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Abstract 41 

 42 

Multi-drug resistant Staphylococcus aureus is one of the major causes of severe 43 

infections. Due to the delays of conventional antibiotic susceptibility test (AST), most 44 

cases were prescribed by experience with a lower recovery rate. Linking a 7-year 45 

study of over 20,000 Staphylococcus aureus infected patients, we incorporated mass 46 

spectrometry and machine learning technology to predict the susceptibilities of 47 

patients for 4 different antibiotics that can enable early antibiotic decisions. The 48 

predictive models were externally validated in an independent patient cohort, 49 

resulting in an area under the receiver operating characteristic curve of 0.94, 0.90, 50 

0.86, 0.91 and an area under the precision-recall curve of 0.93, 0.87, 0.87, 0.81 for 51 

oxacillin (OXA), clindamycin (CLI), erythromycin (ERY) and 52 

trimethoprim-sulfamethoxazole (SXT), respectively. Moreover, our pipeline provides 53 

AST 24–36 h faster than standard workflows, reduction of inappropriate antibiotic 54 

usage with preclinical prediction, and demonstrates the potential of combining mass 55 

spectrometry with machine learning (ML) to assist early and accurate prescription. 56 

Therapies to individual patients could be tailored in the process of precision medicine. 57 

 58 

Introduction 59 

 60 

Early detection of drug resistance of bacteria in patients is critical to prevent the 61 

spread of some pathogens in the epidemiology of infectious diseases. The extensive 62 

use of antibiotics drove the emergence of multidrug-resistant bacteria (including 63 

Methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant 64 

enterococci and highly-resistant Enterobacteriaceae)
1,2

, which poses great challenges 65 

to improving clinical cure rates and mandating an effective prevention measure
3-5

. 66 

 67 

MRSA, as one of the multidrug-resistant Gram-positive bacteria, is resistant to 68 

multiple antibiotic classes. Indeed, Staphylococcus aureus can acquire resistance to 69 

any antibiotic
6
, which has facilitated the occurrence of accurate and fast antibiotic 70 

susceptibility testing (AST) for this pathogen
7-9

. Compared to current gold-standard 71 

AST with 48-72 h response
10,11

, newer approaches accomodate a rapid detection of 72 

drug-resistant Staphylococcus aureus with the advantage of a quicker turnaround 73 

time
12-14

. Besides, clinical specimens are able to be directly used for susceptibility 74 

testing
15-17

, which provides convenience for sample preprocessing procedure. These 75 

methods that depend on molecular detection of gene targets would lead to false 76 

negatives
18

. The adoption of matrix-associated laser desorption and 77 

ionization/time-of-flight mass spectrometry (MALDI-TOF MS) instruments benefits 78 

the rapid pathogen detection within 2 h from subcultured colonies
19

. Many previous 79 

works have focused on the discrimination between MRSA and methicillin-susceptible 80 

Staphylococcus aureus (MSSA), which requires the identification of spectral peaks 81 

for MRSA and MSSA
20-22

. However, the investigation of MS spectra for other 82 

antibiotics to predicting susceptibility is clinically necessary to direct prescription and 83 

patient care. 84 
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 85 

Machine-learning-based (ML-based) techniques have facilitated the analysis of 86 

large-scale data from clinical cases. The abundance of MS spectra for clinical 87 

specimens collected from Staphylococcus aureus infected patients are key for the 88 

development of predictive models to assist in diagnosing MRSA. However, single 89 

model for the methicillin or oxacillin resistance prediction is not satisfactory for 90 

multi-drug resistant Staphylococcus aureus. Moreover, models for the susceptibility 91 

of other antibiotics are worthy for effective therapies. Further works are needed to 92 

achieve a more comprehensive assessment of a multi-drug resistant clinical case than 93 

a single diagnosis. 94 

 95 

In this work, we develop a XGBoost system to predict whether a Staphylococcus 96 

aureus infected patient would carry multi-drug resistant Staphylococcus aureus on the 97 

basis of a 7-year longitudinal study, over 20,000 individually AST results and 98 

state-of-the-art machine learning methods. First, any clinical specimen that contains 99 

Staphylococcus aureus was allowed to conduct further experiments for obtaining MS 100 

spectra and AST results on six antibiotics. Second, analyzing the six drug resistant 101 

ratios for all samples, we find extremely disproportional rate for penicillin and fusidic 102 

acid and strong drug-specific association with resistance (Supplementary Table. 1 and 103 

2). Because almost all isolates were resistant to penicillin and susceptible to fusidic 104 

acid, these two antibiotics were excluded from the construction of predictive models. 105 

Third, instead of a single classification between MRSA and MSSA, we construct four 106 

predictive models, that are of differing features and parameters and guide clinicians to 107 

treat infected patients within the next 24 h. Finally, patient-specific drug usage could 108 

also be reduced efficiently by these models, thereby alleviating the burden for both 109 

patients and health care community. The machine-learning-guided personalized 110 

empirical prescription will minimize medication failure and reduce the overall use of 111 

antibiotics in the long run, applied in the clinic, thereby aiding in the worldwide 112 

campaign to impede the epidemic of antibiotic resistance. 113 

 114 

 115 

Results 116 

 117 

Data and cohort characteristics 118 

 119 

An overview of the cohorts is described (Fig. 1). We included a total of 29685 patients 120 

between 2013 and 2019 in Linkou cohort (Fig. 1a; see Methods). 215 patients were 121 

excluded because their clinical specimens were notified of negative screening results 122 

for Staphylococcus aureus. 26852 patients (after exclusion of an additional 83 patients 123 

with missing covariates and 2535 patients with missing AST results). For external 124 

validation, 5303 patients were assigned to the replication population from Kaohsiung 125 

cohort (Fig. 1a; see Methods). With the same experimental workflow, an independent 126 

test set that included 4955 patients (after exclusion of 76 Staphylococcus aureus 127 

negative specimens, 3 patients with missing covariates and 269 patients with missing 128 
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AST results) was used for external validation. Key patient and clinical specimen 129 

characteristics are shown in Fig. 1b, c. In both Linkou and Kaohsiung cohort, nearly 130 

60% of infections were male. Any sample type was allowed in the experimental 131 

design and wound is probably the most commonly processed form of Staphylococcus 132 

aureus positive clinical sample in the body (Fig. 1b). The age density plot (Fig. 1c) 133 

explicitly focuses on the display of age density distributions of the two cohorts. The 134 

peaks of both density plots display that the ages are concentrated over the interval (60, 135 

70) and near-0 which indicates the more susceptible population of Staphylococcus 136 

aureus. 137 
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 138 

Fig. 1 | a-c, Data and cohort characteristics. a, Cohort selection. Staphylococcus 139 

aureus positive specimens were first screened. Next, patients with missing age, 140 

gender covariates and AST results were excluded. Finally, the cohort was divided into 141 

training and validation sets (see Methods). b, Basic characteristics of the cohort data. 142 

Pie charts are divided according to the sum of data points in sex and specimen types. c, 143 

Distribution of ages for both cohorts, respectively. d-f, Multidrug-resistant 144 

Staphylococcus aureus isolates in the two cohorts. d, blue horizontal bar, the 145 

number of samples that is susceptible to PEN, ERY, OXA, CLI, SXT and FA, 146 

respectively. red vertical bar, the number of samples that is non-susceptible to 147 
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different combinations of six antibiotics listed in Fig. 1e. e, List of antibiotics 148 

analyzed in the study. f, Venn diagram of the number of resistant samples under the 149 

four conditions, excluding PEN and FA. PEN, Penicillin; ERY, Erythromycin; OXA, 150 

Oxacillin; CLI, Clindamycin; SXT, trimethoprim-sulfamethoxazole; FA, Fusidic Acid. 151 

 152 

Multidrug-resistant Staphylococcus aureus  153 

 154 

The study primarily focusses on resistance to the six drugs that were most commonly 155 

prescribed as part of the empirical treatment of Staphylococcus aureus infection 156 

(Supplementary Table. 1-2; Methods). Fig. 1e shows the class and molecular target for 157 

the six antibiotics used in this study. Antibiotic categories and the target sites of 158 

antibiotics are various. The isolate that is non-susceptible to different combinations of 159 

six antibiotics is counted for Fig. 1d. In both cohorts, the top two conditions were that 160 

the isolate was only resistant to penicillin and non-susceptible to 4 antibiotics (PEN, 161 

OXA, CLI and ERY) agents. Moreover, it must be emphasized that large-scale drug 162 

resistance comparing susceptible cases with sensitive controls have identified 163 

multi-drug resistance isolates associated with two cohorts, suggesting that multi-drug 164 

resistance in Staphylococcus aureus has become a very common phenomenon that is a 165 

potential obstacle for improving clinical treatment effectiveness (Fig. 1d, f). While, 166 

individually, the associated antibiotic has been shown with different proportions of 167 

resistant samples in both cohorts (Supplementary Table. 1). For all six drugs, an 168 

extremely higher resistance rate in Linkou cohort (93.7%) and Kaohsiung cohort 169 

(93.1%) was strongly associated with penicillin. On the contrary, the resistant rate was 170 

the lowest for fusidic acid in Linkou cohort (8.3%) and Kaohsiung cohort (5.4%). 171 

Hence, the other four drugs become the focus of our research attention. However, 172 

limited information exists regarding the relationship of drug-resistant Staphylococcus 173 

aureus over the four antibiotics. 174 

 175 

Preparation of a high resolution MALDI-TOF mass spectra dataset 176 

 177 

A summary of our workflow is demonstrated in Fig. 2. Generation for MALDI-TOF 178 

MS spectra of all the samples described in the Method section is shown in Fig. 2a. All 179 

spectra are shown scaled peak intensities in the Y-direction, covering a range of 180 

2,000–20,000 Dalton (Da) in the X-direction. The raw MS spectra were converted 181 

into peak lists (Methods), which were then used for model development after data 182 

pre-processing by binning normalization (Fig. 2b; Methods). The features generated 183 

for the prediction task include 900 intensities of pseudo-ions for each sample.  184 

 185 

 186 

Development of models for prediction on multi-drug resistance 187 

 188 

We aimed to determine the multi-drug resistance of a patient developing 189 

Staphylococcus aureus infection within 24 hours using ML-based mass spectrometry 190 

analysis. Owing to the disproportional resistant samples for penicillin and fusicid acid, 191 
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the susceptible labels generated for the prediction task included oxacillin, clindamycin, 192 

erythromycin and trimethoprim-sulfamethoxazole. The analysis framework for the 193 

feature selection and model building was shown in Fig.2c. For all the samples of the 194 

discovery population as the training set, the dataset contained 900 intensities of 195 

pseudo-ions as features and four label sets obtained by drug susceptibility testing of 196 

Staphylococcus aureus based on the four antimicrobial agents. Four XGBoost 197 

classifiers were built up on the discovery population and SHAP (SHapley Additive 198 

exPlanations) value-based features formed the compact models. Two XGBoost 199 

classifiers with each drug were developed—the full and compact models. There are 200 

900 features generated from the MS spectra data of the discovery population that were 201 

ranked according to the mean absolute SHAP value
23

, which indicates their 202 

contributions to the prediction models. The full models used 900 features, originating 203 

from 18000 ion peaks and the compact models used 24, 18, 22 and 9 features 204 

(Supplementary Fig. 1). In clinical practice, the model impact on the prescription was 205 

evaluated, based on the 1-year test trail on the usage for drugs (Fig. 2d). 206 

 207 

 208 
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 209 

Fig. 2 | Model development overview. a, Data preparation. Clinical specimens were 210 

exported from hospitals to microbiology laboratory and AST was conducted on the 211 

cultured samples by conventional methods. At the same time, the generation of 212 

MALDI-TOF MS spectra for each sample was ensured. b, Data pre-processing. MS 213 

data normalization was performed by intensity norm averaging algorithm and the m/z 214 

in a 20 Da grid (method). c, Drug-resistance prediction model. All features, together 215 

with drug resistance information representing the susceptibilities of all the samples for 216 

each drug, were used to construct the full models for the binary classification problem. 217 
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The features were annotated according to the absolute mean SHAP value and four 218 

feature sets formed the four compact models. The classifiers were trained on the 219 

discovery population by the four feature label sets. An XGBoost model was chosen as 220 

the classifier which was evaluated on the replication population as the external 221 

validation. d, Clinical drug recommendations with experience and prediction model. 222 

AST, antibiotic susceptibility testing; MS, mass spectrometry; m/z, mass to charge 223 

ratio; Da, Dalton. 224 

 225 

 226 
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 227 

 228 

Fig. 3 | Inspection of model features. a, Heatmap of mean absolute SHAP value of 229 

features shared by four compact models. For better visualization, features were 230 

converted from pseudo-ions to their corresponding m/z values. b, Pseudo-ions, m/z 231 

ranges and mean absolute SHAP values were summarized for each feature set. SHAP, 232 

SHapley Additive exPlanations. 233 

 234 

Inspection of model features. 235 
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 236 

The features generated for the prediction tasks were selected and assessed by mean 237 

absolute SHAP values (see Methods). In Fig. 3a, we list the common features shared 238 

by four compact models and show the heatmap of SHAP values at m/z ranging from 239 

2,000 to 10,000. We observed that the SHAP value files of five common pseudo-ions 240 

from the models were similar in the relevant m/z intervals than other ranges, 241 

reflecting the very similar patterns released from different antibiotics. Moreover, 242 

analyses of other features of different drug models (Fig. 3b) showed that some 243 

features appeared unique to some drugs, indicating the potential different diffusion 244 

characteristics of these antibiotics. Summary plots of the entire feature set for each of 245 

the compact models related to different investigated bacterial-resistance 246 

classifications demonstrates the relationship between features’ original values and 247 

corresponding importance (Fig.4c, Supplementary Fig. 1c, 2c, 3c). Furthermore, to 248 

capture the association of drug resistance risk and a specific feature, dependence plots 249 

were built in the form of drug resistance risk against the pseudo-ion’s peak intensity 250 

(Fig.4d, Supplementary Fig. 1d, 2d, 3d; see Methods). The relationship between 251 

feature value and SHAP value is illustrated for the top-ranked features of four drug 252 

models. Of note, pseudo-ion 21 (m/z range 2401-2420) and pseudo-ion 230 (m/z 253 

range 6581-6600) could be a risk factor that contributes to drug resistance. On the 254 

contrary, higher peak intensities shown at pseudo-ion 228 (m/z range 6541-6560) 255 

decrease the risk for drug resistance. As expected, the drug resistance risk increases as 256 

the intensities of these m/z intervals (2441-2460, 3021-3040) increase
8,21

.  257 

 258 

External validation. 259 

 260 

The replication population of Kaohsiung cohort was used for external validation. We 261 

performed identical data pre-processing strategies as the discovery population of 262 

Linkou cohort. Models were evaluated on the performance of drug resistance 263 

prediction for the same four antibiotics. The testing results report that the performance 264 

of the areas under the receiver operator curves (AUROCs) of the full and compact 265 

models were 0.936 and 0.911, 0.896 and 0.876, 0.860 and 0.842, 0.908 and 0.892 for 266 

OXA, CLI, ERY, SXT, respectively (Fig. 4a, Supplementary Fig. 1a, 2a, 3a). 267 

Additionally, for each antibiotic, the performance of our full and compact models is 268 

shown in Fig. 4b (Supplementary Fig. 1b, 2b, 3b), using precision-recall curves
24

 269 

(PRC). The areas under the precision-recall curves (AUPRCs) are more informative 270 

and were 0.928 and 0.904 (OXA), 0.866 and 0.841 (CLI), 0.873 and 0.859 (ERY), 271 

0.814 and 0.795 (SXT) for the full and compact models, respectively. We observed a 272 

slight performance decrease for all the compact models which obtained result in the 273 

accurate AST classification and valuable characterization of features, including 274 

intensity of m/z of unexplained resistance. Considering the imbalanced dataset for 275 

SXT (Supplementary Table. 2, 14.1% resistant samples and 85.9% susceptible 276 

samples for Linkou cohort; 8.6% resistant samples and 91.4% susceptible samples for 277 

Kaohsiung cohort.), as expected, the recall rates of the SXT models show a slightly 278 

lower performance compared with the other models from a more balanced dataset.  279 
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 280 

 281 

 282 

Fig. 4| Model features and performance. a, Receiver-operating characteristic curve 283 

of the binary classification task of OXA resistance, comparing the full model with the 284 

compact model. The full model contains 900 features (pseudo-ions), and the compact 285 

model contains 24 features. b, Precision-recall curve for the full and compact 286 

classification model. c, A summary plot of the SHAP values for the feature set of the 287 

compact model. Features are ranked by their overall importance in creating the final 288 

prediction. For each feature, every point is a specific sample, with colors ranging from 289 

red (high values of the predictor) to blue (low values of the predictor). d, Dependence 290 

plots for the top 3 features with the largest mean absolute SHAP value, showing peak 291 

intensities versus its SHAP value in the prediction model. OXA, oxacillin; CLI, 292 

Clindamycin; ERY, Erythromycin; SXT, Trimethoprim-sulfamethoxazole; comp, 293 
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compact; AUC, area under the ROC Curve; AP, area under the precision recall curve.  294 

 295 

ML-based drug recommendations substantially reduce the usage of unnecessary 296 

drugs. 297 

 298 

Across the 1-year test period starting from July 2018 to June 2019, cephalosporins 299 

usage for 860 patients were recorded (Supplementary Table. 3). Totally 2516 300 

inappropriate cephalosporins were avoided for treating MRSA. 743.4 daily defined 301 

dose (DDD) of cephalosporins were reduced by the oxacillin resistant prediction 302 

model. In fact, all cephalosporins except fifth generation cephalosporins are not 303 

considered efficient in treating MRSA. In the clinical scenario, misusing third 304 

generation cephalosporins for treating MRSA would be fairly common before the 305 

final ASTs showing that the pathogens are actually MRSA. It is in concordance with 306 

the fact that the majority of the reduced cephalosporin was third generation 307 

cephalosporins (Supplementary Table. 3). In addition to third generation 308 

cephalosporins, totally 49.8 DDD/398 doses of fourth generation cephalosporin (i.e. 309 

Cefepime) could be avoided by using the ML-based drug recommendation.  310 

 311 

Discussion 312 

Our study provides a rapid susceptibility testing pipeline for the early detection of the 313 

multi-drug resistant Staphylococcus aureus of effected individuals. By integrating 314 

MALDI-TOF MS spectra information and ML methods, this work offers several 315 

advantages over the current gold standard AST assays. First, as with other AST assays, 316 

our pipeline determines the susceptibility to many antibiotic agents of Staphylococcus 317 

aureus infected patients, a clear advantage over single drug AST assay. Second, our 318 

AST results could be obtained within 24 h from the time of bacterial culture, 319 

compared with 24-72 h by the conventional methods. Third, the machine learning 320 

approach to binary classification provides actionable AST indication that can assist 321 

clinicians of reasonable antibiotic choice. Fourth, the implications of the model 322 

features give us a better insight into the common or special characteristics of different 323 

antibiotic classes. Fifth, ML-based drug recommendation could effectively help to 324 

reduce the unnecessary drug usage and guide the physician to prescribe medication. 325 

 326 

Our experimental design allows a wide range of clinical samples, and almost any 327 

Staphylococcus aureus infected specimen types (e.g. wound, respiratory tract, blood, 328 

sterile body fluid, and urinary tract) are accepted for further subculturing and 329 

generating MS spectra. Additionally, we built and replicated binary classification 330 

models for the prediction of multi-drug resistance in patients with Staphylococcus 331 

aureus infection that accurately forecast oxacillin-resistance, erythromycin-resistance, 332 

clindamycin-resistance, and trimethoprim-sulfamethoxazole-resistance with an area 333 

under the curve of 0.94, 0.90, 0.86 and 0.91 in the replication population, respectively. 334 

 335 

Built starting from a full set of features from MS spectra collected from longitudinal 336 

data cohort, the predictive algorithm developed has strengths. Long‐term follow‐up 337 
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data was able to fully utilize the data information for all the full models. Then the 338 

features were winnowed down through the SHAP value. Only a few features that 339 

contributed the most formed the compact models. Although the AUC for compact 340 

models decreased slightly compared with the full models, such classifier performance 341 

was clinically acceptable and features may provide an independent valuable 342 

characterization of the resistance mechanism. MALDI-TOF incorporated with the 343 

ML-based clinical diagnostics could help clinicians to accurately prescribe drugs and 344 

reduce the misusage of unnecessary drugs. 345 

 346 

The main limitations of our study are related to the single-area design, which is 347 

constrained within the Taiwan area. However, the recruitment patients of the 348 

longitudinal study are from two hospital centers (Linkou and Kaohsiung), covering 349 

more than 20,000 patients from 2013 to 2019. Such large-scale validation 350 

demonstrates the applicability and reproducibility in other areas. Furthermore, the 351 

investigated features were not satisfied to conclude the potential gene or proteins that 352 

are responsible for the drug resistance because only ions were obtained from the 353 

MALDI-TOF MS spectra based on our experiment design. Further development will 354 

be needed to detect specific genes or proteins by MS/MS spectra according to the 355 

promising m/z intervals. 356 

 357 

In conclusion, here we demonstrate a comprehensive analysis framework including 358 

data pre-processing, feature selection and interpretation, and XGBoost 359 

hyperparameter tuning and model building to construct the rapid platform for AST 360 

that leverages the advantages of both MALDI-TOF and machine learning. 361 

Considering the verified good performance of our models, we postulate that 362 

MALDI-TOF and ML- based AST method may help clinicians to accurately make 363 

decisions to prescribe drugs. Although a substantial reduction in the usage of 364 

impropriate antibiotics, it is agnostic to the mechanism of resistance. Nevertheless, it 365 

is a first step for the rapid AST for multiple drugs in the clinical studies that 366 

investigate the potential features of early interventions for antibiotic resistance. 367 

Equally, these ML-guided AST approaches can further implement in the clinic and be 368 

extendable to any pathogen and antibiotic class, thereby reducing unnecessary 369 

medical expense and impeding the drug resistance epidemic. 370 

 371 

 372 

Methods 373 

Ethical approval and patient consent. This was a retrospective study investigating 374 

the relation between MS spectrum and microbial strain typing. No diagnosis or 375 

treatment was involved in the study. Waiver of informed consent was approved by the 376 

Institutional Review Board of Chang Gung Medical Foundation (No. 202100008B1). 377 

 378 

Hospital Cohort. The data that was consecutively collected from Linkou Chang 379 

Gung Memorial Hospital for the period 2013-2019 that were assigned to discovery 380 

population (Linkou cohort). Independent replication (Kaohsiung cohort) was attained 381 
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in patients from Kaohsiung Chang Gung Memorial Hospital cohort for the period 382 

2015-2017. Microbiology culture and antibiotic susceptible test were conducted in the 383 

CGMH clinical microbiology laboratory. From the hospital cohort, we identified a 384 

cohort of patients who infected with Staphylococcus aureus and kept the positive 385 

samples for further AST. 386 

 387 

Trial design and strain acquisition. For the development and validation of a clinical 388 

prediction model, the study was planned as a retrospective cohort study. We 389 

conducted the trial as a two-cohort (two medical centers) to testify the effect of the 390 

antibiotic susceptible test with mass spectrometry on the multi-drug resistant 391 

staphylococcus aureus. All bacterial cultures in the two medical centers were tested in 392 

the clinical microbiology laboratories. Depend on the location of the suspected 393 

infection, a sample was taken from wound, respiratory tract, blood, urine, sterile body 394 

fluid, or other parts of body. Clinical specimens that tested positive for staphylococcus 395 

aureus were kept. The distribution of the origins of the specimens is summarized in 396 

Fig. 1b. Same cultured bacterial isolates were used for both AST and MALDI. Mass 397 

spectrometry data were obtained with the use of MALDI-TOF mass spectrometry, and 398 

antibiotic susceptible test was undertaken by disk diffusion method and broth 399 

microdilution, that revealed susceptibility or resistance to penicillin, oxacillin, 400 

erythromycin, trimethoprim-sulfamethoxazole and fusidic acid, respectively.  401 

 402 

 403 

 404 

MALDI-TOF mass spectra experimental conditions 405 

Mass spectrometry was carried out using a Bruker Microflex LT MALDI-TOF system 406 

(Bruker Daltonik, Bremen, Germany) as described previously
8
. The operation of the 407 

Microflex LT was followed by the manufacturer’s instructions. Fresh cultured isolates 408 

were smeared to the MALDI steel 96-well target plate by the operator. Extraction with 409 

formic acid (1 μL, 70%) was performed on a thin film. After drying at 25 °C, the 410 

target plate was covered using matrix solution that comprises a mixture of solvents (1% 411 

α-cyano-4-hydroxycinnamic acid in 50% acetonitrile containing 2.5% trifluoroacetic 412 

acid).  When the samples were dried at room temperature, the target plate was loaded 413 

in to the analyzer and it was analyzed by microflex LT MALDI-TOF analyzer 414 

operated in linear ionization mode (accelerating voltage, 20kV; nitrogen laser 415 

frequency: 60 Hz; 240 laser shots). The spectra were recorded with the mass/charge 416 

ratio (m/z) ranging from m/z 2,000 to 20,000. Peak patterns were analyzed in R using 417 

the R package MALDIquant
25

. The raw spectra were undergoing a three-step process. 418 

Firstly, baseline correction (Top-hat filter) was applied. Then the peaks were 419 

determined by calculating the median absolute deviation (MAD) and the half window 420 

size was 10. Finally, peaks with signal to noise ratio (SNR) ≥ 5 were collected for the 421 

upcoming analysis. After the further processing of the raw MS spectra, a peak list 422 

containing m/z values and intensities, the so-called ‘mass fingerprint’ of a sample is 423 

developed. 424 

 425 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted October 6, 2021. ; https://doi.org/10.1101/2021.10.05.463151doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.05.463151
http://creativecommons.org/licenses/by/4.0/


Data Preprocessing 426 

‘Mass fingerprint’ of a sample consists of the ion mass-to-charge ratio (m/z) and raw 427 

intensity values of all peaks. Preprocessing steps were applied to translate original ion 428 

intensities to relative pseudo-ion abundance. This was a three-step process and was 429 

modified from a previously described method
8
. First, ion peaks with an intensity <= 430 

100 were removed from the analysis. Second, for each sample with its m/z ranged 431 

from 2,000 to 20,000, m/z axis was split into equal intervals with bin size 20
8,21

. 432 

(20,000-2,000)/20=900 vectors were obtained and named as pseudo-ions for further 433 

analysis. Third, the normalization within each interval vector was applied. This was 434 

achieved by calculating the 𝑙1-norm of the interval vector divided by its 𝑙0-norm and 435 

then added its 𝑙2-norm, obtaining the normalized intensity for the pseudo-ion.  436 

1

2

0

j

j j

j

p
p p

p
   437 

Where 𝑝𝑗⃗⃗  ⃗(𝑗 = 1,… ,900) corresponds to the 900 interval vectors, 𝑝𝑗(𝑗 = 1,… ,900) 438 

is the normalized intensities of the 900 pseudo-ions. ‖•‖0, ‖•‖1 and ‖•‖2 represent 439 

the 𝑙0-norm, 𝑙1-norm and 𝑙2-norm respectively. Last, every sample followed the 440 

same steps to obtain their normalized pseudo-ion intensities. A pseudo-ion matrix 441 

table was then produced, which included all cohorts and their corresponding 442 

preprocessed mass spectrometry data across the whole study. For each antibiotic, a 443 

drug-resistant or drug-susceptible group is defined as samples that are identified by 444 

the susceptibility result (i.e., those that were labeled as susceptible or resistant). 445 

 446 

Feature definition and selection. Every mass spectrum is a plot of peak intensities of 447 

the mass-to-charge ratio. However, to apply machine learning methods, a fixed-length 448 

feature representation is necessary. Following the data preprocessing step, with bin 449 

size 20 as equal intervals, 900 intensities of pseudo-ions were generated for each m/z 450 

interval. If no peak occurrence in some m/z intervals, the corresponding intensities 451 

would be zero. These 900 features were provided to the full models for the four-drug 452 

resistance prediction classifiers. The importance of individual features was measured 453 

using mean absolute SHAP values made on the dataset for the discovery population. 454 

In each model, implemented for all antibiotics, the selected features for the compact 455 

model were obtained with the settled threshold by which the mean absolute SHAP 456 

value larger than 0.1. The resulting 24, 18, 22 and 9 features, along with AST 457 

susceptibility classification for each training set, formed the corresponding compact 458 

models. 459 

 460 

XGBoost classifier.  461 

Classifiers for prediction were generated using an XGBoost model
26

 built with the 462 

tree booster. XGBoost is an efficient implementation of a gradient boosting 463 

framework for handling sparse data. We used the Python module xgboost to infer 464 

parameters for a classifier given labels of the resistant or susceptible group. Booster 465 

was set to gbtree, objective was set to binary: logistic, and the evaluation matric was 466 
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set to AUC. In both discovery population and replication population, the ratios of 467 

penicillin- resistant samples and fusidic acid susceptible samples are extremely high 468 

(Supplementary Table. 2). Therefore we excluded drug-resistant prediction for 469 

penicillin and fusidic acid. For the other four antibiotics, the training thus comprised 470 

four paralleled processes with four settings in which the models may be implemented 471 

in practice. 472 

 473 

XGBoost classifier depends on its optimized parameters, including the number of 474 

iteration (nrounds), the learning rate (eta), and the maximum depth of a tree 475 

(max_depth). Grid search approach was with the following search range: nrouncds ∈ 476 

[40-200, with an interval of 10], eta ∈ [0.0001, 0.001, 0.01, 0.05, 0.1, 0.2, 0.25, 0.3, 477 

0.5], max_depth ∈ [2, 4, 6, 8, 10, 12]. Hyperparameters were selected following a 478 

cross-validated grid search, with the following settings selected (Supplementary Table. 479 

4). 480 

 481 

XGBoost classifiers were first trained on a subset of the discovery population of 482 

Linkou cohort (that is, the training set), and then were applied to the remaining data 483 

(that is, validation set), to infer the ability of the classifier to classify new data. A 484 

bootstrap sample size was set to 70% of the training set. The purpose of CV is not to 485 

build models but to assess the stability of the model performance. Final models were 486 

built on the whole discovery population based on the trained hyperparameters. 487 

 488 

External validation on Kaohsiung cohort. To evaluate the predictive ability of the 489 

classification scheme while considering an independent patient cohort. The replication 490 

population of Kaohsiung cohort was used for external validation. We performed 491 

identical data preparation and pre-processing with the discovery population from 492 

Linkou cohort. Since the disproportional resistant samples of the drugs penicillin and 493 

fusidic acid, we applied the trained XGBoost classifier models on the Kaohsiung data. 494 

To predict the drug resistance for Oxacillin, Erythromycin, Clindamycin, 495 

trimethoprim-sulfamethoxazole. We used standardized classifier parameters and 496 

standardized thresholds that were inferred based on the same training set to generate a 497 

series of classification models on each drug resistance labels and assessed the 498 

accuracy and discriminatory power of these models using AUROC and AUPRC. For a 499 

developed classifier, the assessment was based on its accuracy and discriminatory 500 

power. A receiver operating characteristic curve, or ROC curve, illustrates the 501 

diagnostic/classification ability of a binary classifier system as its prediction threshold 502 

is varied from 1 to 0. True positive rate (sensitivity) and false positive rate 503 

(1-specificity) formed the ROC curve. Whereas AUROC varies between 0 and 1 — 504 

with a random choice yielding 0.5, to 1.0, an excellent classifier. 505 

 506 

Model interpretations. To discovery the feature importance and the relationship of 507 

individual features with the models, SHAP values
27

 were used to evaluate the feature 508 

contribution for model performance. How the impact of variables taking into 509 

consideration interacted with other variables were measured by SHAP values. For 510 
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each sample, the predicted result was separated by SHAP values into the contribution 511 

of every feature value. In this study, the Shapley value is used to discover the feature 512 

importance and evaluate how each feature makes impact to the complicated model. It 513 

originates in game theory approach, can segregate the prediction outcome of each 514 

sample to the constitution of the feature contributions. 515 

 516 

Denote 𝑥 as the input pseudo-ion vector for a sample. The 𝑓(𝑥) is the predicted 517 

outcome by the classifier 𝑓(⋅). The Shapley analysis can be given by the following 518 

equation: 519 

𝑓(𝑥) = 𝜙0 + 𝜙1 + 𝜙2 + ⋯+ 𝜙𝐿 

where 𝜙0 = 𝐸[𝑓(𝑥)] is the base Shapley value generated by the expectation of the 520 

model output over the training set. The 𝜙𝑙 = 𝜙𝑙(𝑓, 𝑥), 𝑙 ∈ {1,2,⋯ , 𝐿}  are the 521 

Shapley values related to the 𝐿 pseudo-ion features, which can represent the impact 522 

of the feature 𝑙 to the predict outcome 𝑓(𝑥). 523 

 524 

Clinical analysis of drug usage based on the prediction model. To evaluate the 525 

clinical impact on the AST prediction model, we recorded the antibiotic usage for 860 526 

cases across the 1-year test period (2018.7-2019.6). Oxacillin-resistant 527 

Staphylococcus aureus is resistant to most currently available beta-lactam 528 

antimicrobial agents, including cephalosporins, which is one of the most common 529 

beta-lactam antimicrobial agents. For the patients with Staphylococcus aureus 530 

infection, cephalosporins were prescribed as a matter of experience and clinicians 531 

wouldn’t change drugs until the traditional AST report came out in four days. With 532 

our prediction model, once the drug susceptibility was predicted, updated drug 533 

recommendations could be set in one day. To quantify and compare the doses of 534 

cephalosporins reduced by the algorithmic drug recommendations, we calculated 535 

actual total doses of cephalosporins and daily defined dose (DDD) of cephalosporins 536 

that is the standardized amount by WHO.  537 

 538 
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Supplementary Fig. 1 | Model features and performance. a, Receiver-operating 

characteristic curve of the binary classification task of CLI resistance, comparing the 

full model with the compact model. The full model contains 900 features 

(pseudo-ions), and the compact model contains 18 features. b, Precision-recall curve 

for the full and compact classification model. c, A summary plot of the SHAP values 

for the feature set of the compact model. Features are ranked by their overall 

importance in creating the final prediction. For each feature, every point is a specific 

sample, with colors ranging from red (high values of the predictor) to blue (low 

values of the predictor). d, Dependence plots for the top 3 features with the largest 

mean absolute SHAP value, showing peak intensities versus its SHAP value in the 

prediction model. OXA, oxacillin; CLI, Clindamycin; ERY, Erythromycin; SXT, 

Trimethoprim-sulfamethoxazole; comp, compact; AUC, area under the ROC Curve; 

AP, area under the precision recall curve. 
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Supplementary Fig. 2 | Model features and performance. a, Receiver-operating 

characteristic curve of the binary classification task of ERY resistance, comparing the 

full model with the compact model. The full model contains 900 features 

(pseudo-ions), and the compact model contains 22 features. b, Precision-recall curve 

for the full and compact classification model. c, A summary plot of the SHAP values 

for the feature set of the compact model. Features are ranked by their overall 

importance in creating the final prediction. For each feature, every point is a specific 

sample, with colors ranging from red (high values of the predictor) to blue (low 

values of the predictor). d, Dependence plots for the top 3 features with the largest 

mean absolute SHAP value, showing peak intensities versus its SHAP value in the 

prediction model. ERY, Erythromycin; comp, compact; AUC, area under the ROC 

Curve; AP, area under the precision recall curve. 
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Supplementary Fig. 3 | Model features and performance. a, Receiver-operating 

characteristic curve of the binary classification task of SXT resistance, comparing the 

full model with the compact model. The full model contains 900 features 

(pseudo-ions), and the compact model contains 9 features. b, Precision-recall curve 

for the full and compact classification model. c, A summary plot of the SHAP values 

for the feature set of the compact model. Features are ranked by their overall 

importance in creating the final prediction. For each feature, every point is a specific 

sample, with colors ranging from red (high values of the predictor) to blue (low 

values of the predictor). d, Dependence plots for the top 3 features with the largest 

mean absolute SHAP value, showing peak intensities versus its SHAP value in the 

prediction model. SXT, Trimethoprim-sulfamethoxazole; comp, compact; AUC, area 

under the ROC Curve; AP, area under the precision recall curve. 
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Discovery population 

(Linkou cohort) 

26852 samples 

Replication population 

(Kaohsiung cohort) 

4955 samples 

Drugs/Antibiotics Resistant 

samples (%) 

Susceptible 

samples (%) 

Resistant 

samples (%) 

Susceptible 

samples (%) 

PEN 25151 (93.7) 1701 (6.3) 4614 (93.1) 341 (6.9) 

ERY 15068 (56.1) 11784 (43.9) 2563 (51.7) 2392 (48.3) 

OXA 13860 (51.6) 12992 (48.4) 2369 (47.8) 2586 (52.2) 

CLI 11638 (43.3) 15214 (56.7) 1856 (37.4) 3099 (62.6) 

SXT 3794 (14.1) 23058 (85.9) 431 (8.6) 4524 (91.4) 

FA 2233 (8.3) 24619 (91.7) 269 (5.4) 4686 (94.6) 

 

Supplementary Table 1| Drug resistance rate for six antibiotics in two cohorts. 

Overview of study cohorts. PEN, Penicillin; ERY, Erythromycin; OXA, Oxacillin; 

CLI, Clindamycin; SXT, trimethoprim-sulfamethoxazole; FA, Fusidic Acid. 

 

 

 

 

 

 

 

 

 

 PEN(%) ERY(%) OXA(%) CLI(%) SXT(%) FA(%) 

PEN  59.2 55.1 45.5 15.1 8.5 

ERY 98.8  78.7 76.8 24.6 10.2 

OXA 100.0 85.6  72.9 26.3 10.5 

CLI 98.4 99.4 86.8  31.8 12.6 

SXT 99.8 97.8 96.1 97.7  28.1 

FA 95.6 68.8 65.0 65.7 47.7  

Supplementary Table. 2| Multi-drug resistant proportions in the discovery 

population of Linkou cohort. PEN, Penicillin; ERY, Erythromycin; OXA, Oxacillin; 

CLI, Clindamycin; SXT, trimethoprim-sulfamethoxazole; FA, Fusidic Acid. 
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Cephalosporins 
Total 

Amount 
TotalDDD 

CEFAZOLIN SODIUM 1GM/VIAL 208 69.3 

CEFUROXIME (SODIUM) 750MG/VIAL 16 4 

CEFTRIAXONE 1GM/VIAL 669 334.5 

CEFTAZIDIME 1G/VIAL 547 136.8 

CEFOPERAZONE SODIUM 500MG + 

SULBACTAM SODIUM 500MG）/VIAL（PC） 
514 128.5 

CEFTAZIDIME(TATUMCEF)500MG/VIAL 164 20.5 

CEFEPIME 500MG/VIAL 398 49.8 

Total 2516 743.4 

Supplementary Table. 3| The amount of unnecessary drug usage reduced by the 

prediction model. 

 

 

 

  

Antibiotic 

Parameter OXA ERY CLI SXT 

Booster gbtree 

Objective binary: logistic 

Evaluation matric AUC 

nrounds 459 471 329 154 

eta 0.05 0.05 0.1 0.05 

max_depth 10 9 11 8 

gamma 0 

lambda 0 

alpha 0 

min child weight 1 

sub sample 1 

colsample_bytree 1 

 

Supplementary Table. 4| Parameters for python xgboost module. 
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