

1 Single cell profiling in COVID-19 associated acute kidney injury 2 reveals patterns of tubule injury and repair in human

3

4 David Legouis^{*1,2}, Anna Rinaldi^{*3,4}, Gregoire Arnoux², Thomas Verissimo², Jennifer Scotti-Gerber⁴, Anna
5 Faivre^{2,6}, Manuel Schibler⁷, Andrea Rinaldi⁸, Maarten Naesens⁹, Kari Koppitch¹⁰, Jerome Pugin¹, Andrew P
6 McMahon¹⁰, Solange Moll⁵, Sophie de Seigneux^{2,6**}, Pietro E Cippà^{**3,4}

7

8 * First author equal contribution

9 ** Last author equal contribution

10

11 ¹ Division of Intensive Care, Department of Acute Medicine, University Hospital of Geneva, 1205 Geneva,
12 Switzerland

13 ² Laboratory of Nephrology, Department of Medicine and Cell Physiology, University Hospital and University
14 of Geneva, 1205 Geneva, Switzerland

15 ³ Laboratory of translational research, Ente Ospedaliero Cantonale, 6500 Bellinzona, Switzerland

16 ⁴ Division of Nephrology, Department of Medicine, Ente Ospedaliero Cantonale, 6900 Lugano, Switzerland

17 ⁵ Division of Pathology, Department of Diagnostic, University Hospital of Geneva, 1205 Geneva, Switzerland

18 ⁶ Division of Nephrology, department of Medicine, University Hospital of Geneva, 1205 Geneva, Switzerland

19 ⁷ Division of Infectious disease, Laboratory of virology, University Hospital of Geneva, 1205 Geneva,
20 Switzerland

21 ⁸ Institute of Oncological Research, 6500 Bellinzona, Switzerland

22 ⁹ Department of Microbiology and Immunology, KU Leuven, and Department of Nephrology and Kidney
23 Transplantation, University Hospitals Leuven, Leuven, Belgium.

24 ¹⁰ Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for
25 Regenerative Medicine and Stem Cell Research, University of Southern California, Los Angeles, CA, USA.

26

27 Corresponding authors:

28 Pietro Cippà, MD PhD, pietro.cippa@eoc.ch

29 Sophie de Seigneux, MD PhD, sophie.deseigneux@hcuge.ch

30

31

32

33

34 **Abstract**

35 The cellular mechanisms of kidney tubule repair are poorly characterized in human. Here, we applied single-
36 nucleus RNA sequencing to analyze the kidney in the first days after acute injury in 5 critically ill patients with
37 COVID-19. We identified abnormal proximal tubule cell states associated with injury, characterized by
38 altered functional and metabolic profiles and by pro-fibrotic properties. Tubule repair involved the plasticity of
39 mature tubule cells in a process of cell de-differentiation and re-differentiation, which displayed substantial
40 similarities between mouse and man. In addition, in man we identified a peculiar tubule reparative response
41 determining the expansion of progenitor-like cells marked by PROM1 and following a differentiation program
42 characterized by the sequential activation of the WNT, NOTCH and HIPPO signaling pathways. Taken
43 together, our analyses reveal cell state transitions and fundamental cellular hierarchies underlying kidney
44 injury and repair in critically ill patients.

45

46

47

48

49 **Main text**

50 The development of the mammalian kidney is a finite process, ending shortly before birth in humans (and
51 shortly after birth in mice).¹ Thereafter, the adult kidney loses the ability to generate new nephrons, and the
52 regenerative potential of the renal tubule depends on tissue repair. Acute kidney injury (AKI) is a common
53 clinical syndrome associated with adverse clinical outcomes, but current standard of care continues to rely
54 on hemodynamic optimization, avoidance of nephrotoxicity and renal replacement therapy. The application
55 of single cell technologies generated substantial advances in the molecular understanding of kidney biology
56 and disease,²⁻⁷ but the cellular mechanisms of kidney repair in critically patients are still poorly understood
57 because kidney biopsies are rarely performed in this clinical setting and because of relevant differences
58 among species.⁸⁻¹³

59

60 AKI emerged as a prevalent complication among patients with severe SARS-CoV2 infection: several
61 mechanisms can contribute to the pathophysiology of COVID-19 associated AKI, but acute tubular injury
62 secondary to hemodynamic instability, endothelial dysfunction and systemic inflammation is usually the main
63 factor in critically ill patients.¹⁴⁻¹⁶ We characterized by single nucleus RNA sequencing (snRNASeq) kidney
64 biopsies obtained from 5 critically ill patients with COVID-19 before planned withdrawal of resuscitation
65 measures. All patients developed AKI in the context of severe COVID-19 with respiratory failure, cytokine
66 storm and multi-organ involvement (**Table 1**). Notably, RT-PCR on renal tissue for SARS-CoV2 was
67 negative in all 5 biopsies and positive at low level in 6 out of 32 additional kidneys from 16 COVID-19
68 patients analyzed postmortem in our center (**Supplementary Information 1**), consistently with recent
69 reports suggesting that direct infection of the kidney is possible but other mechanisms of kidney damage
70 might be more relevant in COVID-19 associated AKI.¹⁷⁻¹⁹ The 5 patients suffered from stage 1 to 3 AKI, as
71 defined by the KDIGO classification in consideration of serum creatinine or urine output, and kidney biopsy
72 was obtained 6 to 26 days after AKI onset. One patient presented clinical and histological evidence for
73 thrombotic microangiopathy (**Extended Data Figure 1**), and all patients displayed tubular alterations at
74 different stages after tubular injury and of variable severity, (**Table 1, Figure 1a, b**), determining an ideal
75 model to study the early renal response to AKI in critically ill patients, a clinical context in which kidney
76 biopsies are rarely obtained.

77

78 The snRNASeq data were first integrated with 3 controls from available datasets generated with similar
79 tissue processing and single cell technology for data control and validation (**Figure 1c**).⁵ After data
80 processing and quality control, we obtained 35,299 single cell transcriptomes (20,165 from COVID19
81 patients and 15,134 from controls (**Extended Data Figure 2**). Based on established cell type markers we
82 identified all expected kidney cell populations (**Figure 1d, e and Extended Data Figure 3, Supplementary**
83 **information 2**). The number of immune cells detected by snRNASeq was very low, reflecting the absence of
84 prominent inflammatory infiltrates observed by conventional histology. The most prominent finding in the
85 snRNASeq analyses was in the proximal tubule (PT) compartment (marked by LRP2 and CUBN) (**Figure 1 f,**
86 **g**), consistently with the pathological findings observed by conventional histology (**Figure 1a, b**). We found
87 abnormal PT cells in all samples obtained from COVID-19 patients, including patients with minimal
88 histological alterations.

89

90 In the focused analysis on the PT, we found a subset of cells displaying the classical transcriptional profile of
91 mature PT cells and a large heterogenous cluster of abnormal cells (**Figure 2a, b**). The general comparison
92 between mature and abnormal PT cells highlighted the reduction of genes associated with renal tubule
93 functions, such as electrolyte transport and fatty acid metabolism, and activation of NOTCH signaling
94 (**Figure 2c**). A subset of those undifferentiated PT cells displayed classical markers of tubular injury, such as
95 HAVCR1 and VCAM1 (**Figure 2d**). Secondary validation by immunohistochemistry indicated that cells
96 marked by HAVCR1 and VCAM1 corresponded to the undifferentiated, flattened tubular cells, typically
97 observed after tubular injury (**Figure 2e, f and Extended Data Figure 4**).²⁰ The general characterization of
98 the undifferentiated PT cells highlighted an altered cell metabolism, with a switch from fatty acid oxidation
99 and gluconeogenesis to glycolysis, a shift from de novo to salvage pathway in NAD biosynthesis and
100 evidence for altered mitochondrial biogenesis (**Figure 2g**).²¹⁻²³ Moreover, undifferentiated PT cells displayed
101 higher extra-cellular matrix scores, consistent with their potential role in the mechanisms determining the
102 transition to chronic kidney disease (**Figure 2g**), as previously postulated^{2,6} and in line with the observation
103 of fibrotic tissue surrounding HAVCR1 marked cells in the patients with a prolonged delay between AKI
104 onset and kidney biopsy (**Figure 2h-i**).

105
106 Normal and undifferentiated PT cell clusters were connected by two cell state transitions (trajectory #1 and
107 #2 in **Figure 3a, Supplementary information 3**). Trajectory #1 was more prominent in patient with more
108 severe AKI (i.e. in patients with relevant increase in serum creatinine) and higher inflammatory cytokine
109 levels (**Extended Data Figure 5**). The gene expression profile characterizing cells in trajectory #1 was
110 reminiscent of the very early response to AKI previously characterized in kidney biopsies performed after
111 organ reperfusion in the setting of transplantation¹³ (e.g. increase in genes associated with EGFR, VEGF),
112 but this was not the case for cells in trajectory #2 (**Extended Data Figure 6**). Therefore, we hypothesized
113 that trajectory #1 would correspond to the early tubular response to injury, leading to cell de-differentiation
114 (and likely cell death in a subset of cells), whereas trajectory #2 would represent the processes of cell de-
115 and re-differentiation along the mechanisms of cell plasticity in tubule repair previously characterized in mice
116 (**Figure 3b**).^{7,10} We used a mouse model of ischemia-reperfusion injury (IRI) to verify the hypothesis and
117 compare this processes across species. We extracted from snRNAseq data the transcriptional profiles of PT
118 cells in the first hours/days after injury to study the early response to injury (**Figure 3c, Extended Data**
119 **Figure 7**). Moreover, to track the PT re-differentiation process, we injected 5-ethynyl-2'-deoxyuridine (EDU)
120 48h after moderate ischemia-reperfusion injury and we sorted EDU+ nuclei 48h and 26 days later (**Figure**
121 **3d, Extended Data Figure 8, Supplementary information 4**). Reparative cells proliferate and integrate
122 EDU in the early phase after injury and maintain this label in the following days.²⁴ EDU+ cells were in a
123 dedifferentiated cell state 96h but recovered to a fully differentiated phenotype at day 28 after injury.²¹ The
124 comparison between this controlled injury/repair process and the human dataset highlighted similar gene
125 expression transitions in the early and in the reparative phase across species (**Figures 3e-g**). For a better
126 characterization the underlying biological processes, we identified genes following similar gene change
127 patterns along the pseudotime and we performed gene enrichment analysis in the corresponding gene sets.
128 The early injury trajectory was characterized by the reduction first of genes related to cell metabolism and
129 then to ion transport, in parallel we observed an increase in genes associated with cell death, toll-like
130 receptor signaling and cell adhesion molecules (**Extended Data Figure 9**). Along the re-differentiation

131 transition PT cells re-acquired their classical metabolic and transporter functions and progressively lost
132 genes involved in cell mitosis, adhesion and motility, and genes associated with EGF, PDGF and AGR
133 signaling; we also found a set of genes associated with epithelial morphogenesis showing a transient
134 increase along the trajectory (**Extended Data Figure 10**). Thus, the early response to injury and the process
135 of tubule repair by dedifferentiation and redifferentiation of mature PT cells similarly occurs in mouse and
136 human.

137
138 Undifferentiated PT cells displayed a higher level of cell heterogeneity in man than in mouse, with the
139 presence of additional cell clusters marked by PROM1 and CD24 in the human dataset, reminiscent of
140 multipotent progenitor cells previously described in adult human kidney (**Figure 4a**).⁸⁻¹⁰ PROM1 expression
141 was mutually exclusive with markers of tubular injury, as assessed by snRNAseq and validated by
142 immunohistochemistry, whereas we observed a partial overlap between PROM1 and PAX8 (**Figure 4b**,
143 **Extended Data Figure 11**). In fact, pseudotime analysis revealed a sequential expression of genes involved
144 in stem and progenitor cell biology, starting from a population enriched for LGR5, KRT7, CD24 and other
145 progenitor cell markers (**Figure 4c**).^{8,25} However, PROM1 positive cells identified by immunohistochemistry
146 did not form defined clusters but were broadly distributed in tubules undergoing repair (**Figure 4b**). This
147 finding was consistent with the activation of a reparative response determining the transition to a progenitor-
148 like transcriptional profile and not with the expansion of predefined progenitor cells in the adult human
149 kidney. To comprehensively analyze the cell state transition from this progenitor-like cell state to mature PT
150 cells we identified genes following similar gene change patterns along the pseudotime and we performed
151 gene enrichment analysis in the corresponding gene sets. The cells progressively lost the expression of
152 genes associated with kidney development (e.g. EYA1, FGF1, **Figure 4e, Supplementary Information 5**).
153 We found an intermediate state related to cell proliferation and change in cell structure and organelle
154 organization (**Figure 4d,f, Supplementary Information 5**), followed by the expression of genes related to
155 carbohydrate, amino acid and lipid metabolism and transmembrane transport, determining the differentiation
156 into mature PT cells (**Figure 4g, Supplementary Information 5**). A specific analysis on the main pathways
157 involved in this process revealed the early activation of WNT, followed by NOTCH, HIPPO and calcium
158 signaling, with an increase in HNF4 activity in the last cell maturation steps (**Figure 4h**).
159

160 Thus, by integrating snRNAseq data from several kidney biopsies in the first weeks after AKI in critically ill
161 patients with COVID19 we generated the first map of PT injury and repair in human. Early injury response
162 and the fundamental processes of tubule cell plasticity were similar in mouse and man. However, the
163 activation of a reparative response starting from a progenitor-like cell state and partially recapitulating
164 nephrogenesis has not been observed in the mouse but is likely to involve previously identified cell types.^{9,25}
165 An intermediate cell state characterized by loss of PT functions and altered metabolic properties emerged as
166 a common step in the process of tubule injury and along the tubule repair process with indirect evidence
167 suggesting a potential role of those cells in promoting fibrosis. The COVID19 pandemics determined a
168 unique clinical setting to study kidney repair in severely ill patients and to characterize for the first time the
169 fundamental cellular mechanisms of tubule repair in the early phase after AKI at single cell resolution.
170

171

172 **Acknowledgments**

173 We thank Andrea Alimonti for supporting the project and Lorenzo Ruinelli for data management support.

174

175 **Funding**

176 The P.C.'s laboratory was supported by the Balli foundation, the Gianella foundation and by the Swiss
177 Kidney Foundation. A.R. is supported by a NCCR.Kidney.ch junior grant (N-403-02-21) and by the Ente
178 Ospedaliero Cantonale. S.dS. was funded by a SNF grant 320030 204187 and PP00P3_187186 and the
179 NCCR.Kidney.ch. D.L. and S.dS. were supported by a STARTER grant from the Fondation des HUG. Work
180 in the A.P.M.'s laboratory was supported by a ReBuilding the Kidney partnership grant from NIDDK
181 (U01DK107350) and by a ReBuilding the Kidney program grant (UC2DK126024).

182

183

184 **References**

1. McMahon, A.P. Development of the Mammalian Kidney. *Curr Top Dev Biol* **117**, 31-64 (2016).
2. Kuppe, C., et al. Decoding myofibroblast origins in human kidney fibrosis. *Nature* **589**, 281-286 (2021).
3. Muto, Y., et al. Single cell transcriptional and chromatin accessibility profiling redefine cellular heterogeneity in the adult human kidney. *Nat Commun* **12**, 2190 (2021).
4. Miao, Z., et al. Single cell regulatory landscape of the mouse kidney highlights cellular differentiation programs and disease targets. *Nat Commun* **12**, 2277 (2021).
5. Wilson, P.C., et al. The single-cell transcriptomic landscape of early human diabetic nephropathy. *Proc Natl Acad Sci U S A* **116**, 19619-19625 (2019).
6. Krita, Y., Wu, H., Uchimura, K., Wilson, P.C. & Humphreys, B.D. Cell profiling of mouse acute kidney injury reveals conserved cellular responses to injury. *Proc Natl Acad Sci U S A* **117**, 15874-15883 (2020).
7. Gerhardt, L.M.S., Liu, J., Koppitch, K., Cippa, P.E. & McMahon, A.P. Single-nuclear transcriptomics reveals diversity of proximal tubule cell states in a dynamic response to acute kidney injury. *Proc Natl Acad Sci U S A* **118**(2021).
8. Sagrinati, C., et al. Isolation and characterization of multipotent progenitor cells from the Bowman's capsule of adult human kidneys. *J Am Soc Nephrol* **17**, 2443-2456 (2006).
9. Bussolati, B., et al. Isolation of renal progenitor cells from adult human kidney. *Am J Pathol* **166**, 545-555 (2005).
10. Chang-Panesso, M. & Humphreys, B.D. Cellular plasticity in kidney injury and repair. *Nat Rev Nephrol* **13**, 39-46 (2017).
11. Humphreys, B.D., et al. Repair of injured proximal tubule does not involve specialized progenitors. *Proc Natl Acad Sci U S A* **108**, 9226-9231 (2011).
12. Kusaba, T., Lalli, M., Kramann, R., Kobayashi, A. & Humphreys, B.D. Differentiated kidney epithelial cells repair injured proximal tubule. *Proc Natl Acad Sci U S A* **111**, 1527-1532 (2014).
13. Cippa, P.E., et al. Transcriptional trajectories of human kidney injury progression. *JCI Insight* **3**(2018).
14. Ronco, C., Reis, T. & Husain-Syed, F. Management of acute kidney injury in patients with COVID-19. *Lancet Respir Med* **8**, 738-742 (2020).
15. Nadim, M.K., et al. COVID-19-associated acute kidney injury: consensus report of the 25th Acute Disease Quality Initiative (ADQI) Workgroup. *Nat Rev Nephrol* **16**, 747-764 (2020).
16. Legrand, M., et al. Pathophysiology of COVID-19-associated acute kidney injury. *Nat Rev Nephrol* (2021).
17. Su, H., et al. Renal histopathological analysis of 26 postmortem findings of patients with COVID-19 in China. *Kidney Int* **98**, 219-227 (2020).
18. Santoriello, D., et al. Postmortem Kidney Pathology Findings in Patients with COVID-19. *J Am Soc Nephrol* **31**, 2158-2167 (2020).
19. Braun, F., et al. SARS-CoV-2 renal tropism associates with acute kidney injury. *Lancet* **396**, 597-598 (2020).
20. Thadhani, R., Pascual, M. & Bonventre, J.V. Acute renal failure. *N Engl J Med* **334**, 1448-1460 (1996).

226 21. Legouis, D., *et al.* Altered proximal tubular cell glucose metabolism during acute kidney injury is
227 associated with mortality. *Nat Metab* **2**, 732-743 (2020).

228 22. Kang, H.M., *et al.* Defective fatty acid oxidation in renal tubular epithelial cells has a key role in
229 kidney fibrosis development. *Nat Med* **21**, 37-46 (2015).

230 23. Bhargava, P. & Schnellmann, R.G. Mitochondrial energetics in the kidney. *Nat Rev Nephrol* **13**, 629-
231 646 (2017).

232 24. Salic, A. & Mitchison, T.J. A chemical method for fast and sensitive detection of DNA synthesis in
233 vivo. *Proc Natl Acad Sci U S A* **105**, 2415-2420 (2008).

234 25. Lindgren, D., *et al.* Isolation and characterization of progenitor-like cells from human renal proximal
235 tubules. *Am J Pathol* **178**, 828-837 (2011).

236

1 **Figure 1** a) Histopathology of a representative renal cortical area showing diffuse acute tubular
2 lesions characterized by non-isometric sloughing of tubular epithelial cell and brush border loss (boxed
3 area). Sparse foci of atrophic tubules are noted (red arrows heads). Red arrow indicates complete loss
4 of the brush border. Periodic Acid-Schiff stain, b) Representative deeper cortical section showing
5 advanced chronic lesion with moderate inflammation and interstitial fibrosis with atrophic tubules and
6 tubular cast formation (red arrows). Rare foci of acute tubular lesion are noted. Periodic Acid-Schiff
7 stain, c) Schematic of the data integration strategy, d) Dotplot of cell cluster marker genes identified in
8 Covid-19 AKI and control samples (dot size indicates the percentage of positive cells and color
9 indicated relative expression), e-f) UMAP representation of the 13 cell types identified by unsupervised
10 clustering of the whole dataset (e) and split in the control and Covid-19 groups (f), g) scatterplot from
11 the UMAP projection showing the gene-weighted density of genes of interest. PT, proximal tubule;
12 ATL, thin ascending limb of the loop of Henle; TAL, thick ascending limb of the loop of Henle; POD,
13 podocytes; MD, macula densa; DCT, distal convoluted tubule; CNT, connecting tubule; ICA, type A
14 intercalated cells of the collecting duct; ICB, type B intercalated cells of the collecting duct; PC,
15 principal cells; CD, collecting Duct; EC, endothelial cells.

16

17 **Figure 2** a) Representative schematic of the clustering strategy to focus analyses on PT cells from
18 Covid-19-AKI samples, b) Scatterplot showing the projection of two cell types identified by supervised
19 clustering of the PT dataset projected on the UMAP, c) Barplots showing the enrichment score of PT
20 cells compares to undifferentiated cells, calculated by Gene Set Enrichment Analysis using Reactome
21 pathways database (positive enrichment means an enrichment in undifferentiated cluster), d)
22 Scatterplot from the UMAP projection showing the gene-weighted density of genes of LRP2,
23 SLC34A1, HAVCR1 and VCAM1, e,f) Representative immunostainings of HAVCR1 (e) and VCAM-1
24 (f) proteins in atrophic tubules, g) Violin plots showing the activity of the the following pathways:
25 glycolysis, gluconeogenesis, Fatty Acid Oxidation (FAO), Tricarboxylic Acid Cycle (TCA),
26 Mitochondrial biogenesis (MitoBiogenesis), NAD synthesis from de novo pathway (DeNovoNAD), NAD
27 synthesis from salvage pathway (SalvageNAD) and ExtraCellularMatrix (ecm), in mature PT and
28 undifferentiated cells, h,i) Representative immunostainings of HAVCR1 (h) and VCAM-1 (i) proteins in
29 fibrotic area, *** p < 0.001 **** p < 0.0001.

30

31 **Figure 3** a) Scatterplot showing the projection of the four cell types identified by supervised clustering
32 of the PT dataset projected on the UMAP, b) Schematic model of the injury and repair processes
33 undergoing in PT cells, c,d) schematic diagram of the experimental procedures to study the
34 dedifferentiation (c) and redifferentiation (d) processes: mice underwent ischemia reperfusion induced
35 acute kidney injury (with an EDU injection at day2 for the redifferentiation process) and were sacrificed
36 at different timepoints (4h, 12h, 48h, 4 days and 28 days). The kidneys were harvested, the nuclei
37 isolated by FAC sorting via DAPI staining and sequenced at single cell resolution. After data
38 integration and clusterisation, the UMAP reductions were used as an input for pseudotime inference
39 by slingshot (black line) with color indicating the timeline of the pseudotime, grey beeing pseudotime 0
40 and dark red the latest pseudotime, e,f) Heatmap showing the expression pattern over pseudotime of

41 selected AKI related genes in man (left) and mouse (right), for the cell differentiation (e) and
42 redifferentiation (f) processes, g) histogram and density curves showing the distribution of the
43 dissimilarity index, calculated for each couple of genes, shared by the Covid19 and the mice model
44 and for each trajectory#1 and trajectory#2.

45
46 **Figure 4** a) Scatterplot from the UMAP projection showing the gene-weighted density of genes of
47 PROM1 and CD24, b) Representative immunostainings for PROM1 (left panel), HAVCR1 (middle
48 panel) and VCAM1 (right panel) proteins in tubules (controls are shown in **Extended Data Figure 4**),
49 c) Heatmap showing the expression pattern over pseudotime of kidney progenitor genes, from
50 undifferentiated cluster to mature PT, d) score activity along pseudotime for G2M-phase (red), S-
51 phase (green) and Proliferation Index (PI, blue), e-g) pathway enrichment using genes with a similar
52 expression pattern along time as an input, left panels showing the individual gene expression along
53 time in grey and the generalized additive smooth model in green, middle panels showed a selection of
54 5 or the most associated pathways and right panels the related P-values and h) normalized pathway
55 activity along pseudotime.

56

57 **Extended Data Figure 1** Representative illustration of a renal thrombotic microangiopathy observed
58 in patient #2, characterized by intracapillary fibrinous thrombi and subsequent ischemic alteration with
59 glomerular retraction and non-isometric sloughing of tubular epithelial cell. Red arrows indicated
60 fibrinous thrombus. Periodic Acid-Schiff (left panel) and Masson's trichrome (right panel) stains.

61

62 **Extended Data Figure 2** Summary of the data integration strategy

63

64 **Extended Data Figure 3** Heatmap showing the expression of the top 5 genes for each cell cluster

65

66 **Extended Data Figure 4** Representative immunostaining of PROM1, HAVCR1 and VCAM1 proteins
67 in normal kidney.

68

69 **Extended Data Figure 5** a,b) Scatterplot showing the projection 4 cell states shown in figure 3a
70 identified by unsupervised clustering of the PT dataset projected on the UMAP and split by AKI
71 definition (a) or patient (b) and c) serum level of interleukins in the five included patients. The
72 interleukins level was normalized among patient for each interleukine.

73

74 **Extended Data Figure 6** Comparisons of pathways activity in two human datasets, a) Heatmap
75 showing pathways activity in every cell population defined in the PT cells from the Covid19 patients, b)
76 boxplots displaying the pathways activity calculated by Progeny in allograft kidney recipients' biopsies
77 collected before transplantation or after reperfusion.

78

79 **Extended Data Figure 7** Data analysis pipeline of single nucleus RNA seq data of mouse IRI kidney,
80 a) UMAP plot and dot plot of all integrated datasets (GSE139107, GSE151167) show the identification

81 of the different cellular component of the kidney according to standard markers of renal cell types. PT
82 cells have been selected. PT, proximal tubule cells; DTL, descending limb of loop of Henle; ATL, thin
83 ascending limb of loop of Henle; TAL, thick ascending limb of loop of Henle; POD, podocytes; MD,
84 macula densa; DCT, distal convoluted tubule; CNT, connecting tubule; ICA, type A intercalated cells of
85 collecting duct; ICB, type B intercalated cells of collecting duct; PC, principle cells; EC, endothelial
86 cells, b) UMAP plot shows the time points included in the datasets and in the red box the time points
87 selected to analyse dedifferentiation after injury (32452 genes x 4822 nuclei), c) UMAP of injured PT,
88 d) Trajectory of dedifferentiation using Slingshot, e) Featureplot of markers of differentiation and injury.
89

90 **Extended Data Figure 8** Data analysis pipeline of single nucleus RNAseq data on EDU+ sorted cells
91 obtained and controls (Six2) in the ischemia reperfusion injury (IRI) mouse model, a) EDU and SIX2
92 dataset integration: EDU+ cells obtained 96 h (n=2 replicates) and 28 days (n=2 replicates) after IRI
93 were merged with sham controls (n=3 replicates) (total 32'452 genes x 29'492 nuclei) and annotated
94 based on established markers, b) PT subset. PT cells and shared time points between datasets (96h
95 and 28d) were selected (32452 genes x 11506 nuclei), c) Subset S3 and PT1 (injured cells) from EDU
96 dataset. Further analyses were focused on those cells because tubular injury was mainly restricted to
97 this part of the nephron in this model (32'452 genes x 2'263 nuclei), d) Trajectory of differentiation
98 using Slingshot. e) Feature plot of markers of differentiation and injury.
99

100 **Extended Data Figure 9** Upper panel shows the individual (in grey) and smooth (in lightblue) gene
101 expression along dedifferentiation trajectory, grouped by clusters of similar pattern and lower table
102 indicates for each cluster of expression pattern, the top15 associated pathways and their relative
103 pvalues and false discovery rates.
104

105 **Extended Data Figure 10** Upper panel shows the individual (in grey) and smooth (in darkblue) gene
106 expression along redifferentiation trajectory, grouped by clusters of similar pattern and lower table
107 indicates for each cluster of expression pattern, the top15 associated pathways and their relative
108 pvalues and false discovery rates.
109

110 **Extended Data Figure 11** Genes coexpression, a,b) FeaturePlots showing the expression of PROM1,
111 HAVCR1 and coexpression of PROM1-HAVCR1 (a) and PROM1, PAX8 and coexpression of PROM1-
112 PAX8 (b) in the PT cells, c,d) Density plot showing, for each PT cell, the combined expression of
113 PROM1 and HAVCR1 (c) or PAX8 (d), red circles indicating density.
114

1 **Methods**

2

3 **Study approval**

4 All patients admitted to the intensive care unit of the Geneva University Hospitals between April 5th 2020 and
5 May 15th 2020 were screened. Patients were included if they met the following inclusion criteria: positive
6 covid status defined as a positive PCR for SARS-CoV-2 and pneumonia, older than 18, administration of
7 sedative and class III analgesic and if a decision of treatment withdrawal had been taken by the attendings
8 physicians. The consent was given orally by the next of kin, due to the ban on visits in force in our hospital.
9 The study was approved by the local ethical committee for human studies of Geneva, Switzerland (CCER
10 2020-00644, Commission Cantonale d'Ethique de la Recherche) and performed according to the Declaration
11 of Helsinki principles.

12

13 **Kidney biopsies**

14 Once the consent obtained, kidney biopsies were performed by DL and SDS, just before the therapeutic
15 withdrawal. Using 18G Automated biopsy guns (Max-Core, BardCare) in combination with real-time
16 ultrasound guidance, taking five cores' biopsies were collected from the right kidney. They were directly
17 frozen and stored at -80°C until process.

18

19 **Histology and immunochemistry**

20 Human kidney biopsy specimens were fixed with formaldehyde 4%, dehydrated and paraffin-embedded.
21 2µm kidney sections were stained with hematoxylin and eosin, periodic acid-Schiff, Jones, and Masson's
22 trichrome for evaluation of tubular injury, inflammatory infiltrate and kidney fibrosis. Immunochemistry
23 staining were performed as followed: after antigen retrieval with pressurized heating chamber in citrate buffer
24 pH7 or tris-EDTA pH9, 5 µm tissue sections were incubated with antibodies mouse monoclonal anti-human
25 HAVCR1 (dilution 1:250, clone 219211, RD Systems), rabbit polyclonal anti-human PROM1 (dilution 1:250,
26 Novus biological) and mouse monoclonal anti-human VCAM1 (dilution 1:25, clone 1.4C3, Invitrogen) for 1h
27 at room temperature. Then, the slides were incubated with the appropriate horseradish peroxidase-
28 conjugated secondary antibody (Dako, Via Real Carpintera, USA) for 30mn at room temperature. Slides
29 were developed using diaminobenzidine chromogen and then counterstained with Mayer hematoxylin.
30 Stained sections were examined with a Zeiss microscope (Zeiss, Oberkochen, Germany). Negative controls
31 were performed in absence of primary antibody.

32

33

34 **Single-nucleus RNA-seq analysis**

35 *Mouse EDU model*

36 The experimental model was previously characterized (Legouis et al., 2020; Liu et al., 2017). Briefly, 10- to
37 12-week-old, 25–28-g, male C57BL6/J or Six2TGC Rosa26rtTA pTREH2-GFP mice were anaesthetized with
38 an intraperitoneal injection of ketamine/xylazine (ketamine, 105 mg kg⁻¹; xylazine, 10 mg kg⁻¹). Body
39 temperature was maintained at 36.5–37.0 °C throughout the procedure. The kidneys were exposed by a
40 midline abdominal incision, and both renal pedicles were clamped using non-traumatic micro-aneurysm clips
41 (Roboz Surgical Instrument Co.). Ischemic period was 15 minutes. Restoration of blood flow was monitored

42 by the return of normal kidney colour after removal of the clamps. All mice received 1 ml of normal saline
43 intraperitoneally at the end of the procedure. Sham-operated mice underwent to the same procedure except
44 for clamping of the pedicles. Ethynyldeoxyuridine (0.05 mg g⁻¹; Sigma, Cat#900584) was injected 48 h
45 postoperatively to identify cells proliferating after injury. Kidneys were harvested at 96hr and 28days and
46 snap-frozen with liquid nitrogen.

47

48 *snRNA-seq sample processing*

49 Single nuclei isolation from tissue was performed as previously described (Legouis et al., 2020). Briefly,
50 frozen human sample biopsies or mouse renal tissues were cut into small pieces and transferred into a 2-ml
51 Dounce homogenizer (Sigma, Cat#D8938) loaded with 1 ml of NEZ Lysis Buffer (Sigma, Cat#N3408) with
52 RNase inhibitor (NEB, Cat#M0314) at final concentration of 0.4U/μl on ice. Samples were then Dounce
53 homogenized on ice with five strokes of the looser pestle every 2 min for 8 min (25 strokes in total). Samples
54 were then slowly Dounce homogenized 25 times with the tighter pestle on ice. The homogenized sample
55 was filtered through a 40-μm Falcon Nylon Cell Strainer, then the filter was washed with 8 ml of 1% BSA
56 PBS, and the nuclear suspension spin in a precooled (4 °C) centrifuge at 650g for 8 min. Supernatant was
57 removed, the pellet re-suspended in 2% BSA PBS with RNase inhibitor and nuclei from human biopsies
58 further filtered by 20-μm and 10-μm strainers and moved to a low-bind Eppendorf tube. Nuclei from murine
59 samples were sorted as DAPI and EDU positive on a BD Aria into 2% BSA solution with RNA inhibitor after
60 40um filtering. Nuclear quality and number were assessed with trypan blue staining.

61 Single-cell transcriptomes was performed using 10X Chromium single cell platform (10X Genomics) and
62 processed according to the 10X Chromium protocol. Barcoded single-cell gel beads in emulsion (GEMs)
63 were created by 10x Genomics Chromium TM and then reverse transcribed to generate single-cell RNA-seq
64 libraries using Chromium Single Cell 3' Library and Gel Bead Kit v2 (10X Genomics) according to
65 manufacturer's instructions. Resulting short fragment libraries were checked for quality and quantity using an
66 Agilent 2100 Bioanalyzer and Invitrogen Qubit Fluorometer. Sequencing Unique molecular identifiers (UMIs),
67 which were incorporated into the 5' end of cDNA during reverse transcription, were used to quantify the
68 exact number of transcripts in a cell. Paired-end sequencing was carried out on Illumina NextSeq500platform
69 using 150-cycle High Output.

70

71 *snRNA-seq data processing*

72 Sequencing data were processed by CellRanger (version 3.1.0) and reads were aligned to mouse pre-
73 mRNA reference genome (mm10 v3.0.0) and human reference genome (GRCh38-2020). The Cell Ranger
74 *cellranger count* function output filtered gene–cell expression matrices removing cell barcodes not
75 represented in cells. Finally, a UMI count table utilizing both exonic and intronic reads was generated for
76 downstream analysis. The whole data processing was executed by running the script on the Ente
77 Ospedaliero Cantonale server, Switzerland.

78 Seurat v4 in R v4 was used for downstream analyses, including normalization, scaling, and clustering of
79 nuclei. First, we analyzed each sample separately and excluded nuclei with less than 150 nFeature_RNA
80 detected or more than 4 times the absolute median of nFeature_RNA. We also excluded nuclei with a
81 relatively high percentage of UMIs mapped to mitochondrial genes (>1 and only for one human case >5) and
82 ribosomal genes (>1). Subsequently, we applied SoupX to remove ambient RNA contamination from the

83 human samples. Ambient RNA was estimated from the empty droplet pool with setting
84 “nonExpressedGeneList” to hemoglobin genes (<https://github.com/constantAmateur/SoupX>). We performed
85 curated doublet removal based on known lineage-specific markers. The samples were integrated to avoid
86 batch effect using Seurat standard work flow split by sample (*orig.ident*) for human samples and split by
87 *dataset* for mouse samples, see **Supplementary Information 1** for a detailed composition (“CovAKI dataset
88 detailed composition.xls”). Following ScaleData, RunPCA, FindNeighbours and FindCluster at a resolution of
89 0.5 were performed. FindAllMarkers generated the list of genes differentially expressed in each cluster
90 compared to all other cells, within the major subgroups defined (nephron cells, collecting duct, other cells)
91 based on the Wilcoxon rank-sum test and limiting the analysis to upregulated genes with a cut-off for
92 minimum log fold change difference 0.25) and minimum cells with expression (0.1); Results for the whole
93 dataset, the PT subset and the EDU assays are shown in **Supplementary Information 3**
94 (AllSamples_FindAllMarkers.xlsx), **Supplementary Information 4** (PT_Covid_FindAllMarkers.xlsx) and
95 **Supplementary Information 5** (EDU_FindAllMarkers.xls). Cluster reassignment was performed based on
96 manual review of lineage-specific marker expression.
97 Feature plots were drawn as scatterplots from a given reduction showing the gene-weighted density, using
98 the Nebulosa package.
99 Secondary Seurat analyses on PT cells employed the SubsetData function to create new r-objects from
100 cohorts of primary analysis. On the subset object, we applied the RunPCA function with default parameters
101 and RunUMAP on 30 dimensions with n.neighbors and min.dist set to 50 and 0.01 respectively. Pseudotime
102 inference was performed iteratively for the three defined trajectories using slingshot (v1.8.0), on the
103 previously clusterized Seurat object. For each trajectory, only the starting cluster was specified.
104 For each trajectory gene expression among pseudotime was fitted using tradeSeq (v1.5.10), by first running
105 the fitGAM function with 6 knots. The counts matrix, extracted from the Seurat object and the pseudotime
106 inferred by slingshot were used as inputs. The pattern clusterisation was then performed via the
107 clusterExpressionPatterns function, selecting genes that were significantly associated with pseudotime
108 (pvalue <0.05, in the output of the associationTest function).
109 For each pattern cluster, pathway enrichment was performed using hperR with a hypergeometric test and
110 the REACTOME, KEGG, GOBP, WIKI, BIOCARTA, and HALLMARK databases downloaded from the
111 Molecular Signature Database (<https://www.gsea-msigdb.org/gsea/msigdb/>) using the msigdb_gsets
112 function.
113 The pathway enrichment score of undifferentiated cells was performed with the gsePathway function from
114 the ReactomePA (v1.34.0) package, using a false discovery rate of 0.1 and a minimal geneSet size of 1.
115 The input list of genes was extracted from the Seurat object, with the FindAllMarkers function, using a
116 Wilcoxon test) and sorting according to the log-fold-change variable.
117 The HeatMap for gene expression among pseudotime was drawn with pheatmap using the scaled fitted
118 genes expression from the clusterExpressionPatterns output.

119 Score among clusters were calculated as previously described(Macosko et al., 2015) and summarized in
120 the tutorial by P.-Y. Tung (<https://jdblischak.github.io/singleCellSeq/analysis/cell-cycle.html>), using
121 normalized gene expression from the Seurat object as input and setting the gene correlation value to
122 0.1. The following genesets were used.

123 • For the metabolic analyses: GO:0034627, R-HSA-70171, R-HSA-70263, R-HSA-77289, R-HSA-
124 71403, R-HSA-1592230, R-HSA-197264. For gluconeogenesis (R-HSA-70263) and glycolysis (R-
125 HSA-70171) genesets, the shared genes were excluded.
126 • For the extra cellular matrix, we used the previously described geneset (Kuppe et al., 2021)
127 downloaded from
128 https://raw.githubusercontent.com/mahmoudibrahim/KidneyMap/master/assets/public/ecm_genes_human.txt".

130 For the proliferation and the pathway activity over time, we followed the same methods but using the
131 scaled fitted genes expression from the clusterExpressionPatterns function as the input matrix and the
132 following list of genes:

133 • For the S and G2:M scores, the previously described set of genes(Tirosh et al., 2016) for the S
134 and G2M scores.
135 • For the proliferation index, we used the metaPCNA score previously described (Venet et al.,
136 2011)
137 • For the NOTCH, HIPPO, CALCIUM and HNF4A pathways, we used the GO:0007219, GO:0035329,
138 GO:0019722 and M11410 genesets, downloaded from the Molecular Signature Database
139 (<https://www.gsea-msigdb.org/gsea/msigdb/>) using the msigdb_gsets function.

140 For the WNT pathway activity over time, we used PROGENY (v 1.12.0) with the scaled fitted genes
141 expression from the clusterExpressionPatterns function as the input matrix

142 For dissimilarity index, we first selected the gene significantly associated with pseudotime for both
143 human and mice datasets (pvalue<0.05 in the AssociationTest output from Tradeseq) and that were
144 shared among species. We then fitted the gene expression along pseudotime with the predictSmooth
145 function from Tradeseq. We finally calculated the Dissimilarity Index, for each pair of pseudotime related

146 fitted gene expression (<https://link.springer.com/content/pdf/10.1007/s11634-006-0004-6.pdf>) using
147 the TSclust package.

148 For the heatmap comparing pathways activity in the four clusters, we used PROGENY (v 1.12.0) or the score
149 described above with gene sets from the REACTOME database or the proliferation index and the
150 normalized gene expression from the Seurat object as input. The mean by cluster was thus calculated
151 and shown in a heatmap using pheatmap and row scaling. We used also PROGENY (v 1.12.0) for the
152 allograft kidney recipients RNAseq database. The raw counts were first normalized with the TMM
153 method from the EdgeR package and expressed as count per million. The resulting matrix was used as
154 an input in Progeny. The comparisons between pre and post transplantation samples were performed with a
155 Wilcoxon test.

156

157 *Public snRNA-Seq dataset integrated*

158 GEO datasets were downloaded from Gene Expression Omnibus (<http://www.ncbi.nlm.nih.gov/geo/>).
159 GSE131882 comprises 3 early human diabetic kidney samples and 3 controls characterized by single
160 nucleus RNA sequencing(Wilson et al., 2019). Control samples represent non-tumor tissue in patients
161 undergoing nephrectomy for renal mass. The control samples were integrated to the COVID-19 dataset.

162 GSE139107 includes a sum of 24 renal samples characterized by snRNA-seq as previously published (Kirita
163 et al., 2020). Briefly, bilateral IRI was induced for 18 minutes in C57B6/J 8- to 10-wk-old male mice and body
164 temperature was monitored and maintained at 36.5 to 37.5 °C throughout the procedure. Kidney were
165 harvested at 0,4,12,48 hrs, 14 days and 6 weeks post injury and analyzed by snRNA-seq using 10X
166 Genomics. The time points: 0,4,12 hrs have been selected and used to validated the dedifferentiation
167 trajectory.

168 GSE151167 includes 5 samples characterized by snRNA-seq as previously described (Legouis et al., 2020)
169 and reported in this paper. GSE151167 dataset was integrated to the EDU dataset generated in this paper.

170

171 **Data and Code Availability**

172 The new snRNA-seq data generated in this study will be deposited on GEO and the accession numbers will
173 be included here. The public datasets used are from GEO with the accession numbers: GSE131882 (Wilson
174 et al., 2019), GSE139107(Kirita et al., 2020), GSE151167(Legouis et al., 2020).

175

176

177 **References**

178 Kirita, Y., Wu, H., Uchimura, K., Wilson, P.C., Humphreys, B.D., 2020. Cell profiling of mouse acute kidney
179 injury reveals conserved cellular responses to injury. Proc Natl Acad Sci U S A 117, 15874-15883.
180 Kuppe, C., Ibrahim, M.M., Kranz, J., Zhang, X., Ziegler, S., Perales-Paton, J., Jansen, J., Reimer, K.C.,
181 Smith, J.R., Dobie, R., Wilson-Kanamori, J.R., Halder, M., Xu, Y., Kabgani, N., Kaesler, N., Klaus,
182 M., Gernhold, L., Puelles, V.G., Huber, T.B., Boor, P., Menzel, S., Hoogenboezem, R.M., Bindels,
183 E.M.J., Steffens, J., Floege, J., Schneider, R.K., Saez-Rodriguez, J., Henderson, N.C., Kramann, R.,
184 2021. Decoding myofibroblast origins in human kidney fibrosis. Nature 589, 281-286.

185 Legouis, D., Ricksten, S.E., Faivre, A., Verissimo, T., Gariani, K., Verney, C., Galichon, P., Berchtold, L.,
186 Feraille, E., Fernandez, M., Placier, S., Koppitch, K., Hertig, A., Martin, P.Y., Naeiens, M., Pugin, J.,
187 McMahon, A.P., Cippa, P.E., de Seigneux, S., 2020. Altered proximal tubular cell glucose
188 metabolism during acute kidney injury is associated with mortality. *Nat Metab* 2, 732-743.
189 Liu, J., Kumar, S., Dolzhenko, E., Alvarado, G.F., Guo, J., Lu, C., Chen, Y., Li, M., Delsing, M.C., Parvez,
190 R.K., Cippa, P.E., Krautzberger, A.M., Saribekyan, G., Smith, A.D., McMahon, A.P., 2017. Molecular
191 characterization of the transition from acute to chronic kidney injury following ischemia/reperfusion.
192 *JCI Insight* 2.
193 Macosko, E.Z., Basu, A., Satija, R., Nemesh, J., Shekhar, K., Goldman, M., Tirosh, I., Bialas, A.R., Kamitaki,
194 N., Martersteck, E.M., Trombetta, J.J., Weitz, D.A., Sanes, J.R., Shalek, A.K., Regev, A., McCarroll,
195 S.A., 2015. Highly Parallel Genome-wide Expression Profiling of Individual Cells Using Nanoliter
196 Droplets. *Cell* 161, 1202-1214.
197 Tirosh, I., Izar, B., Prakadan, S.M., Wadsworth, M.H., 2nd, Treacy, D., Trombetta, J.J., Rotem, A., Rodman,
198 C., Lian, C., Murphy, G., Fallahi-Sichani, M., Dutton-Regester, K., Lin, J.R., Cohen, O., Shah, P., Lu,
199 D., Genshaft, A.S., Hughes, T.K., Ziegler, C.G., Kazer, S.W., Gaillard, A., Kolb, K.E., Villani, A.C.,
200 Johannessen, C.M., Andreev, A.Y., Van Allen, E.M., Bertagnolli, M., Sorger, P.K., Sullivan, R.J.,
201 Flaherty, K.T., Frederick, D.T., Jane-Valbuena, J., Yoon, C.H., Rozenblatt-Rosen, O., Shalek, A.K.,
202 Regev, A., Garraway, L.A., 2016. Dissecting the multicellular ecosystem of metastatic melanoma by
203 single-cell RNA-seq. *Science* 352, 189-196.
204 Venet, D., Dumont, J.E., Detours, V., 2011. Most random gene expression signatures are significantly
205 associated with breast cancer outcome. *PLoS Comput Biol* 7, e1002240.
206 Wilson, P.C., Wu, H., Kirita, Y., Uchimura, K., Ledru, N., Rennke, H.G., Welling, P.A., Waikar, S.S.,
207 Humphreys, B.D., 2019. The single-cell transcriptomic landscape of early human diabetic
208 nephropathy. *Proc Natl Acad Sci U S A* 116, 19619-19625.
209

	Normal range	#1	#2	#3	#4	#5
Demographics						
Gender		female	male	female	male	male
Age		79	57	69	76	69
BMI (kg/m ²)		34	25	20	28	26
Comorbidities						
Hypertension		1	0	0	1	0
Diabetes		1	0	0	0	0
Chronic obstructive pulmonary disease		0	0	0	0	0
Chronic kidney disease		0	0	0	0	0
History of cancer		1	1	0	0	0
Respiratory involvement, complications and severity scores						
Mechanical ventilation (days)		10	2	21	17	26
VV-ECMO		0	0	0	0	1
Septic shock		0	1	0	0	1
Deep vein thrombosis		0	0	0	0	1
APACHE II score		19	33	8	30	15
SAPS II score		82	78	40	70	46
SOFA score		7	8	7	3	9
Lab values at the day of kidney biopsy						
Hemoglobin (g/L)	140-180	80	67	74	117	49
Leukocytes (G/L)	4-11	9.3	12	10.4	8.5	24.9
Platelets (G/L)	150-350	326	13	191	262	166
Neutrophils (G/L)	1.5-7.5	8.18 (88%)	10.08 (84%)	9.05 (87%)	7.57 (89%)	22.41 (90%)
Lymphocytes (G/L)	1-4.5	0.09 (1%)	0.36 (3%)	0.94 (9%)	0.34 (4%)	0.87 (3.5%)
D-Dimer (ng/mL)	45-500	5416	8810	795	2459	9865
LDH (U/L)	87-210	339	463	360	257	572
C3 (g/L)	0.66-1.35	1.75	1.48	1.3	1.78	0.8
C4 (g/L)	0.08-0.34	0.28	0.26	0.19	0.27	0.2
TNF α (pg/mL)	<4	17.96	5.6	6.16	1.42	3.2
IL6 (pg/mL)	<1.5	73.9	1190.5	474.1	3.76	6.8
IL8 (pg/mL)	<90	122.5	84.2	290	45.91	32.5
IL10 (pg/mL)	<1	2.5	5.9	3.33	<1	3.8

MCP1 (pg/mL)	50-260	1539	1243.2	1715	302	115.2
Kidney function						
Baseline serum creatinine (µmol/l)		150	95	66	76	80
Peak serum creatinine (µmol/l)		351	586	80	96	109
Serum creatinine at sampling (µmol/l)		175	219	61	62	39
AKI stage (KDIGO)		2	3	2	2	1
AKI criterium		creatinine	creatinine	oliguria	oliguria	oliguria
Days between AKI onset and biopsy		6	9	18	15	25
Renal replacement therapy		0	1	0	0	0
Urinalysis at the day of biopsy						
Protein (g/L)		0.56	1.21	1.26	0.44	0.13
Albumin (mg/L) (<10)		65	82	42	12	11
Creatinine (mmol/l)		1.9	2.3	3.9	5.3	3.3
Phosphate (mmol/l)		10.5	18.4	23	50	18.2
Magnesium (mmol/l)		2.33	2.41	5.18	6.37	2.22
Histological findings						
Tubule		Severe tubular atrophy	Moderate acute tubular lesion and atrophy	Moderate acute tubular lesion	Slight tubular atrophy	Moderate tubular atrophy
Interstitial fibrosis		Slight	Slight	Slight	Moderate	Slight
Interstitial inflammation		Focal	Absent	Focal	Absent	Absent
Pathology others			TMA		HN	

Table 1 Clinical characteristics of the patients.

AKI: acute kidney injury; HN: hypertensive nephropathy; TMA: thrombotic microangiopathy; VV-ECMO veno-venous extracorporeal membrane oxygenation.

Main figures

Figure 1

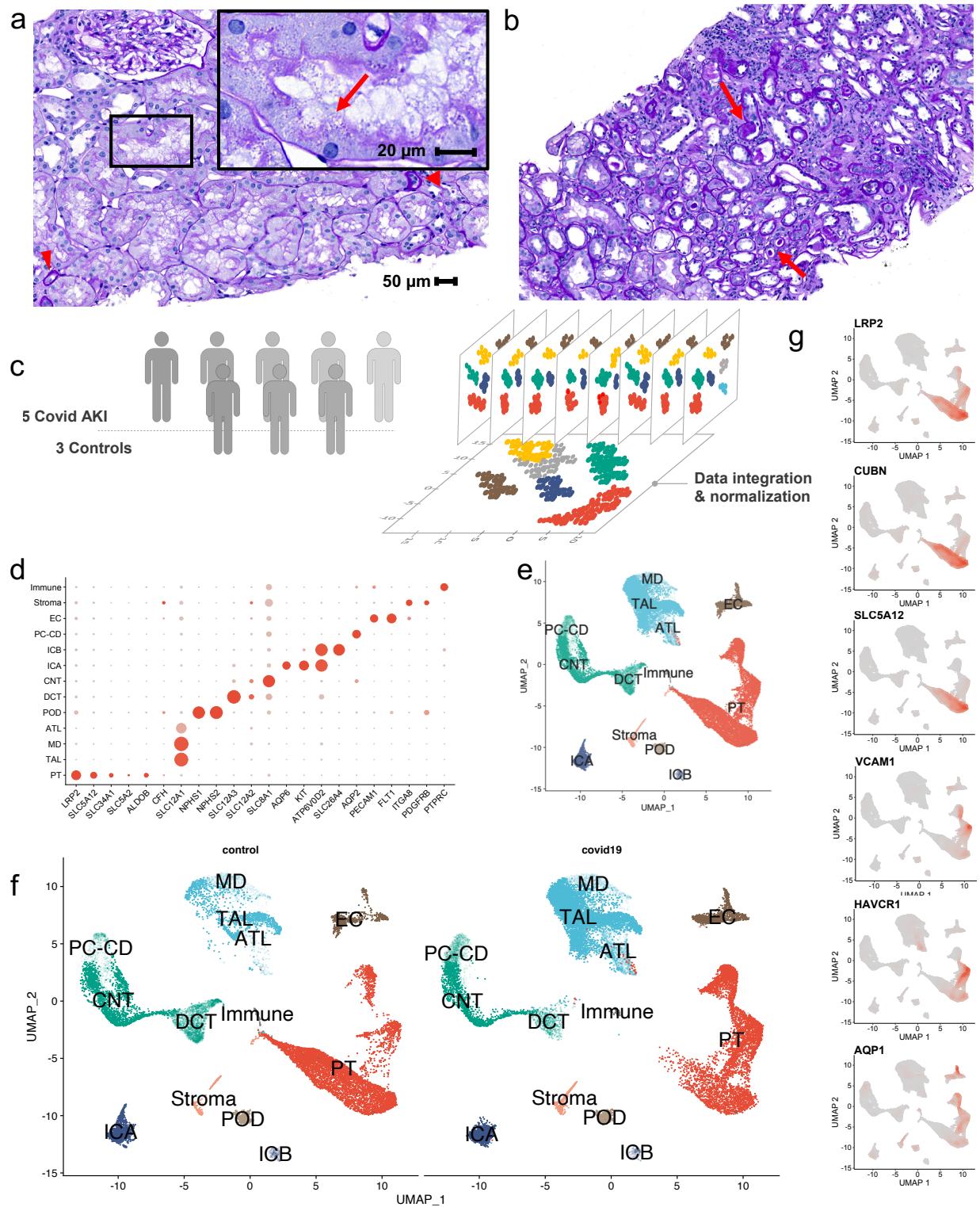


Figure 2

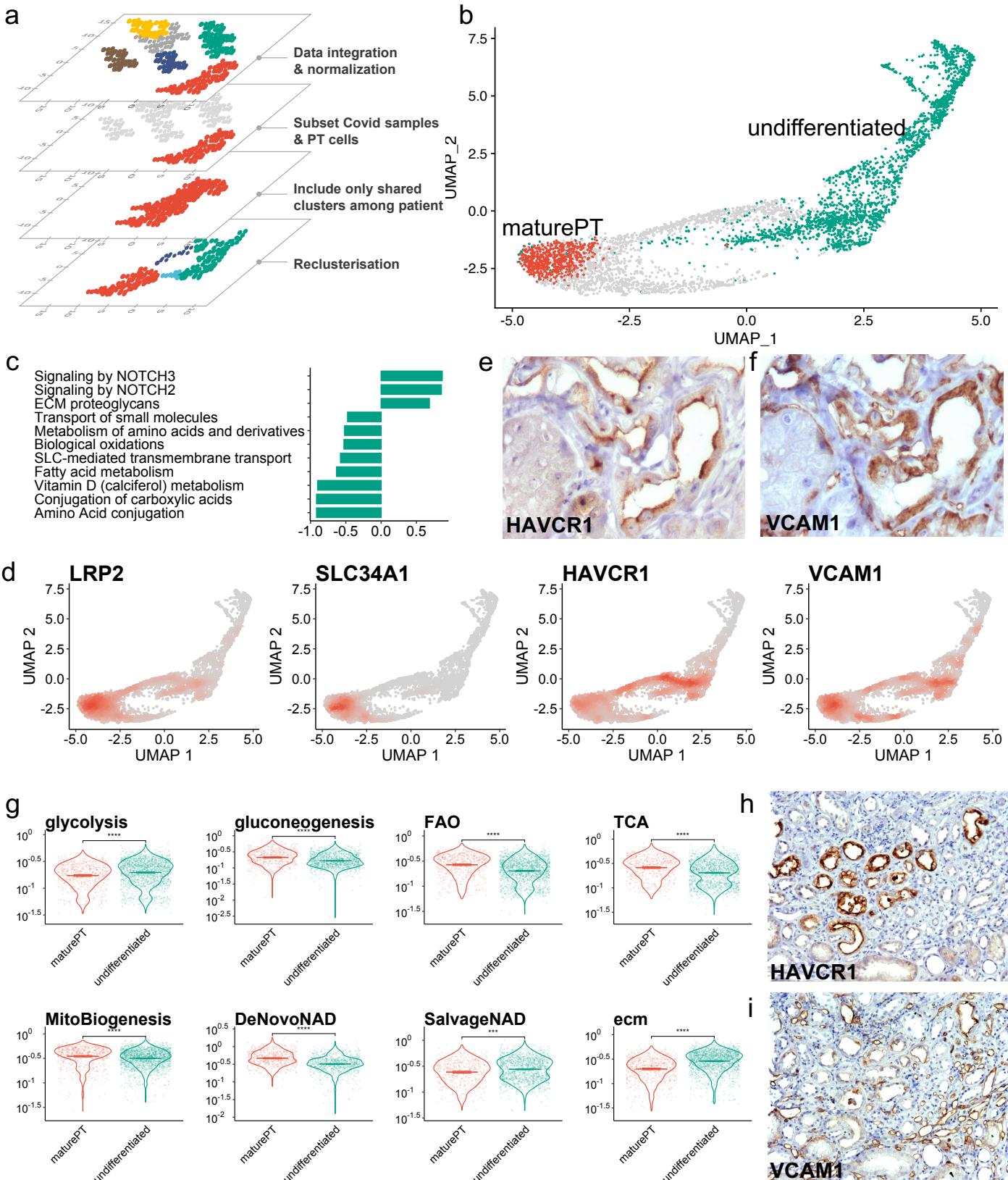


Figure 3

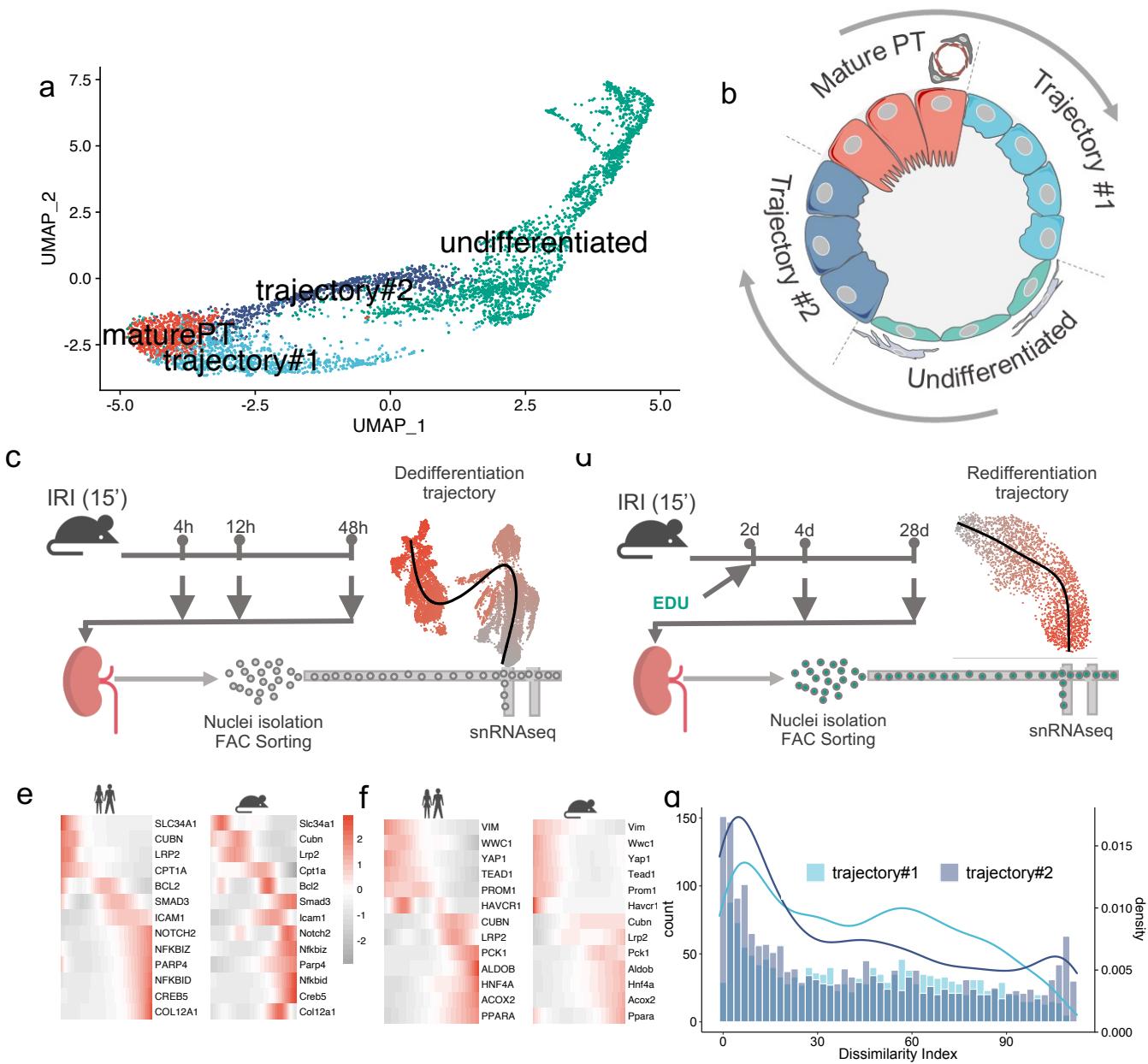
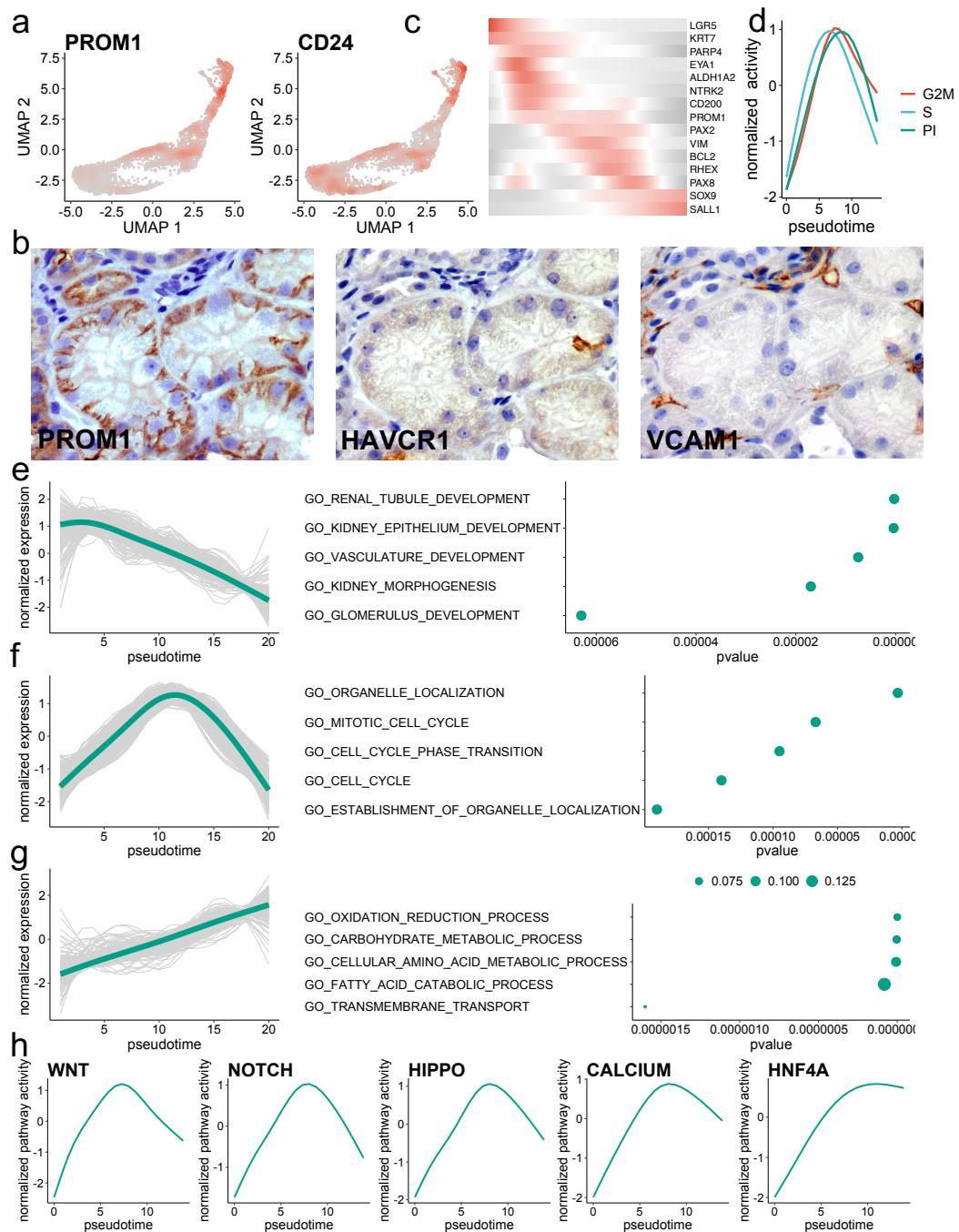
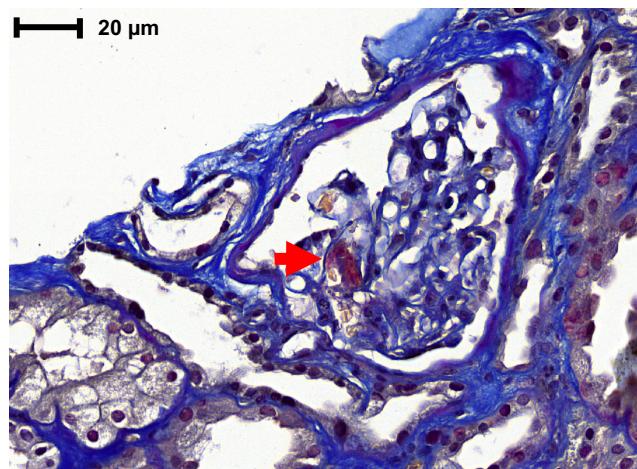
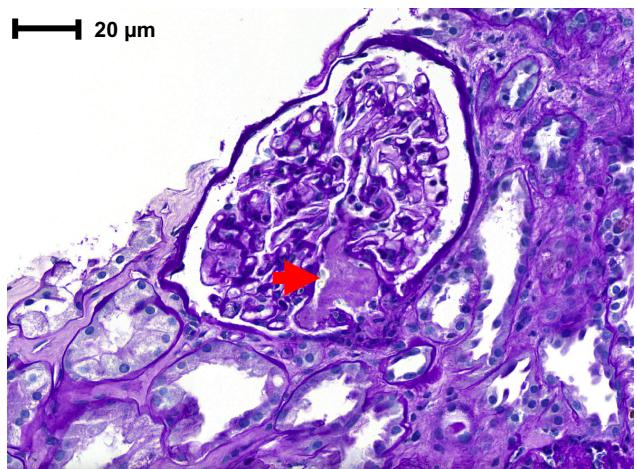
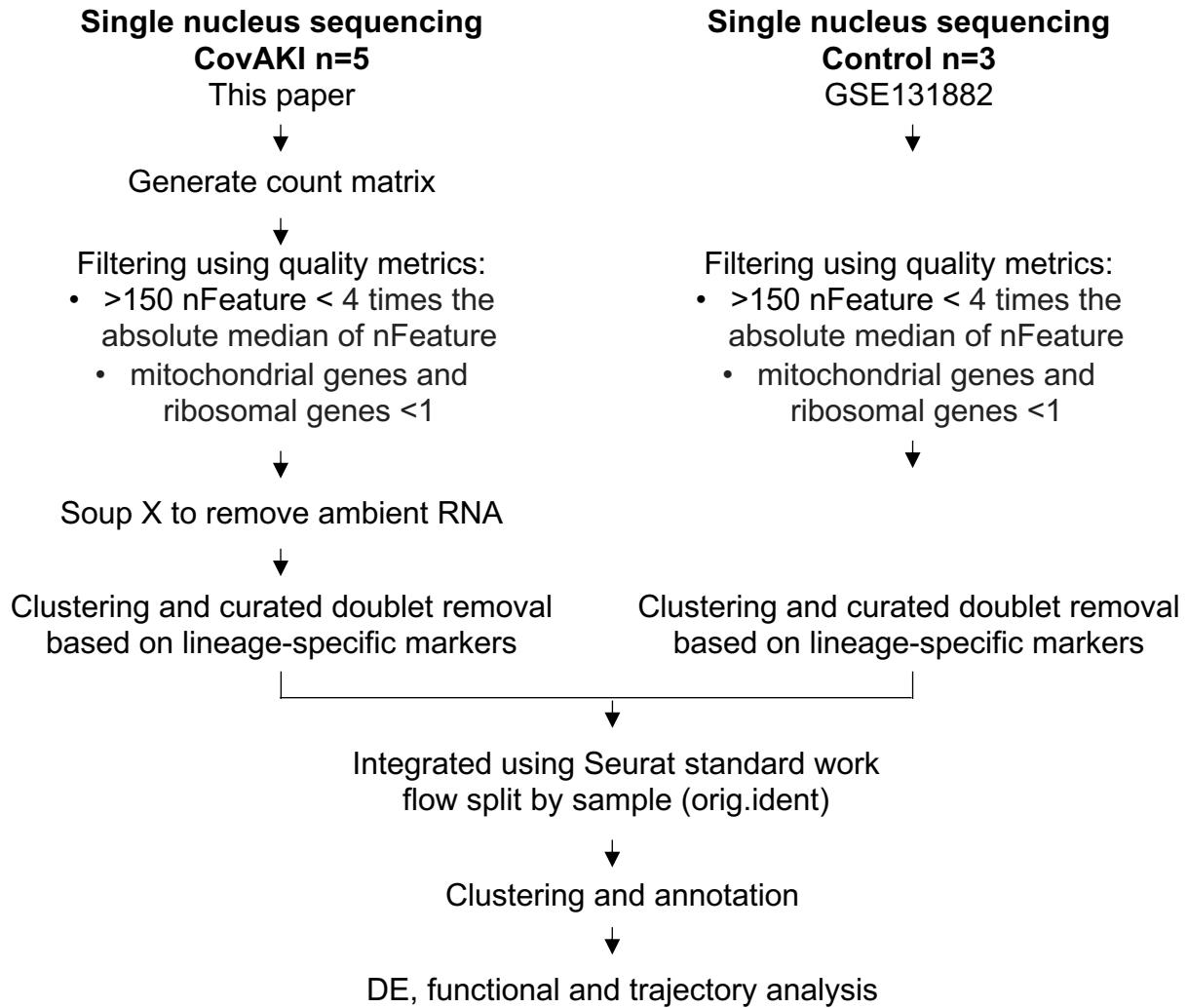
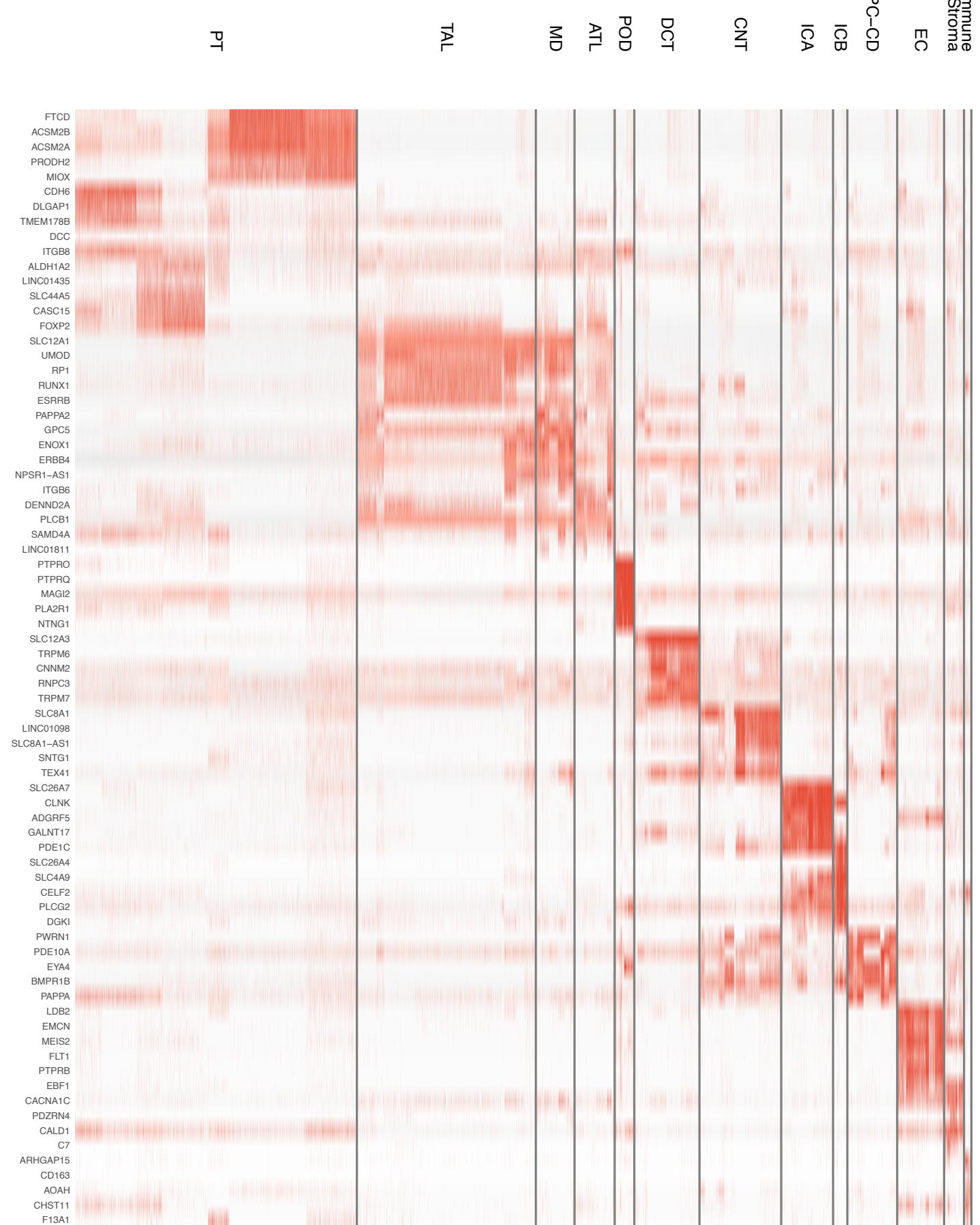
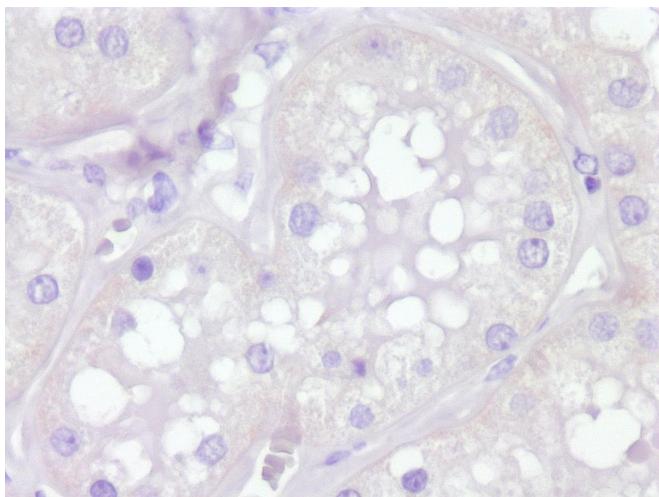
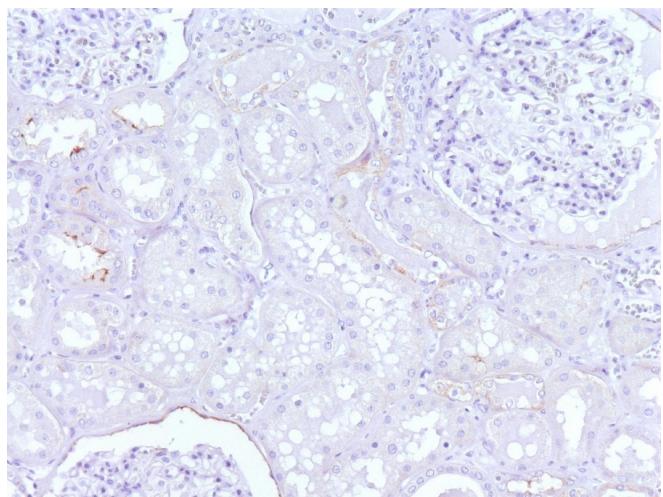





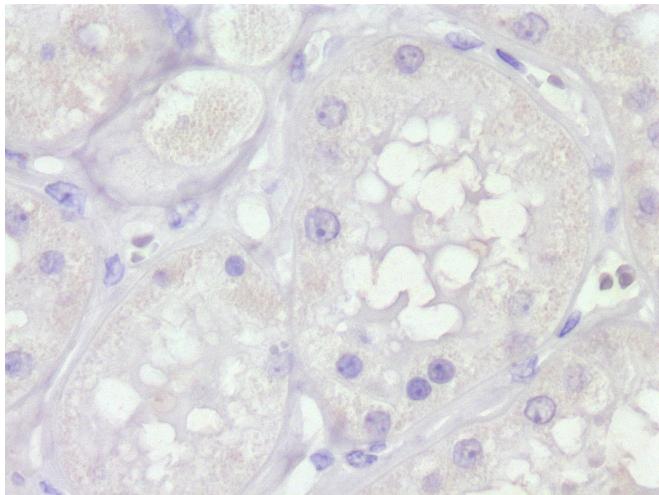
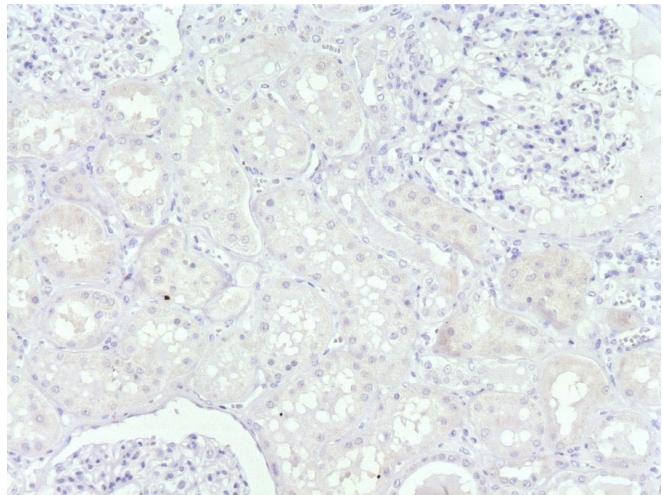
Figure 4

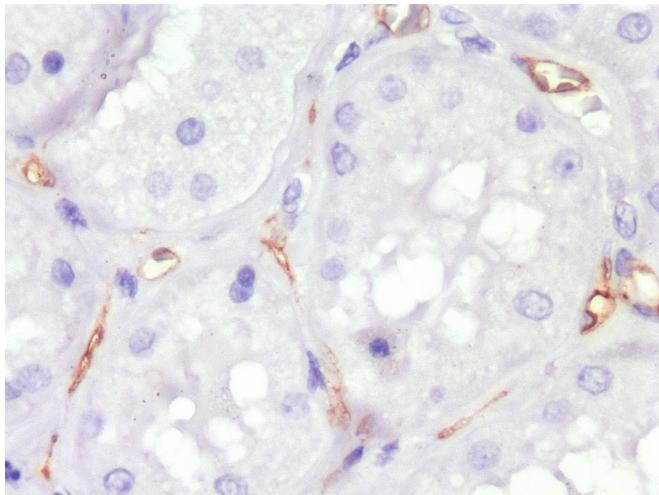
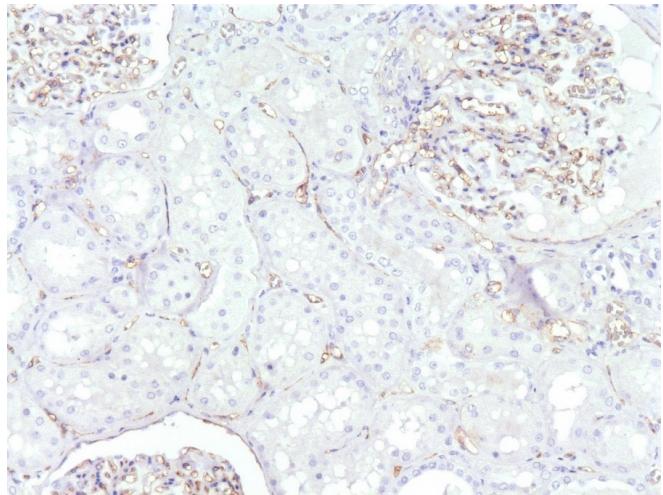


Extended Data Figures


Extended data figure 1

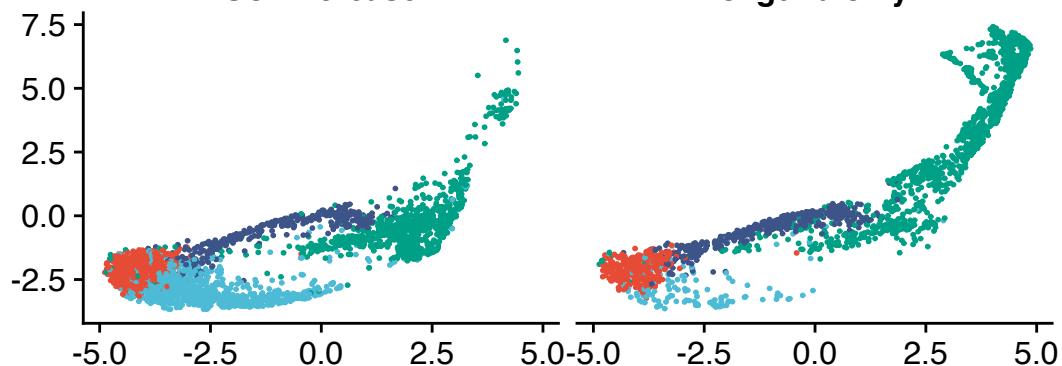


Extended data figure 2



Extended data figure 3



Extended data figure 4

PROM1

HAVCR1


VCAM1

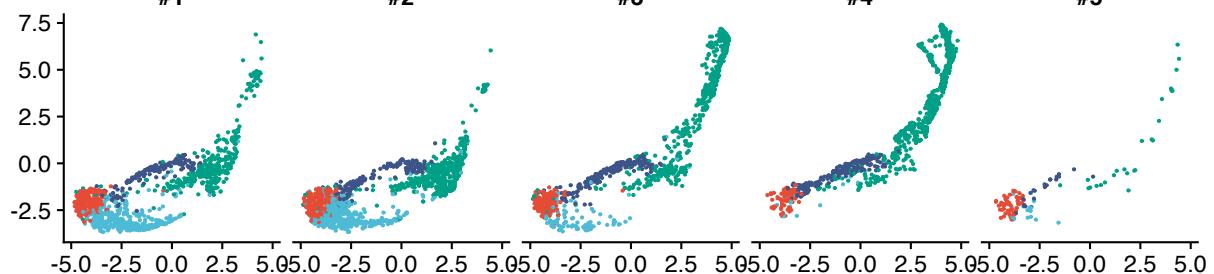
Extended data figure 5

a

SCr increase

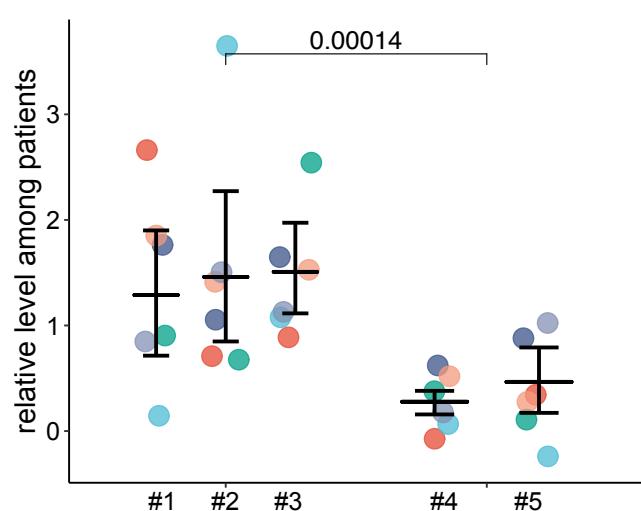
oliguria only

b

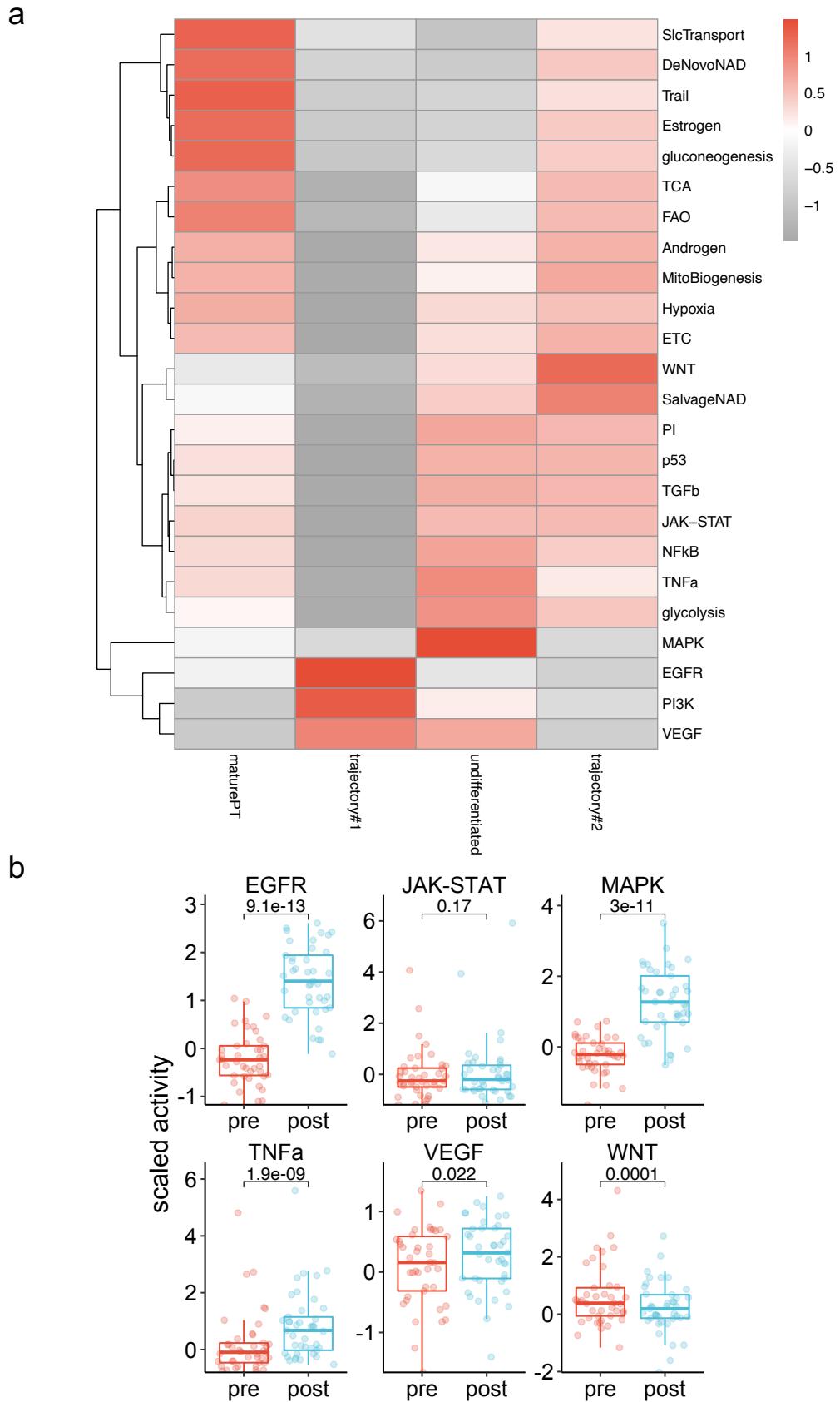

#1

#2

#3

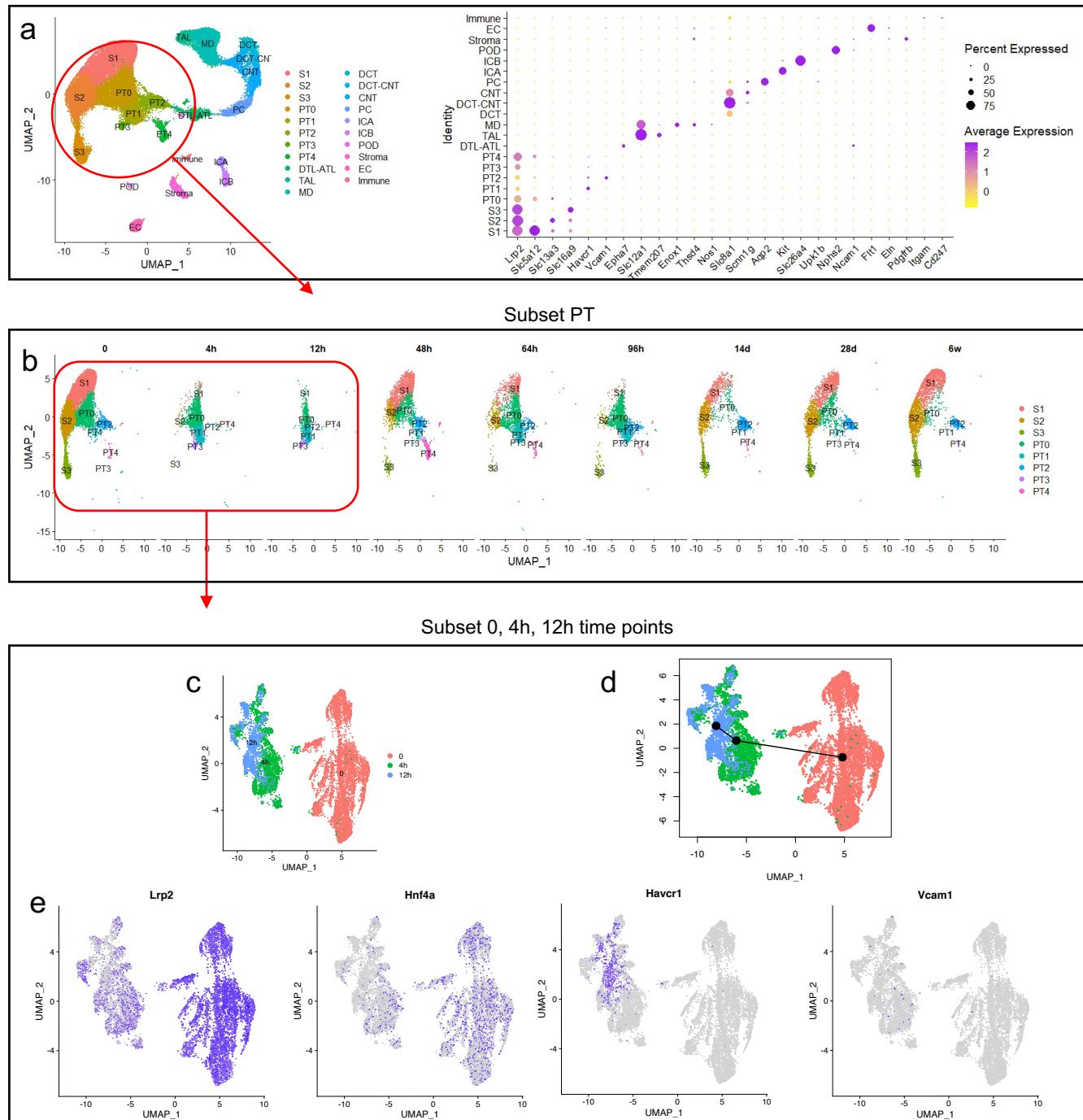

#4

#5

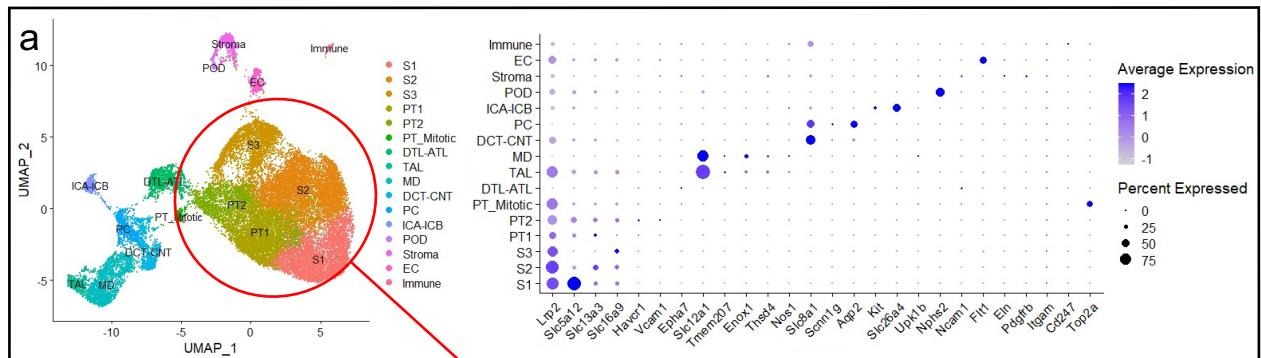


c

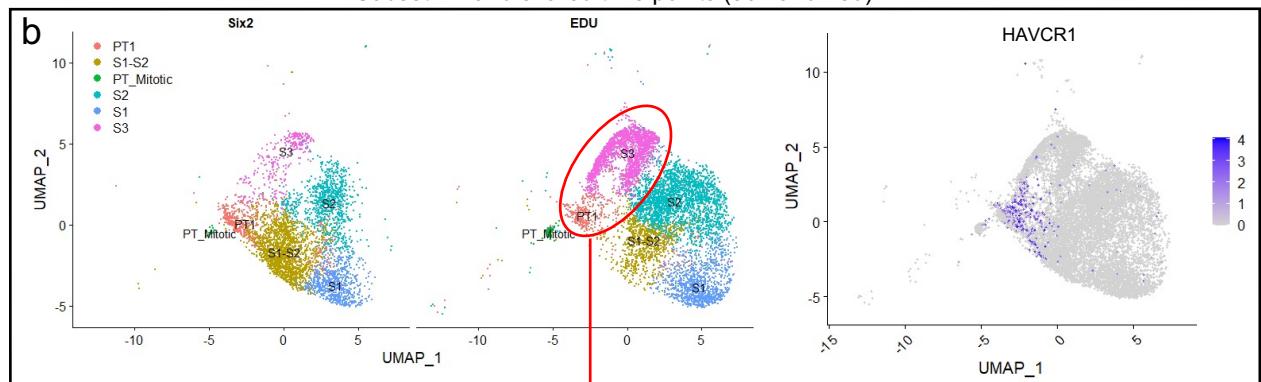
TNF α IL8 MCP1
IL6 IL1Ra IL10



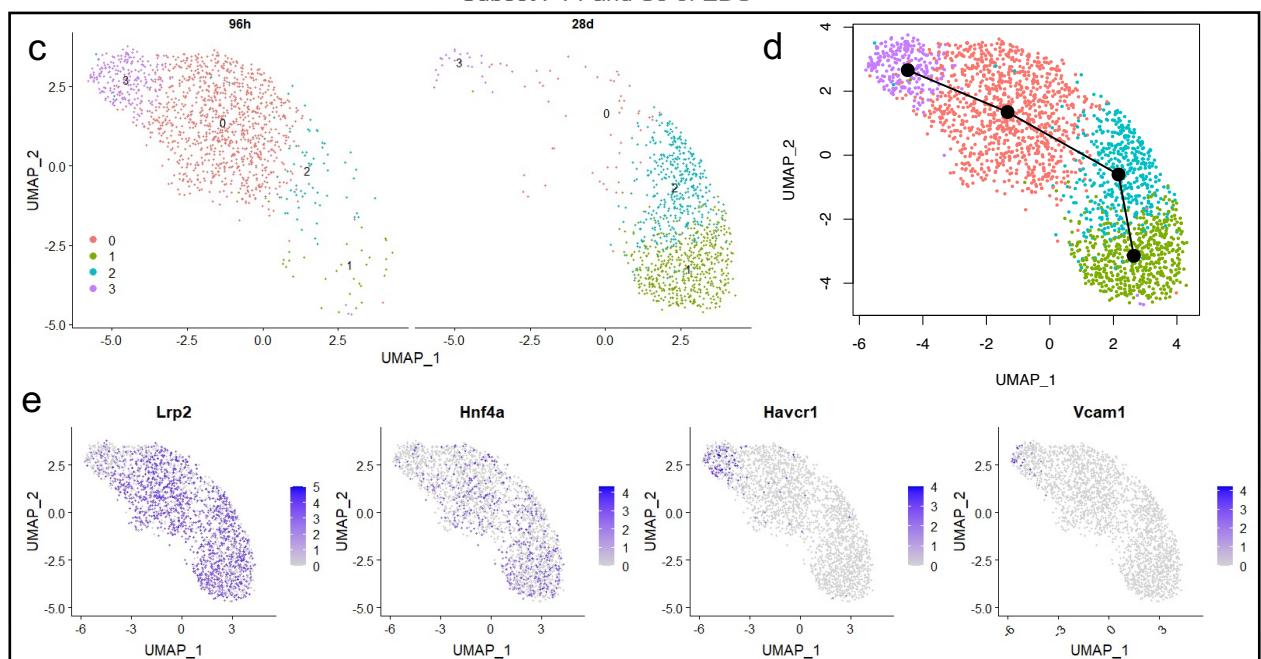
Extended data figure 6

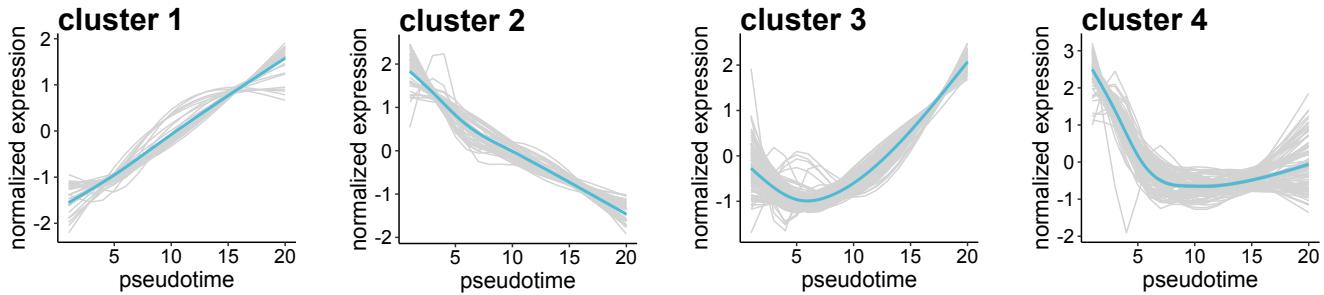

Extended data figure 7

GSE139107 and GSE151167 dataset

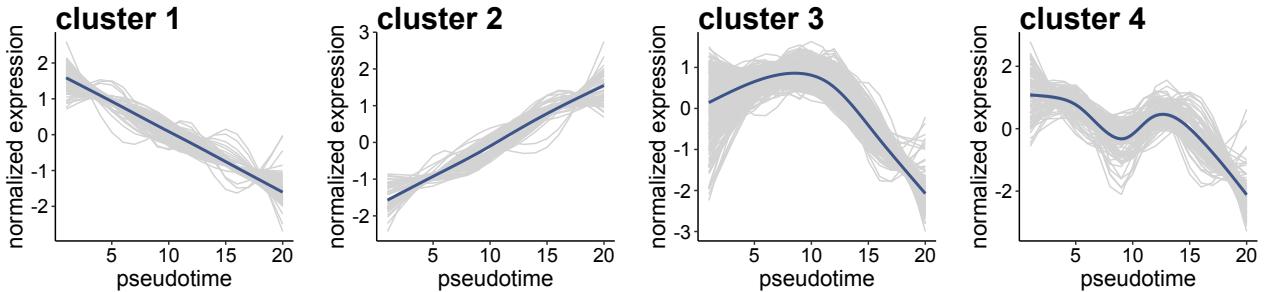


Extended data figure 8


EDU and GSE151167 dataset

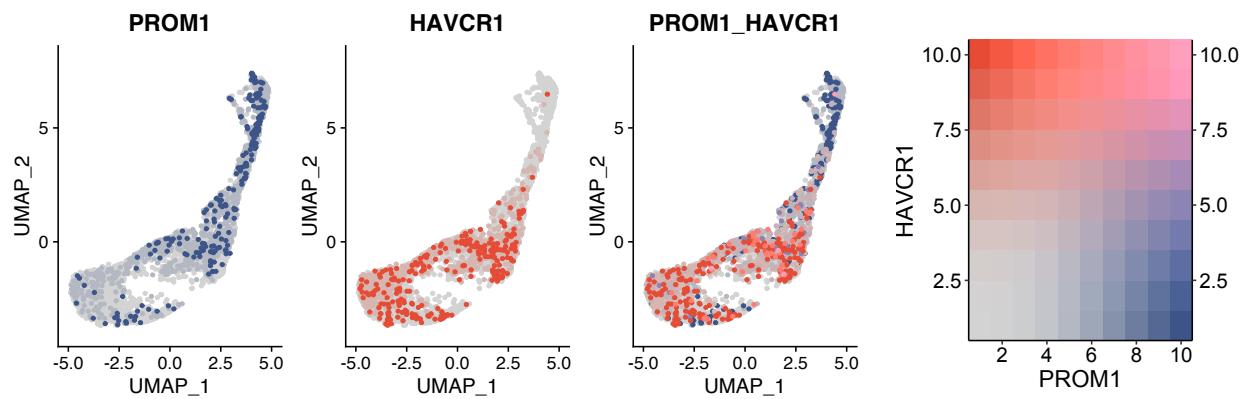

Subset PT and shared time points (96h and 28d)

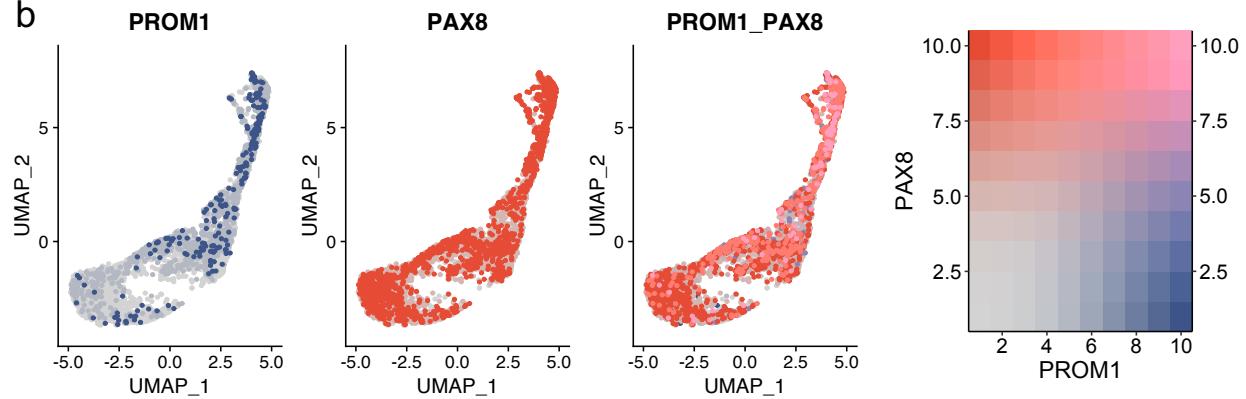
Subset PT1 and S3 of EDU



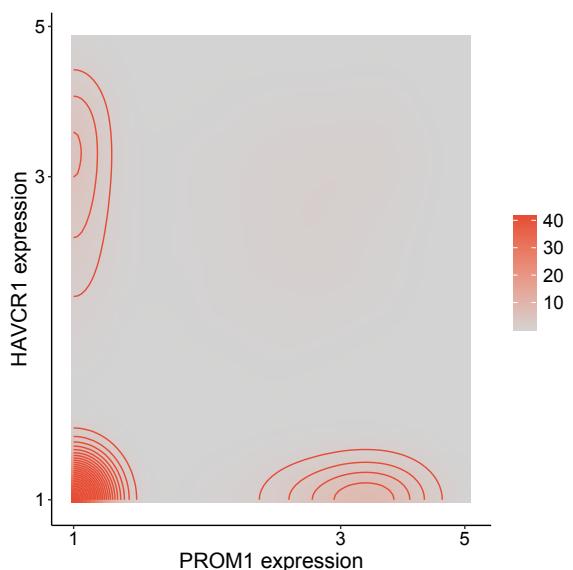
Extended data figure 9

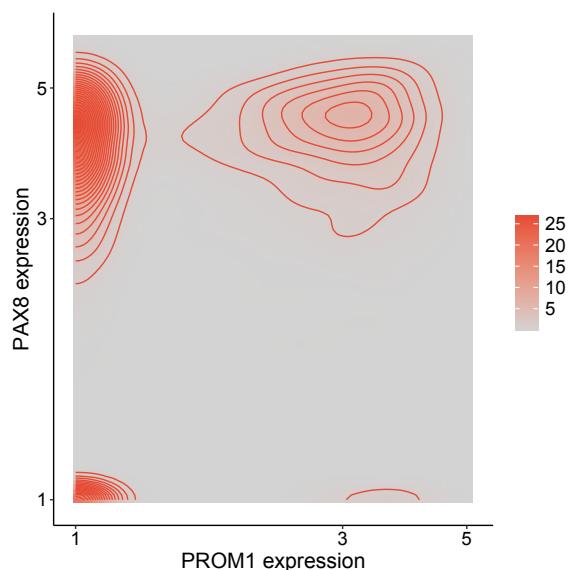
cluster	label	pval	fdr
cluster 1	HALLMARK_KRAS_SIGNALING_UP	0.00011	0.0057
cluster 1	HALLMARK_APICAL_JUNCTION	0.00099	0.025
cluster 1	GO_SEMICIRCULAR_CANAL_DEVELOPMENT	0.000044	0.033
cluster 1	KEGG_APOTOSIS	0.00034	0.063
cluster 1	WP_MIRNA_REGULATION_OF_P53_PATHWAY_IN_PROSTATE_CANCER	0.00029	0.1
cluster 1	WP_SMALL_CELL_LUNG_CANCER	0.00053	0.1
cluster 1	WP_INTERLEUKIN11_SIGNALING_PATHWAY	0.00062	0.1
cluster 1	WP_IL18_SIGNALING_PATHWAY	0.00068	0.1
cluster 1	REACTOME_NON_INTEGRIN_MEMBRANE_ECM_INTERACTIONS	0.000075	0.11
cluster 1	REACTOME_SYNDECAN_INTERACTIONS	0.00014	0.11
cluster 1	WP_GASTRIN_SIGNALING_PATHWAY	0.00094	0.11
cluster 1	HALLMARK_EPITHELIAL_MESENCHYMAL_TRANSITION	0.0071	0.12
cluster 1	KEGG_TIGHT_JUNCTION	0.0016	0.14
cluster 1	KEGG_P53_SIGNALING_PATHWAY	0.0022	0.14
cluster 1	GO_CRANIAL_NERVE_DEVELOPMENT	0.000042	0.16
cluster 2	GO_ORGANIC_ACID_METABOLIC_PROCESS	8.8E-09	0.000066
cluster 2	GO_ANION_TRANSPORT	1.9E-08	0.00007
cluster 2	GO_ORGANIC_ACID_BIOSYNTHETIC_PROCESS	4.9E-08	0.0001
cluster 2	GO_ION_TRANSPORT	5.3E-08	0.0001
cluster 2	REACTOME_SLC_MEDIATED_TRANSMEMBRANE_TRANSPORT	0.00000035	0.00036
cluster 2	REACTOME_TRANSPORT_OF_SMALL_MOLECULES	0.00000046	0.00036
cluster 2	GO_ANION_TRANSMEMBRANE_TRANSPORT	0.000002	0.0025
cluster 2	GO_ION_TRANSMEMBRANE_TRANSPORT	0.000002	0.0025
cluster 2	GO_IMPORT_INTO_CELL	0.000028	0.003
cluster 2	GO_IMPORT_ACROSS_PLASMA_MEMBRANE	0.000004	0.0038
cluster 2	GO_ORGANIC_ANION_TRANSPORT	0.0000097	0.0081
cluster 2	GO_HOMEOSTATIC_PROCESS	0.000011	0.0083
cluster 2	GO_ALPHA_AMINO_ACID_METABOLIC_PROCESS	0.000017	0.011
cluster 2	GO_TRANSMEMBRANE_TRANSPORT	0.000017	0.011
cluster 2	WP_PROXIMAL_TUBULE_TRANSPORT	0.000018	0.011
cluster 3	WP_FOCAL_ADHESIONPI3KAKTMTORSIGNALING_PATHWAY	0.000038	0.014
cluster 3	WP_THE_INFLUENCE_OF_LAMINOPATHIES_ON_WNT_SIGNALING	0.000057	0.014
cluster 3	WP_PI3KAKT_SIGNALING_PATHWAY	0.000087	0.014
cluster 3	WP_REGULATION_OF_TOLLLIKE_RECEPTOR_SIGNALING_PATHWAY	0.00012	0.014
cluster 3	WP_TRANSLATION_INHIBITORS_IN_CHRONICALLY_ACTIVATED_PDGFRa_CELLS	0.00012	0.014
cluster 3	WP_SMALL_CELL_LUNG_CANCER	0.00017	0.016
cluster 3	WP_HEAD_AND_NECK_SQUAMOUS_CELL_CARCINOMA	0.00069	0.051
cluster 3	WP_FOCAL_ADHESION	0.0007	0.051
cluster 3	WP_ERBB_SIGNALING_PATHWAY	0.0014	0.082
cluster 3	WP_TNF RELATED_WEAK_INDUCER_OF_APOPTOSIS_TWEAK_SIGNALING_PATHWAY	0.0014	0.082
cluster 3	KEGG_SMALL_CELL_LUNG_CANCER	0.001	0.11
cluster 3	KEGG_ERBB_SIGNALING_PATHWAY	0.0011	0.11
cluster 3	GO_EPITHELIAL_CELL_DEVELOPMENT	0.000022	0.11
cluster 3	GO_CYTOPLASMIC_PATTERN_RECOGNITION_RECEPTOR_SIGNALING_PATHWAY	0.000029	0.11
cluster 3	WP_TOLLLIKE_RECEPTOR_SIGNALING_PATHWAY	0.0022	0.11
cluster 3	WP_VEGFAVEGFR2_SIGNALING_PATHWAY	0.0022	0.11
cluster 3	WP_SYNAPTIC_SIGNALING_PATHWAYS_ASSOCIATED_WITH_AUTISM_SPECTRUM_DISORDER	0.0024	0.11
cluster 3	WP_WNT_SIGNALING_PATHWAY_NETPATH	0.0027	0.11
cluster 3	WP_APOPTOSISRELATED_NETWORK_DUE_TO_ALTERED_NOTCH3_IN_OVARIAN_CANCER	0.0029	0.11
cluster 3	WP_RANKLRANK_RECEPTOR_ACTIVATOR_OF_NFKB_LIGAND_SIGNALING_PATHWAY	0.003	0.11
cluster 4	GO_ORGANIC_ACID_METABOLIC_PROCESS	1.8E-08	0.00014
cluster 4	REACTOME_SLC_MEDIATED_TRANSMEMBRANE_TRANSPORT	0.00000023	0.00035
cluster 4	WP_PROXIMAL_TUBULE_TRANSPORT	0.0000018	0.0011
cluster 4	GO_SMALL_MOLECULE_CATABOLIC_PROCESS	0.0000049	0.0019
cluster 4	GO_CELLULAR_AMINO_ACID_METABOLIC_PROCESS	0.0000029	0.0074
cluster 4	GO_ORGANIC_ACID_CATABOLIC_PROCESS	0.0000065	0.012
cluster 4	REACTOME_ORGANIC_CATION_ANION_ZWITTERION_TRANSPORT	0.000018	0.014
cluster 4	WP_NUCLEAR_RECEPTEORS_METAPATHWAY	0.00013	0.039
cluster 4	REACTOME_ORGANIC_ANION_TRANSPORT	0.00012	0.062
cluster 4	REACTOME_TRANSPORT_OF_BILE_SALTS_AND_ORGANIC_ACIDS_METAL_IONS_AND_AMINE_COMPOUNDS	0.00024	0.092
cluster 4	REACTOME_FATTY_ACID_METABOLISM	0.00039	0.12
cluster 4	GO_ALPHA_AMINO_ACID_METABOLIC_PROCESS	0.00077	0.12
cluster 4	GO_TRANSMEMBRANE_TRANSPORT	0.00012	0.15
cluster 4	GO_OXIDATION_REDUCTION_PROCESS	0.0002	0.17
cluster 4	GO_SODIUM_ION_TRANSPORT	0.0002	0.17
cluster 4	GO_SMALL_MOLECULE_BIOSYNTHETIC_PROCESS	0.00021	0.17
cluster 4	GO_ION_TRANSPORT	0.00022	0.17


Extended data figure 10


cluster	label	pval	fdr
cluster 1	HALLMARK_UV_RESPONSE_DN	8.7E-09	0.00000043
cluster 1	REACTOME_DISEASES_OF_SIGNAL_TRANSDUCTION_BY_GROWTH_FACTOR_RECEPTEORS_AND_SECOND_MESSENGERS	4.9E-08	0.000076
cluster 1	HALLMARK_MITOTIC_SPINDLE	0.0000039	0.000097
cluster 1	KEGG_FOCAL_ADHESION	0.0000039	0.00072
cluster 1	HALLMARK_KRAS_SIGNALING_UP	0.00008	0.0013
cluster 1	KEGG_SMALL_CELL_LUNG_CANCER	0.000022	0.002
cluster 1	WP_FOCAL_ADHESION	0.0000047	0.0027
cluster 1	GO_ACTIN_FILAMENT_ORGANIZATION	0.00000043	0.0033
cluster 1	KEGG_PATHWAYS_IN_CANCER	0.0001	0.0064
cluster 1	GO_ACTIN_FILAMENT_BASED_PROCESS	0.0000019	0.0072
cluster 1	GO_POSITIVE_REGULATION_OF_EPITHELIAL_CELL_MIGRATION	0.0000044	0.0093
cluster 1	GO_REGULATION_OF_CELLULAR_COMPONENT_MOVEMENT	0.0000054	0.0093
cluster 1	GO_CYTOSKELETON_ORGANIZATION	0.0000079	0.0093
cluster 1	GO_POSITIVE_REGULATION_OF_CELLULAR_COMPONENT_MOVEMENT	0.0000079	0.0093
cluster 1	GO_SUPRAMOLECULAR_FIBER_ORGANIZATION	0.0000086	0.0093
cluster 1	GO_CELL_MOTILITY	0.0000098	0.0093
cluster 2	GO_ORGANIC_ACID_METABOLIC_PROCESS	3.9E-14	2.9E-10
cluster 2	GO_OXIDATION_REDUCTION_PROCESS	3.5E-12	1.3E-08
cluster 2	GO_SMALL_MOLECULE_CATABOLIC_PROCESS	1.9E-11	4.9E-08
cluster 2	GO_ORGANIC_ACID_CATABOLIC_PROCESS	5.6E-09	0.000011
cluster 2	GO_ALPHA_AMINO_ACID_METABOLIC_PROCESS	9.8E-09	0.000015
cluster 2	GO_LIPID_METABOLIC_PROCESS	1.4E-08	0.000018
cluster 2	GO_MONOCARBOXYLIC_ACID_METABOLIC_PROCESS	1.8E-08	0.00002
cluster 2	GO_CELLULAR_AMINO_ACID_METABOLIC_PROCESS	5.8E-08	0.000055
cluster 2	GO_SMALL_MOLECULE BIOSYNTHETIC_PROCESS	0.00000031	0.00026
cluster 2	GO_FATTY_ACID_METABOLIC_PROCESS	0.00000037	0.00028
cluster 2	GO_ALPHA_AMINO_ACID_CATABOLIC_PROCESS	0.00000043	0.0003
cluster 2	GO_MONOSACCHARIDE_METABOLIC_PROCESS	0.00000063	0.0004
cluster 2	GO_CARBOHYDRATE_METABOLIC_PROCESS	0.0000009	0.00051
cluster 2	GO_ORGANIC_HYDROXY_COMPOUND_METABOLIC_PROCESS	0.00000096	0.00051
cluster 2	GO_ORGANIC_ACID BIOSYNTHETIC_PROCESS	0.000001	0.00051
cluster 3	GO_CELL_PROJECTION_ORGANIZATION	4.8E-09	0.000036
cluster 3	GO_CELL_PROJECTION_ASSEMBLY	0.00000015	0.00053
cluster 3	GO_MORPHOGENESIS_OF_AN_EPITHELIUM	0.00000021	0.00053
cluster 3	GO_UROGENITAL_SYSTEM_DEVELOPMENT	0.00000046	0.00086
cluster 3	GO_KIDNEY_EPITHELIUM_DEVELOPMENT	0.000001	0.0016
cluster 3	GO_TISSUE_MORPHOGENESIS	0.0000014	0.0017
cluster 3	GO_MICROTUBULE_BASED_PROCESS	0.0000035	0.0038
cluster 3	GO_MORPHOGENESIS_OF_A_BRANCHING_STRUCTURE	0.0000052	0.0049
cluster 3	GO_MACROMOLECULE_DEACYLATION	0.0000069	0.0058
cluster 3	REACTOME_O_GLYCOSYLATION_OF_TSR_DOMAIN_CONTAINING_PROTEINS	0.000006	0.0094
cluster 3	GO_REGULATION_OF_PROTEIN_DEACETYLATION	0.0000014	0.01
cluster 3	GO_KIDNEY_MORPHOGENESIS	0.0000016	0.01
cluster 3	GO_RENAL_TUBULE_DEVELOPMENT	0.0000017	0.01
cluster 3	GO_REGULATION_OF_GTPASE_ACTIVITY	0.0000018	0.01
cluster 3	GO_EPITHELIUM_DEVELOPMENT	0.0000019	0.01
cluster 4	BIOCARTA_EGF_PATHWAY	0.0000043	0.00073
cluster 4	BIOCARTA_PDGF_PATHWAY	0.000005	0.00073
cluster 4	BIOCARTA_MET_PATHWAY	0.0000098	0.00096
cluster 4	WP_PDGFRBETA_PATHWAY	0.0000058	0.0033
cluster 4	WP_SIGNALING_OF_HEPATOCYTE_GROWTH_FACTOR_RECEPTEOR	0.000011	0.0033
cluster 4	WP_PDGF_PATHWAY	0.000021	0.0042
cluster 4	BIOCARTA_IGF1_PATHWAY	0.000084	0.0049
cluster 4	BIOCARTA_INSULIN_PATHWAY	0.000084	0.0049
cluster 4	GO_SMALL_GTPASE_MEDIATED_SIGNAL_TRANSDUCTION	0.0000011	0.0059
cluster 4	GO_RAS_PROTEIN_SIGNAL_TRANSDUCTION	0.0000016	0.0059
cluster 4	BIOCARTA_TPO_PATHWAY	0.000013	0.0061
cluster 4	BIOCARTA_AGR_PATHWAY	0.000033	0.014
cluster 4	WP_PHOTO_DYNAMIC_THERAPYINDUCED_NFE2L2_NRF2_SURVIVAL_SIGNALING	0.000011	0.016
cluster 4	WP_Physiological_and_Pathological_Hypertrophy_of_the_Heart	0.000014	0.017
cluster 4	GO_REGULATION_OF_SMALL_GTPASE_MEDIATED_SIGNAL_TRANSDUCTION	0.0000072	0.018

Extended data figure 11


a


b

c

d

