equivalent to 18.85% and a SR equal to 96.36% (see Fig.S3). The 

analysis confirmed that gait fingerprinting is a reliable and stable feature that is maintained over 

time. 

Body network topology 

We performed a topological analysis to examine the human movement network characteristics in a 

clinical setting. To this end, based on the kinectome, we computed the weighted degree (the 

weighted sum of all edges incident upon a given node) of each bone marker. The comparison 
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between PD and HC (Bonferroni cut-off p < 0.0006) networks showed a significant difference in the 

degree of both right (p = 0.0005) and left (p = 0.0005) forearms in AP acceleration, with the HC 

group showing higher values compared to PD patients (Fig. 6A). Furthermore, we correlated the 

degree values with the Trunk displacement index (TDI), a gait stability index that was validated in 

PD in a previous study (29). Figure 6B shows the correlations between the TDI and the ML 

acceleration degree of C7 vertebrae (p = 0.0003; r = 0.69), T10 vertebrae (p < 0.0001; r = 0.89), 

left shoulder (p = 0.0003; r = 0.69), right shoulder (p = 0.0003; r = 0.69) and right elbow (p = 

0.0005; r = 0.67). UPDRS scores showed a significant trend in the correlation with the ML 

acceleration degree of T10 vertebrae (p = 0.0007; r = 0.65). Analysing the topology of the human 

kinematic allowed us to highlight the main differences between PD patients and matched controls. 

Indeed, considering each bone marker as a node of a network, it was possible to obtain 

information on specific body parts, without losing the biomechanical meaning that such an element 

represents for the whole-body. 

 

Figure 6. Body network examination 

(A) Results from the nodal comparison between healthy controls (HC) and individuals affected by Parkinson’s disease 

(PD). The nodal degree of both wrists is lower in patients compared to controls. (B) Correlations between motor indices 

(trunk displacement index (TDI), a biomechanical index of stability, and Unified Parkinson's Disease Rating Scale part III 

(UPDRS), a clinical evaluation score) and bone markers degree values. Note that most of the anatomical elements which 

showed a significant correlation with the instability belong to the axial component of the human body, which is commonly 

impaired in Parkinson’s disease. ‘*’ represents significant Bonferroni-corrected p-values. 
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Discussion 

In this paper we propose a novel approach to analyse human movement, based on building and 

investigating the mathematical structure conveying all the pairwise interactions occurring between 

different body segments during gait. To this end, we evaluated the covariance matrix of the 

accelerations of all the segments, here referred to as “kinectome”. Firstly, we showed that the 

kinectome provides a thorough description of the gait that distinguishes population-specific 

features (Fig. 2-3). Moreover, the kinectome captures symmetries in the modularity of the 

kinectome that are disrupted in PD patients (Fig. 4). Furthermore, through the kinectome analysis, 

it is possible to identify subjects based on their gait movement data obtained from two-second-long 

recordings (Fig. 5). Finally, the topological analysis allows us to explore the role of individual 

biomechanical elements of the human kinematic network. These findings confirm the utility of the 

kinectome in conveying the complex dynamics arising during human movement. 

The presence of groups of functionally related body parts emerged naturally from the analysis of 

the kinectome, showing that the covariance of accelerations conveys biomechanically meaningful 

information. Furthermore, these patterns are specific to the clinical picture, allowing the distinction 

between healthy individuals and patients with PD. Notably, the best distinction between the groups 

was obtained using the variance of the acceleration (Fig. 3), whereby patients have much more 

variability as compared to the control group, and especially so with regard to the upper body, along 

the anteroposterior axis. We speculate that in the healthy conditions patterns of movements are 

optimally constrained while the neurological impairment in PD compromises the motor control, with 

more variable, dysregulated gait patterns appearing. 

From the biomechanical perspective, the clustering analysis of the kinectome reveals the large-

scale functional organization of the body segments (Fig. 4). The mediolateral allegiance matrix 

(that takes into account information on both the acceleration and the jerk consensus matrices – 

see methods for further details) of all healthy subjects (i.e., both the healthy group and the control 

group) showed strong coupling between the upper arms and the upper trunk, while the head, the 

pelvis and the forearms formed a separate functional module. Finally, the legs and the feet formed 

a further module. In particular, the sway of the trunk is strictly regulated and shows, in the healthy, 

a small range of motion during gait. This is a computationally parsimonious way to keep balance 

while the whole-body oscillates during gait, as well as a way to stabilize the head (31, 32). 

Furthermore, modularity analysis of the kinectome highlights the consensual accelerations among 

the head, the forearms, and the pelvis. The forearm might belong to this functional group since 

their mediolateral swing counterbalances the displacement of the centre of mass occurring during 

gait, thereby contributing to the maintenance of the vertical alignment (33). Moreover, the pelvis 

smoothens the movement of the COM (34), preventing a sharp drop toward the side of the 

swinging leg (35). Finally, the legs and the feet constitute a homogeneous community 
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characterized by remarkable stability across the mediolateral axis. The modularity structure that we 

described emerges from the kinectome of the healthy individuals (including both HS and HC 

groups), suggesting that it might be capturing the conserved features of the healthy gait. In fact, 

the modularity is invariably altered in PD patients. With regard to the PD allegiance ML matrix, the 

modules that were observed in the healthy are altered in PD, with the body movements appearing 

as more fragmented. Indeed, differently from the healthy model, in PD the left and right upper arms 

belong to two different modules, as well as the pelvis (where upper and lower pelvis do not belong 

to the same functional module). These alterations may be due to the postural abnormalities (25) 

and/or to the asymmetries (36) induced by the pathology. 

With regard to the AP axis, the allegiance matrix of the healthy groups showed three communities: 

the first one composed by the head, the upper trunk, and the pelvis; the second one encompassing 

the left leg and foot, and the right upper arm and forearm; the third community hinging on the right 

leg and foot, and the left upper arm and forearm. In this case, the modularity analysis separated 

the passenger and the locomotor units (37). The former is composed of the head, the trunk 

(including the pelvis) and the arms, the latter involves the lower limbs. However, our analysis 

grouped together the accelerations of the arms and the legs, characterizing two separate 

communities encompassing contralateral arms and legs. This separation is coherent with the fact 

that arms oscillate in anti-phase with respect to the contralateral legs (38). Interestingly, this linear 

pattern fails in PD, especially with respect to the trunk. In fact, the first community is composed of 

the head and the upper trunk, while the lower trunk and the pelvis belong to a separate community 

together with the right forearm. The two remaining communities constitute the anti-phased 

oscillations between contralateral arms and legs, as observed in the healthy groups. Once again, 

we can relate these disrupted patterns to the motor characteristics of parkinsonian patients. On the 

one hand, the asymmetry (36) may have caused the dysregulation of the acceleration of the right 

arm with respect to the healthy pattern. On the other hand, the axial rigidity, a semiological feature 

of the disease (39), does not allow the trunk to effectively relay multiple body parts. Hence, 

different subsections of the trunk remain entrained to more peripheral anatomical parts. In turn, this 

is captured by the fact that the trunk is split in different communities in patients, instead of being a 

coherent functional unit as seen in the HC group. Hence, the kinectomes allow us to identify 

features of gait that are shared by all healthy subjects and that are lost in PD patients. 

However, the kinectomes can be exploited further, as to identify subject-specific gait features, thus 

defining a “fingerprint” of the human gait. Our analysis demonstrated that the correlations of the 

jerk (change in acceleration) of pairs of body segments form a unique pattern for each individual. In 

fact, using (approximately) two-seconds long acquisitions as test and retest sessions, we were 

able to identify subjects with an accuracy rate of 99% (Fig. 5A). PD patients also exhibited an 

identifiability rate similar to that of the controls. However, the similarity within the PD group (as 

measured by I-others) was lower than that within the control group (Fig. 5B). In other words, 
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controls are more similar to each other than PD patients are. Again, one might speculate that a 

correct motor control imposes strict constraints to the kinectome structure, which in turn produces 

more similar motion patterns. In a pathological condition such as PD, such control mechanisms 

would fail, the constraints on the gait pattern would be loosened and, hence, the patterns would 

become less similar to each other. 

The same experiment was reproduced in a smaller sample of healthy individuals where we 

identified subjects based on acquisitions performed at distant timepoints, up to five months apart. 

In this last case, despite a small decrease, the identification was successful even for individuals 

whose retest session was recorded after five months. This analysis was also based on two-

seconds of walking. Although this analysis is not addressed to forensic science, this outcome can 

offer new insight to this field and further investigations may enhance and refine this approach. In 

fact, while gait identification drew considerable attention, to date the results are not robust enough 

for forensic applications (40).  

Within the clinical framework, the conceptualisation of the human gait as a network encompassing 

the whole body, allows to quantify the contribution of single segments with respect to the large-

scale patterns of movements. In fact, when representing markers as nodes and correlations of 

accelerations as edges, the degree of the given node will convey its overall coordination with 

respect to the movement of the whole body. Using this approach, the forearms emerged as less 

coherent in PD patients during movement across the AP axis (Fig. 6A). This result might be 

capturing the reduced arm swing typical of PD (41). The reduction of the oscillations of the upper 

limbs during gait has been investigated as a possible early sign of the disease (42–44). Further 

longitudinal studies, focusing on topological analyses of the kinectome in patients with early PD, 

may explore the potential of this approach in diagnostics and assessment of therapeutic 

responsiveness. Furthermore, in PD patients, we found several correlations between instability 

(measured through TDI) and the degree (based on the kinectome on the mediolateral axis) of 

different elements of the passenger unit, with a main involvement of the upper trunk (Fig. 6B). 

These correlations show that the more PD patients were unstable, the more the accelerations of 

the upper trunk were coherent with those of the other body segments. Axial rigidity and postural 

abnormalities are typical features of PD that might reflect themselves into such “hyperconnected” 

patterns (45–47). Intuitively, a more rigid upper trunk would require increased oscillation of the 

upper body during gait to maintain posture. Furthermore, the ML acceleration degree of the T10 

vertebrae showed a significant trend in the correlation with the UPDRS score, once again 

highlighting the importance of the trunk rigidity in PD patients. 

It should be stressed that, while identifiability analysis showed interesting results, the testing at 

distant time points was performed on eleven subjects only. Hence, this part of the results is to be 

considered exploitative in nature, and requires replication in larger populations. Furthermore, this is 
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the first time that the kinectome is investigated. Hence, its ability to convey the individual clinical 

condition needs to be tested in samples including more PD patients, as well as both in different 

basal ganglia diseases and in nervous pathologies involving other systems (e.g., cerebellum, 

peripheral nerve or muscle). Methodologically, further analysis should be performed to explore the 

required number of bone markers for an optimal spatial resolution of the kinectome. Finally, in this 

work we only consider pairwise interactions, future work should also consider higher-order 

interactions (48). 

In conclusion, we introduced a new mathematical tool, the kinectome, to convey general gait 

patterns in humans, subject-specific motor features and, finally, features that are disease-specific. 

This approach revealed several potentially useful pieces of information. Movement fingerprinting 

may be further exploited for security purposes as well as to longitudinally monitor individual gait 

features. Using topological metrics we were able to localize some of the main changes occurring in 

PD patients. Further studies are necessary to investigate the clinical potential of the kinectome. 

Finally, the use of the kinectome analysis may be of help in both sport training and physiotherapy. 

We hope that our work will contribute to the development of mathematical approaches to describe 

human movements within the “kinectomics” framework, and toward the representation of human 

movement as a complex integrated system. 

 

Materials and Methods 

Participants 

Sixty healthy subjects including 38 males and 22 females were recruited (mean age 58.7 ± 12.7 

years). Exclusion criteria were the following: (a) Mini-Mental State Examination (MMSE) < 24 (49); 

(b) Frontal Assessment Battery (FAB) < 12 (50); (c) Beck Depression Inventory II (BDI-II) > 13 (51); 

neurological or psychiatric disorders; (e) intake of psychoactive drugs; (f) physical or medical 

conditions causing motor impairment. 

To test the validity of our methods in a clinical setting, we used the data of twenty-three patients 

(mean age 65.3 ± 11.6) affected by Parkinson’s disease and twenty-three healthy controls, 

matched for age, sex and education. The subjects included in this study are partially overlapping 

with those included in Troisi Lopez et al. (29). Parkinsonians were tested in off-medicament state. 

Inclusion criteria were: (a) Hoehn and Yahr (H&Y) score ≤ 3 while off-medicament (52); (b) disease 

duration < 10 years; (c) antiparkinsonian treatment at a stable dosage. All participants signed an 

informed consent in accordance with the declaration of Helsinki. The study was approved by the 

“Azienda Ospedaliera di Rilievo Nazionale A. Cardarelli'” Ethic Committee (protocol number: 

00019628). 
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Stereophotogrammetric acquisition 

The acquisitions were carried out in the Motion Analysis Laboratory of the University of Naples 

Parthenope. Gait data were recorded through a stereophotogrammetric system for motion analysis 

composed of eight infrared cameras (ProReflex Unit—Qualisys Inc., Gothenburg, Sweden), 

capturing (at 120 frame per second) the light reflected by 21 passive markers positioned on the 

naked skin of the participants. The markers were placed in correspondence of bone landmarks, 

based on a modified version of the Davis protocol (53). We asked the participants to walk in a 

straight path choosing their preferred walking speed. For each participant, two gait acquisitions 

were performed, each of which included one complete left and right gait cycle. A complete gait 

cycle is defined as starting with the heel touching the ground, and finishing with the next contact 

with the ground of the same heel. Eleven healthy participants underwent a second recording 

several days after the first one (ranging from 16 to 164 days), to test the reliability of the gait 

fingerprinting. Through the Qualisys Track Manager software we obtained the three-dimensional 

position of each bone marker during the gait cycle. Hence, we could calculate the time series for 

acceleration and jerk (the first derivative of acceleration with respect to time) of each bone marker. 

 

Introducing the kinectome 

To obtain the kinectome, we computed Pearson’s correlation coefficients between the bone 

markers’ time series (see also Fig. 1A - 1B), obtaining a covariance matrix. Specifically, we 

computed a kinectome for the bone markers’ acceleration and jerk separately as well as for two 

different movement directions (i.e., mediolateral and anteroposterior). Firstly, we explored the 

kinectome heterogeneity within and between groups (PD patients and controls), by comparing 

mean and standard deviations of the kinectomes. We then characterized the kinectomes utilizing 

graph-theoretical analyses, as detailed in the next sections. 

 

Modularity analysis 

Modularity is a measure of the strength of division of a network into modules or communities. 

Networks with high modularity have dense connections between the nodes within modules but 

sparse connections between nodes in different modules. We assessed the community structure 

(i.e., partition) of each group-averaged kinectome (anteroposterior and mediolateral, separately), in 

both healthy and PD patients, by using the Louvain method (54) for identifying communities in 

large networks. In order to improve the stability of the community detection procedure, we 

performed consensus clustering (55) out of a set of 100 partitions obtained with the Louvain 

method. The consensus clustering technique performs a search for a consensus partition, i.e., the 

partition that is most similar, on average, to all the input partitions (Fig. 1C). While the similarity can 
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be measured in several ways, in this work we chose the probability of co-occurrence of the nodes 

within a specific community (55), i.e. the allegiance matrix (30). Indeed, we computed the 

modularity of the allegiance matrix for each axial direction of movement. To do so, for each axial 

direction, a consensus matrix was built including acceleration and jerk at once, as to condense the 

information contained in both quantities. The aim was to identify, in a data-driven fashion, 

functional dynamical clusters within healthy and diseased kinectomes during gait.  

 

Fingerprint analysis 

Can we identify individuals based solely on their motion patterns, i.e., their kinectomes? To 

address this question, we took inspiration from previous studies on fingerprint in human functional 

brain connectomes extracted from fMRI and MEG data (26, 27). In a recent work (26), the authors 

defined a mathematical object known as identifiability matrix, which encodes the information about 

the self-similarity (I-self, main diagonal elements) of each subject with herself/himself, across the 

test/retest sessions, and the similarity of each subject with the others. In order to build an 

identifiability matrix based on kinectomes, we first considered two gait cycle registration for each 

individual, called test and retest respectively. We then obtained the identifiability matrix through 

Pearson’s correlation between test and retest of our subjects (Fig. 1D). The main diagonal of this 

matrix contains the similarity between two separate acquisitions of the same subject (self-similarity 

or I-self); the off-diagonal elements contain the similarity between each subject with the test or 

retest acquisition with respect to the other subjects (I-others). Furthermore, the difference between 

I-self and I-others, also known as differential identifiability (I-diff), provides a robust score of the 

overall fingerprinting assessment of a dataset. Finally, we estimated the success rate as the 

percentage of times in which an in-diagonal element coefficient was higher than the out-diagonal 

elements coefficients belonging to the row and column of the in-diagonal element taken into 

consideration. 

 

Topological analysis of the kinectome 

We represented the body as a network, where body parts are nodes and their correlations form the 

edges, obtaining a weighted undirected graph (Fig. 1E). For each graph, we estimated the 

weighted degree, a centrality parameter (15, 56). The degree was calculated as the sum of the 

absolute value of the edge weights for each node (57). 
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Statistics 

Statistical and data analysis were carried out in MATLAB 2020a. Significance of the between 

groups (PD and HC) differences in the kinectomes standard deviation, fingerprint values (I-self, I-

other, I-diff), and topological parameter (degree) were assessed through permutation testing, by 

randomly shuffling group labels 10000 times. At each permutation, the absolute value of the 

difference was computed, obtaining a distribution of the differences that are to be expected by 

chance alone (58). This distribution was compared to the observed differences to retrieve a 

statistical significance. Correlation analysis between nodal degree and motor scores was 

performed through the Spearman correlation test. The significance threshold was set at p < 0.05, 

and was Bonferroni corrected to adjust for multiple comparisons in each analysis. 
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