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41 Abstract

42

43  Multi-drug resistant Staphylococcus aureus is one of the major causes of severe
44  infections. Due to the delays of conventional antibiotic susceptibility test (AST), most
45  cases were prescribed by experience with a lower recovery rate. Linking a 7-year
46  study of over 20,000 Staphylococcus aureus infected patients, we incorporated mass
47  spectrometry and machine learning technology to predict the susceptibilities of
48  patients for 4 different antibiotics that can enable early antibiotic decisions. The
49  predictive models were externally validated in an independent patient cohort,
50 resulting in an area under the receiver operating characteristic curve of 0.94, 0.90,
51 0.86, 0.91 and an area under the precision-recall curve of 0.93, 0.87, 0.87, 0.81 for
52 oxacillin (OXA), clindamycin (CLID), erythromycin (ERY) and
53  trimethoprim-sulfamethoxazole (SXT), respectively. Moreover, our pipeline provides
54  AST 24-36 h faster than standard workflows, reduction of inappropriate antibiotic
55  usage with preclinical prediction, and demonstrates the potential of combining mass
56  spectrometry with machine learning (ML) to assist early and accurate prescription.
57  Therapies to individual patients could be tailored in the process of precision medicine.
58

59  Introduction

60

61  Early detection of drug resistance of bacteria in patients is critical to prevent the
62  spread of some pathogens in the epidemiology of infectious diseases. The extensive
63 use of antibiotics drove the emergence of multidrug-resistant bacteria (including
64  Methicillin-resistant ~ Staphylococcus aureus (MRSA), vancomycin-resistant
65 enterococci and highly-resistant Enterobacteriaceae)™?, which poses great challenges
66  to improving clinical cure rates and mandating an effective prevention measure®>.

67

68 MRSA, as one of the multidrug-resistant Gram-positive bacteria, is resistant to
69  multiple antibiotic classes. Indeed, Staphylococcus aureus can acquire resistance to
70  any antibiotic®, which has facilitated the occurrence of accurate and fast antibiotic
71 susceptibility testing (AST) for this pathogen’®. Compared to current gold-standard
72 AST with 48-72 h response'®*, newer approaches accomodate a rapid detection of
73  drug-resistant Staphylococcus aureus with the advantage of a quicker turnaround
74 time'*™. Besides, clinical specimens are able to be directly used for susceptibility
75  testing®>?*’, which provides convenience for sample preprocessing procedure. These
76  methods that depend on molecular detection of gene targets would lead to false
77  negatives’®. The adoption of matrix-associated laser desorption and
78 ionization/time-of-flight mass spectrometry (MALDI-TOF MS) instruments benefits
79  the rapid pathogen detection within 2 h from subcultured colonies'®. Many previous
80  works have focused on the discrimination between MRSA and methicillin-susceptible
81  Staphylococcus aureus (MSSA), which requires the identification of spectral peaks
82 for MRSA and MSSA?®? However, the investigation of MS spectra for other
83  antibiotics to predicting susceptibility is clinically necessary to direct prescription and
84  patient care.
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85

86  Machine-learning-based (ML-based) techniques have facilitated the analysis of
87  large-scale data from clinical cases. The abundance of MS spectra for clinical
88  specimens collected from Staphylococcus aureus infected patients are key for the
89  development of predictive models to assist in diagnosing MRSA. However, single
90 model for the methicillin or oxacillin resistance prediction is not satisfactory for
91  multi-drug resistant Staphylococcus aureus. Moreover, models for the susceptibility
92  of other antibiotics are worthy for effective therapies. Further works are needed to
93 achieve a more comprehensive assessment of a multi-drug resistant clinical case than
94  asingle diagnosis.

95

96 In this work, we develop a XGBoost system to predict whether a Staphylococcus
97 aureus infected patient would carry multi-drug resistant Staphylococcus aureus on the
98 basis of a 7-year longitudinal study, over 20,000 individually AST results and
99  state-of-the-art machine learning methods. First, any clinical specimen that contains
100  Staphylococcus aureus was allowed to conduct further experiments for obtaining MS
101  spectra and AST results on six antibiotics. Second, analyzing the six drug resistant
102  ratios for all samples, we find extremely disproportional rate for penicillin and fusidic
103 acid and strong drug-specific association with resistance (Supplementary Table. 1 and
104  2). Because almost all isolates were resistant to penicillin and susceptible to fusidic
105  acid, these two antibiotics were excluded from the construction of predictive models.
106  Third, instead of a single classification between MRSA and MSSA, we construct four
107  predictive models, that are of differing features and parameters and guide clinicians to
108  treat infected patients within the next 24 h. Finally, patient-specific drug usage could
109  also be reduced efficiently by these models, thereby alleviating the burden for both
110  patients and health care community. The machine-learning-guided personalized
111 empirical prescription will minimize medication failure and reduce the overall use of
112 antibiotics in the long run, applied in the clinic, thereby aiding in the worldwide
113 campaign to impede the epidemic of antibiotic resistance.

114

115

116  Results

117

118  Data and cohort characteristics

119

120  An overview of the cohorts is described (Fig. 1). We included a total of 29685 patients
121 between 2013 and 2019 in Linkou cohort (Fig. 1a; see Methods). 215 patients were
122 excluded because their clinical specimens were notified of negative screening results
123  for Staphylococcus aureus. 26852 patients (after exclusion of an additional 83 patients
124  with missing covariates and 2535 patients with missing AST results). For external
125  validation, 5303 patients were assigned to the replication population from Kaohsiung
126 cohort (Fig. 1a; see Methods). With the same experimental workflow, an independent
127  test set that included 4955 patients (after exclusion of 76 Staphylococcus aureus
128  negative specimens, 3 patients with missing covariates and 269 patients with missing
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129  AST results) was used for external validation. Key patient and clinical specimen
130  characteristics are shown in Fig. 1b, c. In both Linkou and Kaohsiung cohort, nearly
131 60% of infections were male. Any sample type was allowed in the experimental
132 design and wound is probably the most commonly processed form of Staphylococcus
133 aureus positive clinical sample in the body (Fig. 1b). The age density plot (Fig. 1c)
134  explicitly focuses on the display of age density distributions of the two cohorts. The
135  peaks of both density plots display that the ages are concentrated over the interval (60,
136 70) and near-0 which indicates the more susceptible population of Staphylococcus
137  aureus.
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Fig. 1 | a-c, Data and cohort characteristics. a, Cohort selection. Staphylococcus
aureus positive specimens were first screened. Next, patients with missing age,
gender covariates and AST results were excluded. Finally, the cohort was divided into
training and validation sets (see Methods). b, Basic characteristics of the cohort data.
Pie charts are divided according to the sum of data points in sex and specimen types. c,

Distribution of ages for

both cohorts,

respectively. d-f, Multidrug-resistant

Staphylococcus aureus isolates in the two cohorts. d, blue horizontal bar, the
number of samples that is susceptible to PEN, ERY, OXA, CLI, SXT and FA,
respectively. red vertical bar, the number of samples that is non-susceptible to
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148  different combinations of six antibiotics listed in Fig. le. e, List of antibiotics
149  analyzed in the study. f, Venn diagram of the number of resistant samples under the
150  four conditions, excluding PEN and FA. PEN, Penicillin; ERY, Erythromycin; OXA,
151 Oxacillin; CLI, Clindamycin; SXT, trimethoprim-sulfamethoxazole; FA, Fusidic Acid.
152

153  Multidrug-resistant Staphylococcus aureus

154

155  The study primarily focusses on resistance to the six drugs that were most commonly
156  prescribed as part of the empirical treatment of Staphylococcus aureus infection
157  (Supplementary Table. 1-2; Methods). Fig. 1e shows the class and molecular target for
158  the six antibiotics used in this study. Antibiotic categories and the target sites of
159  antibiotics are various. The isolate that is non-susceptible to different combinations of
160  six antibiotics is counted for Fig. 1d. In both cohorts, the top two conditions were that
161  the isolate was only resistant to penicillin and non-susceptible to 4 antibiotics (PEN,
162  OXA, CLI and ERY) agents. Moreover, it must be emphasized that large-scale drug
163  resistance comparing susceptible cases with sensitive controls have identified
164  multi-drug resistance isolates associated with two cohorts, suggesting that multi-drug
165  resistance in Staphylococcus aureus has become a very common phenomenon that is a
166  potential obstacle for improving clinical treatment effectiveness (Fig. 1d, f). While,
167 individually, the associated antibiotic has been shown with different proportions of
168  resistant samples in both cohorts (Supplementary Table. 1). For all six drugs, an
169  extremely higher resistance rate in Linkou cohort (93.7%) and Kaohsiung cohort
170 (93.1%) was strongly associated with penicillin. On the contrary, the resistant rate was
171 the lowest for fusidic acid in Linkou cohort (8.3%) and Kaohsiung cohort (5.4%).
172 Hence, the other four drugs become the focus of our research attention. However,
173 limited information exists regarding the relationship of drug-resistant Staphylococcus
174  aureus over the four antibiotics.

175

176  Preparation of a high resolution MALDI-TOF mass spectra dataset

177

178 A summary of our workflow is demonstrated in Fig. 2. Generation for MALDI-TOF
179  MS spectra of all the samples described in the Method section is shown in Fig. 2a. All
180  spectra are shown scaled peak intensities in the Y-direction, covering a range of
181  2,000-20,000 Dalton (Da) in the X-direction. The raw MS spectra were converted
182 into peak lists (Methods), which were then used for model development after data
183  pre-processing by binning normalization (Fig. 2b; Methods). The features generated
184  for the prediction task include 900 intensities of pseudo-ions for each sample.

185

186

187  Development of models for prediction on multi-drug resistance

188

189 We aimed to determine the multi-drug resistance of a patient developing
190  Staphylococcus aureus infection within 24 hours using ML-based mass spectrometry
191  analysis. Owing to the disproportional resistant samples for penicillin and fusicid acid,
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192  the susceptible labels generated for the prediction task included oxacillin, clindamycin,
193  erythromycin and trimethoprim-sulfamethoxazole. The analysis framework for the
194  feature selection and model building was shown in Fig.2c. For all the samples of the
195  discovery population as the training set, the dataset contained 900 intensities of
196  pseudo-ions as features and four label sets obtained by drug susceptibility testing of
197  Staphylococcus aureus based on the four antimicrobial agents. Four XGBoost
198  classifiers were built up on the discovery population and SHAP (SHapley Additive
199  exPlanations) value-based features formed the compact models. Two XGBoost
200 classifiers with each drug were developed—the full and compact models. There are
201 900 features generated from the MS spectra data of the discovery population that were
202 ranked according to the mean absolute SHAP value®, which indicates their
203  contributions to the prediction models. The full models used 900 features, originating
204  from 18000 ion peaks and the compact models used 24, 18, 22 and 9 features
205  (Supplementary Fig. 1). In clinical practice, the model impact on the prescription was
206  evaluated, based on the 1-year test trail on the usage for drugs (Fig. 2d).

207

208
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210  Fig. 2 | Model development overview. a, Data preparation. Clinical specimens were
211 exported from hospitals to microbiology laboratory and AST was conducted on the
212 cultured samples by conventional methods. At the same time, the generation of
213  MALDI-TOF MS spectra for each sample was ensured. b, Data pre-processing. MS
214  data normalization was performed by intensity norm averaging algorithm and the m/z
215 in a 20 Da grid (method). ¢, Drug-resistance prediction model. All features, together
216  with drug resistance information representing the susceptibilities of all the samples for
217  each drug, were used to construct the full models for the binary classification problem.
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218  The features were annotated according to the absolute mean SHAP value and four
219  feature sets formed the four compact models. The classifiers were trained on the
220  discovery population by the four feature label sets. An XGBoost model was chosen as
221  the classifier which was evaluated on the replication population as the external
222  validation. d, Clinical drug recommendations with experience and prediction model.
223  AST, antibiotic susceptibility testing; MS, mass spectrometry; m/z, mass to charge
224  ratio; Da, Dalton.

225

226
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228

229  Fig. 3 | Inspection of model features. a, Heatmap of mean absolute SHAP value of
230 features shared by four compact models. For better visualization, features were
231  converted from pseudo-ions to their corresponding m/z values. b, Pseudo-ions, m/z
232  ranges and mean absolute SHAP values were summarized for each feature set. SHAP,
233  SHapley Additive exPlanations.

234

235  Inspection of model features.


https://doi.org/10.1101/2021.10.05.463151
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.10.05.463151; this version posted October 6, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY 4.0 International license.

236

237  The features generated for the prediction tasks were selected and assessed by mean
238  absolute SHAP values (see Methods). In Fig. 3a, we list the common features shared
239 by four compact models and show the heatmap of SHAP values at m/z ranging from
240 2,000 to 10,000. We observed that the SHAP value files of five common pseudo-ions
241 from the models were similar in the relevant m/z intervals than other ranges,
242  reflecting the very similar patterns released from different antibiotics. Moreover,
243  analyses of other features of different drug models (Fig. 3b) showed that some
244  features appeared unique to some drugs, indicating the potential different diffusion
245  characteristics of these antibiotics. Summary plots of the entire feature set for each of
246 the compact models related to different investigated bacterial-resistance
247  classifications demonstrates the relationship between features’ original values and
248  corresponding importance (Fig.4c, Supplementary Fig. 1c, 2c, 3c). Furthermore, to
249  capture the association of drug resistance risk and a specific feature, dependence plots
250  were built in the form of drug resistance risk against the pseudo-ion’s peak intensity
251 (Fig.4d, Supplementary Fig. 1d, 2d, 3d; see Methods). The relationship between
252  feature value and SHAP value is illustrated for the top-ranked features of four drug
253  models. Of note, pseudo-ion 21 (m/z range 2401-2420) and pseudo-ion 230 (m/z
254  range 6581-6600) could be a risk factor that contributes to drug resistance. On the
255  contrary, higher peak intensities shown at pseudo-ion 228 (m/z range 6541-6560)
256  decrease the risk for drug resistance. As expected, the drug resistance risk increases as
257  the intensities of these m/z intervals (2441-2460, 3021-3040) increase®?**.

258

259  External validation.

260

261 The replication population of Kaohsiung cohort was used for external validation. We
262  performed identical data pre-processing strategies as the discovery population of
263  Linkou cohort. Models were evaluated on the performance of drug resistance
264  prediction for the same four antibiotics. The testing results report that the performance
265  of the areas under the receiver operator curves (AUROCS) of the full and compact
266  models were 0.936 and 0.911, 0.896 and 0.876, 0.860 and 0.842, 0.908 and 0.892 for
267 OXA, CLI, ERY, SXT, respectively (Fig. 4a, Supplementary Fig. la, 2a, 3a).
268  Additionally, for each antibiotic, the performance of our full and compact models is
269 shown in Fig. 4b (Supplementary Fig. 1b, 2b, 3b), using precision-recall curves®
270  (PRC). The areas under the precision-recall curves (AUPRCs) are more informative
271 and were 0.928 and 0.904 (OXA), 0.866 and 0.841 (CLI), 0.873 and 0.859 (ERY),
272  0.814 and 0.795 (SXT) for the full and compact models, respectively. We observed a
273  slight performance decrease for all the compact models which obtained result in the
274  accurate AST classification and valuable characterization of features, including
275 intensity of m/z of unexplained resistance. Considering the imbalanced dataset for
276  SXT (Supplementary Table. 2, 14.1% resistant samples and 85.9% susceptible
277  samples for Linkou cohort; 8.6% resistant samples and 91.4% susceptible samples for
278  Kaohsiung cohort.), as expected, the recall rates of the SXT models show a slightly
279  lower performance compared with the other models from a more balanced dataset.
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Fig. 4] Model features and performance. a, Receiver-operating characteristic curve
of the binary classification task of OXA resistance, comparing the full model with the
compact model. The full model contains 900 features (pseudo-ions), and the compact
model contains 24 features. b, Precision-recall curve for the full and compact
classification model. ¢, A summary plot of the SHAP values for the feature set of the
compact model. Features are ranked by their overall importance in creating the final
prediction. For each feature, every point is a specific sample, with colors ranging from
red (high values of the predictor) to blue (low values of the predictor). d, Dependence
plots for the top 3 features with the largest mean absolute SHAP value, showing peak
intensities versus its SHAP value in the prediction model. OXA, oxacillin; CLI,
Clindamycin; ERY, Erythromycin; SXT, Trimethoprim-sulfamethoxazole; comp,
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294  compact; AUC, area under the ROC Curve; AP, area under the precision recall curve.
295

296  ML-based drug recommendations substantially reduce the usage of unnecessary
297  drugs.

298

299  Across the 1-year test period starting from July 2018 to June 2019, cephalosporins
300 usage for 860 patients were recorded (Supplementary Table. 3). Totally 2516
301 inappropriate cephalosporins were avoided for treating MRSA. 743.4 daily defined
302 dose (DDD) of cephalosporins were reduced by the oxacillin resistant prediction
303 model. In fact, all cephalosporins except fifth generation cephalosporins are not
304 considered efficient in treating MRSA. In the clinical scenario, misusing third
305 generation cephalosporins for treating MRSA would be fairly common before the
306 final ASTs showing that the pathogens are actually MRSA. It is in concordance with
307 the fact that the majority of the reduced cephalosporin was third generation
308 cephalosporins (Supplementary Table. 3). In addition to third generation
309 cephalosporins, totally 49.8 DDD/398 doses of fourth generation cephalosporin (i.e.
310  Cefepime) could be avoided by using the ML-based drug recommendation.

311

312  Discussion

313 Our study provides a rapid susceptibility testing pipeline for the early detection of the
314  multi-drug resistant Staphylococcus aureus of effected individuals. By integrating
315 MALDI-TOF MS spectra information and ML methods, this work offers several
316  advantages over the current gold standard AST assays. First, as with other AST assays,
317  our pipeline determines the susceptibility to many antibiotic agents of Staphylococcus
318 aureus infected patients, a clear advantage over single drug AST assay. Second, our
319  AST results could be obtained within 24 h from the time of bacterial culture,
320 compared with 24-72 h by the conventional methods. Third, the machine learning
321  approach to binary classification provides actionable AST indication that can assist
322 clinicians of reasonable antibiotic choice. Fourth, the implications of the model
323  features give us a better insight into the common or special characteristics of different
324  antibiotic classes. Fifth, ML-based drug recommendation could effectively help to
325  reduce the unnecessary drug usage and guide the physician to prescribe medication.
326

327  Our experimental design allows a wide range of clinical samples, and almost any
328  Staphylococcus aureus infected specimen types (e.g. wound, respiratory tract, blood,
329  sterile body fluid, and urinary tract) are accepted for further subculturing and
330 generating MS spectra. Additionally, we built and replicated binary classification
331  models for the prediction of multi-drug resistance in patients with Staphylococcus
332 aureus infection that accurately forecast oxacillin-resistance, erythromycin-resistance,
333 clindamycin-resistance, and trimethoprim-sulfamethoxazole-resistance with an area
334 under the curve of 0.94, 0.90, 0.86 and 0.91 in the replication population, respectively.
335

336  Built starting from a full set of features from MS spectra collected from longitudinal
337 data cohort, the predictive algorithm developed has strengths. Long-term follow-up
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338 data was able to fully utilize the data information for all the full models. Then the
339  features were winnowed down through the SHAP value. Only a few features that
340 contributed the most formed the compact models. Although the AUC for compact
341 models decreased slightly compared with the full models, such classifier performance
342 was clinically acceptable and features may provide an independent valuable
343  characterization of the resistance mechanism. MALDI-TOF incorporated with the
344  ML-based clinical diagnostics could help clinicians to accurately prescribe drugs and
345  reduce the misusage of unnecessary drugs.

346

347  The main limitations of our study are related to the single-area design, which is
348  constrained within the Taiwan area. However, the recruitment patients of the
349 longitudinal study are from two hospital centers (Linkou and Kaohsiung), covering
350 more than 20,000 patients from 2013 to 2019. Such large-scale validation
351 demonstrates the applicability and reproducibility in other areas. Furthermore, the
352  investigated features were not satisfied to conclude the potential gene or proteins that
353 are responsible for the drug resistance because only ions were obtained from the
354 MALDI-TOF MS spectra based on our experiment design. Further development will
355  be needed to detect specific genes or proteins by MS/MS spectra according to the
356  promising m/z intervals.

357

358 In conclusion, here we demonstrate a comprehensive analysis framework including
359 data pre-processing, feature selection and interpretation, and XGBoost
360  hyperparameter tuning and model building to construct the rapid platform for AST
361 that leverages the advantages of both MALDI-TOF and machine learning.
362 Considering the verified good performance of our models, we postulate that
363 MALDI-TOF and ML- based AST method may help clinicians to accurately make
364 decisions to prescribe drugs. Although a substantial reduction in the usage of
365 impropriate antibiotics, it is agnostic to the mechanism of resistance. Nevertheless, it
366 is a first step for the rapid AST for multiple drugs in the clinical studies that
367 investigate the potential features of early interventions for antibiotic resistance.
368  Equally, these ML-guided AST approaches can further implement in the clinic and be
369 extendable to any pathogen and antibiotic class, thereby reducing unnecessary
370  medical expense and impeding the drug resistance epidemic.

371

372

373  Methods

374  Ethical approval and patient consent. This was a retrospective study investigating
375 the relation between MS spectrum and microbial strain typing. No diagnosis or
376  treatment was involved in the study. Waiver of informed consent was approved by the
377 Institutional Review Board of Chang Gung Medical Foundation (No. 202100008B1).
378

379  Hospital Cohort. The data that was consecutively collected from Linkou Chang
380 Gung Memorial Hospital for the period 2013-2019 that were assigned to discovery
381  population (Linkou cohort). Independent replication (Kaohsiung cohort) was attained
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382 in patients from Kaohsiung Chang Gung Memorial Hospital cohort for the period
383  2015-2017. Microbiology culture and antibiotic susceptible test were conducted in the
384 CGMH clinical microbiology laboratory. From the hospital cohort, we identified a
385 cohort of patients who infected with Staphylococcus aureus and kept the positive
386  samples for further AST.

387

388  Trial design and strain acquisition. For the development and validation of a clinical
389  prediction model, the study was planned as a retrospective cohort study. We
390 conducted the trial as a two-cohort (two medical centers) to testify the effect of the
391 antibiotic susceptible test with mass spectrometry on the multi-drug resistant
392  staphylococcus aureus. All bacterial cultures in the two medical centers were tested in
393 the clinical microbiology laboratories. Depend on the location of the suspected
394 infection, a sample was taken from wound, respiratory tract, blood, urine, sterile body
395  fluid, or other parts of body. Clinical specimens that tested positive for staphylococcus
396  aureus were kept. The distribution of the origins of the specimens is summarized in
397  Fig. 1b. Same cultured bacterial isolates were used for both AST and MALDI. Mass
398  spectrometry data were obtained with the use of MALDI-TOF mass spectrometry, and
399 antibiotic susceptible test was undertaken by disk diffusion method and broth
400 microdilution, that revealed susceptibility or resistance to penicillin, oxacillin,
401  erythromycin, trimethoprim-sulfamethoxazole and fusidic acid, respectively.

402

403

404

405 MALDI-TOF mass spectra experimental conditions

406  Mass spectrometry was carried out using a Bruker Microflex LT MALDI-TOF system
407  (Bruker Daltonik, Bremen, Germany) as described previously®. The operation of the
408  Microflex LT was followed by the manufacturer’s instructions. Fresh cultured isolates
409  were smeared to the MALDI steel 96-well target plate by the operator. Extraction with
410  formic acid (1 pL, 70%) was performed on a thin film. After drying at 25 °C, the
411  target plate was covered using matrix solution that comprises a mixture of solvents (1%
412 a-cyano-4-hydroxycinnamic acid in 50% acetonitrile containing 2.5% trifluoroacetic
413 acid). When the samples were dried at room temperature, the target plate was loaded
414 in to the analyzer and it was analyzed by microflex LT MALDI-TOF analyzer
415  operated in linear ionization mode (accelerating voltage, 20kV; nitrogen laser
416  frequency: 60 Hz; 240 laser shots). The spectra were recorded with the mass/charge
417  ratio (m/z) ranging from m/z 2,000 to 20,000. Peak patterns were analyzed in R using
418  the R package MALDIquant®. The raw spectra were undergoing a three-step process.
419  Firstly, baseline correction (Top-hat filter) was applied. Then the peaks were
420  determined by calculating the median absolute deviation (MAD) and the half window
421  size was 10. Finally, peaks with signal to noise ratio (SNR) > 5 were collected for the
422  upcoming analysis. After the further processing of the raw MS spectra, a peak list
423  containing m/z values and intensities, the so-called ‘mass fingerprint’ of a sample is
424  developed.

425
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426  Data Preprocessing

427  ‘Mass fingerprint’ of a sample consists of the ion mass-to-charge ratio (m/z) and raw
428 intensity values of all peaks. Preprocessing steps were applied to translate original ion
429 intensities to relative pseudo-ion abundance. This was a three-step process and was
430  modified from a previously described method®. First, ion peaks with an intensity <=
431 100 were removed from the analysis. Second, for each sample with its m/z ranged
432 from 2,000 to 20,000, m/z axis was split into equal intervals with bin size 20%%.
433  (20,000-2,000)/20=900 vectors were obtained and named as pseudo-ions for further
434  analysis. Third, the normalization within each interval vector was applied. This was
435  achieved by calculating the [-norm of the interval vector divided by its [,-norm and
436  then added its [,-norm, obtaining the normalized intensity for the pseudo-ion.

w7 s _lpil

J
o

438  Where p,(j = 1,...,900) corresponds to the 900 interval vectors, p;(j = 1,...,900)
439 is the normalized intensities of the 900 pseudo-ions. |||y, Il<|l; and |[<]|, represent
440 the [,-norm, [;-norm and [,-norm respectively. Last, every sample followed the
441  same steps to obtain their normalized pseudo-ion intensities. A pseudo-ion matrix
442  table was then produced, which included all cohorts and their corresponding
443  preprocessed mass spectrometry data across the whole study. For each antibiotic, a
444  drug-resistant or drug-susceptible group is defined as samples that are identified by
445  the susceptibility result (i.e., those that were labeled as susceptible or resistant).

446

447  Feature definition and selection. Every mass spectrum is a plot of peak intensities of
448  the mass-to-charge ratio. However, to apply machine learning methods, a fixed-length
449  feature representation is necessary. Following the data preprocessing step, with bin
450  size 20 as equal intervals, 900 intensities of pseudo-ions were generated for each m/z
451 interval. If no peak occurrence in some m/z intervals, the corresponding intensities
452  would be zero. These 900 features were provided to the full models for the four-drug
453  resistance prediction classifiers. The importance of individual features was measured
454  using mean absolute SHAP values made on the dataset for the discovery population.
455  In each model, implemented for all antibiotics, the selected features for the compact
456  model were obtained with the settled threshold by which the mean absolute SHAP
457  value larger than 0.1. The resulting 24, 18, 22 and 9 features, along with AST
458  susceptibility classification for each training set, formed the corresponding compact
459  models.

460

461  XGBoost classifier.

462  Classifiers for prediction were generated using an XGBoost model®® built with the
463  tree booster. XGBoost is an efficient implementation of a gradient boosting
464  framework for handling sparse data. We used the Python module xgboost to infer
465  parameters for a classifier given labels of the resistant or susceptible group. Booster
466  was set to gbtree, objective was set to binary: logistic, and the evaluation matric was

o[oi,
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467  set to AUC. In both discovery population and replication population, the ratios of
468  penicillin- resistant samples and fusidic acid susceptible samples are extremely high
469  (Supplementary Table. 2). Therefore we excluded drug-resistant prediction for
470  penicillin and fusidic acid. For the other four antibiotics, the training thus comprised
471  four paralleled processes with four settings in which the models may be implemented
472  in practice.

473

474  XGBoost classifier depends on its optimized parameters, including the number of
475  iteration (nrounds), the learning rate (eta), and the maximum depth of a tree
476  (max_depth). Grid search approach was with the following search range: nrouncds €
477  [40-200, with an interval of 10], eta € [0.0001, 0.001, 0.01, 0.05, 0.1, 0.2, 0.25, 0.3,
478  0.5], max_depth € [2, 4, 6, 8, 10, 12]. Hyperparameters were selected following a
479  cross-validated grid search, with the following settings selected (Supplementary Table.
480  4).

481

482  XGBoost classifiers were first trained on a subset of the discovery population of
483  Linkou cohort (that is, the training set), and then were applied to the remaining data
484  (that is, validation set), to infer the ability of the classifier to classify new data. A
485  bootstrap sample size was set to 70% of the training set. The purpose of CV is not to
486  build models but to assess the stability of the model performance. Final models were
487  built on the whole discovery population based on the trained hyperparameters.

488

489  External validation on Kaohsiung cohort. To evaluate the predictive ability of the
490 classification scheme while considering an independent patient cohort. The replication
491  population of Kaohsiung cohort was used for external validation. We performed
492 identical data preparation and pre-processing with the discovery population from
493  Linkou cohort. Since the disproportional resistant samples of the drugs penicillin and
494  fusidic acid, we applied the trained XGBoost classifier models on the Kaohsiung data.
495 To predict the drug resistance for Oxacillin, Erythromycin, Clindamycin,
496  trimethoprim-sulfamethoxazole. We used standardized classifier parameters and
497  standardized thresholds that were inferred based on the same training set to generate a
498  series of classification models on each drug resistance labels and assessed the
499  accuracy and discriminatory power of these models using AUROC and AUPRC. For a
500 developed classifier, the assessment was based on its accuracy and discriminatory
501  power. A receiver operating characteristic curve, or ROC curve, illustrates the
502  diagnostic/classification ability of a binary classifier system as its prediction threshold
503 is varied from 1 to 0. True positive rate (sensitivity) and false positive rate
504  (1-specificity) formed the ROC curve. Whereas AUROC varies between 0 and 1 —
505  with a random choice yielding 0.5, to 1.0, an excellent classifier.

506

507  Model interpretations. To discovery the feature importance and the relationship of
508 individual features with the models, SHAP values?’ were used to evaluate the feature
509  contribution for model performance. How the impact of variables taking into
510  consideration interacted with other variables were measured by SHAP values. For
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511  each sample, the predicted result was separated by SHAP values into the contribution
512  of every feature value. In this study, the Shapley value is used to discover the feature
513  importance and evaluate how each feature makes impact to the complicated model. It
514  originates in game theory approach, can segregate the prediction outcome of each
515  sample to the constitution of the feature contributions.
516
517 Denote x as the input pseudo-ion vector for a sample. The f(x) is the predicted
518  outcome by the classifier f(-). The Shapley analysis can be given by the following
519  equation:

f)=¢o+d1+ P+ + ¢,
520 where ¢, = E[f(x)] is the base Shapley value generated by the expectation of the
521 model output over the training set. The ¢; = ¢;(f,x),l € {1,2,---,L} are the
522  Shapley values related to the L pseudo-ion features, which can represent the impact
523  of the feature [ to the predict outcome f(x).
524
525  Clinical analysis of drug usage based on the prediction model. To evaluate the
526  clinical impact on the AST prediction model, we recorded the antibiotic usage for 860
527 cases across the 1-year test period (2018.7-2019.6). Oxacillin-resistant
528  Staphylococcus aureus is resistant to most currently available beta-lactam
529 antimicrobial agents, including cephalosporins, which is one of the most common
530  beta-lactam antimicrobial agents. For the patients with Staphylococcus aureus
531 infection, cephalosporins were prescribed as a matter of experience and clinicians
532  wouldn’t change drugs until the traditional AST report came out in four days. With
533  our prediction model, once the drug susceptibility was predicted, updated drug
534  recommendations could be set in one day. To quantify and compare the doses of
535  cephalosporins reduced by the algorithmic drug recommendations, we calculated
536  actual total doses of cephalosporins and daily defined dose (DDD) of cephalosporins
537 that is the standardized amount by WHO.

538
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Supplementary Fig. 1 | Model features and performance. a, Receiver-operating
characteristic curve of the binary classification task of CLI resistance, comparing the
full model with the compact model. The full model contains 900 features
(pseudo-ions), and the compact model contains 18 features. b, Precision-recall curve
for the full and compact classification model. ¢, A summary plot of the SHAP values
for the feature set of the compact model. Features are ranked by their overall
importance in creating the final prediction. For each feature, every point is a specific
sample, with colors ranging from red (high values of the predictor) to blue (low
values of the predictor). d, Dependence plots for the top 3 features with the largest
mean absolute SHAP value, showing peak intensities versus its SHAP value in the
prediction model. OXA, oxacillin; CLI, Clindamycin; ERY, Erythromycin; SXT,
Trimethoprim-sulfamethoxazole; comp, compact; AUC, area under the ROC Curve;
AP, area under the precision recall curve.
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Supplementary Fig. 2 | Model features and performance. a, Receiver-operating
characteristic curve of the binary classification task of ERY resistance, comparing the
full model with the compact model. The full model contains 900 features
(pseudo-ions), and the compact model contains 22 features. b, Precision-recall curve
for the full and compact classification model. ¢, A summary plot of the SHAP values
for the feature set of the compact model. Features are ranked by their overall
importance in creating the final prediction. For each feature, every point is a specific
sample, with colors ranging from red (high values of the predictor) to blue (low
values of the predictor). d, Dependence plots for the top 3 features with the largest
mean absolute SHAP value, showing peak intensities versus its SHAP value in the
prediction model. ERY, Erythromycin; comp, compact; AUC, area under the ROC
Curve; AP, area under the precision recall curve.
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Supplementary Fig. 3 | Model features and performance. a, Receiver-operating
characteristic curve of the binary classification task of SXT resistance, comparing the
full model with the compact model. The full model contains 900 features
(pseudo-ions), and the compact model contains 9 features. b, Precision-recall curve
for the full and compact classification model. ¢, A summary plot of the SHAP values
for the feature set of the compact model. Features are ranked by their overall
importance in creating the final prediction. For each feature, every point is a specific
sample, with colors ranging from red (high values of the predictor) to blue (low
values of the predictor). d, Dependence plots for the top 3 features with the largest
mean absolute SHAP value, showing peak intensities versus its SHAP value in the
prediction model. SXT, Trimethoprim-sulfamethoxazole; comp, compact; AUC, area
under the ROC Curve; AP, area under the precision recall curve.
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Discovery population Replication population
(Linkou cohort) (Kaohsiung cohort)
26852 samples 4955 samples
Drugs/Antibiotics Resistant Susceptible Resistant Susceptible
samples (%) samples (%) samples (%) samples (%)
PEN 25151 (93.7) 1701 (6.3) 4614 (93.1) 341 (6.9)
ERY 15068 (56.1) 11784 (43.9) 2563 (51.7) 2392 (48.3)
OXA 13860 (51.6) 12992 (48.4) 2369 (47.8) 2586 (52.2)
CLI 11638 (43.3) 15214 (56.7) 1856 (37.4) 3099 (62.6)
SXT 3794 (14.1) 23058 (85.9) 431 (8.6) 4524 (91.4)
FA 2233 (8.3) 24619 (91.7) 269 (5.4) 4686 (94.6)

Supplementary Table 1| Drug resistance rate for six antibiotics in two cohorts.
Overview of study cohorts. PEN, Penicillin; ERY, Erythromycin; OXA, Oxacillin;
CLI, Clindamycin; SXT, trimethoprim-sulfamethoxazole; FA, Fusidic Acid.

PEN(%) ERY(%) OXA(%) CLI(%) SXT(%) FA(%)
PEN 59.2 55.1 455 15.1 8.5
ERY 988 TT— 787 76.8 24.6 10.2
OXA  100.0 85.6 T 729 26.3 10.5
CLI 98.4 99.4 86.8 TT— 318 12.6

SXT 99.8 97.8 96.1 97.7 \ 28.1

FA 95.6 68.8 65.0 65.7 47.7

Supplementary Table. 2| Multi-drug resistant proportions in

the discovery

population of Linkou cohort. PEN, Penicillin; ERY, Erythromycin; OXA, Oxacillin;
CLI, Clindamycin; SXT, trimethoprim-sulfamethoxazole; FA, Fusidic Acid.
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, Total
Cephalosporins Amount TotalDDD
CEFAZOLIN SODIUM 1GM/VIAL 208 69.3
CEFUROXIME (SODIUM) 750MG/VIAL 16 4
CEFTRIAXONE 1GM/VIAL 669 3345
CEFTAZIDIME 1G/VIAL 547 136.8
CEFOPERAZONE SODIUM 500MG +
SULBACTAM SODIUM 500MG ) /VIAL ( PC) >14 128.5
CEFTAZIDIME(TATUMCEF)500MG/VIAL 164 20.5
CEFEPIME 500MG/VIAL 398 49.8
Total 2516 743.4

Supplementary Table. 3| The amount of unnecessary drug usage reduced by the
prediction model.

Antibiotic

Booster gbtree

Objective binary: logistic

Evaluation matric AUC

nrounds 459 471 329 154
eta 0.05 0.05 0.1 0.05
max_depth 10 9 11 8
gamma

lambda

alpha

min child weight
sub sample
colsample_bytree

PP PO O|IO

Supplementary Table. 4| Parameters for python xgboost module.
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