

1 **Dalpiciclib and Pyrotinib Exert Synergistic Antitumor Effects in Triple Positive**
2 **Breast Cancer**

3 Jiawen Bu^{1#}, Yixiao Zhang^{1,2#}, Nan Niu¹, Kewei Bi¹, Lisha Sun¹, Xinbo Qiao¹, Yimin
4 Wang¹, Yinan Zhang¹, Xiaofan Jiang¹, Dan Wang¹, Qingtian Ma¹, Huajun Li³,
5 Caigang Liu^{1*}

6

7 ¹ Department of Oncology, Shengjing Hospital of China Medical University,
8 Shenyang, China

9 ² Department of Urology Surgery, Shengjing Hospital of China Medical University,
10 Shenyang, China

11 ³ Clinical Research & Development of Jiangsu Hengrui Pharmaceuticals Co. Ltd.,
12 Shanghai, China

13 **Abstract**

14 Background: The therapeutic benefit of the standard combination of anti-HER2 and
15 chemotherapy in triple-positive breast cancer (TPBC) is limited even after the
16 addition of endocrine therapy to the regimen. Therefore, treatment optimization is
17 required urgently.

18 Methods: Through the drug sensitivity test, the drug combination efficacy of anti-
19 HER2 drug, endocrine drug and CDK4/6 inhibitor to BT474 cells were tested. The
20 underlying molecular mechanisms were investigated using immunofluorescence,
21 western blot analysis, immunohistochemical staining and cell cycle analysis. Potential
22 biomarker which may indicate the responsiveness to drug treatment in triple positive
23 breast cancer was selected out using RNA-sequence and tested using
24 immunohistochemical staining.

25 Results: We found that pyrotinib combined with dalpiciclib showed better efficacy
26 than pyrotinib combined with tamoxifen in BT474 cells. Degradation of HER2 could
27 enhance ER nuclear transportation, whereas cell cycle blockers could reverse this
28 process. This may be the underlying mechanism by which the addition of dalpiciclib
29 was more beneficial than the addition of pyrotinib plus tamoxifen. Furthermore,
30 CALML5 was revealed to be a potential indicator of responsiveness to anti-HER2
31 therapy plus CDK4/6 inhibition in triple positive breast cancer.

32 Conclusion: Our study provided evidence for the introduction of CDK4/6 inhibitor in
33 the treatment of TPBC and indicated that the combination of anti-HER2 therapy and
34 cell cycle blockers may be a better strategy for TPBC treatment.

35 Funding: This study was supported by the National Natural Science Foundation of
36 China (#U20A20381, #81872159)

37 Keywords: triple-positive breast cancer, anti-HER2 therapy, cell cycle blockers

38 **Introduction**

39 Human epidermal growth factor receptor 2-positive (HER2⁺) breast cancer is
40 associated with an increased risk of disease recurrence and death (*Perou et al., 2000*;
41 *Slamon et al., 1987; Tzahar et al., 1996*). HER2-overexpressing breast tumors have
42 high heterogeneity, accounting partially for the co-expression of hormone receptors
43 (HR) (*Loi et al., 2016*). Previous studies have demonstrated that extensive cross-talk
44 exists between the HER2 signaling pathway and the estrogen receptor (ER) pathway
45 (*Wang et al., 2011*). In addition, exposure to anti-HER2 therapy may reactivate the ER
46 signaling pathway, which could lead to drug resistance (*Branda et al., 2020*).
47 Generally, however, HER2-positive patients are treated using the same algorithms,
48 both in the early and advanced stages (*Moja et al., 2012*). Thus, novel therapeutic
49 strategies are urgently needed for patients with HER2⁺/HR⁺ breast cancer.

50 Increasing evidence has confirmed that the intrinsic differences between
51 HER2⁺/HR⁺ and HER2⁺/HR⁻ patients should not be ignored (*Carey et al., 2016*).
52 Clinical outcomes have demonstrated that HER2⁺/HR⁺ breast cancer patients have a
53 lower chance of achieving a pathologically complete response than HER2⁺/HR⁻
54 patients, when treated with neoadjuvant chemotherapy plus anti-HER2 therapy
55 (*Cameron et al., 2017; Cortazar et al., 2014*). Nevertheless, the addition of
56 concomitant endocrine therapy to anti-HER2 therapy or chemotherapy did not show
57 any advantages in clinical trials, such as the NSABP B-52 and ADAPT HER2⁺/HR⁺
58 studies (*Harbeck et al., 2017; Rimawi et al., 2017*). Therefore, whether endocrine
59 therapy is useful in HER2⁺/HR⁺ breast cancer treatment is questionable.

60 Recently, the synergistic effect of CDK4/6 (cyclin kinase 4/6) inhibitors and anti-
61 HER2 drugs in HER2⁺ breast cancer has been reported. The combination of anti-
62 HER2 drugs and CDK4/6 inhibitors showed strong synergistic effects and high

63 efficacy in HER2⁺ breast cancer cells (*Goel et al., 2016; Zhang et al., 2019*). The
64 combination of CDK4/6 inhibitors and HER2-targeted therapy as an alternative
65 strategy for HER2⁺/HR⁺ patients, warrants further exploration.

66 Herein, we investigated the combined effect of pyrotinib (anti-HER2 drug),
67 tamoxifen (endocrine therapy), and dalpiciclib (CDK4/6 inhibitor) on the triple-
68 positive breast cancer (TPBC) cell line BT474. We found that pyrotinib combined
69 with dalpiciclib showed better efficacy than pyrotinib combined with tamoxifen. In
70 addition, HER2-targeted therapy induced nuclear ER redistribution in TPBC cells,
71 which could be reversed by the addition of a CDK4/6 inhibitor. Furthermore,
72 CALML5 could be a potential indicator of responsiveness to HER2-targeted therapy
73 combined with a CDK4/6 inhibitor. Our study provided a new function of the CDK4/6
74 inhibitor in TPBC cells treated with anti-HER2 therapy and suggested a novel strategy
75 for improving the clinical response in TPBC.

76 **Results**

77 **Pyrotinib combined with dalpiciclib shows better efficacy than when combined
78 with tamoxifen**

79 To explore the effects of pyrotinib, tamoxifen, and dalpiciclib in TPBC, we first
80 evaluated the cytotoxic activities of these three reagents in BT474 breast cancer cells.
81 The results showed that the IC50 doses for pyrotinib, tamoxifen, and dalpiciclib were
82 10 nM, 5 μ M, and 8 μ M, respectively (Figure 1-figure supplement 1a). To further
83 investigate whether these three drugs could have a synergistic effect in BT474 cells,
84 we assessed the efficacies of the combinations of pyrotinib and dalpiciclib, pyrotinib
85 and tamoxifen, and tamoxifen and dalpiciclib on the inhibition of cell proliferation at
86 different concentrations. We calculated the combination index for each combination
87 using Compusyn software to determine if the antitumor effects were synergistic (*Chou*

88 and Talalay, 1984). Synergistic effects were observed in the combination group of
89 pyrotinib and dalpiciclib, as well as in the pyrotinib and tamoxifen groups; both with
90 CI values of <1 at several concentrations (Figure 1a). However, in the combination
91 group of tamoxifen and dalpiciclib, no synergistic effect was observed.

92 We also analyzed the effect of the three-drug combination, and it showed a
93 stronger cytotoxic effect on TPBC compared with the effect of the other two-drug
94 combinations (Figure 1b). As both dalpiciclib and tamoxifen showed synergistic
95 effects in combination with pyrotinib, we sought the combination that showed better
96 efficacy. Hence, we treated the BT474 cells with different combinations at EC50 or
97 half EC50 concentrations. The three-drug combination and the combination of
98 pyrotinib and dalpiciclib showed a stronger cell inhibition compared with that exerted
99 by pyrotinib and tamoxifen as well as tamoxifen and dalpiciclib (Figure 1c). The
100 colony formation assay also showed similar trends as the cell viability assay; the
101 three-drug combination formed the least number of colonies, followed by the
102 combination of pyrotinib and dalpiciclib (Figure 1-figure supplement 1b–c).

103 To verify the efficacy of endocrine therapy in HR^{+/}HER2⁺ patients, we
104 retrospectively analyzed the clinical data of 221 HR^{+/}HER2⁺ patients who received
105 adjuvant therapy at the Shengjing Hospital. Of these, 44 patients received anti-HER2
106 therapy plus chemotherapy, and 177 patients received anti-HER2 therapy combined
107 with chemotherapy and endocrine therapy. A Kaplan-Meier analysis showed that the
108 addition of endocrine therapy to adjuvant anti-HER2 therapy plus chemotherapy did
109 not significantly alter disease-free survival (DFS; $P = 0.600$) or overall survival (OS;
110 $P = 0.5276$) in HR^{+/}HER2⁺ patients (Figure 1d).

111

112 **Nuclear ER distribution is increased after Anti-HER2 therapy and could be**

113 **reversed by the introduction of a CDK4/6 inhibitor**

114 The results of the drug sensitivity test showed that the combination of pyrotinib
115 and tamoxifen was less effective than the combination of pyrotinib and dalpiciclib.
116 Considering that anti-HER2 therapy may activate the ER signaling pathway, we
117 performed immunofluorescence staining for ER distribution on the different drug-
118 treated groups. We found that pyrotinib induced ER nuclear translocation in BT474
119 cells, which could be partially reversed by the addition of dalpiciclib, rather than
120 tamoxifen (Figure 2a). To further investigate whether the expression of HER2 could
121 affect the distribution of ER, we transfected MCF7 cells with HER2 overexpression
122 plasmids. We found that ER in MCF7 cells (WT and NC) was mainly expressed in the
123 nuclei, whereas in the HER2 overexpressing MCF7 cells, ER was distributed
124 throughout the cell plasma. Treating HER2 overexpression MCF7 cells with pyrotinib
125 could redistribute the ER into the nuclei (Figure 2b). Western blot analyses revealed
126 although the nuclear ER levels increased considerably, the total expression of ER was
127 reduced after the use of pyrotinib (Figure 2-figure supplement 1a–b). The use of
128 tamoxifen increased the expression of total ER and nuclear ER, significantly, while
129 the expression of nuclear ER in combination with pyrotinib and dalpiciclib showed a
130 decrease (Figure 2-figure supplement 1a–b).

131 Based on our *in vitro* findings, we further explored the ER distribution in clinical
132 samples from the different treatment groups. To this end, we collected the clinical
133 information of 172 HER⁺/HR⁺ patients who received neoadjuvant therapy at the
134 Shengjing Hospital (Table 1). We found significant elevations in the nuclear ER
135 expression levels of patients who received chemotherapy and anti-HER2 therapy,
136 compared with the levels in patients who only received chemotherapy (Figure 2c, d).
137 However, in our ongoing clinical trial (NCT04486911), the nuclear ER expression

138 levels of patients did not show significant elevations after the HER2-targeted therapy
139 combined with dalpiciclib (Figure 2d). These findings verified that the ER receptor
140 may have shifted to the nucleus after anti-HER2 therapy, which could be reversed
141 with the introduction of a CDK4/6 inhibitor.

142 **Bioinformatic analyses unravel the synergistic mechanisms underlying the**
143 **dalpiciclib and Anti-HER2 therapy in TPBC**

144 To further explore the synergistic mechanisms of the addition of CDK4/6
145 inhibitor treatment in HER2^{+/HR⁺} breast cancer, we first analyzed the gene expression
146 profiles of the breast tumor cells treated with pyrotinib via RNA-seq. The signaling
147 pathway enrichment analysis of the differentially expressed genes (DEGs) showed
148 that majority of the DEGs were significantly enriched in the TNF signaling pathway
149 and cell cycle, while steroid biosynthesis was also strongly active, suggesting that the
150 steroid hormone pathway was activated by pyrotinib (Figure 3a-b). Similar results
151 were obtained from the Gene Set Enrichment Analysis (GSEA). The administration of
152 pyrotinib resulted in downregulation of the cell cycle and activation of the hormone
153 pathway. The leading-edge subset of these pathways included the MITOTIC
154 SPINDLE, G2M CHECKPOINT, and ESTROGEN RESPONSE EARLY (Figure 3c).
155 These results showed good concordance with our *in vitro* findings.

156 We then investigated the alteration of the gene expression profiles between breast
157 tumor cells treated with triple-combined drugs (pyrotinib, tamoxifen, and dalpiciclib)
158 and those treated with the dual-combined drugs (pyrotinib and tamoxifen) via gene
159 enrichment analyses. The results suggested that the addition of dalpiciclib markedly
160 reduced cell cycle progression. This was characterized by the enrichment of the cell
161 cycle and the DNA replication process (Figure 3e). The GSEA results further
162 indicated that the progression of the cell cycle was impeded by the enrichment of the

163 gene sets, including MITOTIC SPINDLE and G2M CHECKPOINT (Figure 3f).

164 The inhibition of the ER pathway might be involved in the effect of pyrotinib plus
165 dalpiciclib on TPBC cells; therefore, intersection analyses were performed to confirm
166 this. As shown in Figure 3g, *CALML5*, *KRT15*, and *KRT19* are the common genes
167 shared between the two sets, the upregulated genes treated with pyrotinib and the
168 genes belonging to the estrogen signaling pathway. Since dalpiciclib is a cell cycle
169 blocker, we also analyzed the common genes involved in the upregulation of the
170 genes and the cell cycle progression after pyrotinib treatment. *CDKN1A* was the only
171 shared gene in these two sets (Figure 3h). We then investigated whether any of the
172 above-mentioned genes were upregulated with the use of pyrotinib and whether this
173 could be reversed with the introduction of dalpiciclib, which may serve as a potential
174 biomarker of the responsiveness to different treatments. The results showed that only
175 one factor, *CALML5*, was the common gene (Figure 3i).

176 **CALML5 is a potential indicator for the responsiveness to anti-HER2 therapy
177 plus CDK4/6 inhibitor**

178 Western blot analyses and bioinformatic analyses were conducted to verify the
179 changes in the signaling pathways. The western blot analyses showed that while the
180 introduction of tamoxifen did not significantly affect the expression of HER2 and
181 partially inhibited the HER2 downstream pathway (AKT-mTOR signaling pathway),
182 it did not significantly affect the phosphorylation of Rb (Figure 4a). In contrast, after
183 the introduction of dalpiciclib, the activation of mTOR was partially inhibited, which
184 relieved the negative feedback on the HER2 pathway, as evidenced by the slight
185 increase in the HER2 and pAKT, which maintained the sensitivity of the HER2
186 pathway to pyrotinib. This was consistent with the findings of Goel et al (Goel et al.,
187 2016). The combination of pyrotinib and dalpiciclib significantly reduced pRb

188 expression (Figure 4a). In addition, cell arrest analyses of the different drug
189 combinations were performed. As shown in Figure 4b, compared with the cells treated
190 with pyrotinib or tamoxifen, the introduction of dalpiciclib significantly increased the
191 number of cells arrested in the G1/S phase. This confirmed the synergistic inhibition
192 of cell proliferation by dalpiciclib and pyrotinib.

193 To verify whether CALML5 could be a potential predictor of treatment
194 responsiveness in clinical practice, clinical biopsy samples were collected from
195 HER2<sup>+/HR⁺ patients before and after neoadjuvant therapy (anti-HER2 therapy plus
196 chemotherapy or anti-HER2 therapy plus CDK4/6 inhibitor). The demographic
197 information is shown in Table 2. Immunohistochemical staining of CALML5 showed
198 that the CALML5-positive cells indicated better drug sensitivities and higher
199 probabilities of achieving pathological complete response (pCR) and PR in patients
200 receiving anti-HER2 therapy and a CDK4/6 inhibitor compared with anti-HER2
201 therapy plus chemotherapy (Figure 4c). Moreover, the positive rate of CALML5
202 decreased after anti-HER2 therapy plus a CDK4/6 inhibitor treatment (Figure 4d),
203 consistent with the results of the bioinformatic analyses.</sup>

204 **Discussion**

205 Until now, the combination of antiHER2 therapy and chemotherapy have been
206 the major treatment strategies for treatment of TPBC, although sometimes this is
207 combined with endocrine therapy (*Gianni et al., 2012; Schneeweiss et al., 2013*).
208 Although pCR and DFS improve with the use of the combination of anti-HER2
209 therapy and chemotherapy, the strong adverse effects of chemotherapy cannot be
210 ignored (*Maguire et al., 2021*). Moreover, clinical data showed that the addition of
211 anti-estrogen receptor drugs in the treatment regimen of TPBC did not provide
212 additional advantages in the pCR rates and DFS (*Harbeck et al., 2017; Rimawi et al.,*

213 2017). Hence, with the rapid development of small-molecule drugs such as tyrosine
214 kinase inhibitors (TKIs) and CDK4/6 inhibitors, additional chemo-free strategies are
215 being developed for the treatment of HER2^{+/HR⁺} breast cancer (Gianni *et al.*, 2018;
216 Pascual *et al.*, 2021; Saura *et al.*, 2014). In the present study, we investigated whether
217 the addition of CDK4/6 inhibitors to HER2-targeted and endocrine therapy could be
218 an alternative strategy for HER2^{+/HR⁺} patients.

219 In our study, we found that the combination of tamoxifen and pyrotinib was less
220 effective than the combination of pyrotinib and dalpiciclib in BT474 cancer cells. This
221 was anomalous since the two blocking agents of HER2 and ER were expected to
222 inhibit their crosstalk and achieve better responses. To explore the potential
223 mechanisms, we investigated the crosstalk between HER2 and the ER. After
224 degrading HER2 with pyrotinib, ER was found to relocate to the cell nucleus,
225 enhancing the function of ER which was consistent with the findings of Kumar *et al*
226 and Yang *et al* (Kumar *et al.*, 2002; Yang *et al.*, 2004). We believe that the anti-HER2
227 mediated ER redistribution caused the enhanced ER function, leading to the relatively
228 low efficacy of the combination of pyrotinib and tamoxifen in the treatment of
229 HER2^{+/HR⁺} cells. Moreover, we found that the introduction of dalpiciclib to pyrotinib
230 significantly decreased the total and nuclear expression of ER, reversing the ER
231 activation caused by pyrotinib (Figure2-figure supplement 1c). This may be the
232 underlying mechanism by which the addition of a CDK4/6 inhibitor was more
233 beneficial than the addition of pyrotinib and tamoxifen.

234 Furthermore, using RNA-seq and bioinformatics analyses, CALML5 was
235 selected as a potential biomarker for responsiveness to anti-HER2 therapy combined
236 with a CDK4/6 inhibitor. CALML5, known as calmodulin-like 5, is a skin-specific
237 calcium-binding protein that is closely related to keratinocyte differentiation (Mehul

238 *et al.*, 2001). A previous study showed that the high expression of CALML5 was
239 strongly associated with better survival in patients with head and neck squamous cell
240 carcinomas (Wirsing *et al.*, 2021). Misawa et al. (Misawa *et al.*, 2020) reported that
241 the methylation of CALML5, led to its downregulation, and this showed a correlation
242 with HPV-associated oropharyngeal cancer. Moreover, the ubiquitination of
243 CALML5 in the nucleus was found to play a role in the carcinogenesis of breast
244 cancer in premenopausal women (Debald *et al.*, 2013). Our results suggested that
245 TPBC patients with positive CALML5 may benefit from the addition of CDK4/6
246 inhibitors in neoadjuvant therapy. However, the underlying mechanism of CALML5
247 in breast cancer requires further investigation.

248 In conclusion, our study showed the novel role of the CDK4/6 inhibitor in TPBC
249 and provided evidence that CALML5 may be a potential biomarker in the prediction
250 of the responsiveness of HER2⁺/HR⁺ breast cancer patients to CDK4/6 inhibitors.

251

252 **Materials and methods**

253 **Clinical specimens**

254 A total of 221 HR⁺/HER2⁺ patients who received adjuvant chemotherapy + anti
255 HER2 therapy with or without endocrine therapy at the Shengjing Hospital of China
256 Medical University were enrolled for the analysis of DFS and OS. A total of 198
257 HR⁺/HER2⁺ patients who received neoadjuvant therapy were enrolled in this study to
258 evaluate the status of ER and CALML5, of which 26 patients were from the clinical
259 trial (NCT04486911), 41 patients received anti-HER2 therapy plus chemotherapy, and
260 131 patients only received chemotherapy. The sample size was calculated based on
261 the four interrelated statistics in the Null Hypothesis Significant Test (NHST): sample
262 size, effect size, alpha level, and statistical efficacy. The clinical information and
263 specimens were analyzed to determine the impact of endocrine therapy on prognosis.

264 The study was approved by the Institutional Ethics Committee and complied
265 with the principles of the Declaration of Helsinki and Good Clinical Practice
266 guidelines of the National Medical Products Administration of China. Informed
267 consent was obtained from all the participants.

268 **Cell lines and cell cultures**

269 BT474 and MCF7 were purchased from the American Type Culture Collection
270 (ATCC, Manassas, VA, USA). The human triple-positive breast cancer cell line
271 BT474 was cultured in RPMI1640 culture medium supplemented with 10% fetal
272 bovine serum (FBS), and MCF7 cells were cultured in DMEM culture medium
273 supplemented with 10% FBS.

274 **Chemicals and antibodies**

275 Pyrotinib (SHR1258) and dalpiciclib (SHR6390) were kindly provided by
276 Hengrui Medicine Co., Ltd. Tamoxifen (HY-13757A) was purchased from MCE

277 company. Compounds were dissolved in dimethylsulfoxide (DMSO) at a
278 concentration of 10 mM and stored at -20 °C for further use. The following antibodies
279 were purchased from Cell Signaling Technology (Beverly, MA, USA): ER, p-HER2
280 (Tyr 1221/1222), HER2, p-Akt (Ser473), AKT, p-mTOR, mTOR, pRb (Ser 780), Rb,
281 CDK4, CDK6, Lamin A, and GAPDH.

282 **Cell viability assays and drug combination studies**

283 CCK cell viability assays were (Cofitt life science) used to quantify the
284 inhibitory effect of the different treatments. Cells were seeded in 96-well plates at a
285 density of 5000 cells/well and treated the next day with DMSO, pyrotinib, tamoxifen,
286 dalpiciclib, or both drugs in combination for 48 h. The combination index (CI) values
287 of different drugs were calculated using CompuSyn (ComboSyn Inc.). The CI values
288 demonstrated synergistic (<1), additive (1–1.2), or antagonistic (>1.2) effects of the
289 two-drug combinations. The drug sensitivity experiments were performed three times
290 independently.

291 **Cell cycle analyses**

292 The cells were starved in culture medium supplemented with 2% serum for 24 h
293 before treatment. Treatments included DMSO (0.1%), pyrotinib (10 nM), dalpiciclib
294 (8 µM), tamoxifen (5 µM), or different combinations of drugs. After treatment for 24
295 h, cells in different treating groups were trypsinized, washed with PBS, fixed in 70%
296 ethanol, and incubated overnight at 4 °C. Next day, cells were collected, washed, and
297 re-suspended in PBS at a concentration of 5×10^5 cells/mL. The cell solutions were
298 then incubated with a RNase and propidium iodide (PI) solution for 30 min at room
299 temperature without exposure to light, and analyzed using a flow cytometer (BD
300 FACS Calibur) according to the manufacturer's instructions. This assay was
301 performed in triplicates.

302 **Colony formation assays**

303 Cells were seeded in 6-well plates at a density of 1000 cells/well. The cells were
304 treated with DMSO (0.1%), pyrotinib (10 nM), tamoxifen (5 μ M), dalpiciclib (8 μ M),
305 or a combination of the two or three agents. During the process, the culture medium
306 was renewed every three days. After 14 days, the colonies were fixed and stained with
307 crystal violet. Clusters of more than eight cells were counted as colonies. This assay
308 was performed in triplicates independently.

309 **Transfection of the human HER2 plasmids**

310 MCF7 cells were cultured in DMEM supplemented with 10% FBS. Human
311 HER2 plasmids were purchased from Hanbio. The plasmids were mixed well with
312 lipo3000 and p3000, according to the manufacturer's instructions, and then added to
313 the culture medium. Forty-eight hours after the transfection, the cells were fixed in
314 formaldehyde and stained for the estrogen receptor.

315 **Western blot analysis**

316 Cells and cancer tissues were lysed using a cell lysis buffer (Beyotime, Shanghai,
317 China). The total proteins were extracted in a lysis buffer (Beyotime, Shanghai,
318 China), and the nuclear proteins were extracted using a nuclear protein extraction kit
319 (Beyotime), in which PMSF, protease, and phosphatase inhibitors were added. Protein
320 concentrations were determined using a Pierce BCA Protein Assay Kit (Thermo
321 Fisher Scientific, Waltham, MA, USA) according to the manufacturer's instructions.
322 The proteins from the cells and tissue lysates were separated using 10% SDS-PAGE
323 and 6% SDS-PAGE, respectively, and then transferred to polyvinylidene fluoride
324 (PVDF) membranes. The immunoreactive bands were detected using enhanced
325 chemiluminescence (ECL). The western blot analysis was performed in triplicates
326 independently.

327 **Immunofluorescence assays**

328 The cellular localization of different proteins was detected using
329 immunofluorescence. Briefly, the cells grown on glass coverslips were fixed in 4%
330 paraformaldehyde at room temperature for 30 min. Cells were incubated with the
331 respective primary antibodies for 1 h at room temperature, washed in PBS, and then
332 incubated with 590-Alexa-(red) secondary antibodies (Molecular Probes, Eugene,
333 OR, USA). We used 590-Alexa-phalloidin to localize the ER. The nuclei of the cells
334 were stained with DAPI and color-coded in blue. The images were captured using an
335 immunofluorescence microscope (Nikon Oplenic Lumicite 9000). The distribution
336 ratio of ER was calculated manually by randomly chosen 5 views in
337 400magnification. The immunofluorescence assay was performed in triplicates
338 independently.

339 **Immunohistochemical staining**

340 The clinical samples were fixed in 4% formaldehyde, embedded in paraffin, and
341 sectioned continuously at a thickness of 3 μ m. The paraffin sections were
342 deparaffinized with xylene and rehydrated using a graded ethanol series. They were
343 then washed with tris-buffered saline (TBS). After these preparation procedures, the
344 sections of each sample were incubated with the primary anti-ER antibody (Abcam
345 Company, ab32063), anti-HER2 antibody (Abcam Company, ab134182), and anti-
346 CALML5 antibody (Proteintech, 13059-1-AP) at 4 °C overnight. The next day, they
347 were washed three times with TBS and incubated with a horseradish peroxidase
348 (HRP)-conjugated secondary antibody (Gene Tech Co. Ltd., Shanghai, China) at
349 37 °C for 45 min, followed by immunohistochemical staining using a DAB kit (Gene
350 Tech Co. Ltd.) for 5–10 min.

351 **Evaluation of the ER and HER2 statuses**

352 The ER and HER2 statuses of patients who received neoadjuvant therapy were
353 evaluated by a pathologist from a Shenjing affiliated hospital. The clinical specimens
354 before and after the neoadjuvant therapy were evaluated. The analyses of the elevation
355 or decline in ER statuses were based on these pathological reports.

356 **Gene enrichment analysis**

357 Gene annotation data in the GO and KEGG databases and R language were used
358 for the enrichment analysis. Only enrichment with q-values less than 0.05 were
359 considered significant.

360 **GSEA**

361 The hallmark gene sets in the Molecular Signatures Database were used for
362 performing the GSEA; only gene sets with q-values less than 0.05 were considered
363 significantly enriched.

364 **Statistical analysis**

365 All the descriptive statistics (except the drug sensitivity assay in Figure 1a and b)
366 were presented as the means \pm standard deviations (SDs). The drug sensitivity assay
367 in Figure 1 a and b were presented as the means \pm standard error of mean (SEM). The
368 differences between the groups were analyzed by chi-squared or Student's t tests.
369 Kaplan-Meier methods were used to compute the survival analysis and *P*-value was
370 obtained by log-rank test. The statistical analyses were performed using IBM SPSS
371 version 22 (SPSS, Armonk, NY, USA) and GraphPad Prism version 7. The statistical
372 significance of the differences between the test and control samples was assessed at
373 significance thresholds of $*P < 0.05$, $**P < 0.01$, $***P < 0.001$, and $****P < 0.0001$.

374

375 **Table 1. Demographic information of triple positive breast cancer patients who**
376 **received neoadjuvant therapy.**

Variables	Chemotherapy	Chemotherapy+antiHER	<i>p</i> -value
2 therapy			
No.of patients	131	41	
Age of year			
≤50	82(62.60)	25(61.00)	ns
>50	49(37.40)	16(39.00)	
T stage			
1	15(11.45)	5(12.20)	ns
2	90(68.70)	32(78.04)	
3	26(19.85)	4(9.76)	
ER status			
≤30%	31(23.66)	8(19.51)	ns
>30%	100(76.34)	33(80.49)	
PR status			
≤30%	80(61.07)	15(36.59)	0.0059
>30%	51(38.93)	26(63.41)	
HER2 status			
(++)	78(59.54)	12(29.27)	0.0007
(+++)	53(40.46)	29(70.73)	
Ki67 index			
<20%	51(38.93)	16(39.00)	ns
>20%	80(61.07)	25(61.00)	

377 **Table 2. Demographic information of triple positive breast cancer patients who**
378 **were tested for CALML5 before receiving neoadjuvant therapy.**

Variables	Chemotherapy+anti HER2 therapy	Pyrotinib+dalpiciclib+ta moxifen	<i>p</i> -value
No.of patients	41	26	
Age of year			
≤50	25(61.00)	16(61.53)	ns
>50	16(39.00)	10(38.47)	
T stage			
1	5(12.20)	2(7.70)	ns
2	32(78.04)	21(80.76)	
3	4(9.76)	3(11.54)	
ER status			
≤30%	8(19.51)	2(7.6)	0.0145
>30%	33(80.49)	24(92.4)	
PR status			
≤30%	15(36.59)	13(50)	ns
>30%	26(63.41)	13(50)	
HER2 status			
(++)	12(29.27)	10(38.5)	ns
(+++)	29(70.73)	16(61.5)	
Ki67 index			
<20%	16(39.00)	8(30.8)	ns
>20%	25(61.00)	18(69.2)	
CALML5			

positive	31(75.61)	19(73.08)	ns
negative	10(24.39)	7(26.92)	

379 ns, not significant.

380

381 **Authors Contributions**

382 J.B., Y.Z., L.S., X.Q., Y.W., X.J., D.W., H.L., and Q.M. conceptualized the study,
383 performed the experiments, and analyzed the data. B.K. performed the bioinformatic
384 analysis. Y.Z. and N.N. provided the clinical data and samples. C.L. designed the
385 entire study and wrote the manuscript.

386 **Conflict of interest**

387 The authors declare no conflicts of interests. H.L. is the employee of Jiangsu
388 Hengrui Pharmaceuticals Co., Ltd, no other potential conflicts of interest were
389 reported. The other authors have no competing interests to declare.

390 **Funding**

391 This study was supported by the National Natural Science Foundation of China
392 (#U20A20381, #81872159)

393

394 **References**

395 Brandao, M, Caparica, R, Malorni, L, Prat, A, Carey, LA, and Piccart, M. 2020. What
396 Is the Real Impact of Estrogen Receptor Status on the Prognosis and Treatment of
397 HER2-Positive Early Breast Cancer? *Clin Cancer Res* **26**, 2783-2788. DOI:
398 <https://doi.org/10.1158/1078-0432.CCR-19-2612>, PMID:32046997.

399 Cameron, D, Piccart-Gebhart, MJ, Gelber, RD, Procter, M, Goldhirsch, A, de
400 Azambuja, E, Castro, G, Jr., Untch, M, Smith, I, Gianni, L, Baselga, J, Al-Sakaff, N,
401 Lauer, S, McFadden, E, Leyland-Jones, B, Bell, R, Dowsett, M, Jackisch, C, and
402 Herceptin Adjuvant Trial Study, T. 2017. 11 years' follow-up of trastuzumab after
403 adjuvant chemotherapy in HER2-positive early breast cancer: final analysis of the
404 HERceptin Adjuvant (HERA) trial. *Lancet* **389**, 1195-1205. DOI:
405 [https://doi.org/10.1016/S0140-6736\(16\)32616-2](https://doi.org/10.1016/S0140-6736(16)32616-2), PMID:28215665.

406 Carey, LA, Berry, DA, Cirrincione, CT, Barry, WT, Pitcher, BN, Harris, LN, Ollila,
407 DW, Krop, IE, Henry, NL, Weckstein, DJ, Anders, CK, Singh, B, Hoadley, KA,
408 Iglesia, M, Cheang, MC, Perou, CM, Winer, EP, and Hudis, CA. 2016. Molecular
409 Heterogeneity and Response to Neoadjuvant Human Epidermal Growth Factor
410 Receptor 2 Targeting in CALGB 40601, a Randomized Phase III Trial of Paclitaxel
411 Plus Trastuzumab With or Without Lapatinib. *J Clin Oncol* **34**, 542-549. DOI:
412 <https://doi.org/10.1200/JCO.2015.62.1268>, PMID:26527775.

413 Chou, TC, and Talalay, P. 1984. Quantitative analysis of dose-effect relationships: the
414 combined effects of multiple drugs or enzyme inhibitors. *Adv Enzyme Regul* **22**, 27-
415 55. DOI: [https://doi.org/10.1016/0065-2571\(84\)90007-4](https://doi.org/10.1016/0065-2571(84)90007-4), PMID:6382953.

416 Cortazar, P, Zhang, L, Untch, M, Mehta, K, Costantino, JP, Wolmark, N, Bonnefoi, H,
417 Cameron, D, Gianni, L, Valagussa, P, Swain, SM, Prowell, T, Loibl, S, Wickerham,
418 DL, Bogaerts, J, Baselga, J, Perou, C, Blumenthal, G, Blohmer, J, Mamounas, EP, et

419 *al.* 2014. Pathological complete response and long-term clinical benefit in breast
420 cancer: the CTNeoBC pooled analysis. *Lancet* **384**, 164-172. DOI:
421 [https://doi.org/10.1016/S0140-6736\(13\)62422-8](https://doi.org/10.1016/S0140-6736(13)62422-8), PMID:24529560.

422 Debald, M, Schildberg, FA, Linke, A, Walgenbach, K, Kuhn, W, Hartmann, G, and
423 Walgenbach-Brunagel, G. 2013. Specific expression of k63-linked ubiquitination of
424 calmodulin-like protein 5 in breast cancer of premenopausal patients. *J Cancer Res*
425 *Clin Oncol* **139**, 2125-2132. DOI: <https://doi.org/10.1007/s00432-013-1541-y>,
426 PMID:24146193.

427 Gianni, L, Bisagni, G, Colleoni, M, Del Mastro, L, Zamagni, C, Mansutti, M,
428 Zambetti, M, Frassoldati, A, De Fato, R, Valagussa, P, and Viale, G. 2018.
429 Neoadjuvant treatment with trastuzumab and pertuzumab plus palbociclib and
430 fulvestrant in HER2-positive, ER-positive breast cancer (NA-PHER2): an exploratory,
431 open-label, phase 2 study. *Lancet Oncol* **19**, 249-256. DOI:
432 [https://doi.org/10.1016/S1470-2045\(18\)30001-9](https://doi.org/10.1016/S1470-2045(18)30001-9), PMID:29326029.

433 Gianni, L, Pienkowski, T, Im, YH, Roman, L, Tseng, LM, Liu, MC, Lluch, A,
434 Staroslawska, E, de la Haba-Rodriguez, J, Im, SA, Pedrini, JL, Poirier, B, Morandi, P,
435 Semiglazov, V, Srimuninnimit, V, Bianchi, G, Szado, T, Ratnayake, J, Ross, G, and
436 Valagussa, P. 2012. Efficacy and safety of neoadjuvant pertuzumab and trastuzumab
437 in women with locally advanced, inflammatory, or early HER2-positive breast cancer
438 (NeoSphere): a randomised multicentre, open-label, phase 2 trial. *Lancet Oncol* **13**,
439 25-32. DOI: [https://doi.org/10.1016/S1470-2045\(11\)70336-9](https://doi.org/10.1016/S1470-2045(11)70336-9), PMID:22153890.

440 Goel, S, Wang, Q, Watt, AC, Tolaney, SM, Dillon, DA, Li, W, Ramm, S, Palmer, AC,
441 Yuzugullu, H, Varadan, V, Tuck, D, Harris, LN, Wong, KK, Liu, XS, Sicinski, P,
442 Winer, EP, Krop, IE, and Zhao, JJ. 2016. Overcoming Therapeutic Resistance in
443 HER2-Positive Breast Cancers with CDK4/6 Inhibitors. *Cancer Cell* **29**, 255-269.

444 DOI: <https://doi.org/10.1016/j.ccell.2016.02.006>, PMID:26977878.

445 Harbeck, N, Gluz, O, Christgen, M, Kates, RE, Braun, M, Kuemmel, S, Schumacher,
446 C, Potenberg, J, Kraemer, S, Kleine-Tebbe, A, Augustin, D, Aktas, B, Forstbauer, H,
447 Tio, J, von Schumann, R, Liedtke, C, Grischke, EM, Schumacher, J, Wuerstlein, R,
448 Kreipe, HH, *et al.* 2017. De-Escalation Strategies in Human Epidermal Growth Factor
449 Receptor 2 (HER2)-Positive Early Breast Cancer (BC): Final Analysis of the West
450 German Study Group Adjuvant Dynamic Marker-Adjusted Personalized Therapy
451 Trial Optimizing Risk Assessment and Therapy Response Prediction in Early BC
452 HER2- and Hormone Receptor-Positive Phase II Randomized Trial-Efficacy, Safety,
453 and Predictive Markers for 12 Weeks of Neoadjuvant Trastuzumab Emtansine With or
454 Without Endocrine Therapy (ET) Versus Trastuzumab Plus ET. *J Clin Oncol* **35**,
455 3046-3054. DOI: <https://doi.org/10.1200/JCO.2016.71.9815>, PMID:28682681.

456 Kumar, R, Wang, RA, Mazumdar, A, Talukder, AH, Mandal, M, Yang, Z, Bagheri-
457 Yarmand, R, Sahin, A, Hortobagyi, G, Adam, L, Barnes, CJ, and Vadlamudi, RK.
458 2002. A naturally occurring MTA1 variant sequesters oestrogen receptor-alpha in the
459 cytoplasm. *Nature* **418**, 654-657. DOI: <https://doi.org/10.1038/nature00889>,
460 PMID:12167865.

461 Loi, S, Dafni, U, Karlis, D, Polydoropoulou, V, Young, BM, Willis, S, Long, B, de
462 Azambuja, E, Sotiriou, C, Viale, G, Ruschoff, J, Piccart, MJ, Dowsett, M, Michiels, S,
463 and Leyland-Jones, B. 2016. Effects of Estrogen Receptor and Human Epidermal
464 Growth Factor Receptor-2 Levels on the Efficacy of Trastuzumab: A Secondary
465 Analysis of the HERA Trial. *JAMA Oncol* **2**, 1040-1047. DOI:
466 <https://doi.org/10.1001/jamaoncol.2016.0339>, PMID:27100299.

467 Maguire, R, McCann, L, Kotronoulas, G, Kearney, N, Ream, E, Armes, J, Patiraki, E,
468 Furlong, E, Fox, P, Gaiger, A, McCrone, P, Berg, G, Miaskowkski, C, Cardone, A,

469 Orr, D, Flowerday, A, Katsaragakis, S, Darley, A, Lubowitzki, S, Harris, J, *et al.* 2021.
470 Real time remote symptom monitoring during chemotherapy for cancer: European
471 multicentre randomised controlled trial (eSMART). *BMJ* **374**, n1647. DOI:
472 <https://doi.org/10.1136/bmj.n1647>, PMID:34289996.

473 Mehul, B, Bernard, D, and Schmidt, R. 2001. Calmodulin-like skin protein: a new
474 marker of keratinocyte differentiation. *J Invest Dermatol* **116**, 905-909. DOI:
475 <https://doi.org/10.1046/j.0022-202x.2001.01376.x>, PMID:11407979.

476 Misawa, K, Imai, A, Matsui, H, Kanai, A, Misawa, Y, Mochizuki, D, Mima, M,
477 Yamada, S, Kurokawa, T, Nakagawa, T, and Mineta, H. 2020. Identification of novel
478 methylation markers in HPV-associated oropharyngeal cancer: genome-wide
479 discovery, tissue verification and validation testing in ctDNA. *Oncogene* **39**, 4741-
480 4755. DOI: <https://doi.org/10.1038/s41388-020-1327-z>, PMID:32415241.

481 Moja, L, Tagliabue, L, Balduzzi, S, Parmelli, E, Pistotti, V, Guarneri, V, and D'Amico,
482 R. 2012. Trastuzumab containing regimens for early breast cancer. *Cochrane*
483 *Database Syst Rev*, CD006243. DOI:
484 <https://doi.org/10.1002/14651858.CD006243.pub2>, PMID:22513938.

485 Pascual, J, Lim, JSJ, Macpherson, IR, Armstrong, AC, Ring, A, Okines, AFC, Cutts,
486 RJ, Herrera-Abreu, MT, Garcia-Murillas, I, Pearson, A, Hrebien, S, Gevensleben, H,
487 Proszek, PZ, Hubank, M, Hills, M, King, J, Parmar, M, Prout, T, Finneran, L, Malia,
488 J, *et al.* 2021. Triplet Therapy with Palbociclib, Taselisib, and Fulvestrant in PIK3CA-
489 Mutant Breast Cancer and Doublet Palbociclib and Taselisib in Pathway-Mutant Solid
490 Cancers. *Cancer Discov* **11**, 92-107. DOI: <https://doi.org/10.1158/2159-8290.CD-20-0553>, PMID:32958578.

492 Perou, CM, Sorlie, T, Eisen, MB, van de Rijn, M, Jeffrey, SS, Rees, CA, Pollack, JR,
493 Ross, DT, Johnsen, H, Akslen, LA, Fluge, O, Pergamenschikov, A, Williams, C, Zhu,

494 SX, Lonning, PE, Borresen-Dale, AL, Brown, PO, and Botstein, D. 2000. Molecular
495 portraits of human breast tumours. *Nature* **406**, 747-752. DOI:
496 <https://doi.org/10.1038/35021093>, PMID:10963602.

497 Rimawi, M, Cecchini, R, Rastogi, P, Geyer, C, Fehrenbacher, L, Stella, P, Dayao, Z,
498 Rabinovitch, R, Dyar, S, Flynn, P, Baez-Diaz, L, Paik, S, Swain, S, Mamounas, E,
499 Osborne, C, and Wolmark, N. 2017. Abstract S3-06: A phase III trial evaluating pCR
500 in patients with HR+, HER2-positive breast cancer treated with neoadjuvant
501 docetaxel, carboplatin, trastuzumab, and pertuzumab (TCHP) +/- estrogen
502 deprivation: NRG Oncology/NSABP B-52. *Cancer Research* **77**, S3-06-S03-06. DOI:
503 <https://doi.org/10.1158/1538-7445.sabcs16-s3-06>.

504 Saura, C, Garcia-Saenz, JA, Xu, B, Harb, W, Moroose, R, Pluard, T, Cortes, J, Kiger,
505 C, Germa, C, Wang, K, Martin, M, Baselga, J, and Kim, SB. 2014. Safety and
506 efficacy of neratinib in combination with capecitabine in patients with metastatic
507 human epidermal growth factor receptor 2-positive breast cancer. *J Clin Oncol* **32**,
508 3626-3633. DOI: <https://doi.org/10.1200/JCO.2014.56.3809>, PMID:25287822.

509 Schneeweiss, A, Chia, S, Hickish, T, Harvey, V, Eniu, A, Hegg, R, Tausch, C, Seo, JH,
510 Tsai, YF, Ratnayake, J, McNally, V, Ross, G, and Cortes, J. 2013. Pertuzumab plus
511 trastuzumab in combination with standard neoadjuvant anthracycline-containing and
512 anthracycline-free chemotherapy regimens in patients with HER2-positive early
513 breast cancer: a randomized phase II cardiac safety study (TRYPHAENA). *Ann Oncol*
514 **24**, 2278-2284. DOI: <https://doi.org/10.1093/annonc/mdt182>, PMID:23704196.

515 Slamon, DJ, Clark, GM, Wong, SG, Levin, WJ, Ullrich, A, and McGuire, WL. 1987.
516 Human breast cancer: correlation of relapse and survival with amplification of the
517 HER-2/neu oncogene. *Science* **235**, 177-182. DOI:
518 <https://doi.org/10.1126/science.3798106>, PMID:3798106.

519 Tzahar, E, Waterman, H, Chen, X, Levkowitz, G, Karunagaran, D, Lavi, S, Ratzkin,
520 BJ, and Yarden, Y. 1996. A hierarchical network of interreceptor interactions
521 determines signal transduction by Neu differentiation factor/neuregulin and epidermal
522 growth factor. *Mol Cell Biol* **16**, 5276-5287. DOI:
523 <https://doi.org/10.1128/MCB.16.10.5276>, PMID:8816440.

524 Wang, YC, Morrison, G, Gillihan, R, Guo, J, Ward, RM, Fu, X, Botero, MF, Healy,
525 NA, Hilsenbeck, SG, Phillips, GL, Chamness, GC, Rimawi, MF, Osborne, CK, and
526 Schiff, R. 2011. Different mechanisms for resistance to trastuzumab versus lapatinib
527 in HER2-positive breast cancers--role of estrogen receptor and HER2 reactivation.
528 *Breast Cancer Res* **13**, R121. DOI: <https://doi.org/10.1186/bcr3067>, PMID:22123186.

529 Wirsing, AM, Bjerkli, IH, Steigen, SE, Rikardsen, O, Magnussen, SN, Hegge, B,
530 Seppola, M, Uhlin-Hansen, L, and Hadler-Olsen, E. 2021. Validation of Selected
531 Head and Neck Cancer Prognostic Markers from the Pathology Atlas in an Oral
532 Tongue Cancer Cohort. *Cancers (Basel)* **13**. DOI:
533 <https://doi.org/10.3390/cancers13102387>, PMID:34069237.

534 Yang, Z, Barnes, CJ, and Kumar, R. 2004. Human epidermal growth factor receptor 2
535 status modulates subcellular localization of and interaction with estrogen receptor
536 alpha in breast cancer cells. *Clin Cancer Res* **10**, 3621-3628. DOI:
537 <https://doi.org/10.1158/1078-0432.CCR-0740-3>, PMID:15173068.

538 Zhang, K, Hong, R, Kaping, L, Xu, F, Xia, W, Qin, G, Zheng, Q, Lu, Q, Zhai, Q, Shi,
539 Y, Yuan, Z, Deng, W, Chen, M, and Wang, S. 2019. CDK4/6 inhibitor palbociclib
540 enhances the effect of pyrotinib in HER2-positive breast cancer. *Cancer Lett* **447**,
541 130-140. DOI: <https://doi.org/10.1016/j.canlet.2019.01.005>, PMID:30677445.

542

543 **Figure legends**

544 **Figure 1. Drug sensitivity test and cell cycle analysis of pyrotinib, tamoxifen,
545 dalpiciclib and their combination on BT474 cells.**

546 a-b: Drug sensitivity assay of BT474 cells to single drug and different drug
547 combination (Data was presented as mean \pm SEMs, all drug sensitivity assay were
548 performed independently in triplicates).

549 c: Drug sensitivity assay of BT474 cells to different drug combination at EC50
550 concentration and 1/2 EC50 concentration. (Data was presented as mean \pm SDs,
551 $*P<0.05$, $**P<0.01$ and $****P<0.0001$ using Student's *t*-test; all the assays were
552 performed independently in triplicates).

553 d: DFS ($P=0.600$) and OS ($P=0.5276$) analysis of HER2+/HR+ patients received
554 adjuvant therapy with (n=177) or without endocrine therapy (n=44). *P*-values were
555 obtained by log-rank test.

556

557

558 **Figure 2. Anti-HER2 therapy could lead ER shifting into cell nucleus in**
559 **HER2⁺/HR⁺ breast cancer while CDK4/6 inhibitor could reverse the nuclear**
560 **translocation of ER.**

561 a: Distribution of estrogen receptor in BT474 cell line after different drug treatment.
562 (The distribution ratio of ER was calculated manually by randomly chosen 5 views in
563 400magnification. All the assays were performed independently in triplicates).

564 b: Distribution of estrogen receptor in wild type MCF7 cells, MCF7 cells transfected
565 with HER2 over-expression plasmids and MCF7 cells transfected with HER2 over-
566 expression plasmids treated with pyrotinib. (All the assays were performed
567 independently in triplicates).

568 c: Representative views of ER and HER2 expression in patients before and after anti-
569 HER2 neoadjuvant therapy.

570 d: Ratio of patients with elevated ER expression and patients with unchanged or
571 reduced ER expression in different kinds of neoadjuvant therapy groups. (** $P<0.001$
572 using Student's *t*-test)

573

574 **Figure 3. Bioinformatic analysis revealed dalpiciclib and pyrotinib blocking**

575 **HER2 pathway and cell cycle in BT474 cells synergistically**

576 a-b: Signaling pathway enrichment analysis of mRNA changes of BT474 cells treated
577 with pyrotinib compared to BT474 cells treated 0.1%DMSO
578 c: GSEA analysis of mRNA changes of BT474 cells treated with pyrotinib compared
579 to BT474 cells treated 0.1%DMSO.

580 d-e: Signaling pathway enrichment analysis of mRNA changes of BT474 cells treated
581 with pyrotinib+ tamoxifen+dalpiciclib compared to BT474 cells treated with
582 pyrotinib+ tamoxifen.

583 f: GSEA analysis of mRNA changes of BT474 cells treated with pyrotinib+
584 tamoxifen+ dalpiciclib compared to BT474 cells treated with pyrotinib+ tamoxifen.

585 g: Intersection of genes which was upregulated after pyrotinib treatment and belonged
586 to estrogen receptor signaling pathway.

587 h: Intersection of genes which was upregulated after pyrotinib treatment and belonged
588 to cell cycle genes.

589 i: Intersection of genes which was upregulated after pyrotinib treatment and was
590 downregulated after the introduction of dalpiciclib.

591

592

593 **Figure 4. CALML5 could serve as a predictor for responsiveness of anti-HER2**

594 **therapy plus CDK4/6 inhibitor.**

595 a: Western blot analysis of HER2 signaling pathway and cell cycle pathway in BT474
596 cells treated with different drugs or their combination. (This assay was performed in
597 triplicates independently).

598 b: Cell cycle analysis in BT474 cells treated with different drugs or their combination.
599 (Data was presented as mean \pm SDs, *** P <0.001 using Student's *t*-test; all the assays
600 were performed independently in triplicates).

601 c: Representative views of CALML5 positive/negative tissue. The difference of
602 PR+PCR ratio and PD+SD ratio in patients who received anti-HER2 therapy plus
603 chemotherapy or anti-HER2 therapy plus CDK4/6 inhibitor regarding on their
604 expression of CALML5. (**** P <0.0001 using Student's *t*-test).

605 d: Representative views of CALML5 positive/negative tissue. Ratio of patients with
606 elevated or decreased CALML5 after receiving anti-HER2 therapy plus
607 chemotherapy, or anti-HER2 therapy plus CDK4/6 inhibitor. (**** P <0.0001 using
608 Student's *t*-test).

609

610

611

612

613

614

615

616

617

618 **Supplementary**

619 **Figure 1-figure supplement 1**

620 a: Drug sensitivity analysis of pyrotinib, tamoxifen and dalpiciclib in BT474 cells.
621 (Data was presented as mean \pm SDs, all the assays were performed independently in
622 triplicates).

623 b-c: Colony formation assay of BT474 cells treated with different drugs. (Data was
624 presented as mean \pm SDs, $**P<0.01$ and $****P<0.0001$ using Student's *t*-test; all the
625 assays were performed independently in triplicates).

626 **Figure 2-figure supplement 1**

627 a-b: Total ER expression and nuclear ER expression in BT474 cells treated with
628 different drugs. (This assay was performed in triplicates independently).

629 c: The introduction of dalpiciclib to pyrotinib could significantly decrease the total
630 and nuclear expression of ER, thus reversed the ER activation caused by pyrotinib and
631 CALML5 could be served as a potential marker of ER activation after the treatment of
632 pyrotinib.

633

634

635

636

637

638

639

640

641

642

643 **Source data**

644 **Figure 2 source data 1**

645 The clinical pathological data of patients who received neoadjuvant chemotherapy +
646 anti HER2 therapy

647 **Figure 2 source data 2**

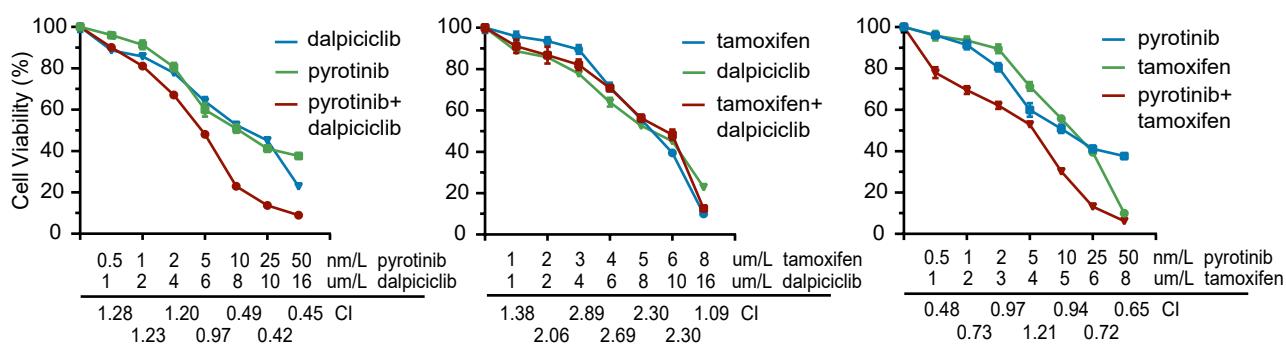
648 The clinical pathological data of patients who received neoadjuvant chemotherapy
649 only.

650 **Figure 3 source data 1**

651 RNA-sequencing data of BT474 cells treated with different drug combination.

652 **Figure 4 source data 1**

653 Original files of western blot analysis in Figure 4 a.


654 **Figure 2-figure supplement 1 source data 1**

655 Original files of western blot analysis in Figure 2-figure supplement 1 a-b.

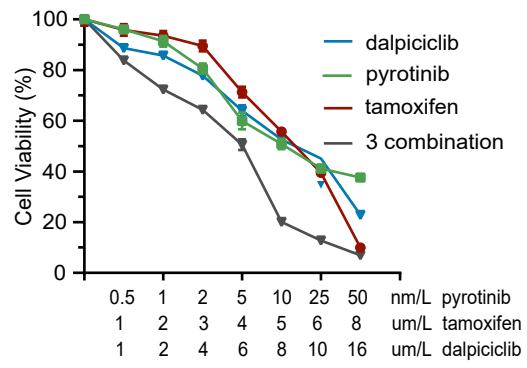
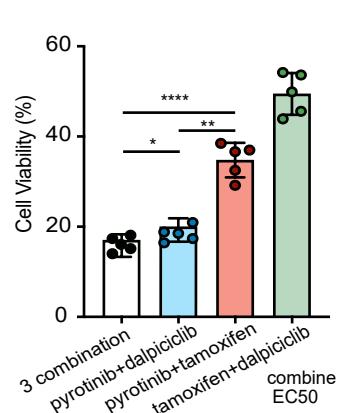
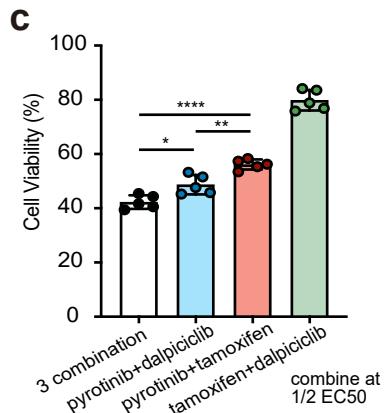
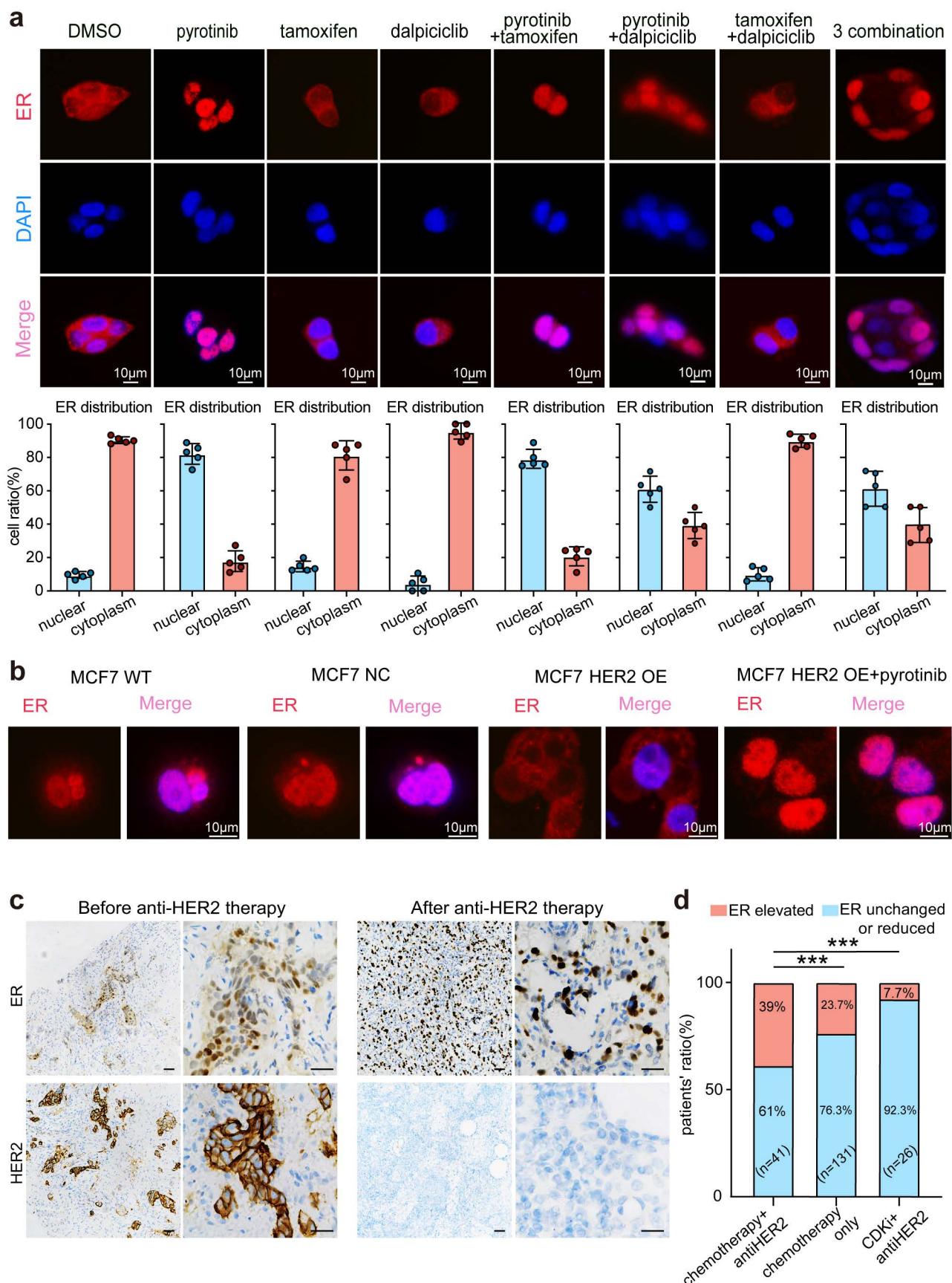

656

Fig 1



a

b


c

d

Fig 2

Fig 3

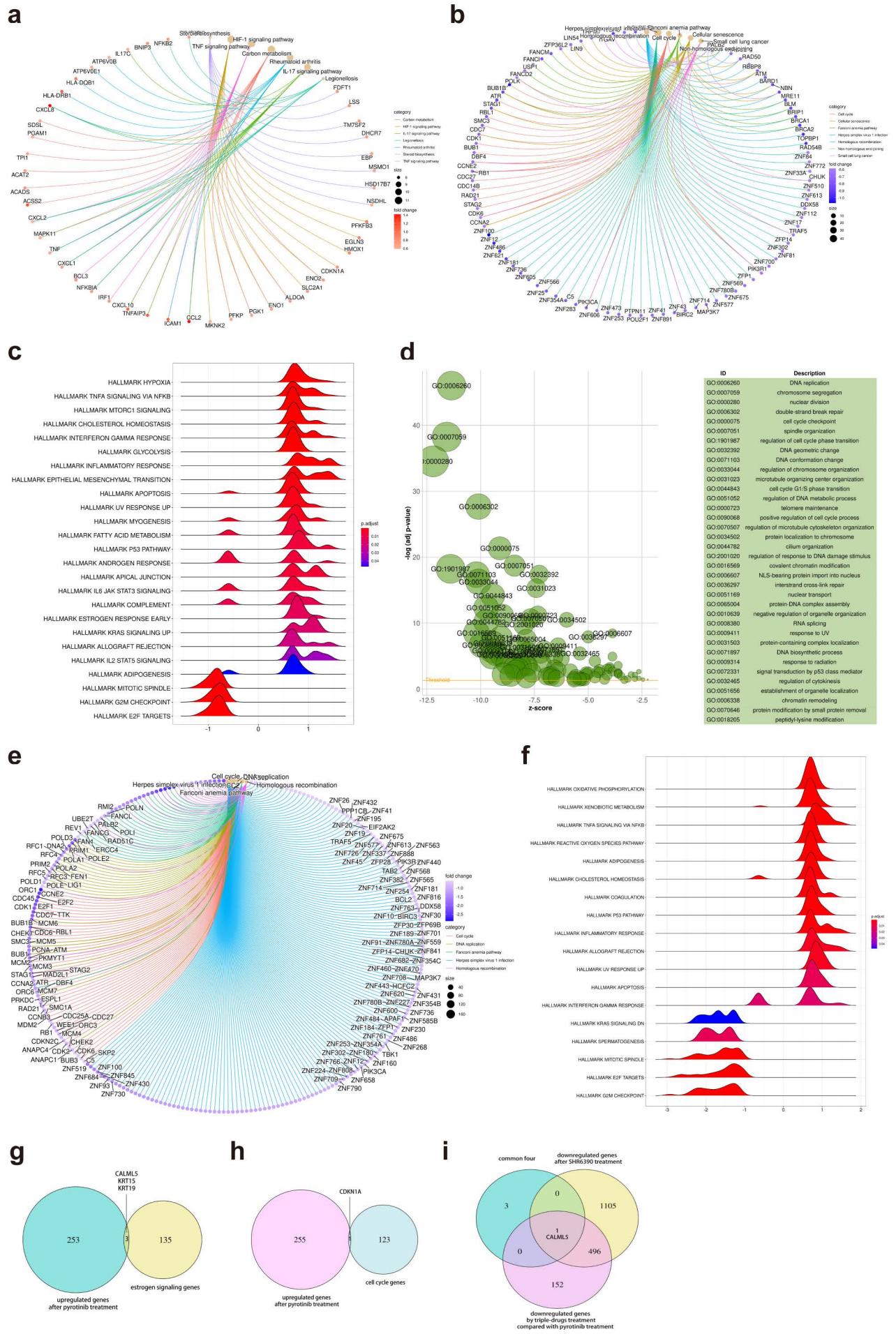
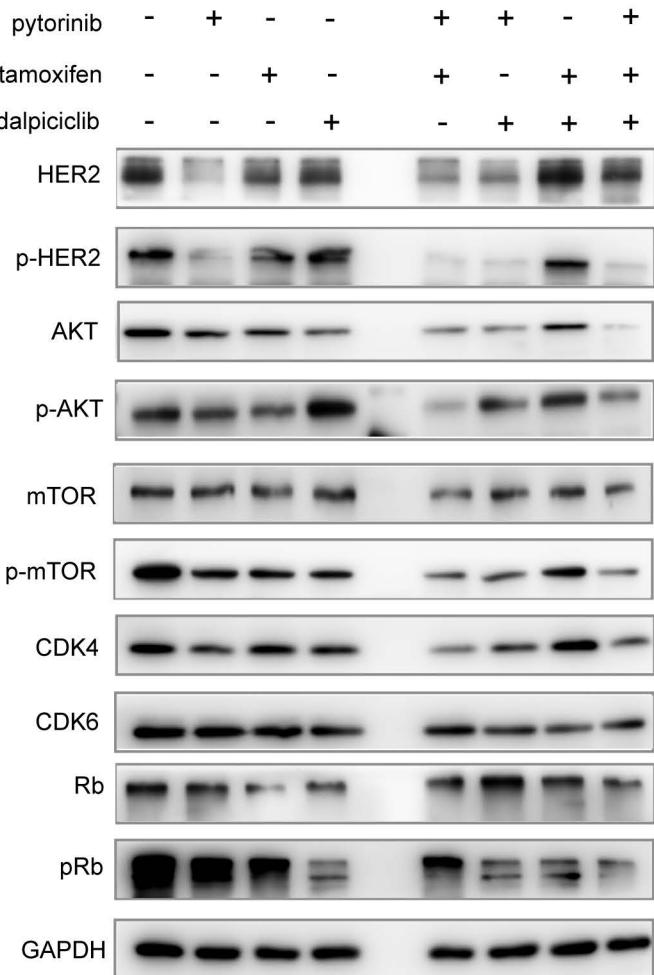
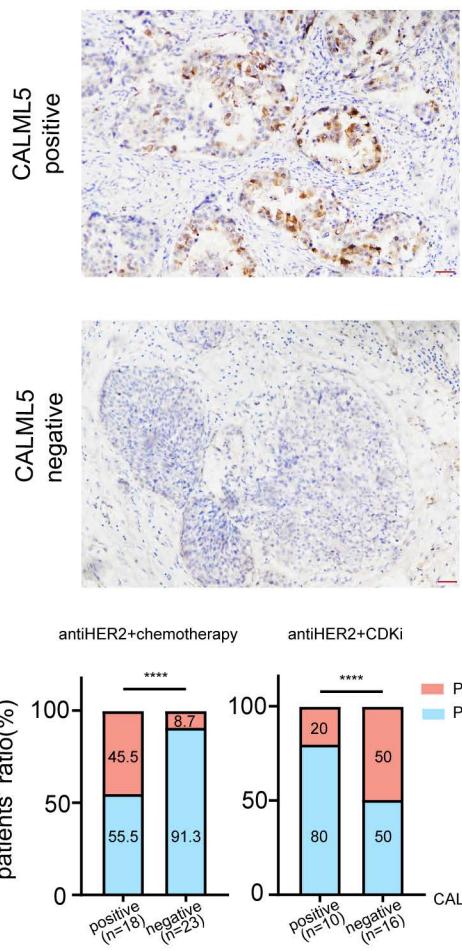
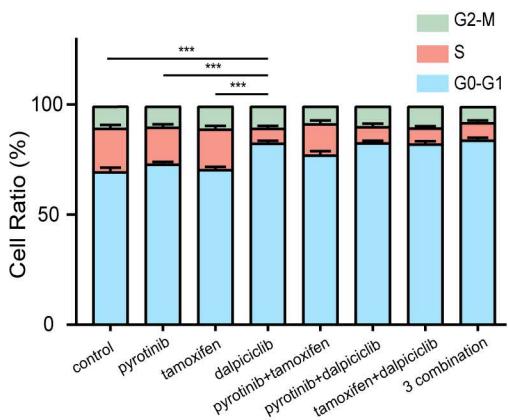
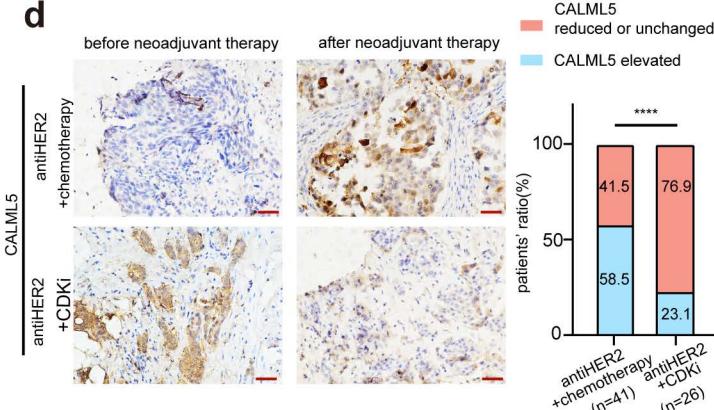
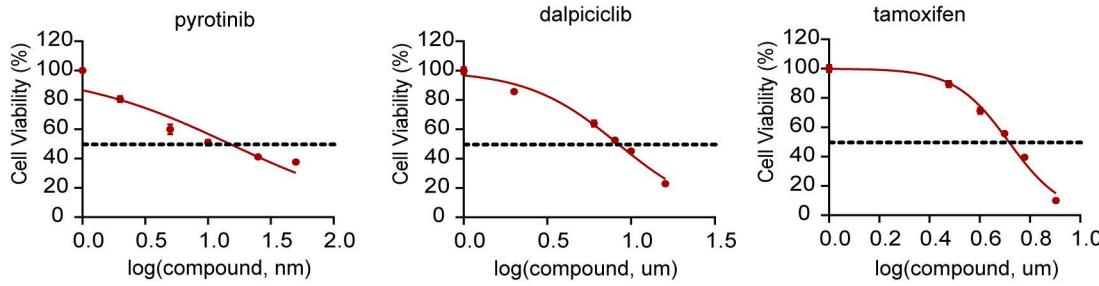




Fig 4


a


c

b



d

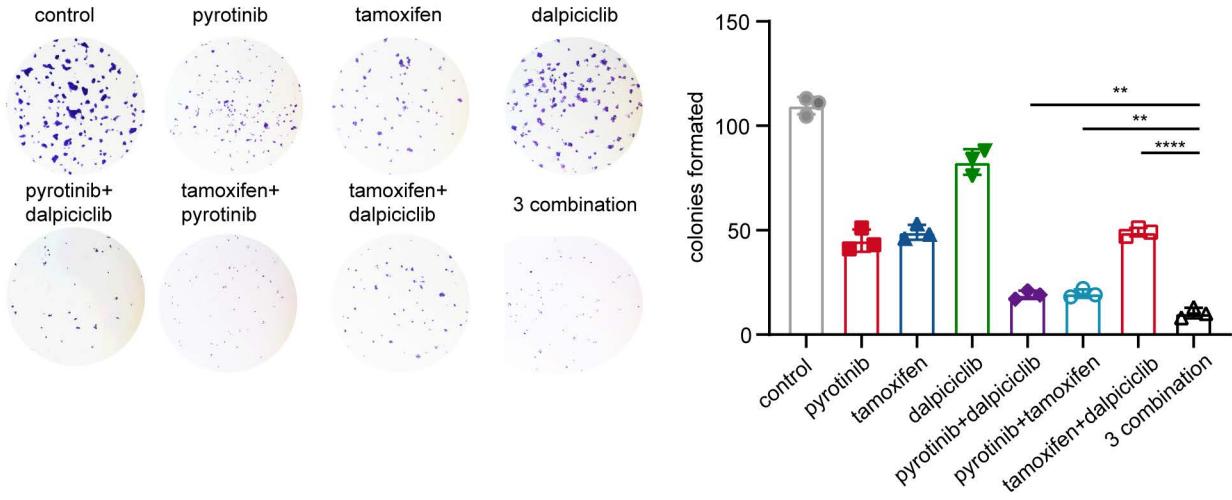
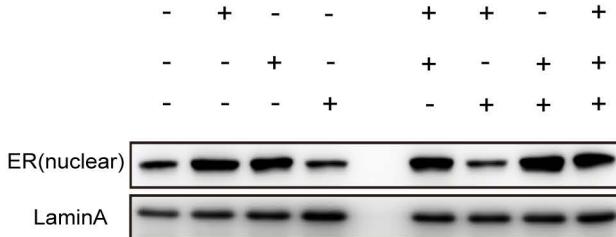


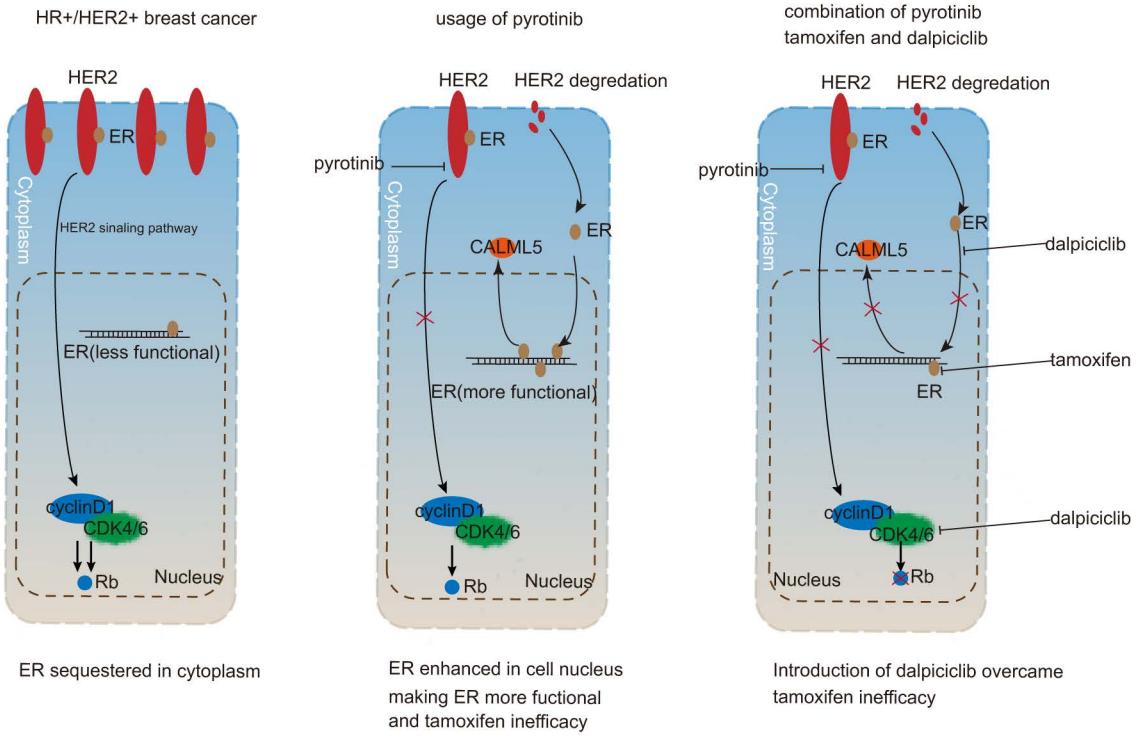
Fig 1-figure supplement 1

a

b


Fig 2-figure supplement 1

a


pytorinib	-	+	-	-	+	+	-	+
tamoxifen	-	-	+	-	+	-	+	+
dalpiciclib	-	-	-	+	-	+	+	+

b

c

