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Abstract 

Rapid bacterial growth depends on the speed at which ribosomes can translate mRNA into 

proteins. mRNAs that encode successive stretches of proline can cause ribosomes to stall, 

substantially reducing translation speed. Such stalling is especially detrimental for species that 

must grow and divide rapidly. Here we focus on di-prolyl motifs (XXPPX) and ask whether their 

incidence varies with growth rate. To find out we conducted a broad survey of such motifs in 

>3000 bacterial genomes across 36 phyla. Indeed, fast-growing species encode fewer motifs than 

slow-growing species, especially in highly expressed proteins. We also found many di-prolyl 

motifs within thermophiles, where prolines can help maintain proteome stability. Moreover, 

bacteria with complex, multicellular lifecycles also encode many di-prolyl motifs. This is 

especially evident in the slow-growing phylum Myxococcota. Bacteria in this phylum encode 

many serine-threonine kinases, and many di-prolyl motifs at potential phosphorylation sites 

within these kinases. Serine-threonine kinases are involved in cell signaling and help regulate 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 5, 2021. ; https://doi.org/10.1101/2021.10.05.463052doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.05.463052
http://creativecommons.org/licenses/by-nc-nd/4.0/


2 
 

developmental processes linked to multicellularity in the Myxococcota. Altogether, our 

observations suggest that weakened selection on translational rate, whether due to slow or 

thermophilic growth, may allow di-prolyl motifs to take on new roles in biological processes that 

are unrelated to translational rate.  

 

Introduction 

Translation is a fundamental process common to all known forms of life. Cells invest 

huge amounts of resources into translation. For example, in fast-growing bacterial species like E. 

coli protein synthesis can account for over 50% of a cell’s total energy budget [1]. What is more, 

rapid bacterial growth depends on the speed of translation. Specifically, fast-growing bacteria 

maintain high concentrations of ribosomes, and these ribosomes elongate proteins rapidly during 

protein synthesis [2]. In addition, bacterial genome characteristics that are correlated with growth 

rate (rRNA and tRNA gene copy number, as well as codon usage bias) all influence the rate of 

translation [3–6].  

Multiple factors can negatively impact the translation rate and cause ribosomes to pause 

or ‘stall’ during elongation. These factors include the presence of uncharged tRNAs, rare codons 

in a translated mRNA, and even specific amino acids encoded by mRNA [7]. Among these 

amino acids proline stands out. Proline is slow to form peptide bonds due to its structural rigidity 

and unique status as an N-alkylamino acid [8, 9]. This structural rigidity can contribute to the 

formation of special secondary structures, like the poly-proline II helix [10, 11], which is 

associated with the binding domains of signaling proteins [12, 13]. Successive stretches of 

prolines also cause ribosomes to pause translation. The length of this pause—the ‘strength’ of the 

ribosome ‘stall’—depends on the amino acids surrounding the proline stretch [14], the location 

of the sequence causing the stall within a protein [15], and the translation initiation rate [16].  

A special translation factor exists to resolve proline-induced ribosomal stalls. In bacteria 

this protein is called translation elongation factor P (EFP). EFP is a tRNA mimic that binds to the 

ribosome between the peptidyl and exit sites [17]. When bound to the ribosome, EFP uses a 

conserved amino acid residue to interact with the peptidyl-transferase center and to accelerate the 

formation of proline-proline peptide bonds [17]. In many species, this conserved amino acid 

must be post-translationally modified for EFP to efficiently alleviate stalling [18–20]. The 

importance of EFP and its mitigation of ribosome stalling is underscored by the strong 
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phenotypes caused by its loss. These include diminished growth rate [20–24] , loss of motility 

[25], loss of virulence[20, 22, 24], reduced antibiotic resistance [24, 26], and in some cases, cell 

death [27].  

While EFP can reduce the impact of proline-induced ribosomal stalling, EFP cannot 

completely eliminate these stalls. Ribosomal profiling shows that E. coli ribosomes still pause at 

proline residues, albeit much more briefly than in EFP knockout mutants [15]. Indeed, recent 

work has directly shown that proline motifs lead to ribosomal pausing in wild-type E. coli [28]. 

Protein evolution may have exploited such unavoidable stalling. For example, in E. coli di-prolyl 

motifs often occur at the beginning of complex protein domains, and may provide additional 

time for translational regulation, protein folding, or membrane insertion [29]. Indeed, E. coli 

appears to prefer rare proline codons for such motifs, effectively lengthening the stall phenotype 

in these regions [28]. 

Because EFP cannot fully alleviate proline-induced stalling [15, 28], one would expect 

that stalling motifs are subject to natural selection, and especially so in fast-growing species 

under high pressure to maximize their translation rate [2, 4]. Indeed, di-prolyl sequences occur 

less frequently than expected by chance in the fast-growing E. coli, where highly expressed 

proteins are especially depleted in these motifs [29]. EFP itself is optimized for high expression 

in fast-growing bacteria [30], reflecting its importance in maintaining high growth rates.  

Slow-growing bacteria are under reduced selection for translational speed [31]. Their 

genomes have reduced codon usage bias and encode fewer tRNA and rRNA gene copies than 

their fast-growing counterparts [5, 32]. Therefore, we wondered whether the di-prolyl motifs that 

can cause ribosome-stalling would be more widespread in slow-growing bacteria. The 

prevalence of such motifs is unknown outside few well-studied bacterial species, including E. 

coli [29],  S. enterica [33], Bacillus subtilis [23], and several Actinobacteria species [34].  

We quantified the occurrence of di-prolyl motifs across more than 3000 bacterial 

genomes from 35 phyla and found that these motifs are more abundant in genomes with high GC 

content. This is not surprising, because proline codons are cytosine rich. More importantly, we 

found that these motifs were more abundant in species with slow predicted growth rates when we 

controlled for GC content. Di-prolyl motifs are also more abundant in thermophiles, and in 

species with complex life cycles that involve a multicellular life stage. They are especially 
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abundant in the serine-threonine protein kinases of multicellular species, which are involved in 

signaling and developmental programs.  

 

Materials & Methods 

Analysis of Bacterial Genomes 

We downloaded 3265 bacterial genomes from the Integrated Microbial Genomes (IMG) 

database[35], selecting only one genome per Average Nucleotide Identity (ANI) cluster to 

reduce bias towards highly studied species. This procedure yielded approximately one 

representative genome from each species in the database, although we included multiple 

genomes from a species if the ANI between genomes was below the typical cutoff for species 

level (less than 96.5, 11 species). We used CheckM [36] to evaluate the quality of these 

genomes, only retaining those which were at least 90% complete and contained less than 5% 

contamination, based on their distribution of highly conserved single copy genes. We also re-

assigned taxonomy to the whole dataset using the Genome Taxonomy Database and GTDB-Tool 

kit (GTDB-Tk) version 0.2.2 [37], and removed any genomes that could not be assigned to a 

phylum (three genomes). We counted the occurrence of di-prolyl motifs (XXPPX, where X 

designates any amino acid) in every protein encoded in each genome, using custom python 

scripts. We count polyproline motifs (XPPPX) as multiple di-prolyl motifs. For example, 

AAPPPA would be represented as the two di-prolyl motifs AAPPP and APPPA. We followed 

this procedure because from the point of view of the ribosome such motifs represent independent 

proline-proline bond formation reactions. The identity of the amino acids surrounding successive 

prolines (Xs) has been shown to impact the severity or length of the resulting ribosomal stall [14, 

29]. We classified each di-prolyl motif according to its predicted stall severity, from weak to 

medium to strong, using a key derived from a mixture of in vitro and in vivo data [29].  

We verified the presence of at least one EFP homolog in nearly every genome using the 

hmmscan function of HMMER version 3.3.2[38] to search for Pfam PF01132. Only the genome 

of Aquaspirillum serpens did not encode a known EFP homolog. However, because this genome 

is not fully complete (estimated completeness 98.27% by CheckM), and because it encodes the 

EFP modification protein earP [20], it likely does encode EFP. 

Next, we estimated the doubling time associated with each genome using the codon usage 

bias (CUB) based R package gRodon version 1.8.0 [32]. This package calculates estimated 
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doubling times by comparing the CUB from a set of genes expected to be highly expressed in 

fast-growing species (we used ribosomal proteins) to the background codon usage of the 

genome, with the expectation that fast-growing species use codons corresponding to the most 

abundant tRNAs for maximum translational rate in growth related genes. This metric provides a 

good approximation for a species’ doubling time in both whole genomes and metagenomic 

samples [32]. 

For a subset of our genomes, we retrieved experimentally measured doubling times from 

the literature (see Supplementary Dataset S1 for all corresponding citations), with a large 

proportion of this data coming from a recently compiled database on bacterial phenotypes [39]. 

Because we matched genomes with phenotypic data by species name, the genomes in our dataset 

are not necessarily from the exact strain for which doubling times were measured, but they will 

generally be closely related. Wherever more than one entry for the same species existed in the 

phenotypic database, we used the fastest recorded doubling time for our analyses. Wherever our 

genome data set harbored multiple genomes for the same species, we used the genome with the 

fastest CUB-predicted doubling time. We found good agreement between doubling times 

predicted by gRodon and measured doubling times, especially when only mesophilic species 

were considered (species with measured doubling times: n = 301, Pearson’s rho = 0.33, p 

<0.0001; mesophiles only: n = 202, Pearson’s rho = 0.44, p < 0.0001, Figure S1). In addition, 

regardless of how accurately CUB reflects measured doubling times, it is valuable to analyze 

CUB in this context, because it reflects a species’ investment in optimizing its translation rate. 

In order to calculate the median expected expression level of genes, we first used 

ENCprime [40] to calculate the CUB for each individual gene (represented as KEGG KOs) 

within our genome dataset. We then ranked each gene in each genome, assigning the highest 

rank of one to the gene with the highest CUB. We took the median codon bias rank for each gene 

across all genomes encoding said gene and used these values to approximate the median 

expression level of each gene across all species in our data set. We used the median codon bias 

rank to prevent genomes belonging to fast-growing species from overly biasing the results. 

Based on this calculation, the five genes with the highest predicted expression level encoded 

elongation factor Tu, chaperonin GroEL, large subunit ribosomal protein L7/L12, small subunit 

ribosomal protein S1, and elongation factor Ts. These results are consistent with the expectation 
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that genes related to translation and cell growth should be highly expressed across most 

genomes. All KEGG annotations were provided by IMG using their annotation pipelines [35]. 

We identified thermophiles and psychrophiles in our dataset by using either 1) IMG-

provided temperature ranges, 2) IMG-provided habitat data (e.g., species from hot springs and 

hydrothermal vents were categorized as thermophiles), or 3) membership in phylogenetic groups 

with conserved temperature ranges (such as known thermophilic orders like the Thermales or 

Aquificales). To identify bacteria with a complex, multicellular lifestyle, we consulted a review 

on multicellularity [41] and reviews on specific bacterial phyla [42–44]. We identified serine-

threonine kinases by extracting all proteins which fell within KEGG orthology group K08884. 

To identify intrinsically disordered regions (IDRs) within proteins of interest, we used 

IUPred2A [45] with the ‘long’ option. IUPred predicts IDRs by using statistical potentials to 

estimate the total pairwise interaction energy between a stretch of consecutive amino acids (30 

amino acids in the ‘long’ option). IDRs occur when amino acids cannot form favorable 

interactions because of low pairwise interaction energy. IUPred computes a ‘disorder score’, and 

when this score exceeds a value of 0.5 in a protein region, the region is predicted to be 

disordered. We calculated an average disorder score for each di-prolyl motif by averaging scores 

across all five amino acids in each motif (IUPred computes a disorder score for each individual 

amino acid). Supplementary Datasets S1 and S2 contain information on all genomes and all 

proteins we analyzed, respectively. 

 

Statistical methods 

One potentially confounding factor in our analysis is that proline codons are cytosine rich 

(CCU, CCC, CCA, and CCG), which implies that di-prolyl motifs are inherently more likely to 

occur in genomes with high GC content. Indeed, the number of coding GC base pairs and the 

number of di-prolyl motifs are very strongly correlated for genomes in our dataset (Pearson’s rho 

= 0.94, p < 0.0001). Because of this correlation, when examining individual proteins and their di-

prolyl content, we controlled for the GC content of their encoding gene. We also controlled for 

protein length, because long proteins may contain more di-prolyl motifs than short proteins by 

chance alone. We controlled for both quantities by dividing the total number of nucleotides 

encoding the di-prolyl motifs (each motif is five amino acids long and thus encoded by 15 base 
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pairs) by the ratio of the total number of base pairs in the gene to the number of GC base pairs in 

the gene. That is, we preformed all analyses of di-prolyl motifs within genes with the quantity 

 
15	 × 𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑒𝑛𝑐𝑜𝑑𝑒𝑑	𝑑𝑖𝑝𝑟𝑜𝑙𝑦𝑙	𝑚𝑜𝑡𝑖𝑓𝑠	𝑝𝑒𝑟	𝑔𝑒𝑛𝑒

𝑡𝑜𝑡𝑎𝑙	𝑔𝑒𝑛𝑒	𝑙𝑒𝑛𝑔𝑡ℎ	[𝑏𝑝𝑠]
𝑡𝑜𝑡𝑎𝑙	𝐺𝐶	𝑐𝑜𝑛𝑡𝑒𝑛𝑡	𝑜𝑓	𝑔𝑒𝑛𝑒	[𝑏𝑝𝑠]

 

  

Another potential confounding factor in our analyses is that GC content and other 

genomic characteristics are correlated across bacterial phylogenies. In other words, closely 

related bacteria are more likely to have similar GC content—and thus di-prolyl content—than 

those that are distantly related. To account for such phylogenetic dependence, we created a 

phylogenetic tree using 43 concatenated conserved marker genes generated by CheckM [36]. We 

aligned these sequences using MUSCLE version 3.8.31 [46], and built the phylogenetic tree with 

FastTree version 2.1.10 [47], using the archaeon Haloquadratum walsbyi as an outgroup (NCBI 

accession number: GCA_000009185). We used this tree for all subsequent phylogeny-dependent 

statistical methods.  

Next, we calculated Pagel’s l [48] using the phylosig function from the phytools R 

package, version 0.6.99 [49]. Pagel’s l is a measure of the phylogenetic dependence of a trait. A 

value of l = 0 indicates that the trait evolved independently of phylogeny, while l = 1 indicates 

strong phylogenetic dependency. This calculation confirmed that GC content shows strong 

phylogenetic dependency (l = 0.99, p < 0.0001). Therefore, we controlled for phylogeny in all 

our genome-based analyses.  

To this end, we used phylogenetic generalized least squares (PGLS) to measure the 

contribution of individual genomic characteristics to the prevalence of di-prolyl motifs within 

our genomes. We also used a phylogenetic ANOVA to analyze differences between groups in 

our dataset. For the PGLS, we used the pgls function in the R package caper, version 1.0.1[50]  

and for the phylogenetic ANOVA we used the phylANOVA function from the R package 

phytools version 0.7-70 [49]. We performed all statistical analyses and plotting in R version 

3.6.2 and created all plots using ggplot2 version 3.3.3 [51]. 

 

Results 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 5, 2021. ; https://doi.org/10.1101/2021.10.05.463052doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.05.463052
http://creativecommons.org/licenses/by-nc-nd/4.0/


8 
 

Species with large, high GC genomes have many di-prolyl motifs  

We quantified the frequency of di-prolyl motifs (XXPPX, where X designates any amino 

acid) in all proteins within a set of >3000 bacterial genomes from 31 different phyla. While all 

di-prolyl motifs (PP) cause ribosomal stalling, the surrounding amino acids (X) can influence the 

severity of the stall [14]. To assign a stall ‘strength’ to each di-prolyl motif, ranging from strong 

to medium to weak, we used a published key that has been compiled from in vivo and in vitro 

proteomic experiments [29].  

We found that the number of di-prolyl motifs in each genome varied broadly throughout 

our dataset. They range from a maximum of 17,841 (1.95 motifs per protein) in Nannocystis 

exedens (a Myxobacterium with a complex lifecycle) to a minimum of 86 (0.15 motifs per 

protein) in Mycoplasma cloacale, a poultry-associated pathogen from the family 

Mycoplasmataceae. The genome of N. exedens also contained the most ‘strong’ di-prolyl motifs 

at 9665 (1.05 strong motifs per protein), while Mesoplasma coleopterae, another pathogen from 

the Mycoplasmataceae, had the fewest strong motifs at just 17 (0.02 strong motifs per protein). 

In general, we found that phyla with large, high GC genomes had the highest number of motifs 

(Actinobacteria, Planctomycetota, and Myxococcota), while those with small, low GC genomes 

had the fewest motifs (Fusobacteria, Campylobacterota, and Thermotogota, Figure 1). This is 

not surprising because proline codons are cytosine rich (CCU, CCC, CCA, and CCG), making 

di-prolyl motifs inherently more likely to occur in large genomes with high GC content. 

Next, we asked whether any genome-derived characteristics besides GC content and genome size 

influence the frequency of di-prolyl motifs. When quantifying the influence of these 

characteristics on the prevalence of di-prolyl motifs, we must control for the shared evolutionary 

history of our study taxa. For example, closely related genomes are much more likely to have 

similar GC content, and therefore similar numbers of di-prolyl motifs, than expected by chance 

(Pagel’s l = 0.99, see Methods). In addition, we needed a method that could account for the 

highly correlated relationship between the frequency of di-prolyl motifs and genomic GC 

content. To disentangle the contributions of these and other characteristics, while also controlling 

for phylogeny, we used a phylogenetic generalized linear model (PGLS). This statistical method 

uses a phylogenetic tree to control for phylogenetic relatedness, essentially ‘down-weighting’ 

similar observations that originate from closely related species [52], while also accounting for 

co-correlated variables. 
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Thermophiles and microbes with complex life cycles have high levels of di-prolyl motifs 

The structural rigidity of proline does not just lead to slow peptide bond formation. It can 

also reduce the conformational freedom of polypeptide chains, leading to increased thermo-

stabilization [53]. Additionally, like slow-growing species, thermophiles are thought to 

experience weaker selection on growth-associated-traits than mesophiles. This is because high 

temperatures cause higher rates of catalysis and tRNA diffusion [5]. In other words, compared to 

mesophiles growing at the same speed, thermophiles need to invest less in optimizing growth-

associated traits like rRNA and tRNA gene copies and codon usage bias. For these reasons, we 

hypothesized that di-prolyl motifs may be more abundant in thermophilic bacteria. Testing this 

hypothesis is complicated by the fact that thermophiles have smaller genomes and shorter 

proteins than mesophiles [54]. With this in mind, we first performed a phylogenetic ANOVA 

which confirmed that thermophiles encode more di-prolyl motifs per Mbp of GC coding content 

than mesophiles (thermophilic mean = 1389 di-prolyl motifs per coding GC Mbp, mesophilic 

mean = 1150 di-prolyl motifs per coding GC Mbp; Phylogenetic ANOVA, p-value < 0.05, 

Figure 2A).  Next, we performed a PGLS to verify that thermophiles encoded more di-prolyl 

motifs when total GC coding sequence size was controlled for. We again found that thermophiles 

encode significantly more di-prolyl motifs than mesophiles (PGLS A, p < 0.0001, bthermophiles = 

0.023, b = regression slope, Supplemental Table 1). Psychrophiles did not differ from 

mesophiles in this respect (PGLS A, p = 0.53), although this could be due to their comparatively 

poor representation in our dataset (mesophiles n = 2892, thermophiles n = 304, psychrophiles n = 

56). 

 Anecdotal evidence from our initial data exploration showed that the Myxococcota, 

which are well-known for their ability to form multicellular fruiting bodies, have the most di-

prolyl motifs among all taxonomic groups we examined (Figure 1), despite not having the 

highest overall GC content. Myxococcota and other bacteria with complex life cycles rely on 

cell-cell signaling to orchestrate their developmental programs [55]. Proline-rich regions often 

occur in the binding domains of signaling proteins, where they mediate protein-protein binding 

in a highly specific yet reversible manner [13]. Therefore, we wondered whether the genomes of 

bacteria with complex lifecycles are generally more likely to harbor many di-prolyl motifs.  
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To find out, we performed a phylogenetic ANOVA to find out whether bacteria known 

for multicellular behavior encoded more di-prolyl motifs per GC coding Mbp. This is indeed the 

case (Phylogenetic ANOVA, p £ 0.001, multicellular mean = 1902 di-prolyl motifs per coding 

GC Mbp, unicellular mean = 1157 di-prolyl motifs per coding GC Mbp, Figure 2B). Next, we 

modified our PGLS model to include multicellularity as an added variable. In addition, we also 

included temperature class in the model, because some multicellular bacteria are thermophilic, 

for example the filamentous thermophile Ardenticatena maritima. We again found that 

multicellular bacteria have significantly more di-prolyl motifs than unicellular bacteria, after 

controlling for total GC coding content and growth temperature class (PGLS B, p < 0.01, 

bunicellular = -0.016). We also asked whether the elevated di-prolyl content of motifs in 

multicellular bacteria was solely attributable to the Myxococcota, because this phylum contain 

the most di-prolyl motifs of any taxonomic group (Figure 1). This was not the case: when we 

removed Myxococcota genomes from consideration, multicellular genomes still encoded more 

di-proyl motifs than unicellular genomes (PGLS C, p < 0.05, bunicellular = -0.015). 

 

Slow-growing species encode more di-prolyl motifs than fast-growing species 

Because di-prolyl motifs can negatively impact translation rate [15, 28], we wanted to 

find out whether selection for translational speed would impact the number of di-prolyl motifs in 

a genome. Ideally, we would answer this question using experimentally measured growth rates. 

Unfortunately, this information is not widely available—we could find experimentally validated 

growth rates for only 301 species in our dataset. As an alternative, we calculated the predicted 

growth rate of each species in our dataset using a codon usage bias (CUB) centered method, 

gRodon [32]. CUB refers to the tendency of species to use codons that correspond to the most 

abundant tRNAs in highly expressed genes. In doing so, these species can increase their 

translational rate by accelerating tRNA turnover at the ribosome [5]. The degree of CUB in 

genes encoding ribosomal proteins is well correlated with experimentally measured growth rates 

in mesophilic species [5, 32, 56] (see Methods, Figure S1). In addition, regardless of how 

strongly CUB-predicted growth rates and experimentally measured growth rates may be 

correlated, using CUB itself in this analysis is valuable because CUB represents the degree of 

investment a species has made towards maximizing translational rate [5]. 
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Along with predicted growth rates, we also included two other growth-associated traits in 

this PGLS model. These are the copy numbers of tRNA and rRNA genes. One strategy that fast-

growing bacteria use to translate proteins rapidly is to ensure that their pool of charged tRNA 

does not become limiting. Fast-growing species thus often encode multiple copies of the most 

common tRNA genes [57]. Similarly, fast-growing species tend to encode multiple rRNA gene 

copies to boost the rate at which rRNA molecules—and consequently ribosomes—are 

synthesized [58]. When included in our PGLS model, all three growth-associated traits had a 

significant impact on the number of di-prolyl motifs in a genome, although the significance of 

rRNA gene copies was weak (PGLS D; predicted doubling time p < 0.0001 b = 0.016, tRNA 

gene copies p < 0.005 b = -0.030, rRNA gene copies p < 0.1, b = -0.003). The direction of the 

impact of these traits was uniform. That is, characteristics linked to slow-growth (slower 

predicted doubling times, fewer tRNA gene copies, and fewer rRNA gene copies) were all 

associated with more di-proly motifs (model details in Supplemental Table 1).  

Using the growth-associated traits of a representative slow (Methylomagnum ishizawai; 

predicted doubling time = 124 hrs, tRNA gene copies = 51, rRNA gene copies = 2) and fast 

growing species (Propionigenium maris; predicted doubling time = 0.11 hrs, tRNA gene copies 

= 103, rRNA gene copies = 5) in the equation supplied by the PGLS D model, we found that 

slow-growth traits resulted in a 14% increase in the number of di-prolyl motifs within a genome, 

irrespective of GC content (Figure 3). This can yield a substantial total increase at a high GC 

content. For example, at a protein-coding GC content of 8 Mbp, slow-growth associated traits 

yielded an additional 1283 di-prolyl motifs (Figure 3C). The effect of slow-growth associated 

traits on di-prolyl motifs is independent of growth temperature and multicellularity 

(Supplemental Table 1). 

While CUB based growth rate metrics predict experimentally measured doubling times 

well [5, 32] (Figure S1), we wondered whether the statistical associations we had detected 

would persist if we used experimentally measured doubling times in place of predicted doubling 

times. We found such data for 301 (9.2%) species in our dataset (see Supplemental Dataset 1 

for details). When we repeated our PGLS analysis on this reduced dataset, we found that species 

with faster experimentally measured growth rates still encoded fewer di-prolyl motifs than slow-

growing species, although rRNA gene copies were no longer a significant predictor (PGLS E, 

measured doubling times p < 0.05 b = 0.015, tRNA gene copies p £ 0.005 b = -0.129, rRNA 
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gene copies p = 0.440 b = 0.008). Removing thermophiles from this analysis significantly 

improved this relationship (PGLS F, measured doubling times p £ 0.001 b = 0.034, tRNA gene 

copies p < 0.05 b = -0.108, rRNA gene copies p = 0.315 b = 0.011). This may be explained by 

the increase in growth rate that thermophiles achieve purely from high optimal growth 

temperatures: unlike mesophiles, rapid thermophilic growth rates do not necessarily reflect 

enhanced investment in maximizing translational speed [5]. Using the equation supplied by 

PGLS F, the slow-growth associated traits of Methylomagnum ishizawai (experimentally 

measured doubling time = 24 hrs) yielded a 25% increase in di-prolyl motifs over the fast-

growing Propionigenium maris (experimentally measured doubling time = 0.3 hrs) (Figure S2). 

In sum, both CUB-predicted and experimentally measured growth rates support the notion that 

fast-growing species encode fewer di-prolyl motifs than slow-growing species. 

 

Proteins optimized for translational speed contain few di-prolyl motifs, especially in fast-

growing species 

Our analysis thus far focused on the incidence of di-prolyl motifs in entire genomes, but 

this incidence may also vary among proteins within a genome. For example, in E. coli, highly 

expressed proteins have fewer di-prolyl motifs than lowly expressed proteins [29]. We wondered 

whether this link between expression level and di-prolyl motifs exists more generally in the 

>3000 bacterial genomes we analyzed. To address this question, we used the KEGG (Kyoto 

Encyclopedia of Genes and Genomes) Orthology database [59], which assigns each gene in our 

dataset to a KEGG Orthology (KO) group. This classification provides single-source functional 

annotations which place each gene in a hierarchical classification scheme that ranges from 

coarse-grained, e.g., ‘genetic information processing’, to fine-grained, e.g., ‘ribosomal protein-

coding’. 

Because gene expression data does not exist for the vast majority of our genomes, we 

used the codon usage bias of individual genes as a proxy for their expression level. Specifically, 

we ranked each gene based on its overall CUB, where the highest rank of one corresponds to the 

gene with the strongest bias and highest predicted expression in each genome. We then took the 

median of this rank for each gene across all genomes. We controlled for the GC content and 

length of each protein-coding gene in this analysis (see Methods), and only included genes that 

were present in at least 25% of genomes to reduce bias towards rare genes.  
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We found that highly expressed proteins (low median CUB rank) contained significantly 

fewer di-prolyl motifs, an observation that holds both for all motifs (Spearman’s rho = 0.52, p < 

0.0001, Figure 4), and for motifs predicted to cause a ‘strong’ stall (Spearman’s rho = 0.54, p < 

0.0001, Figure S3). Proteins whose median CUB rank was in the top percentile harbored an 

order of magnitude fewer di-prolyl motifs per 100 amino acids (AA) than proteins within the 

bottom CUB percentile (0.002 vs. 0.014 motifs per 100 AA, GC-controlled). These findings 

place similar observations from E. coli [29] into a broad phylogenetic context. 

While highly expressed proteins were generally depleted in di-prolyl motifs, we 

wondered whether this association would be especially pronounced in fast-growing species. 

While we previously showed that fast-growing bacteria encode fewer di-prolyl motifs than slow-

growing bacteria in general (Figure 3), this analysis did not distinguish proteins based on their 

expected expression level. We hypothesized that fast-growing species would have fewer di-

prolyl motifs in proteins that are likely to be highly expressed, because the ribosomal stalling that 

these motifs can cause is more severe in proteins with high translation initiation rates [16], and 

because selective pressure on translational speed increases with growth rate.  

To validate this hypothesis, we identified for each genome those genes expected to be 

highly expressed, i.e., genes whose CUB lies within the top one percent of all genes. We then 

calculated the average amount of di-prolyl motifs in the proteins these genes encode. While fast-

growing species are expected to show high CUB primarily in genes related to growth and 

translation (ribosomal proteins, translation factors, etc), slow-growing species also show 

evidence of CUB in highly expressed genes, although perhaps less dramatically and to a greater 

extent in non-translation-related genes [60]. For example, in slow-growing cyanobacteria with 

doubling times between 6-18 hours CUB is especially high in genes related to photosynthesis 

[60]. Indeed, in slow growing species (predicted doubling times longer than five hours), only 

19% of genes in the top CUB percentile are translation-related, as opposed to 34% in fast 

growing species (predicted doubling times shorter than five hours; Figure S4). Regardless, we 

found that on average, fewer di-prolyl motifs were encoded by genes predicted to be highly 

expressed in fast-growing species than in slow-growing species, independent of GC content and 

growth temperature (PGLS G, predicted doubling time p < 0.0001, b = 0.037).  
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Di-prolyl motifs are enriched in disordered domains of serine-threonine kinases and other 

signaling proteins 

Previous analyses revealed an association between bacteria with high cellular complexity 

and elevated levels of di-prolyl motifs. Bacteria capable of multicellular behavior encoded more 

di-prolyl motifs independent of growth traits and growth temperature (PGLS D, p £ 0.01, 

bunicellular = -0.015), with genomes from the Myxococcota containing by far the most di-prolyl 

motifs in our dataset (Figure 1). Proline-rich motifs are common in the binding domains of 

signaling proteins [13], a class of proteins crucial to orchestrating complex, multicellular 

lifecycles [61]. Because of these associations, we wondered whether multicellular bacteria 

contain more di-prolyl motifs purely because they encode more signaling proteins that help 

maintain and regulate multicellular organization.  

To answer this question, we re-calculated the di-prolyl motifs encoded by the genomes in 

our dataset, excluding motifs present in proteins categorized by KEGG as either ‘Signal 

Transduction’ or ‘Protein Kinases’. We then analyzed these revised motif counts with a PGLS 

model and found multicellular bacteria still encoded significantly more di-prolyl motifs than 

unicellular bacteria (PGLS H, p £ 0.01, bunicellular = -0.015). We note, however, that our 

observations are likely affected by the limitations of KEGG annotations and annotations for 

bacterial genomes in general [62]. Specifically, many genes in our dataset are not annotated in 

KEGG (49.4% on average), and multicellular genomes harbor significantly more unannotated 

genes than unicellular genomes (62.6% on average are unannotated by KEGG; phylogenetic 

ANOVA p ≤ 0.001). Thus, it is likely that our analysis does not actually encompass all signaling 

proteins, especially for genomes of poorly studied species [62].  

While we found that di-prolyl motifs located in KEGG-annotated signaling proteins were 

not responsible for the elevated numbers of these motifs in multicellular bacteria, signaling 

proteins did contain significantly more di-prolyl motifs in multicellular bacteria (phylogenetic 

ANOVA, p ≤ 0.001). A large proportion of these motifs were in protein kinases, and specifically 

in serine-threonine kinases. Serine-threonine kinases are involved in signal transduction 

pathways in eukaryotes and some bacteria, and work by phosphorylating specific sites on target 

proteins [61, 63]. Such signaling can involve extensive cross-phosphorylation between kinases, 

modulating their downstream activity in signaling cascades [63]. Serine-threonine kinases 

regulate developmental processes in the Myxococcota [64, 65], and their prevalence within a 
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genome is associated with increasing cellular complexity [61]. Multicellular bacteria contain 

significantly more serine-threonine kinases than unicellular bacteria (Figure S5, phylogenetic 

ANOVA p ≤ 0.001), and these kinases contain many di-prolyl motifs, especially within the 

Myxococcota. For example, Stigmatella erecta contains 530 di-prolyl motifs spread across the 67 

serine-threonine kinases encoded within its genome. Di-prolyl motifs in this species are enriched 

45-fold in serine-threonine kinases, such that 3.66% of di-prolyl motifs occur in a set of proteins 

that make up just 0.08% of its proteome. 

The phosphorylation sites of protein kinases are predominately located within 

intrinsically disordered regions (regions without stable three-dimensional structure—IDRs), 

where phosphorylation can trigger transitions between disorder and order [66]. Notably, proline 

rich sites with high propensity towards forming polyproline II helices (PPII) are evolutionarily 

conserved at intrinsically disordered phosphorylation sites, where phosphorylation may ‘tune’ a 

protein’s propensity to adopt PPII structure [12]. These connections between proline rich PPII 

sites, phosphorylation, and IDRs led us to wonder whether the di-prolyl motifs within serine-

threonine kinases were preferentially located within IDRs of these proteins, and thus potentially 

involved in transitions related to phosphorylation. 

To answer this question, we used the disorder prediction software IUPred2A [45] to 

identify disordered regions in all serine-threonine kinases within our dataset. While on average 

only 27% of residues within the 6552 serine-threonine kinases in our dataset were disordered, 

72% of di-prolyl motifs were located within these disordered regions, a significant enrichment 

(c2 test p < 0.0001, Figure S6). In one extreme case, a single serine-threonine kinase from the 

myxobacterium Stigmatella erecta contained 41 di-prolyl motifs, of which 95% were located 

within disordered regions (Figure 5). While multicellular species contained more serine-

threonine kinases than unicellular (Figure S5), and more di-prolyl motifs within these proteins 

(phylogenetic ANOVA p < 0.05; multicellular serine-threonine kinases contain 5.1 di-prolyl 

motifs on average vs 2.8 motifs in unicellular kinases), the di-prolyl motifs of both unicellular 

and multicellular serine-threonine kinases were equally enriched among disordered regions (71% 

of multicellular motifs occur in IDRs vs 72% of unicellular motifs). Expanding on these findings, 

we identified four additional common signaling proteins (encoded by 25% of genomes in our 

dataset) whose di-prolyl motifs were significantly enriched within disordered regions (c2 test 
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Bonferroni corrected p < 0.001, Figure S6). These findings indicate that the enrichment of di-

prolyl motifs within IDRs may be a general feature of kinases and signaling proteins. 

 

Discussion 

Research involving EFP and di-prolyl motifs has largely focused on individual species 

[24, 25, 27, 29] or proteins [67]. In contrast, we surveyed these motifs in a broad range of 

genotypically and phenotypically diverse bacteria. While the exact effect of di-prolyl motifs on 

translational rate has not been experimentally tested in every species we studied, di-prolyl motifs 

have been shown to cause ribosomal stalling in all three domains of life, consistent with the near 

universal distribution of EFP and EFP homologs [17]. Likewise, every genome in our dataset 

encoded EFP, with one exception (see Methods). Because proline codons are cytosine rich 

(CCU, CCC, CCA, and CCG), it is not surprising that the occurrence of di-prolyl motifs is 

strongly associated with a genome’s GC content (Figure 1). We thus focused on patterns of di-

prolyl motif occurrence that cannot be explained by GC content alone. We found such patterns in 

three groups of bacteria: slow-growing species, thermophilic species, and multicellular species. 

Ribosomal stalling caused by di-prolyl motifs is resolved by bacterial elongation factor P 

(EFP). Without EFP, translational speed is reduced and proteins containing di-prolyl motifs can 

be under-expressed, leading to adverse consequences [15]. While EFP reduces proline-induced 

ribosomal stalling and its impact on translation speed, studies measuring ribosomal pausing show 

that EFP cannot completely resolve these stalls—even in the presence of EFP ribosomes still 

pause at proline residues [15, 28]. Such stalling can be especially detrimental in fast-growing 

species, which can be sensitive to minute disruptions in translational rate [2]. For example, in E. 

coli, even a single sub-optimal codon in a lowly expressed gene can impact fitness [68]. E. coli 

also appears to be sensitive to the presence of di-prolyl motifs, because its genome encodes 

fewer di-prolyl motifs than expected by chance, and fewer still in genes encoding highly 

expressed proteins [29].  

We wanted to find out whether these species-specific observations translate to a broad 

range of bacteria. We were especially interested in whether the prevalence of di-prolyl motifs 

would be associated with species-specific growth rates. Indeed, we found that fast-growing 

species encode significantly fewer di-prolyl motifs than slow-growing species (PGLS D, Figure 

3). This relationship holds whether we estimate growth rate indirectly from codon usage bias 
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(PGLS D, Figure 3), or directly from experimental measurements (PGLS F, Figure S2). 

Additionally, while proteins expected to be highly expressed generally encode fewer di-prolyl 

motifs (Figure 4 and S3), this trend is exacerbated in fast-growing species (PGLS G). These 

findings are based on analyses of variance that correct for phylogenetic relatedness and allow the 

impact of co-correlated traits to be quantified independently (PGLS, Supplemental Table 1).  

Several highly expressed proteins critical to cell function contain di-prolyl motifs that 

cannot be removed without a resulting loss of function. For example, the valine tRNA synthetase 

ValS contains a poly-proline motif that is highly conserved, critical to charge tRNAVal 

efficiently, and important to prevent its mischarging with threonine [67]. This implies that some 

di-prolyl motifs are maintained in the face of negative selection pressure because the benefit of 

their specific biochemical activity outweighs any impact they may have on translational rate. If 

the genomes of some species can encode more di-prolyl motifs because of weaker selection on 

translational rate, these motifs may also acquire new and useful roles unrelated to their effect on 

protein translation. 

One candidate for such a role is to stabilize proteins in the high temperature environments 

experienced by thermophilic bacteria. Proline residues can increase the thermostability of 

proteins by at least two mechanisms. First, their rigid structure reduces the degrees of freedom 

available to a protein [53]. Second, increasing the proportion of prolines and other hydrophobic 

residues enhances thermostability by reducing accessibility to the protein core [53]. 

Thermophiles have smaller genomes and shorter proteins than mesophiles [54]. However, when 

we controlled for the proportion of their genome that encodes proteins, we found that 

thermophiles encoded more di-prolyl motifs than mesophiles (PGLS A, Figure 2A). 

Thermophiles are thought to experience relaxed selection on translation rate because catalysis 

naturally proceeds more rapidly at higher temperatures [5]. In other words, thermophiles 

generally grow much more quickly than their overall investment in maximizing translational rate 

would suggest. Relaxed selection on translational speed in thermophiles may allow prolines to 

exist where they would otherwise be detrimental for translational rate, and thus help stabilize a 

thermophilic proteome.  

Another potential role for di-prolyl motifs exists in bacteria with complex, multicellular 

lifecycles, most notably the Myxococcota (Figure 1). We found that multicellular bacteria 

contained significantly more di-prolyl motifs than unicellular bacteria (PGLS B, Figure 2B). 
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These organisms rely on signaling proteins to orchestrate their complex lifecycles [64, 65], 

which often contain proline-rich regions with their binding domains [12, 13]. While we found 

signaling proteins were not the sole source of the elevated levels of di-prolyl motifs within these 

species (PGLS H), these results are likely biased by the especially poor level of gene annotation 

in multicellular species (62.6% of genes in multicellular genomes are unannotated by KEGG vs. 

49.6% for unicellular genomes). 

Multicellular species do harbor disproportionately high numbers of the di-prolyl rich 

signaling proteins serine-threonine kinases compared to unicellular bacteria (Figure S5). These 

kinases contain an outsized proportion of di-prolyl motifs, which can be enriched up to 45-fold in 

some Myxococcota compared to their background occurrence within the proteome. Serine-

threonine kinases play central roles in signaling between cells by modulating the activity of their 

target proteins through phosphorylation [63] and have been linked to cellular complexity in 

multicellular bacteria [61]. 

Bacterial kinases are known to cross and auto-phosphorylate, creating extensive signaling 

networks [63]. The phosphorylation sites of kinases are enriched in intrinsically disordered 

regions (IDRs), where phosphorylation can trigger changes in three-dimensional structure that 

alter downstream activity [66]. Interestingly, proline rich regions with high propensity towards 

forming polyproline II helices (PPII) also occur primarily within IDRs [69], and are 

evolutionarily conserved at phosphorylation sites [12]. Following these connections, we found 

that di-prolyl motifs within serine-threonine kinases are enriched among IDRs, as illustrated by a 

specific example in Figure 5 and more generally in Figure S6. Furthermore, we found that the 

di-prolyl motifs of four other common signaling proteins (present in > 25% of our genomes) 

were significantly enriched among IDRs (Figure S6). Three of these signaling proteins are 

known to be phosphorylated (response regulator RegA [70], sensor kinase CheA [71], and an 

OmpR family sensor kinase [72]). Phosphorylation can have a dramatic effect on local bias 

towards PPII structures, in effect ‘tuning’ a protein’s propensity towards adopting a PPII 

structure [12, 73]. As PPII structures commonly form the binding domains of signaling proteins 

[12, 13], a connection between phosphorylation, PPII formation (or collapse), and the 

modulation of signaling protein activity is appealing. However, verifying these connections and 

determining their biological significance remains a task for future work.   
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Our observations are consistent with previously drawn connections between cellular 

complexity and polyproline motifs, with more complex organisms containing higher numbers of 

such motifs [10]. This connection may also be related to the increasing number of IDRs in 

complex genomes, which in turn are linked to the importance of post-translational modification 

for complex signaling pathways [69, 74]. The multicellular bacteria in our dataset are generally 

slow-growing, with an average predicted doubling time of 8.4 hours, and the Myxococcota are 

especially slow-growing, with an average predicted doubling time of 12.5 hours. As a result, 

selection on translational rate is weaker in these species, which may allow prolines to accumulate 

where they would otherwise be discouraged. Indeed, it could be informative to interrogate 

possible regulatory functions of EFP in these species, as an important class of signaling proteins 

in multicellular bacteria is enriched in di-prolyl motifs (Figure 5), and EFP may influence the 

expression of these proteins. 

In conclusion, our observations suggest active selection against di-prolyl motifs in a 

broad range of fast-growing species, and in highly expressed proteins of such species. Such 

selection is likely driven by high selection pressure on optimizing translational rate. Wherever 

such selection is relaxed, di-prolyl motifs may be free to proliferate and take up new roles. One 

of these roles may be to ensure proteome stability in thermophiles. Another may be to help cells 

in simple multicellular prokaryotes communicate. However, the causal role of di-prolyl motifs in 

any of these processes is unclear. For example, did multicellular bacteria emerge from slow-

growing unicellular bacteria, where a high incidence of di-prolyl motifs facilitated kinase-based 

cell signaling and helped establish multicellularity? Or did multi-cellular bacteria emerge from 

fast-growing unicellular bacteria, such that their reduced growth rate, kinase-based signaling, and 

the importance of di-prolyl motifs emerged only secondarily? These and other questions about 

the biological functions and evolutionary origins of di-prolyl motifs provide exciting directions 

for future work.   

 

Data availability 

All genomes used in this study are publicly available and were downloaded from JGI’s IMG 

database [35]. Taxon IDs corresponding to every genome included in our dataset are listed in 

Supplemental Dataset 1, along with the genomic characteristics calculated for this study. 

Results from analyses of individual proteins are presented in Supplemental Dataset 2 and 
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results of all PGLS models are listed in Supplemental Table 1. R scripts and all files needed to 

reproduce these analyses are available at https://github.com/tessbrewer/proline_project. 
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Figure 1: Di-prolyl motifs occur frequently in bacteria with large, high GC genomes. Phyla 
whose genomes have a low average GC coding content (Fusobacteriota 0.8 Mbp, 
Campylobacterota 0.7 Mbp, Thermotogota 0.8 Mbp) encode fewer di-prolyl motifs than phyla 
with high average GC coding content (Actinobacteria 3.2 Mbp, Planctomycetota 3.2 Mbp, 
Myxococcota 6.3 Mbp). Only phyla represented by at least five genomes in our dataset are 
shown. Each circle represents one genome. Taxonomy was assigned using GTDB (Genome 
Database Taxonomy; see Methods). The phylum Proteobacteria was broken down into its 
corresponding classes and all Firmicutes-adjacent phyla were combined. 
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Figure 2: Thermophilic and multicellular bacteria encode many di-prolyl motifs per GC 
coding Mbp. A) Thermophile genomes encode significantly more di-prolyl motifs per GC 
coding Mbp than mesophiles (Phylogenetic ANOVA, p-value < 0.05). Thermophiles are 
represented by 304 genomes, mesophiles by 2892 genomes: thermophilic mean = 1389 di-prolyl 
motifs per GC coding Mbp, mesophilic mean = 1150 di-prolyl motifs per GC coding Mbp. B) 
The genomes of species with a complex, multicellular lifecycle encode significantly more di-
prolyl motifs per GC coding Mbp than their unicellular counterparts (Phylogenetic ANOVA, p-
value £ 0.001). Multicellular and unicellular species are represented by 61 and 3191 genomes, 
respectively: multicellular mean = 1902 motifs per GC coding Mbp, unicellular mean = 1157 
motifs per GC coding Mbp.  
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Figure 3: Predicted doubling time and other growth-associated traits significantly affect 
the abundance of di-prolyl motifs encoded by genomes. A: While GC content is the primary 
determinant of the number of di-prolyl motifs in a genome (PGLS D p < 0.0001, regression 
slope b =1.056), predicted doubling time, tRNA gene copies, and rRNA gene copies also have a 
significant impact (PGLS D; predicted doubling time p < 0.0001 b = 0.016, tRNA gene copies p 
< 0.005 b = -0.030, rRNA gene copies p < 0.1, b = -0.003). The two diagonal lines represent the 
number of PGLS-predicted di-prolyl motifs, as calculated from the growth-associated traits of 
two representative organisms in our dataset. Specifically, the upper blue line represents a 
prediction based on one of the slowest growing species (Methylomagnum ishizawai; predicted 
doubling time = 124 hrs, tRNA gene copies = 51, rRNA gene copies = 2) while the lower red 
line represents a prediction based on one of the fastest growing species (Propionigenium maris; 
predicted doubling time = 0.11 hrs, tRNA gene copies = 103, rRNA gene copies = 5). The slow-
growth related traits of Methylomagnum ishizawai result in a 14% predicted increase in di-prolyl 
motifs. At low GC content (B: enlarged view of the lower left box in A), the total impact of 
growth-associated traits is low (calculated net increase of only 47 di-prolyl motifs per genome at 
0.35 Mbp GC content), while at high GC content (C: enlarged view of the upper right box in 
A) the total net increase is substantial (calculated net increase of 1283 di-prolyl motifs at 8 Mbp 
GC content). The horizontal and vertical axes are plotted on a logarithmic scale.  
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Figure 4: Highly expressed proteins contain fewer di-prolyl motifs. Proteins expected to be 
highly expressed (based on CUB) contain fewer di-prolyl motifs when protein length and gene 
GC content are controlled for (Spearman’s rho = 0.52, p < 0.0001). Each circle represents the 
average incidence of di-prolyl motifs within one protein (KEGG KO) across all genomes it was 
identified in. The colors represent the coarse-level function of the KEGG Orthology (KO) group 
to which each protein belongs. We only included common proteins (present in at least 25% of 
genomes) in this analysis to reduce bias towards rare proteins. The purple line is a linear 
regression line, and the shaded area represents the 95% confidence area. The horizontal axis is 
plotted on a logarithmic scale.  
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Figure 5: 95% of di-prolyl motifs (39/41) within a single serine-threonine kinase from the 
myxobacterium Stigmatella erecta fall within intrinsically disordered regions. Each circle 
represents a single di-prolyl motif within the protein, with color indicating the predicted severity 
of the resulting stall, from strong (S) to medium (M) to weak (W). A region is predicted to be 
intrinsically disordered if the IUPred2A disorder score is greater than or equal to 0.5, as 
indicated by the dashed purple line. The green rectangle at the bottom of the figure indicates the 
PFAM protein kinase domain (PF00069) which is congruent with the set of ordered residues in 
this protein, as expected. The protein is encoded by IMG gene 2695004422 in IMG taxon oid 
2693429888. The figure design is inspired by default IUPred2A plots (Erdos and Dosztányi, 
2020). 

 

 

 

 
 
 
 
 
 
 
 
 
 
 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 5, 2021. ; https://doi.org/10.1101/2021.10.05.463052doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.05.463052
http://creativecommons.org/licenses/by-nc-nd/4.0/


26 
 

References 
 
1. Russell JB, Cook GM. Energetics of Bacterial Growth: Balance of Anabolic and Catabolic 
Reactions. Microbiological Reviews 1995; 59: 48–62. 

2. Klumpp S, Scott M, Pedersen S, Hwa T. Molecular crowding limits translation and cell 
growth. PNAS 2013; 110: 16754–16759. 

3. Pedersen S. Escherichia coli ribosomes translate in vivo with variable rate. The EMBO 
Journal 1984; 3: 2895–2898. 

4. Ran W, Higgs PG. Contributions of Speed and Accuracy to Translational Selection in 
Bacteria. Plos One 2012; 7: e51652. 

5. Vieira-Silva S, Rocha E. The Systemic Imprint of Growth and Its Uses in Ecological 
(Meta)Genomics. PLOS Genetics 2009; 6: 1–15. 

6. Roller BRK, Stoddard SF, Schmidt TM. Exploiting rRNA operon copy number to investigate 
bacterial reproductive strategies. Nature Microbiology 2016; 1: 1–7. 

7. Buskirk AR, Green R. Ribosome pausing, arrest and rescue in bacteria and eukaryotes. Phil 
Trans R Soc B 2017; 372: 20160183–11. 

8. Wohlgemuth I, Brenner S, Beringer M, Rodnina MV. Modulation of the Rate of Peptidyl 
Transfer on the Ribosome by the Nature of Substrates. J Biol Chem 2008; 283: 32229–32235. 

9. Pavlov MY, Watts RE, Tan Z, Cornish VW, Ehrenberg M, Forster AC. Slow peptide bond 
formation by proline and other N-alkylamino acids in translation. PNAS 2009; 106: 50–54. 

10. Mandal A, Mandal S, Park MH. Genome-Wide Analyses and Functional Classification of 
Proline Repeat-Rich Proteins: Potential Role of eIF5A in Eukaryotic Evolution. PLoS ONE 
2014; 9: e111800-13. 

11. Adzhubei AA, Sternberg MJE, Makarov AA. Polyproline-II Helix in Proteins: Structure and 
Function. Journal of Molecular Biology 2013; 425: 2100–2132. 

12. Elam WA, Schrank TP, Campagnolo AJ, Hilser VJ. Evolutionary conservation of the 
polyproline II conformation surrounding intrinsically disordered phosphorylation sites. The 
Protein Society 2013; 22: 405–417. 

13. Ball LJ, Kühne R, Schneider-Mergener J, Oschkinat H. Recognition of Proline-Rich Motifs 
by Protein-Protein-Interaction Domains. Angew Chem Int Ed 2005; 44: 2852–2869. 

14. Starosta AL, Lassak J, Peil L, Atkinson GC, Virumäe K, Tenson T, et al. Translational 
stalling at polyproline stretches is modulated by the sequence context upstream of the stall site. 
Nucleic Acids Research 2014; 42: 10711–10719. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 5, 2021. ; https://doi.org/10.1101/2021.10.05.463052doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.05.463052
http://creativecommons.org/licenses/by-nc-nd/4.0/


27 
 

15. Woolstenhulme CJ, Guydosh NR, Green R, Buskirk AR. High-Precision Analysis of 
Translational Pausing by Ribosome Profiling in Bacteria Lacking EFP. Cell Reports 2015; 11: 
13–21. 

16. Hersch SJ, Elgamal S, Katz A, Ibba M, Navarre WW. Translation initiation rate determines 
the impact of ribosome stalling on bacterial protein synthesis. J Biol Chem 2014; 289: 28160–
28171. 

17. Lassak J, Wilson DN, Jung K. Stall no more at polyproline stretches with the translation 
elongation factors EF‐P and IF‐5A. Molecular Microbiology 2016; 99: 219–235. 

18. Yanagisawa T, Sumida T, Ishii R, Takemoto C, Yokoyama S. A paralog of lysyl-tRNA 
synthetase aminoacylates a conserved lysine residue in translation elongation factor P. Nature 
2010; 17: 1136–1143. 

19. Park J-H, Johansson HE, Aoki H, Huang BX, Kim H-Y, Ganoza MC, et al. Post-translational 
Modification by Beta-Lysylation Is Required for Activity of Escherichia coli Elongation Factor 
P (EF-P). J Biol Chem 2012; 287: 2579–2590. 

20. Lassak J, Keilhauer E, Fürst M, Wuichet K, Gödeke J, Starosta AL, et al. Arginine-
rhamnosylation as new strategy to activate translation elongation factor P. Nature Chemical 
Biology 2015; 11: 266–270. 

21. Tollerson R, Witzky A, Ibba M. Elongation factor P is required to maintain proteome 
homeostasis at high growth rate. PNAS 2018; 115: 1–6. 

22. Peng WT, Banta LM, Charles TC, Nester EW. The chvH locus of Agrobacterium encodes a 
homologue of an elongation factor involved in protein synthesis. Journal of Bacteriology 2001; 
183: 36–45. 

23. Rajkovic A, Hummels KR, Witzky A, Erickson S, Gafken PR, Whitelegge JP, et al. 
Translation Control of Swarming Proficiency in Bacillus subtilis by 5-Amino-pentanolylated 
Elongation Factor P. J Biol Chem 2016; 291: 10976–10985. 

24. Navarre WW, Zou SB, Roy H, Xie JL, Savchenko A, Singer A, et al. PoxA, YjeK, and 
Elongation Factor P Coordinately Modulate Virulence and Drug Resistance in Salmonella 
enterica. Molecular Cell 2010; 39: 209–221. 

25. Hummels KR, Kearns DB. Suppressor mutations in ribosomal proteins and FliY restore 
Bacillus subtilis swarming motility in the absence of EF-P. PLOS Genetics 2019; 15: e1008179-
27. 

26. Rajkovic A, Erickson S, Witzky A, Branson OE, Seo J, Gafken PR, et al. Cyclic 
Rhamnosylated Elongation Factor P Establishes Antibiotic Resistance in Pseudomonas 
aeruginosa. 2015; 6: 1–9. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 5, 2021. ; https://doi.org/10.1101/2021.10.05.463052doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.05.463052
http://creativecommons.org/licenses/by-nc-nd/4.0/


28 
 

27. Yanagisawa T, Takahashi H, Suzuki T, Masuda A, Dohmae N, Yokoyama S. Neisseria 
meningitidis Translation Elongation Factor P and Its Active-Site Arginine Residue Are Essential 
for Cell Viability. PLoS ONE 2016; 11: e0147907-27. 

28. Krafczyk R, Qi F, Sieber A, Mehler J, Jung K, Frishman D, et al. Proline codon pair selection 
determines ribosome pausing strength and translation efficiency in bacteria. Communications 
Biology 2021; 4: 1–11. 

29. Qi F, Motz M, Jung K, Lassak J, Frishman D. Evolutionary analysis of polyproline motifs in 
Escherichia coli reveals their regulatory role in translation. PLoS Comput Biol 2018; 14: 
e1005987-19. 

30. Karlin S, Mrázek J, Campbell A, Kaiser D. Characterizations of highly expressed genes of 
four fast-growing bacteria. Journal of Bacteriology 2001; 183: 5025–5040. 

31. Dethlefsen L, Schmidt TM. Performance of the Translational Apparatus Varies with the 
Ecological Strategies of Bacteria. Journal of Bacteriology 2007; 189: 3237–3245. 

32. Weissman JL, Hou S, Fuhrman JA. Estimating maximal microbial growth rates from 
cultures, metagenomes, and single cells via codon usage patterns. PNAS 2021; 118: 1–10. 

33. Hersch SJ, Wang M, Zou SB, Moon K-M, Foster LJ, Ibba M, et al. Divergent Protein Motifs 
Direct Elongation Factor P-Mediated Translational Regulation in Salmonella enterica and 
Escherichia coli. mBio 2013; 4: 1–10. 

34. Pinheiro B, Scheidler CM, Kielkowski P, Schmid M, Forné I, Ye S, et al. Structure and 
Function of an Elongation Factor P Subfamily in Actinobacteria. Cell Reports 2020; 30: 4332-
4342.e5. 

35. Chen I-MA, Markowitz VM, Chu K, Palaniappan K, Szeto E, Pillay M, et al. IMG/M: 
integrated genome and metagenome comparative data analysis system. Nucleic Acids Research 
2017; 45: D507–D516. 

36. Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the 
quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome 
Res 2015; 25: 1043–1055. 

37. Chaumeil P-A, Mussig AJ, Hugenholtz P, Parks DH. GTDB-Tk: a toolkit to classify 
genomes with the Genome Taxonomy Database. Bioinformatics 2020; 36: 1925–1927. 

38. Eddy SR. Accelerated Profile HMM Searches. PLoS Comput Biol 2011; 7: e1002195-16. 

39. Madin JS, Nielsen DA, Brbic M, Corkrey R, Danko D, Edwards K, et al. A synthesis of 
bacterial and archaeal phenotypic trait data. Scientific Data 2020; 7: 1–8. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 5, 2021. ; https://doi.org/10.1101/2021.10.05.463052doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.05.463052
http://creativecommons.org/licenses/by-nc-nd/4.0/


29 
 

40. Novembre JA. Accounting for Background Nucleotide Composition When Measuring Codon 
Usage Bias. Molecular Biology and Evolution 2002; 19: 1390–1394. 

41. Lyons NA, Kolter R. On the evolution of bacterial multicellularity. Current Opinion in 
Microbiology 2015; 24: 21–28. 

42. Schirrmeister BE, Antonelli A, Bagheri HC. The origin of multicellularity in cyanobacteria. 
BMC Evolutionary Biology 2011; 11: 45. 

43. Wiegand S, Jogler M, Jogler C. On the maverick Planctomycetes. FEMS Microbiol Rev 
2018; 42: 739–760. 

44. Bergeijk DA van, Terlouw BR, Medema MH, Wezel GP van. Ecology and genomics of 
Actinobacteria: new concepts for natural product discovery. Nat Rev Micro 2020; 18: 546–558. 

45. Erdos G, Dosztányi Z. Analyzing Protein Disorder with IUPred2A. Current Protocols in 
Bioinformatics 2020; 70: 1–15. 

46. Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. 
Nucleic Acids Research 2004; 32: 1792–1797. 

47. Price MN, Dehal PS, Arkin AP. FastTree: Computing Large Minimum Evolution Trees with 
Profiles instead of a Distance Matrix. Molecular Biology and Evolution 2009; 26: 1641–1650. 

48. Pagel M. Inferring the historical patterns of biological evolution. Nature 1999; 401: 877–884. 

49. Revell LJ. phytools: an R package for phylogenetic comparative biology (and other things). 
Methods Ecol Evol 2011; 3: 217–223. 

50. Orme D, Freckleton R, Thomas G, Petzoldt T, Fritz S, Isaac N, et al. Comparative Analyses 
of Phylogenetics and Evolution in R. 2018; 1–50. 

51. Wickham H. ggplot2: Elegant Graphics for Data Analysis (Use R). 2009. Springer. 

52. Symonds MRE, Blomberg SP. A Primer on Phylogenetic Generalised Least Squares. Modern 
Phylogenetic Comparative Methods and Their Application in Evolutionary Biology: Concepts 
and Practice. 2014, pp 105–130. 

53. Watanabe K, Suzuki Y. Protein thermostabilization by proline substitutions. J Mol Catal B 
Enzym 1998; 4: 167–180. 

54. Sabath N, Ferrada E, Barve A, Wagner A. Growth Temperature and Genome Size in Bacteria 
Are Negatively Correlated, Suggesting Genomic Streamlining During Thermal Adaptation. 
Genome Biology and Evolution 2013; 5: 966–977. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 5, 2021. ; https://doi.org/10.1101/2021.10.05.463052doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.05.463052
http://creativecommons.org/licenses/by-nc-nd/4.0/


30 
 

55. Goldman BS, Nierman WC, Kaiser D, Slater SC, Durkin AS, Eisen JA, et al. Evolution of 
sensory complexity recorded in a myxobacterial genome. PNAS 2006; 103: 15200–15205. 

56. Long AM, Hou S, Ignacio-Espinoza JC, Fuhrman JA. Benchmarking microbial growth rate 
predictions from metagenomes. ISME Journal 2020; 1–13. 

57. Rocha EPC. Codon usage bias from tRNA’s point of view: Redundancy, specialization, and 
efficient decoding for translation optimization. Genome Res 2004; 14: 2279–2286. 

58. Klappenbach JA, Dunbar JM, Schmidt TM. rRNA Operon Copy Number Reflects Ecological 
Strategies of Bacteria. Applied and Environmental Microbiology 2000; 66: 1328–1333. 

59. Kanehisa M, Goto S, Sato Y, Furumichi M, Tanabe M. KEGG for integration and 
interpretation of large-scale molecular data sets. Nucleic Acids Research 2012; 40: D109–D114. 

60. Karlin S, Mrázek J. Predicted Highly Expressed Genes of Diverse Prokaryotic Genomes. 
Journal of Bacteriology 2000; 182: 5238–5250. 

61. Perez J, Castaneda-García A, Jenke-Kodama H, Muller R, Munoz-Dorado J. Eukaryotic-like 
protein kinases in the prokaryotes and the myxobacterial kinome. PNAS 2008; 105: 15950–
15955. 

62. Lobb B, Tremblay BJ-M, Moreno-Hagelsieb G, Doxey AC. An assessment of genome 
annotation coverage across the bacterial tree of life. Microb Genom 2020; 6. 

63. Shi L, Pigeonneau N, Ravikumar V, Dobrinic P, Macek B, Franjevic D, et al. Cross-
phosphorylation of bacterial serine/threonine and tyrosine protein kinases on key regulatory 
residues. Front Microbiol 2014; 5: 1–13. 

64. Nariya H, Inouye S. A protein Ser/Thr kinase cascade negatively regulates the DNA-binding 
activity of MrpC, a smaller form of which may be necessary for the Myxococcus xanthus 
development. Molecular Microbiology 2006; 60: 1205–1217. 

65. Stein EA, Cho K, Higgs PI, Zusman DR. Two Ser/Thr protein kinases essential for efficient 
aggregation and spore morphogenesis in Myxococcus xanthus. Molecular Microbiology 2006; 
60: 1414–1431. 

66. Jakob U, Kriwacki R, Uversky VN. Conditionally and Transiently Disordered Proteins: 
Awakening Cryptic Disorder To Regulate Protein Function. Chem Rev 2014; 114: 6779–6805. 

67. Starosta AL, Lassak J, Peil L, Atkinson GC, Woolstenhulme CJ, Virumäe K, et al. A 
Conserved Proline Triplet in Val-tRNA Synthetase and the Origin of Elongation Factor P. Cell 
Reports 2014; 9: 476–483. 

68. Yannai A, Katz S, Hershberg R. The Codon Usage of Lowly Expressed Genes Is Subject to 
Natural Selection. Genome Biol Evol 2018; 10: 1237–1246. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 5, 2021. ; https://doi.org/10.1101/2021.10.05.463052doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.05.463052
http://creativecommons.org/licenses/by-nc-nd/4.0/


31 
 

69. Iakoucheva LM, Radivojac P, Brown CJ, OConnor TR, Sikes JG, Obradovic Z, et al. The 
importance of intrinsic disorder for protein phosphorylation. Nucleic Acids Research 2004; 32: 
1037–1049. 

70. Elsen S, Swem LR, Swem DL, Bauer CE. RegB/RegA, a Highly Conserved Redox-
Responding Global Two-Component Regulatory System. Microbiol Mol Biol R 2004; 68: 263–
279. 

71. Tawa P, Stewart RC. Kinetics of CheA Autophosphorylation and Dephosphorylation 
Reactions. Biochemistry 1994; 33: 7917–7924. 

72. Yoshida T, Cai S jian, Inouye M. Interaction of EnvZ, a sensory histidine kinase, with 
phosphorylated OmpR, the cognate response regulator. Mol Microbiol 2002; 46: 1283–1294. 

73. Cho M-H, Wrabl JO, Taylor J, Hilser VJ. Hidden dynamic signatures drive substrate 
selectivity in the disordered phosphoproteome. PNAS 2020; 117: 1–11. 

74. Wright PE, Dyson HJ. Intrinsically Disordered Proteins in Cellular Signaling and Regulation. 
Nat Rev Mol Cell Biol 2015; 16: 18–29. 

  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 5, 2021. ; https://doi.org/10.1101/2021.10.05.463052doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.05.463052
http://creativecommons.org/licenses/by-nc-nd/4.0/

