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Abstract:		Naturalistic	imaging	paradigms,	in	which	participants	view	complex	1 

videos	in	the	scanner,	are	increasingly	used	in	human	cognitive	neuroscience.	2 

Videos	evoke	temporally	synchronized	brain	responses	that	are	similar	across	3 

subjects	as	well	as	within	subjects,	but	the	reproducibility	of	these	brain	responses	4 

across	different	data	acquisition	sites	has	not	yet	been	quantified.	Here	we	5 

characterize	the	consistency	of	brain	responses	across	independent	samples	of	6 

participants	viewing	the	same	videos	in	fMRI	scanners	at	different	sites	(Indiana	7 

University	and	Caltech).	We	compared	brain	responses	collected	at	these	different	8 

sites	for	two	carefully	matched	datasets	with	identical	scanner	models,	acquisition,	9 

and	preprocessing	details,	along	with	a	third	unmatched	dataset	in	which	these	10 

details	varied.	Our	overall	conclusion	is	that	for	matched	and	unmatched	datasets	11 

alike,	video-evoked	brain	responses	have	high	consistency	across	these	different	12 

sites,	both	when	compared	across	groups	and	across	pairs	of	individuals.	As	one	13 

might	expect,	differences	between	sites	were	larger	for	unmatched	datasets	than	14 

matched	datasets.	Residual	differences	between	datasets	could	in	part	reflect	15 

participant-level	variability	rather	than	scanner-	or	data-	related	effects.	Altogether	16 

our	results	indicate	promise	for	the	development	and,	critically,	generalization	of	17 

video	fMRI	studies	of	individual	differences	in	healthy	and	clinical	populations	alike.		18 

	19 

Keywords:	video	fMRI,	naturalistic	viewing,	reliability,	reproducibility,	inter-20 

subject	correlations,	synchrony,	harmonization		21 
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	1 

Introduction	2 

Problems	with	reproducibility	and	reliability	of	scientific	findings	have	3 

arisen	across	numerous	fields	over	the	past	two	decades	(Ioannidis,	2005).		4 

Functional	magnetic	resonance	imaging	(fMRI)	studies	have	been	far	from	immune,	5 

with	inconsistent	results	found	across	numerous	fMRI	paradigms	(Nickerson,	2018;	6 

Poldrack	et	al.,	2017;	Zuo	et	al.,	2019;	He	et	al.,	2020;	Elliott	et	al.,	2020).	7 

Inconsistent	results	could	indicate	true	and	potentially	relevant	differences	in	study	8 

populations.	But	different	data	processing	and	data	analysis	choices	can	yield	9 

different	conclusions	from	the	same	datasets	(e.g.,	Eklund	et	al.,	2016;	Botvinik-10 

Nezer,	et	al.,	2020),	and	datasets	collected	from	different	scanners	at	different	sites	11 

can	contain	non-biological	variability	due	to	differences	in	scanners	and	protocols	12 

(Friedman	et	al,	2006;	Yu	et	al.,	2018).	Altogether	these	considerations	indicate	the	13 

importance	of	directly	testing	reproducibility	across	datasets	collected	at	different	14 

sites.			15 

	 Naturalistic	viewing	fMRI,	or	video	fMRI	(here;	vfMRI;	Hasson	et	al.,	2004),	16 

has	emerged	in	recent	years	as	an	attractive	alternative	to	conventional	task-	and	17 

connectivity-based	paradigms.		Videos	are	arguably	more	ecologically	valid,	and	18 

permit	greater	compliance	in	the	scanner	(Eickhoff,	Milham,	&	Vanderwal,	2020;	19 

Vanderwal,	Eilbott,	&	Castellanos,	2019)	making	them	an	ideal	candidate	to	use	for	20 

developmental	and	clinical	samples	(e.g.,	Richardson	et	al.,	2019).	While	vfMRI	data	21 

can	be	analyzed	using	conventional	task-	and	connectivity-	based	approaches,	a	22 

distinct	analysis	approach	that	is	based	on	measuring	similarity	or	synchrony	23 
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among	participant	brain	responses	has	gained	prominence	(Saarimäki,	2021).	This		1 

inter-subject	correlation-based	approach	(ISC;	Hasson	et	al.,	2004)	presents	its	own	2 

distinct	analytic	requirements	due	to	the	dependencies	inherent	in	similarity	3 

measurements	(Chen	et	al.,	2017;	Nastase	et	al.,	2019).	Within	the	same	dataset	4 

from	the	same	scanner,	vfMRI	paradigms	can	evoke	markedly	similar	responses	5 

across	subjects	in	many	parts	of	the	brain	(e.g.,	Hasson	et	al.,	2004,	2009,	2010;	6 

Byrge,	Dubois,	et	al.,	2015;	Richardson	et	al.,	2018;	Nastase	et	al.,	2019).	Video-7 

evoked	brain	responses	have	also	been	shown	to	be	reliable	within	individual	8 

subjects	after	repeated	stimulus	presentations,	in	some	regions	(for	review,	see	9 

Hasson	et	al.,	2010).	Reliable	responses	are	observed	most	consistently	throughout	10 

posterior	swaths	of	cortex	including	visual	and	auditory	primary	sensory	and	11 

association	areas	and,	for	some	video	stimuli,	can	also	extend	to	include	parts	of	12 

default	network	and	lateral	prefrontal	cortex	(Hasson	et	al.,	2009,	2010;	Byrge,	13 

Dubois,	et	al.,	2015;	Burunat	et	al.,	2016).	However,	the	extent	to	which	brain	14 

responses	during	vfMRI	are	reproducible	across	different	datasets	collected	at	15 

different	sites	has	not	yet	been	examined.		16 

	 This	issue	of	examining	reproducibility	of	vfMRI	across	different	sites	takes	17 

on	increased	importance	given	recent	momentum	toward	using	vfMRI	for	clinical	18 

studies	(autism:	Hasson	et	al.,	2009,	Salmi	et	al.,	2013,	Byrge,	Dubois,	et	al.,	2015;	19 

schizophrenia:	Yang	et	al.,	2020;	depression:	Guo	et	al.,	2015,	Gruskin	et	al.,	2020).	20 

The	idea	is	to	first	use	vfMRI	to	establish	“normative”	or	“benchmark”	patterns	of	21 

brain	responses	to	a	video	stimulus	with	clinically	relevant	features.	This	then	22 

makes	it	possible	to	quantify	the	extent	to	which	an	individual’s	brain	responses	23 
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deviate	from	this	reference	pattern,	in	some	particular	brain	area(s)	or	at	some	1 

particular	moment(s)	of	the	video	(Hasson	et	al.,	2010;	Eickhoff	et	al.,	2020).	The	2 

hope	is	that	the	combination	of	rich,	dynamic	stimuli	that	engage	multiple	brain	3 

networks	simultaneously,	the	relative	ease	of	standardizing	stimuli	and	protocols	4 

across	different	data	sites,	and	the	increased	data	quantity	and	quality	permitted	by	5 

greater	scan	compliance	might	yield	insights	into	the	neural	basis	for	the	given	6 

condition,	facilitate	discovery	of	novel	biomarkers	(Sonkusare	et	al.,	2019;	Eickhoff	7 

et	al.,	2020),	and	eventually	inform	diagnosis	as	well	as	measure	efficacy	of	8 

interventions	(Hasson	et	al.,	2010).		9 

Many	clinical	neuroscience	studies	are	moving	to	multi-site	consortiums	10 

(e.g.,	Di	Martino	et	al.,	2017,	Loth	et	al.,	2017),	which	aggregate	data	collection	11 

across	different	sites	to	obtain	an	appropriate	sample.	However,	the	weak	point	in	12 

clinical	neuroscience	studies	can	often	be	generalization	of	findings	across	different	13 

studies,	samples,	and	sites	(e.g.,	Kliemann	et	al.,	2018,	King	et	al.,	2019;	He	et	al.,	14 

2020).	This	presumably	occurs	due	to	combinations	of	factors	that	can	include	15 

individual	variability,	methodological	and	stimulus	variation,	and	differences	16 

between	scanner	equipment	and	standardization.	Using	video	stimuli	can	minimize	17 

methodological	and	stimulus	variation,	as	noted.	But	there	is	considerable	18 

individual	variation	in	brain	organization	and	function	within	the	healthy	“control”	19 

population	(Zilles	&	Amunts,	2013;	Dubois	&	Adolphs,	2016;	Holmes	&	Patrick,	20 

2018),	including	trait-linked	variation	in	video-evoked	brain	response	similarity	21 

(e.g.,	Salmi	et	al.,	2013;	Finn	et	al.,	2018).	It	is	therefore	important	to	test	the	extent	22 

to	which	the	“normative”	pattern	of	brain	responding	to	a	video	is	itself	23 
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reproducible	across	different	sites,	before	using	it	as	a	clinical	reference	or	1 

benchmark.	Such	an	investigation	may	also	provide	insights	for	fMRI	harmonization	2 

efforts	more	generally.	This	is	because	stimulus-driven	brain	responses	permit	3 

partitioning	of	variance	between	exogenously-	and	endogenously-	driven	brain	4 

function	in	a	way	that	is	not	possible	for	some	other	types	of	widely-used	fMRI	5 

paradigms	like	resting	state	functional	connectivity.	6 

	 Thus,	here	we	directly	examine	cross-site	consistency	of	evoked	brain	7 

responses	during	video	scans	collected	at	two	different	data	sites,	Indiana	8 

University	(Indiana)	and	California	Institute	of	Technology	(Caltech)	in	independent	9 

samples	of	healthy	adults.	The	primary	datasets	for	this	manuscript	are	carefully	10 

matched	datasets	that	were	collected	on	different	physical	scanners	in	different	11 

states,	but	with	potential	sources	of	cross-site	variability	tightly	controlled:	identical	12 

scanner	models,	identical	scan	protocols,	identical	preprocessing	pipelines,	and	13 

identical	analysis	procedures	(Table	1).	Characterizing	the	similarity	of	brain	14 

responses	across	these	closely	matched	datasets	in	a	sample	of	typical	controls	will	15 

thus	suggest	a	potential	upper	bound	on	the	levels	of	cross-site	consistency	to	be	16 

expected	when	the	same	video	stimuli	are	used	and	other	details	are	matched	as	17 

closely	as	possible.	As	a	further	exploratory	step,	we	also	examined	cross-site	18 

similarity	of	brain	responses	between	two	unmatched	datasets:	the	Caltech	dataset	19 

and	an	earlier	pilot	dataset	(Pilot)	also	collected	at	Indiana	University,	but	several	20 

years	earlier	and	prior	to	a	scanner	upgrade.	This	Pilot	dataset	uses	the	same	video	21 

stimuli,	but	different	scanner	models,	different	scan	protocols,	and	differences	22 

across	numerous	dimensions	of	preprocessing	approaches	(Table	1).	Although	the	23 
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unmatched	acquisitions	were	not	designed	to	disentangle	specific	sources	of	cross-1 

site	variability,	we	include	that	comparison	as	a	case	study	that	is	informative	about	2 

the	ranges	of	similarity	possible	when	sources	of	cross-site	variation	vary	somewhat	3 

more	freely	–	as	is	the	case	in	some	multi-site	studies,	particularly	those	pooled	4 

from	pre-existing	datasets.	Thus,	here	we	map	out	where	in	the	brain	to	expect	5 

more	consistent	responses	across	sites,	and	conversely,	where	variability	across	6 

matched	datasets	and	unmatched	datasets	most	strongly	manifests	in	vfMRI	7 

paradigms.	This	establishes	a	key	foundation	for	the	clinical	use	of	vfMRI,	because	8 

confidently	identifying	atypical	video-evoked	responses	in	particular	brain	regions	9 

is	ultimately	limited	by	the	reliability	of	vfMRI	in	that	region	(see	also	Elliott	et	al.,	10 

2021).	11 

 12 

[ INSERT TABLE 1 ABOUT HERE ] 13 

 14 

	15 

	16 

Materials	&	Methods		17 

Participants.		18 

Matched	datasets.	The	primary	matched	datasets	were	collected	at	two	sites,	19 

Indiana	University	and	Caltech,	between	2017	and	2020,	as	part	of	a	larger	project	20 

including	both	typically	developed	adults	and	adults	with	autism	spectrum	disorder	21 

(ASD).	Only	data	from	typically	developed	adults	are	included	in	the	current	report	22 

(N	=	49/25	(Indiana/Caltech)	participants	(mean	(SD)	age	24.9	(6.5)	/	34.2	(4.8),	23 
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9 

from	an	original	sample	of	N	=	63	/29,	prior	to	data-quality-related	exclusions	1 

reported	below).	The	current	dataset	includes	predominantly	males	(40	Indiana,	19	2 

Caltech)	because	its	primary	purpose	is	to	serve	as	a	matched	control	for	the	3 

(mostly	male)	ASD	participants	whose	data	will	be	reported	elsewhere.	All	subjects	4 

provided	written	informed	consent;	all	experimental	procedures	were	approved	by	5 

the	Institutional	Review	Boards	of	Indiana	University	(IU	IRB)	and	the	California	6 

Institute	of	Technology.	7 

	8 

Unmatched	(pilot)	dataset.	The	pilot	dataset	was	collected	between	2015-9 

2016	at	Indiana	University,	prior	to	a	scanner	upgrade	from	a	3T	Siemens	TIM	Trio	10 

to	a	3T	Siemens	Prisma.Fit	system,	and	is	described	in	Byrge	&	Kennedy	(2020).	11 

This	dataset	also	included	both	typically	developed	adults	and	adults	with	autism	12 

spectrum	disorder,	and	is	accordingly	skewed	male.	Only	data	from	typically	13 

developed	adults	(N=25,	22	male;	mean	(SD)	age	25.11	(4.66)	years)	is	included	in	14 

this	report.	All	subjects	provided	written	informed	consent;	all	experimental	15 

procedures	were	approved	by	the	IU	IRB.	16 

	17 

[	INSERT	TABLE	2	ABOUT	HERE	]	18 

	19 

Design.	20 

Matched	datasets.	Participants	underwent	two	scanning	sessions	separated	21 

by	approximately	one	week.	Each	session	consisted	of	interleaved	rest	and	video	22 

scans	in	a	fixed	order.	A	total	of	ten	functional	scans	were	collected	(six	video	scans;	23 
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10 

four	~16-min.	resting-state	scans).	Table	2	presents	an	overview	of	the	video	scans	1 

included	for	each	dataset.	For	this	report,	we	focus	most	analyses	on	Video1	and	2 

Video2,	because	they	were	also	used	in	the	pilot	dataset.	For	a	few	additional	3 

analyses,	we	also	include	the	remaining	four	video	scans.	Resting-state	scans	were	4 

used	as	comparison	scans	for	some	analyses.	These	and	the	remaining	functional	5 

scans	will	be	reported	in	further	detail	elsewhere.		6 

Stimulus	construction	for	the	primary	video	scans	(Video1	and	Video2)	is	7 

described	in	Byrge	&	Kennedy	(2020);	briefly,	both	scans	consisted	of	sequences	of	8 

4-6	movie	trailers	collected	from	Vimeo	(https://vimeo.com)	across	different	9 

genres	(e.g.	documentary,	drama,	adventure).	Video3	and	Video4	were	different	10 

episodes	of	the	TV	sitcom	“The	Office	(Season	1	Episode	6,	“Hot	Girl”;	see	also	Byrge,	11 

Dubois,	et	al.,	2015,	and	Pantelis	et	al.,	2015;	and	Season	1	Episode	5,	“Basketball”).	12 

Video5	was	a	short	animated	movie,	Pixar’s	“Partly	Cloudy,”	(Reher	&	Sohn,	2009;	13 

see	also	Richardson	&	Saxe,	2019).	Video6	was	an	edited	excerpt	from	the	episode	14 

“Bang!	You’re	dead”	from	the	television	series	Alfred	Hitchcock	Presents	(1961;	see	15 

also	Hasson	et	al.,	2004).	Sample	sizes	for	each	video	scan	are	reported	in	Table	2.	16 

Video	was	back-projected	onto	a	screen	that	was	visible	to	subjects	via	a	17 

mirror	attached	to	the	head	coil,	with	audio	provided	using	Sensimetrics	MR-18 

compatible	headphones.	No	video	stimulus	was	provided	during	resting	state	scans	19 

(the	projector	was	set	to	a	black	screen),	and	wakefulness	was	monitored	via	an	20 

MR-compatible	remote	eye	tracker	camera	(Eyelink	1000+,	SR	Research	Ltd.	21 

Ottawa,	Canada).	Subjects	were	instructed	to	move	as	little	as	possible	and	to	22 

remain	awake	with	eyes	open.	Scans	where	problems	occurred	during	acquisition	23 
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11 

(technical	problems,	such	as	muffled	audio	or	issues	with	projector	screen,	or	1 

participants	falling	asleep)	were	also	excluded	(see	Table	2).		2 

Anatomical	images	were	acquired	following	functional	runs,	during	which	3 

participants	chose	to	rest	or	watch	a	different	video.		4 

	5 

	6 

Unmatched	dataset.	The	experimental	design	for	this	dataset	is	described	in	7 

detail	in	Byrge	&	Kennedy	(2020).	Briefly,	this	study	was	also	collected	across	two	8 

scan	sessions	separated	by	approximately	one	week,	with	interleaved	rest	and	video	9 

scans.	Only	the	two	video	scans	that	used	the	same	stimuli	as	the	primary	datasets	10 

(Video1	and	Video2)	were	included	in	this	report.	Anatomical	images	were	collected	11 

following	functional	scans.	See	Table	2	for	sample	sizes.	12 

	13 

	14 

Data	acquisition,	preprocessing,	and	quality	assessment.	15 

Matched	dataset.	MRI	images	were	acquired	using	identical	Siemens	3T	16 

Magnetom	Prisma.Fit	scanners	(Siemens	Medical	Solutions,	Natick,	MA)	at	each	site,	17 

with	64-channel	head	receive	arrays.	Scan	protocols	were	matched	across	sites.	18 

Scanner	software	versions	used	were	VE11B	(IU)	and	VE11C	(Caltech,	and	last	5	19 

scans	at	IU).	During	functional	scans,	T2*-weighted	multiband	echo	planar	imaging	20 

(EPI)	data	were	acquired	using	the	following	parameters:	TR/TE	720/30	ms;	flip	21 

angle	=	50	°;	2.5mm	isotropic	voxels;	60	slices	acquired	in	interleaved	order	22 

covering	the	entire	brain;	multi-band	acceleration	factor	of	6	(Multiband	EPI	23 
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12 

sequence	version	R16,	CMRR,	University	of	Minnesota).	Scan	lengths	were	as	1 

follows:	video	1,	1130	volumes;	video	2,	1080	volumes;	rest,	1355	volumes.	Prior	to	2 

the	first	functional	scan,	spin-echo	EPI	images	were	acquired	in	opposite	phase-3 

encoding	directions	(3	images	each	with	P-A	and	A-P	phase	encoding)	with	identical	4 

geometry	to	the	EPI	data	(TR/TE	=	4390	/	37.2	ms;	flip	angle	=	90°)	to	be	used	as	a	5 

fieldmap	to	correct	EPI	distortions.	High-resolution	images	of	the	whole	brain	were	6 

acquired	as	anatomical	references	(multi-echo	MPRAGE,	0.9mm	isotropic	voxel	size;	7 

TR	=	2550.0	ms	/	TEs	=	1.63	ms,	3.45	ms,	5.27	ms,	7.09	ms	/	TI	=	1150	ms).		8 

An	upgrade	to	the	trigger	box	occurred	in	the	final	months	of	data	collection	9 

at	the	IU	site,	and	this	sporadically	resulted	in	an	intermittent	missed	trigger	and	10 

delayed	movie	start	for	35	scans.	These	scans	were	identified	empirically	and	11 

adjusted	accordingly	(see	Supplemental	Methods);	these	realignments	did	not	12 

influence	the	pattern	of	results	reported	here,	which	were	effectively	identical	when	13 

conducted	with	the	original	(non-realigned)	scans.		14 

DICOM	images	were	converted	to	BIDS	format	(Gorgolewski	et	al.,	2016)	15 

before	being	run	through	MRIQC	(v0.15.2;	Esteban	et	al.,	2017)	for	initial	quality	16 

assessment	using	the	functional	image	quality	metrics	(IQMs)	FWHM	avg,	SNR,	17 

TSNR,	DVARS	std,	and	GSR.	Outliers	on	these	IQMs	(the	median	for	that	data	site	18 

plus	or	minus	1.5	times	the	interquartile	range	(IQR)	for	that	IQM	for	that	data	site,	19 

as	appropriate	for	the	measure	in	question)	were	flagged	for	manual	review	by	two	20 

of	the	authors	(LB	&	DK).	Following	review,	the	consensus	decision	was	to	exclude	21 

all	such	flagged	scans	from	further	analyses	(see	Table	2).		22 
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13 

After	initial	quality	assessment,	preprocessing	was	conducted	using	1 

fMRIPrep	(Esteban,	Markiewicz,	et	al.,	2018).	The	boilerplate	text	generated	by	2 

fMRIPrep,	with	complete	preprocessing	details,	is	included	in	Supplemental	3 

Methods.	Briefly,	using	components	from	ANTs	(Avants	et	al.,	2008)	FSL	(v.	5.0.9;	4 

FMRIB’s	Software	Library,	www.fmrib.ox.ac.uk/fsl)	and	Freesurfer	(v.6.0.1,	Dale,	5 

Fischl,	and	Sereno	1999),	anatomical	images	were	bias-corrected,	skull-stripped,	6 

segmented,	and	nonlinearly	registered	to	MNI	space.	Functional	scans	underwent	7 

rigid-body	motion	correction,	fieldmap-based	distortion	correction,	and	8 

coregistration	to	the	anatomical	reference	scan,	and	confound	regressors	(head	9 

motion	parameters,	CSF,	WM,	and	whole-brain	global	signal)	were	computed.		10 

For	summarizing	motion	across	a	scan	as	well	as	identifying	epochs	of	11 

excessive	motion,	we	computed	filtered	framewise	displacement	traces	(FDfilt4)	from	12 

the	fMRIPrep-computed	head	motion	parameters,	as	the	sums	of	the	backwards	13 

difference	across	4	TRs	of	motion	parameters	that	had	been	filtered	to	exclude	14 

respiratory	frequencies,	as	introduced	by	Power	and	colleagues	(2019)	and	used	15 

previously	for	the	pilot	acquisition	(Byrge	&	Kennedy,	2020).	FDfilt4	separates	head	16 

motions	from	respiratory	fluctuations	in	multiband	acquisitions	more	effectively	17 

than	the	conventional	framewise	displacement	computations	(Power	et	al.,	2019).	18 

We	excluded	all	scans	with	excessive	motion,	as	identified	by	mean	FDfilt4	exceeding	19 

the	median	plus	1.5	times	the	IQR	of	the	mean	FDfilt4	across	all	scans	(including	20 

scans	from	ASD	participants	not	included	in	the	current	analyses),	computed	21 

separately	at	each	site,	resulting	in	the	following	exclusion	thresholds:	mean	FDfilt4	>	22 

0.4808	for	Indiana,	mean	FDfilt4	>	0.5625	for	Caltech	(see	Table	2).	To	ensure	highest	23 
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data	quality,	we	also	censored	time	points	surrounding	excessive	motions:	10	1 

frames	before	and	30	frames	after	any	frame	with	FDfilt4	>	3.75mm;	censored	time	2 

points	were	treated	as	missing	data	in	all	analyses,	and	the	inclusion	or	exclusion	of	3 

censored	data	did	not	influence	the	overall	pattern	of	results.		4 

All	reports	generated	by	fMRIPrep	were	inspected	by	two	independent	5 

reviewers	(two	research	assistants,	one	based	at	each	site,	trained	to	conservatively	6 

flag	any	potential	issues	with	anatomical	and	functional	scans	and	their	alignment).	7 

All	reports	flagged	by	both	research	assistants	were	then	independently	reviewed	8 

by	both	LB	&	DK	and	a	consensus	decision	was	reached	about	whether	to	include	or	9 

exclude	all	such	flagged	scans	from	the	current	dataset	(see	Table	2).	10 

Subsequent	preprocessing	used	xcepengine	version	1.2.1;	detailed	in	detail	11 

by	Ciric	and	colleagues	(2018).	We	used	the	“fc-24p_gsr”	pipeline	optimized	for	12 

functional	connectivity	processing;	this	configuration	is	publicly	available	at	13 

https://github.com/PennBBL/xcpEngine/blob/master/designs/fc-24p_gsr.dsn.	14 

Briefly,	functional	data	was	demeaned	and	detrended,	aligned	to	the	anatomical	15 

reference	scan,	and	bandpass-filtered	within	the	range	0.08-0.001	Hz	using	a	16 

Butterworth	filter.	Then,	36	confound	regressors	(6	head	motion	parameters,	CSF,	17 

WM,	global	signal,	their	backwards	differences,	and	then	the	squares	of	those	18	18 

traces;	all	temporally	filtered	in	the	same	way	as	the	data)	were	regressed	from	the	19 

data,	and	then	the	residuals	were	spatially	smoothed	with	a	2.54mm	filter,	and	then	20 

used	as	the	“cleaned”	data.		21 

For	the	primary	datasets,	we	examined	average	BOLD	timeseries	across	22 

several	different	atlases.	We	focused	exclusively	on	cerebral	cortex,	excluding	the	23 
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cerebellum	and	all	subcortical	structures,	following	the	largely	cortico-centric	focus	1 

of	the	inter-subject	synchrony	literature.	The	primary	atlases	used	were	different	2 

parcellation	scales	of	the	Schaefer	atlas	(Schaefer	et	al.,	2018),	which	subdivides	the	3 

intrinsic	functional	connectivity-based	Yeo	network	parcellation	of	the	cortex	(Yeo	4 

et	al.,	2011)	into	100,	200,	400,	600,	800,	and	1000	cortical	regions.	We	also	5 

examined	the	structural	Harvard-Oxford	Atlas	distributed	with	FSL,	which	had	been	6 

previously	used	to	parcellate	the	pilot	dataset.	We	restricted	our	analysis	of	the	7 

Harvard-Oxford	parcellation	to	cortical	regions	of	interest	(ROIs;	96)	only,	for	8 

consistency	with	the	Schaefer	cortical	parcellation.	For	all	atlases,	we	obtained	ROI	9 

timeseries	for	each	region	as	the	mean	of	the	“cleaned”	BOLD	signal	across	all	voxels	10 

in	the	given	region,	at	each	time	point.	11 

As	an	additional	data	quality	assessment,	for	all	video	scans,	we	examined	12 

BOLD	time	series	from	primary	visual	cortex	and	primary	auditory	cortex	in	each	13 

hemisphere	(using	the	Harvard-Oxford	parcellation),	in	order	to	identify	and	14 

exclude	scans	where	technical	problems	with	the	stimulus	presentation	or	visual	or	15 

auditory	aspects	of	the	stimulus	occurred	but	were	not	noted	at	the	time	of	scanning	16 

(e.g.,	headphone	or	projector	failure,	or	misalignment	between	the	start	of	image	17 

acquisition	and	the	video).	We	approached	this	cautiously	and	conservatively,	18 

because	similarity	of	BOLD	time	series	among	scans	is	also	our	measure	of	interest	19 

for	this	report;	but,	at	the	same	time,	extremely	low	similarity	to	other	participant	20 

timeseries	in	primary	sensory	areas	during	long	video	scans	is	an	indicator	that	21 

something	has	gone	wrong	in	the	scan	acquisition	process.	Therefore,	separately	22 

within	each	dataset,	for	each	video	scan,	and	for	each	of	the	four	primary	sensory	23 
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regions	of	interest,	we	computed	pairwise	correlations	among	all	participant	time	1 

series,	and	computed	the	median	minus	three	times	the	interquartile	range	of	2 

median	pairwise	correlations	for	each	participant	as	a	threshold	to	identify	extreme	3 

outlier	values	suggestive	of	equipment	issues.	We	excluded	scans	for	which	the	4 

median	pairwise	correlation	was	below	this	data-driven	threshold	in	at	least	one	of	5 

the	sensory	regions		(see	Table	2).	6 

	7 

Exploratory	pilot	dataset.	This	acquisition	and	preprocessing	pipeline	is	8 

described	more	completely	in	Byrge	&	Kennedy	(2020).	Briefly,	images	were	9 

collected	using	a	3	T	Magnetom	Tim	Trio	system	(Siemens	Medical	Solutions,	Natick,	10 

MA)	with	32-channel	head	receive	array,	running	software	version	VB17.	T2*-11 

weighted	multiband	EPI	data	was	acquired	using	the	following	parameters:	TR/TE	=	12 

813/28	ms;	1200	volumes;	flip	angle	=	60°;	3.4	mm	isotropic	voxels;	42	slices	13 

acquired	with	interleaved	order	covering	the	whole	brain;	multi-band	acceleration	14 

factor	of	3.	Gradient-echo	EPI	images	(10	images	each	with	P-A	and	A-P	phase	15 

encoding;	TR/TE	=	1175/39.2	ms,	flip	angle	=	60°)	were	used	as	fieldmaps	for	EPI	16 

distortion	correction.	High-resolution	T1-weighted	images	of	the	whole	brain	17 

(MPRAGE,	.7	mm	isotropic	voxel	size;	TR/TE/TI	=	2499/2.3/1000	ms)	were	18 

acquired	as	anatomical	references.		19 

Data	were	preprocessed	using	an	in-house	pipeline	using	FSL	(v.	5.0.8;	20 

FMRIB’s	Software	Library,	http://www.fmrib.ox.ac.uk/fsl	),	ANTs	(v2.1.0;	Avants	et	21 

al.,	2011),	and	Matlab_R2014b	(www.mathworks.com,	Natick,	MA,	USA).	22 

Preprocessing	steps	included	rigid-body	motion	correction,	fieldmap-based	23 
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geometric	distortion	correction,	non-brain	removal,	weak	highpass	temporal	1 

filtering	(>2000s	FWHM)	to	remove	slow	drifts.	Denoising	was	preformed	using	2 

FSL-FIX	(Salimi-Khorshidi	et	al.,	2014)	followed	by	mean	cortical	signal	regression	3 

in	a	second	step	(effectively	the	same	as	global	signal	regression,	but	using	the	4 

signal	across	the	cortex	rather	than	whole	brain;	Burgess	et	al.,	2016),	with	the	5 

residuals	analyzed	as	the	“cleaned”	data.	Volumetric	registrations	were	conducted	6 

using	FSL	and	ANTs,	using	a	combined	affine	and	diffeomorphic	transformation	7 

matrix.	Region	of	interest	(ROI)	timeseries	using	the	Harvard-Oxford	Atlas	8 

distributed	with	FSL	were	obtained	as	the	weighted	mean	signal	from	the	“cleaned”	9 

BOLD	signal	across	voxels	within	each	of	the	110	ROIs.		10 

As	these	data	were	collected	using	a	different	repetition	time	(TR)	than	the	11 

primary	dataset	(813	ms	vs.	720	ms),	the	final	preprocessing	step	for	this	report	12 

was	to	resample	these	time	series	to	match	the	faster	sampling	rate	of	the	primary	13 

dataset.	There	are	many	possible	ways	to	perform	such	resampling;	here,	we	used	14 

Fourier	method	resampling	as	implemented	in	scipy.signal.resample.		15 

Differences	between	the	primary	and	exploratory	pilot	unmatched	16 

acquisitions	are	summarized	in	Table	1.	17 

		18 

[	INSERT	FIGURE	1	ABOUT	HERE	]	19 

	20 

Data	Analysis.	21 

Naturalistic	fMRI	data	analysis	requires	evaluating	the	similarity	of	brain	22 

response	time	series.	Here,	we	examined	similarity	of	brain	responses	across	sites	at	23 
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two	distinct	levels:	similarity	of	group-average	time	series	from	each	site	(Fig.	1A),	1 

and	similarity	of	pairs	of	individual	subject	time	series	across	sites	and	within	each	2 

site	(Fig.	1B;	pairwise	inter-subject	correlations;	ISC;	Hasson	et	al.,	2004).	At	the	3 

group	level,	within	each	site,	we	used	median	time	series	across	subjects	within	4 

each	brain	region	of	interest	to	isolate	the	common	brain	response	pattern	while	5 

reducing	the	influence	of	various	forms	of	noise.	We	take	these	measurements	of	6 

across-site	similarity	at	both	levels	as	our	measures	of	cross-site	consistency.	7 

Unless	noted,	analyses	are	repeated	on	the	two	primary	video	trailer	scans	8 

(Video	1	and	Video	2)	that	were	used	as	stimuli	in	each	of	the	datasets.	Most	9 

analyses	are	conducted	across	multiple	spatial	scales	using	different	granularities	of	10 

the	Schaefer	parcellation	(Schaefer	et	al.,	2018).	11 

	12 

Statistical	comparisons.	13 

Consistency	of	brain	responses	across	sites.	14 

As	a	first	broad	characterization	of	the	extent	to	which	there	is	shared	signal	15 

across	sites,	we	measured	similarity	between	median	time	series	for	each	site	using	16 

Pearson	correlations.	We	considered	a	brain	region	(ROI)	to	be	responding	more	17 

consistently	across	sites	during	the	same	video	than	expected	by	chance	if	the	18 

correlation	was	statistically	significant	following	FDR-correction	for	the	granularity	19 

of	the	parcellation	in	question.	(Note	that	the	patterns	of	results	were	effectively	the	20 

same	when	using	a	non-parametric,	bootstrapped	procedure).	21 

For	individual-level	analyses,	for	each	scan	and	in	each	brain	region,	we	22 

computed	pairwise	inter-subject	correlations	(ISC)	as	the	Pearson	correlation	23 
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among	pairs	of	individual	brain	responses	for	all	pairs	of	subjects.	We	also	1 

computed	pairwise	similarity	across	different	scans	(e.g.,	between	Video1	and	Rest)	2 

for	use	in	null	models	as	described	below.	We	used	non-parametric	statistical	3 

comparisons	for	this	level	of	analysis,	following	the	recommendations	of	Chen	and	4 

colleagues	(2016)	for	pairwise	ISC,	and	pooled	pairwise	correlations	within	and/or	5 

across	sites	without	collapsing	at	the	individual	level.		6 

To	evaluate	whether	a	brain	region	responded	more	consistently	across	sites	7 

than	expected	by	chance	at	the	individual	level,	we	examined	only	inter-subject	8 

correlations	between	pairs	of	participants	from	different	sites,	and	asked	whether	9 

the	magnitudes	of	those	correlations	were	greater	when	both	participants	were	10 

watching	the	same	video	than	when	one	participant	was	watching	the	video	and	the	11 

other	participant	was	resting.	We	compared	correlation	magnitudes	(absolute	12 

values)	to	avoid	exaggerated	influence	from	very	small	negative	correlations,	which	13 

were	expected	between	video	and	rest	scans.	We	held	the	comparison	scans	fixed	at	14 

each	site,	yielding	two	observed	median	correlation	differences.	Specifically,	within	15 

each	brain	region,	for	video	scan	V	and	rest	scan	R,	across	all	across-site	pairs	of	16 

Indiana	participants	Ii	and	Caltech	participants	Cj,	we	obtained:	ΔrIndiana=	median(	|	17 

r(VI1,VC1)	|,	…,		|	r(VIi,VCj)	|		)	–	median(	|	r(VI1,	RC1)	|	,	…,		|	r(VIi,	RCj)	|	)	and	ΔrCaltech	=	18 

median(	|	r(VI1,VC1)	|	,	…,		|	r(VIi,VCj)	|	)	–	median(	|	r(RI1,	VC1)	|	,	…,	|	r(RIi,	VCj)	|	).	We	19 

then	permuted	scan	type	labels	(Video	vs	Rest)	10000	times	and	computed	this	20 

same	measure	to	establish	a	null	distribution	of	median	differences,	and	obtained	a	21 

one-sided	empirical	p-value	(corrected	to	avoid	bias	due	to	finite	sampling,	Davison	22 

&	Hinkley,	1997)	of	observing	ΔrIndiana	and	ΔrCaltech	by	chance.	To	address	multiple	23 
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comparisons,	we	applied	FDR	correction	within	each	parcellation.		We	1 

conservatively	considered	a	region	as	responding	more	consistently	than	expected	2 

by	chance	only	if	it	survived	FDR	correction	for	both	ΔrIndiana	and	ΔrCaltech	(note	also	3 

that	results	were	effectively	the	same	for	both	cases).			4 

	5 

Differences	between	sites.	6 

After	examining	consistency	of	brain	responses	between	sites,	we	examined	7 

differences.	To	do	this,	and	to	get	estimates	of	variance,	we	continued	at	the	8 

individual	subject	level,	because	group	average	time	series	mitigate	or	even	9 

eliminate	noise	that	might	be	unique	to	a	given	site	or	scanner.	Differences	between	10 

datasets	would	manifest	as	differences	in	within-site	similarity	vs.	across-site	11 

similarity.	Therefore,	for	each	video,	site,	and	brain	region,	we	computed	the	12 

observed	difference	in	within	vs.	across-site	ISC	as	the	difference	between	the	13 

median	ISC	among	all	subjects	at	the	site	in	question	and	the	median	ISC	among	all	14 

different-site	subject	pairs.	As	before,	we	computed	this	measure	separately	for	each	15 

site,	because	levels	of	within-site	similarity	could	be	different.	We	then	computed	16 

the	empirical	p-value	of	observing	this	median	difference	as	before	using	a	17 

permuted	null	distribution	constructed	by	shuffling	site	labels	10000	times	and	18 

computing	the	permuted	median	difference.	For	this	analysis,	we	conservatively	19 

used	⍺	=	0.05	with	no	correction	for	multiple	comparisons,	in	order	to	increase	our	20 

sensitivity	to	detect	potential	differences	between	datasets	(at	the	expense	of	likely	21 

false	positives).	Finally,	to	contextualize	the	magnitudes	of	differences	between	22 

datasets,	we	also	compared	distributions	of	within-	and	across-	site	ISC	values	using	23 
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Mann-Whitney	rank	sum	tests	and	report	the	common-language	effect	sizes	(CLES;	1 

Vargha	&	Delaney,	2000)	across	ROIs.		Common-language	effect	sizes	in	the	within	–	2 

across	direction	reported	here	reflect	the	proportion	of	pairs	of	observations	in	3 

which	within-site	pairwise	ISC	is	higher	than	across-site	pairwise	ISC.	CLES	of	0.5	4 

indicates	no	effect,	and	CLES	of	0.56,	0.64,	and	0.71	roughly	correspond	with	5 

Cohen’s	d	values	of	0.2,	0.5,	and	0.8,	indicating	small,	medium,	and	large	effect	sizes	6 

(Ruscio,	2008).	(Note	that	CLES	below	0.5	would	indicate	higher	across-site	ISC	than	7 

within-site	ISC	with	comparable	interpretations,	e.g.	CLES	of	0.44	would	reflect	a	8 

small	effect.)	9 

	10 

Results	11 

	 	12 

	13 

1. SIMILARITY.	14 

1.1. Consistent	group-level	brain	responses	are	evoked	by	the	same	15 

videos	at	different	sites.	16 

Average	brain	response	time	series	across	a	group	of	participants	should	17 

capture	common	patterns	of	stimulus-evoked	brain	function	while	mitigating	the	18 

effects	of	physiological	noise,	scanner	noise,	and	individual	differences	in	brain	19 

functioning.	The	hope,	for	generalizability	of	vfMRI	studies,	would	be	that	these	20 

group-level	brain	responses	would	be	largely	similar	across	sites	(as	depicted	in	Fig.	21 

1A),	especially	when	acquisitions	and	processing	are	matched	as	closely	as	they	are	22 

in	these	primary	datasets.	Figure	2	shows	correlations	between	the	median	time	23 
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series	across	IU	participants	and	the	median	time	series	across	Caltech	participants	1 

in	each	brain	region	while	watching	the	videos,	under	different	spatial	scales	of	the	2 

Schaefer	atlas	(Schaefer	et	al.,	2018),	which	subdivides	the	intrinsic	connectivity-3 

based	Yeo	network	parcellation	of	the	cortex	into	100,	200,	400,	600,	800,	and	1000	4 

regions.	As	is	evident,	average	brain	responses	across	Indiana	participants	were	5 

highly	similar	to	average	brain	responses	across	Caltech	participants,	during	both	6 

video	scans,	across	all	parcellation	scales	examined.	Highly	similar	brain	responses	7 

were	not	limited	to	the	primary	sensory	areas	expected	to	be	driven	by	the	stimulus	8 

(c.f.	visual	and	auditory	timeseries	shown	in	Fig.	2)	but	extended	throughout	the	9 

cortex	(c.f.	association	timeseries	shown	in	Fig.	2).		10 

	11 

[	INSERT	FIGURE	2	ABOUT	HERE	]	12 

	13 

1.2. Consistent	group-level	brain	responses	are	found	through	most	of	14 

the	cortex.	15 

As	is	evident	in	Figure	2,	highly	similar	group-level	brain	responses	across	16 

scanners	were	not	limited	to	the	coarser	parcellations.	As	parcellation	granularity	17 

increases,	though,	some	correlation	magnitudes	decrease	–	as	expected,	as	regional	18 

timeseries	approach	voxel-level	timeseries	with	correspondingly	reduced	spatial	19 

smoothing	–	to	the	extent	that	it	becomes	unclear	by	eye	whether	brain	response	20 

similarity	across	scanners	exceeds	chance	levels	in	some	brain	regions.	In	all	21 

parcellations,	the	median	time	series	at	each	site	was	more	correlated	than	expected	22 

by	chance	in	more	than	99%	of	brain	regions.	However,	the	size	of	these	effects	23 
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varied	across	the	brain,	as	can	be	seen	on	the	color	axis,	and	in	some	association	1 

areas,	significant	correlations	between	group-level	brain	responses	at	each	site	2 

were	quite	small	(around	r	=	0.1,	after	FDR	correction).	One	might	expect	such	a	3 

weak	shared	signal	to	be	easily	dominated	by	other	factors	(e.g.	endogenous	4 

processing,	scanner	noise,	registration	inaccuracies)	if	not	for	averaging	across	5 

multiple	scans	(i.e.,	participants).			6 

Brain	regions	that	did	not	respond	consistently	across	sites	at	the	group	level	7 

were	detected	only	in	the	finer	parcellations	and	included	parts	of	the	temporal	pole	8 

(an	area	prone	to	susceptibility	artifacts)	as	well	as	part	of	medial	prefrontal	cortex	9 

during	one	scan.	10 

	11 

1.3. Participant-level	brain	responses	are	consistent	across	sites	12 

throughout	most	of	the	cortex.	13 

Average	time	series	across	groups	of	subjects	are	effective	at	isolating	14 

common	response	patterns	by	dampening	down	individual	variability,	but	they	are	15 

not	representative	of	any	individual	brain’s	functioning	and	could	minimize	16 

potential	differences	in	noise	properties	across	scanners.	Thus,	next	we	examined	17 

consistency	of	individual	brain	responses	among	pairs	of	participants	as	they	18 

watched	the	same	videos	(as	depicted	in	Fig.	1B).	Figure	3	(see	also	Supplemental	19 

Figure	1)	shows	the	median	of	these	pairwise	inter-subject	correlations	across	sites	20 

in	the	center	column,	along	with	pairwise	ISCs	within	each	site	(left	and	right	21 

columns)	for	comparison.	As	expected,	based	on	increased	noise	and	individual	22 

variability	in	participant	time	series,	the	range	of	correlations	is	shifted	lower	than	23 
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in	Figure	2,	but	the	general	conclusion	remains	the	same:	consistent	brain	responses	1 

across	sites	are	widespread	throughout	the	majority	of	the	cortex.	Nearly	all	ROIs	2 

(>90%	in	all	six	cortical	parcellations;	ranging	from	98%	of	ROIs	in	the	100-ROI	3 

parcellation	and	91%	in	the	1000-ROI	parcellation)	were	more	similar	between	4 

cross-site	pairs	of	subjects	watching	the	same	video	than	expected	by	chance,	using	5 

a	null	distribution	comprised	of	pairwise	brain	response	similarity	in	which	one	6 

participant	watches	this	same	video	and	the	other	undergoes	a	resting	state	scan.		7 

	8 

[	INSERT	FIGURE	3	ABOUT	HERE	]	9 

	10 

It	is	important	to	note,	though,	that	above-chance	similarity	relative	to	11 

resting	state	does	not	imply	a	large	effect	size,	and	the	median	across-site	pairwise	12 

ISCs	in	some	ROIs	that	responded	at	above-chance	levels	could	be	exceedingly	small,	13 

even	below	0.01.	In	other	words,	although	the	common	stimulus	explained	some	14 

proportion	of	variance	in	these	time	series	(and	a	vanishingly	small	proportion	for	15 

these	smallest	correlations),	most	variability	is	left	unexplained	–	and	thus	left	to	be	16 

explained	in	future	studies	of	stimulus-level,	contextual,	state-level,	physiological,	17 

and	phenotypic	factors	underlying	these	individual	brain	responses	(see	e.g.,	Chang	18 

et	al.,	2021).	This	is	the	case	even	for	the	primary	sensory	areas	most	strongly	19 

driven	by	the	stimulus,	where	median	across-site	pairwise	correlations	could	20 

exceed	0.5,	which	still	leaves	around	75%	of	the	variance	unexplained	by	the	21 

common	stimulus.	Inspection	of	the	randomly	selected	example	time	series	in	22 

Figure	3	(bottom)	and	Supplemental	Figure	1	suggests	the	possibility	that	some	23 
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specific	moments	of	the	stimulus	may	drive	relatively	instantaneous	similarity	amid	1 

otherwise	dissimilar	brain	responses	in	some	of	the	association	areas	that	have	low	2 

ISC	that	nonetheless	exceeds	chance	(c.f.	Figure	3,	PFCd),	but	future	work	will	be	3 

needed	to	examine	that	possibility	directly.			4 

	5 

1.4. Consistent	group-	and	individual-	level	brain	responses	are	evoked	6 

by	a	variety	of	video	stimuli.		7 

Participants	in	the	primary	dataset	watched	different	video	stimuli	sampling	8 

a	variety	of	genres:	movie	trailers	(Videos	1	and	2;	the	main	stimulus	throughout	9 

this	manuscript),	complete	episodes	of	TV	sitcoms	(“The	Office”;	Videos	3	and	4),	an	10 

animated	short	film	(“Partly	Cloudy”;	Video	5),	and	a	black-and-white	Alfred	11 

Hitchcock	film	(“Bang!	You’re	dead”;	Video	6).	As	is	already	apparent	in	Figure	2,	12 

cross-site	consistency	at	the	group	level	was	high	for	both	Video1	and	Video2	13 

despite	varying	stimulus	content	–		each	of	those	videos	consisted	of	sequences	of	14 

trailers	for	entirely	different	movies.	Figure	4	(top)	shows	the	correlations	between	15 

group-average	timeseries	at	both	sites	for	all	six	video	scans	in	the	primary	dataset,	16 

using	the	coarsest	and	finest	parcellation	scales.	As	is	evident,	high	cross-site	17 

similarity	between	average	time	series	is	a	feature	of	all	the	video	stimuli	used,	and	18 

not	limited	to	movie	trailers	alone.	Note	that	while	the	maps	look	similar	–	19 

qualitatively,	regions	that	responded	highly	consistently	across	scanners	during	one	20 

video	also	responded	consistently	during	the	other	video	–	the	patterns	are	also	not	21 

identical	across	different	videos.	These	differences	could	reflect	differences	in	22 

stimulus	content.		For	instance,	reductions	in	cross-site	similarity	can	be	observed	23 
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in	some	temporal	and	frontal	regions	during	the	largely	silent	animated	film	1 

(Video5).	Notably,	episodes	of	The	Office	were	chosen	so	as	to	emphasize	social	2 

features	in	the	video,	and	cross-site	consistency	in	medial	prefrontal	cortex	appears	3 

elevated	in	Videos	3	and	4	relative	to	the	other	scans,	potentially	reflecting	the	4 

increased	social	processing	demands	of	the	stimulus.	While	these	video	scans	also	5 

differed	in	length,	scan	length	did	not	appear	to	be	the	main	driver	of	these	6 

differences	(see	also	Supplemental	Figure	2,	which	presents	an	alternate	version	of	7 

this	figure	that	was	randomly	downsampled	to	address	length	differences,	but	8 

shows	largely	similar	patterns).		9 

	10 

[	INSERT	FIGURE	4	ABOUT	HERE	]	11 

	12 

Figure	3	(top)	and	Supplemental	Figure	1	showed	high	levels	of	cross-site	13 

consistency	at	the	level	of	individual	subject	pairs	for	Videos	1	and	2.	Figure	4	14 

(bottom)	shows	median	across-site	(in	black)	and	within-site	(in	color)	pairwise	15 

inter-subject	correlations	for	each	of	the	video	scans	in	each	ROI.	One	of	the	colored	16 

lines	corresponds	to	the	values	that	would	be	projected	onto	a	brain	map	if	the	data	17 

had	been	collected	at	a	single	site	(e.g.,	the	red	line	for	Video1	in	Figure	4	(bottom)	18 

is	the	same	as	the	Indiana	within-site	ISC	map	in	Figure	3,	upper	left).	While	the	19 

colored	lines	show	small	intermittent	deviations	above	and	below	the	black	line,	the	20 

larger	take-away	is	that	the	lines	track	one	another	closely.	The	pattern	of	median	21 

within-site	ISC	across	ROIs	for	one	site	is	highly	correlated	with	the	pattern	of	22 

within-site	ISC	for	the	other	site,	and	both	quantities	are	highly	correlated	with	23 
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median	across-site	ISC	(all	r	>	0.91	across	all	videos	and	all	parcellations).	In	other	1 

words,	brain	responses	for	pairs	of	subjects	at	different	sites	are	about	as	similar	as	2 

pairs	of	subjects	at	the	same	site.	This	close	tracking	is	apparent	both	for	brain	3 

regions	that	are	more	evoked	and	less	evoked	by	the	stimuli,	as	well	as	for	different	4 

video	stimuli	that	drive	higher	and	lower	ISC	values	in	the	same	brain	regions	(for	5 

instance,	c.f.	x	=	41	(part	of	left	hemisphere	temporal	lobe)	for	Video5	vs.	the	other	6 

video	scans,	for	the	center	panel	with	the	100-scale	parcellation).	Cross-site	7 

consistency	of	brain	responses	for	this	set	of	stimuli	is	neither	limited	to	a	few	8 

sensory	regions	that	are	most	strongly	driven	by	the	video,	nor	a	subset	of	video	9 

stimuli	that	drive	the	brain	especially	strongly,	but	is	instead	apparent	throughout	10 

the	different	stimuli	used	here.	11 

	12 

2. DIFFERENCES:	13 

2.1. Differences	across	sites	are	minimal	when	acquisitions	and	14 

processing	are	matched.		15 

	 After	establishing	that	brain	responses	across	the	cortex	are	indeed	16 

consistent	across	sites,	the	natural	question	is	to	ask	about	differences.	If	there	were	17 

no	differences	between	datasets,	an	individual	scan	would	be	just	as	similar	to	other	18 

scans	at	the	same	acquisition	site	as	it	is	to	other	scans	from	a	different	acquisition	19 

site.	Arguably,	site-level	differences	could	manifest	as	either	increased	or	decreased	20 

similarity	among	participants	at	the	same	site,	depending	on	noise	properties.	We	21 

thus	evaluated	potential	site	differences	by	testing	whether	within-site	pairwise	22 

similarity	for	either	site	differed	from	across-site	pairwise	similarity	in	any	brain	23 
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region,	by	comparing	the	observed	differences	of	the	medians	to	a	permuted	null	1 

distribution	in	which	site	labels	were	shuffled.	Because	levels	of	within-site	2 

consistency	need	not	be	the	same	for	both	sites,	and	therefore	differences	between	3 

within-site	and	across-site	similarity	could	differ,	we	considered	a	brain	region	to	4 

have	a	site	difference	if	such	a	difference	was	observed	for	either	site,	and	not	5 

necessarily	for	both	sites.	For	this	analysis,	to	conservatively	increase	sensitivity	for	6 

detecting	any	potential	differences,	we	did	not	correct	for	multiple	comparisons,	7 

and	thus	some	false	positives	are	likely.		8 

	 For	all	video	scans,	and	for	all	parcellations,	the	majority	of	brain	regions	had	9 

no	site	differences	at	this	conservative	threshold.	Proportions	of	brain	regions	that	10 

did	have	site	differences	ranged	(across	parcellation	scales)	as	follows:	Video1,	0.13-11 

0.17;	Video2,	0.09-0.15;	Video3,	0.06-0.11;	Video4,	0.06-0.13;	Video5,	0.23-0.32;	12 

Video6,	0.35-0.47.	As	noted	above,	these	proportions	are	likely	to	be	an	13 

overestimate.	Differences	can	be	observed	in	Figure	4	(bottom)	as	gaps	between	the	14 

black	and	colored	lines.	Differences	are	generally	small	relative	to	the	level	of	ISC,	15 

and	are	found	in	regions	including	those	that	are	strongly	driven	by	the	stimulus	16 

(e.g.,	x	=	53,	part	of	the	right	hemisphere	peripheral	visual	network,	for	the	center	17 

panel	with	the	100-scale	parcellation).	Supplemental	Table	2	summarizes	18 

differences	in	the	distributions	of	within-site	and	across-site	ISC	values.	For	all	19 

videos	and	all	parcellations,	median	differences	between	within-	and	across-	site	ISC	20 

values	across	ROIs	were	small	(<0.03),	with	median	common-language	effect	sizes	21 

(CLES)	across	ROIs	corresponding	with	small	effect	sizes.	Maximum	CLES	across	22 

ROIs	reflected	small	or	medium	effects	depending	on	the	video	and	parcellation	23 
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(maximum	CLES	from	0.57	to	0.67),	but	never	large	effects.	Such	differences	could	1 

arise	due	to	different	levels	of	individual	variability	or	effects	of	scanning	equipment	2 

per	se	(or	both).	Regardless	of	the	sources,	it	is	important	to	note	that	when	3 

datasets	are	closely	matched,	as	they	are	in	this	primary	acquisition,	most	cortical	4 

regions	did	not	show	site	differences	even	at	this	sensitive	threshold,	the	effect	sizes	5 

of	site	differences	were	predominantly	small,	and,	as	noted	earlier,	patterns	of	6 

within-site	ISC	for	each	site	were	highly	correlated	with	one	another	and	with	the	7 

pattern	of	across-site	ISC.	8 

	9 

2.2. When	acquisitions	are	not	matched,	differences	become	more	10 

apparent,	despite	still-widespread	consistency.		11 

In	an	exploratory	comparison	we	also	examined	cross-site	differences	12 

between	the	primary	Caltech	dataset	and	a	pilot	dataset	(“Pilot”)	also	collected	at	13 

Indiana	University	prior	to	a	scanner	upgrade.	These	unmatched	datasets	were	14 

collected	using	different	scanner	models,	protocols	with	numerous	differences,	and	15 

different	preprocessing	approaches	(Table	1),	but	using	the	same	scanner	16 

manufacturer	(Siemens)	and	field	strength	(3T).	As	these	acquisitions	were	not	17 

designed	to	systematically	test	the	effects	of	varying	all	these	parameters,	it	will	not	18 

be	possible	to	disentangle	the	specific	sources	of	any	differences	identified.	19 

Nonetheless,	we	include	this	comparison	as	somewhat	more	representative	of	real-20 

world	differences	between	pre-existing	datasets	collected	as	participants	watch	the	21 

same	video	stimulus.		22 
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Figure	5	(center)	depicts	consistency	between	these	two	unmatched	datasets	1 

at	the	level	of	median	time	series	at	each	site,	along	with	consistency	between	the	2 

two	primary	matched	datasets	(left),	and	the	difference	of	these	quantities	(right),	3 

for	comparison.	Median	time	series	from	all	three	sites	are	presented	as	well.	The	4 

same	general	pattern	of	results	from	Figure	2	is	evident	even	though	the	Caltech	and	5 

Pilot	acquisitions	are	unmatched:	high	similarity	across	datasets	at	the	group	6 

average	level	while	participants	watch	the	same	video	stimulus.	Despite	this	high	7 

similarity,	though,	it	is	also	visually	apparent	that	similarity	between	the	unmatched	8 

acquisitions	is	reduced,	relative	to	the	matched	acquisitions.			 	9 

	10 

[	INSERT	FIGURE	5	AROUND	HERE	]	11 

	12 

Because	potential	differences	between	datasets	are	expected	to	manifest	13 

most	strongly	within	individual	subject	data,	we	tested	for	differences	at	the	level	of	14 

pairwise	ISCs	in	the	same	way	as	described	previously,	by	testing	whether	within-15 

site	similarity	differed	from	across-site	similarity	for	either	site.	Pairwise	ISCs	16 

within	and	across	each	of	these	unmatched	datasets	are	mapped	in	Figure	6	(top,	17 

and	Supplemental	Figure	3),	and	also	presented	as	line	plots	(bottom)	to	facilitate	18 

comparison.	Differences	in	ISC	levels	are	visible,	with	within-site	similarity	for	the	19 

Pilot	dataset	appearing	elevated.	To	test	for	differences,	as	before,	to	be	20 

conservative,	we	did	not	correct	for	multiple	corrections,	and	considered	a	brain	21 

region	as	having	a	site	difference	if	differences	were	observed	for	either	site	(and	22 

not	necessarily	both).	In	contrast	to	the	previous	results	for	the	matched	datasets	23 
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(IU	vs.	Caltech,	see	2.1),	here,	when	datasets	were	unmatched	in	numerous	ways,	we	1 

observed	site	differences	in	most	brain	regions:	89.6%	of	regions	for	Video1,	and	2 

97.9%	for	Video	2.		3 

	4 

[	INSERT	FIGURE	6	AROUND	HERE	]	5 

	6 

As	can	be	seen	in	Figure	6,	differences	between	median	within-site	and	7 

median	across-site	ISC	varied	across	ROIs	and	varied	by	site.	They	appear	relatively	8 

minimal	for	the	Caltech	dataset	but	more	noticeable	for	the	Pilot	dataset,	and	they	9 

are	not	homogenous	across	the	brain.	For	instance,	elevated	within-site	similarity	in	10 

the	Pilot	dataset	was	found	throughout	the	superior	temporal	lobe	extending	into	11 

the	temporoparietal	junction	(c.f.	Figure	6,	x	=	9	and	57,	left	and	right	posterior	12 

superior	temporal	gyrus),	but	much	less	so	for	many	visual	areas	(c.f.	x	=	39	and	87,	13 

left	and	right	occipital	fusiform).	For	the	within-Pilot	vs.	across-site	ISC	comparison	14 

(pink	vs.	black	lines),	these	differences	ranged	across	ROIs	from	0.008-0.2	(median	15 

0.06;	IQR	0.06)	for	Video	1	and	from	0.006-0.24	(median	0.08;	IQR	0.5)	for	Video2.	16 

CLES	for	these	differences	ranged	from	0.52-0.92	across	ROIS	(median	0.66;	IQR	17 

0.11)	for	Video1	and	from	0.52-0.95	(median	0.71;	IQR	0.11)	for	Video2.	For	the	18 

within-Caltech	vs.	across-site	ISC	comparison	(orange	vs.	black	lines),	the	median	19 

difference	across	ROIS	ranged	from	-0.05-0.12	(median	0.02;	IQR	0.035)	for	Video1	20 

and	-0.06-0.1	(median	-0.006;	IQR	0.03)	for	Video2.	CLES	ranged	from	0.32-0.76	21 

(median	0.49;	IQR	0.1)	for	Video1	and	from	0.32-0.81	(median	0.47;	IQR	0.1)	for	22 

Video2.	In	contrast	to	the	matched	datasets,	then,	quantitative	comparisons	of	23 
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pairwise	ISC	levels	within-	and	across-	sites	can	reveal	differences	with	medium-to-1 

large	effect	sizes	spanning	ROIs.		2 

Due	to	the	numerous	factors	that	vary	between	these	unmatched	datasets	3 

(Table	1),	it	is	not	possible	to	pinpoint	the	exact	cause(s)	of	the	elevated	within-site	4 

similarity	in	the	Pilot	dataset;	disentangling	these	factors	is	beyond	the	scope	of	the	5 

current	project	and	a	question	for	future	targeted	new	acquisitions.	Nonetheless	we	6 

present	these	comparisons	as	a	case	study	showing	how	similarity	across	and	7 

within	sites	can	vary	when	datasets	using	the	same	video	stimuli	are	unmatched.	8 

And	while	quantitative	differences	in	ISC	levels	were	prevalent	in	comparing	these	9 

unmatched	datasets,	it	is	important	to	observe	that	qualitatively,	the	pattern	of	ISC	10 

remained	similar	across	sites	and	within	each	site.	Figure	6	shows	that	all	three	11 

lines	increase	and	decrease	in	tandem,	and	indeed	they	are	all	highly	correlated	for	12 

both	video	scans	(all	r	>	0.92,	p	<	0.0001).	So,	while	levels	of	ISC	can	differ	13 

considerably	when	datasets	are	unmatched,	ROIs	with	higher	ISC	at	one	site	also	14 

have	higher	ISC	at	the	other	site	and	across-sites,	and	vice	versa.		15 

Altogether,	these	results	indicate	that	differences	in	brain	responses	across	16 

sites	are	more	readily	apparent	when	datasets	are	unmatched,	and	can	be	17 

considerable	and	non-homogeneous	across	the	cortex	–	but,	despite	these	18 

quantitative	differences,	video	stimuli	drive	qualitatively	consistent	patterns	of	19 

brain	responding	across	sites	even	when	numerous	acquisition,	processing,	20 

hardware,	and	participant	details	vary	freely.		21 

	22 

Discussion	23 
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	1 

We	find	that	video	fMRI	paradigms	evoke	robustly	similar	brain	responses	2 

across	different	sites	and	samples	of	subjects,	with	consistent	brain	responses	found	3 

through	most	of	the	cortex.	When	datasets	are	matched	closely,	such	that	scanner	4 

manufacturer,	model,	imaging	protocols,	and	preprocessing	details	are	the	same	at	5 

each	site,	differences	in	brain	responses	between	datasets	are	minimal.	When	6 

datasets	are	unmatched,	such	that	scanner	model	and	acquisition	and	processing	7 

details	vary	more	freely,	differences	are	more	prevalent,	especially	in	pairwise	8 

comparisons	of	individual	data.	Nonetheless,	consistency	of	brain	responses	across	9 

unmatched	datasets	remains	high,	although	attenuated	relative	to	matched	datasets.		10 

In	the	matched	datasets,	at	the	level	of	group-average	time	series,	we	find	11 

that	most	regions	of	the	brain	(>99%)	respond	similarly	across	sites,	and	this	nearly	12 

cortex-wide	similarity	is	observed	across	parcellation	granularities	(from	100	to	13 

1000	ROIs)	–	it	is	not	an	artifact	of	using	a	coarse	parcellation	and	therefore	14 

spatially	smoothing	across	large	swaths	of	cortex.	We	find	comparable	results	at	the	15 

level	of	individual	time	series	similarity,	albeit	with	the	reduced	correlation	16 

magnitudes	expected	from	pairwise	correlations.	Procedures	adjusting	for	17 

individual	differences	in	functional	specialization	and	hemodynamic	responses	18 

(Haxby	et	al.,	2020,	Dubois	&	Adolphs,	2016)	could	be	employed	in	the	future	to	19 

potentially	reveal	even	higher	similarity	across	sites.		20 

Across	parcellations,	regions	with	consistent	group-level	brain	responses	21 

include	some	frontal	and	ventral	regions	that	are	not	typically	observed	on	22 

individual-level	ISC	maps.	On	one	hand,	this	is	reminiscent	of	findings	in	task-based	23 
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fMRI	that	averaging	across	larger	numbers	of	timeseries	“unmasks”	the	involvement	1 

of	common	task-locked	signal	in	previously	unappreciated	regions	(Gonzalez-2 

Castillo	et	al.,	2012).	On	the	other	hand,	cross-site	similarity	between	group-level	3 

timeseries	in	some	of	these	regions	is,	while	statistically	significant,	quite	weak,	and	4 

similar	correlations	have	been	interpreted	by	other	groups	as	showing	little	5 

evidence	of	synchronized	brain	responses	(Chang	et	al.,	2021).		We	see	this	as	a	6 

scenario	akin	to	asking	“is	the	glass	half	empty	or	half	full?”.	Weak	correlations	7 

between	time	series	undoubtedly	indicate	that	the	signal	is	predominantly	8 

explained	by	other	sources	including	endogenous	processing,	intrinsic	brain	9 

dynamics,	and	various	sources	of	scanner	and	physiological	noise.	Alternative	10 

methods	for	correcting	for	multiple	comparisons	that	capture	underlying	data	11 

dimensionality	and	potential	dependencies	between	timeseries	could	also	shift	the	12 

statistical	threshold	delineating	which	ROIs	can	be	considered	weakly	correlated	13 

above	chance.	Nonetheless,	identifying	shared	signal	–	albeit	weakly	shared	–	14 

between	two	datasets	is	stronger	evidence	than	can	be	provided	by	one	dataset	15 

alone	that	there	is	something	about	these	video	stimuli	that	can	evoke	common	16 

brain	function	in	such	areas,	potentially	indirectly	and	potentially	only	momentarily.	17 

Better	understanding	the	aspects	of	the	video	stimulus	that	drive	such	weakly	18 

evoked	responses	in	brain	areas	more	commonly	associated	with	endogenous	brain	19 

function	is	an	important	topic	of	future	study	(see	also	Chang	et	al.,	2021;	Yeshurun	20 

et	al.,	2021).		21 

The	specific	moments	of	the	video	and	specific	features	of	the	stimulus	that	22 

drive	the	most	and	least	consistent	brain	responses	across	sites	is	also	a	question	23 
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for	further	study.	A	visual	comparison	across	the	different	video	scans	presented	in	1 

Figure	4	shows	clear	similarities	in	the	patterns	of	group-level	consistency	(top)	and	2 

pairwise	across-site	ISC	(bottom)	evoked	by	all	the	different	video	stimuli	3 

employed.	In	other	words,	brain	regions	that	respond	very	consistently	across	sites	4 

during	one	video	tend	to	also	respond	very	consistently	in	a	different	video,	and	vice	5 

versa.		This	surely	reflects	fundamental	aspects	of	neural	architecture	for	dynamic	6 

audiovisual	stimulation,	as	the	most	consistent	brain	regions	were	the	primary	7 

sensory	areas	expected	to	be	most	directly	driven	by	the	stimulus.	Some	differences	8 

in	ISC	levels	across	each	full-length	scan	could	arise	due	to	differences	in	video	9 

lengths,	which	varied	considerably.	But	even	after	equating	for	video	lengths,	10 

differences	in	group-level	brain	response	consistency	across	different	videos	could	11 

be	observed	(Supplemental	Figure	2).	Presumably,	these	differences	are	elicited	by	12 

specific	video	stimulus	features	and	idiosyncratic	responses	to	those	features,	as	13 

well	as	the	processing	demands	they	impose	on	the	brain	(see	also	Hasson	et	al.,	14 

2010,	for	discussion	of	stimulus-specificity	of	within-site	reliability).	For	instance,	15 

cross-site	consistency	in	medial	prefrontal	cortex	(mPFC)	for	both	episodes	of	The	16 

Office	(Video3	and	Video4)	appears	elevated	relative	to	the	other	videos.	This	is	17 

noteworthy	because	The	Office	is	a	TV	show	that	is	characterized	by	many	socially	18 

awkward	moments	and	was	specifically	selected	for	its	increased	demands	on	the	19 

social	brain	(including	mPFC;	Kennedy	&	Adolphs,	2012).	Further	work	20 

comprehensively	decomposing	these	videos	from	low-level	stimulus	features	to	21 

high-level	semantic	properties	will	be	needed	to	verify	this	observation	and	more	22 
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generally	understand	how	different	video	stimulus	properties	influence	patterns	of	1 

consistency	across	sites.	2 

As	noted,	the	comparison	between	the	unmatched	datasets	was	presented	as	3 

a	case	study	and	as	an	example	with	which	to	contrast	the	high	levels	of	cross-site	4 

similarity	in	the	matched	datasets.	Particularly	with	increasing	data	sharing	efforts	5 

in	recent	years,	this	comparison	has	more	real-world	relevance	for	the	pooling	of	6 

some	pre-existing	vfMRI	datasets,	which	are	unlikely	to	have	been	as	carefully	7 

matched	as	the	primary	samples	in	this	study.	For	the	unmatched	datasets	in	the	8 

current	study,	we	observed	quantitative	differences	in	group-level	consistency	and	9 

pairwise	ISC,	but	qualitatively,	the	patterns	of	pairwise	ISC	remained	highly	similar	10 

across	and	within	each	site.	For	these	unmatched	datasets,	differences	in	the	11 

acquisition	and	processing	varied	considerably	(Table	1),	including	participants,	12 

scanner	model,	acquisition	parameters	including	voxel	size,	sampling	rate,	13 

multiband	parameters,	and	sequences	used	for	anatomical	scans	and	fieldmaps,	and	14 

preprocessing	choices	including	denoising	methodology,	filtering,	and	smoothing.	15 

Many	if	not	all	of	these	factors	could	influence	cross-site	consistency	of	brain	16 

responses	(e.g.,	He	et	al.,	2020;	Friedman	et	al,	2006;	Yu	et	al.,	2018).	It	is	also	17 

important	to	note	that	the	levels	of	consistency	observed	in	the	unmatched	datasets	18 

are	not	intended	to	suggest	a	lower	bound.	All	datasets	in	this	study	used	the	same	19 

scanner	manufacturer	(Siemens)	and	field	strength	(3T),	and	it	is	reasonable	to	20 

expect	that	cross-manufacturer	or	cross-magnet	comparisons	could	potentially	21 

further	affect	consistency.	A	full	disentangling	of	the	specific	combinations	of	factors	22 

that	gave	rise	to	the	more	prevalent	differences	observed	in	the	unmatched	datasets	23 
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is	beyond	the	scope	of	the	current	project,	which	was	not	designed	to	test	these	1 

factors	systematically.	An	important	question	for	future	study	would	be	to	unpack	2 

these	factors	by	parametrically	varying	the	differences	between	these	datasets,	and	3 

to	include	comparisons	across	different	scanner	manufacturers	and	different	field	4 

strengths.	This	would	also	guide	the	development	of	statistical	harmonization	5 

methods	for	pooling	existing	video	fMRI	data	(as	in	Yu	et	al.,	2018;	Yamashita	et	al.,	6 

2019,	for	resting	state	data),	which	could	span	a	variety	of	manufacturers	and	even	7 

field	strengths.		8 

Even	for	the	matched	datasets,	our	existing	data	does	not	allow	us	to	9 

conclusively	separate	effects	caused	by	different	scanners	from	other	factors	that	10 

covaried	between	the	matched	datasets.	Those	factors	were	intentionally	11 

minimized,	but	do	include	both	different	physical	scanners	and	different	individual	12 

subjects.	Some	aspects	of	the	differences	that	were	observed	between	these	13 

matched	datasets	could	thus	have	been	driven	by	participant	variability	rather	than	14 

scanner	differences.	To	fully	decouple	individual	variability	from	scanner	variability,	15 

a	new	data	acquisition	with	traveling	subjects	that	are	repeatedly	scanned	at	16 

different	locations	(as	has	been	done	for	resting	state	designs;	Noble	et	al.,	2017)	17 

would	be	required.	This	would	be	an	important	direction	for	future	work.	18 

	19 

Conclusion	20 

In	sum,	we	find	similar	group-level	brain	responses	spanning	the	cortex	21 

when	participants	at	different	sites	watch	the	same	video	stimulus,	and	these	highly	22 

similar	average	time	series	occur	with	both	matched	and	unmatched	datasets.	When	23 
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datasets	are	carefully	matched	such	that	the	acquisition	and	processing	is	effectively	1 

identical,	differences	between	datasets	at	the	level	of	pairwise	similarity	of	2 

individual	brain	responses	are	minimal,	and	some	such	differences	could	reflect	3 

individual	variability	rather	than	scanner-specific	effects.	When	dataset	parameters	4 

vary	more	freely,	differences	between	sites	are	more	prevalent,	which	points	to	the	5 

importance	of	both	careful	control	for	such	differences	in	analyses	and	of	the	6 

development	of	harmonization	protocols	specific	to	ISC	analyses	of	video	fMRI	data	7 

for	at	least	some	purposes.	Nonetheless,	the	overarching	conclusion	indicates	high	8 

levels	of	consistency	in	video-evoked	fMRI	data	across	these	different	sites,	across	9 

matched	and	unmatched	datasets	alike.	The	ability	to	quantify	this	consistency	10 

highlights	one	of	the	unique	features	of	video	fMRI	and	holds	promise	for	further	11 

development	of	this	approach	to	studies	of	individual	differences	in	healthy	and	12 

clinical	populations	alike.	13 

	14 

	15 
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Tables	15 

Table	1.		16 

Similarities	and	differences	between	the	matched	and	unmatched	datasets.	17 
 

Matched datasets 
 

 IU Caltech Pilot 
  Unmatched datasets 

Participants 

population HC HC HC 
sample different different different 

MRI acquisition 

scanner manufacturer Siemens Siemens Siemens 
field strength 3T 3T 3T 
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scanner model Prisma.Fit Prisma.Fit TIM Trio 
scanner location Bloomington, IN Pasadena, CA Bloomington, IN 
MRI protocols matched matched unmatched 
EPI resolution (spatial) 2.5mm iso 2.5mm iso 3.4mm iso 
EPI resolution 
(temporal) 

0.72s TR 0.72s TR 0.813s TR 

multiband acceleration 
factor 

6 6 3 

Experiment 

video stimulus same (V1-6) same (V1-6) same (V1-2) 
stimulus presentation 
code 

same same same 

Data preprocessing & analysis 

preprocessing pipeline same same different 
denoising approach GLM with GSR GLM with GSR GLM+ICA-FIX, then GSR 
temporal filtering bandpass bandpass detrending 
spatial smoothing 2.54mm 2.54mm none 
analysis code same same same 

Personnel 

experimenter different different different 
data analyst same same same 
	1 

Table	presents	the	main	similarities	and	differences	between	the	matched	(IU	&	2 

Caltech;	dark	gray)	and	unmatched	(Caltech	&	Pilot;	light	gray)	datasets.	Table	3 

organization	corresponds	roughly	to	the	taxonomy	of	reproducibility	in	neuroimaging	4 

from	Nichols	and	colleagues	(2017).	The	primary	comparison	between	matched	5 

datasets	is	situated	between	“Near	replicability”	and	“Intermediate	replicability”	of	6 

generalization	over	materials	and	methods	in	that	taxonomy.	The	exploratory	7 

comparison	between	unmatched	datasets	is	situated	between	“Intermediate	8 

replicability”	and	“Far	replicability”;	for	that	comparison,	the	Pilot	acquisition	was	9 

resampled	temporally	to	match	the	sampling	rate	of	the	primary	matched	datasets.	10 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 5, 2021. ; https://doi.org/10.1101/2021.10.04.463088doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.04.463088
http://creativecommons.org/licenses/by-nc-nd/4.0/


51 

HC,	healthy	control	adults.	No	participants	overlapped	between	datasets.	Entries	listed	1 

as	“same”	and	“different”	for	brevity	are	further	detailed	in	Methods.		2 

	3 

Table	2.	4 

Video	scans	and	sample	sizes	for	matched	and	unmatched	datasets.	5 

	6 

 

Video1  

movie trailers 

~13.5 min. 

Video2  

movie trailers 

~13 min. 

Video3 

The Office 

~22 min. 

Video4 

The Office 

~22 min. 

Video5 

Partly cloudy 

~5.6 min 

Video6 

Bang 

~8 min. 

 IU Cal Pilot IU Cal Pilot IU Cal IU Cal IU Cal IU Cal 

Initial sample 61 29 29 56 28 29 61 28 56 28 56 28 54 28 

Scan issues 1 1 0 2 2 0 1 2 1 4 0 1 0 2 

MRIQC outlier 5 1 n/a 1 1 n/a 4 1 1 0 4 0 1 1 

Motion 3 1 4 3 0 4 2 2 2 1 2 1 1 3 

Registration 1 0 0 4 1 0 2 0 3 0 2 1 3 0 

ISC outlier 3 1 n/a 1 1 n/a 3 1 0 0 2 0 2 0 

Final sample 48 25 25 45 23 25 49 22 49 23 46 25 47 22 

 7 

Table	presents	video	scans,	initial	sample	sizes,	and	exclusions	for	matched	datasets	8 

(IU,	Cal)	and	unmatched	datasets	(Cal,	Pilot).	IU,	Indiana.	Cal,	Caltech.	Video1	and	9 

Video2	are	the	primary	scans	analyzed	here	because	those	video	stimuli	were	used	in	10 

all	three	datasets.	Scan	issues	include	technical	problems	(muffled	sound,	projector	11 

issues,	missing	image	data)	and	participant	sleep.	Quality	assurance	workflow	differed	12 

for	the	matched	and	unmatched	datasets	and	MRIQC	and	ISC	outlier	exclusions	were	13 

not	applicable	to	the	pilot	dataset.	Columns	with	a	white	background	denote	scans	14 

collected	during	the	first	session;	columns	with	a	gray	background	denote	scans	15 
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collected	during	a	second	session	approximately	one	week	after	the	first.	Video	scans	1 

1-4	were	all	preceded	by	rest	scans.			2 

	3 

 	4 
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Figure	Legends	1 

	2 

	3 

Figure	1.	Schematic	of	approach	for	examining	consistency	of	video-evoked	brain	responses	across	sites	4 

(black	and	blue)	at	the	level	of	the	group	(A)	and	individuals	(B).	Example	individual	time	series	depict	5 

the	fMRI	BOLD	signal	averaged	across	a	given	region	of	interest,	across	the	duration	of	the	video.	To	6 

examine	consistency	across	sites	at	the	group	level	(A),	the	average	of	all	these	individual	time	series	is	7 

computed	for	each	site	(bolded	timeseries),	and	then	the	correlation	between	those	average	site-level	8 

time	series	is	computed	(green	arrow).	To	examine	consistency	across	sites	at	the	individual	level	(B),	9 

correlations	between	pairs	of	time	series	from	individual	participants	at	different	sites	are	computed	10 

(green	arrows),	and	for	some	analyses	compared	to	correlations	between	pairs	of	participant	time	11 

series	from	the	same	site	(black	arrows,	or	blue	arrows).		12 
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Figure	2.	Consistency	of	average	group-level	brain	responses	across	sites	while	participants	watched	the	1 

same	videos	(see	Fig.	1A),	for	matched	datasets.	Brain	visualizations	depict	correlations	between	2 

median	time	series	across	all	participants	at	each	site,	in	each	brain	region,	under	different	scales	of	the	3 

Schaefer	parcellation	(100-1000	ROIs).	The	Schaefer	parcellation	is	a	cortical	parcellation;	black	along	4 

the	midline	in	medial	views	here	and	elsewhere	indicate	missing	data,	not	low	correlations.	Line	plots	5 

depict	median	timeseries	across	participants	at	each	site	in	primary	sensory	areas	(left)	and	association	6 

areas	(right)	using	the	400-region	Schaefer	parcellation	during	Video	1	(top)	and	Video	2	(bottom).	All	7 

figures	depict	the	left	hemisphere;	the	pattern	of	results	for	the	right	hemisphere	is	effectively	the	same.		8 
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	1 

Figure	3.	Similarity	of	individual	participant	brain	responses	within	and	across	sites	during	Video1	(see	2 

Fig.	1B)	for	matched	datasets.	Top:	brain	maps	depict	magnitudes	of	medians	of	pairwise	correlations	3 

between	participant	brain	response	time	series	in	each	region,	for	the	most	coarse	(top)	and	the	most	4 

fine	(bottom)	scales	of	the	Schaefer	cortical	parcellation.	The	left	and	right	columns	show	correlations	5 

among	pairs	of	participants	at	the	same	site	(left:	Indiana;	right:	Caltech).	The	center	column	shows	6 

correlations	among	pairs	of	participants	spanning	different	sites.	While	absolute	values	are	depicted	7 
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here	for	readability,	nearly	all	median	correlations	were	positive,	except	one	temporal	pole	ROI	with	a	1 

near-	zero	median	correlation	of	-0.0036.	As	in	Figure	2,	black	along	the	midline	in	medial	views	2 

indicates	missing	data,	not	low	correlations.	See	also	Figure	4	(bottom	panel,	top	plot)	for	a	line	version	3 

of	this	same	data,	and	Supplemental	Table	2	for	characterization	of	differences	and	effect	sizes.	Bottom:	4 

line	plots	depict	timeseries	from	5	randomly-selected	participants	at	each	site	in	primary	sensory	areas	5 

(left)	and	association	areas	(right),	along	with	the	site-level	median	time	series	shown	in	Figure	2.	These	6 

line	plots	use	the	same	mid-scale	parcellation	as	Figure	2	(Schaefer	400x17).	See	also	Supplemental	7 

Figure	1	for	the	equivalent	figure	for	Video2,	which	is	similar	but	supplemental	for	space	purposes.			8 
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Figure	4.	Consistency	in	brain	responses	across	sites	while	participants	watched	the	same	video,	across	a	1 

variety	of	different	videos,	in	the	matched	datasets.	Top:	brain	maps	show	cross-site	consistency	at	the	2 

group	level	(as	in	Figure	2,	see	also	Fig.	1A).	Only	parcellation	scales	of	100	and	1000	ROIs	are	shown	for	3 

space	considerations.	As	in	Figure	2,	black	along	the	midline	in	medial	views	indicates	missing	data,	not	4 

low	correlations.	Scan	lengths	vary	across	different	videos.	See	also	Supplemental	Figure	2	for	a	version	5 

of	this	figure	that	randomly	downsamples	to	equate	for	scan	length.	Bottom:	line	plots	show	median	6 

pairwise	ISC	among	pairs	of	participants	within	each	sites	and	across	sites	(see	Fig.	1B),	for	the	most	7 

coarse	and	most	fine	parcellation	scales.	Please	see	Supplemental	Table	1	for	ROI	labels,	which	are	8 

omitted	for	readability.	The	line	plots	for	Video	1	and	2	are	the	same	values	plotted	on	brains	in	Figure	3	9 

(top)	and	Supplemental	Figure	1.	Note	that	individual	data	points	are	connected	with	a	line	to	facilitate	10 

comparing	overall	patterns,	but	these	plots	are	not	time	series.	Rather,	each	data	point	reflects	median	11 

similarity	across	pairs	of	timeseries.	When	values	for	a	given	ROI	are	similar	across	different	scans	(e.g.	12 

x	=	60	for	top	two	line	plots),	that	reflects	comparable	levels	of	similarity	across	entirely	different	brain	13 

response	time	series	for	different	videos.		14 
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Figure	5.	Exploratory	comparison	of	brain	response	consistency	for	matched	datasets	and	unmatched	1 

datasets,	at	the	level	of	average	time	series	(see	also	Fig.	1A),	for	Videos	1	and	2.	Left	and	center	brain	2 

maps	show	correlations	between	median	time	series	for	all	participants	at	each	site	(as	in	Fig.	2,	top);	3 

right	shows	the	difference	of	the	two	maps.	Matched	datasets	are	Indiana	and	Caltech	(as	in	Fig.	2);	4 

unmatched	datasets	are	Pilot	and	Caltech.	Black	along	the	midline	in	medial	views	indicates	missing	5 

data,	not	low	correlations.	Similarity	of	average	time	series	across	datasets	is	high	in	general,	but	6 

highest	when	acquisitions	are	matched.	Time	series	figures	show	median	time	series	for	each	site	in	7 

sensory	areas	(left)	and	association	areas	(right).	Alll	panels	use	the	Harvard-Oxford	96-ROI	cortical	8 

parcellation.		9 
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	1 

Figure	6.	Exploratory	comparison	of	brain	response	consistency	across	unmatched	datasets,	at	the	level	2 

of	individual	time	series	(Fig.	1B),	for	Video1.	Top:	brain	maps	depict	magnitudes	of	medians	of	pairwise	3 

correlations	between	participant	brain	response	time	series	in	each	region.	The	left	and	right	columns	4 

show	correlations	among	pairs	of	participants	at	the	same	site	(left:	Caltech;	right:	Pilot).	The	center	5 

column	shows	correlations	among	pairs	of	participants	spanning	different	sites	(as	in	Fig.	1B,	green).	6 

Black	along	the	midline	in	medial	views	indicates	missing	data,	not	low	correlations.	Center:	Time	series	7 

plots	show	five	randomly-selected	individual	time	series	for	each	site	in	sensory	areas	(left)	and	8 

association	areas	(right),	along	with	the	median	time	series	across	all	participants	at	that	site	9 
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superimposed	in	bold.	Bottom:	Within-	and	across-site	ISC	values	from	top	panel	(Video1)	and	1 

Supplemental	Figure	3	(Video2)	presented	as	a	line	plot,	to	facilitate	comparison.	See	text	for	summary	2 

of	differences	and	effect	sizes,	and	see	Supplemental	Table	1	for	ROI	labels,	which	are	omitted	for	3 

readability.	As	in	Figure	4	(bottom),	individual	data	points	are	connected	with	a	line,	but	these	plots	are	4 

not	time	series.	Rather,	each	data	point	reflects	median	similarity	across	pairs	of	timeseries.	When	5 

values	for	a	given	ROI	are	similar	across	the	two	different	scans,	that	reflects	comparable	levels	of	6 

similarity	across	entirely	different	brain	response	time	series	evoked	by	different	videos.	All	panels	use	7 

the	Harvard-Oxford	96-ROI	cortical	parcellation.		8 

 9 
	10 
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