

Research Article

Dedicated chaperones coordinate co-translational regulation of ribosomal protein production with ribosome assembly to preserve proteostasis

Authors:

Benjamin Pillet¹, Alfonso Méndez-Godoy^{1, #}, Guillaume Murat^{1, #}, Sébastien Favre¹, Michael Stumpe^{1, 2}, Laurent Falquet^{1, 3}, and Dieter Kressler^{1*}

Affiliation:

¹ Unit of Biochemistry, Department of Biology, University of Fribourg, Fribourg, Switzerland

² Metabolomics and Proteomics Platform, Department of Biology, University of Fribourg, Fribourg, Switzerland

³ Swiss Institute of Bioinformatics, University of Fribourg, Fribourg, Switzerland

[#]These two authors contributed equally to this work.

*For correspondence: dieter.kressler@unifr.ch

1 **Abstract**

2 The biogenesis of eukaryotic ribosomes involves the ordered assembly of around 80 ribosomal proteins.
3 Supplying equimolar amounts of assembly-competent ribosomal proteins is complicated by their
4 aggregation propensity and the spatial separation of their location of synthesis and pre-ribosome
5 incorporation. Recent evidence has highlighted that dedicated chaperones protect individual,
6 unassembled ribosomal proteins on their path to the pre-ribosomal assembly site. Here, we show that
7 the co-translational recognition of Rpl3 and Rpl4 by their respective dedicated chaperone, Rrb1 or Acl4,
8 prevents the degradation of the encoding *RPL3* and *RPL4* mRNAs in the yeast *Saccharomyces*
9 *cerevisiae*. In both cases, negative regulation of mRNA levels occurs when the availability of the
10 dedicated chaperone is limited and the nascent ribosomal protein is instead accessible to a regulatory
11 machinery consisting of the nascent-polypeptide associated complex and the Caf130-associated Ccr4-
12 Not complex. Notably, deregulated expression of Rpl3 and Rpl4 leads to their massive aggregation and
13 a perturbation of overall proteostasis in cells lacking the E3 ubiquitin ligase Tom1. Taken together, we
14 have uncovered an unprecedented regulatory mechanism that adjusts the *de novo* synthesis of Rpl3 and
15 Rpl4 to their actual consumption during ribosome assembly and, thereby, protects cells from the
16 potentially detrimental effects of their surplus production.

17

1 **Introduction**

2 Ribosomes are the molecular machines that synthesize all cellular proteins from mRNA templates
3 (Melnikov *et al.*, 2012). Eukaryotic 80S ribosomes are made up of two unequal ribosomal subunits (r-
4 subunits): the small 40S and the large 60S r-subunit. In the yeast *Saccharomyces cerevisiae*, the 40S r-
5 subunit is composed of the 18S ribosomal RNA (rRNA) and 33 ribosomal proteins (r-proteins), while
6 the 60S r-subunit contains three rRNA species (25S, 5.8S, and 5S) and 46 r-proteins (Melnikov *et al.*,
7 2012). Accordingly, the making of ribosomes corresponds to a gigantic molecular jigsaw puzzle, which,
8 when accurately pieced together, results in the formation of translation-competent ribosomes. Our
9 current understanding of ribosome biogenesis is mostly derived from studying this multi-step assembly
10 process in the model organism *S. cerevisiae*. An exponentially growing yeast cell contains ~200'000
11 ribosomes and, with a generation time of 90 minutes, needs to produce more than 2'000 ribosomes per
12 minute; thus, requiring the synthesis of at least ~160'000 r-proteins per minute (Warner, 1999). Given
13 the enormous complexity of the process, it is not surprising that a plethora (>200) of mostly essential
14 biogenesis factors is involved to ensure its fast and faultless completion (Kressler *et al.*, 2010; Woolford
15 and Baserga, 2013; Kressler *et al.*, 2017; Peña *et al.*, 2017; Bassler and Hurt, 2019; Klinge and
16 Woolford, 2019). While atomic structures of eukaryotic ribosomes have already been obtained ten years
17 ago (Ben-Shem *et al.*, 2011; Klinge *et al.*, 2011; Rabl *et al.*, 2011), recent advances in cryo-EM have
18 now enabled to solve high-resolution structures of several distinct pre-ribosomal particles, thereby
19 starting to provide a detailed molecular view of ribosome assembly (Greber, 2016; Kressler *et al.*, 2017;
20 Peña *et al.*, 2017; Bassler and Hurt, 2019; Klinge and Woolford, 2019).

21 The early steps of ribosome synthesis take place in the nucleolus where the rDNA genes are
22 transcribed into precursor rRNAs (pre-rRNAs). Three of the four rRNAs (18S, 5.8S, and 25S) are
23 transcribed by RNA polymerase I (RNA Pol I) into a 35S pre-rRNA, which undergoes covalent
24 modifications and endo- and exonucleolytic cleavage reactions (Watkins and Bohnsack, 2012;
25 Fernández-Pevida *et al.*, 2015; Turowski and Tollervey, 2015), whereas the fourth rRNA (5S) is
26 transcribed as a pre-5S rRNA by RNA Pol III. The stepwise association of several biogenesis modules,
27 additional biogenesis factors, and selected small-subunit r-proteins with the nascent 35S pre-rRNA
28 leads to the formation of the 90S pre-ribosome. Then, endonucleolytic cleavage of the pre-rRNA
29 separates the two assembly paths and gives rise to the first pre-40S and pre-60S particles, which are,
30 upon further maturation, exported to the cytoplasm where they are converted into translation-competent
31 40S and 60S r-subunits (Kressler *et al.*, 2017; Peña *et al.*, 2017; Bassler and Hurt, 2019; Klinge and
32 Woolford, 2019).

33 To sustain optimal rates of ribosome assembly, each of the 79 r-proteins must be produced in an
34 assembly-competent amount that, at least, matches the abundance of the newly synthesized 35S pre-
35 rRNA. This enormous logistic task is complicated by the fact that 59 r-proteins are synthesized from
36 duplicated r-protein genes (RPGs) and that most primary RPG mRNA transcripts (102 of 138) contain

1 introns (Planta and Mager, 1998; Woolford and Baserga, 2013). As a first mechanism to ensure the
2 roughly equimolar supply of each r-protein, RPG transcription is regulated such that the output for each
3 of the 79 RPG mRNAs, regardless of whether derived from a single-copy or duplicated RPG, is within
4 a similar range (Zeevi *et al.*, 2011; Knight *et al.*, 2014). This co-regulation of the three different RPG
5 promoter types is mediated by the complementary action of the two TORC1-controlled transcription
6 factors Ifh1 and Sfp1, which are either mainly required for activation of category I and II (Ifh1) or
7 category III (Sfp1) promoters (Zencir *et al.*, 2020; Shore *et al.*, 2021). Moreover, RPG transcription is
8 also coordinated with RNA Pol I activity *via* Utp22-dependent sequestration of Ifh1 in the CURI
9 complex (Albert *et al.*, 2016). However, transcriptional harmonization is likely not sufficient because
10 the quantitative and qualitative production of r-proteins is influenced by additional parameters, such as
11 the stability and translatability of the different RPG mRNAs as well as the intrinsic stability and
12 aggregation propensity of each individual r-protein. Despite their difficult structural characteristics and
13 highly basic nature, which make them susceptible for aggregation (Jäkel *et al.*, 2002), r-proteins are
14 nevertheless, as shown in mammalian cells, continuously produced beyond their actual consumption in
15 ribosome assembly (Lam *et al.*, 2007). Apparently, cells can readily cope with a moderate excess of
16 unassembled r-proteins in the nucleus as these are selectively recognized and ubiquitinated by the
17 conserved E3 ubiquitin ligase Tom1 (ERISQ pathway) and subsequently degraded by the proteasome
18 (Sung *et al.*, 2016a; Sung *et al.*, 2016b). However, when orphan r-proteins are more excessively present,
19 owing to a severe perturbation of ribosome assembly, and start to aggregate, a stress response pathway,
20 termed RASTR or RPAS, is activated, which alleviates the proteostatic burden by upregulating Hsf1-
21 dependent target genes and downregulating RPG transcription (Albert *et al.*, 2019; Tye *et al.*, 2019).

22 In order to not unnecessarily strain cellular proteostasis under normal growth conditions, cells have
23 evolved general as well as highly specific mechanisms to protect newly synthesized r-proteins from
24 aggregation and to safely guide them to their pre-ribosomal assembly site. For instance, the two
25 ribosome-associated chaperone systems, the RAC-Ssb chaperone triad and the nascent polypeptide-
26 associated complex (NAC) (Zhang *et al.*, 2017; Deuerling *et al.*, 2019), functionally cooperate to
27 promote the soluble expression of many r-proteins (Koplin *et al.*, 2010). However, most r-proteins
28 associate with pre-ribosomal particles in the nucleolus; thus, their risky journey does not end in the
29 cytoplasm. Despite their small size, nuclear import of r-proteins largely depends on active transport
30 mediated by importins (Rout *et al.*, 1997; Bange *et al.*, 2013; de la Cruz *et al.*, 2015), which exhibit,
31 likely by recognizing and shielding the exposed rRNA-binding regions of r-proteins, a dual function as
32 transport receptors and chaperones (Jäkel *et al.*, 2002; Melnikov *et al.*, 2015; Huber and Huelz, 2017).
33 Besides being assisted by these general mechanisms, some r-proteins also rely on tailor-made solutions.
34 For instance, nine of the 79 r-proteins are transiently associated with a selective binding partner
35 belonging to the heterogeneous class of dedicated chaperones (Espinar-Marchena *et al.*, 2017; Peña *et*
36 *al.*, 2017; Pillet *et al.*, 2017). These exert their beneficial effects by, for example, already capturing the

1 nascent r-protein client in a co-translational manner (Pausch *et al.*, 2015; Pillet *et al.*, 2015; Black *et*
2 *al.*, 2019; Rössler *et al.*, 2019), coupling the co-import of two r-proteins with their ribosomal assembly
3 (Kressler *et al.*, 2012; Calviño *et al.*, 2015), or facilitating the nuclear transfer from an importin to the
4 assembly site (Schütz *et al.*, 2014; Ting *et al.*, 2017). In addition, some r-proteins regulate their own
5 expression levels through autoregulatory feedback loops, for example by repressing translation,
6 inhibiting splicing, or promoting degradation of their own (pre-)mRNA (Fewell and Woolford, 1999;
7 Gudipati *et al.*, 2012; Johnson and Vilardell, 2012; He *et al.*, 2014; Gabunilas and Chanfreau, 2016;
8 Petibon *et al.*, 2016; Roy *et al.*, 2020).

9 In this study, we show that a common regulatory machinery subjects the *RPL3* and *RPL4* mRNAs
10 to co-translational downregulation when the dedicated chaperone Rrb1 or Acl4 is not available for
11 binding to nascent Rpl3 or Rpl4, respectively. Central to the here described regulatory mechanism is
12 the Caf130-mediated connection between the NAC and, *via* the N-terminal domain of Not1, the Ccr4-
13 Not complex, which is assembled around the essential Not1 scaffold and implicated in many aspects of
14 mRNA metabolism, notably including cytoplasmic mRNA degradation (Parker, 2012; Collart, 2016).
15 The tight regulation of Rpl3 and Rpl4 levels appears to be of physiological relevance as their
16 deregulated expression in cells lacking Tom1 leads to their massive aggregation and cell inviability.
17 Taken together, our data indicate that this novel, co-translational regulatory mechanism specifically
18 operates to continuously adjust the expression levels of Rpl3 and Rpl4 to their actual consumption
19 during ribosome assembly, thereby avoiding that their surplus production might negatively affect
20 cellular proteostasis.

21

1 **Results**

2

3 **The growth defect of $\Delta acl4$ cells is suppressed by the absence of Caf130, Cal4, and the nascent**
4 **polypeptide-associated complex**

5 We and others have previously shown that the dedicated chaperone Acl4 associates with the r-protein
6 Rpl4 in a co-translational manner and protects Rpl4 from aggregation and degradation on its path to its
7 assembly site on nucleolar pre-60S particles (Pillet *et al.*, 2015; Stelter *et al.*, 2015; Sung *et al.*, 2016a;
8 Huber and Hoelz, 2017). While growing $\Delta acl4$ null mutant cells on YPD plates, we observed that
9 spontaneous suppressors of the severe slow-growth (sg) phenotype arose at a relatively high frequency
10 (*Figure 1-figure supplement 1A*). Since mild overexpression of Rpl4a from a centromeric plasmid
11 almost completely restored the $\Delta acl4$ growth defect (Pillet *et al.*, 2015), we hypothesized that the $\Delta acl4$
12 suppressor mutations might either increase the expression level or stability of Rpl4 or facilitate the
13 incorporation of Rpl4 into pre-60S particles. With the aim of obtaining comprehensive insight into these
14 aspects, we combined the isolation of a large number of $\Delta acl4$ and $\Delta acl4/\Delta rpl4a$ suppressors with the
15 identification of the responsible mutations by high-throughput sequencing of the suppressor strain
16 genomes (see Materials and methods). Bioinformatics analysis of the sequenced genomes revealed that
17 the 48 independent suppressors harbored 47 different mutations, which mapped to only four different
18 genes: *CAF130* (35 different mutations), *YJR011C/CAL4* (7), *NOT1* (4), and *RPL4A* (1) (see
19 *Supplementary file 3*). Notably, Caf130 is a sub-stoichiometric subunit of the Ccr4-Not complex (Chen
20 *et al.*, 2001; Nasertorabi *et al.*, 2011) and, as shown below, interacts directly with the previously
21 uncharacterized Yjr011c, which we have accordingly named Cal4 (Caf130-associated regulator of
22 Rpl4). Given that the suppressor screen yielded early frameshift mutations in both *CAF130* and *CAL4*,
23 we first tested whether their complete deletion would restore the severe growth defect of $\Delta acl4$ cells.
24 As shown in Figure 1A and 1B, this was indeed the case; however, while both the absence of Caf130
25 and Cal4 restored growth of $\Delta acl4$ cells virtually to the wild-type extent at 16, 23, and 30°C, only the
26 $\Delta cal4/\Delta acl4$ double mutant combination grew well at 37°C as the single $\Delta caf130$ mutant already
27 exhibited a temperature-sensitive (ts) phenotype (*Figure 1A,B*).

28 Considering that both Caf130 and Cal4 have been suggested to be physically connected with Btt1,
29 the minor β -subunit of NAC, and the NAC α -subunit Egd2 by previous studies (Ito *et al.*, 2001; Krogan
30 *et al.*, 2006; Cui *et al.*, 2008), we next explored this potential link to the co-translational sensing of
31 nascent polypeptides by assessing whether the absence of either of the two NAC subunits would restore
32 the growth defect of $\Delta acl4$ cells. While absence of Btt1 ($\Delta btt1$) resulted in a modest growth amelioration
33 of $\Delta acl4$ cells at 23 and 30°C, full suppression could be observed at 37°C; however, no restoration of
34 the growth defect could be discerned at 16°C (*Figure 1C*). Given that there was no suppression at any
35 of the tested temperatures when $\Delta acl4$ cells were lacking the major NAC β -subunit Egd1 ($\Delta egd1$)
36 (*Figure 1D*), we tested whether the complete absence of NAC- β ($\Delta egd1$, $\Delta btt1$) would enhance the

1 extent of suppression. Indeed, a very robust suppression of the $\Delta acl4$ growth defect could be witnessed
2 from 16 to 30°C (*Figure 1E*); but, in line with the ts phenotype of $\Delta egd1/\Delta btt1$ double mutant cells
3 (*Figure 1-figure supplement 1B*), there was no mutual suppression of the respective growth defects at
4 37°C in $\Delta egd1/\Delta btt1/\Delta acl4$ triple mutant cells. Similarly, absence of NAC- α ($\Delta egd2$), which conferred
5 a ts phenotype, also rescued the $\Delta acl4$ growth defect to the wild-type extent at temperatures up to 30°C
6 (*Figure 1F*). In support of a specific role of NAC, deletion of Zuo1 ($\Delta zuo1$), a component of the
7 ribosome-associated RAC-Ssb chaperone triad, did not enable suppression of the $\Delta acl4$ growth defect
8 (*Figure 1-figure supplement 1C*).

9 We conclude that the absence of either the accessory Ccr4-Not component Caf130, the previously
10 uncharacterized Cal4, or the NAC complex compensates for the lack of Acl4, suggesting that these
11 factors may be part of a regulatory network controlling the expression levels of Rpl4. Moreover, with
12 respect to NAC's two paralogous β -subunits, the suppression analyses indicate that the Btt1-containing
13 NAC heterodimer provides the main contribution, especially at elevated temperature, although Egd1-
14 containing NAC appears to operate in a partially redundant manner, as evidenced by the finding that
15 full $\Delta acl4$ suppression at temperatures below 37°C can only be observed when both NAC β -subunits
16 are simultaneously absent.

17

18 ***RPL4* mRNA levels are increased in the absence of Caf130, Cal4, and the nascent polypeptide-
19 associated complex**

20 To obtain insight into how the above-described components might regulate Rpl4 expression, we first
21 compared the total *RPL4* mRNA levels between wild-type and mutant cells, grown in YPD medium at
22 30°C to an OD_{600} of around 0.6, by quantitative reverse transcription PCR (qRT-PCR). In good
23 correlation with the suppression efficiency, we observed an about two-fold relative increase of the *RPL4*
24 mRNA levels in $\Delta caf130$, $\Delta acl4$, $\Delta egd2$, and $\Delta btt1/\Delta egd1$ mutant cells but no increase in $\Delta egd1$ and
25 $\Delta btt1$ cells (*Figure 1G*). Given that mild overexpression of Rpl4a efficiently restores the $\Delta acl4$ growth
26 defect (Pillet *et al.*, 2015), the moderate rise in *RPL4* mRNA levels, and hence the provision of
27 additional Rpl4, likely accounts for the observed suppression. To evaluate the specificity of this
28 upregulation, we next determined the levels of the *RPL3*, *RPL5*, and *RPS3* mRNA. While there were
29 only minor changes in the abundance of the *RPL5* and *RPS3* mRNAs, the *RPL3* mRNA exhibited a
30 similar increase as the *RPL4* mRNA in $\Delta caf130$, $\Delta egd2$, and $\Delta btt1/\Delta egd1$ mutant cells; conspicuously,
31 however, the absence of Cal4 did not augment *RPL3* mRNA levels, indicating that Cal4 may be
32 specifically required for the regulation of the *RPL4* mRNA. Notably, the inverse effect was observed
33 in $\Delta acl4$ cells, which exclusively displayed decreased levels of the *RPL4* and, to a lesser extent, the
34 *RPL3* mRNA, suggesting that co-translational capturing of nascent Rpl4 by Acl4 may have a positive
35 impact on the abundance of the *RPL4* mRNA (see below).

1 Since the above results indicated that the regulation mediated by Caf130, Cal4, and NAC may only
2 operate on a limited number of common mRNAs, we wished to obtain a global overview of the
3 regulated transcripts. To this end, we assessed, using the same total RNA extracts as for the above qRT-
4 PCRs, the relative abundance of individual mRNAs within the entire transcriptome by RNA-Seq (see
5 Materials and methods). Strikingly, when compared to the levels in wild-type cells, the *RPL3* mRNA
6 and both *RPL4* mRNAs, transcribed from the paralogous *RPL4A* and *RPL4B* genes, were amongst the
7 most prominently upregulated transcripts in Δ caf130 cells (Figure 1H; see also Supplementary file 4).
8 In line with the above qRT-PCR data, only the *RPL4A* and *RPL4B* transcripts, but not the *RPL3* mRNA,
9 belonged to the markedly upregulated transcripts in Δ cal4 cells (Figure 1H). Individual deletion of
10 NAC- α (Δ egd2) or NAC- β (Δ egd1, Δ btl1) also resulted in an observable, albeit less outstanding,
11 upregulation of the *RPL3*, *RPL4A*, and *RPL4B* mRNAs (Figure 1-figure supplement 1D), presumably
12 due to more pronounced global changes in their transcriptomes. A common feature of all four mutant
13 transcriptomes, although to a lesser extent in the one of Δ cal4 cells, appears to be the upregulation of
14 transcripts encoding components of stress response pathways, including for example proteins of the
15 ubiquitin-proteasome system (UPS), the transcription factor Yap1, which is known to mediate oxidative
16 stress tolerance, or proteins involved in iron uptake and homeostasis. On the other hand, the
17 downregulated transcripts are more diverse, but often belong to different anabolic processes that
18 mediate cell growth, such as translation (e.g. genes coding for r-proteins and biogenesis factors), the
19 provisioning of building blocks (e.g. genes coding for permeases and enzymes involved in amino acid
20 synthesis), and mitochondrial metabolism. Importantly, no other RPG transcripts were found to be
21 upregulated in the same manner as the *RPL3*, *RPL4A*, and *RPL4B* mRNAs, suggesting that these three
22 are specific common targets of Caf130 and the NAC, while Cal4 only contributes to the negative
23 regulation of the two *RPL4* mRNAs. Moreover, the concerted regulation of transcripts belonging to
24 rather well-defined and interconnected processes indicates that these are likely part of transcriptional
25 programs needed to counteract the stress experienced by cells lacking Caf130, Cal4, and either of the
26 two NAC subunits.

27

28 **The full-length translational isoform of Not1 enables negative regulation of *RPL3* and *RPL4* 29 mRNA levels**

30 Encouraged by the above results, we next examined the involvement of Not1, the largest subunit and
31 scaffold protein of the Ccr4-Not complex (Collart, 2016), in the regulatory process. Intriguingly, the
32 four identified Δ acl4 suppressor mutations, even though *NOT1* is an essential gene (Collart and Struhl,
33 1993), either change the start codon (M1L), introduce a premature stop codon (L112*), or result in early
34 frameshifts (K21^{fs} and I128^{fs}) (Figure 2A), they are therefore predicted to interfere with the synthesis
35 of a functional Not1 protein. Moreover, Western analysis of C-terminally TAP-tagged Not1, expressed
36 from the genomic locus, consistently resulted in the detection of two Not1-TAP bands (Figure 2B);

hence, the shorter, major Not1 isoform must correspond, as also previously suggested (Liu *et al.*, 1998), to an N-terminally truncated Not1 protein, which could either be generated from different mRNA isoforms or by an alternative translation initiation event. In support of the second possibility, only a single *NOT1* mRNA species was detected in a previous study (Collart and Struhl, 1993). Notably, the *NOT1* sequence does not contain any out-of-frame ATG trinucleotides between the start codon and the second in-frame ATG coding for M163, strongly suggesting that a leaky scanning mechanism enables the synthesis of the N-terminally truncated Not1 variant. To experimentally corroborate this plausible conjecture, we mutated the *NOT1* coding sequence by either changing codon 163 such that it codes for another amino acid (construct M163L and M163A) or introducing an out-of-frame ATG trinucleotide at two different positions by silent mutagenesis of codons 40 and 156 (construct N40(oofATG) and N156(oofATG)). These plasmid-borne constructs, expressing the four C-terminally TAP-tagged Not1 variants from the *NOT1* promoter, were transformed into a *NOT1* shuffle strain. Then, upon plasmid shuffling on 5-Fluoroorotic Acid containing (5-FOA) plates, complementation was assessed by growth assays on YPD plates. Importantly, all four Not1 variants sustained growth in the absence of endogenous Not1 equally well as wild-type Not1-TAP (*Figure 2-figure supplement 1A*). Western analysis of total protein extracts prepared by an alkaline lysis protocol, using antibodies recognizing the protein A moiety of the TAP tag, revealed that Not1-TAP was expressed at higher levels from plasmid than from the genomic locus. Despite the slightly changed start context owing to the introduction of an NdeI site (tac-ATG versus cat-ATG), expression of Not1-TAP from plasmid still resulted in the detection of a full-length and an N-terminally truncated isoform at similar ratios as when expressed from the native context (*Figure 2B*). In line with ATG codon 163 being the second translation initiation site, only the upper band corresponding to full-length Not1-TAP persisted in the M163L and M163A mutant variants, whereas the lower band was no longer visible. Concerning the two variants containing out-of-frame ATG trinucleotides upstream of the M163 codon, the N40(oofATG) and, to a lesser extent, the N156(oofATG) construct suppressed the synthesis of the major, N-terminally truncated Not1 isoform, presumably reflecting the relative strength of the two ATG contexts as translation initiation signals. We conclude that in *S. cerevisiae* Not1 is naturally synthesized as two distinct protein isoforms, which differ, due to a leaky scanning mechanism enabling the utilization of a downstream translation initiation site, by the presence (less abundant, full-length isoform) or absence (major isoform, starting with M163) of the N-terminal 162 amino acids.

The nature of the isolated *Aacl4*-suppressing *not1* alleles strongly suggested that the N-terminal 162 residues are a non-essential feature of Not1. Indeed, and in agreement with previous studies showing that Not1 variants with N-terminal deletions up to residue 394 or 753 support good growth at 30°C (Maillet *et al.*, 2000; Basquin *et al.*, 2012), the Not1 variant starting with M163 (163C construct; *i.e.* from residue 163 to the C-terminus) complemented the *Δnot1* null mutant to the wild-type extent from 16 to 30°C (*Figure 2C*); however, a ts phenotype could be observed at 37°C. Progressive mapping

1 revealed that deletion of the first 28 residues (29C construct) still entailed poor growth at 37°C, whereas
2 the deletion variant only lacking the N-terminal 20 residues (21C construct) permitted wild-type growth
3 at all temperatures.

4 To demonstrate that absence of the N-terminal 162 amino acids enables, as predicted by the above-
5 described findings, suppression of the *Δacl4* growth defect, we generated and transformed a
6 *NOT1/ACL4* double shuffle strain with plasmids expressing wild-type Not1 or the three N-terminal
7 deletion variants. Then, upon plasmid shuffling on 5-FOA-containing plates, the suppression capacity
8 of the different constructs was determined by assessing growth, compared to the one of a wild-type and
9 a *Δacl4* null mutant control strain, on YPD plates (Figure 2D). As expected, no suppression of the *Δacl4*
10 growth defect could be observed in *Δacl4/Δnot1* cells expressing either full-length Not1 or the fully
11 functional Not1.21C variant. Conversely, expression of the Not1.29C or Not1.163C deletion variants
12 restored wild-type growth of *Δacl4/Δnot1* cells at 16, 23, and 30°C but, in line with the above
13 complementation assays (Figure 2C), not at 37°C. In accord with the efficient suppression of the *Δacl4*
14 growth defect, the *RPL4* mRNA was, compared to its relative levels in the wild-type control,
15 upregulated around two-fold in *Δnot1* cells expressing the Not1.163C variant (Figure 2E). Likewise, as
16 already observed before in cells lacking Caf130, Egd2, or both Btt1 and Egd1 (Figure 1G), the levels
17 of the *RPL3* mRNA were also increased to a similar extent. However, none of the other tested RPG
18 mRNAs (*RPL5*, *RPL10*, *RPL11*, *RPS2*, *RPS3*, and *RPS6*) exhibited similar changes in abundance as the
19 *RPL3* and *RPL4* mRNAs. Taken together, these data show that the N-terminal 162 residues, which are
20 specifically included in the minor, full-length Not1 isoform, are required both for growth at elevated
21 temperature and for mediating the regulation of *RPL3* and *RPL4* mRNA levels.

22 Given that the Not1 scaffold of the Ccr4-Not complex is implicated in enabling negative regulation
23 of the *RPL3* and *RPL4* mRNAs, an involvement of other Ccr4-Not components, especially those with
24 established functions in mRNA degradation (the Caf1-Ccr4 deadenylase module) and coupling of
25 translational repression with mRNA turnover (Not4 E3 ligase and Not2-Not5 module) (Preissler *et al.*,
26 2015; Alhusaini and Coller, 2016; Collart, 2016; Buschauer *et al.*, 2020), is highly likely. To test this
27 by assessing suppression of the *Δacl4* growth defect, we first individually deleted the genes encoding
28 these Ccr4-Not components in the W303 background. While the *Δcaf40* and *Δnot3* null mutants did not
29 display any observable growth defects, the *Δcaf1*, *Δccr4*, and *Δnot4* null mutants exhibited pronounced
30 sg phenotypes that were exacerbated at 37°C (Figure 2—figure supplement 1C-G). However, and in
31 agreement with Not2 being required for the integrity of the Ccr4-Not complex (Russell *et al.*, 2002),
32 *Δnot2* and *Δnot5* mutant cells grew extremely slowly and were therefore excluded from the *Δacl4*
33 suppression analysis (Figure 2—figure supplement 1B). The obtained null mutants were crossed with
34 *ACL4* shuffle strains, tetrads were dissected, and then, after counter-selection against the *ACL4*-bearing
35 *URA3* plasmid, the growth of cells derived from tetratype tetrads was assessed on YPD plates. However,
36 absence of none of these Ccr4-Not components suppressed the growth defect of *Δacl4* cells at any of

1 the tested temperatures, but, conversely, their absence synergistically enhanced, albeit to different
2 extents, the sg phenotype of cells lacking Acl4 (*Figure 2–figure supplement 1C–G*). Based on this
3 genetic analysis, we conclude that at least Caf40 and Not3 appear not to be required for the negative
4 regulation of *RPL4* mRNA levels. At this stage, the plausible involvement of Not4 and especially the
5 Caf1-Ccr4 deadenylase module cannot be discarded, as any specific regulatory effect might be masked
6 by more general effects of their absence on cytoplasmic mRNA decay and/or maintenance of
7 proteostasis (Panasenko and Collart, 2012; Halter *et al.*, 2014; Preissler *et al.*, 2015; Collart, 2016).
8 Recently, the N-terminal domain of Not5 (Not5-NTD) has been shown to mediate, *via* its binding to
9 the ribosomal E-site, association of the Ccr4-Not complex with translating 80S ribosomes lacking an
10 accommodated tRNA in the A-site, thereby sensing and subjecting mRNAs with low codon optimality
11 to degradation (Buschauer *et al.*, 2020). Expression of a Not5 variant lacking the NTD (114C construct)
12 in Δ not5 cells did not result in any observable growth defect on YPD plates (*Figure 2–figure supplement*
13 *1H*), but was nonetheless not suppressing the sg phenotype entailed by the absence of Acl4 in
14 Δ not5/ Δ acl4 cells (*Figure 2–figure supplement 1I*), suggesting that this mechanism is not part of the
15 regulatory network controlling *RPL4* mRNA levels. In support of this, absence of Rps25 (eS25;
16 Δ rps25a/ Δ rps25b), which is a key determinant for Not5-NTD binding (Buschauer *et al.*, 2020), neither
17 suppressed the Δ acl4 growth defect (*Figure 2–figure supplement 1J*). Finally, no Δ acl4 suppression
18 could be observed in the individual absence of the decapping activators Dhh1 and Pat1, which were
19 shown to associate with Ccr4-Not *via* Not1 and Not3/5, respectively (Maillet and Collart, 2002; Chen
20 *et al.*, 2014; Mathys *et al.*, 2014; Alhusaini and Coller, 2016), the major 5’-> 3’ exonuclease Xrn1, or
21 the exosome-assisting RNA helicase Ski2, which is required for cytoplasmic 3’->5’ mRNA decay
22 (Parker, 2012) (*Figure 2–figure supplement 2A–D*).
23

24 **Caf130 connects Cal4 and Btt1 to Ccr4-Not by exclusively interacting with the full-length 25 translational isoform of Not1**

26 The common involvement in *RPL4* mRNA regulation, as well as their mutual interactions in large-scale
27 yeast two-hybrid (Y2H) and/or affinity purification approaches and the finding that Btt1 is associated
28 with the Ccr4-Not complex in a Caf130-dependent manner (Ito *et al.*, 2001; Krogan *et al.*, 2006; Cui *et*
29 *al.*, 2008; Yu *et al.*, 2008), indicated that Caf130, Cal4, and Btt1 may directly physically interact and
30 be recruited through Caf130, likely *via* the N-terminal 162 amino acids of Not1, to the Ccr4-Not
31 complex. To obtain evidence for this scenario, we first assessed the *in vivo* interactions of these
32 components by GFP-Trap co-immunoprecipitation experiments. To this end, we constructed strains
33 expressing distinct combinations of C-terminally GFP-tagged bait proteins and C-terminally TAP-
34 tagged prey proteins. The fusion proteins were either expressed from their genomic loci or, as in the
35 case of the full-length and N-terminally deleted Not1-GFP constructs, from plasmid under the control
36 of the native promoter. Upon rapid one-step affinity purification of the bait proteins from cell lysates

1 using magnetic GFP-Trap beads, the prey proteins were detected by Western blot analysis with
2 antibodies directed against the protein A moiety of the TAP tag, thus enabling the highly sensitive
3 detection of co-precipitated prey proteins. In parallel, as specificity controls to evaluate the background
4 binding of the prey proteins to the GFP-Trap beads, strains expressing non-tagged bait proteins together
5 with the individual TAP-tagged prey proteins were simultaneously analyzed. As expected, affinity
6 purification of the full-length Not1-GFP bait resulted in the co-purification of Caf130 and Btt1;
7 however, the major NAC β -subunit Egd1 and the NAC α -subunit Egd2 could not be detected above
8 background levels (*Figure 3A*). Importantly, Cal4 was also enriched in the Not1-GFP
9 immunoprecipitation, hence clearly establishing Cal4 as a novel accessory component of the Ccr4-Not
10 complex (*Figure 3A*). In agreement with the functional involvement of the very N-terminal part of Not1
11 in the negative regulation of *RPL3* and *RPL4* mRNA levels, the Not1.154C-GFP bait lacking the first
12 153 amino acids no longer co-purified Caf130 and Cal4, while it was still able to associate with core
13 components of the Ccr4-Not complex, such as Not2, Not4, and Not5 (*Figure 3B*). Reciprocal
14 experiments revealed specific interactions between i) the Caf130-GFP bait and Btt1, Not1, and Cal4
15 (*Figure 3C*), ii) the Cal4-GFP bait and Btt1, Not1, and Caf130 (*Figure 3D*), and iii) the Btt1-GFP bait
16 and Not1, Caf130, and Cal4 (*Figure 3E*). However, neither Egd1 nor Egd2 were detected above
17 background in the Caf130-GFP and Cal4-GFP affinity purifications (*Figure 3C,D*), while the Btt1-GFP
18 bait, as expected, co-purified Egd2 but not Egd1 (*Figure 3E*). Correspondingly, only the NAC β -subunit
19 Egd1, but neither Caf130, Cal4, nor full-length Not1, was specifically co-precipitated with the Egd2-
20 GFP bait (*Figure 3F*). Moreover, Btt1 appears to exclusively interact with either Caf130 or Egd2, but
21 not simultaneously with both, since neither Caf130 nor Egd2 could co-purify each other (*Figure 3C,F*).
22 Notably, compared to the control purifications from strains expressing the non-tagged bait proteins, a
23 selective enrichment of the upper Not1-TAP band could be clearly discerned in the Caf130-GFP, Cal4-
24 GFP, and Btt1-GFP affinity purifications (*Figure 3C-E*), thus further strengthening the notion that
25 Caf130, Cal4, and Btt1 are specifically associated with the full-length Not1 isoform.

26 Next, we employed Y2H assays to untangle the interaction network between Not1, Caf130, Cal4,
27 and Btt1. By testing the diverse distinct combinations of full-length proteins, we could reveal that
28 Caf130 has the capacity to interact with Not1, Cal4, and Btt1 (*Figure 3G*); however, no Y2H
29 interactions could be observed between the Cal4 bait and the Not1 or Btt1 preys and between the Btt1
30 bait and the Not1 or Cal4 preys (*Figure 3-figure supplement 1A,B*), strongly suggesting that Caf130
31 fulfills the role of a hub protein connecting, *via* its association with Not1, both Cal4 and Btt1 to the
32 Ccr4-Not complex. In support of this, the Not1 bait exhibited some Y2H reporter activation, albeit to a
33 much lesser extent than in combination with the Caf130 prey, when combined with the Cal4 and Btt1
34 preys (*Figure 3-figure supplement 1C*), which, in light of the above findings, can readily be explained
35 by Caf130 serving as a bridging molecule for these interactions. Moreover, as already indicated by the
36 co-immunoprecipitation experiments, we did not detect any interactions between Egd1 or, respectively,

1 Egd2 and Not1, Caf130, or Cal4 at 30°C (*Figure 3G and Figure 3–figure supplement 1D,E*).
2 Interestingly, however, a Y2H interaction between Caf130 and both Egd1 and Egd2 could be observed
3 at 16°C (*Figure 3–figure supplement 1F*), suggesting that the common NAC domain has an intrinsic
4 capacity to interact with Caf130 and thus offering a potential explanation for the partially redundant
5 contribution of Egd1 and Btt1 to the regulatory process. Subsequent Y2H mapping of the respective
6 minimal interaction surfaces (*Figure 3H and Figure 3–figure supplement 2A–C*), as schematically
7 summarized in *Figure 3I*, first revealed that Caf130 associates *via* i) a large N-terminal portion (amino
8 acids 40–655) with Not1, ii) the C-terminal part thereof (amino acids 292–655) with Btt1, and iii) a
9 consecutive segment (amino acids 686–938) with Cal4. In agreement with the genetic and the GFP-Trap
10 co-immunoprecipitation data (*Figure 2C,D and Figure 3A,B*), the minimal Not1 surface mediating
11 Caf130 binding could be mapped to an N-terminal segment encompassing amino acids 21–153 (*Figure*
12 *3H and Figure 3–figure supplement 2A*), which we therefore termed the Caf130-interacting domain
13 (CaInD). On Btt1, the minimal fragment for Caf130 binding comprised amino acids 38–129,
14 corresponding to the NAC domain (amino acids 38–103) bearing a short C-terminal extension (*Figure*
15 *3H and Figure 3–figure supplement 2B*). In line with the reported NAC domain crystal structures of the
16 human NACA-BTF3 heterodimer (Liu *et al.*, 2010; Wang *et al.*, 2010), both Btt1 and Egd1 interacted
17 with Egd2’s NAC domain, and the region covering the six predicted β -strands (amino acids 54–101) of
18 Btt1’s NAC domain was sufficient to mediate the association with Egd2 (*Figure 3–figure supplement*
19 *3A,B*). The finding that both Caf130 and Egd2 bind to the NAC domain of Btt1 corroborates, as already
20 indicated by their failure to co-precipitate each other (*Figure 3C,F*), a model in which Btt1 associates
21 in a mutually exclusive manner with either Caf130 or Egd2. Finally, the minimal Caf130-binding
22 surface on Cal4 was formed by amino acids 26–222 (*Figure 3H and Figure 3–figure supplement 2C*).
23 Taken together, the co-immunoprecipitation and Y2H interaction analyses establish Cal4 as a novel
24 accessory component of the Ccr4-Not complex and reveal that Caf130, in its role as a scaffold protein,
25 has the capacity to simultaneously interact with Not1, Btt1, and Cal4. Importantly, the deciphered
26 physical interaction network correlates very well with the common function of these four proteins in
27 regulating Rpl4 expression levels.
28

29 **The regulation-conferring signal is located within nascent Rpl4 and overlaps with the Acl4- 30 binding site**

31 Interestingly, high-throughput sequencing indicated that one of the isolated Δ *acl4* suppressors carried
32 a mutation within *RPL4A*, hereafter referred to as the *rpl4a.W109C* allele, changing tryptophan 109
33 (TGG codon) to cysteine (TGT codon). The W109 residue is located at the C-terminal end of the long
34 internal loop (amino acids 44–113), which mediates Acl4 binding (Pillet *et al.*, 2015; Stelter *et al.*, 2015;
35 Huber and Hoelz, 2017). As revealed by the X-ray co-structure of *Chaetomium thermophilum* Acl4 and
36 Rpl4 (Huber and Hoelz, 2017), the long internal loop undergoes large conformational changes upon

1 Acl4 binding, including the reorientation of the W109 side chain from its loop-inward position in the
2 ribosome-bound state to an outward configuration in which it is shielded by Acl4 (*Figure 4–figure*
3 *supplement 1A,B*). Y2H assays showed that the Rpl4a.W109C protein still interacts, albeit to a lesser
4 extent than wild-type Rpl4a, with Acl4 (*Figure 4–figure supplement 1C*), indicating that the W109 side
5 chain is, however, not strictly required for this interaction. To confirm that the W109C substitution
6 indeed suppresses the $\Delta acl4$ growth defect, we first integrated the *rpl4a.W109C* allele, as well as the
7 wild-type *RPL4A* control, at the genomic locus. This was necessary since expression of Rpl4a from a
8 monocopy plasmid already efficiently restores the sg phenotype of $\Delta acl4$ cells (Pillet *et al.*, 2015). To
9 evaluate the impact of the *rpl4a.W109C* mutation on yeast growth, the *rpl4a.W109C* allele was
10 combined with the $\Delta rpl4b$ null allele. As shown in *Figure 4A*, the strain exclusively expressing the
11 Rpl4a.W109C protein grew almost as well as the *RPL4A/Δrpl4b* control strain (*Figure 4A*). Next, we
12 combined the *rpl4a.W109C* allele with the $\Delta acl4$ null allele, revealing a robust suppression of the $\Delta acl4$
13 growth defect at all tested temperatures (*Figure 4B*). To assess whether mutation of further residues in
14 proximity of W109 could also confer suppression, we tested the four previously described non-
15 overlapping, consecutive alanine substitution mutants (named BI, BII, BIII, and BIV; see *Figure 4C*),
16 which do no longer interact with Acl4 (Pillet *et al.*, 2015). Again, these mutant alleles were integrated
17 at the genomic *RPL4A* locus and their complementation and suppression capacity was determined by
18 combining them with the $\Delta rpl4b$ or $\Delta acl4$ null mutation (*Figure 4A,B*). The BI mutations
19 (F90A/N92A/M93A/C94A/R95A) conferred a strong sg phenotype and, accordingly, did not enable
20 suppression of the $\Delta acl4$ phenotype. Growth of cells expressing the variant harboring the BII mutations
21 (R98A/M99A/F100A) was not substantially ameliorated and almost no $\Delta acl4$ suppression could be
22 observed from 16 to 30°C; however, some growth improvement and weak suppression was apparent at
23 37°C. Conversely, the BIII mutations (P102A/T103A/K104A/T105A) permitted significantly better
24 growth, especially at 16°C, at all tested temperatures except 37°C, and suppression, up to the BIII-
25 inherent growth defect, could also be observed and was again particularly pronounced at 16°C. Similar
26 to the W109C substitution, the BIV mutations (W106A/R107A/K108A/W109A), comprising an
27 exchange of tryptophan 109 to alanine, only elicited a very mild growth defect and conferred robust
28 suppression of the $\Delta acl4$ growth defect at all tested temperatures (*Figure 4A,B*). Thus, the genetic
29 analyses establish the W109 residue within the long-internal-loop region as a critical determinant for
30 enabling negative regulation of Rpl4 expression.

31 Next, we assessed whether the observed suppression of the $\Delta acl4$ growth defect by the *rpl4a.W109C*
32 and BIV mutations coincided with a stabilization of their mRNAs. To this end, the wild-type and
33 mutant-encoding *RPL4A* ORFs were fused at their 3' end to the yEGFP coding sequence and were
34 expressed from a monocopy plasmid under the transcriptional control of the *ADH1* promoter in wild-
35 type and $\Delta caf130$ cells. Then, the relative levels of the *RPL4A*-yEGFP fusion mRNAs were determined
36 by qRT-PCR, using a primer pair specifically amplifying a portion of the yEGFP coding sequence, and

1 compared between the wild-type and Δcaf130 situation where regulation is either in place or disabled
2 and *RPL4A* mRNA levels are therefore expected to be either minimal or maximal, respectively.
3 Importantly, downregulation of the fusion mRNA containing wild-type *RPL4A*, when transcribed from
4 the *ADH1* promoter, could be clearly observed in wild-type cells (*Figure 4D*), indicating that the altered
5 promoter context and the addition of the yEGFP coding sequence do not fundamentally change the
6 regulation-conferring process. Notably, the levels of the *RPL4A*-yEGFP fusion mRNA coding for the
7 BI mutant protein were even more substantially decreased (*Figure 4D*), strongly suggesting that co-
8 translational capturing of nascent Rpl4a by Acl4 stabilizes the *RPL4A* mRNA. This interpretation is in
9 agreement with the observation that the abundance of the *RPL4* mRNA was, compared to the wild-type
10 situation, almost two-fold lower in Δacl4 cells (*Figure 1G*). The levels of the mRNAs encoding the BII
11 and BIII mutant variants were still lower than the one of the mRNA harboring wild-type *RPL4A*, but,
12 compared to the BI-expressing mRNA, a slight gradual increase in their abundance could be noticed
13 (*Figure 4D*). Most importantly, and in line with the robust suppression of the Δacl4 growth defect,
14 presence of either the BIV mutations or the W109C substitution restored the levels of their mRNAs in
15 wild-type cells almost to the ones detected in Δcaf130 cells (*Figure 4D*). This finding supports a model
16 in which the nascent Rpl4 protein provides the signal eliciting the negative regulation of its own mRNA
17 levels and, considering that the W109C substitution is caused by only a single nucleotide exchange,
18 argues against the mRNA sequence harboring the regulation-conferring element.

19 Aiming to corroborate the importance of the above-identified residues for the regulatory process and
20 to delineate, if possible, a minimal regulation-conferring region, we first constructed plasmids
21 expressing progressively N- and C-terminally deleted Rpl4a variants, fused to an N- or C-terminal
22 yEGFP moiety, respectively (as depicted in *Figure 4E*), under the transcriptional control of the *ADH1*
23 promoter. To avoid any mRNA-stabilizing effect due to co-translational Acl4 binding, the BI mutations
24 were introduced into all constructs comprising this region of the *RPL4A* coding sequence. Then, the
25 plasmid constructs were transformed into wild-type and Δcaf130 cells and the relative levels of the
26 different fusion mRNAs were determined by qRT-PCR using, as above, a primer pair specifically
27 amplifying a portion of the common yEGFP coding sequence. The levels of the yEGFP-*RPL4A* fusion
28 mRNAs coding for Rpl4a deletion variants lacking the first 42 (denoted as 43C construct) or 77 amino
29 acids were, similarly to the *RPL4A*-yEGFP mRNA encoding full-length Rpl4a containing the BI
30 mutations (*Figure 4D*), about 2.5-fold lower in wild-type compared to Δcaf130 cells (*Figure 4E*).
31 Further progressive mapping revealed a gradual increase in mRNA abundance when the encoded
32 proteins were either devoid of the first 87, 95, or 100 amino acids; remarkably, the Rpl4a variant starting
33 with amino acid 101 (101C construct) still conferred a significant, around 1.5-fold negative regulation
34 to its mRNA (*Figure 4E*). However, the fusion mRNA expressing the deletion variant lacking the first
35 110 amino acids was no longer subjected to regulation in wild-type cells; thus, clearly highlighting the
36 importance of the short segment encompassing amino acids 101 to 110, which notably comprises the

1 W109 residue. Accordingly, no regulation was imposed on its encoding fusion mRNA by the C-
2 terminal deletion variant ending at amino acid 104 (N104 construct) (*Figure 4E*). Progressive extension
3 of the C-terminal end of the encoded variants revealed that some mRNA regulation started to occur
4 when Rpl4a ended at amino acid 114 and that, after a further subtle decrease in mRNA levels entailed
5 by the Rpl4a.N132 protein, efficient regulation was reached again when the encoded Rpl4a was
6 extended up to amino acid 139 (*Figure 4E*). Next, we addressed whether the inferred minimal
7 regulation-conferring region (amino acids 78 to 139) was sufficient to enforce, when placed in a
8 heterologous context, a decrease in mRNA levels in wild-type cells. To this end, we generated a
9 plasmid-based construct expressing Rpl4a residues 78-139 from the *ADH1* promoter as a fusion protein
10 that is flanked by an N-terminal TAP-Flag tag (NTAPF) and, for the determination of the mRNA levels
11 by qRT-PCR, a C-terminal yEGFP moiety. Moreover, the BI, BII, BIII, and BIV mutations, as well as
12 a combination of the W109C substitution with the BI mutations, were introduced into the coding
13 sequence in order to assess whether these alterations had the same effect within the minimal region as
14 in the context of full-length *RPL4A* (*Figure 4D*). Importantly, the presence of either the BIV mutations
15 or the W109C substitution resulted, when compared to the similarly regulated wild-type construct or
16 the one containing only the BI mutations, in an increase in the abundance of the respective mRNAs up
17 to their levels in *Δacl130* cells (*Figure 4F*). Moreover, again relative to the mRNA harboring the BI
18 mutations, a slight increase in mRNA levels could be observed in the presence of the BII and, more
19 evidently, of the BIII mutations, pointing once more to a minor contribution of the residues that are
20 altered by the BIII mutations towards the negative regulation of its encoding mRNA.

21 Taken together, mapping of the regulation-conferring region on Rpl4a revealed that a segment
22 encompassing amino acids 78 to 139 is sufficient to have a negative impact on the abundance of the
23 encoding mRNA. Within this region, the tryptophan 109 residue, whose mutation to cysteine enables
24 robust suppression of the *Δacl4* growth defect, appears to be a critical determinant for mediating the
25 negative regulation of *RPL4* mRNA levels. Notably, the W109 residue, which is located near the C-
26 terminal end of the Acl4-binding site, is shielded by Acl4, and, moreover, mutations that abolish the
27 interaction with Acl4 promote a further reduction of *RPL4* mRNA levels. It is therefore highly likely
28 that co-translational capturing of Rpl4 by Acl4 stabilizes the *RPL4* mRNA (see below), possibly by
29 precluding the recognition of the nascent Rpl4 segment around the W109 residue by the regulatory
30 machinery.

31

32 **The regulation-conferring Rpl3 segment is adjacent to the Rrb1-binding site**

33 Given that the same machinery, with the exception of Cal4, is involved in the negative regulation of
34 *RPL3* mRNA levels and considering that Rpl3 is also co-translationally captured by a dedicated
35 chaperone, the essential Rrb1 (Pausch *et al.*, 2015), we next wished to explore whether the underlying
36 principles of both regulation events might be similar. In particular, we suspected that the regulation-

1 conferring region might overlap with or be in the immediate proximity of the Rrb1-binding site, which
2 we had previously mapped to the N-terminal 15 residues of Rpl3 (Pausch *et al.*, 2015). To map the
3 regulation-conferring region, we constructed monocopy plasmids expressing wild-type Rpl3 as well as
4 N- and/or C-terminal truncation variants thereof, fused to a C-terminal yEGFP moiety, under the
5 transcriptional control of the *ADH1* promoter. Then, upon transformation into wild-type and *Δcaf130*
6 cells, with the latter providing a benchmark for the maximal abundance of each transcript, total RNA
7 was extracted from exponentially growing cells and the relative levels of the *RPL3*-yEGFP fusion
8 mRNAs were determined by qRT-PCR using a primer pair specifically amplifying a portion of the
9 yEGFP coding sequence. In this experimental set-up, the levels of the fusion mRNA harboring full-
10 length *RPL3* were only downregulated by around 1.25-fold in wild-type cells (*Figure 5A*); thus,
11 negative regulation was less efficient than in the case of the endogenous *RPL3* mRNA (*Figure 1G*).
12 Notably, however, the abundance of the mRNA encoding a deletion variant lacking the first seven
13 residues (8C construct), which is no longer capable of interacting with Rrb1 (Pausch *et al.*, 2015)
14 (*Figure 5-figure supplement 1*), was reduced more than three-fold, indicating that absence of Rrb1
15 binding to nascent Rpl3 has an mRNA-destabilizing effect. Analyses of further N-terminal deletion
16 variants revealed a minor increase in mRNA abundance when the encoded protein lacked the first 11
17 amino acids (12C construct) and a more prominent increase, resulting in around 2.2-fold lower mRNA
18 levels, when the first 14 residues (15C construct) were missing (*Figure 5A*). Strikingly, removal of the
19 first 17 amino acids (18C construct) from the encoded protein raised the abundance of the mRNA almost
20 up to its levels in *Δcaf130* cells, suggesting an important contribution of a very short segment,
21 comprising residues twelve to 17, to the negative regulation. Mapping of the C-terminal border revealed
22 that the fusion mRNA expressing the first 52 amino acids (N52 construct) was considerably more
23 regulated than the full-length *RPL3*-yEGFP mRNA (*Figure 5A*). However, further refinement by testing
24 even shorter, C-terminally truncated variants was not possible since their expression, presumably owing
25 to the titration of Rrb1 (Pausch *et al.*, 2015), conferred a strong sg phenotype to wild-type cells (*Figure*
26 *5-figure supplement 2B*). Therefore, we generated constructs expressing different C-terminally deleted
27 Rpl3 variants that were simultaneously lacking the first seven amino acids. Compared to the fusion
28 mRNA coding for the Rpl3.N52 variant, the abundance of the mRNA encoding the Rpl3 fragment
29 spanning residues 8 to 52 (8-52 construct) was even further diminished, exhibiting a more than 2.5-fold
30 reduction in wild-type cells compared to *Δcaf130* cells (*Figure 5A*); thus, confirming the notion that
31 co-translational recognition of the N-terminal Rpl3 residues by Rrb1 positively affects mRNA levels.
32 The extent of negative regulation was only marginally decreased when the encoded Rpl3 variant ended
33 at amino acid 48 (8-48 construct), but a strong increase in mRNA levels could be observed when the
34 expressed Rpl3 variant lacked an additional four C-terminal residues (8-44 construct). In conclusion,
35 the above data show that the minimal regulation-conferring region required for robust negative

1 regulation of the *RPL3* mRNA is contained within the N-terminal part of Rpl3, from residue eight to
2 52, and attribute a potentially crucial involvement to a short segment between residues eleven and 18.
3 To assess the contribution of discrete residues within the minimal regulation-conferring region with
4 maximum sensitivity, as achieved by introducing the BI mutations in the case of Rpl4, without
5 removing any N-terminal residues but still disabling Rrb1 binding, we first had to identify residues that
6 are mandatory for mediating the interaction with Rrb1. Given that the first seven amino acids of Rpl3
7 are required for Rrb1 association (Pausch *et al.*, 2015), we focused the mutational analysis on residues
8 within this short segment (H3, R4, K5, and Y6) and additionally included the conserved R10 and H11
9 residues (*Figure 5B*). Gratifyingly, the H3E, K5E, and Y6E mutations, both in the context of full-length
10 Rpl3 or when comprised in the C-terminally truncated Rpl3.N52 variant, abolished the Y2H interaction
11 with Rrb1 (*Figure 5-figure supplement 1*). Moreover, these mutants were unable to complement the
12 lethality of $\Delta rpl3$ cells (*Figure 5-figure supplement 2A*). On the other hand, the R10E/H11E and
13 R10A/H11A substitutions did not affect the Y2H interaction with Rrb1, but nonetheless, presumably
14 owing to an important role of these two residues in rRNA binding, pre-60S assembly, or functioning of
15 the ribosome, they resulted in extremely weak growth of $\Delta rpl3$ cells (*Figure 5-figure supplement 1 and*
16 *2A*). Importantly, presence of the H3E mutation, which represents the most N-terminal exchange
17 abolishing Rrb1 binding, led to a similar decrease in *RPL3*-yEGFP mRNA levels as removal of the first
18 seven residues did (*Figure 5A*). Hence, we chose to introduce the H3E mutation into Rpl3.N52 for
19 unveiling the contribution of selected residues, within the above-determined minimal region (amino
20 acids 8-52), to the negative regulation of the encoding mRNA. To facilitate the task, we simultaneously
21 changed two to three neighboring residues, especially focusing on bulky hydrophobic and positively
22 charged amino acids, to alanine (*Figure 5B*). Before assessing the mRNA levels, we evaluated the
23 generated Rpl3 variants, in the absence of the H3E mutation, with respect to their capability to associate
24 with Rrb1 and to sustain growth of $\Delta rpl3$ cells. In the context of the N-terminal 52 amino acids, none
25 of the introduced mutations affected the Y2H interaction with Rrb1 (*Figure 5-figure supplement 1*). In
26 the context of full-length Rpl3, however, the H13A/L14A and F46A/L47A mutations reduced or
27 respectively abolished the interaction with Rrb1, while all other tested mutants associated with Rrb1 to
28 a similar extent as wild-type Rpl3. Given that concurrent alanine substitution of F46 and L47, which
29 are situated at the beginning of the first β -strand in the center of Rpl3's two-lobed globular domain
30 (*Figure 5-figure supplement 2C*), also abolished growth of $\Delta rpl3$ cells (*Figure 5-figure supplement*
31 *2A*), the combination of these two mutations likely affects the productive folding of full-length Rpl3.
32 Importantly, most of the other generated *rpl3* mutants did not display any apparent growth defect, only
33 the H13A/L14A and the R28A/K30A mutations conferred a sg phenotype at all tested temperatures or
34 moderately impaired growth at 37°C, respectively (*Figure 5-figure supplement 2A*). After having
35 established their impact on Rrb1 binding and growth, we assessed the effect of the different alanine
36 substitutions on the abundance of the fusion mRNAs encoding these C-terminally yEGFP-tagged

1 Rpl3.N52 variants bearing the H3E exchange. Compared to the control containing only the H3E
2 mutation, which reduced transcript levels by more than two-fold in wild-type cells, the most prominent
3 increase in mRNA abundance could be observed by the additional presence of the F16A/L17A
4 substitutions (*Figure 5C*). Moreover, a clear diminution of negative regulation, resulting in a less than
5 1.5-fold downregulation of mRNA levels in wild-type cells, was brought about by the
6 R19A/K20A/R21A and F46A/L47A mutations. Next, we wondered whether deregulated expression of
7 Rpl3 was sufficient to restore growth of cells lacking the essential Rrb1. In contrast to the robust
8 suppression of the *Δacl4* growth defect by endogenously expressed W109C- or BIV-mutant Rpl4a
9 variants, expression of Rpl3.F16A/L17A from monocopy plasmid only enabled weak growth in the
10 absence of Rrb1 (*Figure 5-figure supplement 2D*), suggesting that the essential role of Rrb1 extends
11 beyond being a passive Rpl3 binder and likely includes other aspects, such as promoting the safe
12 transfer and efficient assembly of Rpl3 into early pre-60S particles.

13 Taken together, we have mapped the regulation-conferring region to amino acids 8-52 of Rpl3 and
14 identified residues therein, especially phenylalanine 16 and/or leucine 17, that serve as necessary
15 determinants for efficient negative regulation of *RPL3* mRNA levels. Notably, these two residues are
16 directly adjacent to the minimal Rrb1-binding site consisting of the N-terminal 15 amino acids (Pausch
17 *et al.*, 2015); however, due to lacking structural insight, it cannot be ruled out that the association of
18 Rrb1 would also shield these two residues, as observed for Rpl4's W109 residue when bound by Acl4
19 (Huber and Hoelz, 2017). In this respect, it is worth highlighting that the Rpl3 variant bearing the
20 F16A/L17A double substitution enables normal growth and does not appear to affect the interaction
21 with Rrb1. Importantly, the above-described data now permit to conclude that similar principles apply
22 to the negative regulation of *RPL3* and *RPL4* mRNA levels. Besides basically involving the same
23 regulatory machinery, maximal regulation requires in both cases an additional segment of around 30
24 amino acids after the identified, critically important Rpl3 (F16/L17) or Rpl4 (W109) residues,
25 suggesting that an auxiliary, yet to be unveiled feature contributes to the regulation process (see
26 Discussion). Moreover, the crucial role of individual residues provides compelling evidence that
27 nascent Rpl3 and Rpl4 harbor the signal eliciting the negative regulation of their own mRNA levels.
28 Finally, the immediate proximity or overlap of the Rrb1- or Acl4-binding site with residues that are
29 needed for potent regulation advocates a model in which co-translational capturing of Rpl3 or Rpl4 by
30 its respective dedicated chaperone would preclude their recognition by the regulatory machinery.

31

32 **Overexpression of Rrb1 and Acl4 increases *RPL3* and *RPL4* mRNA levels**

33 Next, we wished to obtain more direct evidence for a positive effect of Rrb1 or Acl4 binding to nascent
34 Rpl3 or Rpl4, respectively, on the abundance of the encoding mRNAs. To this end, we expressed the
35 dedicated chaperones Rrb1 and Acl4 in wild-type cells or in cells either lacking the genomic copy of
36 *RRB1* (*Δrrb1*) or *ACL4* (*Δacl4*) from a monocopy plasmid under the control of the galactose-inducible

1 *GAL1-10* promoter and assessed the levels of the endogenous *RPL3* and *RPL4* mRNAs by qRT-PCR.
2 When grown at 30°C in liquid SGal-Leu medium, overexpression of Rrb1 resulted in a more than 2.5-
3 fold increase in *RPL3* mRNA levels both in wild-type and *Δrrb1* cells (*Figure 6*), whereas a slight
4 decrease in *RPL4* mRNA abundance could be observed. Likewise, overexpression of Acl4 led to a
5 similarly robust increase in *RPL4* mRNA levels while, at the same time, the abundance of the *RPL3*
6 mRNA was marginally negatively affected. Conversely, depletion of either Rrb1 or Acl4, which as
7 expected entailed either a lethal or a sg phenotype, by growing cells for 24 h in glucose-containing
8 medium resulted in a more than two-fold decrease in *RPL3* or *RPL4* mRNA levels, respectively (*Figure*
9 *6*). These findings are consistent with the above observations that mutational inactivation of Acl4 or
10 Rrb1 binding by the BI mutations or the H3E substitution, respectively, augmented the negative
11 regulation of their mRNAs (*Figure 4D* and *Figure 5A*). Moreover, and also in agreement with the
12 observed reduction in *Δacl4* cells (*Figure 1G*), Acl4-depleted cells exhibited an almost 1.5-fold
13 decrease in *RPL3* mRNA levels (*Figure 6*). Similarly, *RPL4* mRNA abundance was reduced to a
14 comparable extent upon Rrb1 depletion. However, the levels of other assessed mRNAs, such as the
15 ones encoding Rpl5 or Rps3, were found to be moderately upregulated upon Rrb1 or Acl4 depletion.
16 We presume that this mutual reduction of the other mRNA being regulated by the same machinery
17 might be due a decreased rate of early pre-60S assembly and the concomitant sequestration of Rrb1 or
18 Acl4, which are only available in limiting amounts, by non-incorporated, excess Rpl3 or Rpl4 arising
19 from Acl4 or Rrb1 depletion, respectively. Taken together, we conclude that the availability of the
20 dedicated chaperone for binding to its nascent r-protein client is a crucial parameter for determining the
21 stability of the corresponding mRNA.

22

23 **Deregulated expression of Rpl3 and Rpl4 induces their aggregation and abolishes growth in the**
24 **absence of the E3 ubiquitin ligase Tom1**

25 What could be the physiological reason for the tight regulation of Rpl3 and Rpl4 expression levels and
26 the coupling of the regulatory process to the availability of their dedicated chaperones Rrb1 and Acl4?
27 A previous study of the Deshaies laboratory revealed that aggregation of many r-proteins, including
28 Rpl3 and Rpl4, is largely increased in cells lacking the E3 ubiquitin ligase Tom1 (Sung *et al.*, 2016a),
29 and, moreover, different reports have shown that perturbations of ribosome assembly, essentially
30 leading to an accumulation of newly synthesized, non-assembled r-proteins, negatively affect cellular
31 proteostasis (Sung *et al.*, 2016a; Albert *et al.*, 2019; Martín-Villanueva *et al.*, 2019; Tye *et al.*, 2019).
32 To assess genetically the impact of excess Rpl3 or Rpl4, we individually overexpressed these two r-
33 proteins from a multicopy plasmid under the control of the inducible *GAL1-10* promoter both in wild-
34 type and *Δtom1* cells. While only a minor effect on growth of wild-type cells could be discerned,
35 overexpression of Rpl3 or Rpl4a in *Δtom1* cells resulted in a more severe growth defect than
36 overexpression of Rpl26 (*Figure 7–figure supplement 1A*), which was previously shown to be degraded

1 by the proteasome upon ubiquitination by Tom1 (Sung *et al.*, 2016a; Sung *et al.*, 2016b). To evaluate
2 the effect of the Rpl3 and Rpl4a mutant variants that efficiently reduce the negative regulation of their
3 encoding mRNAs, these had therefore to be more moderately overexpressed, again under the
4 transcriptional control of the *GAL1-10* promoter, from monocopy plasmids. Strikingly, overexpression
5 of the BIV and W109C Rpl4a variants as well as the F16A/L17A and R19A/K20A/R21A Rpl3 variants
6 exclusively and strongly compromised, albeit to different extents, growth of *Δtom1* cells, while
7 overexpression of wild-type Rpl4a and Rpl3 only marginally affected growth (*Figure 7-figure
supplement 1B,C*). To exclude that in the case of the overexpressed Rpl3 mutants the observed effects
8 are due to titration of Rrb1, we additionally added the H3E mutation, which, as shown above, abolishes
9 the interaction with Rrb1 (*Figure 5-figure supplement 1*). Notably, presence of the H3E mutation
10 substantially exacerbated the impact of the Rpl3 variants harboring the F16A/L17A and
11 R19A/K20A/R21A substitutions on growth of *Δtom1* cells (*Figure 7-figure supplement 1D*).
12 Therefore, and considering the contribution of Acl4 to Rpl4's soluble expression (Pillet *et al.*, 2015), it
13 appears that association of the respective dedicated chaperone has a positive influence on an
14 intrinsically difficult property of newly synthesized Rpl3 and Rpl4, which could consist in their
15 aggregation propensity.
16

17 To explore this possibility, we next assessed whether the overexpressed Rpl3 (F16A/L17A and
18 R19A/K20A/R21A, either alone or combined with H3E) and Rpl4a (BIV and W109C) variants, fused
19 to a C-terminal 2xHA tag, would exhibit aggregation in *Δtom1* cells at 30°C. To this end, we shifted
20 wild-type and *Δtom1* cells containing the different monocopy plasmids, pre-grown in liquid medium
21 with raffinose as carbon source, for 4 h to galactose-containing medium and revealed the inducibly
22 expressed proteins in the total extract and the insoluble pellet fraction by Western analysis using anti-
23 HA antibodies. In agreement with Rpl4 being ubiquitinated *in vitro* by Tom1 (Sung *et al.*, 2016a), the
24 abundance of wild-type Rpl4a-2xHA was clearly increased in *Δtom1* cells when compared to its levels
25 in wild-type cells (*Figure 7-figure supplement 2A*). In accord with their deregulated expression, the
26 BIV and W109C Rpl4a variants were more abundant than wild-type Rpl4a both in wild-type and *Δtom1*
27 cells. In good correlation with the observed expression levels, the two Rpl4a variants, which could
28 already be detected to some extent in the insoluble fraction of wild-type cells, exhibited a higher
29 occurrence than wild-type Rpl4a in aggregates of *Δtom1* cells (*Figure 7-figure supplement 2A*). The
30 two Rpl3 variants (F16A/L17A and R19A/K20A/R21A), despite being similarly abundant as wild-type
31 Rpl3 in the total extracts, were considerably enriched in the insoluble fraction of wild-type cells (*Figure
7-figure supplement 2B*). Likewise, while levels of wild-type Rpl3 were comparable in wild-type and
33 *Δtom1* cells, more Rpl3 was present in the aggregate fraction of cells lacking Tom1. Compared to wild-
34 type Rpl3, the abundance and, even more markedly, the insolubility of the two Rpl3 mutant proteins,
35 especially of the F16A/L17A variant, were substantially increased in the absence of Tom1 (*Figure 7-
figure supplement 2B*). Presence of the H3E mutation strongly reduced the amounts of wild-type and

1 mutant Rpl3 in total extracts of wild-type cells; nevertheless, and in contrast to Rpl3.H3E, in particular
2 the H3E/F16A/L17A variant exhibited a notable degree of aggregation. Remarkably, absence of Tom1
3 restored the levels of wild-type and mutant Rpl3 containing the H3E mutation and resulted, again most
4 pronounced in the case of the H3E/F16A/L17A variant, in their prominent occurrence in the insoluble
5 fraction. Altogether, the above findings provide evidence that Tom1-mediated clearance of excess Rpl3
6 and Rpl4 is required to efficiently prevent their aggregation. Moreover, given that wild-type Rpl3 and
7 Rpl4a exert a dosage-dependent negative effect on growth of $\Delta tom1$ cells and also considering that only
8 Rpl3 and Rpl4a variants inducibly expressed in a deregulated fashion, thus exhibiting higher abundance
9 than their wild-type counterparts in the insoluble fraction, severely affect growth of cells lacking Tom1,
10 it is reasonable to assume that the detrimental impact on cell growth only sets in once a certain threshold
11 of aggregation has been exceeded.

12 To gain additional insight into the nature and location of the aggregation process, we examined the
13 fate of the above Rpl4a variants (BIV and W109C) and of the two Rpl3 mutant proteins (F16A/L17A
14 and H3E/F16A/L17A) exhibiting the highest aggregation propensity by fluorescence microscopy. To
15 this end, we transformed monocytoplasmy plasmids expressing wild-type and mutant Rpl3 and Rpl4a, fused
16 to a C-terminal yeast codon-optimized mNeonGreen (yOmNG), from the *GAL1-10* promoter into wild-
17 type and $\Delta tom1$ cells, additionally bearing a plasmid providing the nucleolar marker protein Nop58-
18 yEmCherry. Cells were first pre-grown at 30°C in liquid medium with raffinose as carbon source and
19 then shifted for 4 h to galactose-containing medium. Wild-type Rpl3 and Rpl4a showed, when
20 expressed in wild-type cells, almost exclusively cytoplasmic localization and exhibited only in a
21 fraction of $\Delta tom1$ cells (less than 20%) nucleolar accumulation or enrichment in nucle(ol)ar dots
22 (*Figure 7A* and *Figure 7-figure supplement 2C*). Conversely, the mutant Rpl3 and Rpl4a variants
23 displayed in most $\Delta tom1$ cells a strong fluorescence signal in the nucle(ol)ar compartment. As in the
24 case of the wild-type proteins, we again observed different types of localization patterns, ranging from
25 a rather diffuse nucleolar enrichment, sometimes expanding to the adjacent nucleoplasm, to the
26 appearance of one to several bright nuclear dots or blob-like structures (*Figure 7A* and *Figure 7-figure*
27 *supplement 2C*). Given that the fluorescence signal intensity is highest in the latter two morphological
28 states, we presume that these actually correspond to aggregates of excess Rpl3 and Rpl4a, which
29 initially, when still less abundant, can diffusely distribute within the nucleolar phase. In line with the
30 finding that presence of the H3E mutation enhances the negative impact of Rpl3.F16A/L17A
31 overexpression on growth of $\Delta tom1$ cells (*Figure 7-figure supplement 1D*), the fraction of cells
32 exhibiting extensive nuclear aggregation was higher upon Rpl3.H3E/F16A/L17A expression (*Figure*
33 *7-figure supplement 2C*). Taken together, we conclude that induced overexpression of Rpl3 or Rpl4
34 leads to their aggregation within the nucle(ol)ar compartment of cells lacking the E3 ubiquitin ligase
35 Tom1.

Having shown that exogenously overexpressed Rpl3 and Rpl4 exhibit aggregation, we next wished to address the physiological effect of their moderate, constitutive surplus expression elicited by inactivation of the negative regulatory network. Notably, the absence of Caf130, Not1's N-terminal CaInD domain, or either of the two NAC subunits, which all cause the deregulated expression of both Rpl3 and Rpl4, conferred synthetic lethality to cells lacking Tom1 (*Figure 7B and Figure 7-figure supplement 3B-G*). Even more remarkably, cells simultaneously lacking Cal4, which only increases *RPL4* but not *RPL3* mRNA levels, and Tom1 were also inviable (*Figure 7B and Figure 7-figure supplement 3A*), suggesting that deregulated expression of endogenous Rpl4 is already sufficient to confer lethality, presumably due to its aggregation, when excess r-proteins are not degraded by Tom1-dependent clearance. In agreement with excess Rpl4 being directly responsible for the synergistic growth defect, deregulated Rpl4a expression, this time enabled by the presence of the BIV mutations in the genomic *RPL4A* copy, did not support growth upon genetic depletion of Tom1 (*Figure 7-figure supplement 3H*). Accordingly, lowering the levels of synthesized Rpl4, by deleting the *RPL4A* gene, efficiently suppressed the synthetic lethality of $\Delta\text{cal4}/\Delta\text{tom1}$ cells (*Figure 7B*). Providing Rpl4 exclusively from the *RPL4B* locus, however, was not sufficient to restore growth of $\Delta\text{caf130}/\Delta\text{tom1}$ cells (*Figure 7B*), suggesting that not only excess supply of Rpl4 but also of Rpl3 is individually detrimental for cells lacking Tom1. In line with this notion, expression of the Rpl3.F16A/L17A variant, under the transcriptional control of its own promoter from a multicopy plasmid, abolished growth of Tom1-depleted cells (*Figure 7-figure supplement 7I*). Even more importantly, only simultaneously reducing the abundance of Rpl4 and Rpl3 by deleting *RPL4A* and expressing Rpl3 from the weaker *RPL4B* promoter (Zeevi *et al.*, 2011; Knight *et al.*, 2014), but not solely lowering Rpl3 levels, permitted efficient growth of $\Delta\text{caf130}/\Delta\text{tom1}$ cells (*Figure 7C*). Together, the genetic data convincingly demonstrate that the moderate constant surplus supply, around two-fold at the mRNA level, of either Rpl3 or Rpl4 is sufficient to perturb growth and possibly also proteostasis of cells lacking Tom1. To explore whether deregulated expression of Rpl3 and/or Rpl4, when provided from the genomic loci, indeed promotes their aggregation, we assessed their occurrence in the insoluble fraction of Δcaf130 and Δcal4 cells upon genetic depletion of Tom1. Strikingly, Rpl3 appeared already after 8 h in glucose-containing medium in the insoluble fraction of $\Delta\text{caf130}/\text{PGAL-2xHA-TOM1}$ cells, and Western analysis also revealed some accumulation of Rpl4 at this time point (*Figure 7D*). After 24 h of Tom1 depletion, a massive aggregation of Rpl3 and, albeit to a lesser extent, of Rpl4 could be observed. Concomitantly, many additional proteins showed up in the insoluble fraction, including, as indicated by Western analysis, several r-proteins (*Figure 7D*), suggesting that aggregation of Rpl3 and Rpl4 leads to an extensive perturbation of cellular proteostasis. Notably, the abundance of the other directly tested r-proteins was substantially decreased in the total extracts after 24 h of Tom1 depletion, presumably reflecting, as recently described (Albert *et al.*, 2019), the decreased transcription of their encoding genes as a result of lower Ifh1 promoter occupancy in order to alleviate the proteotoxic burden. Mass

1 spectrometry (MS) analysis of the major distinct gel bands confirmed the high prevalence of almost all
2 r-proteins in the insoluble fraction and additionally revealed the presence of a broad range of different
3 proteins, including ribosome biogenesis factors, proteasome subunits, general chaperones, and
4 translation factors (*Figure 7-figure supplement 4, Supplementary file 8*). As expected, depleting Tom1
5 for 24 h in *Δcal4* cells resulted, to a similar extent as observed above in *Δcaf130* cells, in extensive
6 aggregation of Rpl4 and the concomitant presence of many additional proteins in the insoluble fraction,
7 amongst them, as revealed by Western analysis, several r-proteins (*Figure 7D*). Unexpectedly, however,
8 aggregation of Rpl3, despite its decreased abundance in the total extract, could also be observed; this
9 suggests that aggregation of excess Rpl4 either directly affects solubility of Rpl3 or may indirectly
10 lower the availability of Rrb1, possibly due to an overall decrease in the rate of ribosome assembly
11 elicited by the reduced abundance of many r-proteins (*Figure 7D*), for binding to and protecting newly
12 synthesized Rpl3. We note that the deregulated expression of Rpl3 and/or Rpl4, in the absence of Tom1-
13 dependent clearance of their excess occurrence, promotes their aggregation and entails a loss of overall
14 proteostasis, which very likely accounts for the observed synthetic lethality of *Δcaf130/Δtom1* and also
15 of *Δcal4/Δtom1* cells.

16 Taken together, we conclude that the two dedicated chaperones Rrb1 and Acl4 intimately cooperate
17 with the regulatory machinery to provide optimal levels of assembly-competent Rpl3 and Rpl4. By
18 perfectly balancing their *de novo* synthesis, pre-60S assembly can be sustained at the highest possible
19 rate without requiring the Tom1-mediated degradation of excess Rpl3 and Rpl4, which would, as a last
20 resort, be necessary to avoid their aggregation and, ultimately, a potentially deleterious collapse of
21 cellular proteostasis. Importantly, the above-described data also strongly suggest that the main,
22 physiologically relevant targets of the regulatory machinery are the *RPL3* and *RPL4A/B* mRNAs.
23

1 Discussion

2 In this study, we have unveiled a novel, fascinating mechanism enabling the tight co-translational
3 regulation of r-protein expression that is of physiological importance for the maintenance of cellular
4 proteostasis. On the basis of our data and the current state of knowledge, we propose the following
5 model for how the *de novo* synthesis of Rpl3 and Rpl4 is fine-tuned to meet the demands of ribosome
6 assembly and, at the same time, protect cells from the potentially detrimental effects of their surplus
7 production (*Figure 8*). Under normal conditions, *i.e.* when ribosome assembly proceeds at an optimal
8 rate, the dedicated chaperones Rrb1 and Acl4 are available in sufficient amounts to capture their nascent
9 r-protein client Rpl3 or Rpl4, respectively, as the specific chaperone-binding segment emerges from the
10 exit tunnel on the surface of the 60S r-subunit, thereby leading to a stabilization of the *RPL3* or *RPL4*
11 mRNA that is in the process of being translated. Conversely, when ribosome biogenesis occurs at
12 reduced pace and Rpl3 or Rpl4 cannot get efficiently integrated into the developing pre-60S particles,
13 Rrb1 and Acl4 get sequestered by their unassembled r-protein partner in the nucleus and, therefore, are
14 only present in insufficient abundance in the cytoplasm to bind nascent Rpl3 or Rpl4 in a timely manner.
15 In this case, the presumed, co-translational interaction of NAC with the regulation-conferring segment
16 on these two r-proteins persists long enough to enable the recruitment of or the transfer to the regulatory
17 machinery, which, likely *via* the Caf1-Ccr4 deadenylase module of the Caf130-associated Ccr4-Not
18 core complex, promotes the degradation of the physically connected *RPL3* or *RPL4* mRNA. The finding
19 that overexpression of Rrb1 or Acl4 leads to a further, specific increase in *RPL3* or *RPL4* mRNA levels
20 strongly suggests that the two dedicated chaperones are actually present in somewhat limiting amounts
21 and that, even under normal growth conditions, there is a constant competition between Rrb1 or Acl4
22 and the regulatory machinery for binding to nascent Rpl3 or Rpl4 (*Figure 6*); thus, conferring high
23 sensitivity to the regulatory process. Accordingly, the functional utility of dedicated chaperones can be
24 extended to the purpose of serving as molecular rheostats that, in the case of Rrb1 and Acl4,
25 continuously sense the status of early pre-60S assembly by surveying the levels of free Rpl3 or Rpl4,
26 respectively, and thereby coordinate the production of new Rpl3 and Rpl4 with their actual consumption
27 during biogenesis of 60S r-subunits. The need for such a tight regulation becomes apparent when cells
28 are exposed to deregulated Rpl3 and/or Rpl4 expression, such as in the absence of Caf130 or Cal4, and
29 at the same time, due to the absence or depletion of the E3 ubiquitin ligase Tom1, cannot clear these
30 excessively produced r-proteins *via* their Tom1-mediated ubiquitination (ERISQ pathway) and
31 subsequent proteasomal degradation. In this setting, Rpl3 and/or Rpl4 undergo massive aggregation,
32 which likely accounts for the observed collapse of overall proteostasis and the inability to sustain cell
33 growth (*Figure 7B,D*). We conclude that, depending on the cell's proteostatic state, the meticulous
34 adjustment of the abundance of unassembled Rpl3 and/or Rpl4, achieved by a properly functioning
35 interplay between the regulatory machinery and the dedicated chaperones Rrb1 and Acl4, may become
36 essential to maintain cellular proteostasis. Moreover, the here-described autoregulatory feedback loop

1 constitutes together with the ERISQ pathway a robust buffering system to prevent cells from
2 experiencing the harmful impact of excess Rpl3 and/or Rpl4.

3 As mentioned in the Introduction, the complementary action of Ifh1 and Sfp1, even though being
4 predominantly required for activation of either category I and II (Ifh1) or category III (Sfp1) RPG
5 promoters, ensures the co-regulated expression of all RPGs under most conditions (Zencir *et al.*, 2020;
6 Shore *et al.*, 2021). Ifh1, owing to its Utp22-dependent sequestration in the CURI complex, is also
7 employed, by sensing the 90S assembly status, to coordinate the transcriptional output of most RPGs
8 with that of the 35S pre-rRNA (Albert *et al.*, 2016). In addition, in response to a ribosome assembly
9 stress, leading to the aggregation of unassembled r-proteins, Ifh1 gets rapidly displaced from RPG
10 promoters and appears to accumulate in an insoluble nucle(ol)ar fraction (Albert *et al.*, 2019); the
11 concomitant decrease in Ifh1-dependent RPG transcription then helps to alleviate the proteostatic stress
12 by reducing the production of new r-proteins. Notably, the *RPL3* and *RPL4A/B* genes contain category
13 III promoters and they are the RPGs whose efficient transcription, while being rather insensitive to Ifh1
14 depletion or the ribosome assembly stress response (RASTR), shows the highest Sfp1 dependence
15 (Albert *et al.*, 2019; Zencir *et al.*, 2020). Accordingly, the here-described co-translational regulation of
16 *RPL3* and *RPL4* mRNA levels represents an elegant mechanism to specifically reduce the *de novo*
17 synthesis of Rpl3 and Rpl4 when their unassembled levels exceed, due to a perturbation of ribosome
18 assembly, the buffering capacity of the dedicated chaperones Rrb1 and Acl4. While the above would
19 suggest a special relevance for rapidly responding to certain stress conditions, our data indicate that the
20 regulatory mechanism also continuously operates under normal growth conditions. In line with a
21 constant adjustment of their transcript levels *via* a regulated degradation pathway, the *RPL3* and
22 *RPL4A/B* transcripts are among the five RPG mRNAs exhibiting markedly shorter half-lives than all
23 other RPG mRNAs (Wang *et al.*, 2002). What could be the reason for their different transcriptional
24 regulation and the need to tightly control the levels of unassembled Rpl3 and Rpl4? Both Rpl3 and
25 Rpl4, by associating shortly before or after the generation of the 27SA₂ pre-rRNA, are among the
26 earliest assembling large subunit r-proteins and they fulfill a central role for the compaction and/or
27 stabilization of the earliest pre-60S particles (Rosado *et al.*, 2007; Pöll *et al.*, 2009; Gamalinda *et al.*,
28 2014; Pillet *et al.*, 2015; Joret *et al.*, 2018). Therefore, to sustain optimal rates of 60S production and to
29 avoid the costs and impact of abortive pre-60S assembly, it is necessary to warrant a sufficient supply
30 of assembly-competent Rpl3 and Rpl4. The temporary nuclear storage of Rpl3 and Rpl4 in complex
31 with their dedicated chaperone not only provides the required buffering capacity to rapidly respond to
32 short-term increases in assembly demand but also the means to relay and directly connect the status of
33 early pre-60S assembly to the rate of the two r-proteins' *de novo* synthesis. Compared to a purely
34 transcription-based adaptation of protein levels, the uncovered regulatory mechanism, owing to the
35 constant supply of new *RPL3* and *RPL4A/B* mRNAs that are then either translated or subjected to
36 regulated degradation, has the evident advantage of enabling a more rapid response. We conclude that

1 the accurate functioning of this regulatory system is instrumental to avoid the impact of both the surplus
2 and insufficient supply of Rpl3 and/or Rpl4. Our study has clearly highlighted the harmful potential of
3 excess Rpl3 and/or Rpl4, as revealed by their massive aggregation in cells lacking Tom1. On the other
4 hand, we predict that already a minor shortage of Rpl3 or Rpl4, owing to their pivotal role for the
5 stabilization of the earliest pre-60S particles, will lead to some accumulation of all later assembling
6 large subunit r-proteins, which can, however, be efficiently cleared by Tom1-dependent degradation.
7 Contrary to this initial response, which would still allow to rapidly regain the maximal speed of 60S
8 biogenesis when sufficient Rpl3 or Rpl4 is available again, a longer persisting or more severe shortage
9 will lead, once the accumulation of unassembled large subunit r-proteins has exceeded the capacity of
10 the ERISQ pathway, to the aggregation of these r-proteins and a concomitant downregulation of Ifh1-
11 dependent RPG transcription; thus, likely dampening the production of both r-subunits over a longer
12 period of time.

13

14 **Potential mechanism of substrate recognition and mRNA degradation**

15 While our study has identified several of the involved regulatory components (NAC, Caf130, Cal4, and
16 Not1) as well as the regulation-conferring segment on the two nascent r-proteins and some key residues
17 therein, which are notably immediately following or even partially overlapping with the binding site of
18 the respective dedicated chaperone, the mechanism and selectivity of the substrate recognition process
19 and the component(s) mediating mRNA degradation remain to be determined. Considering the
20 mandatory requirement of a physical connection with Not1 for negative regulation of *RPL3* and *RPL4*
21 mRNA levels to occur, an involvement of one of the associated core components of the Ccr4-Not
22 complex can be supposed. Since it is well-established that the Ccr4-Not complex plays an important
23 role in the decay of cytoplasmic mRNAs, a process that is initiated by deadenylation of the poly(A) tail
24 (Parker, 2012), we consider it highly likely that its Caf1-Ccr4 deadenylase module promotes
25 degradation of the *RPL3* and *RPL4* mRNA. Notably, the utilization of a defined segment of the encoded,
26 nascent polypeptide constitutes, to the best of our knowledge, an unprecedented mechanism of
27 recruitment of the Ccr4-Not complex to a substrate mRNA, which is more conventionally achieved
28 through interactions with either the poly(A) binding protein or rather general as well as specific RNA-
29 binding proteins (Parker, 2012; Wahle and Winkler, 2013; Bresson and Tollervey, 2018), but, as
30 recently shown, can also occur *via* the accommodation of the Not5-NTD in the ribosomal E-site of
31 mRNAs displaying low codon optimality (Buschauer *et al.*, 2020). Regardless of the recruitment
32 mechanism, sensing of the mRNA's translation status appears in many cases to be an important aspect
33 for enabling selective mRNA degradation.

34 How are nascent Rpl3 and Rpl4, in the absence of Rrb1 or Acl4 binding, recognized as signals for
35 the selective recruitment of the Ccr4-Not complex in order to initiate the degradation of the encoding
36 mRNAs? The strict requirement of both NAC subunits for negative regulation indicates that

1 heterodimeric NAC, owing to its established role as a ribosome-associated chaperone that binds nascent
2 chains (Deuerling *et al.*, 2019), is involved in the substrate recognition process. Given that the N-
3 terminal tail of NAC- β can insert, as seen in the cryo-EM structure of a reconstituted *Caenorhabditis*
4 *elegans* NAC-60S complex, up to the constriction point of the polypeptide exit tunnel to sense and bind
5 to nascent chains (Gamerdinger *et al.*, 2019), we assume that the yeast NAC- β subunits may be
6 responsible for establishing the initial contact with the N-terminal part of the regulation-conferring
7 segment of nascent Rpl3 and Rpl4. Conspicuously, in both cases the residues identified as being crucial
8 for conferring regulation, F16/L17 and W109, respectively, are followed by a segment of around 30
9 amino acids that is also required to confer maximal regulation. Considering that around 25-30 amino
10 acids are generally buried within the exit tunnel (Bhushan *et al.*, 2010; Wilson *et al.*, 2016; Döring *et*
11 *al.*, 2017), we speculate that the residues following these key residues, especially those potentially
12 extending from the constriction point of the tunnel to the peptidyl transferase center, may have a
13 propensity for stalling the nascent chain in the exit tunnel. The immediate proximity of the Rrb1 or
14 Acl4 binding site and the first residues of the regulation-conferring segment suggests that timely
15 association with the dedicated chaperone may preclude NAC from interacting with nascent Rpl3 or
16 Rpl4 and allow translation to proceed. Conversely, if these are not swiftly enough captured by their
17 dedicated chaperone, NAC could sense and bind to the regulation-conferring segment, an event that
18 presumably fortifies stalling and, thereby, further decreases the speed of translation. This would provide
19 the necessary time window to judiciously decide about the fate of the stalled nascent ribosome-nascent
20 chain complex (RNC) and its associated mRNA. If the dedicated chaperone associates sufficiently fast
21 with its fully or partially exposed binding site on nascent Rpl3 or Rpl4, the concomitant displacement
22 of NAC may generate a pulling force that might be necessary to overcome stalling, and the precocious
23 degradation of the encoding mRNA can be avoided. On the other hand, when Rrb1 or Acl4 are not
24 available in a high enough concentration in the cytoplasm, the probability of channeling the stalled
25 RNCs to the regulated mRNA degradation pathway increases over time. Considering the high
26 selectivity of the regulatory process and that NAC- β utilizes its NAC domain to interact either with
27 NAC- α or Caf130, it is reasonable to postulate that Caf130-associated NAC- β then takes over the
28 nascent Rpl3 and Rpl4 substrates. To efficiently channel the selected mRNAs to regulated degradation
29 and confer directionality to the process, the interaction of NAC- β with Caf130 is expected to increase
30 NAC- β 's affinity for the substrate, possibly by involving the formation of a dedicated substrate-binding
31 surface together with Caf130 and/or Not1's CaInD domain. At present, it is not clear why Cal4 only
32 participates in the regulation of the *RPL4* mRNA, but, given its robust association with Caf130, we
33 assume that Cal4 either makes an essential contribution to substrate recognition or is required for
34 conferring the necessary strength to RNC stalling such that the associated mRNA cannot evade its
35 degradation.

1 The above-described scenario would fit well with the recently proposed role of NAC as a triage
2 factor that promotes the faithful transfer of nascent chains to the proper targeting machinery or
3 chaperone-assisted folding pathway (Hsieh *et al.*, 2020). Moreover, our findings are reminiscent of the
4 previous observation that mammalian mRNAs encoding proteins whose signal sequence is inefficiently
5 recognized by the signal recognition particle (SRP) are, albeit by a yet to be determined mechanism,
6 selectively degraded (Karamyshev *et al.*, 2014). In analogy to the SRP-recognized sequences of
7 secretory proteins, the binding sites on r-proteins, especially the N-terminally located segment on Rpl3,
8 that enable the co-translational recruitment of dedicated chaperones could also be viewed as highly
9 specific signal sequences. In the special case of nascent Rpl3 and Rpl4, the timely association with Rrb1
10 or Acl4 not only enables their fail-safe production as assembly-competent r-proteins but also prevents
11 the degradation of the encoding mRNAs. Clearly, future experiments will be required to challenge the
12 presented model and unveil the exact nature of the uncovered regulatory mechanism.

13

14 **Possible conservation of the regulatory process**

15 Besides having revealed a novel, sophisticated mechanism of co-translational regulation, our study has
16 also attributed a function to the hitherto uncharacterized N-terminal part of Not1 by showing that a
17 defined segment, comprising residues 21-153, serves as a binding site for the sub-stoichiometric Ccr4-
18 Not subunit Caf130; accordingly, we now propose to refer to this region as the Caf130-interacting
19 domain (CaInD). Intriguingly, by being naturally synthesized as two different isoforms, which are
20 notably defined by the presence (minor, full-length isoform) or absence (major isoform, starting with
21 M163) of the CaInD domain, *S. cerevisiae* Not1 has the capacity to specifically enable the formation of
22 Ccr4-Not complexes either containing or lacking Caf130 and, thus, selectively licensing these for
23 participation in negative regulation of *RPL3* and *RPL4* mRNA levels. Importantly, our study allows for
24 the first time to allocate a well-defined functional role to Caf130 and, moreover, establishes its
25 interaction partner Cal4, which in contrast to Caf130 is solely involved in regulating Rpl4 expression,
26 as a novel accessory component of the Ccr4-Not complex. Further, our data strongly suggest that
27 Caf130 can simultaneously associate with Not1, the NAC β -subunit Btt1, and Cal4 by employing
28 distinct surfaces contained within amino acids 40-655 (Not1 binding), 292-655 (Btt1 binding), and 686-
29 938 (Cal4 binding) (Figure 3I).

30 Is the here-described regulatory mechanism a particularity of fungi or even restricted to species
31 belonging to the Saccharomycetaceae family, such as *S. cerevisiae*, or could it also exist in evolutionary
32 more complex eukaryotes and possibly even in mammals? Regarding the r-proteins Rpl3 and Rpl4, the
33 binding site of the respective dedicated chaperone as well as the minimal regulation-conferring
34 segment, including the identified key residues therein, are well conserved between fungi and humans
35 (Figure 4C and Figure 5B). The putative human ortholog of Rrb1 is GRWD1 (Killian *et al.*, 2004;
36 Gratenstein *et al.*, 2005), which, as suggested by its strong enrichment in a recently reported GFP-Trap

1 affinity purification of RPL3-GFP from HEK-293 cells (Malecki *et al.*, 2021), likely serves as a
2 dedicated chaperone of RPL3. In the case of Acl4, however, a potential human ortholog could so far
3 not be identified by bioinformatics analyses (Pillet *et al.*, 2015; Stelter *et al.*, 2015); thus, experimental
4 approaches will be needed to reveal whether human RPL4 also requires a selective binding partner that
5 is functionally equivalent to Acl4. The NAC, in its heterodimeric composition and function as a
6 ribosome-associated chaperone that recognizes a broad range of nascent polypeptides, is highly
7 conserved from yeast to humans (Deuerling *et al.*, 2019). The occurrence of both a canonical, Egd1-
8 like and a slightly divergent, “Btt1-like” NAC β -subunit, however, seems to be a distinctive feature of
9 *Saccharomyces* species and, according to our database searches, of *Kazachstania* and *Naumovozyma*
10 species, whose genera also belong to the post whole-genome duplication (WGD) clade (Wolfe *et al.*,
11 2015). Considering that full suppression of the Δ acl4 growth defect can only be observed when both
12 NAC- β variants are absent and that predicted Caf130 orthologs can be found throughout the
13 Saccharomycetaceae family, notably also within the non-WGD genera (for example, see *OrthoDB*
14 using YGR134W as search term; (Kriventseva *et al.*, 2019)), it is reasonable to assume that Egd1-like
15 NAC- β can either partly, *e.g.* in *Saccharomyces* species, or even fully fulfil the functional role as
16 Caf130 partner within the regulatory machinery.

17 According to the recently released AlphaFold protein structure database (Jumper *et al.*, 2021), the
18 N-terminal part of Not1 is predicted to fold into a well-defined domain (confident prediction accuracy
19 for amino acids 21-149), which essentially overlaps with the experimentally determined CaInD domain
20 and whose full integrity is strictly required to maintain the interaction with Caf130 (*Figure 3-figure*
21 *supplement 2A*). Remarkably, the beginning of the major Not1 isoform, whose synthesis is initiated by
22 the utilization of the second in-frame ATG encoding M163, coincides with the starting point of the
23 elongated HEAT-repeat domain (amino acids 165-747), which, compared to the available crystal
24 structure (Basquin *et al.*, 2012), is predicted to contain two additional N-terminal α -helices (amino
25 acids 165-190). This particular organization of the *NOT1* coding sequence, *i.e.* the absence of any out-
26 of-frame ATG trinucleotides between the annotated start codon and the second in-frame ATG, which
27 is invariably positioned before the region encoding the HEAT-repeat domain, is maintained throughout
28 the Saccharomycetaceae family, suggesting that the selective exclusion of the N-terminal CaInD
29 domain, *via* a leaky scanning mechanism, appears to be a conserved and advantageous feature. Despite
30 poor primary sequence conservation, structural alignments, based on AlphaFold predictions, reveal that
31 the CaInD domain of *S. cerevisiae* Not1 shares good similarity with the first half of the predicted N-
32 terminal domain (amino acids 7-228) of human CNOT1 (*Figure 8-figure supplement 1A*). Intriguingly,
33 CNOT1 has also been observed to be naturally present as two variants with similar, but clearly
34 distinguishable molecular masses (Gavin *et al.*, 2002; Lau *et al.*, 2009; Mauxion *et al.*, 2013), which
35 notably differ in the length of the N-terminal part (Mauxion *et al.*, 2013). As the *CNOT1* coding
36 sequence contains three out-of-frame ATGs between the annotated translation initiation site and a

1 remarkable cluster of four closely spaced in-frame ATG codons (specifying M236, M250, M251, and
2 M259; see NCBI Reference Sequence NM_016284.5), which would nonetheless all be ideally suited to
3 initiate the translation of a CNOT1 variant lacking its predicted N-terminal domain, it seems unlikely
4 that leaky scanning would be responsible for the synthesis of the observed, N-terminally truncated
5 CNOT1; therefore, the identity of the recessed N-terminal end and whether it is generated by proteolysis
6 or originating from an alternative translation initiation mechanism remains to be determined. Moreover,
7 Y2H assays indicate that the N-terminal 240 residues of CNOT1 are sufficient to mediate the interaction
8 with CNOT11 (Mauxion *et al.*, 2013), which has been shown to interact *via* its C-terminal part (amino
9 acids 257-498), containing the conserved DUF2363 domain (amino acids 371-495), with CNOT10 to
10 form the CNOT10-CNOT11 module (Bawankar *et al.*, 2013; Raisch *et al.*, 2019). In line with an N-
11 terminal location of the CNOT10-CNOT11 binding site on CNOT1, tandem-affinity purification of
12 CNOT11 resulted in the purification of a complex exclusively containing full-length CNOT1 (Mauxion
13 *et al.*, 2013). Interestingly, structural alignments reveal that the predicted middle (amino acids 298-592)
14 and C-terminal (amino acids 709-1011) domain of Caf130 exhibit reasonable and, respectively, eye-
15 catching similarity with the predicted N- (amino acids 61-281) and C-terminal (amino acids 322-498)
16 domain of CNOT11 (*Figure 8-figure supplement 1B,C*); thus, suggesting that Caf130 and CNOT11
17 could have evolved from a common ancestor and may even fulfil similar functions. There appear,
18 however, to be differences concerning their mode of interaction with the N-terminal domain of
19 Not1/CNOT1: First, the minimal Not1-binding region of Caf130 encompasses residues 40-655 (*Figure*
20 *3H and Figure 3-figure supplement 2A*), also comprising, besides the middle domain, a predicted N-
21 terminal domain (amino acids 31-219), which is notably missing in CNOT11. Second, co-expression
22 of CNOT10 enhances the association of CNOT11 with CNOT1 *in vivo* (Bawankar *et al.*, 2013). Third,
23 the C-terminal part of CNOT11 (amino acids 257-498) is sufficient to get integrated together with
24 CNOT10 into an *in vitro* reconstituted Ccr4-Not complex (Raisch *et al.*, 2019). We therefore presume
25 that the longer, C-terminally extended N-terminal domain of CNOT1 as well as CNOT10 contribute
26 with additional surfaces to the efficient recruitment of the CNOT10-CNOT11 module. Finally, given
27 that Cal4, which is predicted to contain a compact five-helix bundle (amino acids 29-219) that is
28 basically sufficient to mediate the interaction with Caf130 (*Figure 3-figure supplement 2C*), is only
29 present in species belonging to the Saccharomycetaceae family and does not share any structural
30 similarity with CNOT10, predicted to be mainly composed of tetratricopeptide repeat (TPR) motifs, it
31 most likely plays a different functional role than CNOT10. Taken together, the above-described
32 similarities and conservation of the involved components suggests that, at least, the regulation of Rpl3
33 levels could potentially take place in an analogous manner in human cells; however, future studies are
34 required to reveal whether the regulatory process indeed occurs throughout eukaryotes and would also
35 be conserved in its mechanistic details.

36

1 **Implications of perturbed r-protein homeostasis for developmental disorders**

2 Notably, our study highlights the r-proteins Rpl3 and Rpl4 as potential drivers of cellular protein
3 aggregation. Specifically, we could unveil that the constant, moderate surplus supply of Rpl3 and/or
4 Rpl4, elicited by their deregulated expression in cells lacking single components of the regulatory
5 machinery (e.g. Δ caf130, Δ cal4), leads to their massive aggregation, ultimately resulting in a
6 proteostatic collapse, and abolishes cell growth when the E3 ubiquitin ligase Tom1 is simultaneously
7 absent (Figure 7B,D). Our findings therefore further reinforce the notion that the aggregation of
8 unassembled r-proteins represents a threat to the maintenance of cellular proteostasis, which, as shown
9 by previous studies, yeast cells try first to avoid by clearing excess r-proteins via Tom1-mediated
10 degradation (ERISQ pathway) and then to resolve by activating a stress response pathway, referred to
11 as RASTR or RPAS, that increases the protein folding, disaggregation, and degradation capacity and
12 decreases Ifh1-dependent transcription of RPGs, thus directly reducing the *de novo* synthesis of most
13 r-proteins (Sung *et al.*, 2016a; Albert *et al.*, 2019; Tye *et al.*, 2019). Importantly, the reduced supply of
14 single r-proteins, resulting in the accumulation of orphan r-proteins, has also recently been shown to
15 cause proteotoxic stress and cell elimination in *Drosophila* (Baumgartner *et al.*, 2021; Recasens-
16 Alvarez *et al.*, 2021). Moreover, it is well-established that mutations in around 20 different RPGs,
17 mostly leading to haploinsufficiency of individual r-proteins, result in the development of a
18 ribosomopathy called Diamond-Blackfan anemia (DBA) (Narla and Ebert, 2010; Danilova and Gazda,
19 2015; Da Costa *et al.*, 2018; Aspeli and Ellis, 2019), whose defining characteristics include reduced
20 proliferation and increased apoptosis of erythroid progenitor cells, raising the possibility that
21 proteotoxic stress could contribute to the manifestation of DBA (Recasens-Alvarez *et al.*, 2021).
22 Further, several unassembled r-proteins, especially RPL5 and RPL11 in the context of the 5S RNP but
23 also RPL4 and RPL26, whose yeast counterparts are established Tom1 targets (Sung *et al.*, 2016a; Sung
24 *et al.*, 2016b), interact with the E3 ubiquitin ligase MDM2 and thereby inhibit the ubiquitination and
25 degradation of the apoptosis-promoting transcription factor p53 (Bursac *et al.*, 2014; Pelava *et al.*,
26 2016). In the case of RPL4, both its overexpression and depletion, the latter in an RPL5- and RPL11-
27 dependent manner, lead to p53 stabilization (He *et al.*, 2016). Moreover, a possible connection between
28 RPL3 and RPL4 variants and DBA is suggested by the identification of missense mutations both in
29 *RPL3* (one DBA patient; His11 to Arg substitution, unknown significance for disease manifestation)
30 and *RPL4* (one individual with DBA-like phenotypes; Val-Leu insertion between Ala58 and Gly59)
31 (Gazda *et al.*, 2012; Jongmans *et al.*, 2018). Besides in DBA, increased p53 activity also plays a pivotal
32 role in eliciting tissue-specific defects in a variety of different developmental syndromes (Bowen and
33 Attardi, 2019). In this respect, it is worth mentioning that genetic changes in *HUWE1*, encoding the
34 ortholog of Tom1, are associated with multiple neurodevelopmental disorders, prominently including
35 X-linked intellectual disability (Giles and Grill, 2020), and that reduced *HUWE1* levels, due to a
36 disease-causing mutation, increase p53 signaling (Aprigliano *et al.*, 2021). Moreover, individuals with

1 mutations in *CNOT1* exhibit a broad range of neurodevelopmental phenotypes, most consistently
2 resulting in intellectual disability, development delay, speech delay, motor delay, and hypotonia
3 (Vissers *et al.*, 2020). Taking into account the findings of our study and the above considerations,
4 perturbed proteostasis, elicited by unassembled r-proteins such as RPL3 and RPL4, could not only
5 contribute to the development of DBA but possibly also influence the aging process and be of relevance
6 to the etiology of diverse developmental disorders and even neurodegenerative diseases of protein
7 aggregation (Kaushik and Cuervo, 2015; Szybińska and Leśniak, 2017; Maor-Nof *et al.*, 2021).
8

1 **Materials and methods**

2

3 **Yeast strains, genetic methods, and plasmids**

4 The *S. cerevisiae* strains used in this study (listed in *Supplementary file 1*) are derivatives of W303
5 (Thomas and Rothstein, 1989). For yeast two-hybrid analyses the reporter strain PJ69-4A was used
6 (James *et al.*, 1996). Deletion disruption, C-terminal tagging at the genomic locus, and N-terminal
7 2xHA-tagging of *TOM1* under the transcriptional control of the *GAL1* promoter were performed as
8 described (Longtine *et al.*, 1998; Janke *et al.*, 2004). Strains harboring combinations of different gene
9 deletions, tagged alleles, and/or the conditional 2xHA-*TOM1* allele were generated by crossing and,
10 upon sporulation of the diploids, tetrad dissection using a Singer MSM System series 200
11 micromanipulator (Singer Instruments, Roadwater, United Kingdom). To generate strains harboring
12 *rpl4a* alleles at the genomic locus, a two-step allele replacement strategy was employed (Klöckner *et*
13 *al.*, 2009). Briefly, wild-type *RPL4A* and the *rpl4a.W109C*, *rpl4a.BI-mt*, *rpl4a.BII-mt*, *rpl4a.BIII-mt*,
14 and *rpl4.BIV-mt* alleles, excised from plasmid and bearing the native *RPL4A* promoter and terminator
15 regions, were integrated into haploid *rpl4a::klURA3NPT2* mutant cells (YBP143 and YBP144) by
16 homologous recombination, and correctness of the allele replacement was verified by PCR and
17 sequencing. To combine these alleles with either the $\Delta rpl4b$ or $\Delta acl4$ null mutation, strains harboring
18 the integrated *RPL4A* wild-type and *rpl4a* mutant alleles were either crossed with a $\Delta rpl4a/\Delta rpl4b$
19 pHT4467 Δ -*RPL4A* (YBP34 or YBP52) or a $\Delta rpl4a/\Delta acl4$ YCplac33-*ACL4* (YBP98 or YBP104) strain,
20 and, upon sporulation and tetrad dissection, haploid spore clones with the correct genotype were
21 selected. Preparation of media, yeast transformation, and genetic manipulations were done according
22 to established procedures. All recombinant DNA techniques were according to established procedures
23 using *Escherichia coli* DH5 α for cloning and plasmid propagation. All cloned DNA fragments
24 generated by PCR amplification were verified by sequencing. More information on the plasmids, which
25 are listed in *Supplementary file 2*, is available upon request.

26

27 **Isolation of $\Delta acl4$ suppressors and identification of candidate mutations by high-throughput**
28 **sequencing**

29 Spontaneous suppressors of the $\Delta acl4$ sg phenotype were isolated from nine different $\Delta acl4$ null mutant
30 (*acl4::HIS3MX4*: YKL697, YKL698, YKL700, and YKL701; *acl4::natNT2*: YKL703, YKL704,
31 YKL707, YKL708, and YBP255) and two different $\Delta acl4/\Delta rpl4a$ double mutant
32 (*acl4::natNT2/rpl4a::HIS3MX4*: YBP98 and YBP104) strains by growing serial dilutions or restreaks
33 of these strains on YPD plates at 16, 23, and 30°C. After a further restreak round on YPD plates, 53
34 suppressor strains were retained and their genomic DNA was isolated. Upon high-throughput
35 sequencing of the mutant genomes, clear candidate mutations could be identified by bioinformatics
36 analyses for 48 independent suppressor strains. The 47 different mutations mapped to only four different

1 genes, namely *CAF130* (35 different mutations), *YJR011C/CAL4* (7), *NOT1* (4), and *RPL4A* (1) (see
2 *Supplementary file 3*).

3 Genomic DNA was extracted from cell pellets containing 20 OD₆₀₀ units of the parental control
4 strains and the suppressor mutants, which had been grown in YPD to an OD₆₀₀ of around 1, exactly as
5 previously described (Thoms *et al.*, 2018). To estimate the integrity of the isolated genomic DNA, 2.5
6 μ l of the preparation was migrated on a 1% agarose gel. The concentration of the genomic DNA was
7 determined with the Qubit dsDNA BR Assay Kit (Invitrogen, Carlsbad, United States) on a Qubit 2.0
8 fluorimeter (Invitrogen).

9 Libraries were generated from 1 μ g of genomic DNA and high-throughput sequencing was
10 performed on a HiSeq 3000 instrument (Illumina, San Diego, United States). Library preparation and
11 Illumina sequencing was carried out by the Next Generation Sequencing (NGS) Platform of the
12 University of Bern (Switzerland). The raw reads (paired-end reads of 150 bp) were processed according
13 to the following procedure: After performing a quality check with FastQC v0.11.7 (fastqc:
14 <https://www.bioinformatics.babraham.ac.uk/projects/fastqc/>), all the reads were filtered for quality
15 (min 20) and truncated to 100 bp with Sickle v1.29 (Joshi and Fass, 2011) and then mapped with BWA-
16 MEM v0.7.10 (Li and Durbin, 2010) to the *S. cerevisiae* reference genome R64-1-1.90 downloaded
17 from Ensembl (Yates *et al.*, 2020). The SAM files were sorted and converted to BAM files with
18 SAMtools v1.2 (Li, 2011). Single nucleotide variants (SNVs), as well as small insertions and deletions
19 (Indels), were called with SAMtools and BCFtools v1.2 (Li, 2011). Variant annotation was added with
20 SnpEff v4.3 (Cingolani *et al.*, 2012b); then, variants were filtered with SnpSift (Cingolani *et al.*, 2012a)
21 to keep homozygous variants that are not found in the parental control strain and that are not
22 "synonymous" or "intergenic", leading to an annotated and curated Variant Call Format (VCF) file.
23 Results were viewed with the Integrative Genomics Viewer (IGV) software (Thorvaldsdóttir *et al.*,
24 2013). The raw reads have been deposited at the European Nucleotide Archive (ENA) under the study
25 accession number PRJEB45852.

26

27 **RNA extraction**

28 For RNA-Seq and the determination of mRNA levels by real-time quantitative reverse transcription
29 PCR (qRT-PCR; experiments shown in *Figure 1G*), total RNA was extracted by the hot acid-phenol
30 method (Ausubel *et al.*, 1994). Briefly, yeast cells were exponentially grown in YPD medium at 30°C
31 and 10 ml of each culture was harvested by centrifugation. Cells were then washed once in ice-cold
32 water and frozen in liquid nitrogen. The cell pellets were resuspended in 400 μ l of TES solution (10
33 mM Tris-HCl pH7.5, 10 mM EDTA, and 0.5% SDS) and 400 μ l of acid phenol was added. The tubes
34 were vigorously vortexed and incubated at 65°C for 45 min with occasional vortexing. The extraction
35 mix was cooled-down on ice for 5 min and the upper aqueous phase was recovered after centrifugation
36 (5 min, 13'500 rpm, 4°C). Following a second acid phenol (400 μ l) and a chloroform (400 μ l)

1 extraction, the aqueous phase was transferred into a new tube and the RNA was precipitated by the
2 addition of 40 μ l of 3 M sodium acetate pH 5.3 and 1 ml of ice-cold ethanol. After centrifugation (5
3 min, 13'500 rpm, 4°C), the RNA pellet was washed with 900 μ l of ice-cold 70% ethanol, collected by
4 centrifugation, briefly air-dried, and resuspended in 100 μ l nano-pure water. RNA concentrations were
5 determined using a NanoDrop 1000 spectrophotometer (Thermo Fisher Scientific, Waltham, United
6 States). Then, 5 μ g of total RNA was treated with DNase (DNA-free Kit for DNase Treatment &
7 Removal; Invitrogen).

8 For all other qRT-PCR experiments, total RNA was prepared from around 6 OD₆₀₀ of yeast cells,
9 which were grown in YPD medium or the appropriate synthetic medium (to maintain transformed
10 plasmids) and harvested at an OD₆₀₀ of around 0.6, by the formamide-EDTA extraction method
11 (Shedlovskiy *et al.*, 2017). Briefly, frozen cell pellets were resuspended in 350 μ l of FAE solution (98%
12 formamide and 10 mM EDTA), vortexed, and incubated at 65°C for 10 min in a thermoshaker set to
13 1'200 rpm. The extraction mix was centrifuged (5 min, 13'500 rpm, 4°C) and, to avoid taking unbroken,
14 pelleted cells, only 300 μ l of the clear supernatant were transferred into a new tube. Then, RNA was
15 precipitated by the addition of 40 μ l of 3 M sodium acetate pH 5.3 and 1 ml of ice-cold ethanol. After
16 centrifugation (5 min, 13'500 rpm, 4°C), the RNA pellet was washed with 900 μ l of ice-cold 70%
17 ethanol, collected by centrifugation, briefly air-dried, and resuspended in 200 to 300 μ l nano-pure water.
18 RNA concentrations were determined using a NanoDrop 1000 or a NanoDrop One spectrophotometer
19 (Thermo Fisher Scientific).

20

21 **Determination of mRNA levels by qRT-PCR**

22 The isolated RNAs were diluted to 5 ng/ μ l and 9 μ l (45 ng of total RNA) of these dilutions were used
23 to prepare the reaction mixes for the real-time qRT-PCR using the KAPA SYBR FAST One-Step
24 Universal kit (Roche, Basel, Switzerland) according to the manufacturer's instructions. Reaction mixes
25 (60 μ l) consisting of 30 μ l KAPA SYBR FAST qPCR Master Mix (2X), 1.2 μ l KAPA RT Mix (50X),
26 1.2 μ l 5' primer (10 μ M), 1.2 μ l 3' primer (10 μ M), 17.4 μ l dH₂O, and 9 μ l of diluted RNA were
27 prepared and 18 μ l thereof were then transferred into three PCR strip tubes and served as technical
28 replicates. Real-time qRT-PCRs were run in a Rotor-Gene Q real-time PCR cycler (Qiagen, Hilden,
29 Germany) using the following program: 5 min at 42°C (reverse transcription), 3 min at 95°C (initial
30 denaturation and enzyme activation), 3 sec at 95°C (denaturation), 20 sec at 60°C (annealing,
31 elongation, and fluorescence data acquisition), 40 cycles. The raw data were analyzed with the
32 LinRegPCR program (Ruijter *et al.*, 2009). The following oligonucleotide pairs were used for the
33 specific amplification of DNA fragments, corresponding to the *RPL3*, *RPL4*, *RPL5*, *RPL10*, *RPL11*,
34 *RPS2*, *RPS3*, *RPS6*, and *UBC6* mRNAs or the yEGFP fusion protein encoding mRNAs, from the input
35 cDNAs:

36 RPL3-I-forward: 5'-ACTCCACCAGTTGTCGTTGGT-3'

1 RPL3-I-reverse: 5'-TGTCAGCCCCAGACGGTGGTC-3' (amplicon size 86 base pairs (bp))
2 RPL4-I-forward: 5'-ACCTCCGCTGAATCCTGGGGT-3'
3 RPL4-I-reverse: 5'-ACCGGTACCACCACCACCAA-3' (amplicon size 72 bp)
4 RPL5-I-forward: 5'-TAGCTGCTGCCTACTCCCACGA-3'
5 RPL5-I-reverse: 5'-GCAGCAGCCCAGTTGGTCAAA-3' (amplicon size 70 bp)
6 RPL10-I-forward: 5'-TGTCTTGTGCCGGTGCAGAT-3'
7 RPL10-I-reverse: 5'-TGTCGACACGAGCGGCCAA-3' (amplicon size 84 bp)
8 RPL11-I-forward: 5'-ACACTGTCAGAACCTTCGGT-3'
9 RPL11-I-reverse: 5'-TTTCTTCAGCCTTGACCT-3' (amplicon size 81 bp)
10 RPS2-forward: 5'-AGGGATGGGTTCCAGTTACC-3'
11 RPS2-reverse: 5'-TGGCAAAGAGTGCAAGAAGA-3' (amplicon size 89 bp)
12 RPS3-I-forward: 5'-GCTGCTTACGGTGTCTCAGAT-3'
13 RPS3-I-reverse: 5'-AGCCTTAGCTCTGGCAGCTCTT-3' (amplicon size 96 bp)
14 RPS6-forward: 5'-CAAGGCTCCAAAGATCCAAA-3'
15 RPS6-reverse: 5'-TGAGCGTTCTGACCTTCAA-3' (amplicon size 87 bp)
16 UBC6-forward: 5'-ACAAAGGCTCGAAGGAAAA-3'
17 UBC6-reverse: 5'-TGTCAGCGCGTATTCTGTC-3' (amplicon size 74 bp)
18 yEGFP-II-forward: 5'-TCACTGGTGTGTCCTCAATT-3'
19 yEGFP-II-reverse: 5'-ACCTTCACCGGAGACAGAAA-3' (amplicon size 77 bp)

20 The log₂ of the N₀ values calculated by the LinRegPCR program were used for further calculations.
21 First, for each biological sample the three technical replicate values obtained for the gene of interest
22 were normalized against the *UBC6* values; to capture the maximal technical variation, the lowest *UBC6*
23 value was subtracted from the highest value, the highest *UBC6* value from the lowest value, and the
24 median *UBC6* value from the median value. Then the *UBC6*-normalized values were normalized across
25 the entire experiment to the average of the reference sample(s) (either wild-type or, for mapping of the
26 regulation-conferring element, *Δcaf130* cells). All single values are shown as dots in the box and
27 whisker plots, which were generated using the seaborn Python data visualization library (Waskom,
28 2021).

29

30 **RNA-Seq**

31 Total RNA was extracted by the hot acid-phenol method (see above) and DNase-treated RNA samples
32 were sent to the NGS platform of the University of Bern. The quality of the samples was assessed by
33 their analysis on a Fragment Analyzer (Advanced Analytical Technologies Inc., Ankeny, United
34 States). The libraries were prepared according to the TruSeq Stranded mRNA Sample Preparation
35 Guide (Illumina). Briefly, polyA containing mRNAs were purified, fragmented, reverse transcribed,

1 and amplified to generate the libraries, which were subjected to high-throughput sequencing on a HiSeq
2 3000 instrument (Illumina).

3 In a preliminary step, the reads from multiple lanes were combined into single files. Quality control
4 was performed with FastQC v0.11.7 (fastqc:
5 <https://www.bioinformatics.babraham.ac.uk/projects/fastqc/>), revealing excellent quality reads for all
6 samples; hence, no cleaning was applied. The yeast genome R64-1-1.90, downloaded from Ensembl
7 (Saccharomyces_cerevisiae.R64-1-1.dna.toplevel.fa; (Yates *et al.*, 2020)), was indexed for STAR
8 v2.5.0b (Dobin *et al.*, 2013). Then the reads from step 1 were remapped to genes for each sample with
9 STAR using the annotation information from Ensembl (Saccharomyces_cerevisiae.R64-1-1.90.gtf).
10 The final table of counts was obtained by merging the individual tables with Unix commands. Since
11 several genes of interest have paralogs (*e.g.* *RPL4A* and *RPL4B*), we used the parameter “--
12 outFilterMultimapNmax 2” to allow for two possible locations of each read.

13 The read counts (*Supplementary file 5*; for metadata, see *Supplementary file 6*) were then analyzed
14 using the R library DESeq2, version 1.30.1 (Love *et al.*, 2014). Since the mating types of the strains
15 were not taken into consideration during the design of the experiment and can be imbalanced between
16 the triplicate of each investigated genotype, a first analysis was conducted on all samples to determine
17 the genes that were significantly changed ($\text{padj} < 0.05$) due to the mating type of the strains (*MATa*
18 versus *MATα*). 26 genes were identified and removed for a second analysis where each mutant triplicate
19 was compared to the wild-type triplicate. For details about the R script, see *Supplementary file 7*. The
20 raw reads have been deposited at the European Nucleotide Archive (ENA) under the study accession
21 number PRJEB45852.

22

23 **Preparation of total yeast protein extracts and Western analysis**

24 Total yeast protein extracts were prepared as previously described (Yaffe and Schatz, 1984). Cultures
25 were grown to an OD_{600} of around 0.8 and protein extracts were prepared from an equivalent of one
26 OD_{600} of cells. Western blot analysis was carried out according to standard protocols. The following
27 primary antibodies were used in this study: mouse monoclonal anti-GFP (1:2'000; Roche), anti-HA
28 (clone 16B12, 1:3'000; BioLegend, San Diego, United States), and anti-Rpl3 (1:5'000; J. Warner,
29 Albert Einstein College of Medicine, New York, United States); rabbit polyclonal anti-Adh1 (1:50'000;
30 obtained from the laboratory of C. De Virgilio, University of Fribourg, Fribourg, Switzerland), anti-
31 Rpl1 (1:5'000; obtained from the laboratory of J. de la Cruz, University of Sevilla, Sevilla, Spain
32 (Petitjean *et al.*, 1995)), anti-Rpl4 (1:10'000; L. Lindahl, University of Baltimore, Baltimore, United
33 States), anti-Rpl5 (1:15'000; S. R. Valentini, São Paulo State University, Araraquara, Brazil (Zanelli *et*
34 *al.*, 2006)), anti-Rpl11 (1:5'000; L. Lindahl), anti-Rpl35 (1:5'000; M. Seedorf, ZMBH, University of
35 Heidelberg, Heidelberg, Germany (Frey *et al.*, 2001)), anti-Rpp0 (1:5'000; S. R. Valentini (Zanelli *et*
36 *al.*, 2006)), anti-Rps3 (1:20'000; M. Seedorf (Frey *et al.*, 2001)), anti-Rps9 (1:10'000; L. Lindahl), and

1 anti-Tsr2/Rps26 (1:3'000; V. G. Panse, University of Zürich, Zürich, Switzerland (Schütz *et al.*, 2014)).
2 Secondary goat anti-mouse or anti-rabbit horseradish peroxidase-conjugated antibodies (Bio-Rad,
3 Hercules, United States) were used at a dilution of 1:10'000. For detection of TAP-tagged proteins, the
4 Peroxidase-Anti-Peroxidase (PAP) Soluble Complex antibody produced in rabbit (Sigma-Aldrich, St.
5 Louis, United States) was used at a dilution of 1:20'000. Immobilized protein-antibody complexes were
6 visualized by using enhanced chemiluminescence detection kits (WesternBright Quantum and Sirius;
7 Advansta, San Jose, United States) and an Azure c500 imaging system (Azure Biosystems, Dublin,
8 United States). Images were processed with ImageJ (Schneider *et al.*, 2012).

9

10 **GFP-Trap co-immunoprecipitation**

11 Yeast cells were grown at 30°C in 200 ml of YPD medium to an OD₆₀₀ of around 0.8. Cells were washed
12 in ice-cold dH₂O and resuspended in 400 µl of lysis buffer (50 mM Tris-HCl pH 7.5, 100 mM NaCl,
13 1.5 mM MgCl₂, 5% glycerol, 0.1% NP-40, 1 mM PMSF, and SIGMAFAST EDTA-free protease
14 inhibitor cocktail (Sigma-Aldrich)). Cell extracts were obtained by glass bead lysis with a Precellys 24
15 homogenizer (Bertin Technologies, Montigny-le-Bretonneux, France) set at 5'000 rpm using a 3x 30
16 sec lysis cycle with 30 sec breaks in between at 4°C. Cell lysates were clarified by centrifugation at 4°C
17 for 10 min at 13'500 rpm. GFP-Trap Magnetic Agarose beads (Chromotek, Planegg-Martinsried,
18 Germany) were blocked by incubation with wild-type yeast cell lysates (1 A₂₆₀ unit per µl of bead slurry)
19 for 1 h. For affinity purification, 20 µl of blocked GFP-Trap bead slurry were incubated with 100 A₂₆₀
20 units of cell lysate in a total volume of 650 µl for 2 h at 4°C. Beads were then washed nine times with
21 600 µl lysis buffer and finally boiled for 5 min in 50 µl of 3x SDS sample buffer to elute the bound
22 proteins. For Western analysis, 0.1 A₂₆₀ units of cell lysate (input) and one-fifth of the affinity
23 purification (IP) were separated on Bolt 4-12% Bis-Tris Plus 15-well gels (Invitrogen), run in Bolt 1x
24 MOPS SDS running buffer (Novex, Carlsbad, United States), and subsequently transferred onto
25 Amersham Protran nitrocellulose membranes (Cytiva, Marlborough, United States), which were
26 incubated with anti-GFP antibodies and the PAP Soluble Complex antibody to detect the GFP-tagged
27 bait and the TAP-tagged prey proteins, respectively.

28

29 **Yeast two-hybrid (Y2H) interaction analysis**

30 For Y2H-interaction assays, plasmids expressing bait proteins, fused to the Gal4 DNA-binding domain
31 (G4BD), and prey proteins, fused to the Gal4 activation domain (G4AD), were co-transformed into
32 reporter strain PJ69-4A. Y2H interactions were documented by spotting representative transformants
33 in 10-fold serial dilution steps onto SC-Leu-Trp, SC-Leu-Trp-His (*HIS3* reporter), and SC-Leu-Trp-
34 Ade (*ADE2* reporter) plates, which were incubated for 3 d at 30°C. Growth on SC-Leu-Trp-His plates
35 is indicative of a weak/moderate interaction, whereas only relatively strong interactions permit growth
36 on SC-Leu-Trp-Ade plates.

1

2 **Protein aggregation assay**

3 Yeast cells expressing N-terminally 2xHA-tagged Tom1 under the transcriptional control of the *GAL1*
4 promoter from the genomic locus and additionally harboring deletions of *CAF130* (Δ *caf130*) or *CAL4*
5 (Δ *cal4*) were grown at 30°C in 50 ml of YPGal medium and then shifted for up to 24 h to YPD medium
6 (*Figure 7D*). Wild-type or Δ *tom1* cells, transformed with plasmids expressing different C-terminally
7 2xHA-tagged variants of Rpl3 or Rpl4a under the control of the *GAL1-10* promoter, were grown at
8 30°C in 50 ml of SC+Raffinose-Leu medium to an OD₆₀₀ of around 0.4 and expression of the Rpl3 and
9 Rpl4a variants was induced for 4 h with 2% galactose (*Figure 7-figure supplement 2A and 2B*). Cells
10 were harvested and resuspended in 400 μ l of lysis buffer (20 mM Na-phosphate pH 6.8, 1 mM EDTA,
11 0.1% Tween®-20, 1 mM DTT (freshly added), and 1 mM PMSF (freshly added)). Cell extracts were
12 obtained by glass bead lysis with a Precellys 24 homogenizer (Bertin Technologies) set at 5'000 rpm
13 using a 3x 30 sec lysis cycle with 30 sec breaks in between at 4°C. Cell lysates were clarified by
14 centrifugation at 4°C for 20 min at 2'500 rpm. Aliquots of 0.5 A₂₆₀ units of clarified total extracts were
15 diluted into a final volume of 100 μ l of 3x SDS sample buffer (0.005 A₂₆₀ units per μ l). To pellet
16 aggregated proteins, 10 A₂₆₀ units of clarified cell extracts were centrifuged at 4°C for 20 min at 13'500
17 rpm. The pellets were then washed three times by resuspension in 900 μ l of wash buffer (20 mM Na-
18 phosphate pH 6.8, 500 mM NaCl, and 2% NP-40). The final insoluble pellets were resuspended and
19 boiled in 100 μ l of 3x SDS sample buffer (corresponding to 0.1 A₂₆₀ units per μ l of clarified total extract
20 input). For Coomassie staining and Western analysis, 5 μ l of total extract (0.025 A₂₆₀ units) and insoluble
21 pellet (0.5 A₂₆₀ units) were separated on NuPAGE 4-12% Bis-Tris 26-well Midi gels (Invitrogen), run
22 in NuPAGE 1x MES SDS running buffer (Novex).

23 To determine the identity of the aggregated proteins, the insoluble pellet fractions (2 A₂₆₀ units) were
24 separated on NuPAGE 4-12% Bis-Tris 15-well gels (Invitrogen), run in NuPAGE 1x MOPS SDS
25 running buffer (Novex), and subsequently stained with Brilliant Blue G Colloidal Coomassie (Sigma-
26 Aldrich). Proteins contained in Coomassie-stained bands were digested in-gel with trypsin and
27 identified, upon mass spectrometric analysis of the obtained peptides, using the MaxQuant software
28 package (Tyanova *et al.*, 2016).

29

30 **Fluorescence microscopy**

31 Wild-type or Δ *tom1* cells were transformed with plasmids expressing, under the control of the *GAL1-10*
32 promoter, the different Rpl3 and Rpl4 variants fused to a C-terminal mNeonGreen ((Shaner *et al.*,
33 2013); Allele Biotechnology, San Diego, United States), codon-optimized for expression in yeast and,
34 hence, referred to as yeast-optimized mNeonGreen (yOmNG). Transformed cells were grown at 30°C
35 in 20 ml of SC+Raffinose-Leu to an OD₆₀₀ of around 0.25 and expression of the yOmNG-tagged Rpl3
36 and Rpl4a variants was induced for 4 h with 2% galactose. Live yeast cells were imaged by fluorescence

1 microscopy using a VisiScope CSU-W1 spinning disk confocal microscope (Visitron Systems GmbH,
2 Puchheim, Germany). Nop58-yEmCherry, expressed from plasmid under the control of the cognate
3 promoter, was used as a nucleolar marker. The ImageJ software was used to process the images. Cells
4 displaying one of the three types of observed localizations (cytoplasmic, nucleolar accumulation, and
5 nuclear aggregation) of the mNeonGreen-tagged Rpl3 or Rpl4 variants were counted manually on z-
6 projected maximum intensity images, while the shown examples (*Figure 7A* and *Figure 7-figure*
7 *supplement 2C*) correspond to a selected slice derived from the full z-stacked image.

8

9 **Sequence alignments, secondary structure prediction, and analysis of 3D structures**

10 Multiple sequence alignments of orthologous proteins were generated in the ClustalW output format
11 with T-Coffee using the default settings of the EBI website interface (Notredame *et al.*, 2000).
12 Secondary structure prediction was performed with the PSIPRED v4.0 prediction method available at
13 the PSIPRED website interface (Jones, 1999). Prediction of tetratricopeptide repeat (TPR) motifs was
14 performed with TPRpred (Karpenahalli *et al.*, 2007). Analysis and image preparation of three-
15 dimensional structures, downloaded from the PDB archive, was carried out with the PyMOL (PyMOL
16 Molecular Graphics System; <http://pymol.org/>) software. The coordinates of the following structures
17 were used: *S. cerevisiae* 80S ribosome (PDB 4V88; (Ben-Shem *et al.*, 2011)) and *Chaetomium*
18 *thermophilum* Acl4-Rpl4 complex (PDB 5TQB; (Huber and Hoelz, 2017)). The structural alignments
19 (*Figure 8-figure supplement 1*) were performed with structure models predicted by AlphaFold2
20 ((Jumper *et al.*, 2021); <https://alphafold.ebi.ac.uk/>) using the TM-align algorithm (Zhang and Skolnick,
21 2005) via the tmalign Python module for PyMOL (<https://pymolwiki.org/index.php/TMalign>).
22

1 **Acknowledgments:**

2 We thank J. de la Cruz, C. De Virgilio, L. Lindahl, V.G. Panse, M. Seedorf, S.R. Valentini, and J.
3 Warner for the kind gift of antibodies and J. de la Cruz and B. Pertschy for fruitful discussions. We
4 gratefully acknowledge B. Egger and F. Meyenhofer of the Bioimage Core Facility of the University
5 of Fribourg for their support and assistance. This work was supported by the Swiss National Science
6 Foundation (31003A_156764 and 31003A_175547 to D.K.), the Novartis Foundation for Medical-
7 Biological Research (14C154 to D.K.), and the Canton of Fribourg.

8

9 **Competing interests:**

10 The authors declare that no competing interests exist.

11

12 **Supplementary files:**

13 Supplementary file 1. Yeast strains used in this study (xlsx).

14 Supplementary file 2. Plasmids used in this study (xlsx).

15 Supplementary file 3. Identified $\Delta acl4$ and $\Delta acl4/\Delta rpl4a$ suppressor mutations (xlsx).

16 Supplementary file 4. RNA-Seq; results (xlsx).

17 Supplementary file 5. RNA-Seq; raw read counts (txt).

18 Supplementary file 6. RNA-Seq; metadata (txt).

19 Supplementary file 7. RNA-Seq; R script (R).

20 Supplementary file 8. Identified proteins in aggregates of $\Delta caf130/PGAL-2xHA-TOM1$ cells (xlsx).

21

22 **Data availability:**

23 The raw reads of the sequenced $\Delta acl4$ and $\Delta acl4/\Delta rpl4a$ suppressor genomes and of the differential
24 gene expression analysis (RNA-Seq) have been deposited at the European Nucleotide Archive under
25 the study accession number PRJEB45852.

26 The following dataset was generated:

27 **Authors:** Benjamin Pillet, Alfonso Méndez-Godoy, Guillaume Murat, Sébastien Favre, Michael
28 Stumpe, Laurent Falquet, and Dieter Kressler

29 **Year:** 2021

30 **Dataset title:** Dedicated chaperones coordinate co-translational regulation of ribosomal protein
31 production with ribosome assembly to preserve proteostasis

32 **Dataset URL:** will be available upon publication and data release

33 **Database and Identifier:** European Nucleotide Archive (ENA), PRJEB45852

34

35

1 **References**

2
3 Albert B, Knight B, Merwin J, Martin V, Ottoz D, Gloor Y, Bruzzone MJ, Rudner A, Shore D. (2016).
4 A Molecular Titration System Coordinates Ribosomal Protein Gene Transcription with Ribosomal
5 RNA Synthesis. *Mol Cell*, 64(4), 720-733. doi:10.1016/j.molcel.2016.10.003

6 Albert B, Kos-Braun IC, Henras AK, Dez C, Rueda MP, Zhang X, Gadal O, Kos M, Shore D. (2019).
7 A ribosome assembly stress response regulates transcription to maintain proteome homeostasis.
8 *eLife*, 8. doi:10.7554/eLife.45002

9 Alhusaini N, Coller J. (2016). The deadenylase components Not2p, Not3p, and Not5p promote mRNA
10 decapping. *RNA*, 22(5), 709-721. doi:10.1261/rna.054742.115

11 Aprigliano R, Aksu ME, Bradamante S, Mihaljevic B, Wang W, Rian K, Montaldo NP, Grooms KM,
12 Fordyce Martin SL, Bordin DL, Bosshard M, Peng Y, Alexov E, Skinner C, Liabakk NB, Sullivan
13 GJ, Bjorås M, Schwartz CE, van Loon B. (2021). Increased p53 signaling impairs neural
14 differentiation in HUWE1-promoted intellectual disabilities. *Cell Rep Med*, 2(4), 100240.
15 doi:10.1016/j.xcrm.2021.100240

16 Aspesi A, Ellis SR. (2019). Rare ribosomopathies: insights into mechanisms of cancer. *Nat Rev Cancer*,
17 19(4), 228-238. doi:10.1038/s41568-019-0105-0

18 Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA, Struhl K. (1994). Unit 13.12.1-
19 13.12.2: Preparation of Yeast RNA. *Current Protocols in Molecular Biology*: John Wiley & Sons,
20 Inc., NY.

21 Bange G, Murat G, Sinning I, Hurt E, Kressler D. (2013). New twist to nuclear import: When two travel
22 together. *Commun Integr Biol*, 6(4), e24792. doi:10.4161/cib.24792

23 Basquin J, Roudko VV, Rode M, Basquin C, Séraphin B, Conti E. (2012). Architecture of the nuclease
24 module of the yeast Ccr4-not complex: the Not1-Caf1-Ccr4 interaction. *Mol Cell*, 48(2), 207-218.
25 doi:10.1016/j.molcel.2012.08.014

26 Bassler J, Hurt E. (2019). Eukaryotic Ribosome Assembly. *Annu Rev Biochem*, 88, 281-306.
27 doi:10.1146/annurev-biochem-013118-110817

28 Baumgartner ME, Dinan MP, Langton PF, Kucinski I, Piddini E. (2021). Proteotoxic stress is a driver
29 of the loser status and cell competition. *Nat Cell Biol*, 23(2), 136-146. doi:10.1038/s41556-020-
30 00627-0

31 Bawankar P, Loh B, Wohlböld L, Schmidt S, Izaurralde E. (2013). NOT10 and C2orf29/NOT11 form
32 a conserved module of the CCR4-NOT complex that docks onto the NOT1 N-terminal domain. *RNA*
33 *Biol*, 10(2), 228-244. doi:10.4161/rna.23018

34 Ben-Shem A, Garreau de Loubresse N, Melnikov S, Jenner L, Yusupova G, Yusupov M. (2011). The
35 structure of the eukaryotic ribosome at 3.0 Å resolution. *Science*, 334(6062), 1524-1529.
36 doi:10.1126/science.1212642

1 Bhaskar V, Basquin J, Conti E. (2015). Architecture of the ubiquitylation module of the yeast Ccr4-Not
2 complex. *Structure*, 23(5), 921-928. doi:10.1016/j.str.2015.03.011

3 Bhaskar V, Roudko V, Basquin J, Sharma K, Urlaub H, Séraphin B, Conti E. (2013). Structure and
4 RNA-binding properties of the Not1-Not2-Not5 module of the yeast Ccr4-Not complex. *Nat Struct
5 Mol Biol*, 20(11), 1281-1288. doi:10.1038/nsmb.2686

6 Bhushan S, Meyer H, Starosta AL, Becker T, Mielke T, Berninghausen O, Sattler M, Wilson DN,
7 Beckmann R. (2010). Structural basis for translational stalling by human cytomegalovirus and
8 fungal arginine attenuator peptide. *Mol Cell*, 40(1), 138-146. doi:10.1016/j.molcel.2010.09.009

9 Black JJ, Musalgaonkar S, Johnson AW. (2019). Tsr4 Is a Cytoplasmic Chaperone for the Ribosomal
10 Protein Rps2 in *Saccharomyces cerevisiae*. *Mol Cell Biol*, 39(17). doi:10.1128/MCB.00094-19

11 Bowen ME, Attardi LD. (2019). The role of p53 in developmental syndromes. *J Mol Cell Biol*, 11(3),
12 200-211. doi:10.1093/jmcb/mjy087

13 Bresson S, Tollervey D. (2018). Tailing Off: PABP and CNOT Generate Cycles of mRNA
14 Deadenylation. *Mol Cell*, 70(6), 987-988. doi:10.1016/j.molcel.2018.06.009

15 Bursac S, Brdovcak MC, Donati G, Volarevic S. (2014). Activation of the tumor suppressor p53 upon
16 impairment of ribosome biogenesis. *Biochim Biophys Acta*, 1842(6), 817-830.
17 doi:10.1016/j.bbadi.2013.08.014

18 Buschauer R, Matsuo Y, Sugiyama T, Chen YH, Alhusaini N, Sweet T, Ikeuchi K, Cheng J, Matsuki
19 Y, Nobuta R, Gilmozzi A, Berninghausen O, Tesina P, Becker T, Coller J, Inada T, Beckmann R.
20 (2020). The Ccr4-Not complex monitors the translating ribosome for codon optimality. *Science*,
21 368(6488). doi:10.1126/science.aay6912

22 Calviño FR, Kharde S, Ori A, Hendricks A, Wild K, Kressler D, Bange G, Hurt E, Beck M, Sinning I.
23 (2015). Symportin 1 chaperones 5S RNP assembly during ribosome biogenesis by occupying an
24 essential rRNA-binding site. *Nat Commun*, 6, 6510. doi:10.1038/ncomms7510

25 Chen J, Rappaport J, Chiang YC, Russell P, Mann M, Denis CL. (2001). Purification and
26 characterization of the 1.0 MDa CCR4-NOT complex identifies two novel components of the
27 complex. *J Mol Biol*, 314(4), 683-694. doi:10.1006/jmbi.2001.5162

28 Chen Y, Boland A, Kuzuoglu-Öztürk D, Bawankar P, Loh B, Chang CT, Weichenrieder O, Izaurrealde
29 E. (2014). A DDX6-CNOT1 complex and W-binding pockets in CNOT9 reveal direct links between
30 miRNA target recognition and silencing. *Mol Cell*, 54(5), 737-750.
31 doi:10.1016/j.molcel.2014.03.034

32 Cingolani P, Patel VM, Coon M, Nguyen T, Land SJ, Ruden DM, Lu X. (2012a). Using *Drosophila
33 melanogaster* as a Model for Genotoxic Chemical Mutational Studies with a New Program, SnpSift.
34 *Front Genet*, 3, 35. doi:10.3389/fgene.2012.00035

35 Cingolani P, Platts A, Wang le L, Coon M, Nguyen T, Wang L, Land SJ, Lu X, Ruden DM. (2012b).
36 A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff:

1 SNPs in the genome of *Drosophila melanogaster* strain w1118; iso-2; iso-3. *Fly (Austin)*, 6(2), 80-
2 92. doi:10.4161/fly.19695

3 Collart MA. (2016). The Ccr4-Not complex is a key regulator of eukaryotic gene expression. *Wiley*
4 *Interdiscip Rev RNA*, 7(4), 438-454. doi:10.1002/wrna.1332

5 Collart MA, Struhl K. (1993). CDC39, an essential nuclear protein that negatively regulates
6 transcription and differentially affects the constitutive and inducible *HIS3* promoters. *EMBO J*,
7 12(1), 177-186.

8 Cui Y, Ramnarain DB, Chiang YC, Ding LH, McMahon JS, Denis CL. (2008). Genome wide
9 expression analysis of the CCR4-NOT complex indicates that it consists of three modules with the
10 NOT module controlling SAGA-responsive genes. *Mol Genet Genomics*, 279(4), 323-337.
11 doi:10.1007/s00438-007-0314-1

12 Da Costa L, Narla A, Mohandas N. (2018). An update on the pathogenesis and diagnosis of Diamond-
13 Blackfan anemia. *F1000Res*, 7. doi:10.12688/f1000research.15542.1

14 Danilova N, Gazda HT. (2015). Ribosomopathies: how a common root can cause a tree of pathologies.
15 *Dis Model Mech*, 8(9), 1013-1026. doi:10.1242/dmm.020529

16 de la Cruz J, Karbstein K, Woolford JL, Jr. (2015). Functions of ribosomal proteins in assembly of
17 eukaryotic ribosomes *in vivo*. *Annu Rev Biochem*, 84, 93-129. doi:10.1146/annurev-biochem-
18 060614-033917

19 Deuerling E, Gamberger M, Kreft SG. (2019). Chaperone Interactions at the Ribosome. *Cold Spring*
20 *Harb Perspect Biol*, 11(11). doi:10.1101/cshperspect.a033977

21 Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, Batut P, Chaisson M, Gingeras TR.
22 (2013). STAR: ultrafast universal RNA-seq aligner. *Bioinformatics*, 29(1), 15-21.
23 doi:10.1093/bioinformatics/bts635

24 Döring K, Ahmed N, Riemer T, Suresh HG, Vainshtein Y, Habich M, Riemer J, Mayer MP, O'Brien
25 EP, Kramer G, Bukau B. (2017). Profiling Ssb-Nascent Chain Interactions Reveals Principles of
26 Hsp70-Assisted Folding. *Cell*, 170(2), 298-311 e220. doi:10.1016/j.cell.2017.06.038

27 Espinar-Marchena FJ, Babiano R, de la Cruz J. (2017). Placeholder factors in ribosome biogenesis:
28 please, pave my way. *Microb Cell*, 4(5), 144-168. doi:10.15698/mic2017.05.572

29 Fernández-Pevida A, Kressler D, de la Cruz J. (2015). Processing of preribosomal RNA in
30 *Saccharomyces cerevisiae*. *Wiley Interdiscip Rev RNA*, 6(2), 191-209. doi:10.1002/wrna.1267

31 Fewell SW, Woolford JL, Jr. (1999). Ribosomal protein S14 of *Saccharomyces cerevisiae* regulates its
32 expression by binding to *RPS14B* pre-mRNA and to 18S rRNA. *Mol Cell Biol*, 19(1), 826-834.
33 doi:10.1128/MCB.19.1.826

34 Frey S, Pool M, Seedorf M. (2001). Scp160p, an RNA-binding, polysome-associated protein, localizes
35 to the endoplasmic reticulum of *Saccharomyces cerevisiae* in a microtubule-dependent manner. *J*
36 *Biol Chem*, 276(19), 15905-15912. doi:10.1074/jbc.M009430200

1 Gabunilas J, Chanfreau G. (2016). Splicing-Mediated Autoregulation Modulates Rpl22p Expression in
2 *Saccharomyces cerevisiae*. *PLoS Genet*, 12(4), e1005999. doi:10.1371/journal.pgen.1005999

3 Gamalinda M, Ohmayer U, Jakovljevic J, Kumcuoglu B, Woolford J, Mbom B, Lin L, Woolford JL,
4 Jr. (2014). A hierarchical model for assembly of eukaryotic 60S ribosomal subunit domains. *Genes*
5 *Dev*, 28(2), 198-210. doi:10.1101/gad.228825.113

6 Gamerdinger M, Kobayashi K, Wallisch A, Kreft SG, Sailer C, Schlömer R, Sachs N, Jomaa A, Stengel
7 F, Ban N, Deuerling E. (2019). Early Scanning of Nascent Polypeptides inside the Ribosomal Tunnel
8 by NAC. *Mol Cell*, 75(5), 996-1006 e1008. doi:10.1016/j.molcel.2019.06.030

9 Gavin AC, Bösche M, Krause R, Grandi P, Marzioch M, Bauer A, Schultz J, Rick JM, Michon AM,
10 Cruciat CM, Remor M, Höfert C, Schelder M, Brajenovic M, Ruffner H, Merino A, Klein K, Hudak
11 M, Dickson D, Rudi T, et al. (2002). Functional organization of the yeast proteome by systematic
12 analysis of protein complexes. *Nature*, 415(6868), 141-147. doi:10.1038/415141a

13 Gazda HT, Preti M, Sheen MR, O'Donohue MF, Vlachos A, Davies SM, Kattamis A, Doherty L,
14 Landowski M, Buros C, Ghazvinian R, Sieff CA, Newburger PE, Niewiadomska E, Matysiak M,
15 Glader B, Atsidaftos E, Lipton JM, Gleizes PE, Beggs AH. (2012). Frameshift mutation in p53
16 regulator *RPL26* is associated with multiple physical abnormalities and a specific pre-ribosomal
17 RNA processing defect in diamond-blackfan anemia. *Hum Mutat*, 33(7), 1037-1044.
18 doi:10.1002/humu.22081

19 Giles AC, Grill B. (2020). Roles of the HUWE1 ubiquitin ligase in nervous system development,
20 function and disease. *Neural Dev*, 15(1), 6. doi:10.1186/s13064-020-00143-9

21 Gratenstein K, Heggestad AD, Fortun J, Notterpek L, Pestov DG, Fletcher BS. (2005). The WD-repeat
22 protein GRWD1: potential roles in myeloid differentiation and ribosome biogenesis. *Genomics*,
23 85(6), 762-773. doi:10.1016/j.ygeno.2005.02.010

24 Greber BJ. (2016). Mechanistic insight into eukaryotic 60S ribosomal subunit biogenesis by cryo-
25 electron microscopy. *RNA*, 22(11), 1643-1662. doi:10.1261/rna.057927.116

26 Gudipati RK, Neil H, Feuerbach F, Malabat C, Jacquier A. (2012). The yeast RPL9B gene is regulated
27 by modulation between two modes of transcription termination. *EMBO J*, 31(10), 2427-2437.
28 doi:10.1038/emboj.2012.81

29 Halter D, Collart MA, Panasenko OO. (2014). The Not4 E3 ligase and CCR4 deadenylase play distinct
30 roles in protein quality control. *PLoS One*, 9(1), e86218. doi:10.1371/journal.pone.0086218

31 He F, Li C, Roy B, Jacobson A. (2014). Yeast Edc3 targets RPS28B mRNA for decapping by binding
32 to a 3' untranslated region decay-inducing regulatory element. *Mol Cell Biol*, 34(8), 1438-1451.
33 doi:10.1128/MCB.01584-13

34 He X, Li Y, Dai MS, Sun XX. (2016). Ribosomal protein L4 is a novel regulator of the MDM2-p53
35 loop. *Oncotarget*, 7(13), 16217-16226. doi:10.18632/oncotarget.7479

1 Hsieh HH, Lee JH, Chandrasekar S, Shan SO. (2020). A ribosome-associated chaperone enables
2 substrate triage in a cotranslational protein targeting complex. *Nat Commun*, 11(1), 5840.
3 doi:10.1038/s41467-020-19548-5

4 Huber FM, Hoelz A. (2017). Molecular basis for protection of ribosomal protein L4 from cellular
5 degradation. *Nat Commun*, 8, 14354. doi:10.1038/ncomms14354

6 Ito T, Chiba T, Ozawa R, Yoshida M, Hattori M, Sakaki Y. (2001). A comprehensive two-hybrid
7 analysis to explore the yeast protein interactome. *Proc Natl Acad Sci U S A*, 98(8), 4569-4574.
8 doi:10.1073/pnas.061034498

9 Jäkel S, Mingot JM, Schwarzmaier P, Hartmann E, Görlich D. (2002). Importins fulfil a dual function
10 as nuclear import receptors and cytoplasmic chaperones for exposed basic domains. *EMBO J*, 21(3),
11 377-386. doi:10.1093/emboj/21.3.377

12 James P, Halladay J, Craig EA. (1996). Genomic libraries and a host strain designed for highly efficient
13 two-hybrid selection in yeast. *Genetics*, 144(4), 1425-1436. doi:10.1093/genetics/144.4.1425

14 Janke C, Magiera MM, Rathfelder N, Taxis C, Reber S, Maekawa H, Moreno-Borchart A, Doenges G,
15 Schwob E, Schiebel E, Knop M. (2004). A versatile toolbox for PCR-based tagging of yeast genes:
16 new fluorescent proteins, more markers and promoter substitution cassettes. *Yeast*, 21(11), 947-962.
17 doi:10.1002/yea.1142

18 Johnson TL, Vilardell J. (2012). Regulated pre-mRNA splicing: the ghostwriter of the eukaryotic
19 genome. *Biochim Biophys Acta*, 1819(6), 538-545. doi:10.1016/j.bbagr.2011.12.011

20 Jones DT. (1999). Protein secondary structure prediction based on position-specific scoring matrices. *J
21 Mol Biol*, 292(2), 195-202. doi:10.1006/jmbi.1999.3091

22 Jongmans MCJ, Diets IJ, Quarello P, Garelli E, Kuiper RP, Pfundt R. (2018). Somatic reversion events
23 point towards *RPL4* as a novel disease gene in a condition resembling Diamond-Blackfan anemia.
24 *Haematologica*, 103(12), e607-e609. doi:10.3324/haematol.2018.200683

25 Joret C, Capeyrou R, Belhabich-Baumas K, Plisson-Chastang C, Ghandour R, Humbert O, Fribourg S,
26 Leulliot N, Lebaron S, Henras AK, Henry Y. (2018). The Npa1p complex chaperones the assembly
27 of the earliest eukaryotic large ribosomal subunit precursor. *PLoS Genet*, 14(8), e1007597.
28 doi:10.1371/journal.pgen.1007597

29 Joshi NA, Fass JN. (2011). Sickle: A sliding-window, adaptive, quality-based trimming tool for FastQ
30 files (Version 1.33) [Software]. Available at <https://github.com/najoshi/sickle>.

31 Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, Tunyasuvunakool K, Bates R,
32 Žídek A, Potapenko A, Bridgland A, Meyer C, Kohl SAA, Ballard AJ, Cowie A, Romera-Paredes
33 B, Nikolov S, Jain R, Adler J, Back T, et al. (2021). Highly accurate protein structure prediction
34 with AlphaFold. *Nature*, 596(7873), 583-589. doi:10.1038/s41586-021-03819-2

35 Karamyshev AL, Patrick AE, Karamysheva ZN, Griesemer DS, Hudson H, Tjon-Kon-Sang S, Nilsson
36 I, Otto H, Liu Q, Rospert S, von Heijne G, Johnson AE, Thomas PJ. (2014). Inefficient SRP

1 interaction with a nascent chain triggers a mRNA quality control pathway. *Cell*, 156(1-2), 146-157.
2 doi:10.1016/j.cell.2013.12.017

3 Karpenahalli MR, Lupas AN, Soding J. (2007). TPRpred: a tool for prediction of TPR-, PPR- and
4 SEL1-like repeats from protein sequences. *BMC Bioinformatics*, 8, 2. doi:10.1186/1471-2105-8-2

5 Kaushik S, Cuervo AM. (2015). Proteostasis and aging. *Nat Med*, 21(12), 1406-1415.
6 doi:10.1038/nm.4001

7 Killian A, Le Meur N, Sesboüé R, Bourguignon J, Bougeard G, Gautherot J, Bastard C, Frébourg T,
8 Flaman JM. (2004). Inactivation of the RRB1-Pescadillo pathway involved in ribosome biogenesis
9 induces chromosomal instability. *Oncogene*, 23(53), 8597-8602. doi:10.1038/sj.onc.1207845

10 Klinge S, Voigts-Hoffmann F, Leibundgut M, Arpagaus S, Ban N. (2011). Crystal structure of the
11 eukaryotic 60S ribosomal subunit in complex with initiation factor 6. *Science*, 334(6058), 941-948.
12 doi:10.1126/science.1211204

13 Klinge S, Woolford JL, Jr. (2019). Ribosome assembly coming into focus. *Nat Rev Mol Cell Biol*, 20(2),
14 116-131. doi:10.1038/s41580-018-0078-y

15 Klöckner C, Schneider M, Lutz S, Jani D, Kressler D, Stewart M, Hurt E, Köhler A. (2009). Mutational
16 uncoupling of the role of Sus1 in nuclear pore complex targeting of an mRNA export complex and
17 histone H2B deubiquitination. *J Biol Chem*, 284(18), 12049-12056. doi:10.1074/jbc.M900502200

18 Knight B, Kubik S, Ghosh B, Bruzzone MJ, Geertz M, Martin V, Déneraud N, Jacquet P, Ozkan B,
19 Rougemont J, Maerkli SJ, Naef F, Shore D. (2014). Two distinct promoter architectures centered on
20 dynamic nucleosomes control ribosomal protein gene transcription. *Genes Dev*, 28(15), 1695-1709.
21 doi:10.1101/gad.244434.114

22 Koplin A, Preissler S, Ilina Y, Koch M, Scior A, Erhardt M, Deuerling E. (2010). A dual function for
23 chaperones SSB-RAC and the NAC nascent polypeptide-associated complex on ribosomes. *J Cell
24 Biol*, 189(1), 57-68. doi:10.1083/jcb.200910074

25 Kressler D, Bange G, Ogawa Y, Stjepanovic G, Bradatsch B, Pratte D, Amlacher S, Strauß D, Yoneda
26 Y, Katahira J, Sinning I, Hurt E. (2012). Synchronizing nuclear import of ribosomal proteins with
27 ribosome assembly. *Science*, 338(6107), 666-671. doi:10.1126/science.1226960

28 Kressler D, Hurt E, Baßler J. (2010). Driving ribosome assembly. *Biochim Biophys Acta*, 1803(6), 673-
29 683. doi:10.1016/j.bbamcr.2009.10.009

30 Kressler D, Hurt E, Bassler J. (2017). A Puzzle of Life: Crafting Ribosomal Subunits. *Trends Biochem
31 Sci*, 42(8), 640-654. doi:10.1016/j.tibs.2017.05.005

32 Kriventseva EV, Kuznetsov D, Tegenfeldt F, Manni M, Dias R, Simão FA, Zdobnov EM. (2019).
33 OrthoDB v10: sampling the diversity of animal, plant, fungal, protist, bacterial and viral genomes
34 for evolutionary and functional annotations of orthologs. *Nucleic Acids Res*, 47(D1), D807-D811.
35 doi:10.1093/nar/gky1053

1 Krogan NJ, Cagney G, Yu H, Zhong G, Guo X, Ignatchenko A, Li J, Pu S, Datta N, Tikuvisis AP, Punna
2 T, Peregrin-Alvarez JM, Shales M, Zhang X, Davey M, Robinson MD, Paccanaro A, Bray JE,
3 Sheung A, Beattie B, et al. (2006). Global landscape of protein complexes in the yeast
4 *Saccharomyces cerevisiae*. *Nature*, 440(7084), 637-643. doi:10.1038/nature04670

5 Lam YW, Lamond AI, Mann M, Andersen JS. (2007). Analysis of nucleolar protein dynamics reveals
6 the nuclear degradation of ribosomal proteins. *Curr Biol*, 17(9), 749-760.
7 doi:10.1016/j.cub.2007.03.064

8 Lau NC, Kolkman A, van Schaik FM, Mulder KW, Pijnappel WW, Heck AJ, Timmers HT. (2009).
9 Human Ccr4-Not complexes contain variable deadenylase subunits. *Biochem J*, 422(3), 443-453.
10 doi:10.1042/BJ20090500

11 Li H. (2011). A statistical framework for SNP calling, mutation discovery, association mapping and
12 population genetical parameter estimation from sequencing data. *Bioinformatics*, 27(21), 2987-
13 2993. doi:10.1093/bioinformatics/btr509

14 Li H, Durbin R. (2010). Fast and accurate long-read alignment with Burrows-Wheeler transform.
15 *Bioinformatics*, 26(5), 589-595. doi:10.1093/bioinformatics/btp698

16 Liu HY, Badarinarayana V, Audino DC, Rappaport J, Mann M, Denis CL. (1998). The NOT proteins
17 are part of the CCR4 transcriptional complex and affect gene expression both positively and
18 negatively. *EMBO J*, 17(4), 1096-1106. doi:10.1093/emboj/17.4.1096

19 Liu Y, Hu Y, Li X, Niu L, Teng M. (2010). The crystal structure of the human nascent polypeptide-
20 associated complex domain reveals a nucleic acid-binding region on the NACA subunit.
21 *Biochemistry*, 49(13), 2890-2896. doi:10.1021/bi902050p

22 Longtine MS, McKenzie A, 3rd, Demarini DJ, Shah NG, Wach A, Brachet A, Philippson P, Pringle JR.
23 (1998). Additional modules for versatile and economical PCR-based gene deletion and modification
24 in *Saccharomyces cerevisiae*. *Yeast*, 14(10), 953-961. doi:10.1002/(SICI)1097-
25 0061(199807)14:10<953::AID-YEA293>3.0.CO;2-U

26 Love MI, Huber W, Anders S. (2014). Moderated estimation of fold change and dispersion for RNA-
27 seq data with DESeq2. *Genome Biol*, 15(12), 550. doi:10.1186/s13059-014-0550-8

28 Maillet L, Collart MA. (2002). Interaction between Not1p, a component of the Ccr4-Not complex, a
29 global regulator of transcription, and Dhh1p, a putative RNA helicase. *J Biol Chem*, 277(4), 2835-
30 2842. doi:10.1074/jbc.M107979200

31 Maillet L, Tu C, Hong YK, Shuster EO, Collart MA. (2000). The essential function of Not1 lies within
32 the Ccr4-Not complex. *J Mol Biol*, 303(2), 131-143. doi:10.1006/jmbi.2000.4131

33 Malecki JM, Odonohue MF, Kim Y, Jakobsson ME, Gessa L, Pinto R, Wu J, Davydova E, Moen A,
34 Olsen JV, Thiede B, Gleizes PE, Leidel SA, Falnes PO. (2021). Human METTL18 is a histidine-
35 specific methyltransferase that targets RPL3 and affects ribosome biogenesis and function. *Nucleic
36 Acids Res*, 49(6), 3185-3203. doi:10.1093/nar/gkab088

1 Maor-Nof M, Shipony Z, Lopez-Gonzalez R, Nakayama L, Zhang YJ, Couthouis J, Blum JA, Castruita
2 PA, Linares GR, Ruan K, Ramaswami G, Simon DJ, Nof A, Santana M, Han K, Sinnott-Armstrong
3 N, Bassik MC, Geschwind DH, Tessier-Lavigne M, Attardi LD, et al. (2021). p53 is a central
4 regulator driving neurodegeneration caused by C9orf72 poly(PR). *Cell*, 184(3), 689-708 e620.
5 doi:10.1016/j.cell.2020.12.025

6 Martín-Villanueva S, Fernández-Pevida A, Kressler D, de la Cruz J. (2019). The Ubiquitin Moiety of
7 Ubi1 Is Required for Productive Expression of Ribosomal Protein eL40 in *Saccharomyces*
8 *cerevisiae*. *Cells*, 8(8). doi:10.3390/cells8080850

9 Mathys H, Basquin J, Ozgur S, Czarnocki-Cieciura M, Bonneau F, Aartse A, Dziembowski A, Nowotny
10 M, Conti E, Filipowicz W. (2014). Structural and biochemical insights to the role of the CCR4-NOT
11 complex and DDX6 ATPase in microRNA repression. *Mol Cell*, 54(5), 751-765.
12 doi:10.1016/j.molcel.2014.03.036

13 Mauxion F, Prève B, Séraphin B. (2013). C2ORF29/CNOT11 and CNOT10 form a new module of the
14 CCR4-NOT complex. *RNA Biol*, 10(2), 267-276. doi:10.4161/rna.23065

15 Melnikov S, Ben-Shem A, Garreau de Loubresse N, Jenner L, Yusupova G, Yusupov M. (2012). One
16 core, two shells: bacterial and eukaryotic ribosomes. *Nat Struct Mol Biol*, 19(6), 560-567.
17 doi:10.1038/nsmb.2313

18 Melnikov S, Ben-Shem A, Yusupova G, Yusupov M. (2015). Insights into the origin of the nuclear
19 localization signals in conserved ribosomal proteins. *Nat Commun*, 6, 7382.
20 doi:10.1038/ncomms8382

21 Narla A, Ebert BL. (2010). Ribosomopathies: human disorders of ribosome dysfunction. *Blood*,
22 115(16), 3196-3205. doi:10.1182/blood-2009-10-178129

23 Nasertorabi F, Batisse C, Diepholz M, Suck D, Böttcher B. (2011). Insights into the structure of the
24 CCR4-NOT complex by electron microscopy. *FEBS Lett*, 585(14), 2182-2186.
25 doi:10.1016/j.febslet.2011.05.071

26 Notredame C, Higgins DG, Heringa J. (2000). T-Coffee: A novel method for fast and accurate multiple
27 sequence alignment. *J Mol Biol*, 302(1), 205-217. doi:10.1006/jmbi.2000.4042

28 Panasenko OO, Collart MA. (2012). Presence of Not5 and ubiquitinated Rps7A in polysome fractions
29 depends upon the Not4 E3 ligase. *Mol Microbiol*, 83(3), 640-653. doi:10.1111/j.1365-
30 2958.2011.07957.x

31 Parker R. (2012). RNA degradation in *Saccharomyces cerevisiae*. *Genetics*, 191(3), 671-702.
32 doi:10.1534/genetics.111.137265

33 Pausch P, Singh U, Ahmed YL, Pillet B, Murat G, Altegoer F, Stier G, Thoms M, Hurt E, Sinnig I,
34 Bange G, Kressler D. (2015). Co-translational capturing of nascent ribosomal proteins by their
35 dedicated chaperones. *Nat Commun*, 6, 7494. doi:10.1038/ncomms8494

1 Pelava A, Schneider C, Watkins NJ. (2016). The importance of ribosome production, and the 5S RNP-
2 MDM2 pathway, in health and disease. *Biochem Soc Trans*, 44(4), 1086-1090.
3 doi:10.1042/BST20160106

4 Peña C, Hurt E, Panse VG. (2017). Eukaryotic ribosome assembly, transport and quality control. *Nat Struct Mol Biol*, 24(9), 689-699. doi:10.1038/nsmb.3454

5 Petibon C, Parenteau J, Catala M, Abou Elela S. (2016). Introns regulate the production of ribosomal
6 proteins by modulating splicing of duplicated ribosomal protein genes. *Nucleic Acids Res*, 44(8),
7 3878-3891. doi:10.1093/nar/gkw140

8 Petitjean A, Bonneau N, Lacroix F. (1995). The duplicated *Saccharomyces cerevisiae* gene *SSM1*
9 encodes a eucaryotic homolog of the eubacterial and archaebacterial L1 ribosomal proteins. *Mol Cell Biol*, 15(9), 5071-5081. doi:10.1128/MCB.15.9.5071

10 Pillet B, García-Gómez JJ, Pausch P, Falquet L, Bange G, de la Cruz J, Kressler D. (2015). The Dedicated Chaperone Acl4 Escorts Ribosomal Protein Rpl4 to Its Nuclear Pre-60S Assembly Site. *PLoS Genet*, 11(10), e1005565. doi:10.1371/journal.pgen.1005565

11 Pillet B, Mitterer V, Kressler D, Pertschy B. (2017). Hold on to your friends: Dedicated chaperones of
12 ribosomal proteins. *Bioessays*, 39(1), 1-12. doi:10.1002/bies.201600153

13 Planta RJ, Mager WH. (1998). The list of cytoplasmic ribosomal proteins of *Saccharomyces cerevisiae*.
14 *Yeast*, 14(5), 471-477. doi:10.1002/(SICI)1097-0061(19980330)14:5<471::AID-YEA241>3.0.CO;2-U

15 Pöll G, Braun T, Jakovljevic J, Neueder A, Jakob S, Woolford JL, Jr., Tschochner H, Milkereit P.
16 (2009). rRNA maturation in yeast cells depleted of large ribosomal subunit proteins. *PLoS One*,
17 4(12), e8249. doi:10.1371/journal.pone.0008249

18 Preissler S, Reuther J, Koch M, Scior A, Bruderek M, Frickey T, Deuerling E. (2015). Not4-dependent
19 translational repression is important for cellular protein homeostasis in yeast. *EMBO J*, 34(14),
20 1905-1924. doi:10.15252/embj.201490194

21 Rabl J, Leibundgut M, Ataide SF, Haag A, Ban N. (2011). Crystal structure of the eukaryotic 40S
22 ribosomal subunit in complex with initiation factor 1. *Science*, 331(6018), 730-736.
23 doi:10.1126/science.1198308

24 Raisch T, Chang CT, Levinsky Y, Muthukumar S, Raunser S, Valkov E. (2019). Reconstitution of
25 recombinant human CCR4-NOT reveals molecular insights into regulated deadenylation. *Nat Commun*, 10(1), 3173. doi:10.1038/s41467-019-11094-z

26 Recasens-Alvarez C, Alexandre C, Kirkpatrick J, Nojima H, Huels DJ, Snijders AP, Vincent JP. (2021).
27 Ribosomopathy-associated mutations cause proteotoxic stress that is alleviated by TOR inhibition.
28 *Nat Cell Biol*, 23(2), 127-135. doi:10.1038/s41556-020-00626-1

1 Rosado IV, Kressler D, de la Cruz J. (2007). Functional analysis of *Saccharomyces cerevisiae* ribosomal
2 protein Rpl3p in ribosome synthesis. *Nucleic Acids Res*, 35(12), 4203-4213.
3 doi:10.1093/nar/gkm388

4 Rössler I, Embacher J, Pillet B, Murat G, Liesinger L, Hafner J, Unterluggauer JJ, Birner-Gruenberger
5 R, Kressler D, Pertschy B. (2019). Tsr4 and Nap1, two novel members of the ribosomal protein
6 chaperOME. *Nucleic Acids Res*, 47(13), 6984-7002. doi:10.1093/nar/gkz317

7 Rout MP, Blobel G, Aitchison JD. (1997). A distinct nuclear import pathway used by ribosomal
8 proteins. *Cell*, 89(5), 715-725. doi:10.1016/s0092-8674(00)80254-8

9 Roy B, Granas D, Bragg F, Jr., Cher JAY, White MA, Stormo GD. (2020). Autoregulation of yeast
10 ribosomal proteins discovered by efficient search for feedback regulation. *Commun Biol*, 3(1), 761.
11 doi:10.1038/s42003-020-01494-z

12 Ruijter JM, Ramakers C, Hoogaars WM, Karlen Y, Bakker O, van den Hoff MJ, Moorman AF. (2009).
13 Amplification efficiency: linking baseline and bias in the analysis of quantitative PCR data. *Nucleic
14 Acids Res*, 37(6), e45. doi:10.1093/nar/gkp045

15 Russell P, Benson JD, Denis CL. (2002). Characterization of mutations in *NOT2* indicates that it plays
16 an important role in maintaining the integrity of the CCR4-NOT complex. *J Mol Biol*, 322(1), 27-
17 39. doi:10.1016/s0022-2836(02)00707-6

18 Schneider CA, Rasband WS, Eliceiri KW. (2012). NIH Image to ImageJ: 25 years of image analysis.
19 *Nat Methods*, 9(7), 671-675. doi:10.1038/nmeth.2089

20 Schütz S, Fischer U, Altvater M, Nerurkar P, Peña C, Gerber M, Chang Y, Caesar S, Schubert OT,
21 Schlenstedt G, Panse VG. (2014). A RanGTP-independent mechanism allows ribosomal protein
22 nuclear import for ribosome assembly. *eLife*, 3, e03473. doi:10.7554/eLife.03473

23 Shaner NC, Lambert GG, Chammas A, Ni Y, Cranfill PJ, Baird MA, Sell BR, Allen JR, Day RN,
24 Israelsson M, Davidson MW, Wang J. (2013). A bright monomeric green fluorescent protein derived
25 from *Branchiostoma lanceolatum*. *Nat Methods*, 10(5), 407-409. doi:10.1038/nmeth.2413

26 Shedlovskiy D, Shcherbik N, Pestov DG. (2017). One-step hot formamide extraction of RNA from
27 *Saccharomyces cerevisiae*. *RNA Biol*, 14(12), 1722-1726. doi:10.1080/15476286.2017.1345417

28 Shore D, Zencir S, Albert B. (2021). Transcriptional control of ribosome biogenesis in yeast: links to
29 growth and stress signals. *Biochem Soc Trans*, 49(4), 1589-1599. doi:10.1042/BST20201136

30 Stelter P, Huber FM, Kunze R, Flemming D, Hoelz A, Hurt E. (2015). Coordinated Ribosomal L4
31 Protein Assembly into the Pre-Ribosome Is Regulated by Its Eukaryote-Specific Extension. *Mol
32 Cell*, 58(5), 854-862. doi:10.1016/j.molcel.2015.03.029

33 Sung MK, Porras-Yakushi TR, Reitsma JM, Huber FM, Sweredoski MJ, Hoelz A, Hess S, Deshaies
34 RJ. (2016a). A conserved quality-control pathway that mediates degradation of unassembled
35 ribosomal proteins. *eLife*, 5. doi:10.7554/eLife.19105

1 Sung MK, Reitsma JM, Sweredoski MJ, Hess S, Deshaies RJ. (2016b). Ribosomal proteins produced
2 in excess are degraded by the ubiquitin-proteasome system. *Mol Biol Cell*, 27(17), 2642-2652.
3 doi:10.1091/mbc.E16-05-0290

4 Szybińska A, Leśniak W. (2017). P53 Dysfunction in Neurodegenerative Diseases - The Cause or Effect
5 of Pathological Changes? *Aging Dis*, 8(4), 506-518. doi:10.14336/AD.2016.1120

6 Thomas BJ, Rothstein R. (1989). Elevated recombination rates in transcriptionally active DNA. *Cell*,
7 56(4), 619-630. doi:10.1016/0092-8674(89)90584-9

8 Thoms M, Mitterer V, Kater L, Falquet L, Beckmann R, Kressler D, Hurt E. (2018). Suppressor
9 mutations in Rpf2-Rrs1 or Rpl5 bypass the Cgr1 function for pre-ribosomal 5S RNP-rotation. *Nat
10 Commun*, 9(1), 4094. doi:10.1038/s41467-018-06660-w

11 Thorvaldsdóttir H, Robinson JT, Mesirov JP. (2013). Integrative Genomics Viewer (IGV): high-
12 performance genomics data visualization and exploration. *Brief Bioinform*, 14(2), 178-192.
13 doi:10.1093/bib/bbs017

14 Ting YH, Lu TJ, Johnson AW, Shie JT, Chen BR, Kumar SS, Lo KY. (2017). Bcp1 Is the Nuclear
15 Chaperone of Rpl23 in *Saccharomyces cerevisiae*. *J Biol Chem*, 292(2), 585-596.
16 doi:10.1074/jbc.M116.747634

17 Turowski TW, Tollervey D. (2015). Cotranscriptional events in eukaryotic ribosome synthesis. *Wiley
18 Interdiscip Rev RNA*, 6(1), 129-139. doi:10.1002/wrna.1263

19 Tyanova S, Temu T, Cox J. (2016). The MaxQuant computational platform for mass spectrometry-
20 based shotgun proteomics. *Nat Protoc*, 11(12), 2301-2319. doi:10.1038/nprot.2016.136

21 Tye BW, Commins N, Ryazanova LV, Wühr M, Springer M, Pincus D, Churchman LS. (2019).
22 Proteotoxicity from aberrant ribosome biogenesis compromises cell fitness. *eLife*, 8.
23 doi:10.7554/eLife.43002

24 Vissers L, Kalvakuri S, de Boer E, Geuer S, Oud M, van Outersterp I, Kwint M, Witmond M, Kersten
25 S, Polla DL, Weijers D, Begtrup A, McWalter K, Ruiz A, Gabau E, Morton JEV, Griffith C, Weiss
26 K, Gamble C, Bartley J, et al. (2020). De Novo Variants in *CNOT1*, a Central Component of the
27 CCR4-NOT Complex Involved in Gene Expression and RNA and Protein Stability, Cause
28 Neurodevelopmental Delay. *Am J Hum Genet*, 107(1), 164-172. doi:10.1016/j.ajhg.2020.05.017

29 Wahle E, Winkler GS. (2013). RNA decay machines: deadenylation by the Ccr4-Not and Pan2-Pan3
30 complexes. *Biochim Biophys Acta*, 1829(6-7), 561-570. doi:10.1016/j.bbagr.2013.01.003

31 Wang L, Zhang W, Wang L, Zhang XC, Li X, Rao Z. (2010). Crystal structures of NAC domains of
32 human nascent polypeptide-associated complex (NAC) and its alphaNAC subunit. *Protein Cell*,
33 1(4), 406-416. doi:10.1007/s13238-010-0049-3

34 Wang Y, Liu CL, Storey JD, Tibshirani RJ, Herschlag D, Brown PO. (2002). Precision and functional
35 specificity in mRNA decay. *Proc Natl Acad Sci U S A*, 99(9), 5860-5865.
36 doi:10.1073/pnas.092538799

1 Warner JR. (1999). The economics of ribosome biosynthesis in yeast. *Trends Biochem Sci*, 24(11), 437-
2 440. doi:10.1016/s0968-0004(99)01460-7

3 Waskom ML. (2021). seaborn: statistical data visualization. *J Open Source Softw*, 6(60), 3021.
4 doi:10.21105/joss.03021

5 Watkins NJ, Bohnsack MT. (2012). The box C/D and H/ACA snoRNPs: key players in the
6 modification, processing and the dynamic folding of ribosomal RNA. *Wiley Interdiscip Rev RNA*,
7 3(3), 397-414. doi:10.1002/wrna.117

8 Wilson DN, Arenz S, Beckmann R. (2016). Translation regulation via nascent polypeptide-mediated
9 ribosome stalling. *Curr Opin Struct Biol*, 37, 123-133. doi:10.1016/j.sbi.2016.01.008

10 Wolfe KH, Armisén D, Proux-Wera E, ÓhÉigeartaigh SS, Azam H, Gordon JL, Byrne KP. (2015).
11 Clade- and species-specific features of genome evolution in the Saccharomycetaceae. *FEMS Yeast
12 Res*, 15(5), fov035. doi:10.1093/femsyr/fov035

13 Woolford JL, Jr., Baserga SJ. (2013). Ribosome biogenesis in the yeast *Saccharomyces cerevisiae*.
14 *Genetics*, 195(3), 643-681. doi:10.1534/genetics.113.153197

15 Yaffe MP, Schatz G. (1984). Two nuclear mutations that block mitochondrial protein import in yeast.
16 *Proc Natl Acad Sci U S A*, 81(15), 4819-4823. doi:10.1073/pnas.81.15.4819

17 Yates AD, Achuthan P, Akanni W, Allen J, Allen J, Alvarez-Jarreta J, Amode MR, Armean IM, Azov
18 AG, Bennett R, Bhai J, Billis K, Boddu S, Marugán JC, Cummins C, Davidson C, Dodiya K, Fatima
19 R, Gall A, Giron CG, et al. (2020). Ensembl 2020. *Nucleic Acids Res*, 48(D1), D682-D688.
20 doi:10.1093/nar/gkz966

21 Yu H, Braun P, Yildirim MA, Lemmens I, Venkatesan K, Sahalie J, Hirozane-Kishikawa T, Gebreab
22 F, Li N, Simonis N, Hao T, Rual JF, Dricot A, Vazquez A, Murray RR, Simon C, Tardivo L, Tam
23 S, Svrzikapa N, Fan C, et al. (2008). High-quality binary protein interaction map of the yeast
24 interactome network. *Science*, 322(5898), 104-110. doi:10.1126/science.1158684

25 Zanelli CF, Maragno AL, Gregio AP, Komili S, Pandolfi JR, Mestriner CA, Lustri WR, Valentini SR.
26 (2006). eIF5A binds to translational machinery components and affects translation in yeast. *Biochem
27 Biophys Res Commun*, 348(4), 1358-1366. doi:10.1016/j.bbrc.2006.07.195

28 Zeevi D, Sharon E, Lotan-Pompan M, Lubling Y, Shipony Z, Raveh-Sadka T, Keren L, Levo M,
29 Weinberger A, Segal E. (2011). Compensation for differences in gene copy number among yeast
30 ribosomal proteins is encoded within their promoters. *Genome Res*, 21(12), 2114-2128.
31 doi:10.1101/gr.119669.110

32 Zencir S, Dilg D, Rueda MP, Shore D, Albert B. (2020). Mechanisms coordinating ribosomal protein
33 gene transcription in response to stress. *Nucleic Acids Res*, 48(20), 11408-11420.
34 doi:10.1093/nar/gkaa852

1 Zhang Y, Sinning I, Rospert S. (2017). Two chaperones locked in an embrace: structure and function
2 of the ribosome-associated complex RAC. *Nat Struct Mol Biol*, 24(8), 611-619.
3 doi:10.1038/nsmb.3435

4 Zhang Y, Skolnick J. (2005). TM-align: a protein structure alignment algorithm based on the TM-score.
5 *Nucleic Acids Res*, 33(7), 2302-2309. doi:10.1093/nar/gki524

6

7

1 **Figure Legends**

2

3 **Figure 1.** Absence of Caf130, Cal4, or the NAC complex suppresses the *Δacl4* growth defect by
4 increasing *RPL4* mRNA levels.

5 **(A-F)** Suppression of the *Δacl4* growth defect. The indicated wild-type (WT), single, double, and triple
6 deletion strains, all derived from tetratype tetrads, were spotted in 10-fold serial dilution steps onto
7 YPD plates, which were incubated for the indicated times at 16, 23, 30, or 37°C. **(G)** Cells lacking
8 Caf130, Cal4, or the NAC complex exhibit increased *RPL4* mRNA levels. Cells of the indicated
9 genotype were grown in YPD medium at 30°C to an OD₆₀₀ of around 0.6 and relative changes in mRNA
10 levels were determined by qRT-PCR (see Materials and methods). The shown data were obtained from
11 three independent strains of the same genotype (biological triplicates), in each case consisting of a
12 technical triplicate. The darker-colored boxes highlight the quartiles of each dataset, while the whiskers
13 indicate the minimal and maximal limits of the distribution; outliers are shown as diamonds. The
14 horizontal line in the quartile box represents the median log2 fold change of each dataset. **(H)** Christmas
15 tree representation of differential gene expression analysis between *Δcaf130* (left panel) or *Δcal4* (right
16 panel) and wild-type (WT) cells. The RNA-Seq data were generated from the same total RNA samples
17 used for the above qRT-PCRs. Genes exhibiting statistically-significant differential mRNA levels are
18 colored in dark grey (adjusted p-value, padj < 0.05). Categories of genes or specific genes, regardless
19 of the adjusted p-value, are colored as indicated.

20

21 **Figure 1 – Figure Supplement 1.** Differential gene expression analysis between NAC-deficient and
22 wild-type cells.

23 **(A)** Example of spontaneous suppression of the *Δacl4* growth phenotype. **(B, C)** The indicated wild-
24 type (WT), single and double deletion strains, all derived from tetratype tetrads, were spotted in 10-fold
25 serial dilution steps onto YPD plates, which were incubated for the indicated times at 16, 23, 30, or
26 37°C. **(D)** Christmas tree representation of differential gene expression analysis between the indicated
27 mutant and wild-type (WT) cells. The RNA-Seq data were generated from the same total RNA samples
28 used for the qRT-PCRs in Figure 1G. Genes exhibiting statistically-significant differential mRNA
29 levels are colored in dark grey (adjusted p-value, padj < 0.05). Categories of genes or specific genes,
30 regardless of the adjusted p-value, are colored as indicated.

31

32 **Figure 2.** Absence of Not1's N-terminal domain suppresses the *Δacl4* growth defect and increases
33 *RPL3* and *RPL4* mRNA levels.

34 **(A)** Schematic representation of Not1 highlighting its domain organization and known binding sites of
35 Ccr4-Not core components as revealed by diverse (co-)crystal structures (PDB: 4B8B and 4B8A
36 (Basquin *et al.*, 2012), 4CV5 (Mathys *et al.*, 2014), 5AJD (Bhaskar *et al.*, 2015), and 4BY6 (Bhaskar

1 *et al.*, 2013)). As shown in Figure 3H, the N-terminal Not1 segment encompassing amino acids 21-153
2 corresponds to the minimal Caf130-interacting domain (CaInD). Note that Ccr4 does not directly bind
3 to Not1, it is recruited *via* its interaction with Caf1. The position and nature of the *Δacl4* suppressor
4 mutations is indicated: M1L (ATG start codon changed to cTG), K21^{fs} (AAA codon with deletion of
5 one A, resulting in a frameshift), L112* (TTG codon changed to TaG stop codon), and I128^{fs} (ATT
6 codon with A deleted, resulting in a frameshift). M163 denotes the second methionine within Not1, it
7 is encoded by the first occurring ATG trinucleotide after the start codon. (B) The shorter, major isoform
8 of Not1 is generated by utilization of the ATG coding for M163 as the start codon. Total protein extracts,
9 derived from cells expressing Not1-TAP, either from the genomic locus or from plasmid in a *Δnot1*
10 strain, and the indicated variants, were analyzed by Western blotting using anti-protA and anti-Adh1
11 (loading control) antibodies. The N40(oofATG) and N156(oofATG) constructs contain an out-of-frame
12 ATG (oofATG) owing to the silent mutagenesis of the N40 and N156 codons from AAC to AAt, which
13 together with the first position of the subsequent Asp-encoding codons forms an ATG trinucleotide. (C,
14 D) Growth phenotype of and suppression of the *Δacl4* growth defect by N-terminal deletion variants of
15 Not1. Plasmids harboring full-length *NOT1* or the indicated *not1* deletion variants, expressed under the
16 control of the *NOT1* promoter, were transformed into a *NOT1* shuffle strain (C) or a *NOT1/ACL4* double
17 shuffle strain (D). After plasmid shuffling on 5-Fluoroorotic Acid containing (5-FOA) plates, cells were
18 restreaked on YPD plates and then, alongside with a wild-type (WT) and *Δacl4* control strain, spotted
19 in 10-fold serial dilution steps onto YPD plates, which were incubated for the indicated times at 16, 23,
20 30, or 37°C. Note that the *not1.21C*, *not1.29C*, and *not1.163C* alleles express N-terminally truncated
21 Not1 variants starting at amino acid 21, 29, and 163, respectively. (E) Absence of Not1's N-terminal
22 domain increases *RPL3* and *RPL4* mRNA levels. Relative changes in mRNA levels between *Δnot1*
23 cells complemented with either plasmid-borne *NOT1* or *not1.163C* were determined by qRT-PCR.
24 Cells were grown in YPD medium at 30°C to an OD₆₀₀ of around 0.6. The shown data were obtained
25 with three independent *NOT1* shuffle strains (biological triplicates), in each case consisting of a
26 technical triplicate, and they are represented as described in the legend to Figure 1G.
27

28 **Figure 2 – Figure Supplement 1.** Absence of other Ccr4-Not components does not suppress the *Δacl4*
29 growth defect.

30 (A) Growth phenotype of cells expressing Not1-TAP, either from the genomic locus or from plasmid
31 in a *Δnot1* strain, and the indicated variants. The same strains were used in Figure 2B. (B) Cells lacking
32 Not2 or Not5 display a severe slow-growth phenotype. The growth of spore clones, after dissection of
33 *NOT2/Δnot2* or *NOT5/Δnot5* diploids, is shown on YPD plates at 30°C. (C-G) Absence of other Ccr4-
34 Not components does not suppress the *Δacl4* growth defect. The indicated wild-type (WT), single and
35 double deletion strains, all derived from tetratype tetrads, were spotted in 10-fold serial dilution steps
36 onto YPD plates, which were incubated for the indicated times at 16, 23, 30, or 37°C. (H) Plasmids

1 expressing wild-type Not5 or the Not5.114C variant were transformed into a *NOT5* shuffle strain and,
2 after plasmid shuffling, cells were spotted in 10-fold serial dilution steps onto YPD plates. **(I)** The same
3 plasmids were co-transformed with either an empty vector or an *ACL4*-harboring plasmid into a
4 *NOT5/ACL4* double shuffle strain. After plasmid shuffling, cells were spotted in 10-fold serial dilution
5 steps onto synthetic complete medium lacking leucine and tryptophan (SC-LT) plates, which were
6 incubated for the indicated times at 16, 23, 30, or 37°C. **(J)** The indicated single, double, and triple
7 deletion strains, all derived from tetratype tetrads, were spotted, alongside with a wild-type (WT) and
8 a *Δrps25a/Δrps25b* reference strain, in 10-fold serial dilution steps onto YPD plates.

9

10 **Figure 2 – Figure Supplement 2.** Absence of general mRNA decay factors does not suppress the *Δacl4*
11 growth defect.

12 **(A-D)** The indicated wild-type (WT), single and double deletion strains, all derived from tetratype
13 tetrads, were spotted in 10-fold serial dilution steps onto YPD plates, which were incubated for the
14 indicated times at 16, 23, 30, or 37°C.

15

16 **Figure 3.** Caf130 connects Cal4 and Btt1 to Ccr4-Not by exclusively interacting with the full-length
17 translational isoform of Not1.

18 **(A-F)** Assessment of *in vivo* interactions by GFP-Trap co-immunoprecipitation. Cells expressing non-
19 tagged (-) or C-terminally GFP-tagged (+) versions of Not1 **(A)**, Not1.154C **(B)**, Caf130 **(C)**, Cal4 **(D)**,
20 Btt1 **(E)**, and Egd2 **(F)** together with the indicated C-terminally TAP-tagged prey proteins were grown
21 in YPD medium at 30°C and harvested in log phase at an OD₆₀₀ of around 0.8. All fusion proteins were
22 expressed from their genomic locus, except GFP-tagged Not1 and Not1.154C as well as their non-
23 tagged counterparts, which were expressed from plasmid under the control of the *NOT1* promoter in
24 *Δnot1* cells. A part of the cleared cell lysates (input; 1/1000 of IP input) and GFP-Trap affinity
25 purifications (IP; 1/5 of complete IP) were separated on pre-cast 4-12%-gradient gels and analyzed by
26 Western blotting using anti-GFP and anti-protA antibodies. Since Not1, Egd1, and Egd2 are expressed
27 at higher levels, the inputs for detection of Not1-TAP were diluted two-fold and those of Egd1-TAP
28 and Egd2-TAP 20-fold to keep all Western signals in a similar range. Note that the band marked with
29 a red asterisk corresponds to the Egd2-GFP bait protein, which is, due to its abundance in the IP, non-
30 specifically recognized by the anti-protA antibody. **(G, H)** Assessment of protein-protein interactions
31 by yeast two-hybrid (Y2H). **(G)** Caf130 interacts with Not1, Cal4, and Btt1. Plasmids expressing full-
32 length Not1, Cal4, Btt1, Egd1, or Egd2, fused to the C-terminal Gal4 DNA-binding domain (G4BD),
33 and full-length Caf130, fused to the C-terminal Gal4 activation domain (G4AD), were co-transformed
34 into the Y2H reporter strain PJ69-4A. Cells were spotted in 10-fold serial dilution steps onto SC-Leu-
35 Trp (-LT), SC-His-Leu-Trp (-HLT), and SC-Ade-Leu-Trp (-ALT) plates, which were incubated for 3
36 days at 30°C. **(H)** Minimal interaction surfaces mediating the binary Caf130-Not1, Caf130-Btt1, and

1 Caf130-Cal4 association (for more details, see *Figure 3–figure supplement 2*). Plasmids expressing the
2 indicated C-terminally G4BD-tagged Not1, Cal4, or Btt1 and G4AD-tagged Caf130 full-length proteins
3 or respective minimal interaction fragments thereof were co-transformed into the Y2H reporter strain
4 PJ69-4A. The Y2H interaction was documented as described above. **(I)** Schematic representation of the
5 binary interactions and the determined minimal interaction surfaces. The respective minimal interaction
6 surfaces, as determined by Y2H mapping, are highlighted by colored rectangles. The borders of the
7 NAC domain, as defined in (Liu *et al.*, 2010), are also indicated. The Caf130-interacting domain of
8 Not1 is abbreviated as CaInD.

9

10 **Figure 3 – Figure Supplement 1.** Caf130 interacts with Not1, Cal4, and Btt1.

11 **(A–E)** Assessment of protein-protein interactions by Y2H between full-length Not1, Caf130, Cal4, Btt1,
12 Egd1, and Egd2. Plasmids expressing full-length Cal4 **(A)**, Btt1 **(B)**, Not1 **(C)**, Egd1 **(D)**, or Egd2 **(E)**,
13 fused to the C-terminal G4BD, and full-length Not1, Caf130, Cal4, Btt1, Egd1, and Egd2, fused to the
14 C-terminal G4AD, were co-transformed into the Y2H reporter strain PJ69-4A. Cells were spotted in
15 10-fold serial dilution steps onto SC-Leu-Trp (-LT), SC-His-Leu-Trp (-HLT), and SC-Ade-Leu-Trp (-
16 ALT) plates, which were incubated for 3 days at 30°C. **(F)** Comparison of the Y2H interaction between
17 Caf130 and NAC components at 16 and 30°C.

18

19 **Figure 3 – Figure Supplement 2.** Mapping of the minimal interaction surfaces on Caf130, Not1, Cal4,
20 and Btt1.

21 Mapping of the respective minimal interaction surfaces mediating the association between Caf130 and
22 its direct interactors (Not1, Btt1, and Cal4). On the left panels, the Y2H reporter strain PJ69-4A was
23 co-transformed with plasmids expressing full-length Caf130, fused to the C-terminal G4AD, and the
24 indicated variants of Not1 **(A)**, Btt1 **(B)**, or Cal4 **(C)**, fused to the C-terminal G4BD. On the right panels,
25 PJ69-4A was co-transformed with plasmids expressing the indicated variants of Caf130, fused to the
26 C-terminal G4AD, and full-length Not1 **(A)**, Btt1 **(B)**, and Cal4 **(C)**, fused to the C-terminal G4BD.
27 Cells were spotted in 10-fold serial dilution steps onto SC-Leu-Trp (-LT), SC-His-Leu-Trp (-HLT), and
28 SC-Ade-Leu-Trp (-ALT) plates, which were incubated for 3 days at 30°C.

29

30 **Figure 3 – Figure Supplement 3.** Mapping of the Egd2-binding surface on Btt1.

31 **(A, B)** Mapping of the interaction surface mediating the association of Egd2 with full-length Egd1 or
32 Btt1 **(A)** and of Btt1 with full-length Egd2 **(B)**. The Y2H reporter strain PJ69-4A was co-transformed
33 with plasmids expressing the indicated full-length proteins, deletion variants, and internal fragments,
34 fused to either the C-terminal G4BD or G4AD. Cells were spotted in 10-fold serial dilution steps onto
35 SC-Leu-Trp (-LT), SC-His-Leu-Trp (-HLT), and SC-Ade-Leu-Trp (-ALT) plates, which were
36 incubated for 3 days at 30°C.

1

2 **Figure 4.** The nascent Rpl4 protein harbors the regulation-conferring signal.

3 **(A, B)** Suppression of the $\Delta acl4$ growth defect by the $rpl4a.W109C$ allele. Cells harboring wild-type
4 $RPL4A$ or the indicated $rpl4a$ alleles, expressed from the genomic locus, in addition to either the
5 deletion of $RPL4B$ ($\Delta rpl4b$) **(A)** or $ACL4$ ($\Delta acl4$) **(B)** were spotted in 10-fold serial dilution steps onto
6 YPD plates, which were incubated for the indicated times at 16, 23, 30, or 37°C. **(C)** Amino acid
7 sequences of the long internal loop (amino acids 44-113), extended to the C-terminal border of the
8 minimal segment conferring full $RPL4A$ mRNA regulation (amino acids 78-139; highlighted by a light
9 yellow background color), of Rpl4 from different eukaryotic species (H.s., *Homo sapiens*; S.p.,
10 *Schizosaccharomyces pombe*; C.t., *Chaetomium thermophilum*; S.c., *Saccharomyces cerevisiae*).
11 Conserved (*), strongly similar (:), and weakly similar (.) amino acids are indicated below the
12 alignment. The non-overlapping, consecutive alanine substitutions within this Rpl4a segment are
13 depicted in the lower part: block-I mutant (BI): F90A/N92A/M93A/C94A/R95A, block-II mutant (BII):
14 R98A/M99A/F100A, block-III mutant (BIII): P102A/T103A/K104A/T105A, and block-IV mutant
15 (BIV): W106A/R107A/K108A/W109A. The W109C exchange is also indicated. **(D)** Negative
16 regulation of $RPL4A$ mRNA levels is strongly diminished by the $rpl4a.W109C$ mutation. Levels of
17 $RPL4A$ -yEGFP fusion mRNAs were determined in wild-type (WT; blue bars) or $\Delta caf130$ (orange bars)
18 cells by qRT-PCR with a primer pair specifically amplifying a part of the yEGFP coding sequence fused
19 to the 3'-end of the $RPL4A$ ORF. Cells harboring wild-type $RPL4A$ or the indicated $rpl4a$ alleles,
20 expressed from the $ADH1$ promoter, on plasmid were grown at 30°C in SC-Leu medium to an OD_{600} of
21 around 0.6. The shown data were obtained from at least three different wild-type and $\Delta caf130$ strains
22 (biological replicates), in each case consisting of a technical triplicate. Changes in mRNA levels of each
23 assayed $RPL4A$ allele between wild-type (negative regulation on) and $\Delta caf130$ (negative regulation off)
24 cells have been normalized to their maximal abundance in $\Delta caf130$ cells. The data are represented as
25 described in the legend to Figure 1G. **(E)** Mapping of the minimal regulation-conferring region on
26 $RPL4A$. Levels of fusion mRNAs containing different regions of the $RPL4A$ coding sequence were
27 determined in wild-type (WT; blue bars) or $\Delta caf130$ (orange bars) cells by qRT-PCR with a primer pair
28 specifically amplifying a part of the yEGFP coding sequence. Cells expressing the indicated N-terminal
29 deletion variants, fused to an N-terminal yEGFP tag, or C-terminal deletion variants, fused to a C-
30 terminal yEGFP tag, from plasmid under the transcriptional control of the $ADH1$ promoter were grown
31 at 30°C in SC-Leu medium to an OD_{600} of around 0.6. To avoid any effect on mRNA levels of co-
32 translational Acl4 binding to the nascent Rpl4a polypeptides, the BI mutations were introduced into
33 those constructs comprising this region of the $RPL4A$ coding sequence. The yEGFP-fused Rpl4a
34 variants, encoded by the assayed constructs, are schematically represented. The Rpl4a segment encoded
35 by the minimal regulation-conferring $RPL4A$ region is highlighted in yellow and the position of the BI
36 alanine substitutions by a red bar. The shown data were obtained from at least three different wild-type

1 and Δ caf130 strains (biological replicates), in each case consisting of a technical triplicate. **(F)** The
2 *rpl4a.W109C* mutation within the minimal regulation-conferring region strongly diminishes negative
3 regulation of *RPL4A* mRNA levels. Levels of fusion mRNAs were determined in wild-type (WT; blue
4 bars) or Δ caf130 (orange bars) by qRT-PCR with a primer pair specifically amplifying a part of the
5 yEGFP coding sequence. Cells expressing the Rpl4a(78-139) fragment harboring the wild-type
6 sequence or the indicated mutations, fused to an N-terminal TAP-Flag (NTAPF) and a C-terminal
7 yEGFP tag, from plasmid under the transcriptional control of the *ADH1* promoter were grown at 30°C
8 in SC-Leu medium to an OD₆₀₀ of around 0.6. The shown data were obtained from three different wild-
9 type and Δ caf130 strains (biological triplicates), in each case consisting of a technical triplicate.
10

11 **Figure 4 – Figure Supplement 1.** Residue W109 of Rpl4 is facing the inner surface of Acl4 and the
12 W109C exchange reduces the interaction of Rpl4 with Acl4.

13 **(A)** Structure of Rpl4's long internal loop in the ribosome-bound state, extracted from PDB 4V88 (Ben-
14 Shem *et al.*, 2011). The long internal loop of Rpl4 is colored in blue (amino acids 43-113) with side
15 chains in stick representation. The W109 residue is highlighted in red and the rest of Rpl4 is colored in
16 grey. **(B)** Co-structure of the *C. thermophilum* Acl4-Rpl4 complex (PDB 5TQB, (Huber and Hoelz,
17 2017)). CtRpl4 is depicted in cartoon representation with the long internal loop colored in blue (amino
18 acids 44-114) and with side chains in stick representation. The W110 residue (corresponding to the *S.*
19 *cerevisiae* W109 residue) is highlighted in red and the rest of ctRpl4 is colored in grey. CtAcl4 is shown
20 in surface representation (light green), either in a semi-transparent manner (left panel) or completely
21 opaque (right panel). **(C)** Effect of the W109C mutation on the interaction between Rpl4a and Acl4.
22 The Y2H reporter strain PJ69-4A was co-transformed with plasmids expressing full-length Acl4, C-
23 terminally fused to the G4BD (left panel) or the G4AD (right panel), and Rpl4a or Rpl4a.W109C, C-
24 terminally fused to the G4AD (left panel) or the G4BD (right panel). Cells were spotted in 10-fold serial
25 dilution steps onto SC-Leu-Trp (-LT), SC-His-Leu-Trp (-HLT), and SC-Ade-Leu-Trp (-ALT) plates,
26 which were incubated for 3 days at 30°C.
27

28 **Figure 5.** The regulation-conferring Rpl3 segment is adjacent to the Rrb1-binding site.

29 **(A)** Mapping of the minimal regulation-conferring region on *RPL3*. Levels of fusion mRNAs containing
30 different regions of the *RPL3* coding sequence were determined in wild-type (WT; blue bars) or
31 Δ caf130 (orange bars) cells by qRT-PCR with a primer pair specifically amplifying a part of the yEGFP
32 coding sequence. Cells expressing full-length Rpl3 or the indicated substitution and deletion variants,
33 fused to a C-terminal yEGFP tag, from plasmid under the control of the *ADH1* promoter were grown at
34 30°C in SC-Leu medium to an OD₆₀₀ of around 0.6. The shown data were obtained from three different wild-
35 type and Δ caf130 strains (biological replicates; note that some strains were used more than once),
36 in each case consisting of a technical triplicate. The data are represented as described in the legend to

1 Figure 4D. **(B)** Amino acid sequences of the N-terminal region of Rpl3, containing the minimal Rrb1-
2 interacting region (amino acids 1-15; (Pausch *et al.*, 2015)) and extended to the C-terminal border of
3 the minimal segment conferring full *RPL3* mRNA regulation (amino acids 12-52; highlighted by a light
4 yellow background color), from different eukaryotic species (H.s., *H. sapiens*; S.p., *S. pombe*; C.t., *C.*
5 *thermophilum*; S.c., *S. cerevisiae*). Conserved (*), strongly similar (:), and weakly similar (.) amino
6 acids are indicated below the alignment. The glutamate and alanine substitutions, contained in the Rpl3
7 variants used in this study, within the N-terminal region of Rpl3 are depicted in the lower part. **(C)**
8 Residues F16 and L17 are main determinants for efficient negative regulation of *RPL3* mRNA levels.
9 Levels of fusion mRNAs were determined in wild-type (WT; blue bars) or *Δcaf130* (orange bars) cells
10 expressing the Rpl3.N52 fragment harboring the indicated mutations, fused to a C-terminal yEGFP tag,
11 from plasmid under the transcriptional control of the *ADH1* promoter. Cells were grown at 30°C in SC-
12 Leu medium to an OD₆₀₀ of around 0.6. To avoid any effect on mRNA levels of co-translational Rrb1
13 binding to the nascent Rpl3 polypeptides, the H3E mutation was introduced into all assayed constructs.
14 The shown data were obtained from three different wild-type and *Δcaf130* strains (biological
15 triplicates), in each case consisting of a technical triplicate.

16

17 **Figure 5 – Figure Supplement 1.** Effect of mutations within Rpl3's N-terminal region on the Y2H
18 interaction with Rrb1.

19 The Y2H reporter strain PJ69-4A was co-transformed with plasmids expressing full-length Rrb1, N-
20 terminally fused to the G4AD, and full-length Rpl3 or the indicated substitution and deletion variants,
21 C-terminally fused to the G4BD. Cells were spotted in 10-fold serial dilution steps onto SC-Leu-Trp (-
22 LT), SC-His-Leu-Trp (-HLT), and SC-Ade-Leu-Trp (-ALT) plates, which were incubated for 3 days at
23 30°C. The effects of the introduced mutations were assessed both in the context of full-length Rpl3 (left
24 panel) or the C-terminally truncated Rpl3.N52 variant (right panel).

25

26 **Figure 5 – Figure Supplement 2.** The *rpl3.F16A/L17A* allele fully complements the absence of
27 endogenous *RPL3* and suppresses the lethality of *Δrrb1* cells.

28 **(A)** Effect of mutations within Rpl3's N-terminal region on yeast growth. Empty vector (YCplac111)
29 and plasmid-borne wild-type *RPL3* or the indicated *rpl3* mutants, expressed under the control of the
30 cognate promoter, were transformed into a *RPL3* shuffle strain. Transformants were restreaked on SC-
31 Leu plates and cells were then spotted in 10-fold serial dilution steps onto SC-Leu and SC+FOA plates,
32 which were incubated at 30°C for the indicated number of days. Viable mutants were restreaked from
33 5-FOA-containing plates on YPD plates and then spotted in 10-fold serial dilution steps onto YPD
34 plates, which were incubated for the indicated number of days at 16, 23, 30, or 37°C. **(B)** Effect of the
35 expression of Rpl3's N-terminal region, when exhibiting different C-terminal borders or including the
36 glutamate and alanine substitutions used in this study, on growth of wild-type cells. The wild-type strain

1 YDK11-5A was transformed with an empty vector (YCplac111) or plasmids expressing non-fused
2 yEGFP or the indicated N-terminal wild-type or mutant Rpl3 fragments, fused to the C-terminal yEGFP
3 tag, under the control of the *ADH1* promoter. Transformants were restreaked on SC-Leu plates and cells
4 were then spotted in 10-fold serial dilution steps onto SC-Leu plates, which were incubated for 3 days
5 at 30°C. **(C)** Cartoon representation of Rpl3's structure in the ribosome-bound state, extracted from
6 PDB 4V88 (Ben-Shem *et al.*, 2011). The minimal regulation-conferring region of Rpl3 (amino acid 12-
7 52) is colored in light yellow. Residues F16/L17 and F46/L47 are highlighted in blue and red,
8 respectively, with side chains in stick representation. **(D)** The *rpl3.F16A/L17A* allele suppresses the
9 lethality of *Δrrb1* null mutant cells. Empty vector (YCplac111) and plasmid-borne *RRB1*, *RPL3*, or the
10 *rpl3.F16A/L17A* mutant, all expressed under the control of their cognate promoters, were transformed
11 into a *RRB1* shuffle strain. Transformants were restreaked on SC-Leu plates and cells were then spotted
12 in 10-fold serial dilution steps onto SC-Leu and SC+FOA-Leu plates, which were incubated at 30°C for
13 the indicated number of days.

14

15 **Figure 6.** Overexpression of Rrb1 and Acl4 increases *RPL3* and *RPL4* mRNA levels.

16 Wild-type (WT), *RRB1* shuffle (*Δrrb1*), and *Δacl4* cells were transformed with an empty vector or
17 plasmids expressing either Rrb1 or Acl4 under the control of the inducible *GAL1-10* promoter. Relative
18 levels of the *RPL3*, *RPL4*, *RPL5*, and *RPS3* mRNAs were determined by qRT-PCR using total RNA
19 extracted from log-phase cells grown in SGal-Leu medium (galactose; upper panel) or shifted for 24 h
20 to SC-Leu medium (glucose; lower panel). The relative changes in mRNA levels between the different
21 conditions (Rrb1 and Acl4 overexpression or depletion in wild-type, *Δrrb1*, or *Δacl4* cells) have been
22 normalized to the abundance of each assayed mRNA in wild-type cells transformed with the empty
23 vector and grown in the same medium. The shown data were obtained from three different wild-type,
24 *RRB1* shuffle, and *Δacl4* strains (biological triplicates), in each case consisting of a technical triplicate,
25 and they are represented as described in the legend to Figure 1G. In addition, the transformed cells were
26 spotted in 10-fold serial dilution steps onto SGal-Leu (galactose) or SC-Leu (glucose) plates, which
27 were incubated at 30°C for 3.5 or 3 days, respectively.

28

29 **Figure 7.** Deregulated expression of Rpl3 and Rpl4 induces their aggregation and abolishes growth in
30 the absence of Tom1.

31 **(A)** Overexpressed Rpl4a variants, exhibiting deregulated expression, accumulate in the nucleolus and
32 aggregate in the nucleus in the absence of Tom1. Wild-type (WT) and *Δtom1* strains were co-
33 transformed with plasmids expressing the indicated Rpl4a variants, C-terminally fused to a yeast codon-
34 optimized mNeonGreen (yOmNG), under the control of the inducible *GAL1-10* promoter and a plasmid
35 expressing Nop58-yEmCherry to indicate the subcellular position of the nucleolus. Cells were grown
36 at 30°C in SC+Raffinose-Leu medium to an OD₆₀₀ of around 0.25 and expression of the Rpl4a variants

1 was induced for 4 h with 2% galactose. The left panel shows representative examples of the three types
2 of observed localizations (cytoplasmic, nucleolar accumulation, and nuclear aggregation). The shown
3 images were acquired from $\Delta tom1$ cells expressing wild-type Rpl4a or the two indicated Rpl4a variants
4 and they are displayed according to the indicated 16-bit brightness level ranges (min-max); note that
5 the cytoplasmic signal, due to these parameter choices, is not well visible in the examples highlighting
6 the nucleolar accumulation and nuclear aggregation. The right panel shows proportional bar graphs
7 based on the number of counted cells displaying each of the three typical localizations (blue:
8 cytoplasmic, yellow: nucleolar accumulation, red: nuclear aggregation). **(B)** Reduced expression of
9 Rpl4 suppresses the lethality of $\Delta cal4/\Delta tom1$ but not of $\Delta caf130/\Delta tom1$ cells. The indicated single,
10 double, and triple deletion strains, all derived from tetratype tetrads, were spotted in 10-fold serial
11 dilution steps onto SC and SC+FOA (+FOA) plates, which were incubated for 3 days at 30°C. **(C)**
12 Reduced expression of both Rpl3 and Rpl4 efficiently suppresses the lethality of $\Delta caf130/\Delta tom1$ cells.
13 Empty vector (YCplac111) or plasmids harboring wild-type *RPL3*, expressed either from the *RPL3* or
14 *RPL4B* promoter, and empty vector (pASZ11) or a plasmid containing *CAF130*, expressed from the
15 *ADH1* promoter, were co-transformed into *RPL3/CAF130* ($\Delta rpl3/\Delta caf130$) double shuffle strains
16 additionally bearing chromosomal deletions of *TOM1* ($\Delta tom1$; left panel) or both *TOM1* and *RPL4A*
17 ($\Delta tom1/\Delta rpl4a$; right panel). Transformants were restreaked on SC-Ade-Leu plates and cells were then
18 spotted in 10-fold serial dilution steps onto SC-Ade-Leu (SC-AL) and SC+FOA-Ade-Leu (+FOA)
19 plates, which were incubated at 30°C for 3 days. **(D)** Depletion of Tom1 in $\Delta caf130$ or $\Delta cal4$ cells leads
20 to the aggregation of Rpl3 and/or Rpl4, thereby perturbing overall cellular proteostasis. Wild-type
21 (WT), $\Delta caf130$, or $\Delta cal4$ cells, expressing N-terminally 2xHA-tagged Tom1 under the transcriptional
22 control of the *GAL1* promoter from the genomic locus (PGAL-2HA-*TOM1*), were grown at 30°C in
23 YPGal medium and then shifted for up to 24 h to YPD medium. Cells were harvested after the indicated
24 times of growth in YPD medium (0, 4, 8, or 24 hours). The total extracts (total) and the insoluble pellet
25 fractions (pellet) were analyzed by SDS-PAGE and Coomassie staining (upper panel) and by Western
26 blotting using the indicated antibodies (lower panel).

27

28 **Figure 7 – Figure Supplement 1.** Overexpression of Rpl3 and Rpl4 variants affects growth of $\Delta tom1$
29 cells.

30 **(A)** Strong overexpression of Rpl3 and Rpl4a negatively affects growth of $\Delta tom1$ cells. Empty vector
31 or multicopy (2 μ) plasmids expressing Rpl26a, Rpl3, or Rpl4a, under the transcriptional control of the
32 inducible *GAL1-10* promoter, were transformed into wild-type (WT) and $\Delta tom1$ strains. Transformants
33 were restreaked on SC-Leu plates and cells were then spotted in 10-fold serial dilution steps onto SC-
34 Leu (glucose) and SGal-Leu (galactose) plates, which were incubated for the indicated times at 30°C.
35 **(B-D)** Moderate overexpression of Rpl3 and Rpl4a variants, exhibiting deregulated expression,
36 negatively affects growth of $\Delta tom1$ cells. Empty vector or monocopy (*CEN*) plasmids expressing wild-

1 type Rpl3 or Rpl4a and the indicated variants thereof, under the transcriptional control of the inducible
2 *GAL1-10* promoter, were transformed into wild-type (WT) and *Δtom1* strains. Transformants were
3 restreaked on SC-Leu plates and cells were then spotted in 10-fold serial dilution steps onto SC-Leu
4 (glucose) and SGal-Leu (galactose) plates, which were incubated for the indicated times at 30°C.
5

6 **Figure 7 – Figure Supplement 2.** Overexpressed Rpl3 and Rpl4 variants aggregate in *Δtom1* cells.
7 (A, B) Overexpression of Rpl4a (A) and Rpl3 (B) variants, exhibiting deregulated expression, are prone
8 to aggregation in the absence of Tom1. Empty vector or monocopy (CEN) plasmids expressing C-
9 terminally 2xHA-tagged wild-type Rpl3 or Rpl4a and the indicated variants thereof, under the
10 transcriptional control of the inducible *GAL1-10* promoter, were transformed into wild-type (WT) and
11 *Δtom1* strains. Cells were grown at 30°C in SC+Raffinose-Leu medium to an OD₆₀₀ of around 0.4 and
12 expression of the Rpl3 and Rpl4a variants was induced for 4 h with 2% galactose. The total extracts
13 and the insoluble pellet fractions (pellet) were analyzed by Western blotting using anti-HA, anti-Rpl3,
14 anti-Rpl4, and anti-Adh1 (loading control) antibodies. (C) Overexpressed Rpl3.F16A/L17A, exhibiting
15 deregulated expression, accumulates in the nucleolus and aggregates in the nucleus in the absence of
16 Tom1. Wild-type (WT) and *Δtom1* strains were co-transformed with plasmids expressing the indicated
17 Rpl3 variants, C-terminally fused to a yeast codon-optimized mNeonGreen (yOmNG), under the
18 control of the inducible *GAL1-10* promoter and a plasmid expressing Nop58-yEmCherry to indicate the
19 subcellular position of the nucleolus. Cells were grown at 30°C in SC+Raffinose-Leu medium to an
20 OD₆₀₀ of around 0.25 and expression of the Rpl3 variants was induced for 4 h with 2% galactose. The
21 left panel shows representative examples of the three types of observed localizations (cytoplasmic,
22 nucleolar accumulation, and nuclear aggregation). The shown images were acquired from *Δtom1* cells
23 expressing wild-type Rpl3 or the two indicated Rpl3 variants and they are displayed according to the
24 indicated 16-bit brightness level ranges (min-max). The right panel shows proportional bar graphs based
25 on the number of counted cells displaying each of the three typical localizations (blue: cytoplasmic,
26 yellow: nucleolar accumulation, red: nuclear aggregation).
27

28 **Figure 7 – Figure Supplement 3.** Absence of individual components of the regulatory machinery
29 confers lethality to cells lacking Tom1.

30 (A, B, F, G) The indicated wild-type (WT), single, double, or triple deletion strains, in each case derived
31 from tetratype tetrads, were spotted in 10-fold serial dilution steps onto SC and SC+FOA (+FOA)
32 plates, which were incubated for the indicated times at 30°C. (C) Empty vector or plasmids harboring
33 full-length *NOT1* or the indicated *not1* deletion variants, expressed under the control of the *NOT1*
34 promoter, were transformed into a *NOT1* shuffle strain (*Δnot1*) lacking *TOM1* (*Δtom1*). Transformants
35 were restreaked on SC-Leu plates and cells were then spotted in 10-fold serial dilution steps onto SC-
36 Leu and SC+FOA (+FOA) plates, which were incubated for the indicated times at 30°C. (D, E) The

1 indicated wild-type (WT), single and double deletion strains, all derived from tetratype tetrads, were
2 spotted in 10-fold serial dilution steps onto YPD plates, which were incubated for the indicated times
3 at 16, 23, 30, or 37°C. **(H)** Wild-type cells (*TOM1*) or cells expressing N-terminally 2xHA-tagged Tom1
4 under the transcriptional control of the *GAL1* promoter from the genomic locus (PGAL-2HA-*TOM1*)
5 and additionally either lacking *RPL4A* ($\Delta rpl4a$) or harboring the genomically integrated *rpl4a.BIV*
6 allele were spotted in 10-fold serial dilution steps onto YPGal and YPD plates, which were incubated
7 for the indicated times at the indicated temperatures. **(I)** Multicopy (2 μ) plasmids expressing wild-type
8 Rpl3 or the Rpl3.F16A/L17A variant were transformed into a *RPL3* shuffle strain ($\Delta rpl3$) expressing
9 N-terminally 2xHA-tagged Tom1 under the transcriptional control of the *GAL1* promoter from the
10 genomic locus (PGAL-2HA-*TOM1*). After plasmid shuffling on 5-FOA-containing plates, cells were
11 spotted in 10-fold serial dilution steps onto YPGal and YPD plates, which were incubated for the
12 indicated times at 30 and 37°C.

13

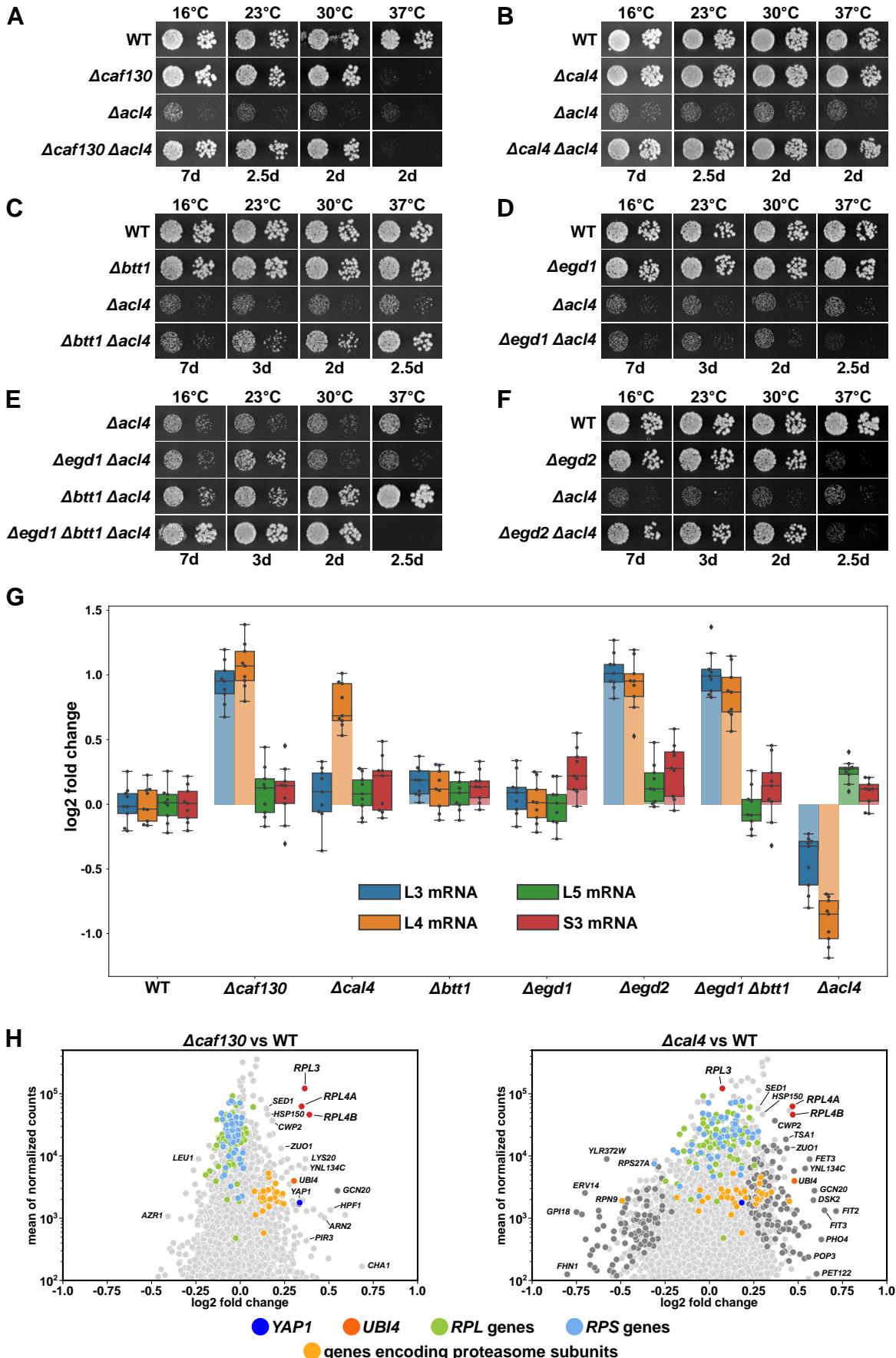
14 **Figure 7 – Figure Supplement 4.** Identification of aggregated proteins in $\Delta caf130$ cells upon genetic
15 depletion of Tom1.

16 Cells lacking Caf130 ($\Delta caf130$) and expressing N-terminally 2xHA-tagged Tom1 under the
17 transcriptional control of the *GAL1* promoter from the genomic locus (PGAL-2HA-*TOM1*) were grown
18 at 30°C in YPGal medium and then shifted for up to 24 h to YPD medium. Cells were harvested after
19 the indicated times of growth in YPD medium (0, 2, 4, 8, or 24 hours). The insoluble pellet fractions
20 were separated on a NuPAGE gradient gel, which was subsequently stained with Coomassie. The
21 indicated bands (numbered from 1 to 40) were cut out from the gel. Then, the contained proteins were
22 digested in-gel with trypsin and the generated peptides were analyzed by liquid chromatography-
23 tandem mass spectrometry (LC-MS/MS). Only the most abundant proteins (according to the iBAQ
24 intensity values calculated by MaxQuant), specifically peaking in this gel band and being within the
25 expected molecular mass range, are listed (for the complete list of identified proteins, see
26 *Supplementary file 8*).

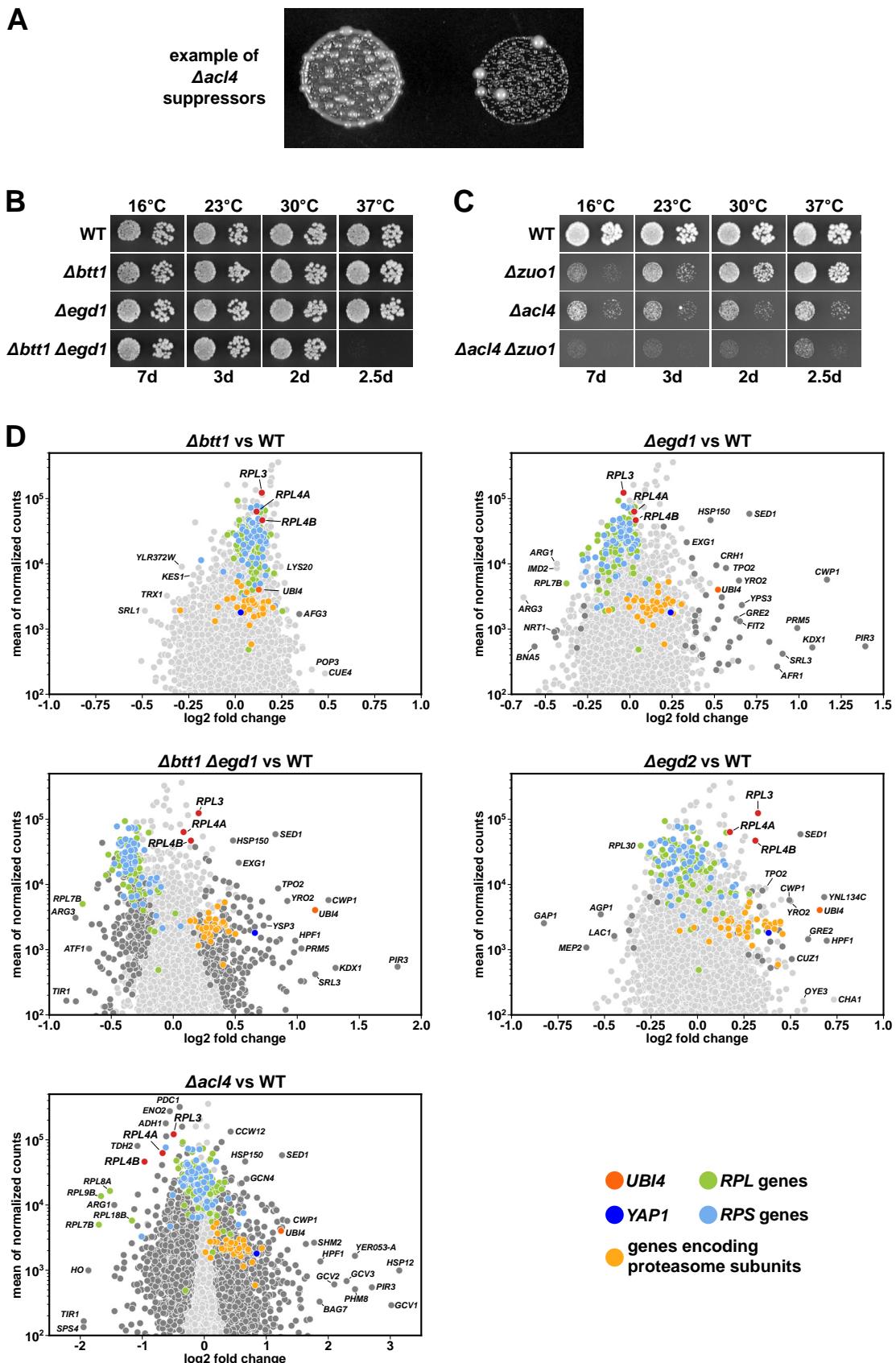
27

28 **Figure 8.**

29 Simplified model showing how availability of the dedicated chaperone Rrb1 or Acl4 and the here
30 uncovered regulatory network cooperate to balance Rpl3 and Rpl4 expression by co-translationally
31 regulating *RPL3* and *RPL4* mRNA levels. The question marks indicate that it remains to be determined
32 how nascent Rpl3 or Rpl4 are recognized by the regulatory machinery and how this leads to the
33 degradation, presumably involving a component of the Ccr4-Not complex, of the *RPL3* or *RPL4*
34 mRNAs. Also included in the model is the finding that surplus production of Rpl3 and/or Rpl4, for
35 example elicited by inactivation of the regulatory machinery, may lead to their aggregation when cells
36 lack the E3 ubiquitin ligase Tom1, which is required for mediating the degradation of excess r-proteins

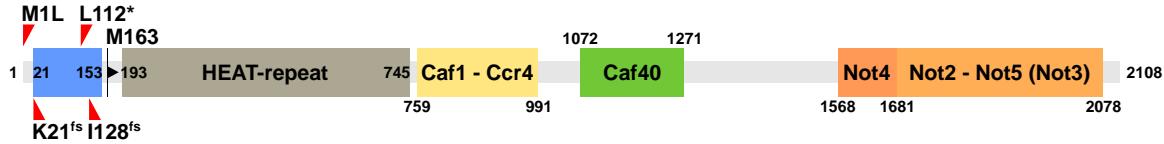

1 by the ubiquitin proteasome system (UPS) *via* the so-called ERISQ (excess ribosomal protein quality
2 control) pathway. The α and β subunit of the NAC complex are denoted as α and β , respectively. For
3 more details, see Discussion.

4


5 **Figure 8 – Figure Supplement 1.** Structural alignments between predicted domains of Not1 and
6 CNOT1 and of Caf130 and CNOT11.

7 Cartoon representation showing structural similarities between the predicted **(A)** N-terminal domains
8 of *S. cerevisiae* Not1 (AF-P25655-F1-model_v1; orange) and *H. sapiens* CNOT1 (AF-A5YKK6-F1-
9 model_v1; marine blue), **(B)** middle domain of Caf130 (AF-P53280-F1-model_v1; orange) and N-
10 terminal domain of *H. sapiens* CNOT11 (AF-Q9UKZ1-F1-model_v1; marine blue), and **(C)** C-terminal
11 domains of Caf130 and CNOT11. The alignments were made using the indicated regions of each
12 protein. The N- and C-terminal residues that have not been used for the alignment are shown in semi-
13 transparent (Not1: 1-20, 150-162; CNOT1: 1-6, 130-228 / Caf130: 298-320, 564-592; CNOT11: 232-
14 281 / Caf130: 709-729; CNOT11: 499-510). Additional internal segments (Caf130: 397-433 / Caf130:
15 762-806, 870-918) as well as non-aligned segments (Caf130: 472-506; CNOT11: 155-177) are also
16 shown in semi-transparent. Note that the indicated template modelling score (TM-score) corresponds
17 in each case to the one of the aligned regions of the *H. sapiens* protein.

Figure 1



F1-S1

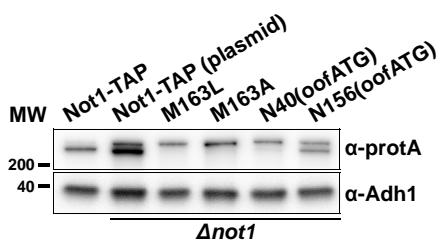
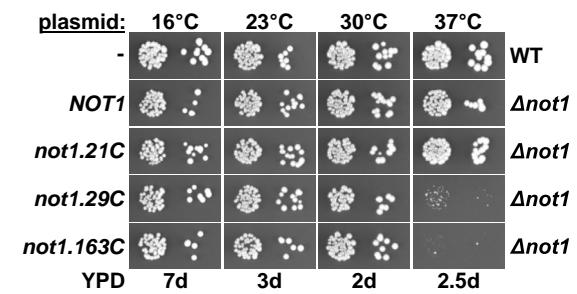
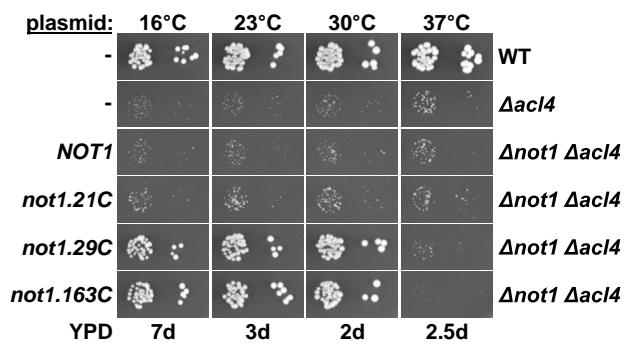
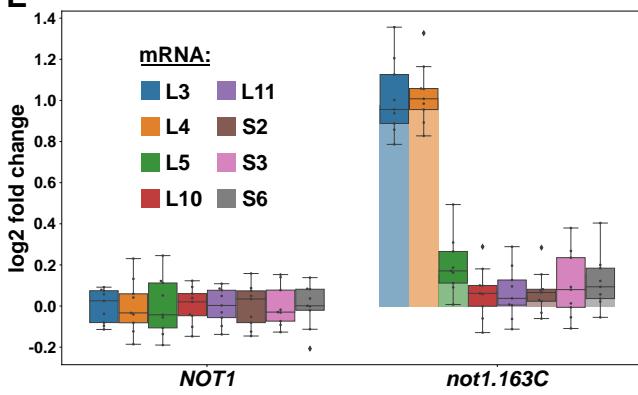
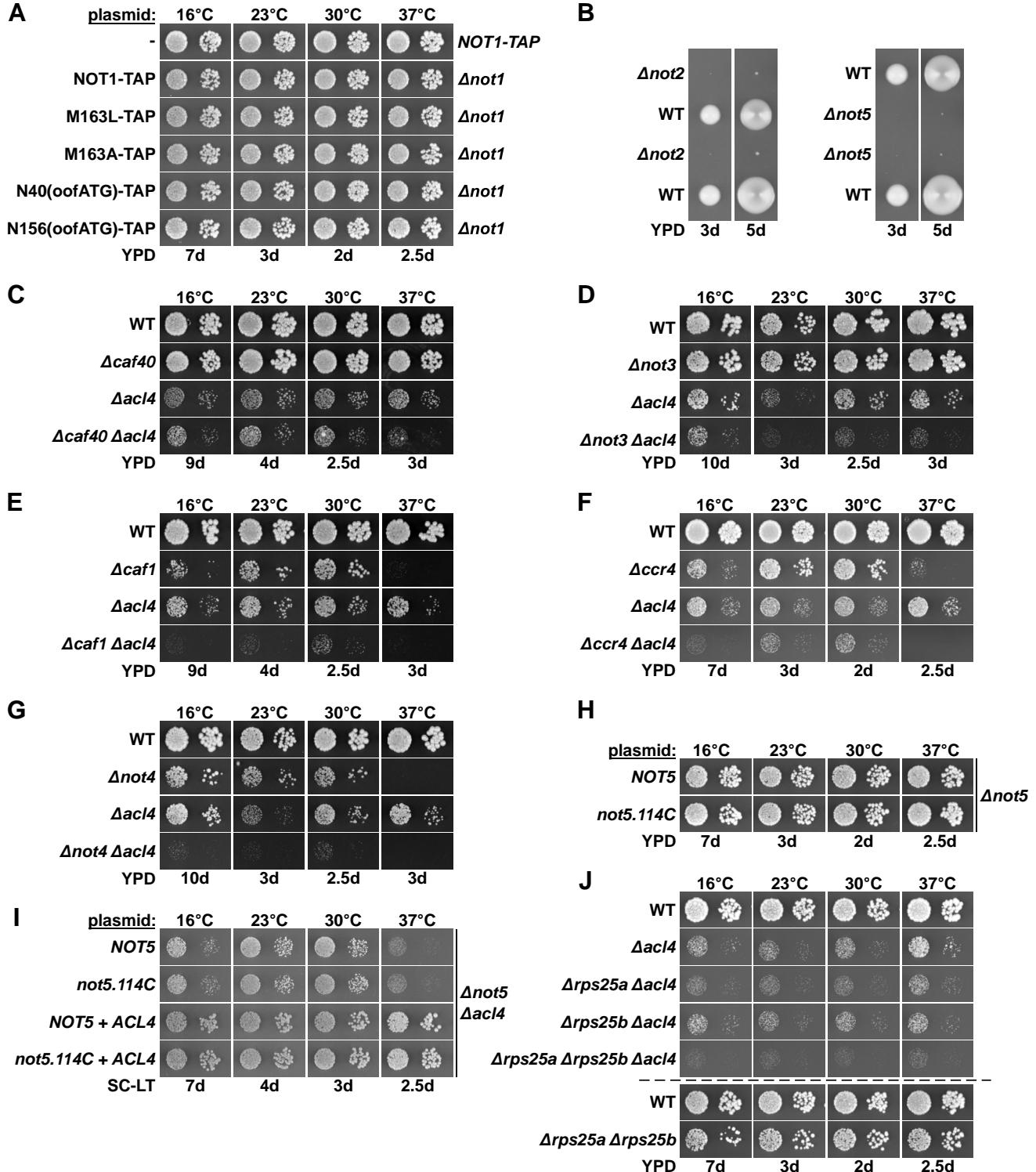


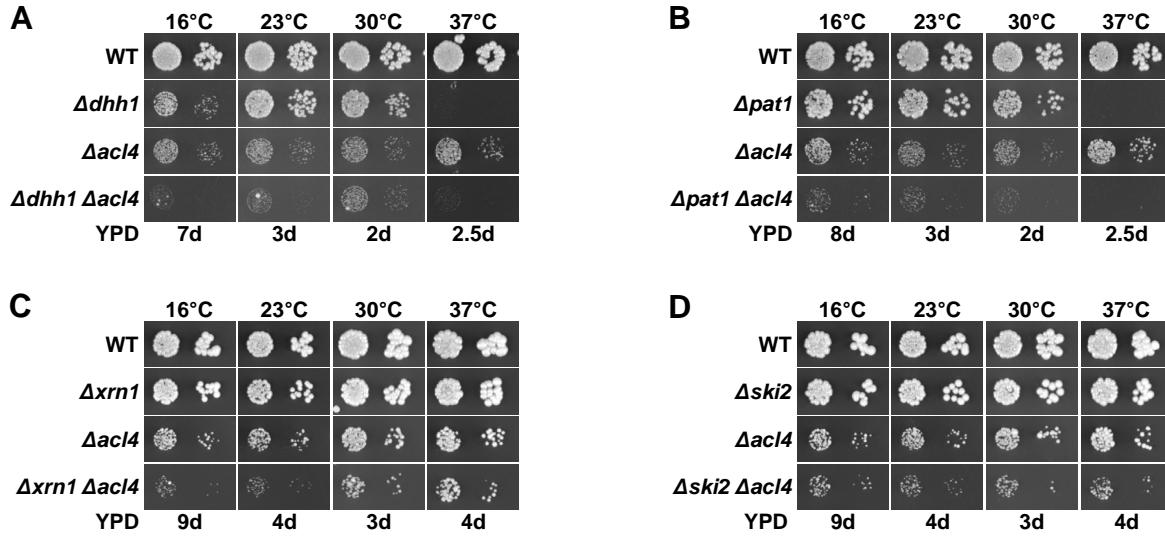
Figure 2

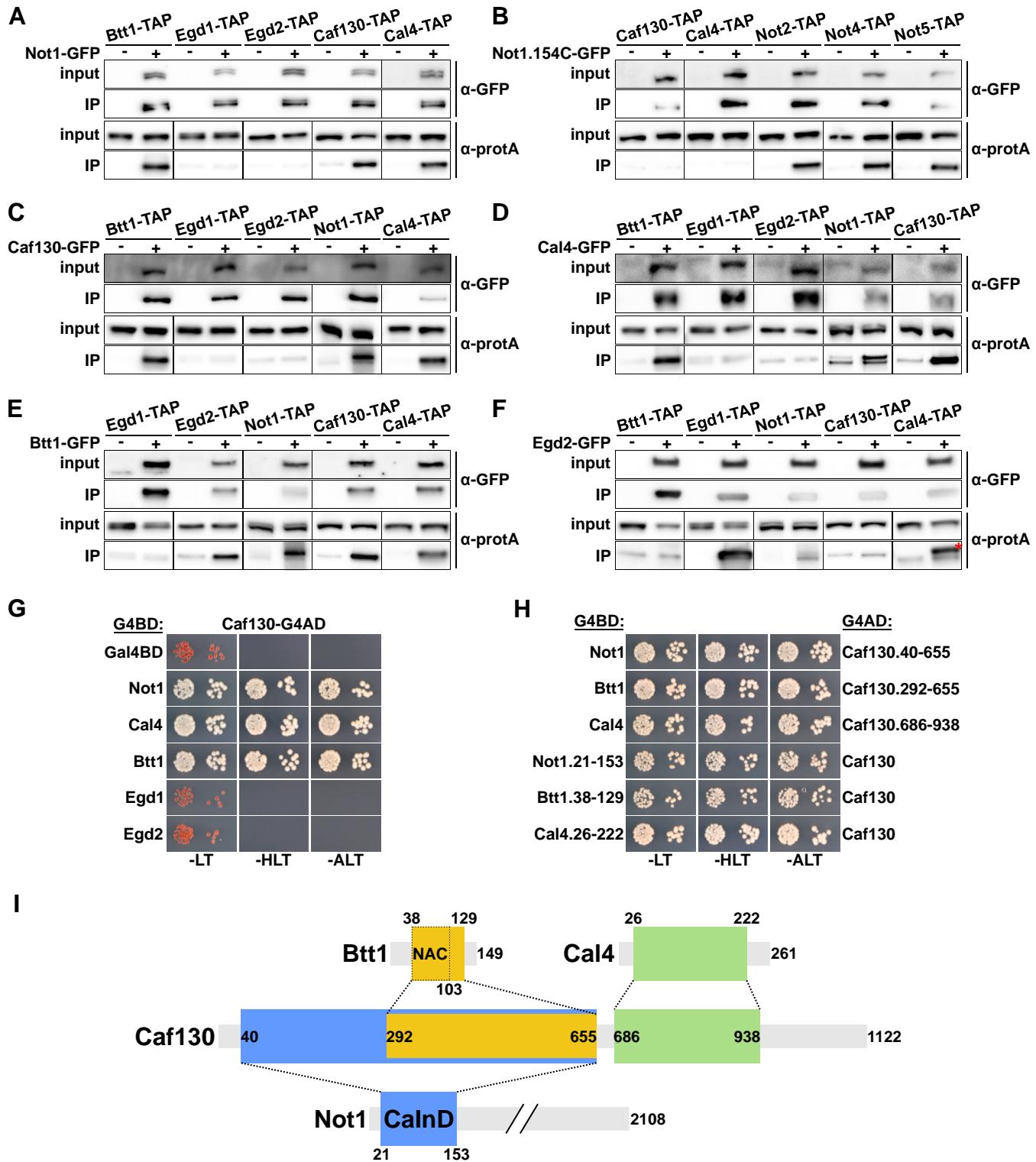

A


B


C


D


E


F2-S1

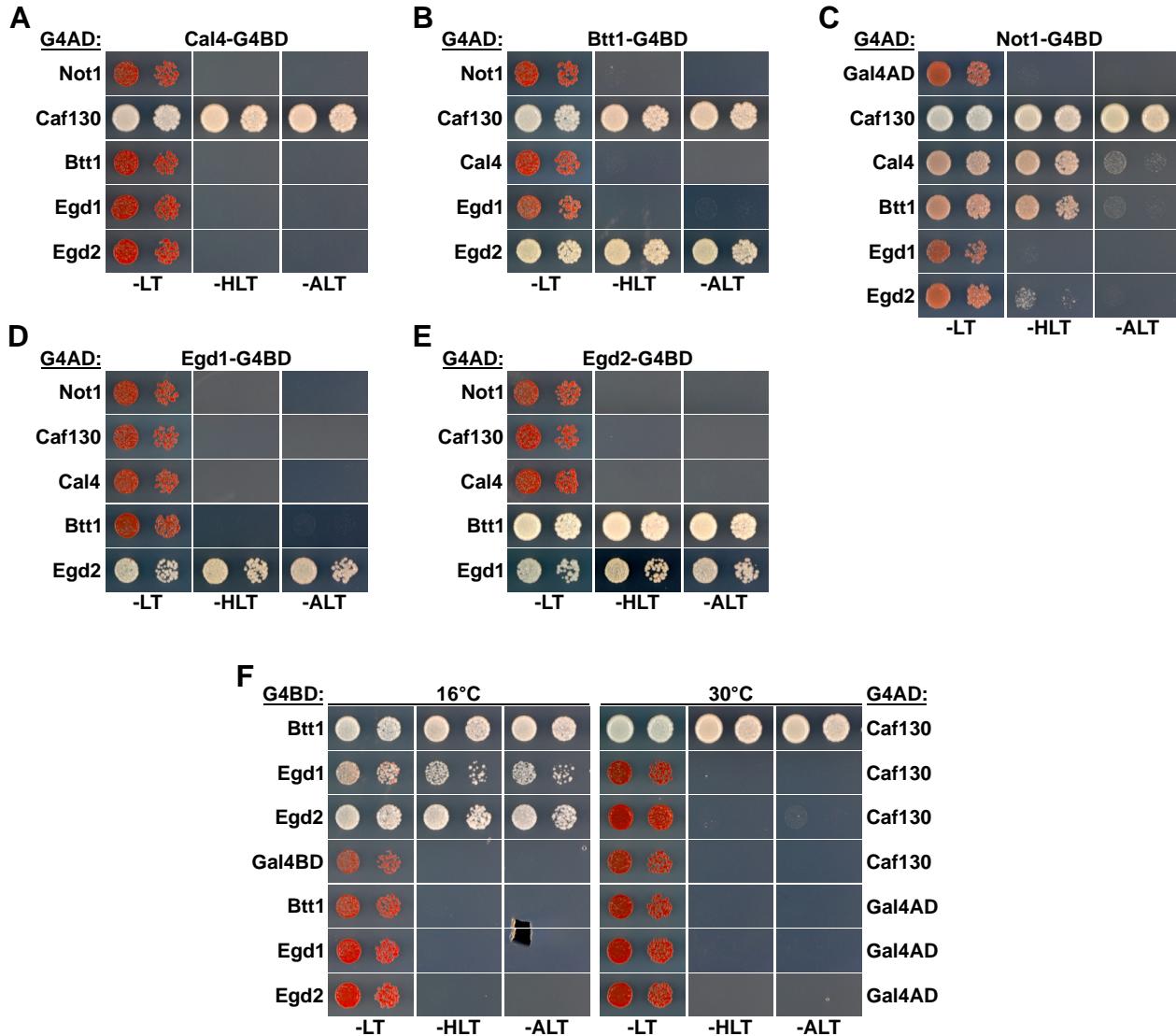
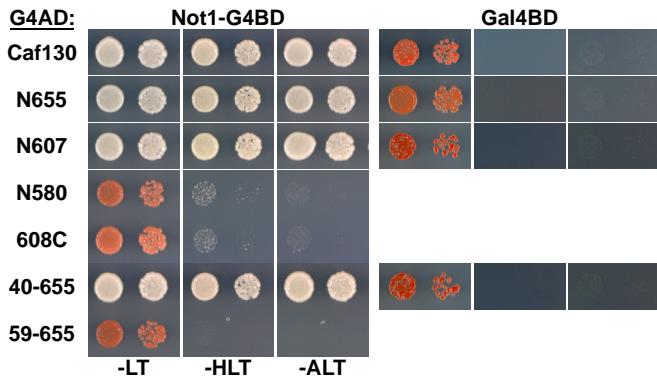
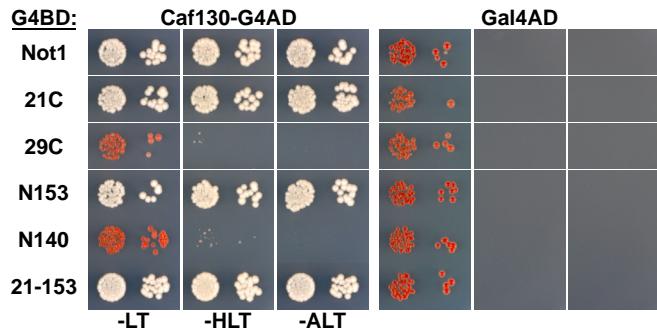
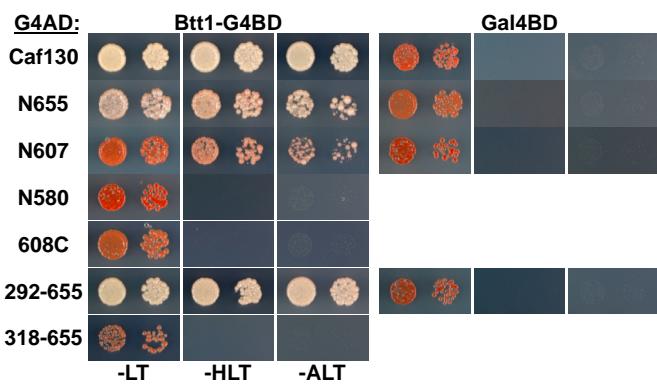
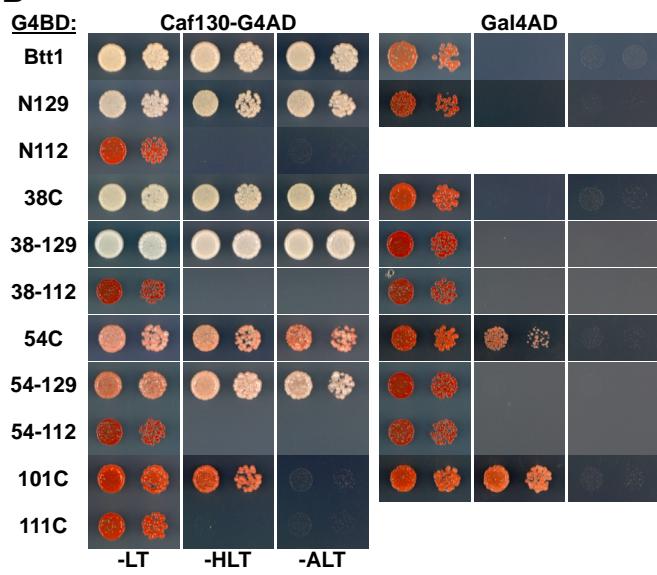

F2-S2

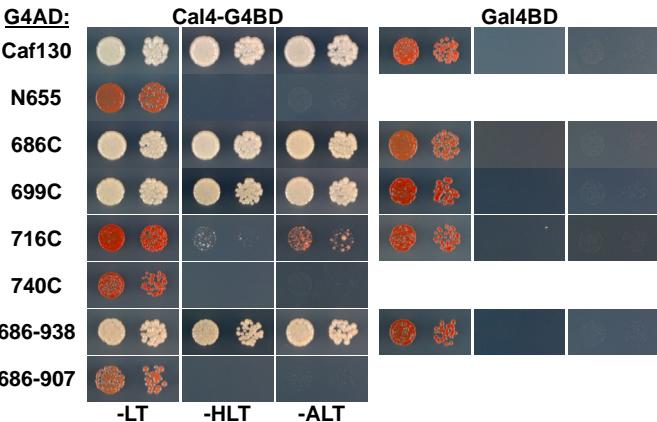
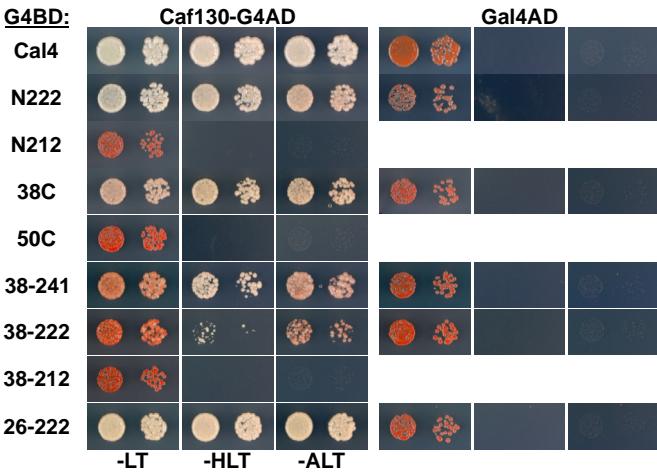
Figure 3

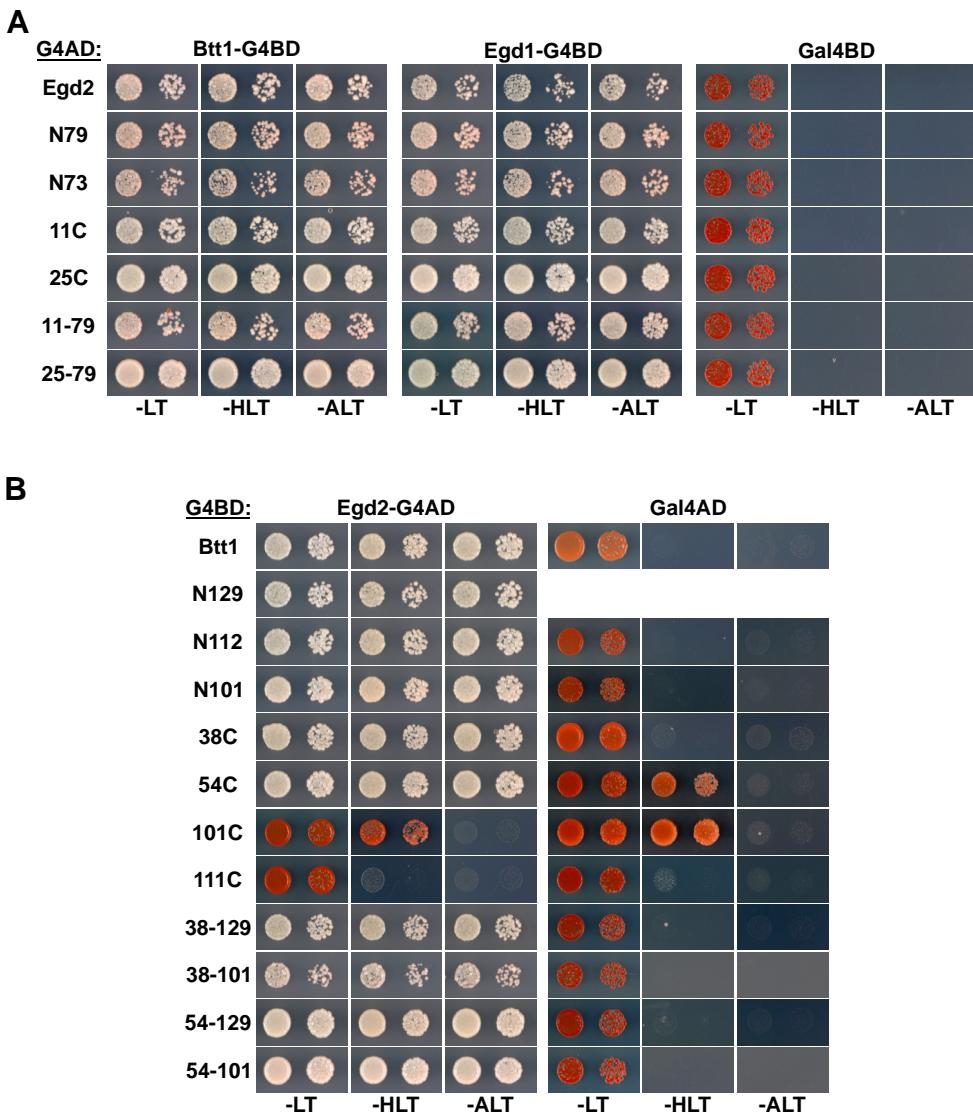



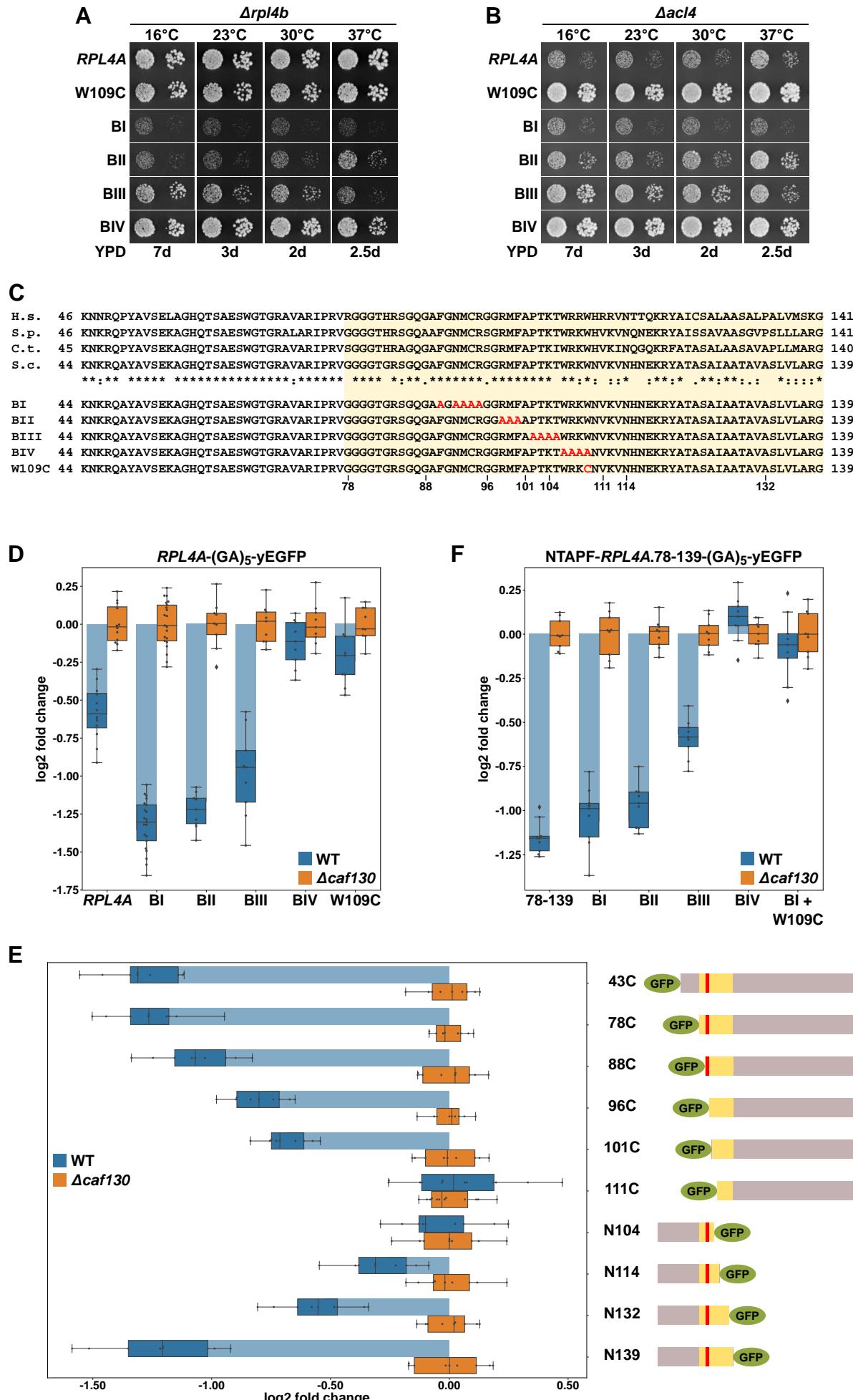
F3-S1

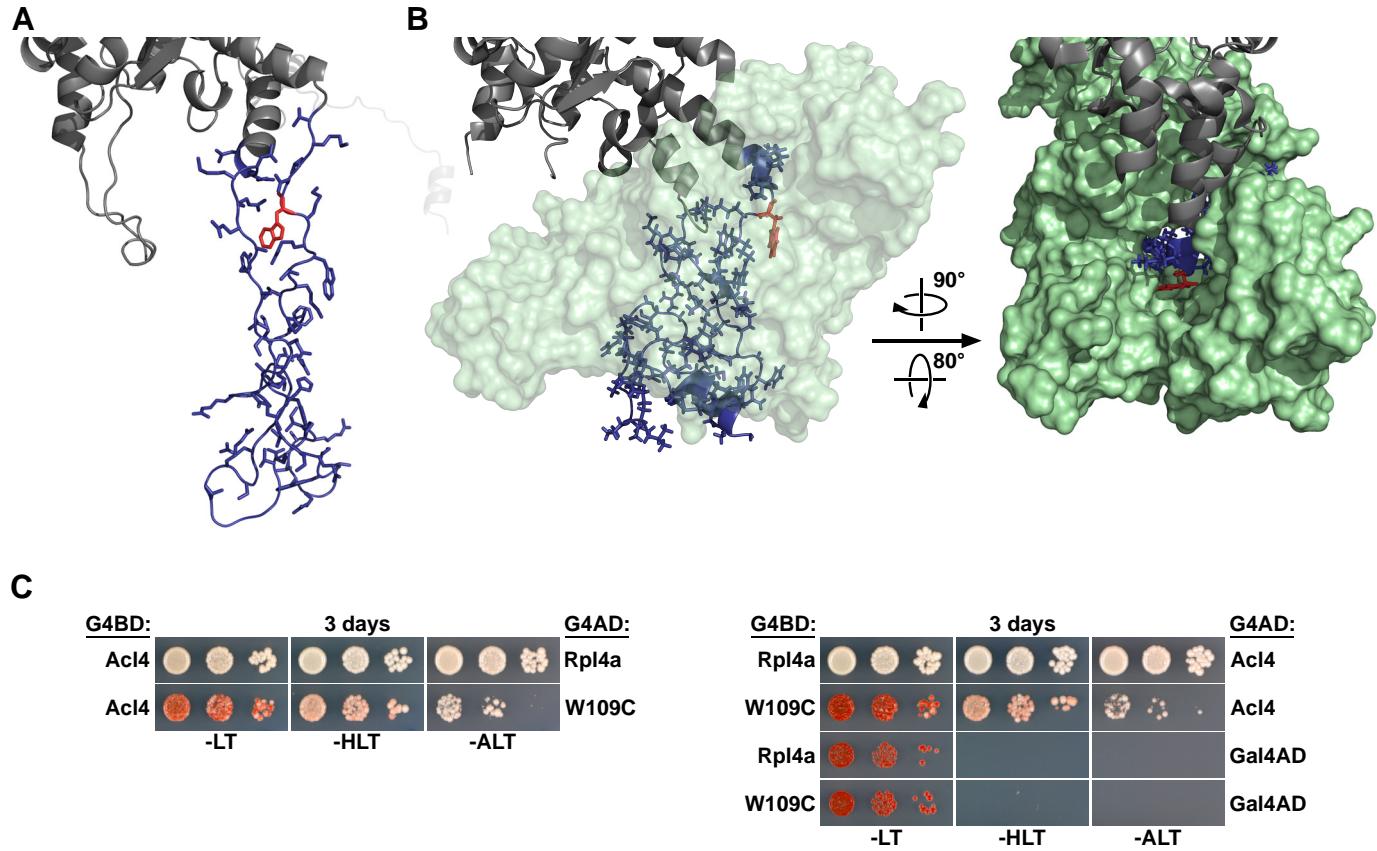



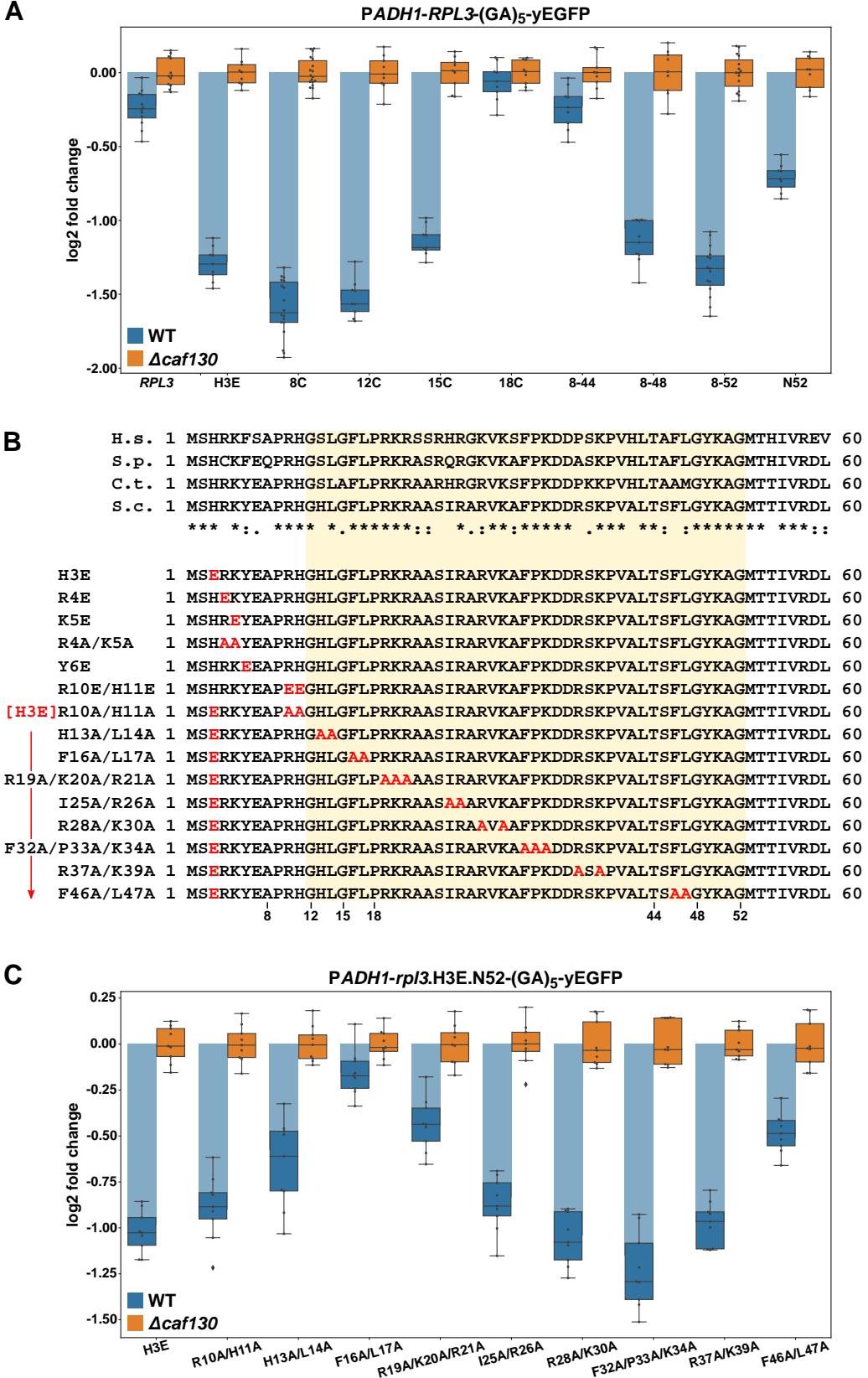
F3-S2

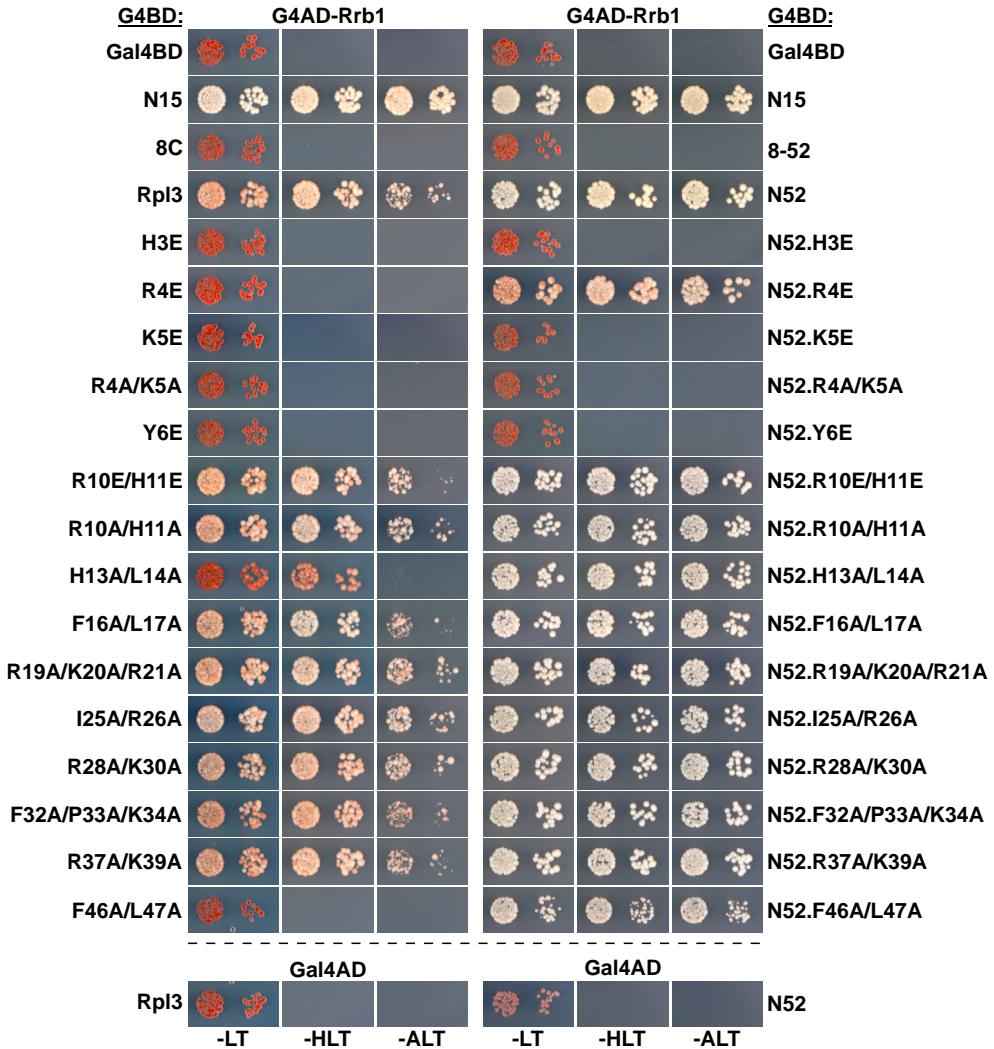


A

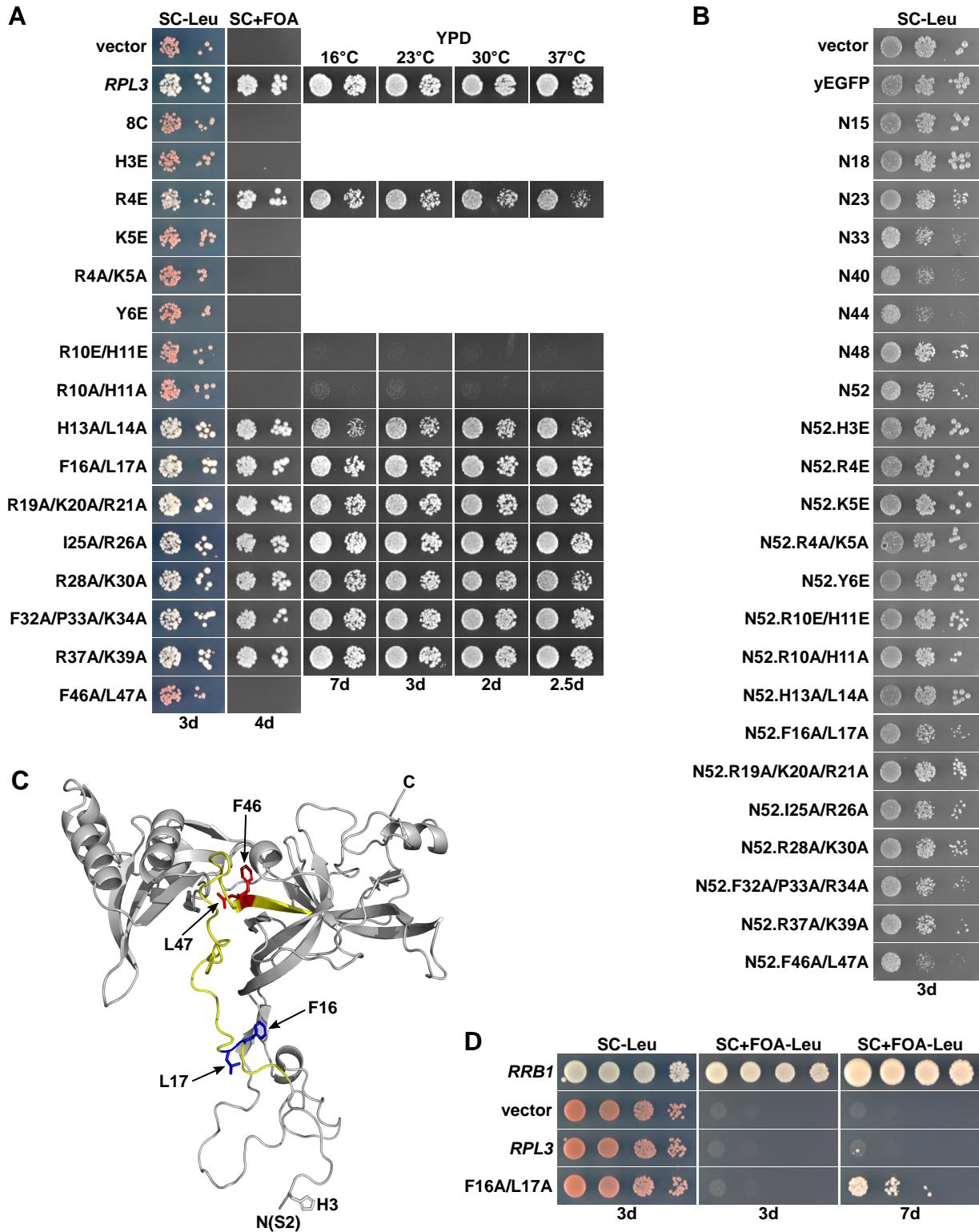

B

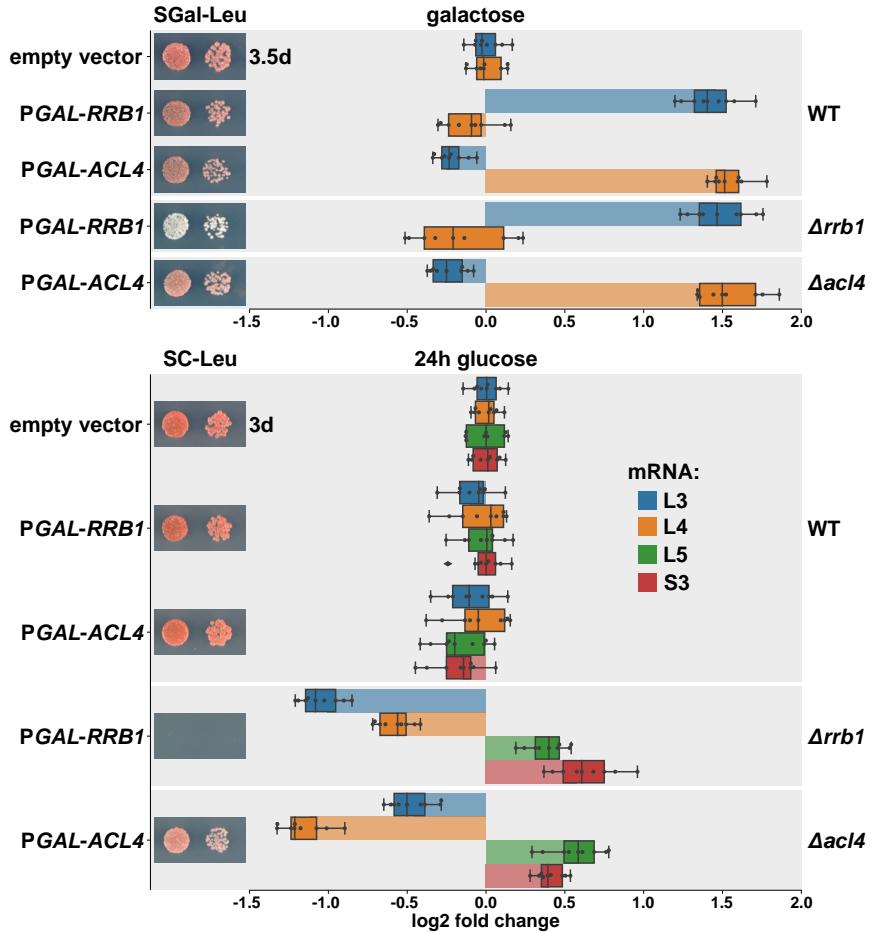

C

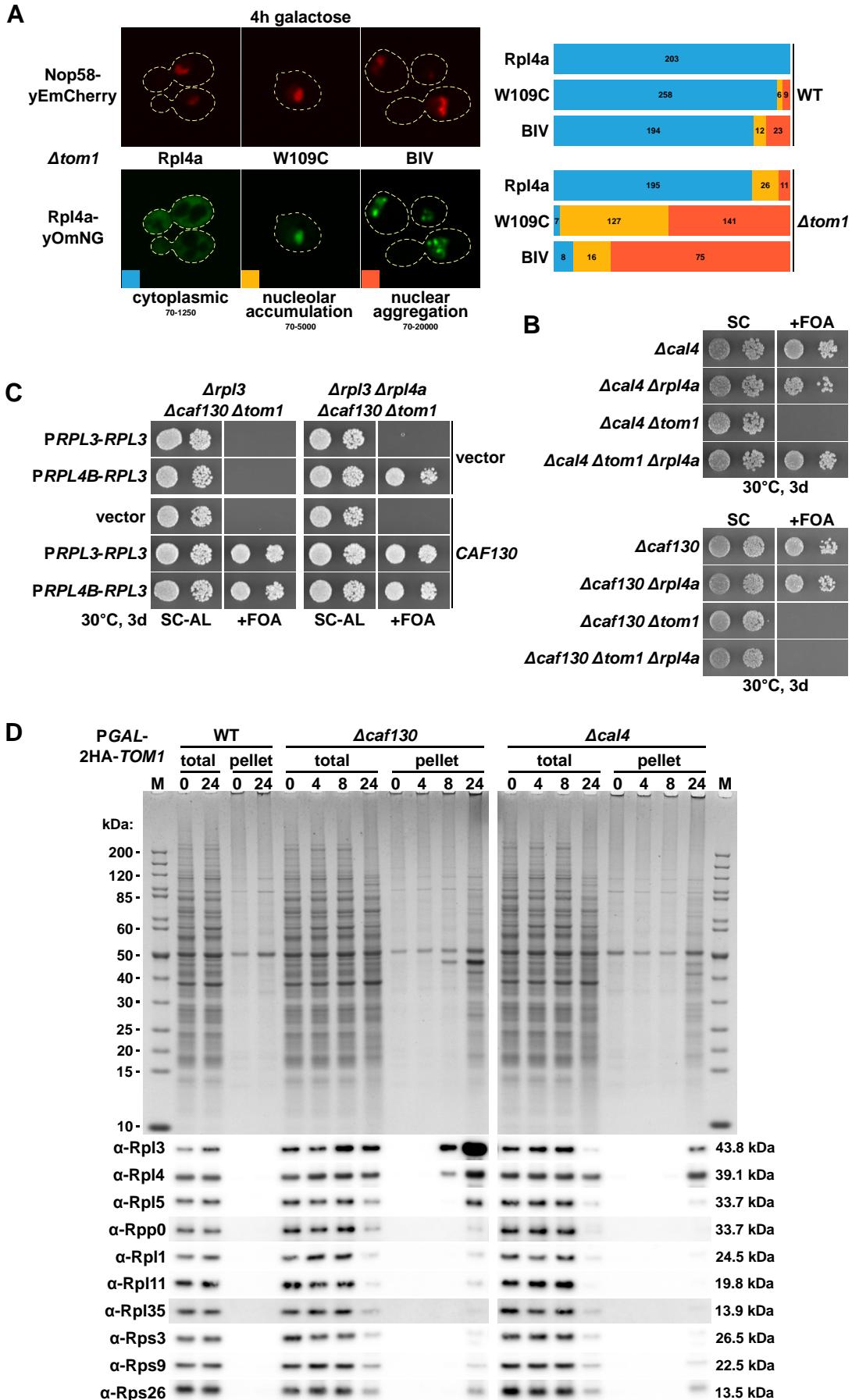

F3-S3

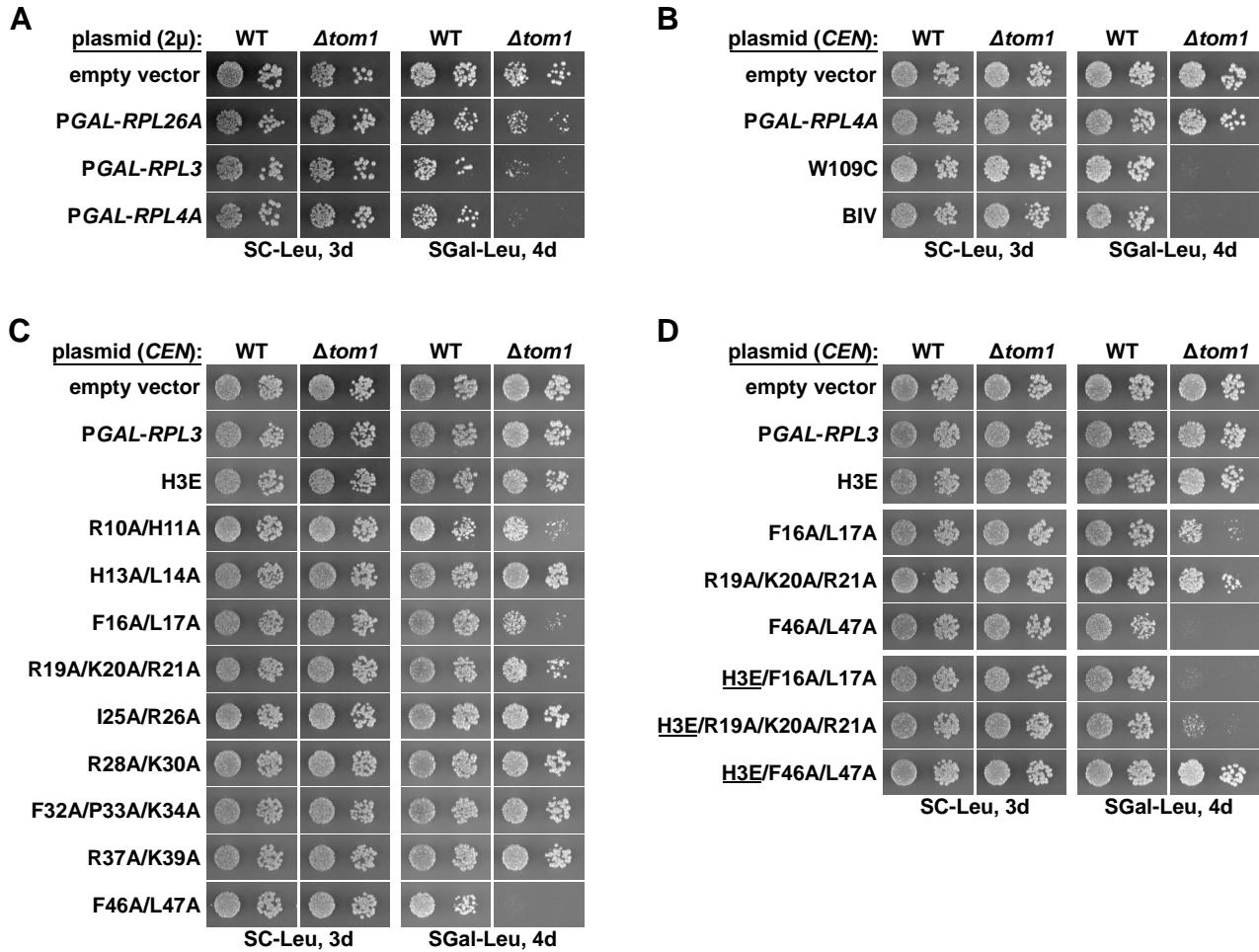

Figure 4

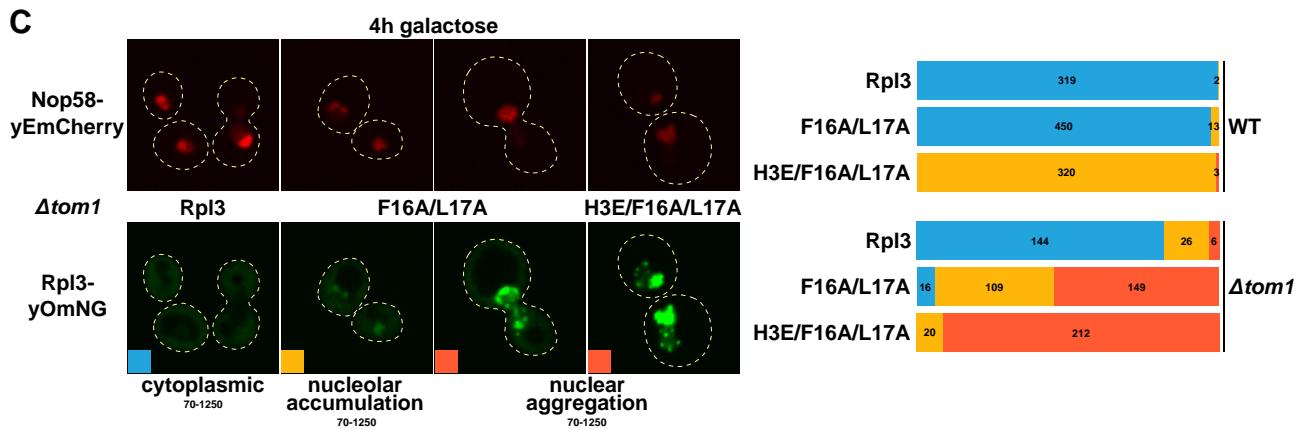
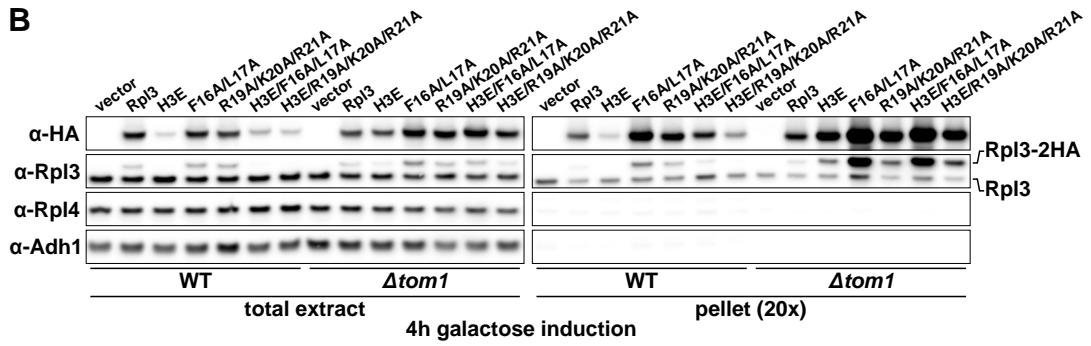
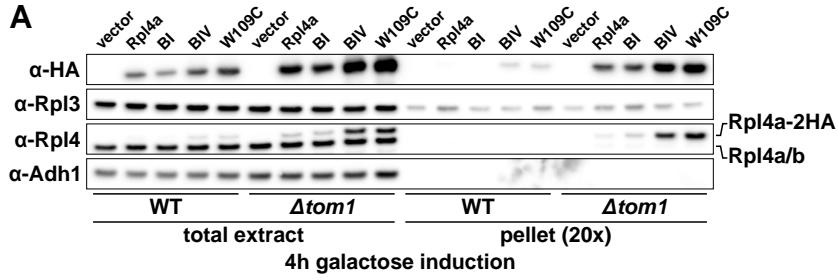

F4-S1

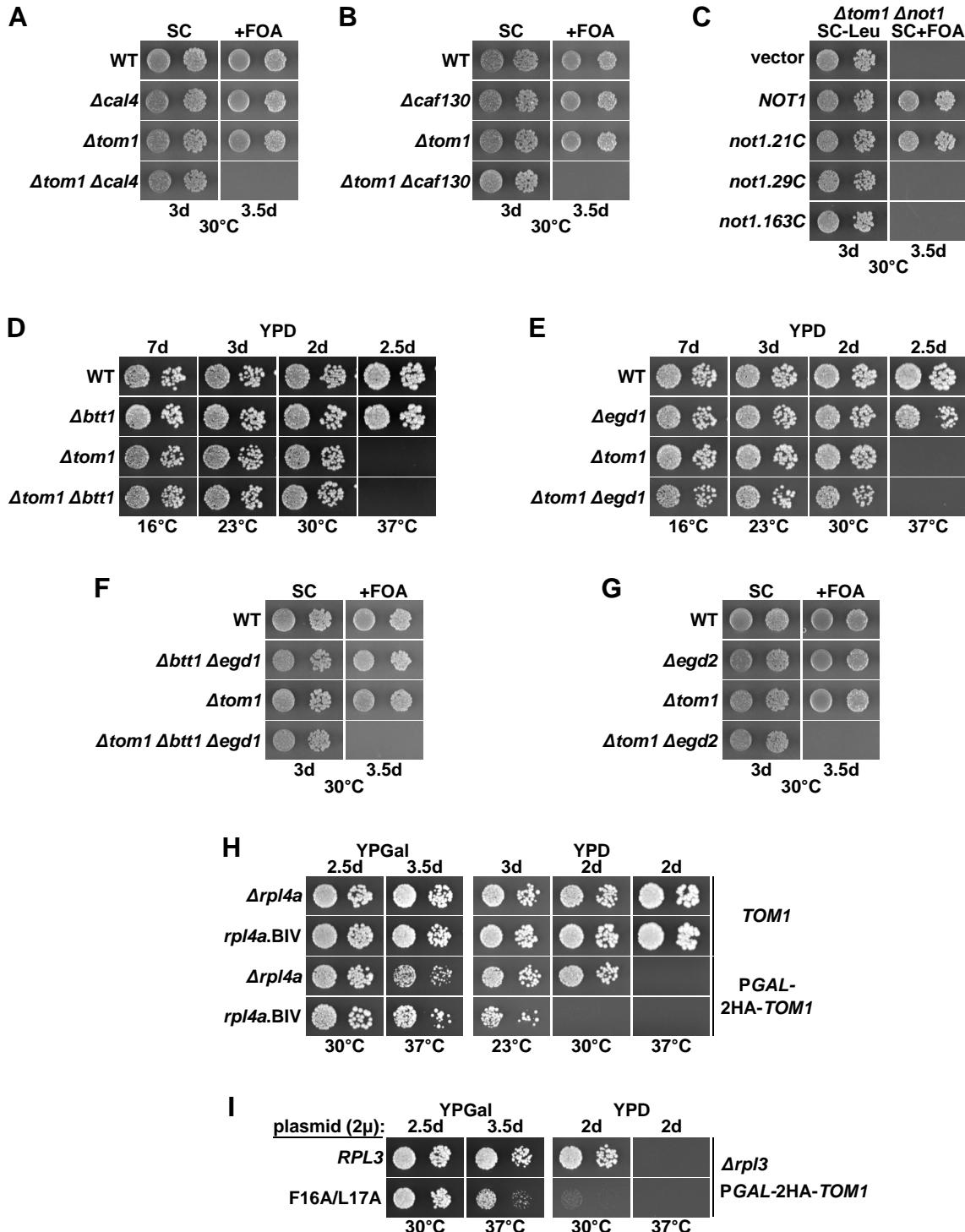

Figure 5

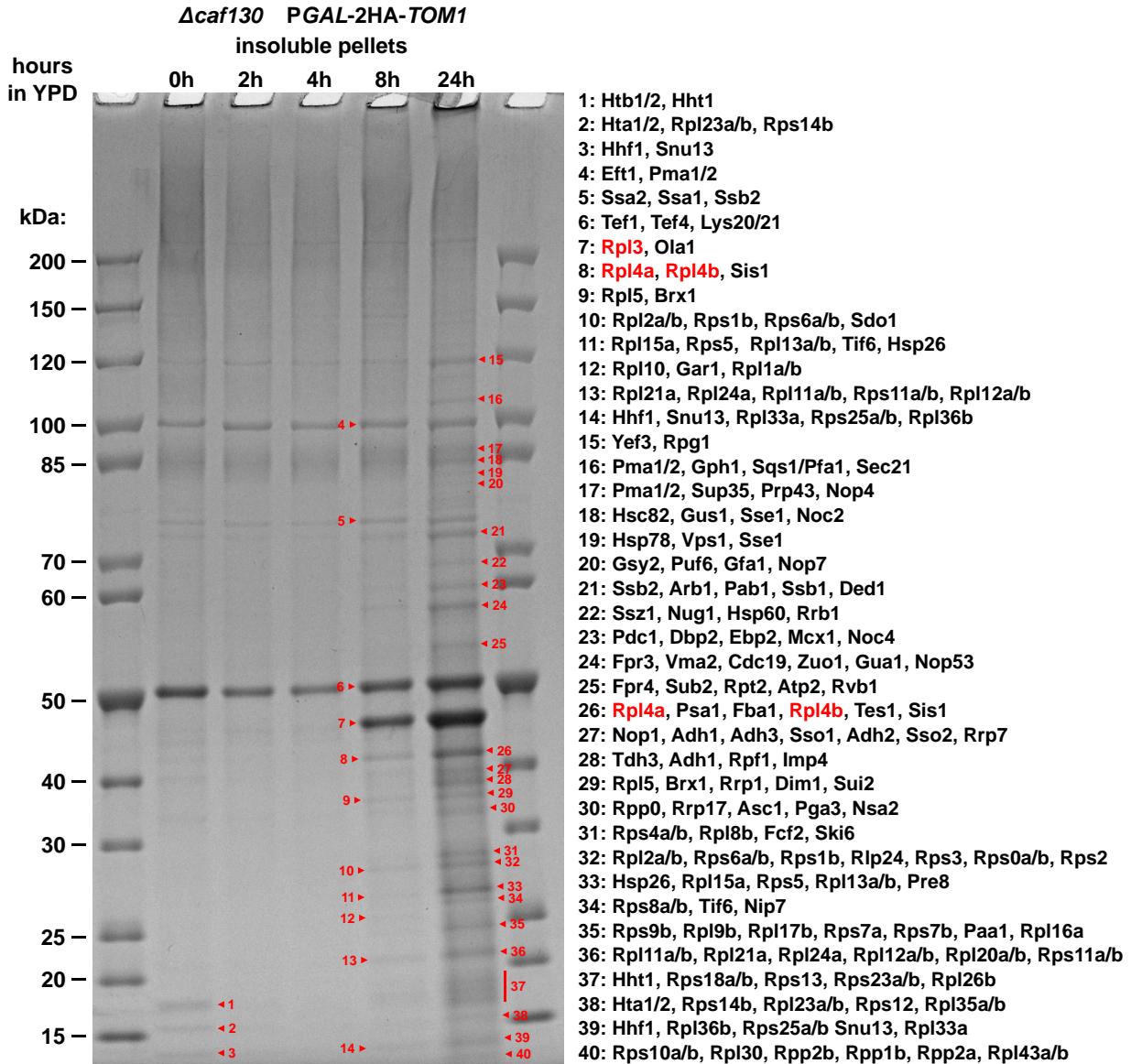

F5-S1

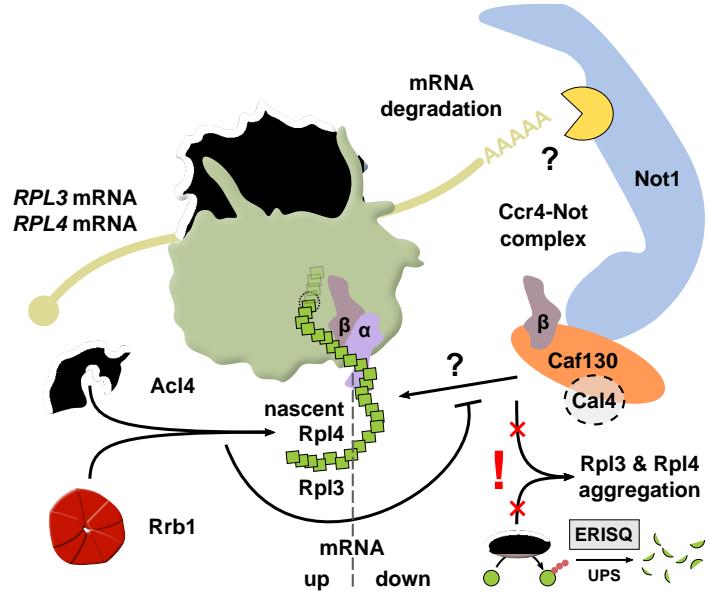

F5-S2


Figure 6




Figure 7


F7-S1


F7-S2


F7-S3

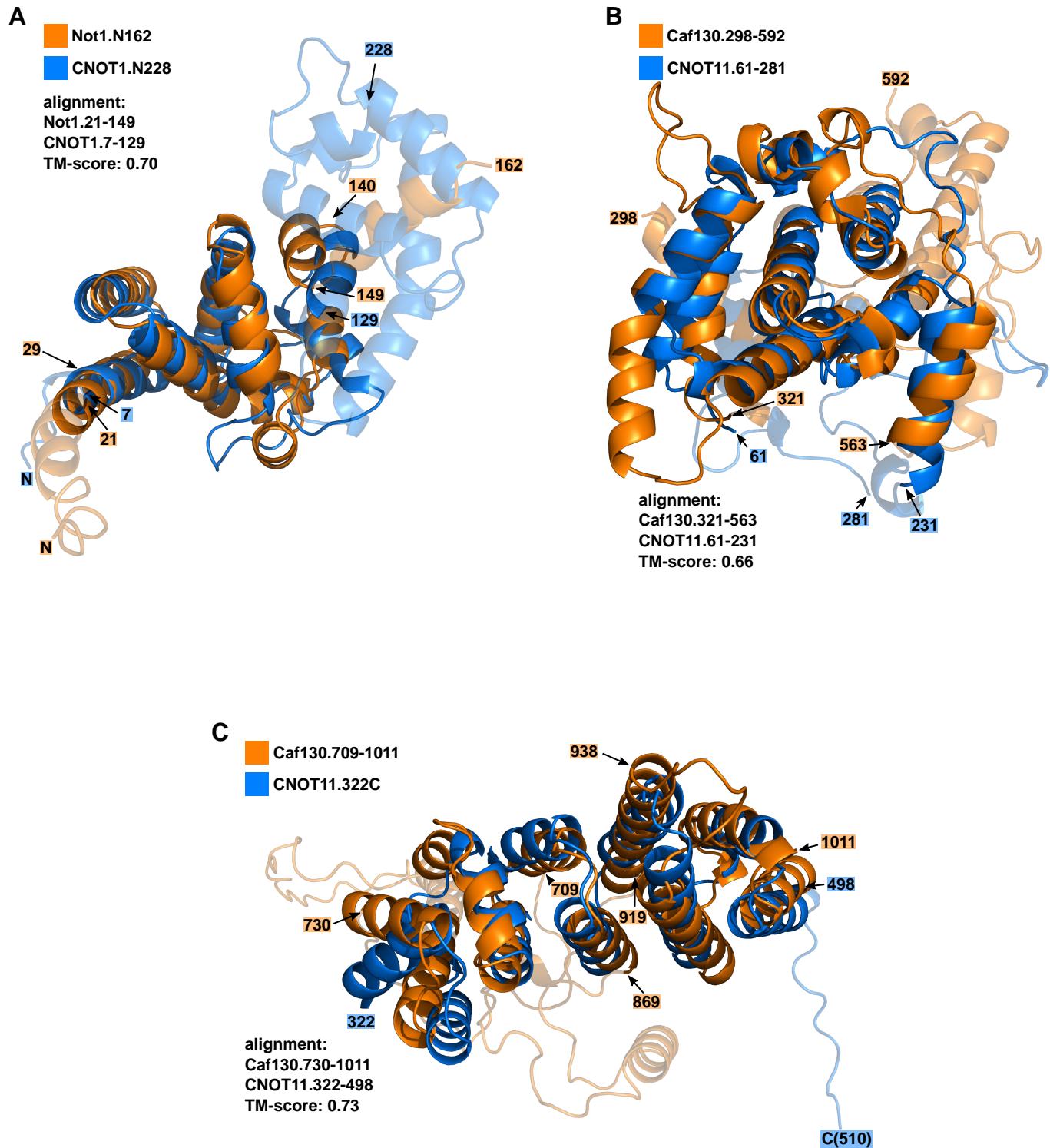

F7-S4

Figure 8

F8-S1

