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Abstract

Convolutional neural networks trained on object recognition derive inspiration from the
neural architecture of the visual system in primates, and have been used as models of
the feedforward computation performed in the primate ventral stream. In contrast to
the deep hierarchical organization of primates, the visual system of the mouse has a
shallower arrangement. Since mice and primates are both capable of visually guided
behavior, this raises questions about the role of architecture in neural computation. In
this work, we introduce a novel framework for building a biologically constrained
convolutional neural network model of the mouse visual cortex. The architecture and
structural parameters of the network are derived from experimental measurements,
specifically the 100-micrometer resolution interareal connectome, the estimates of
numbers of neurons in each area and cortical layer, and the statistics of connections
between cortical layers. This network is constructed to support detailed task-optimized
models of mouse visual cortex, with neural populations that can be compared to specific
corresponding populations in the mouse brain. Using a well-studied image classification
task as our working example, we demonstrate the computational capability of this
mouse-sized network. Given its relatively small size, MouseNet achieves roughly 2/3rds
the performance level on ImageNet as VGG16. In combination with the large scale
Allen Brain Observatory Visual Coding dataset, we use representational similarity
analysis to quantify the extent to which MouseNet recapitulates the neural
representation in mouse visual cortex. Importantly, we provide evidence that optimizing
for task performance does not improve similarity to the corresponding biological system
beyond a certain point. We demonstrate that the distributions of some physiological
quantities are closer to the observed distributions in the mouse brain after task training.
We encourage the use of the MouseNet architecture by making the code freely available.

Author summary

Task-driven deep neural networks have shown great potential in predicting functional

responses of biological neurons. Nevertheless, they are not precise biological analogues,
raising questions about how they should be interpreted. Here, we build new deep neural
network models of the mouse visual cortex (MouseNet) that are biologically constrained
in detail, not only in terms of the basic structure of their connectivity, but also in terms
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of the count and hence density of neurons within each area, and the spatial extent of
their projections. Equipped with the MouseNet model, we can address key questions
about mesoscale brain architecture and its role in task learning and performance.We
ask, and provide a first set of answers, to: What is the performance of a mouse
brain-sized — and mouse brain-structured — model on benchmark image classification
tasks? How does the training of a network on this task affect the functional properties
of specified layers within the biologically constrained architecture — both overall, and in
comparison with recorded function of mouse neurons? We anticipate much future work
on allied questions, and the development of more sophisticated models in both mouse
and other species, based on the freely available MouseNet model and code which we
develop and provide here.

Introduction

Convolutional neural networks (CNNs) trained on object recognition derive some
inspiration from the neuroscience of the visual system in primates, and have been used
as models of feedforward computation performed in the primate ventral stream [1-3].
Indeed, the activity in these networks often resembles activity recorded from areas of the
primate visual system, from oriented Gabor-like features in early layers [4] to responses
to curves and more complex geometries [5] and even functional, or representational,
similarity at the population level [6}/7]. Task-trained artificial neural networks have been
shown to produce similar neural representations or develop predictive models of neural
activity in visual [8H10], auditory [11], rodent whisker areas [12], and more [13H15].
Despite these successes and the clear power of CNNs to solve machine learning problems
in the visual domain, among others [4,/16], they are not structural or architectural
analogues for the underlying biological circuits. Recent endeavors [17,(18] show that
imposing brain like structure such as shallowness and recurrence in network models can
improve their functional similarity to the primate brain. The interplay of architecture
and computation remains an open problem in both machine learning and neuroscience.

This issue is especially pronounced for studies of mouse visual cortex, a field
undergoing explosive growth. Large scale tract tracing data sets have revealed
neuro-anatomical structure in unprecedented detail [19-22]. From these efforts we have
learned, in contrast to the hierarchical organization of primates, that the visual system
of the mouse has a much more parallel structure [23]. Since rodents are capable of
visually guided behavior including invariant object recognition [24,25], this raises
questions about the role of architecture in neural computation. Recently, data from a
large-scale physiological survey of neural activity in the mouse visual system [26] was
used to compare the representations of visual stimuli in cortex with those of modern
deep networks [27H29]. It was found that even purportedly “early” regions such as V1 in
mouse cortex are more similar at the level of representation to middle layers of networks
such as VGG16, rather than to early layers that respond optimally to simple visual
features and bear more resemblance to the “simple” and “complex” cells normally
supposed to describe the early visual pathway. However, the profound difference in
architecture between modern CNNs and the mouse cortex raises significant challenges in
interpreting these findings. To begin, many modern computational models of vision (in
particular CNNs, which often have a high input resolution) have a larger number of
units than the number of neurons in mouse visual cortex. Moreover, CNNs from
computational vision are largely of feedforward type, either purely so or with some skip
connections (e.g., in ResNet architectures), which ignores the large amount of
recurrence present in real neural circuits. Furthermore, the mouse thalamo-cortical
system is quite shallow [23]. Most importantly, as stated above and detailed more below,
the mouse visual cortex has an intriguing parallel structure.
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Here we introduce a novel framework for incorporating these data to build a
biologically constrained convolutional neural network model of the mouse visual cortex
— the CNN MouseNet. Convolutional neural networks share weights across the visual
field, and thus form an approximation of the functional properties that may be imposed
by translation invariance of natural stimuli leading to equivariant representations in
neural systems [1H3]. This weight sharing makes them much easier to train, which is an
important practical consideration for model development. The structural parameters of
MouseNet are derived from experimental measurements, specifically estimates of
numbers of neurons in each area and cortical layer, the 100-micrometer resolution
interareal connectome, and the statistics of connections between cortical layers.

MouseNet is constructed to support detailed task-optimized models of mouse visual
cortex, with neural populations that can be compared to specific corresponding
populations in the mouse brain. To demonstrate the usage of MouseNet, we use
standard image classification tasks as working examples; specifically, we train MouseNet
to perform classification using the ImageNet Large Scale Visual Recognition Challenge
2012 (ILSVRC2012) [30] as well as the CIFAR10 [31] data sets.

We find that, although MouseNet is much smaller than a typical CNN and has
specific architectural differences, it can reach above 90% validation accuracy on
CIFAR10, and roughly 2/3rds of the performance level of a typical CNN (VGG16) on
the more challenging ImageNet classification benchmark.

Next, using the large-scale functional data sets from the Allen Brain
Observatory [26] on visual responses of neurons across visual cortex, we investigate the
functional properties of the MouseNet architecture after training on the ImageNet
dataset. We use representational similarity analysis [27,/32}33] to investigate the relative
effects of task-training on the different computational layers in the model. We see that
ImageNet classification training of MouseNet makes responses in its corresponding level
of layers more similar to responses recorded from the mouse brain.

We then contrast these results for the biologically constrained MouseNet with those
for a standard CNN network, VGG16, trained on the same task. We show that the
representational similarity of MouseNet to the mouse brain is comparable to that of
VGG16, even though VGG16 produces significantly higher task performance.

We study the training process for both networks, and find that the highest SSM
values between a model neural network and the mouse brain areas are not necessarily
achieved by the best performing models, rather at early or intermediate points during
the training process. We take this as an indication that image classification using
ImageNet is not the appropriate task to describe the mouse visual cortex (or at least
those regions measured in the Allen Brain Observatory) rather than a failure of the
task-training approach. This conclusion is perhaps to be expected. However, we feel
that the use of object recognition is an important baseline in comparison with
established results in primate.

Furthermore, in addition to broad measures of representational similarity across
images, we also demonstrate the effect of image classification training on MouseNet by
showing how it affects the other functional properties such as lifetime sparseness and
orientation selectivity index [26]. We find that training drives both of these properties
to become more similar between MouseNet and the biological mouse brain. Finally, by
comparing both VGG16 and MouseNet representations in individual layers before and
after training, we find that the image classification task makes MouseNet layers more
diverse after training, a phenomenon we attribute to the parallel pathways in the
MouseNet architecture.

Overall, we describe an open framework for constructing MouseNet that is general
and can be easily modified to incorporate new data on the structure of the mouse
brain [34]. Likewise, MouseNet can be readily trained on other tasks, including those
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corresponding more closely to natural behavior. We encourage future research along o
these lines by making the Python code publicly available at 0
https://github.com/mabuice/Mouse_CNN, together with the step-by-step description o4
of the model construction that we present next. o
Construction of CNN MouseNet o
In this section, we introduce our framework for constructing the CNN MouseNet. Fig[l] «
shows an overview of this framework. The basic idea is to use available sources of o
anatomical data (e.g. tract tracing data, cell counts, and statistics of short-range %
connections) to constrain the CNN network structure and architectural 100
hyperparameters. We discuss the details of each step below. 101

Hierarchy

P

VISporO

ViSpl
Visal

Vvisii
visI
visrl

Hierarchy score

Allen Mouse Brain Atlas

Interareal Interlaminar

Numb Connection Connection : .
HMBEE Probability probability Harris & Mihalas 2019

Neuron

Fig 1. Modeling framework. Framework for constructing MouseNet from biological
constraints on anatomy, via publicly available data from large-scale experiments. The
CNN architecture is set by the analysis of hierarchy on the Allen Mouse Brain
Connectivity Atlas (Image credit: Allen Institute); and the meta-parameters are
mostly fixed by the combination of the 100-micrometer resolution interareal
connectome with detailed estimates of neuron density , and the statistics of
connections between cortical layers from the literature [36-38].

Network architecture 102
MouseNet spans the dorsal lateral geniculate nucleus (dLGN) and six visual areas 103
(Fig ) Input to the network passes first through dLGN, and then to the primary 104
visual area VISp. After VISp, the architecture branches into five parallel pathways, 105
representing five secondary lateral visual areas: VISI (lateral visual area), VISal 106
(anterolateral), VISpl (posterolateral), VISl (laterointermediate), and VISrl 107
(rostrolateral). Finally, the output of VISp together with all five lateral visual areas 108

provide input to VISpor (postrhinal). We include only the lateral areas because they 100
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are more associated to object recognition while the medial areas are more involved in
multimodal integration [39]. The three-level architecture among the VIS areas was
derived from an analysis of the hierarchy of mouse cortical and thalamic areas (Fig. 6e
in [23]), which considered feedforward and feedback connection structures in each area.
In this analysis, VISp was clearly low in the hierarchy, and VISpor was clearly high, but
the other lateral visual areas had similar intermediate positions.

In the MouseNet model, each VIS area is represented by three separate cortical
layers: layer 4 (L4), layer 2/3 (L2/3) and layer 5 (L5). We call a specific cortical layer
within a specific area a “region”. Here we only consider the feedforward pathway,
thought in primate to drive responses within ~ 100ms of stimulus presentation .
Following depictions of the canonical microcircuit (e.g. as summarized in Fig 5 in ),
we consider the feedforward pathway to consist of laminar connections from L4 to 12/3,
and from L2/3 to L5. Input from other areas feed into L4 and all of L4, L2/3 and L5
output to downstream areas, as shown in Fig [2B. This is consistent with broad
connectivity among visual areas from each of these layers (Fig. 2f of ) Fig shows
the MouseNet architecture in full detail, including all 22 regions and associated
connections.

VISIi5

VISpl5

VISpor4

VISpor2/3

VISpor5

Fig 2. Illustration of MouseNet architecture. Only feedforward connections are
included. (A) High-level organization of MouseNet, based on analysis of the hierarchy of
lateral visual areas ( [23]). (B) Connection patterns at the level of cortical layers. (C)

Full MouseNet architecture.

From architecture to convolutional neural net

Similar to the CALC model for the primate visual cortex by one of the authors , the
general idea is to use convolution (Conv) operations to model the projections between
different regions in the mouse visual cortex. Conv operations are linear combinations of
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many inputs, so they impose the assumption of linear synaptic integration. They are
widely used in machine learning, because they run efficiently on graphical processing
units, and they share parameters across the visual field, leading to reduced memory
requirements and faster learning, relative to general linear maps.

Each connection from source brain region ¢ to target brain region j is modelled with
a Conv operation, Conv. The input to Conv¥ corresponds to the neural activities in

source region i, and the output of Conv® drives neural activities in the target region j.

For example, as shown in Fig , the projection from Region 1 to Region 2 (Proj 1—2)
is modeled by Conv'2. The neural activities in Region 1 correspond to the input to
Conv'2, while the neural activities in Region 2 are a nonlinear function (ReLU, as
shown in Fig ) of the output of Conv'2. In MouseNet, L4 of all areas except VISp
receive multiple converging inputs, similar to Region 4 in Fig[BJA. In this case, each
projection (Proj 2—4 and Proj 3—4) is modeled by a separate Conv layer (Conv?* and
Conv?%), and a nonlinear function (ReLU) is applied to the sum of the output from
both of the Conv layers, to produce the neural activities in Region 4.

Finding meta-parameters consistent with mouse data

After fixing the architecture, we need to determine the meta-parameters for
constructing the kernels for each Conv operation (Fig . The standard Conv operation
is defined in terms of a four-dimensional kernel. The output of the kernel is a
three-dimensional tensor of activations for region j, A7, which pass through

element-wise ReLU nonlinearities to produce non-negative rates. Element Ai gy 18 the
activation of the neuron at the a'” vertical and 5** horizontal position in the visual
field, in the v*" channel (or feature map). The 7" channel of the activation tensor for

region j, AZ{, depends on inbound connections as,

AL =N "CY A, (1)

il 6

where I7 is the set of regions that provide input to region j. Note that both C’% and AJ
are two-dimensional, and they undergo standard two-dimensional convolution. The
meta-parameters of kernel C* are: number of input channels c;? , number of output
channels cf,{;t, stride s¥, padding p¥, and finally kernel size k%, i.e. the height and
width (which are set equal) of Cffé. To make the connections realistically sparse, we add
a binary Gaussian mask on the Conv operations, whose parameters are also estimated
from data. See Fig[3B for an illustration of Conv operation with Gaussian mask. We
constrain these meta-parameters with quantitative data whenever possible, and
reasonable assumptions indicated by experimental observations otherwise, as indicated
below.

Cortical population constraints

Assumptions about area output size We set the horizontal and vertical
resolution of the input (in pixels) based on mouse visual acuity. According to [42], the
upper bound for visual acuity in mice is 0.5 cycles/degree, corresponding to a Nyquist
sampling rate of 2 pixels/cycle x 0.5 cycles/degree = 1.0 pixel/degree. According to
retinotopic map studies [43], V1 included a visual coverage range of ~ 60° in altitude

and ~ 90° in azimuth, we further simplified this to square input size of 64 by 64 pixels.

The resolution of the other regions depends on both the resolution of the input, and
strides of the connections. The stride of a connection is the sampling period with
respect to its input. For example, a Conv with a stride of one samples every element of
its input, whereas a Conv with a stride of two samples every other element (both
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1/8l9le6l3]|2 Kernel size: k =3 Gaussian width: dw * * +
- Stride:s =1
Input size: 6x6x3 Padding: p = 0 * *

Fig 3. From mouse brain to CNN model. (A) From mouse brain hierarchy to
CNN architecture. (B) An example of Conv operation with Gaussian mask. (C) ReLU
operation in the CNN architecture. (D) The binary Gaussian mask is generated by a
Gaussian shaped probability whose peak and width are meta-parameters.

horizontally and vertically), leading to output of half the size in each dimension.
Because cortical neurons are not organized into discrete channels in the same way as
convolutional network layers, there is no strong anatomical constraint on the stride.
However, the mean stride has to be somewhat less than two; there are ten steps in the
longest path through MouseNet, but if only six of them had a stride of two, the 64x64
input would be reduced to 1x1 in VISpor, with no remaining topography. Lacking
strong constraints, for simplicity, we first attempted to set all the strides to one, but
this left very few channels in some of the smaller regions (due to an interaction between
channels and strides that we describe below). We therefore set the strides of the
connections outbound from VISp to two, and others to one. The feature maps of dLGN
and VISp were therefore 64x64 (the same as the input), and all others were 32x32.

Given the resolutions of the channels in each region, the numbers of channels are
constrained by the number of neurons. Specifically, Let n¢ be the number of neurons in
region i and (1%, l;) be the size of the output in area i, then the number of channels in
area i is determined by ¢ = n'/(IL «I.).

Estimating number of neurons in each area from data We only model the
excitatory neural population in our model, consistent with the fact that all neurons in
the model project to other visual areas. In fact, neurons in convolutional networks are
neither excitatory or inhibitory, but have both positive and negative output weights.
However, past modelling work has shown that such mixed-weight projections can
be transformed so that the original neurons are all excitatory, and an additional
population of inhibitory neurons recovers the functional effects of the original weights.

According to 7 the estimated number of excitatory neurons in dLGN is 21200. For
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VISp, VISal, VISI, VISpl, we use estimated density for excitatory neurons given by |35E], 109
which is summarized in Tabel [Il Note that we use neuron density instead of counts to 20
get a more stable estimation of number of neurons out of different versions of brain 201
parcellations. For the remaining areas VISrl, VISli and VISpor, we approximate their 2
density by taking the average across the above four areas with separated cortical layers. 203

Table 1. Exitatory population density [mm~—3] [35].

L4 L2/3 L5
VISp 106114.7 86668.2 86643.4
VISal 93176.9 79070.6 '78540.9
VISI 86559.9 73937.9 66215.6
VISpl 106783.0 87368.3 82538.1
Average | 98158.6 81761.1 78484.5

Combined with the number of 10pm voxels counted in the Allen Mouse Brain 204
Common Coordinate Framework (CCFv3) [47] (Table [2), we summarize the estimated 20
number for all the regions in our model in Table 206

Table 2. Number of 10pm voxels in each region.

L4 L2/3 L5
VISp 1023640 1999040 1552688
VISal 104152 199314 202942

VISI 179084 301588 314522
VISpl 36638 205150 242812
VISrl 146294 276390 244294
VISl 57256 117252 147946

VISpor 60632 373972 385168

Table 3. Estimated number of exitatory neurons in each region.

L4 L2/3 L5 Total
dLGN 21200
VISp | 108623 173253 134530
VISal 9705 15760 15939
VISl 15501 22299 20826
VISpl 3912 17924 20041
VISt 14360 22598 19173
VISl 5620 9587 11611
VISpor | 5952 30576 30230

Cortical connection constraints 207
Neurons tend to receive relatively dense inputs from other neurons that are above or 208
below them, in other cortical layers, and the connection density decreases with 200
increasing horizontal distance. Similarly, inputs from other cortical areas tend to have a 210
point of highest density, with smoothly decreasing density around that point. We am

approximate such connection-density profiles with two-dimensional Gaussian functions. 2w
Specifically, the fan-in connection probability from source region i to target region j at s

Thttps://bbp.epfl.ch/nexus/cell-atlas/
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position (x,y) (position offset from center in nm) is modeled as,

.. . 2 y2

Piay) = diesp -2~ V) )
: 2(di)*  2(dy)?

where diJ is the peak probability at the center and d¥ and dJ are the widths in the x

and y directions. For simplicity, we assume d = diJ £ diJ and let r = \/22 + y? denote

the offset from the center of the source layer, the above equation then simplifies to,

P¥(r) = d¥ exp (- 2(;j)2> : (3)

where d% (pm) is the Gaussian width.
Both dfgj and d¥ are estimated from mouse data. The parameters for interlaminar
connections are estimated from statistics of connections between cortical layers in paired
electrode studies (Section [Estimating d?/,d% for interlaminar connections), and the
parameters for interareal connections are estimated from the mesoscale mouse

connectome (Section [Estimating d and d! for interareal connections|).

Conv layer with Gaussian mask

To translate our Gaussian models of connection density into network meta-parameters,
we apply a binary mask to the weights of the Conv layers (Fig ) To do that, we first
change the unit of d¥J in Eq from micrometers to source area-dependent “pixels” (unit
of output size of source area i) by multiplying it with o; = {/(lZ x I} )/a; (pixel/pm),
where a; denotes the surface size of area i, estimated from the voxel model (See
|Estimating d;) and d;j for interareal connections[). We then have,

)
pPY (f> = d}? exp <_2((§3ﬁ)2> ’ dfﬂ = O'idg7 (4)
where both 7 and dgg are in the “pixel” unit. The kernel size of the Conv layer is set to
be k¥ =2 x |d] + 1, with padding calculated by p¥ = (k¥ — s¥)/2, where s¥ is the
stride of the Conv layer.During initialization, a mask containing zeros and ones is
generated for each Conv layer, with size (¢, c;? k%, k'7). The probability of each
element being one is P¥(7), where 7 (pixel) is the offset from the center of mask. The
weights of the Conv layer are then multiplied by the mask. This gives the connections
realistic densities (or sparsities), with realistic spatial profiles.

Estimating di/,d} for interlaminar connections

For the interlaminar connections, we estimate the Gaussian width d¥ from multiple
experimental resources. Firstly, from Table 3 in [37], we get the estimation of d% to be
114 micrometers for functional connections between pairs of 1.4 pyramidal cells in mouse
auditory cortex. Secondly, manually extracted from [38] Fig 8B, we obtain the variation
of the Gaussian width depending on source and target layer from cat V1. Finally, we
use this variation to scale the L4 to L4 width of 114 pm to other layers in the mouse
cortex. We summarize the Gaussian widths from cat cortex, along with corresponding
scaled estimates for mouse cortex, in Table [l Note that in the current model, we only
use the values for connections from L4 to L2/3 and from L2/3 to L5 (Fig[2B).
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Table 4. Estimated Gaussian width d/ for interlaminar excitatory
connections. The values outside of the parenthesis are extracted from [38]; the values
inside the parenthesis are scaled to mouse cortex, using the width 114 pm for L4-to-L4

connections in mouse auditory cortex [37]. Units are micrometers (pm).

Target
L2/3 (scaled) L4 (scaled) L5 (scaled)
L2/3 | 225 (1425) 50 (31.67) 100 (63.33)
Source L4 | 220 (139.33) 180 (114) 140 (88.67)
L5 | 150 (95) 100 (63.33) 210 (133)

To estimate the Gaussian peak probability d;j , we first collect the connection

probability between excitatory populations offset at 75 micrometer d (Fig. 4A in [36]).

We then get the peak probability di/ by the relation

S 752
dy = di/exp | ———— (5)
2(dif)

We summarize the probability at 75 micrometers d% along with the peak probability
d¥ in Table

Table 5. The connection probability between excitatory populations offset
at 75 micrometer d7. The numbers are from Fig 4A in [36]). The calculated
Gaussian peak probability d;j are given in parenthesis.

Target
L2/3 (peak) L4 (peak) L5 (peak)
L2/3 | 0.160 (0.184) 0.016 (0.264) 0.083 (0.167)
Source L4 | 0.140 (0.162) 0.243 (0.302) 0.104 (0.149)
L5 | 0.021 (0.029) 0.007 (0.014) 0.116 (0.136)

Estimating d;} and d;} for interareal connections

To estimate interareal connection strengths and spatial profiles, we use the mesoscale
model of the mouse connectome [21,22]. This model estimates connection strengths
between 100 micrometer resolution voxels, based on 428 individual anterograde tracing
experiments mapping fluorescent labeled neuronal projections in wild type C57BL/6J
mice.

Flat map The voxel model is in 3 dimensional space. For the purpose of our
analysis, we need to map the 3 dimensional structure into 2 dimensions. First, we fit
the visual area positions by a sphere with center ¢ € R? and radius r. Each position
x € R? is then mapped to € R? with relation

_ Iy —C
Ty =wv-r-arctan , (6)
T2 —C2

Tg =wv -7 -arctan T3 (7)
\/(1‘1 - 01)2 + ({E2 - 82)2

where v = 100um is the size of the voxel.

Area size Approximations of the surface area for each brain region are needed to
convert the widths of connection profiles (see [Conv layer with Gaussian mask]) from
voxels in the mesoscale model to convolutional-layer pixels in MouseNet. For this
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purpose, each region’s surface area size is approximated by the area of a convex hull of
its mapped two-dimensional positions. These estimates are summarized in Table [6}

Table 6. Area size (mm?) estimated from the voxel model.

VISp VISal  VISI VIS  VISpl VISt VISpor
L4 4.3271 0.4909 0.8793 0.3355 0.2865 0.6182 0.5264
L2/3 | 4.7406 0.5477 0.9279 0.4356 0.6659 0.6980 1.3937
L5 4.2511 0.4972 0.8651 0.4039 0.6785 0.6748 1.2445

Estimating d”/ For each connection from source region i to target region j, we
estimate d;} from the mesoscale model. The first step is to estimate the widths of
connections to individual voxels in j. The incoming width d;’ for target voxel k in j is

estimated by the standard deviation of the connection strength about its center of mass.

Specifically, di = (32, wixd?/ >, wi)"/?, where I indexes the voxels in source region 7,
wyy, is the connection weight between source and target voxels [ and k in the mesoscale
model, and d; is the distance from voxel [ to the center of mass of these connection
weights. We then estimate diJ as the average of these widths over the voxels in j. We
omit from this average any target voxels that have multi-modal input profiles. This
procedure provides an upper bound for di/, because a target voxel may include multiple
neurons with partially overlapping input areas.

Estimating d;,j The mesoscale model provides estimates of relative densities of
connections between pairs of voxels. But an additional factor is needed to convert these
relative densities into neuron-to-neuron connection probabilities. For this purpose, we
assumed that each neuron received inputs from 1000 neurons in other areas (we call this
number the extrinsic in-degree, €). This is on the order of the estimate from Fig S9 M
in [48]. Given this assumption, we calculated d;j by the relation,

e i
2o Wij

where w;; is the connection strength from source area i to target area j, estimated from
integrating the connection weights of the corresponding areas in the mesoscale model.

The estimated values for dJ and d}j are given in Table [12|in |S1 Table

Conv kernel size for dLGIN

= 2m(d)* - df - &, 8)

The above methods allowed us to set kernel sizes for intracortical connections, but not
subcortical ones. We set the kernel sizes for inputs to dLGN and VISp L4 according to
receptive field sizes in these regions. Receptive fields are about 9 degrees in dLGN and
11 degrees in VISp [49]. As mentioned in Section [Cortical population constraints| mouse
visual acuity is approximately 1 pixel/degree, therefore we set kernel size of the
connection from input to dLGN to 9x9. We then set the kernel size of the connection
from dLGN to VISp to 3x3, such that the receptive field size for VISp is 11x11 pixels.

Summary tables

In Table [7, we summarize the calculated number of channels in each area (in
parenthesis) and the kernel size for each Conv layer.

The parameters used in the model based on biological sources and assumptions are
summarized in Table [§| and the formulae for calculating the Conv layer meta-parameters
are sumarized in Table 0
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Table 7. The calculated meta-parameters for the Conv layers.

Source(#channel) | Target ornel size Source(#channel) | Target kernel size
. VISal4(9) VISal2/3 | 13 x 13
input(3) LGNv 9%x9
dLGN(5) VISpd 33 VISpord 33
P VISal2/3(15) VISal5 5x5
VISp2/3 9x9
VISald 17 % 17 ViSpord Lxl
a x VISal5(15) VISpor4 1x1
VISl 1919 VISI4(15) VISI2/3 )
VISp4(26) VIS4 19 x 19
VISol4 19 % 19 VISpor4 15 x 15
P VISI2/3(21) VISI5 5x5
VIStl4 19 x 19
VISpord 17 % 17 VISpor4 15 x 15
VISpgr o VISI5(20) VISpord | 15x 15
p x VISH4(5) VISL2/3 | 17 x 17
VISald 15 x 15
VISI 19 % 19 VISpor4 17 x 17
VISp2/3(42) VISlid 17 x 17 VISI2/3(9) VISLS T
VISpl4 17 % 17 VISpor4d 17 x 17
VISfl | o1 « 21 VISli5(11) VISpord | 15x 15
VISpld(3) VISpl2/3 | 19 x 19
VISpor4d 19 x 19
VISald 15 % 15 ViSpord 33
& VISpl2/3(17) VISpl5 5x5
VISl 19 x 19 ViSord o
VISp5(32) Xghi o VISpI5(19) VISpord |  5x5
P VISt14(14) VISt2/3 | 11 x 11
VIStl4 19 x 19
VISpor4 7Tx 7
VISpord 19 x 19 VISt2/3(22) VISt5 5x5
VISpor4(5) VISpor2/3 13 x 13 VISpord 9% 9
VISpor2/3(29) VISpor5(29) | 3 x3 VISH5(18) ViSpord 020

Table 8. Parameters from data or assumptions

Notation CNN parameter Biological source or assumptions

n' Number of neurons in area ¢ Based on [35] combined with the voxel model [21]

a; Two dimensional area size for area ¢  Estimated from voxel model data [21]

e Total fan-in connections for all areas  Set to be 1000 based on [48]

(19, lg) Input size to the model Set to be 64x64 based on mouse visual acuity [42]

(It ly) Output size of area ¢ Set to be 64x64 up to VISp, 32x32 after VISp (Assumption)

dy Gaussian width (interlaminar) Estimated from mouse [37] and cat [38] cortical properties
Gaussian width (interareal) Estimated from voxel model [21]

d;j Guassian peak (interlaminar) Based on statistics of connections in paired electrode studies [36]

Gaussian peak (interareal)

Estimated from voxel model |21]

Table 9. Meta-parameters for Conv layer connecting source area i to target area j

Notation CNN parameter Formula

ct number of channels in area i ¢ =n'/(lL -1l

kb kernel size kU =2x [di] +1

5% stride s =1 /1) = l;/lg

p% padding pid = (k¥ — s%) /2

di Gaussian width di = /(1 -1i)/a; - di
d;j Gaussian peak d;j
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Results

In this section, we use a well established image classification task as a working example
to demonstrate the usage of the CNN MouseNet and to derive novel findings relating
architecturally constrained CNNs and the mouse brain. We first assess the
computational performance of this mouse-architecture network on an image
classification task. Then, through systematic comparisons with the large scale Allen
Brain Observatory dataset, we show how MouseNet can be used to probe the effect of a
CNN's specific task training and architecture on its similarities and differences with
responses in the biological brain.

Implementation of MouseNet

To enable training of MouseNet on a standard image classification task, we implemented
the MouseNet structure in PyTorch [50]. Each Conv layer was followed by a batch
normalization layer and a ReLU non-linearity. For regions such as VISpor L4 that
receive input from multiple Conv layers, the outputs of the Conv layers are summed
before being fed into the batch normalization layer and ReLU non-linearity.

To train the MouseNet model on an image classification task, we added a simple
classifier. Specifically, in order to include the final processing output from each
individual area such that the information is not bottlenecked by the relatively small
VISpor area, we took the L5 output from all seven areas and reduce them to 4x4 by an
average pooling layer. We then flattened, concatenated, and fed this to a linear

fully-connected layer, which reduced the dimension to the number of classes of the task.

The outputs were then transformed to probabilities by the softmax function, and the
cross-entropy loss of the predicted probabilities (determined from the categorical
distribution where individual class probabilities are from the output of the softmax)
relative to the ground truth labels was used to train on the image classification task.

Computational Performance of MouseNet on image
classification

We trained MouseNet end-to-end using stochastic gradient decent with momentum,
adapting the training script from the imagenet example script from the PyTorch
examples github repositoryﬂ Full training details and scripts are available on the
MouseNet github repo: https://github.com/mabuice/Mouse_CNN.

We first found that MouseNet achieved above 90% validation accuracy on
CIFARI10 [31], a simple classification of 32x32 images into 10 categories. Interestingly,
this is close to state of the art performance of modern networks, suggesting that mouse
sized networks are fully capable of performing this simple task.

We then moved to the more challenging image classification benchmark of
ImageNet [51], which requires classification of higher resolution images into 1000
categories. We found that, even for input images downsampled to a resolution of
(64x64), MouseNet can still be trained to perform above 37% top-1 validation accuracy
on ImageNet [51]. Below, we contrast representations in MouseNet to those in VGG16
trained with the same downsampled input size (64x64), which achieved above 60% top-1
validation accuracy on ImageNet. We contrast the number of parameters in MouseNet
and VGG16 in Table Note that the number of parameters of MouseNet Conv layers
without the Gaussian masks is about 14% of that for VGG16, while the number
parameters of MouseNet Conv layers with Gaussian masks is less than 1% of that for

VGG16. Our simulation results are all based on MouseNet models with Gaussian masks.

%https://github.com/pytorch/examples/tree/master/imagenet
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Table 10. Number of parameters for MouseNet and VGG16 for 1000-class
ImageNet classification task.

Conv layers Conv with mask Classifier
VGG16 14.7M 14.7M 123M
MouseNet 2.1M 87K 2.3M

The Effects of Task Training on Functional Properties

To examine the effect of the image classification task training on the functional
similarity of the MouseNet and the biological mouse brain, we make use of the
large-scale, publicly available Allen Brain Observatory dataset [26]. We study
representational similarity of MouseNet and the biological mouse brain across a set of
natural images, along with the basic functional properties of sparsity and orientation
selectivity.

The Allen Brain Observatory data set

The Allen Brain Observatory data set is a large-scale standardized in vivo survey of
physiological activity in the mouse visual cortex, featuring representations of visually
evoked calcium responses from GCaMP6f-expressing neurons. In this work, we use the
population neural responses to a set of 118 natural image stimuli, each presented 50
times. The images were presented for 250ms each, with no inter-image delay or
intervening “gray” image. The neural responses we use are events detected from
fluorescence traces using an L0 regularized deconvolution algorithm, which deconvolves
pointwise events assuming a linear calcium response for each event and penalizes the
total number of events included in the trace. Full information about the experiment is
and database given in [206].

The Allen Brain Observatory includes data from six different brain areas, namely
VISp, VISal, VISL, VISpm, VISam and VISrl. The number of neurons in the dataset, for
each of the regions we use, is summarized in Table

Table 11. Number of neurons recorded from each mouse brain region.
VISp VISal VISI VISpm VISam VISrl
Total 14173 4396 8748 4771 2040 5189

L2/3 4079 1042 2259 1544 610 1168
L4 6735 2967 4163 1905 1179 3626
L5 3003 387 1874 973 251 395

The Similarity of Similairy Matrices metric (SSM)

To compare functional similarity betweeen two representations — in MouseNet, and in
the biological mouse brain — of a set of images, we use the Similarity of Similarity
matrices (SSM) [27[32] metric. We begin with a matrix of neural activities, in which
each row contains the population activities for a certain image. We calculate the
Pearson correlation coefficient between every pair of rows within one representation
matrix, to form an n by n “similarity matrix” for this representation, where each entry
describes the similarity of the population response to a pair of images. Next, to
compare two similarity matrices, we flatten the matrices to vectors and compute the
Spearman rank correlation between these vectors. Like the Pearson correlation
coefficient, the rank correlation lies in the range [—1,1] indicating how similar (close to
1) or dissimilar (close to -1) the two representations are. Rather than examining one
neuron at a time [52,/53], this metric compares representations based on activities of the
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whole populations of artificial and biological neurons, revealing functional similarity at
the population level. Another choice of such population similarity metrics is Singular
Vector Canonical Correlation Analysis (SVCCA) [27,/54]. An excellent review of such
similarity metrics and their properties can be found in [55].

Following the procedures in [27|, we construct the representation matrix for a certain
mouse visual cortex region by taking the trial-averaged mean responses of the neurons
in the 250ms during the image presentation. Activities of neurons in different
experiments for the same brain area are grouped together to construct the
representation matrix, whose dimension is number of images by number of neurons. The
representation matrices for MouseNet layers are obtained from feeding the same set of
118 images (resized to 64x64) to MouseNet and collecting all the activations from a
certain layer of the model.

Neural reliability and SSM noise ceiling

We next compute the SSM noise ceiling from the Allen Brain Observatory data. We use
split half reliability to quantify the reliability of a single neuron from the Allen Brain
Observatory. This is done by separating the 50 trials into two non-overlapping 25 trial
sets, and taking the correlation of trial-averaged responses between the two. We make
ten random splits, and take the mean of the ten correlations to represent the reliability
of each neuron. The reliability distributions of the neural populations are shown in
Fig 4] (left). VISp, VIS] and VISal are most reliable areas and VISpm, VISam and VISrl
are less reliable areas.

To estimate the noise ceiling of the SSM metric, we compare the mouse data
representation matrices with themselves. Specifically, we split the 50 trials in the
dataset into two non-overlapping sets and calculate the trial averaged representation
matrices for each set. The SSM between these two representation matrices are the noise
ceiling of the SSM metric. Multiple splits of the dataset are computed for estimating
the mean and standard deviation of the noise ceilings.

To examine how the noise ceiling changes with the reliability of the neural
population, we calculate the noise ceilings by selecting neurons that surpass different
levels of thresholds, as shown in Fig [4] (right). We see that for some regions, if we select
a group of neurons using a certain reliability threshold, the noise ceiling becomes higher
than without this selection. We summarize the reliability and best noise ceiling for each
area in Fig[5| In this paper, we will concentrate our discussions on the most reliable
areas, VISp, VISI and VISal, which are included in the MouseNet model. We will use
the best noise ceiling to compare with the models.

Task training improves the similarity between MouseNet and the Allen
Brain Observatory

To examine the effect of training to perform an image classification task on the
functional similarity of MouseNet to the brain, we compute the SSM value between each
layer of MouseNet with data from a brain region recorded in the Allen Brain
Observatory. To account for the randomness due to initialization, we train four
instances of MouseNet on ImageNet starting with different weights and look at their
mean statistics. Fig. [6] shows the SSM values between each of the MouseNet layers with
data from 1.2/3 of VISp, VISl and VISal. Layers 4 and 5 are shown in Fig. The first
important observation is that regions in the model do not necessarily best match to the
corresponding functional area recorded in the Allen Brain Observatory. We see that for
layer 2/3, area VISp in the Allen Brain Observatory, five different model areas show
significant change in SSM value from the untrained model. In the following, we will add
prefix “m” in front of the modeled areas from the MouseNet to contrast with the ones
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Fig 4. Selecting reliable neurons improves noise ceilings. (Left) Reliability
distribution of neural populations. Each row shows all the brain areas at a specific

cortical layer. The dotted lines indicate the median reliability of each neural population.

(Right) The noise ceilings change with variation of the threshold for selecting reliable
neurons. The higher the threshold, the fewer neurons are selected. For some
populations, selecting a certain portion of reliable neurons gives best noise ceiling. Error
bars are from different draws of non-overlapping trials.

from the real brain. One of these is an early layer, mVISp5, while the others are in the
parallel pathway portion of the architecture. Of the others, mVISl4 shows an increase in
similarity with VISp_layer23, while three other model regions show a decrease in
similarity. For the other two regions in Figure [f, mVISp5 shows a significant increase in
similarity. For VISl layer23, there are six other model regions that all show an increase
in similarity. These statements hold specifically when comparing model regions to each
other for the same area in the Brain Observatory. Comparing areas of the Brain
Observatory to each other requires a different adjustment for the number of comparison
(see black vs. red stars in Figure @ These results are consistent with the idea from Shi,
et al [27] that VISp is a lower order area than VIS] and VISal (VISp maps to lower
“pseudo-depth” in comparing to a CNN than both VIS] and VISal). Layers 4 and 5 show
results that are similar, but not identical to, layer 2/3. (Fig. . VISal in Layer 4 and
VISI and VISal in Layer 5 show improved similarity after training for many of the
mVISp model regions. Similarly, VISp in layer 4 and 5 shows decreased similarity after
training in some of regions in the parallel portion of the architecture.

Note that, although training on ImageNet improves the corresponding level of model
regions’ similarity to the brain, the highest SSM value does not always occur in the
model layer corresponding to the specific region considered in the Brain Observatory.
For example, the SSM value for mVISp regions are higher than the mVISI regions when
comparing to the brain area VISl L2/3. This is possibly because the visual areas are
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Fig 5. Summary plot of median reliability and best noise ceiling for each
brain area. Each color represents a different brain area, and shades from light to dark
indicate different cortical layers L2/3, L4 and L5. The circle size is proportional to the
size of the population in the dataset.

more similar to each other than they are to the MouseNet regions (see Table [13|in
for the SSM values between the brain areas themselves), such that improving the

similarity to one brain region can possibly lead to improving the similarity to some
other regions. Nevertheless, by looking at all the layers globally, we see that for the
earliest visual area VISp, the ImageNet classification training promotes the SSM values
of the mVISp layers in the MouseNet while suppress the values for the later layers;
whereas for secondary visual areas VISI, the training promotes both earlier layers and
later layers in the parallel pathways, suggesting a higher place in the functional
hierarchy (cf. with the results of [27]).

Higher task performance on image classification does not guarantee higher
similarity to the mouse brain

To examine how performance on the ImageNet classification task affects the functional
similarity to the brain, we contrast the SSM values for MouseNet with another network
that can perform this task, the VGG16 network discussed above. We use the same input
resolution, on the same task (see Section |[Computational Performance of MouseNet on|
[image classification|). Similarly as for MouseNet, we calculate the SSM values between
each layer in VGG16 and the regions in the mouse visual cortex. VGG16 does not have
a “corresponding layer” for each region; we choose the VGG layer that has the highest
SSM with each mouse brain region. For this comparison, we do the same for MouseNet,
so that for each region, we compare this ‘best layer’ SSM value with the best layer SSM
value for MouseNet.

The best layer’s SSM values for both VGG16 and MouseNet, for each mouse cortical
layer in VISp, VIS], and VISal, are summarized in Fig[7] As we can see in the figure,
although VGG16 has much higher performance on the ImageNet task (about 60% vs
40%), it does not have much higher SSM values to the brain for most regions. The
saturation of functional similarity between the brain and models in terms of image
classification performance is also observed in primates, albeit at a much higher
performance level [56].

To further grasp the limited relationship between a model’s task performance and its
functional similarity to the mouse brain, we look at how the models’ functional
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Fig 6. SSM between mouse data in VISp(top)/VISl(middle)/VISal(bottom)
L2/3 and all layers in the MouseNet before (blue) and after training (red).
Each line corresponds to the mean of four different MouseNet instances trained from
different initialization weights (dots). The x axis includes all the layers in the model in
a serial way. The five parallel secondary visual area pathways in the model are in
shaded grey background. Black stars denote the the pvalues of two-sample t-test with
Benjamini/Hochberg correction of 22 comparisons within one brain area is less than
0.05; Red stars denote the pvalues of two-sample t-test with Benjamini/Hochberg
correction of all 9x22 comparisons across all 9 brain areas is less than 0.05.

similarity to brain data changes during training. As shown in Fig[8] the highest SSM
values between a model neural network and the mouse brain areas are not necessarily
achieved by the best performing models, rather at early or intermediate points during
the training process. See Figl[12]in for more instances of MouseNet during
training, also showing this effect. These results show that optimizing performance on
this particular task, at least beyond an early or intermediate level of performance, does
not necessarily improve the model’s similarity to the biological brain. If the approach of
building models for neural responses via task training of artificial networks is broadly
correct, then we take this as an indication that ImageNet is not the correct task to
consider for the representations in the mouse brain.

Task training with the MouseNet architecture increases the similarity of
other functional properties to the mouse brain

As mentioned above, the SSM metric compares functional representations, based on
activities of the whole neural population in a given model layer and a set of recordings
from a given brain area. For a complementary view of the effect of task training on
MouseNet representations, and of the role of its architecture, we can also study the
statistical distributions of single neuron functional properties, such as orientation
selectivity and lifetime sparseness [26].
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Fig 7. SSM between best layer in trained VGG16/MouseNet and mouse
brain regions. The plot shows results of 3 instances of VGG16 (with validation
accuracy 60.46, 60.72, 60.93) and 4 instances of MouseNet (with validation accuracy
37.46, 37.95, 37.52, 37.49) trained from different initialization weights. Yellow lines
denote the best noise ceiling; their widths are standard deviations calculated from
multiple draws of non-overlapping trials as in Figl[dl Dotted black lines are the SSM
values between the 64x64 pixel input and the corresponding regions. Black stars denote
the statistical significance of two-sample t-test between the mean of the trained VGG16
and the trained MouseNet instances (one star: p < 0.05, two stars: p < 0.01, three stars:

p < 0.001).
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Fig 8. Functional similarity and validation accuracy during the training

process. Each row compares models with a different brain area. We show one instance
of MouseNet and VGG16 during their training process, where each dot represents the
best layer’s SSM of one model at a certain epoch to the specified brain area. The clear

jumps of validation accuracy occurred when the learning rate is reduced.

Lifetime sparseness measures the selectivity of a neuron’s mean response to different
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stimulus condition, defined as [26,57]

- (3B (-3)

where N is the number of stimulus conditions and r; is the response of the neuron to
stimulus condition ¢ averaged across trials. A neuron that responds strongly to only a
few stimuli will have a lifetime sparseness close to 1, whereas a neuron that responds
broadly to many stimuli will have a lower lifetime sparseness. The statistical
distribution of lifetime sparseness for the mouse data on natural scene stimuli and for
all the units in trained /untrained MouseNet and VGG16 models, responding to the
same natural scene stimuli as in the Allen Brain Observatory, are shown in Fig. |§| (top
row). This demonstrates clearly that training on the image classification task makes the
distribution of lifetime sparseness values much closer to the mouse brain data for
MouseNet, but not as much for VGG16.
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Fig 9. Distributions of lifetime sparseness (top row) and circular selectivity
index (bottom row) for all the units in the models and all the neurons in
the mouse data. The distributions of all units in one instance of trained/untrained
MouseNet (first column) and VGG16 (second column) are plotted along with mouse
data, with the Jensen-Shannon distances between the models and the data annotated.
The Jensen-Shannon distances between multiple instances of models and the mouse
data are summarized in the third column. Black stars denote the statistical significance
of two-sample t-test between the mean of the model instances (one star: p < 0.05, two
stars: p < 0.01, three stars: p < 0.001).

Similarly, we can study the orientation selectivity of individual neurons by using the
static grating stimuli in the Allen Brain Observatory dataset. Specifically, we calculate
the circular selectivity index (which is one minus the circular variance defined in [58]),

defined as _
SO = Z’/’keﬁek/ Z’I’k (10)
k k

where 7 is the response of the neuron to a grating with angle 6;, averaged across trials.

A neuron that responds strongly to only one direction will have circular selectivity index
close to 1, whereas a neuron that responds broadly to many directions will have lower
circular selectivity index. The statistical distributions of the circular selectivity index,
for the mouse data with static grating stimuli and for trained /untrained MouseNet and
VGG16 models with the same stimuli, are shown in Fig. [9] (bottom row). As for the
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case of lifetime sparsity above, task training changes the distribution of selectivity
values. These distributions, after training, are closer to the mouse brain data for the
MouseNet networks than for the VGG, once again showing how the more specifically
matched architecture of MouseNet can lead to more similar model responses to the
biological brain. Note that the spikier distributions of the models result from the
deterministic nature of the models in contrast to the noisier brain data in response to
the (only) six total static grating directions. If we were to simulate neural noise in the
model responses, it would smooth the distributions, resulting in closer approximation of
the data, as we show in Fig [13]in[SI Fig).

Taken together, these results show how the MouseNet model can be used to explore
the impact of task training on a variety of response statistics that are commonly
computed in physiology studies, and that those defined on individual neurons can
demonstrate complementary and in some cases more dramatic changes with training
than those averaged over entire populations.

Task training diversifies functional representation among MouseNet layers

Finally, we study how task training and network architecture affect the general
‘geometric’ layout of models’ representations, separately from their similarity to
representations in the mouse brain data. To do this, we calculate the SSM values
between every pair of layers from both trained/untrained MouseNet and VGG16, and
visualize them in two dimensional space via a metric multidimensional scaling
algorithm [59,/60]. The results are shown in Fig For VGG16, we see that
representations in layers are clustered together both before and after training. By

contrast, for MouseNet the representations become much more diversified after training.

We hypothesize that it is the parallel architecture of MouseNet that leads it to learn
this more diversified representation as it solves the image classification task. Further
examinations of the various pathways and model instances show that different pathways
are learning quite different representations (Fig(14]in , and that these qualitative
results are consistent across multiple instances of MouseNet models (Fig [15]in
Unraveling any specific functions of each pathway, in this task or in others, is an
opportunity left for future studies.

0.8 0.8
0.6 0.6
° ° oo 08
o (XY (J
0.4 e &° _ o 0.4 2% &° S
'.. o "Q‘o > o8 .\é L e
02 ° 0.2 ®o
¢ <
0.0 pe 0.0
, ° , Qe

-0.2

-0.4

-0.6

ju
H

-0.2

-0.4

-0.6

-0.6 -04 -0.2 0.0 0.2
Fig 10. Visualization of all layers from one instance (left) and three

instances (right) of trained/untrained MouseNet and VGG16. Each dot
represents a layer from a certain model instance. The position of the dots are the
two-dimensional projection from the multidimensional scaling algorithm, with the
distance measure defined as one minus the SSM value.
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Discussion

Task-optimized deep networks show promise for brain modelling, because they are
functionally sophisticated, and they often develop internal representations that overlap
strongly with representations in the brain [8-15]. While deep network architectures are
originally loosely inspired by the brain, there has been an extensive empirical
exploration of the effects of architectural features in machine learning, in directions
often independent from neuroscience. In parallel, however, a great deal more has been
learned about the architecture of the biological brain, with that of the mouse brain
having been been particularly well characterized.

We have developed MouseNet, a deep network architecture that is consistent with a
wide range of data on mouse visual cortex, including data from tract-tracing studies and
studies of local connection statistics. While standard deep networks have provided
useful points of comparison with neurobiological systems, in the long term more
biologically realistic deep networks may enable more specific comparisons with the
brain, including comparisons between homologous groups of neurons, modeling of
specific lesions, and analysis of functional differences between brain areas and pathways.

Using image classification as a working example, we use MouseNet to investigate
using the task-training approach to model the functional representations in the mouse
brain. An aspect of special interest is whether training on this task drives the
representations in the model to be closer to those recorded from the real mouse brain, in
comparison to representations in untrained versions of the MouseNet model or in
generic deep networks. Using recordings from the large-scale Allen Brain Observatory
survey, we find — consistent with the literature [8,|9] for other model species and systems
— that training on an image classification task does drive MouseNet representations to
better resemble those of the real data. However, this increase of functional similarity is
not necessarily strictly monotonic with task performance. In our experiments we see the
SSM correlation with the Brain Observatory responses saturating or even maximizing
well before we achieve maximum accuracy on task performance. This is true for both
MouseNet and VGG16.

Within the task-training paradigm, these results suggest that the specific image
classification task we used, and perhaps image classification overall, is not the
appropriate task for describing what the mouse visual cortex has learned and developed
to compute. Nonetheless, MouseNet is an important reference to studies in more
established species, which rely on comparisons of the ventral stream with architectures
designed for object recognition. Although we know rodents are capable of performing
tasks that require visual object discrimination, mouse ethology suggests that alternate
computations are more important for the mouse visual system, such as motion tracking,
predation, and predator avoidance. A promising future direction is to use task-training
of the MouseNet model, together with the metrics tested here, to develop more realistic
tasks and stimuli that may lead to more closely matched representations.

In sum this work links anatomical and physiological data to task-driven CNN
models, providing a road map for developing better task-driven models of the biological
brain. It opens the door to building more detailed structures into the model, such as
adding further brain areas as well as adding recurrence and using different inputs and
readouts for different pathways. Incorporating new anatomical data is also easy within
this framework. By making our code publicly available, and illustrating the model’s
success and failures in matching representations using well-studied metrics and tasks, we
hope to facilitate future research along these lines.
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S1 Table.

Table 12. The estimated d (um) and d;j for interareal connections.

Source Target dg (um) | dy
VISal4d 277.1 0.039 Source Target &7 (o) 77
VISi4 313.2 0.030 L
. VISal4 37.98 0.551
VISp4 VISli4 296.7 0.032
VISal2/3 13.81 4.362
VISpl4 290.6 0.032
VISalb 14.87 4.213
VISrl4 306.7 0.032
VISl4 204.7 0.014
VISpord 276.8 0.013
VISI2/3 210.6 0.016
VISal4d 266.1 0.063
VISI5 2154 0.019
VIS4 325.8 0.038 .
VISp2/3 | VISli4 303.3 0.045 VISl 195.1 0.017
VISli2/3 | VISpord 169.3 0.022
VISpl4 284.2 0.047 .
VISIi5 148.4 0.028
VISrl4 339.4 0.032
VISpl4 22.2 | 0.190
VISpor4d 307.4 0.013
VISpl2/3 59.5 0.054
VISal4 239.0 0.064
VISpl5 54.4 0.079
VISi4 311.5 0.042
. VISrl4 97.2 0.074
VISpH VISli4 314.3 0.043
VISrl2/3 105.4 0.064
VISpld 278.3 0.053 VISt5 110 4 0.064
VISrl4 311.4 0.042
VISpord 298.3 0.016

Table 13. SSM values between mouse visual cortex areas. Note that even with
the neural sub-sampling issue [27], the similarity values between VISp, VIS], and VISal
are much higher than they are with the CNN models.

VISp VISI VISal VISpm VISam VISrl

VISp 1 0.56  0.60 0.35 0.23 0.25
VISI 0.56 1 0.51 0.35 0.24 0.25
VISal  0.60 0.51 1. 0.39 0.24 0.30
VISpm 0.35 0.35 0.39 1. 0.19 0.13
VISam 0.23 024 0.24 0.19 1 0.14

VISr] 0.25 0.25 0.30 0.13 0.14 1

S1 Fig.
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Fig 11. SSM between data in VISp(top)/VISl(middle)/VISal(bottom) L4
and L5 and all layers in the MouseNet before(blue) and after training(red).
Each line corresponds to the mean of 4 different MouseNet instances trained from
different initialization weights (dots). The x axis includes all the layers in the model in
a serial way. The five parallel secondary visual area pathways in the model are in
shaded grey background. Black stars denote the the pvalues of two-sample t-test with
Benjamini/Hochberg correction of 22 comparisons within one brain area is less than
0.05; Red stars denote the pvalues of two-sample t-test with Benjamini/Hochberg
correction of all 9x22 comparisons across all 9 brain areas is less than 0.05.).
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Fig 12. Functional similarity and validation accuracy during the training
process for multiple MouseNet instances. Each row compares models with a
different brain area. We show three instances of MouseNet during their training process.
Each dot represents the best layer’s SSM of one instance at a certain epoch to the
specified brain area, with each instance’s highest achieved SSM during training process
marked by a cross. The clear jumps of validation accuracy occurred when we reduced
the learning rate.
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Fig 13. Distribution of circular selectivity index for all the units in trained
MouseNet with different levels of noise added. The noise is added to the
activations of each layer as a half-normal distribution with a standard deviation of the
specified noise level multiplied by the mean activation across all units for that layer.
This results shows that circular selectivity index distribution can be smoothed out by
adding noise to the deterministic MouseNet model.
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Fig 14. Visualization of all layers of trained/untrained MouseNet and
VGG16, for three instances (colored coded by areas). Each dot represents a
layer from a certain model instance. The position of the dots are the two-dimensional
projection from the multidimensional scaling algorithm, with the distance measure
defined as one minus the SSM value. The layers from three instances of trained
MouseNet are color coded by their area names, and annotated with their region names.
This result shows that different pathways in the MouseNet have learned distinct
representations after training.
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Fig 15. Visualization of all layers of trained/untrained MouseNet and
VGG16, for three instances (colored coded by instance). Each dot represents a
layer from a certain model instance. The position of the dots are the two-dimensional
projection from the multidimensional scaling algorithm, with the distance measure
defined as one minus the SSM value. The layers from three instances of trained
MouseNet are color coded by their corresponding model instance. This result shows
that training diversified the representations of all the three instances of MouseNet
starting from different initialization states.
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