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Abstract 

The plasma proteome has the potential to enable a holistic analysis of the health state of an 
individual. However, plasma biomarker discovery is difficult due to its high dynamic range and 
variability. Here, we present a novel automated analytical approach for deep plasma profiling and 
applied it to a 180-sample cohort of human plasma from lung, breast, colorectal, pancreatic, and 
prostate cancer. 

Using a controlled quantitative experiment, we demonstrate a 257% increase in protein 
identification and a 263% increase in significantly differentially abundant proteins over neat 
plasma. 

In the cohort, we identified 2,732 proteins. Using machine learning, we discovered biomarker 
candidates such as STAT3 in colorectal cancer and developed models that classify the disease 
state. For pancreatic cancer, a separation by stage was achieved.  

Importantly, biomarker candidates came predominantly from the low abundance region, 
demonstrating the necessity to deeply profile because they would have been missed by shallow 
profiling.  
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Introduction 

Proteins control most biological processes in life. Alterations in their expression level, localization 
and proteoforms are often correlated with disease onset and progression1. In humans and 
animals, blood flows through virtually all tissues. Therefore, it has the potential to indicate the 
health state of any inner organ, even those not accessible from the outside. Blood is readily 
obtainable with minimal invasive sampling, and large biobanks exist for retrospective analyses2. 
Clinical analysis of blood is the most widespread diagnostic procedure in medicine, and blood 
biomarkers are used to diagnose diseases, categorize patients and support treatment decisions. 
Despite more than 20,000 diseases reported to affect humans3, it is only for a small fraction of 
them that accurate, sensitive and specific diagnostic tests exist. 

The limited success of blood protein biomarkers is primarily due to analytical challenges that 
come with the proteomic analysis of blood plasma. On the one hand, the large biological variance 
between individuals and within individuals over time makes the discovery of reliable biomarker 
signatures difficult4–7. Further, the steep dynamic range of human plasma, with an estimated 
dynamic range of 12-13 orders of magnitude8, renders comprehensive proteome profiling 
challenging to any analytical technique. In the lower concentration range reside thousands of 
proteins, mostly tissue leakage proteins and signaling molecules that could serve as biomarkers 
but are very challenging to measure, especially in an unbiased manner9,10. 

Mass spectrometry (MS)-based plasma analysis provides an unbiased, quantitative and therefore 
ideal technology for the system-wide characterization of the proteome11. Recently, technological 
developments in sample preparation, chromatography and acquisition enabled automated, large-
scale plasma projects of hundreds of specimens that have resulted in reproducible findings9,12–15. 
These approaches share the shallow depth of proteome coverage, reaching a maximum of about 
600 proteins identified and quantified in a sample. From qualitative analysis, disproportionately 
more proteins were found to be present in the lower abundance region of plasma than in the 
higher concentration range10. Novel MS-based approaches have been developed to improve 
analytical depth while retaining quantitative information. These include depletion of high-
abundance proteins, enrichment of low abundant proteins of interest and prefractionation16. Still, 
they have yet to reach the throughput level needed to measure larger cohorts of clinical samples. 
Automatization and depletion-, batch- and quality-control have been tackeled13,17,18, but require 
further improvement for large scale studies. In summary, while current plasma proteome 
biomarker research approaches mostly cover the first few hundred proteins by concentration, 
rigorous experimental design and comprehensive, large-scale quantitative studies will achieve 
generalizable biomarker discovery11. 

Screening for the most common cancer types cannot be done in a routine and population-wide 
manner. To date, only a few non-ideal, validated biomarkers exist in clinical use19. A significant 
challenge is that generally, only a single analyte or metric is measured despite the known 
heterogeneity of cancer. Biomarkers that accurately enable early detection in asymptotic 
subjects, reflect cancer aggressiveness at diagnosis and improve risk stratification are urgently 
needed19. Despite the medical need, plasma biomarker candidates for cancer are rarely validated 
or transferred to the clinic. Recent examples are: Zhang et	al. performed discovery proteomics in 
plasma of 10 patients with colorectal cancer, discovered 72 biomarker candidates, and then did 
a successful follow-up verification for prognostic markers with 419 patients using an 
immunoassay20,21. Enroth	et	al.	found plasma protein biomarker signatures for ovarian cancer22, 
but performed no validation. He et	 al. showed that for hepatocellular carcinoma and 
cholangiocarcinoma, biomarker candidates could be identified from plasma; validation of these 
candidates is still pending23. Zhou et	at. identified biomarkers for early gastric cancer from a small 
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sample set, but validation is still pending24. For prostate cancer, a blood diagnostic test was 
successfully developed based on discovery proteomics and is now being used in the clinic25. For 
detection of early ovarian cancer, the OVA1 test was developed and approved, where the 
measurement of beta-2 macroglobulin, apolipoprotein 1, serum transferrin and prealbumin is 
combined with the previously established marker CA125 to deliver better care26,27. This case 
exemplifies that multi-measurement techniques are expected to outperform single biomarker 
panels. Furthermore, single protein biomarkers are rarely specific for a single disease, e.g., Alpha 
fetoprotein is diagnostic in liver cancer, but the biomarker is not specific, as it is altered in other 
liver diseases, ovarian and testis cancer28. Rarely, there are highly specific biomarkers such as 
beta Subunit HCG (β-HCG), which is a serum marker for testicular carcinoma as β-HCG is never 
detected in the circulation of healthy men29. To make plasma biomarker discovery more efficient 
and successful, the comprehensive profiling and validation of large cohorts of plasma proteomes 
needs to be significantly improved with new approaches11. The expected outcome is new 
biomarkers that will allow early cancer detection and prediction of the probable response to 
therapy (in precision medicine). 

We demonstrate a novel, automated analytical approach for plasma profiling to a depth of 2,732 
proteins in the presented cancer study and identifying deep into tissue leakage and signaling 
molecule areas. We demonstrate identification and quantitative benefits over neat plasma 
profiling by a controlled quantitative experiment. Further, we profiled deep into the tissue 
leakage plasma samples coming from both healthy patients and patients with one of the five most 
deadly solid tumors in the United States30. A biomarker analysis with machine learning revealed 
candidates and models able to classify healthy and diseased samples. The discovered biomarker 
candidates predominantly came from low abundance protein regions, clearly demonstrating the 
need to measure deeply because they would have been missed by shallow plasma profiling. 

Experimental Procedures 
Ethics 

The Cantonal Ethics Committee for Research on Human Beings, Zürich, Switzerland approved the 
study protocol to be performed (Proteomic analysis of plasma samples (2020-02892)). 

Cohort selection and study design 

Cohort selection and experimental design was driven by sample availability in commercial 
repositories. For each cancer type, 30 matching samples were selected and split into early (non-
metastatic stage IA-IIC) and late (non-metastatic stage IIIA-C) groups. Prior to the analysis, 
normal individuals were matched for age, sex and whenever possible balanced across ethnicities 
to both early and late groups for each cancer type. This resulted in three equal control groups 
(n=15) with overlapping individuals, namely: breast cancer control, prostate cancer control and 
remaining cancer control. Matching was done manually using the χ2 test or ANOVA with a p-value 
threshold at 0.05 (R-package ‘tableone’).  

Sample preparation of the pan‐cancer cohort 

180 human plasma samples were obtained from Precision for Medicine and its subsidiaries 
(Norton USA), Discovery Life Sciences (Huntsville, USA) and ProteoGenex (Los Angeles, USA). Due 
to limited availability, samples were not balanced across suppliers; collection procedures and 
handling until storage at -80℃ are considered to be the same in the case of all three providers 
(Supplementary Table 1). All samples were handled equally and thawed twice. During the 
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aliquoting, a small amount of each sample was pooled. This quality control sample was 
subsequently used for the library generation and to assess quality and batch effects throughout 
the sample preparation and acquisition. The processing batches were block randomized for 
disease status, disease state, gender and ethnicity (only relevant for breast cancer samples) and 
kept for the entire sample preparation.  

Depletion was performed using the Agilent Multi Affinity Removal Column Human-14, 4.6 x 50 
mm (Agilent Technologies) set up on a Dionex Ultimate 3000 RS pump (Thermo Fisher Scientific) 
and run according to the manufacturer’s instructions. Briefly, the plasma was diluted 4:1 with 
Buffer A for Multiple Affinity Removal LC Columns (Agilent Technologies) and filtered through a 
0.22 µm hydrophilic PVDF membrane filter plate (Millipore) before 70 µl were injected onto the 
column. The gradient was 27.5 min long, with the collection occurring between 3.6 and 9.2 min, 
a flow rate of 1 ml/min during 11 and 26.5 min and 0.125 ml/min during the rest of the gradient, 
and Buffer B for Multiple Affinity Removal LC Columns (Agilent Technologies) only in the time 
period 13 to 17.5 min (100% Buffer B). Well-spaced within each processing batch, we depleted 
the quality control sample three times and treated it as a separate sample thereon (depletion 
control samples).  

Following depletion, we digested the samples with protein aggregation capture using a 
KingFisher Flex (Thermo Fisher Scientific)31. To assess digestion reproducibility, we mixed two 
extra depletions of the quality control sample before splitting it into digestion triplicates 
(digestion control samples). The acidified peptide mixtures were loaded for cleanup into 
MacroSpin C18 96-well plates (The Nest Group), desalted, and eluted with 50% acetonitrile. 
Samples were dried in a vacuum centrifuge, solubilized in 0.1% formic acid, 1% acetonitrile with 
Biognosys’s iRT and PQ500 kits (Biognosys) spiked following the manufacturer’s instruction. 
Prior to DIA mass spectrometric analyses, the sample’s peptide concentrations were determined 
using a UV/VIS Spectrometer at 280 nm/430 nm (SPECTROstar Nano, BMG Labtech) and 
centrifuged at 14,000 × g at 4 °C for 30 min. 

Sample preparation of the Controlled Quantitative Experiment 

The controlled quantitative experiment was generated from 20 healthy human EDTA K3 plasma 
samples obtained from Sera Laboratories International Ltd. (West Sussex, UK). Saccharomyces	
cerevisiae (S.	cerevisiae) were lysed in 100 mM HEPES pH 7.4, 150 mM KCl, 1 mM MgCl2, by shear 
force passing through a gauge 12 syringe for 15 times on ice before filtering (0.2 µm).	Escherichia	
coli	(E.	coli)	was lysed with a cell cracker before filtering (0.2 µm). After protein concentration 
determination using a UV/VIS Spectrometer at 280 nm (SPECTROstar Nano, BMG Labtech), each 
sample was spiked with fixed ratios of E.	coli and S.	cerevisiae leading to a synthetic 1:2 and 4:3-
fold change. To 20 µl plasma (~1200 µg proteins), 40 or 30 µg	S.	cerevisiae	and 12 or 24 µg E.	coli 
lysate were added for condition A and B, respectively. The resulting 40 samples were diluted 4:1 
with Buffer A for Multiple Affinity Removal LC Columns (Agilent Technologies), filtered through 
a 0.22 µm hydrophilic PVDF membrane filter plate (Millipore). 70 µl were used for depletion as 
described above followed by Filter-Aided Sample Preparation (FASP)32 and 30 ul for the neat 
plasma comparison. The diluted neat plasma sample was precipitated by adding four excesses of 
cold acetone (v/v) and overnight incubation at -20 °C. The pellet was subsequently washed twice 
with cold 80% acetone in water (v/v). After air-drying the pellet, the proteins were resuspended 
in 50 µl denaturation buffer (8 M Urea, 20 mM TCEP, 40 mM CAA, 0.1 M ABC), sonicated 5 minutes 
(Bioruptor plus, Diagenode, 5 cycles high, 30 s on, 30 s off) and incubated at 37 °C for 60 min. 
Upon dilution with 0.1 M ABC to a final urea concentration of 1.4 M, the samples were digested 
overnight with 2 µg sequencing grade trypsin (Promega) and trypsin inactivated by adding TFA 
to a final concentration of 1% v/v. Peptide clean-up was carried out as described above. 
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Library generation 

High pH reverse phase (HPRP) fractionation was performed using a Dionex UltiMate 3,000 RS 
pump (Thermo Fisher Scientific) on an Acquity UPLC CSH C18 1.7 µm, 2.1x150 mm column 
(Waters) at 60 °C with 0.3 ml/min flow rate. Prior to loading, the pH of 300 µg of pooled samples 
was adjusted to pH 10 by adding ammonium hydroxide. The used gradient was 1% to 40% 
solvent B in 30 minutes; solvents were A: 20 mM ammonium formate in water, B: acetonitrile. 
Fractions were taken every 30 seconds, sequentially pooled to 20 fraction pools. The fraction 
pools were then dried down and resuspended in 0.1% formic acid, 1% acetonitrile with 
Biognosys’s iRT kits spiked in according to the manufacturer’s instruction. Before DDA mass 
spectrometric analyses, peptide concentrations were determined, and the samples were 
centrifuged as described above. 

Mass spectrometric acquisition 

For DIA LC-MS measurements, 1 µg of peptides per sample was injected onto an in-house packed 
reversed-phase column (PicoFrit emitter with 75 µm inner diameter, 60 cm length and 10 µm tip 
from New Objective, packed the Reprosil Saphir C18 1.5 µm phase (Dr. Maisch, Ammerbuch, 
Germany) on a Thermo Fisher Scientific EASY-nLC™ 1,200 nano-liquid chromatography system 
connected to a Thermo Fisher Scientific Orbitrap Exploris 480 mass spectrometer equipped with 
a Nanospray Flex™ ion source. The DIA method was adopted from Bruderer et al.33 and consisted 
of one full-range MS1 scan and 29 DIA segments. 

For DDA and DIA LC-FAIMS-MS/MS measurements, 4 µg of each sample was separated using a 
self-packed analytical PicoFrit column (75 µm x 50 cm length) (New Objective, Woburn, MA, USA) 
packed with ReproSil- Saphir C18 1.5 µm (Dr. Maisch GmbH, Ammerbuch, Germany) with a 2 
hours segmented gradient using an EASY-nLC 1,200 (Thermo Fisher Scientific). LC solvents were 
A: water with 0.1 % FA; B: 20 % water in acetonitrile with 0.1 % FA. For the 2 hours gradient, a 
nonlinear LC gradient was 1 - 59 % solvent B in 120 minutes followed by 59 - 90 % B in 10 
seconds, 90 % B for 8 minutes, 90 % - 1 % B in 10 seconds and 1 % B for 5 minutes at 60°C and a 
flow rate of 250 nl/min. The samples were acquired on an Orbitrap Exploris 480 mass 
spectrometer (Thermo Fisher Scientific) equipped with a FAIMS Pro device (Thermo Fisher 
Scientific) using methods based on34 . If not specified differently, the FAIMS-DIA method 
contained three FAIMS CVs (-35V, -55V, and -75V) parts with each a survey scan of 120,000 
resolution with 20ms max IT and AGC of 3*106 and 35 DIA segments of 15,000 resolution with IT 
set to auto and AGC set to custom 1,000%. The mass range was set to 350-1,650 m/z, the default 
charge state to 3, loop count to 1 and normalized collision energy to 30. For the acquisition of the 
fractionated sample for the library, a DDA method was applied. The DDA method consisted of 
three FAIMS CVs (-35V, -55V, and -75V): each contained a DDA experiment with 60,000 resolution 
of MS1, 15,000 resolution of MS2, with fixed cycle time (1.3s), IT set to AUTO  and AGC set to 
custom 500%35. 

Mass spectrometric data analysis 
Database Search for library generation 

DIA and DDA mass spectrometric data were analyzed using the software SpectroMine (version 
3.0.2101115.47784, Biognosys) using the default settings, including a 1% false discovery rate 
control at PSM, peptide and protein level, allowing for 2 missed cleavages and variable 
modifications (N-term acetylation and methionine oxidation). The human UniProt .fasta database 
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(Homo	sapiens, 2020-07-01, 20,368 entries) was used and for the library generation, the default 
settings were used except for the use of a top 300 precursors per protein filter.  

Quantitative analysis of data independent acquisition 

Raw mass spectrometric data were first converted using the HTRMS Converter (version 
14.3.200701.47784, Biognosys) and then analyzed using the software Spectronaut (version 
15.0.210108, Biognosys) with the default settings, but Qvalue sparse filtering was enabled with a 
global imputing strategy and a hybrid library comprising all DIA and DDA runs conducted in this 
study36. Default settings include peptide and protein level false discovery rate control at 1% and 
cross-run normalization using global normalization on the median. Including a high number of 
quality control samples (depletion, digestion and injection controls) enabled the investigation for 
batch effects and quantification of introduced variability at each step. No batch effect was 
identified by either principal component analysis (PCA, ‘stats’ R-package) or hierarchical 
clustering. 

CQE DIA data were analyzed using the directDIA approach of Spectronaut software (version 
15.0.210108, Biognosys) using the default settings, including a 1% false discovery rate control at 
PSM, peptide and protein level, allowing for 2 missed cleavages and variable modifications (N-
term acetylation and methionine oxidation). The combined human, E.	coli	and S.	cerevisiae .fasta 
databases with the removal of the overlapping tryptic sequences (Homo	 sapiens 2020-08-31, 
96,996 entries; Saccharomyces	 cerevisiae (strain ATCC 204508 / S288c), 6,078 entries; 
Escherichia	 coli (strain K12), 4,857 entries; Combined,	  96,637 entries) was used and for the 
library generation the default settings were used except for Qvalue sparse filtering enabled with 
a global imputing strategy and cross run normalization using global normalization on the median 
based solely on the human identifications. 

When we use proteins, we refer to protein groups as determined by the ID picker algorithm37 and 
implemented in Spectronaut. 

Data analysis and biomarker selection 

Initial univariate candidate filtering was performed using pairwise Wilcoxon test applied per 
protein across disease status (healthy, early and late stage) with Holmes-Bonferroni correction 
(within-group). Proteins with a p-value below or equal 0.05 from randomly selected 80% of 
observations were used for further optimization using sparse partial least square discriminant 
analysis (sPLSDA)38. A leave-one-out algorithm was used for optimal component and protein 
selection. sPLSDA training and testing were performed using the R-package ‘mixOmics’39.  The 
remaining 20% of observations were used for validation. Accuracy of prediction for all three 
groups, healthy, early stages, late stage, and healthy against early and late stages together, were 
calculated as the ratio of the true positive and negative-sum to all observations (R-package 
‘caret’). Unsupervised hierarchical analysis was done with Manhattan distance and Ward’s 
clustering on centered and normalized data (xij-x̄j/sj, i-th observation with j-th protein) using R-
package ‘ComplexHeatmap’. PCA analysis was done using R-package ‘stats’. Correlation analysis 
was done using Pearson correlation with R-packages ‘stats’ and ‘corrplot’. Correlation 
significance was tested using a two-sided t-test at 0.05 alpha. All analyses were performed using 
log2 transformed data. Gene ontology enrichment was performed using GOrilla40, the 
identifications of this study were selected as background. All basic calculations and data 
transformations were performed in R with R-packages: ‘dplyr’ and ‘ggplot2’. 
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Results 
Optimization and validation of the analytical approach 

While methods to analyze the plasma proteome in-depth exist, they are usually either targeted 
and therefore biased, as for the case of antibody or aptamer-based technologies, or are based on 
the principle of fractionation and are therefore difficult to scale. We aimed to develop an 
analytical method that provided deep coverage and quantitative accuracy while minimizing 
sample handling, bias and batch effects. For this scope, we developed and optimized an 
automated plasma depletion pipeline composed of three major steps: sequential depletion, 
parallel digestion and LC-MS acquisition (Fig. 1A).  

First, we automated the depletion of the 14 most abundant proteins using a sequential approach 
supporting a 96-well format41. Briefly, after randomization and filtration of the samples into a 96-
well plate, an automated chromatographic system sequentially and automatically processed the 
plate, thereby depleting the 14 most abundant human proteins in plasma via the use of specific 
antibodies.  

In order to quantify the analytical gain of the approach and to assess whether depletion maintains 
quantitative precision and accuracy, we performed a controlled quantitative experiment (CQE). 
The CQE sample set was generated from 20 healthy human plasma samples spiked with either 
1:400 E.	coli and 1:90 S.	cerevisiae for condition A or 1:200 E.	coli and 1:120 S.	cerevisiae for 
condition B (Fig. 1B). After processing the 40 samples with or without the automated depletion 
pipeline, they were analyzed on a mass spectrometer using data independent analysis (DIA).  
Since the major challenge linked to quantification in plasma is the large dynamic range, removing 
the 14 most abundant proteins should lead to an increase in the number of proteins identified 
compared to the neat plasma. Indeed, while the processing of the neat plasma samples led to an 
average identification of 572 proteins (3,920 peptides) across all samples, depletion significantly 
increased coverage by 257% to 1,471 proteins (10,230 peptides) (n = 40, p-value = 1e-98, 
Supplementary Fig. 1A). Importantly, depletion retained the quantitative accuracy close to the 
expected ratios between condition B and A of 0.415 for E.	coli and -1 for S.	cerevisiae: E.	coli median 
ratio -1.20 and -1.18 and S.	cerevisiae	0.38 and 0.32 for the neat and depleted set, respectively 
(Fig. 1C). Finally, we performed an unpaired t-test between conditions B and A and could identify 
171 and 621 candidates (FDR, q-value >= 0.01) for the neat and depleted set, respectively 
(Supplementary Fig. 1B). Given the experiment’s controlled nature, we could identify the true hits 
as those proteins mapping to either E.	coli	or S.	cerevisiae and showing the expected directionality. 
Overall, depletion led to a 362% increase in true hits, 170 and 615 for neat and depleted (actual 
FDR < 1% for both), respectively.  In summary, the automated depletion more than tripled the 
number of proteins identified and the number of true hits while maintaining quantitative 
accuracy and reducing the manual workload to only the filtering of the samples (about half a day 
per 96 samples, Fig. 1A).  

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 6, 2021. ; https://doi.org/10.1101/2021.10.05.463153doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.05.463153
http://creativecommons.org/licenses/by-nd/4.0/


10/28 

Fig.	1:	Deep	plasma	profiling:	automated	analytical	approach	and	benchmarking.	 (a)	Sketch of the 
major steps of the analytical approach developed for deep human plasma profiling for biomarker discovery, including 
depletion of the 14 most abundant proteins and the approximate time requirements. (b) Schema of the controlled 
quantitative experiment based on human plasma spiked with known amounts of Saccharomyces	 cerevisiae	 (S.	
cerevisiae)	 (1:1.3) and Escherichia	 coli	 (E.	 coli). (1:.5). The controlled mixtures were either directly digested or 
processed using the process described in panel a.	(c)	Plot showing the measured distributions of the fold changes of 
the controlled quantitative experiment divided by species. The dashed lines represent the theoretical fold change.	(d)	
Comparison of the number of protein groups identified at different gradient lengths for a depleted human plasma pool 
by either directDIA (blue) or with a sample specific library (red).  
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In the second step following depletion, the sample plate was prepared for digestion on an 
automated platform using a protein aggregation capture approach31. Subsequently, the samples 
were cleaned using C18 plates, and peptide concentration was measured. In case a library was 
generated, a fraction of all samples can be pooled and an ultra high-pressure liquid 
chromatography controlled high pH reverse phase (HPRP) fractionation was performed33.  

The third step comprises the LC-MS measurement of the samples. Even after depletion of the most 
abundant proteins, the major challenge hindering quantification is the large dynamic range in 
plasma. Hence, we developed and optimized the LC-MS acquisition for deep proteome coverage 
by using FAIMS-based ion mobility on the orbitrap platform combined with high-performance 
chromatography. We developed FAIMS-DIA methods that maximize protein and peptide 
identification by comparing values and counts of FAIMS compensation voltages with different 
scan resolutions. This resulted in a set of optimized methods for gradients from one to four hours. 
Benchmarking with the depleted plasma resulted in 1,300 protein identifications in one-hour 
gradients to 2,103 protein identifications in four hours (Fig. 1D). For reference, in the human cell 
line HeLa, 10,026 proteins were identified in four hours (Supplementary Fig. 1C).  

Altogether, we demonstrated that the presented automated plasma depletion pipeline has the 
potential to enable the unbiased, reproducible and precise quantification of more than 2,000 
proteins on average per sample across very large cohorts.   

How deep and accurately in the plasma proteome can we see  

To test our pipeline, we set out to analyze a diverse cohort of human plasma samples coming from 
the five most deadly solid cancer types in the United States30: pancreatic, colorectal, breast, 
prostate and non-small cell lung cancer. For each cancer type 15 early (stage I to IIC) and 15 late 
stage (IIIA to IIIC) non-metastatic patients, as well as 15 matching normal control samples, were 
selected, based on available baseline data (including gender, age and where applicable smoking 
status, Fig. 2A and Supplementary Table 2). Altogether, we processed 180 samples (and an 
additional 24 quality control samples) over the course of one week and approximately a month 
of measurement time. With this scalable approach, we could identify and quantify 2,732 proteins 
(2,463 proteins with two or more peptide sequences) across 226 measurements (180 samples 
and 46 quality control samples, about 900 proteins/hour measurement, Fig. 2B), of which 1,804 
are found in at least 50% of the runs (Supplementary Fig. 2A).  With the identified proteins, we 
could cover the eight orders of magnitude dynamic range reported for plasma in the Human 
Protein Atlas (3,222 proteins detected in human plasma by mass spectrometry, of which we could 
quantify 70%, Supplementary Fig. 2B). Within this range, we extensively covered the tissue 
leakage proteome, interleukins and signaling proteins such as EGF, KLK3 (PSA), AKT1, CD86, 
MET, ERBB2 and CD33 (Fig. 2C). As expected, among the 500 highest intensity proteins, meaning 
the proteins that would likely be identified, if no depletion would have been applied, 196 (39%) 
are classified as secreted proteins. On the lower end, we identified tissue-specific proteins coming 
from the diseased organs (n = 42, 81% of which are not part of the 500 most abundant proteins), 
cytokines (n = 29, 85%) and nucleoplasm (n = 637, 90%) proteins exemplifying the different 
functional plasma concentration ranges (Fig. 2C). We identified 190 targets for FDA-approved 
drugs, of which 125 (66%) fall in the lower intensity range42. The different biological role of low 
and high abundant plasma proteins shows that we could recover the known biology of the plasma 
proteome.  
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Fig.	2	Deep	plasma	discovery	proteomics	of	five	solid	cancer	types.	(a) Description of cohort comprising 
five solid cancers: breast (infiltrating ductal carcinoma), colon (adenocarcinoma), pancreas (adenocarcinoma), 
prostate (adenocarcinoma) and lung (non-small lung cancer, squamous cell) cancer. 15 subjects for early and late 
stages were selected for each cancer type, along with 15 matching healthy individuals (a total of 30, given the need to 
balance ethnicity and sex for prostate and breast cancer). (b) Z-score of all quantified proteins (n=2,732) across all 
measured samples (n=180). Stage calling is overlaid. Both the proteins and the samples were hierarchically clustered.  
Selected, significantly enriched gene ontology pathways are reported on the right with the p-value in brackets. (c)	The 
protein rank vs. protein average intensity (n=180). Proteins were categorized according to Human Protein Atlas and 
the average rank was calculated (dotted, vertical lines). The green box depicts the proteome region that is typically 
below the sensitivity of neat plasma profiling by mass spectrometry. (d)	The coefficient of variation (CV) of the quality 
control measurements across the processing steps was plotted. Controlled were LC-MS variance by reinjection of the 
same digested sample (injection), digestion and depletion were done repeatedly of the same sample (digest, depletion) 
and the batch stemming from sample preparation 96-well plates (batch). Thick lines indicate medians, boxes indicate 
the 25% and 75% quartiles, and whiskers extend between the median and ± (1.58 × interquartile range). 
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Furthermore, based on quality control samples, we could characterize variance introduced on 
each level: injection (median coefficient of variation (CV = 16%), digestion (CV = 19%), depletion 
(CV = 25%), and column (CV = 26%), all of which are much lower than the healthy inter-individual 
variability (CV = 56%, Fig. 2D and Supplementary Fig. 2C). As a further quality control, we focused 
on known protein levels’ inter-patient variability (measured by CV, Supplementary Fig. 2D). On 
one hand, coagulation- and complement cascade proteins (KEGG complement and coagulation 
cascades) were significantly enriched amongst the proteins with the least inter-patient 
variability, (median CV = 32% and p-value = 2.8e-12), such as complement factor I (CF1, CV = 
23%) and complement component C6 (CV = 27%), demonstrating tight regulation13. On the other 
hand, keratins (likely contaminants, Go biological process keratinization) were significantly 
enriched amongst the proteins with the most inter-patient variability (CV = 339% and p-value = 
4.46e-8), with HLA molecules (CV = 90%) also showing high variability across patients43. 
Additionally, lipoprotein A (LPA) showcases a large inter-patient variability (CV = 113%), likely 
due to the known genetic variants affecting its secretion into plasma44,45. Overall, the quantitative 
dataset generated recapitulates known biological features of intra-patient heterogeneity while 
providing a deep unbiased view of the plasma proteome. 

Considerable heterogeneity across cancer types 

The cohort was designed to enable five independent within-cancer analyses, each comprising a 
healthy, an early and a late stage group (each n = 15, Supplementary Table 2, Fig. 2A). Overall, we 
included 30 control samples, but only a subset of 15 per cancer were matched (see methods). 
Hence, a combined analysis of all samples together was not the primary goal of this study. Aware 
of these limitations, we explored the entire dataset for markers that would agnostically predict 
the cancer stage. The analysis pipeline applied to the whole data set and the cancer-specific 
analyses were the same and aimed at providing actionable insights about specific disease 
development. Given the large amount of data (2,732 proteins combined), we performed a two-
step approach (Fig. 3A). First, we filtered for differentially abundant proteins between healthy, 
early and late stage cancer using univariate analysis. In the case of the pan-cancer model, we 
found 468 proteins dysregulated (Fig. 3B, Supplementary Fig. 3A and Supplementary Table 3). 
Second, using the selected proteins, we trained a model based on sparse partial least square 
discriminant analysis (sPLSDA) on 80% of the data set. This modeling step further reduced the 
number of proteins to 94 (Fig. 3B). The model partially differentiated healthy from disease but 
not late to early stage (Supplementary Fig. 3B and Supplementary Table 4). Interestingly, the 
majority of the differentiating proteins would have been below the detection level in a neat 
plasma preparation (65%, Fig. 3C).  Furthermore, the unsupervised clustering of the 
differentiating proteins generated enriched patterns (Fig. 3D). For example, proteins enriched for 
immunoglobulin production and complement activation tend to be higher in healthy samples 
(Fig. 3E). A subset of cancer samples has a strong upregulation of proteins linked to metabolic 
processes and cellular oxidant detoxification (Fig. 3D and E). Immunoglobulin kappa variable 6-
21 (KV621) was among the proteins higher in healthy samples, was the third most important 
discriminant protein in the model (0.56 importance46), showed a more pronounced bi-modal 
distribution in healthy individuals, and a decrease in diseased individuals (Fig. 3F and 
Supplementary Fig. 3C). In addition, the model identified the known inflammation marker 
Complement C5 (CO5, importance 1) as increased in early and late stage and Spondin-1 (SPON1, 
importance 0.58) increased in late stage (Fig. 3F and Supplementary Fig. 3C), as the first and 
second most important contributors, respectively. Finally, the predictive power of the model was 
validated using the remaining 20% of the samples. The predictive power was low with 55.6% 
(Supplementary Fig. 3D), likely due to the cohort imbalance, the sample heterogeneity and the 
small sample set, as each cancer type is known to have a particular protein signature47. 
Nonetheless, unsupervised clustering using the final protein panel (enrichment p-value = 1.4e-9) 
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allowed for more efficient separation of samples between healthy and disease states compared 
to the entire proteome (p-value = 0.09, Fig. 2B and 3D). Altogether, global data analysis 
underlined the importance and necessity of precision medicine and a much larger sample set 
would be needed to find a potential “one-fits-all” solution.  
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Fig.3 Machine	learning‐based	candidate	biomarker	discovery.	(a)	Schematic detailing the steps of the post-
processing, including univariate testing for filtering, machine learning (sPLSDA) on 80% of the data and classification 
performance accuracy on the hold-out 20% validation data. (b) Overview of the number of biomarker candidates 
selected by univariate analysis (grey) and machine learning (blue) for healthy, early and late stage, across all cancers 
and individual cancers. (c) Average protein intensity plotted vs. protein abundance rank. The machine learning selected 
biomarkers candidates for the pan-cancer model are colored in blue (the average is plotted as a blue line) and 
important contributors are highlighted. The green box depicts the proteome region that is typically below the 
sensitivity of neat plasma profiling by mass spectrometry. (d) Z-score of all machine learning selected candidate 
biomarkers for the pan-cancer model (n=94) across all measured samples (n=180). Stage calling is overlaid. Both the 
proteins and the samples were hierarchically clustered. Selected, significantly enriched gene ontology pathways are 
reported on the right with the p-value in brackets. Proteins highlighted in blue and grey are reported in panels e and f, 
respectively. (e) Boxplot visualization of the average z-transformed protein intensity for all proteins (n=288) in the 
cluster highlighted in blue in panel d	divided by stage (n=180). Thick lines indicate medians, boxes indicate the 25% 
and 75% quartiles, and whiskers extend between the median and ± (1.58 × interquartile range).	 (f)	 Boxplot 
visualization (as in panel e) of the log-transformed protein quantities of the three most differentiating proteins based 
on the machine learning model (SPON1, KV621 and CO5). Each data point represents a sample (n=180). 
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Overall changes within and across cancer types  

Next, we applied the same analysis strategy using the matched healthy controls to each of the five 
solid tumor types. In the first step, we identified on average 325 significantly altered proteins 
between healthy, late and early stages (Fig. 3B and 4A and Supplementary Table 3). With 436 
significantly altered proteins (83% reduction in features), prostate cancer had the highest 
number of differentially abundant proteins, while breast cancer had the fewest with 229 (92% 
reduction). Interestingly, only a few proteins were shared among cancers (Supplementary Fig. 
4A). Pancreatic and prostate had the most with 190 overlapping proteins, while breast and 
pancreas had the least at 37 (Supplementary Fig. 4A). Seven candidate proteins were consistently 
selected as differentially abundant across all cancers: the complement activation protein C4b-
binding protein beta chain (C4BPB), the immunoglobulin component Immunoglobulin heavy 
variable 4-4 (HV404), the T-cell apoptosis inducer Galectin-1 (LEG1),  the degrader of the 
inflammation promoting bradykinin peptide Xaa-Pro aminopeptidase 1 (XPP1), the solute carrier 
family 2 facilitated glucose transporter member 1 (GTR1),  the glycan metabolism beta-
mannosidase enzyme (MANBA) and the suggested growth inducer of epithelial tumors Tenascin-
X (TENX, Fig. 4B and Supplementary Fig. 4A and B). These candidates have rather decreasing 
(HV404, XPP1, MANBA, TENX) or increasing (LEG1, C4BPB) trends in a cancer agnostic manner, 
with the exception of GTR1, which strongly increases in late stage breast cancer while decreasing 
in the other types (Fig. 4C). Interestingly, this small set of proteins separated healthy from the 
cancer stages samples quite well (p-value = 1.9e-8, Fig. 4B). Fitting a sPLSDA model with 80% of 
the data overall decreased the number of candidates to less than 5% of the total measured 
proteins. It led to an average of 129 candidates, making biological interpretation and follow up 
more feasible (Fig. 3B and 4A and Supplementary Table 4). The relative decrease to the input data 
was highly cancer dependent, from an almost 76% reduction in pancreatic cancer to only a 15% 
reduction in lung cancer. The number of overlapping proteins across models was minimal, likely 
due to the reductionist approach of sPLSDA and cancer type-specific mechanisms, with no 
proteins being selected for all models (Supplementary Fig. 4C). Still, TAGL and MANBA were 
selected in all but breast cancer models, and GTR1 and LEG10 in all but the pan-cancer and breast 
cancer models (Fig. 4C and Supplementary Fig. 4B).  

In summary, the model classification performance measured on the 20% validation set ranged 
between 33.3% in lung and prostate cancer to 77.8% in colorectal cancer when all three groups 
were considered and between 86.1% for the pan-cancer model and 100% for lung and colorectal 
cancer when healthy and overall disease status were considered (Fig. 4A, Supplementary Table 
2). While for the early/late-stage differentiation 2 of the 6 models were close to random 
performance, the disease status was easier to predict, especially if the cancer type is known, as 
the pan-cancer model performed the worst with 86% accuracy. Interestingly, high model 
performance was not always associated with high separation efficiency using PCA or distance 
analysis and vice versa (Fig. 4A). This is especially apparent in the case of pancreatic and 
colorectal cancer. While colorectal performs the best on the validation set, especially in the 
differentiation of healthy/disease, pancreatic cancer leads to the best separation by hierarchical 
clustering on all three groups (p-value = 3.1e-16). In a nutshell, in contrast to the “one-fits-all” 
approach, the cancer-specific models performed better. In some cases, the classification accuracy 
of the derived models was good, demonstrating the benefit of deep profiling of the plasma 
proteome. 
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Fig.	4 Classification	accuracy	of	 the	 five	cancer	 types.	 (a)	Overview of the data analysis per cancer and 
combined (pan-cancer) as a normalized score. Percentage reduction upon univariate filtering and   sPLSDA on 80% of 
the dataset along with percentage accuracy as measured on the 20% holdout samples as a three-way (healthy, early 
and late stage) and two-way (cancer and healthy) classification and p-value of enrichment based on the heatmap 
clustering (Manhattan distance, Ward clustering).	(b)	Z-score of the seven candidate proteins consistently selected 
across all cancers (by univariate analysis, n=180). Stage calling is overlaid. Both the proteins and the samples were 
hierarchically clustered. (c)  Boxplot visualization of log-transformed GTR1 quantities across stage and cancer type. 
The healthy samples were matched to the respective cancer samples. Thick lines indicate medians, boxes indicate the 
25% and 75% quartiles, whiskers extend between the median and ± (1.58 × interquartile range) and each data point 
represents a sample (n=180). The dashed blue line connects the median values across stages.  
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Disease state separation in colorectal cancer  

In colorectal cancer (CRC), we identified 307 proteins significantly altered between healthy, early, 
and late stages (Supplementary Fig. 5A). The sPLSDA model further reduced these candidate 
proteins to 90, and both hierarchical clustering and PCA analysis led to efficient separation of 
healthy subjects from patients regardless of tumor staging (p-value = 2.1e-8, Fig. 5A and 
Supplementary. Fig 5B). Multiple biological GO enrichments in the candidates could be dissected, 
for example, response to leptin and regulation of proteolysis increased in cancer (including 
STAT3 and Transgelin (TAGL)). In contrast, negative regulation of cell-cell adhesion, leukocyte 
homeostasis and response to hydrogen peroxide decreased (including CD47, Fig. 5A and B). TAGL 
(importance = 1.00), STAT3 (importance = 0.65) and CD47 (importance = 0.57) were the three 
most predictive proteins from the sPLSDA model and showed interesting patterns (Fig. 5B and 
Supplementary Fig. 5C). While CD47 and STAT3 showed strong heterogeneity in late stage 
colorectal cancer, TAGL was highly expressed in early and late stage colorectal cancer (Fig. 5B). 
The selected 90 proteins were distributed across the entire intensity range of measured proteins, 
with more than 80% of the selected proteins (including the most important 3) being beyond the 
500 protein mark representing the usual range of proteins detected in neat plasma 
(Supplementary Fig. 5D). Furthermore, at 78%, the model had the best overall classification 
accuracy among all tested malignancies on the validation set (Fig. 5C). As no misclassification for 
healthy subjects was observed, the panel of identified candidate proteins could be helpful for 
early CRC diagnosis. In summary, despite the small sample set, deep profiling of the human 
plasma enabled the partial classification of diseased patients based on a panel of 90 proteins that 
span a large dynamic range while providing an unbiased glimpse into the biological processes at 
the base of colorectal cancer. 
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Fig.	5 Colorectal	cancer	biomarker	candidates	predict	disease	status. (a) Z-score of all machine learning 
selected candidate biomarkers for the colorectal cancer model (n=90) across the matched colorectal sample set (n=45). 
Stage calling is overlaid. Both the proteins and the samples were hierarchically clustered. Selected, significantly 
enriched gene ontology pathways are reported on the right with the p-value in brackets. Proteins highlighted in grey 
are reported in panel b. (b) Boxplot visualization of log-transformed CD47, STAT3 and TAGL quantities divided by stage 
for the colorectal cancer set. Thick lines indicate medians, boxes indicate the 25% and 75% quartiles, whiskers extend 
between the median and ± (1.58 × interquartile range) and each data point represents a sample (n=45). (c) Overview 
of the classification accuracy of the machine learning models for the colorectal cancer validation set (n=9). Correct 
classifications are represented in the highlighted boxes.  

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 6, 2021. ; https://doi.org/10.1101/2021.10.05.463153doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.05.463153
http://creativecommons.org/licenses/by-nd/4.0/


20/28 

Stage separation in pancreatic cancer 

In the pancreatic cancer set, 436 proteins were significantly altered between healthy, early and 
late stages (Supplementary Fig. 6A). The sPLSDA modeling selected 106 proteins, which 
efficiently separated the three classes in both hierarchical clustering and PCA analyses (p-value 
= 3.1e-16, Fig. 6A and B). The separation was driven primarily by CD9 (importance = 0.37), TENX 
(importance = 0.32) and Di-N-acetylchitobiase (DIAC, importance = 0.28), with both TENX and 
DIAC showing a downregulation with disease progression and CD9 a stronger upregulation in 
early than late stage pancreatic cancer (Fig. 6C and Supplementary Fig. 6B). CD9 levels correlated 
most strongly with endocytosis related protein Dynamin-1 (DYN1), Heat shock protein beta-1 
(HSPB1), Platelet glycoprotein 4 (CD36) and a profibrotic matricellular protein CCN family 
member 2 (CCN2). The unsupervised clustering of the candidate proteins resulted in interesting 
patterns (Fig. 6A). In early stage pancreatic cancer, proteins involved in the regulation of peptide 
secretion, cell communication and chemokine production are overall downregulated (including 
LEG10, which is essential for suppressive function of CD25 positive regulatory T-cells48,49 
(Supplementary Fig. 6C), while proteins involved in negative regulation of apoptotic process and 
receptor internalization (including Proto-oncogene tyrosine-protein kinase Src (SRC) and CD9, 
Fig. 6C and Supplementary Fig. 6C) are upregulated. In late stage pancreatic cancer, cellular 
oxidant detoxification and oxygen transport, including Hemoglobin subunit gamma-1 (HBG1), are 
upregulated (Supplementary Fig. 6C). Of the 125 biomarker candidates selected, 65% were in the 
low abundance range (Supplementary Fig. 6D). In the validation set, the model had an accuracy 
of 66.7%, with two out of nine observations incorrectly assigned to the healthy group instead of 
the early stage cancer (Fig. 6D). On the whole, deep profiling of human plasma enabled clustering 
of diseased patients based on disease stage and feature reduction makes biological patterns 
related to disease progression emerge.  
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Fig	6:	Pancreatic	cancer	biomarker	candidates	predict	disease	stage. (a) Z-score of all machine learning 
selected candidate biomarkers for the pancreatic cancer model (n=106) across the matched pancreatic cancer sample 
set (n=45). Stage calling is overlaid. Both the proteins and the samples were hierarchically clustered. Selected, 
significantly enriched gene ontology pathways are reported on the right with the p-value in brackets. Proteins 
highlighted in grey are reported in panel c and the supplementary figure 6. (b) Representation of the first two 
dimensions from the PCA analysis based on candidates identified in the sPLDA model for pancreatic cancer. Small 
points represent samples and large points the average across the stage. While the first dimension separates healthy 
from diseased samples and explains 18% of the variance in the data, the second dimension separates early and late 
stage samples and represents 13% of the variability. Corresponding ellipses represent sample concentration around 
the mean. 	 (c)	Boxplot visualization of log-transformed CD9, DIAC and TNXB quantities divided by stage for the 
pancreatic cancer set. Thick lines indicate medians, boxes indicate the 25% and 75% quartiles, whiskers extend 
between the median and ± (1.58 × interquartile range) and each data point represents a sample (n=45). (d)	Overview 
of the classification accuracy of the machine learning models for the pancreatic cancer validation set (n=9). Correct 
classifications are represented in the highlighted boxes.  
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Discussion 

We have developed an automated, robust and parallelizable workflow for deep, large-scale 
plasma proteome profiling by depletion and sample preparation and by generating deep coverage 
ion mobility DIA methods. First, we demonstrated substantial improvements upon depletion for 
identification and quantification using a controlled quantitative plasma experiment. 
Furthermore, through multistage quality control, we assessed the variance introduced at each 
step of processing. In summary, the novel plasma discovery workflow enables deep profiling of 
10 samples per day per analytical platform to a depth of approximately 2,700 proteins per study 
for two hours gradients, reaching deep into tissue leakage and signaling molecules while 
maintaining quantitative accuracy. The protein identifications are expected to increase to about 
3,200 cumulatively identified using a four hours gradient FAIMS-DIA acquisitions based on the 
data from the gradient ramping (Supplementary Fig. 7). 

Next, we applied the novel plasma discovery workflow to a cohort containing samples coming 
from five solid tumors. Data analysis, including machine learning, revealed biomarker candidates 
and resulted in predictive models. The biomarkers mainly contain proteins from low abundance 
regions that would have likely been missed by neat plasma profiling, as previously speculated by 
Geyer et al.9.	

While separation of healthy from cancer plasma samples was quite accurate for the cancer-
specific models (average accuracy 93%), early to late stage differentiation was much more 
challenging, showing weaker separation (average accuracy 56%). The pan-cancer model 
performed worse than the cancer-specific models, indicating that “one-fits-all” biomarkers are 
generally harder to discover. This is likely because of the considerable heterogeneity across 
cancer types and could be solved by a larger cohort, more advanced stratification strategy and 
would likely lead to a larger biomarker panel.  

Seven candidate proteins were consistently differentially abundant across all cancers, of which 
one followed a cancer-type specific behavior. Notably, the previously reported pan-cancer 
biomarker candidate TENX was reproduced, showing a reduction with disease progression 
irrespective of cancer type50. Overall, our approach showed that deep exploration of the proteome 
of cancer plasma samples can be realized for biomarker discovery. Larger cohorts and a 
longitudinal study design, where the same subjects are monitored ideally before disease onset 
would likely lead to more robust biomarkers.	

When focusing on colorectal cancer, 307 proteins were altered between healthy, early and late 
stages. These include three with a documented role in colorectal cancer development: STAT351,  
TAGL52 and CD4753. In addition, gene ontology enrichments based on identified candidates 
showed response to leptin and regulation of proteolysis increased in cancer. At the same time, 
there was a negative regulation of cell-cell adhesion, leukocyte homeostasis and response to 
hydrogen peroxide. Based on the machine learning-assisted biomarker discovery approach, a 
prediction model based on 90 proteins had the highest predictive classification power with 78% 
accuracy on the hold-out set. 

In pancreatic cancer, 436 proteins were altered between healthy, early and late stages. Of these, 
seven (GTR1, APOA4, IBP2, CD9, CAB45, OLFM4, BGH3) have previously been suggested as 
possible pancreatic cancer biomarkers 54–58. Machine learning-based modeling selected 106 
proteins, which led to an efficient separation using distance measures of healthy, early and late 
stage samples. The selected proteins showed an average overall prediction accuracy of 67%, with 
two observations incorrectly assigned to the healthy group instead of the early stage cancer. This 
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separation was primarily driven by the three cancer-related proteins CD959, TENX50 and DIAC55,60. 
Further proving the quality of the candidates, the separation was also driven by the recently 
proposed therapeutic target CNN261 and the prognostic marker GTR162. A study by Jayaraman et	
al.	 demonstrated that exposure of pancreatic cancer cells to zinc leads to increased protein 
ubiquitination and enhanced cell death, implicating zinc as a potential therapy in treating 
pancreatic cancer63. We found sequestration of zinc ions as an enriched biological process in 
pancreatic cancer, specifically downregulated in cancer samples (especially early stage). 	

Clinical analysis of blood is the most widespread diagnostic procedure in medicine, and blood 
biomarkers are used to diagnose diseases, categorize patients, and support treatment decisions. 
The presented approach is well suited for deep, epidemiological biomarker studies in plasma as 
it reaches deep into tissue leakage area, where information on the health state of distal tissues 
can be discovered. Furthermore, biomarker sets derived from machine learning biomarker 
discovery analysis are not optimally suited for a direct transition into a “classical” clinical 
biomarker, as new multiplexed approaches for clinical assays would be required. Such challenges 
could potentially be  facilitated by DIA or multiple PRM-based assays, which are fully compatible 
with the presented workflow and could ultimately result in streamlined discovery-to-target 
driven personalized medicine utilizing only one technology platform64,65.  

Hence, we envision that the profiling of large cohorts at high proteome depth will strongly 
support the development of novel biomarkers previously not accessible to large-scale discovery 
approaches and will lead to the development of biomarker panels that will finally deliver on the 
promise of non-invasive, preventive cancer screening.  
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Suppl.	Fig.	1:	Controlled	quantitative	experiment	with	plasma	and	mass	spectrometric	performance	
benchmarking.	(a) Boxplot visualization of the number of identified protein (protein groups) and peptides 
(stripped sequences) of the controlled quantitative experiment with neat and depleted plasma. Thick lines 
indicate medians, boxes indicate the 25% and 75% quantiles, whiskers extend between the median and ± 
(1.58 × inter-quantile range) and each data point represents a sample (n=80). T-test results are overlaid. 
(b)	 Representation of the t-test candidates (FDR estimation by the Storey method) divided into true 
positives and false positives based on the ground truth for the controlled quantitative experiment of both 
the depleted and neat set.  (c) Representation of the number of protein identifications from Pierce-HeLa 
digest using the optimized FAIMS-DIA methods at increasing gradient lengths. The expressed genes number 
is taken from the human protein atlas and is represented by the thick dashed line (RNAseq data, 
https://www.proteinatlas.org). The thin dotted line represents the library size. 
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	Suppl.	Fig.	2:	Deep	plasma	discovery	proteomics	of	five	solid	cancer	types.	(a) Percentage of missing 
values in the cohort study plotted against the number of proteins (protein groups) with that value or less. 
(b) Plot of protein rank by the Human Protein Atlas vs. log-transformed reported protein concentration of 
the identified proteins, spanning 8 orders of magnitude dynamic range as reported in the Human Protein 
Atlas (3,222 proteins detected in human plasma by mass spectrometry, of which 70% were identified and 
quantified in this work). Selected proteins were labeled along with the reported concentration.  (c) Boxplot 
representation of the coefficient of variation (CV) of the quality control measurements across the processing 
steps and of the biological variance across cancer types. The CV was calculated on each level: injection 
(median CV=16%), digestion (CV=19%), depletion (CV=25%), and column (CV=26%). Thick lines indicate 
medians, boxes indicate the 25% and 75% quantiles, and whiskers extend between the median and ± (1.58 
× inter-quantile range). (d) Boxplot representation of the biological coefficient of variation across all 
biological samples (n=180) as in panel c. Selected biological pathways are overlaid as points and dashed 
lines for individual proteins and the median, respectively. 
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Suppl.	Fig.	3:	Pan‐cancer	predictive	model	based	on	deeply	profiled	plasma.	 (a) Log-transformed 
median fold change vs. –log10 p-value for all proteins for the three-way comparisons (heathy, early and late 
stage) using univariate comparison (Pairwise Wilcoxon Rank Sum Tests) for each protein with all 180 
samples. The threshold for protein selection is represented as a dashed line at a p-value 0.05. Proteins with 
a within-group corrected p-value below 0.05 are depicted in blue. (b) Representation of the first two 
dimensions from the PCA analysis of sPLSDA identified candidates in pan-cancer analysis. Small points 
represent samples and large points the average across the stage (n=180). The first dimension separates 
healthy from diseased samples and explains 17% of the variance in the data. Corresponding ellipses 
represent sample concentration around the mean. (c) Representation of the sPLSDA selected biomarker 
candidates (94 in total) for the pan-cancer model ordered by relative importance and colored by the stage. 
(d) Overview of the classification accuracy of the machine learning model for the pan-cancer validation set 
(n=36). Correct classifications are represented in the highlighted boxes.   
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Suppl.	Fig.	4:	Biomarker	candidates	within	and	across	the	five	solid	cancers.	(a) Set plot of proteins 
coming from the univariate analysis and used downstream for the different cancer models. Blue strips on 
the left show the number of proteins selected by pairwise comparison. Dots and lines represent subsets. 
The histogram represents the number of overlapping proteins in each subset. (b) Boxplot visualization of 
log-transformed C4BPB, GTR1, HV404, LEG1, MANBA, TENX and XPP1 quantities divided by stage and 
cancer type. The healthy samples were matched to the respective cancer type. Thick lines indicate medians, 
boxes indicate the 25% and 75% quantiles, whiskers extend between the median and ± (1.58 × inter-
quantile range), orange lines connect the medians and each data point represents a sample (n=180). The 
dashed blue line connects the median values across stages. (c) As in panel a but for the final sPLDA model 
selections.   
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Suppl.	Fig.	5:	Colorectal	cancer	analysis.	(a)	Log-transformed median fold change vs. –log10 p-value for 
all proteins for the three-way comparisons (heathy, early and late stage) using univariate comparison 
(Pairwise Wilcoxon Rank Sum Tests) for the colorectal cancer set (n=45). The threshold for protein 
selection is represented as a dashed line at a p-value of 0.05. Proteins with a within-group corrected p-
value below 0.05 are depicted in blue. (b) Representation of the first two dimensions from the PCA 
analysis of sPLSDA identified candidates in colorectal cancer analysis. Small points represent samples and 
large points the average across the stage (n=45). The first dimension separates healthy from diseased 
samples and explains 30% of the variance in the data. Corresponding ellipses represent sample 
concentration around the mean. (c) Representation of the sPLSDA selected biomarker candidates (90 in 
total) for the colorectal cancer model ordered by absolute importance and colored by the stage. (d) 
Average protein intensity plotted vs. protein abundance rank. The machine learning selected biomarkers 
candidates for the colorectal cancer model are colored in blue (the average is plotted as a blue line), and 
important contributors are highlighted. The green box depicts the proteome region that is typically below 
the sensitivity of native plasma profiling by mass spectrometry. 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 6, 2021. ; https://doi.org/10.1101/2021.10.05.463153doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.05.463153
http://creativecommons.org/licenses/by-nd/4.0/


Suppl.	Fig.	6:	Pancreatic	cancer	analysis.	(a) Log-transformed median fold change vs. –log10 p-value for 
all proteins for the three-way comparisons (heathy, early and late stage) using univariate comparison 
(Pairwise Wilcoxon Rank Sum Tests) for the pancreatic cancer set (n=45). The threshold for protein 
selection is represented as a dashed line at a p-value of 0.05. Proteins with a within-group corrected p-
value below 0.05 are depicted in blue. (b)  Representation of the sPLSDA selected biomarker candidates 
for the pancreatic cancer model (106 in total) ordered by absolute importance and colored by the stage. 
(c) Boxplot visualization of selected top candidates log-transformed HBG1, LEG10 and SRC quantities 
across stages for the pancreatic cancer set. Thick lines indicate medians, boxes indicate the 25% and 75% 
quantiles, whiskers extend between the median and ± (1.58 × inter-quantile range) and each data point 
represents a sample (n=45). (d) Average protein intensity plotted vs. protein abundance rank. The 
machine learning selected biomarkers candidates for the pancreatic cancer model are colored in blue (the 
average is plotted as a blue line) and important contributors are highlighted. The green box depicts the 
proteome region that is typically below the sensitivity of native plasma profiling by mass spectrometry. 
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Suppl.	Fig.	7:	Identifications	for	a	large	plasma	study	in	dependence	of	gradient	length.	The number 
of protein groups identified at different gradient lengths for a depleted human plasma pool using a sample 
specific library (red). The black diamond shows the number of proteins identified in the presented pan-
cancer study and the gray dots indicate the extrapolation for different gradient lengths. For the 
extrapolation, the difference of identifications at 120 minutes of 1,089 proteins was used. 
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