

1 Self-association configures the NAD⁺-binding site 2 of plant NLR TIR domains

3 Hayden Burdett^{1,2,*}, Xiahao Hu¹, Maxwell X. Rank¹, Natsumi Maruta¹ and Bostjan Kobe^{1,*}.

4 ¹ School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious
5 Diseases Research Centre, University of Queensland, Brisbane, QLD 4072, Australia.

6 ² Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, EH9 3BF, United Kingdom.

7 *hayden.burdett@ed.ac.uk, *b.kobe@uq.edu.au

8 Keywords

9 cell death, crystal structure, crystallography, Nod-like receptor (NLR), nicotinamide adenine
10 dinucleotide (NAD), protein structure, structural biology, structure-function, Toll/interleukin-1
11 receptor (TIR), plant innate immunity

12 Abstract

13 TIR domains are signalling domains present in plant nucleotide-binding leucine-rich repeat
14 receptors (NLRs), with key roles in plant innate immunity. They are required for the induction
15 of a hypersensitive response (HR) in effector-triggered immunity, but the mechanism by
16 which this occurs is not yet fully understood. It has been recently shown that the TIR
17 domains from several plant NLRs possess NADase activity. The oligomeric structure of TIR-
18 containing NLRs ROQ1 and RPP1 reveals how the TIR domains arrange into an active
19 conformation, but low resolution around the NAD⁺ binding sites leaves questions
20 unanswered about the molecular mechanisms linking self-association and NADase activity.
21 In this study, a number of crystal structures of the TIR domain from the grapevine NLR
22 RUN1 reveal how self-association and enzymatic activity may be linked. Structural features
23 previously proposed to play roles involve the “AE interface” (mediated by helices A and E),
24 the “BB-loop” (connecting β-strand B and helix B in the structure), and the “BE interface”
25 (mediated by the BB-loop from one TIR and the “DE surface” of another). We demonstrate
26 that self-association through the AE interface induces conformational changes in the NAD⁺-
27 binding site, shifting the BB-loop away from the catalytic site and allowing NAD⁺ to access
28 the active site. We propose that an intact “DE surface” is necessary for production of the
29 signalling product (variant cyclic ADPR), as it constitutes part of the active site. Addition of
30 NAD⁺ or NADP⁺ is not sufficient to induce self-association, suggesting that NAD⁺ binding
31 occurs after TIR self-association. Our study identifies a mechanistic link between TIR self-
32 association and NADase activity.

33 Introduction

34 Plants possess a suite of intracellular receptors that are able to detect and respond to
35 virulence factors secreted by pathogens into the host cell. Nucleotide-binding leucine-rich
36 repeat receptors (NLRs) directly or indirectly detect effector proteins from a range of different
37 pathogens and activate an effector-triggered immunity (ETI) response. ETI is often
38 characterised by localised cell death around the site of infection, known as the
39 hypersensitive response (HR).

40 The activation of plant NLRs involves the oligomerization into a resistosome complex (Wang
41 et al., 2019a, Wang et al., 2019b, Burdett et al., 2019, Martin et al., 2020, Ma et al., 2020).
42 Typical NLRs are comprised of three distinct domains. The C-terminal leucine-rich repeat
43 (LRR) domain is involved in effector sensing, autoinhibition of NLR signalling, and facilitating
44 the stabilisation of the oligomeric resistosome (Wang et al., 2019a, Wang et al., 2019b,
45 Martin et al., 2020, Ma et al., 2020). The NB-ARC (nucleotide binding-shared between
46 APAF-1, some plant R proteins and CED-4) domain binds nucleotides (Tamelink et al.,

47 2002, Tameling et al., 2006, Williams et al., 2011, Bernoux et al., 2016, Martin et al., 2020,
48 Ma et al., 2020) and is responsible for conformational changes that drive the oligomerisation
49 of the resistosome (Wang et al., 2019a, Wang et al., 2019b, Burdett et al., 2019). The N-
50 terminal domain of NLRs is variable and is used to distinguish different classes of NLRs.
51 Found predominantly in monocots, CC-NLRs possess an N-terminal coiled-coil (CC)
52 domain, postulated to initiate HR upon oligomerisation through plasma membrane
53 association and calcium transport (Wang et al., 2019a, Bi et al., 2021). TIR-NLRs, absent in
54 monocot species, possess an N-terminal Toll/interleukin-1 receptor/resistance protein (TIR)
55 domain, recently shown to function through the enzymatic cleavage of NAD⁺ (Wan et al.,
56 2019, Horsefield et al., 2019). This enzymatic activity is implicated in the production of the
57 putative signalling molecule v-cADPR, which is a biomarker for pathogen resistance (Wan et
58 al., 2019), and potentially involved in ETI (Wan et al., 2019, Duxbury et al., 2020); however,
59 the structure and precise role of this molecule is not clear.

60 TIR domains also need to self-associate in order to initiate HR signalling (Bernoux et al.,
61 2011, Williams et al., 2014, Schreiber et al., 2016, Nishimura et al., 2017, Zhang et al., 2017,
62 Martin et al., 2020, Ma et al., 2020). Accordingly, there is evidence to suggest that self-
63 association is required for NAD⁺ cleavage (Wan et al., 2019, Horsefield et al., 2019). The
64 structures of the ROQ1 and RPP1 TIR-NLR resistosomes confirm that oligomerization is
65 required for NLR activation, and for the first time show how TIR domains are arranged in an
66 activated NLR (Martin et al., 2020, Ma et al., 2020). The TIR domains of both RPP1 and
67 ROQ1 form a tetrameric assembly atop the NB-ARC domains, in a “dimer of dimers”
68 arrangement. This conformation is facilitated by two key interfaces, the “AE interface” and
69 the “BE interface” (Figure 1A,B).

70 The AE interface (mediated by α -helices A and E), a consistent feature found in crystal
71 structures of plant NLR TIR domains (Williams et al., 2014, Williams et al., 2016, Zhang et
72 al., 2017, Nishimura et al., 2017), is also found in the arrangement of the TIR domains in the
73 ROQ1 and RPP1 resistosomes (Martin et al., 2020, Ma et al., 2020). The hallmark of the AE
74 interface is a pair of intercalating histidines at the core of the interface, surrounded by
75 supporting interactions from adjacent aspartate, glutamate and serine residues (Williams et
76 al., 2014) (Figure 1B-D). A DE interface had also been proposed as a possible secondary
77 interface in plant TIR domains, although it has been observed less frequently in crystal
78 structures, shows substantial variability between different structures, and mutations of
79 corresponding residues have less effects on self-association and cell death, compared to the
80 AE interface (Zhang et al., 2017, Nishimura et al., 2017). The ROQ1 and RPP1 resistosome
81 structures demonstrate that the corresponding DE surface is important for NLR function, but
82 as part of an asymmetric interface with the BB loop and the NAD⁺ binding site of another TIR
83 monomer, forming the BE interface (Figure 1B,E-F). An analogous arrangement of TIR
84 domains, facilitated by the AE and BE interfaces, is observed in the crystal structure of the
85 TIR-domain NADase from the mammalian protein SARM1, which is involved in axon
86 degeneration (Horsefield et al., 2019).

87 While there is no question of the significant advancement made by the ROQ1 and RPP1
88 structures, the lower resolution of the TIR domains, absence of NAD⁺ or products bound,
89 and no inactive resistosome to compare and contrast, leave some questions unanswered
90 about the activation and NAD⁺ binding of the TIR domains in the resistosome. While the
91 mechanism of NAD⁺ hydrolysis or v-cADPR formation is not clear, key residues involved in
92 NADase activity have been identified in the crystal structure of grapevine TIR-NLR RUN1
93 (Horsefield et al., 2019), many of which are conserved in ROQ1 and RPP1 (Figure 1G,H),
94 and in many other plant TIRs (Figure S1). At the base of this NAD⁺ binding pocket is a
95 catalytic glutamate residue, and surrounding the surface of the pocket are numerous
96 aromatic and positively charged residues, thought to coordinate the ribose, nicotinamide,
97 adenine and phosphate groups (Figure 1G,H). By analysing multiple structures of RUN1^{TIR}
98 and comparing them to the ROQ1 and RPP1 resistosomes, we propose a structural
99 mechanism by which self-association activates NAD⁺-cleavage activity. We show that the

100 formation of the AE interface results in conformational changes in the NAD⁺-binding site,
101 resulting in the movement of the BB-loop and exposure of the catalytic glutamate residue.
102 RUN1^{TIR} structures without an AE interface have a closed NAD⁺-binding site, preventing
103 enzymatic activity. Our analysis also suggests an intact DE surface is required to facilitate
104 oligomerisation of AE and BE interface-mediated TIR tetramers, and to complete the NAD⁺-
105 binding site.

106 Experimental procedures

107 Protein production and purification

108 The cDNA of RUN1^{TIR} (residues 23-198) was inserted into the expression vector pMCSG7
109 by ligation-independent cloning. Mutations were introduced into this construct using the Q5®
110 Site-Directed Mutagenesis Kit (New England Biolabs), and proteins were expressed in
111 *Escherichia coli* BL21 (DE3) cells, using the autoinduction method (Studier, 2005). Overnight
112 cultures were used to seed 1 L autoinduction media cultures containing 100 µg.mL⁻¹
113 ampicillin in 2.5 L baffled flasks. Cultures were grown at 37°C to OD₆₀₀ of 0.6-0.8, before the
114 temperature was lowered to 15°C. Cells were grown for an additional 12-18 h before being
115 harvested by centrifugation. Cells containing RUN1^{TIR} were resuspended in a lysis buffer
116 containing 50 mM HEPES pH 8.0, 500 mM NaCl, 30 mM imidazole, 1 mM DTT and 1 mM
117 PMSF. Cells were lysed by sonication, and the lysate was clarified by centrifugation at
118 39,191 x g for 45 min at 4°C.

119 Clarified lysate was applied to a 5 mL HisTrap FF column (Cytiva) pre-equilibrated with 50
120 mM HEPES pH 8.0, 500 mM NaCl and 30 mM imidazole. The column was washed with the
121 lysis buffer to remove *E. coli* proteins. RUN1^{TIR} were eluted using a block elution of lysis
122 buffer containing 250 mM imidazole and fractions containing RUN1^{TIR} were pooled. To
123 remove the 6xHis-tag, imidazole was dialysed out using 10,000 MWCO SnakeSkin™
124 dialysis tubing (Thermo Scientific), against a buffer containing 10 mM HEPES pH 7.5, 150
125 mM NaCl, 0.5 mM EDTA and 1 mM DTT. The 6xHis-tag of RUN1^{TIR} was removed by
126 incubation with 6xHis-tagged tobacco etch virus (TEV) protease overnight at 4°C.

127 Cleaved RUN1^{TIR} was reapplied to the HisTrap column to remove the TEV protease and
128 contaminants. The sample was then applied to a Superdex S75 26/600 column (Cytiva) pre-
129 equilibrated with 10 mM HEPES pH 7.5, 150 mM NaCl and 1 mM DTT. Peak fractions were
130 pooled and concentrated to 10 mg.mL⁻¹ using a 10,000 MWCO centrifugal concentrator
131 (Merck Millipore). Protein was flash-frozen in liquid nitrogen and kept at -80°C until required.
132 All RUN1^{TIR} mutants were purified in the same manner as the wild-type protein.

133 Crystallisation, X-ray data collection and crystal structure determination

134 Initial crystallization screening was performed at 293 K, using 200 nL drops in 96-well drops,
135 at a concentration of 10 mg.mL⁻¹. For co-crystallisation with ligands, the protein was
136 incubated with a range of ligands, at a range of concentrations. Small crystals appeared
137 after 3 days in multiple conditions.

138 “RUN1^{TIR} ΔAE” crystals were produced by the hanging-drop vapour diffusion method, with
139 0.8 µL of protein (10 mg.mL⁻¹) and 0.8 µL of well solution (0.1 M sodium acetate pH 4.6, 1.8
140 M ammonium sulfate), and appeared within 4-5 days. Crystals were flash-cooled in liquid
141 nitrogen, using reservoir solution with 10% w/v glycerol and 10% w/v ethylene glycol as a
142 cryo-protectant.

143 “RUN1^{TIR} RPV1-like” and “RUN1^{TIR-E100A} RPV1-like” crystals were produced using the
144 hanging-drop method, with drops containing 1 µL of protein (10 mg.mL⁻¹), and 1 µL of well
145 solution (0.2 M Lithium Sulfate, 0.1 M HEPES pH 7.0, 20% PEG3350), and appeared within
146 7-10 days. Crystals were added to cryoprotectant (0.2 M Lithium Sulfate, 0.1 M HEPES pH
147 7.0, 20% PEG3350, 10% w/v glycerol, 10% w/v ethylene glycol and 10 mM NAD⁺) and
148 soaked for 2-5 min, before being flash-cooled in liquid nitrogen.

149 “RUN1^{TIR-E100A} NAD⁺” crystals were produced using the hanging-drop method, with drops
150 containing 1 μ L of protein (10 mg.mL⁻¹), 1 μ L well solution (2 M ammonium sulfate 0.1 M
151 TrisBase pH 8.75), and 1 μ L 30 mM NAD⁺, and appeared after ~7 days. Crystals were
152 added to cryoprotectant (2 M ammonium sulfate, 0.1 M Tris pH 8.75, 20% w/v glycerol, 30
153 mM NAD⁺) and soaked for 30 seconds, before being flash-cooled in liquid nitrogen.

154 Structure analysis

155 Data collection was performed using the Blu-Ice software, indexed and integrated using XDS
156 (Kabsch, 2010) and/or DIALS (Beilsten-Edmands et al., 2020) and scaled using AIMLESS
157 (Evans, 2006). The “RUN1^{TIR} Δ AE”, “RUN1^{TIR} RPV1-like” and “RUN1^{TIR-E100A} NAD⁺”
158 structures were determined by molecular replacement using Phaser (McCoy, 2007), with the
159 structure of “RUN1^{TIR} NADP⁺” (PDB ID 6o0w; (Horsefield et al., 2019)) as a template.
160 Refinement was performed iteratively using phenix.refine (Adams et al., 2013) and Coot
161 (Emsley et al., 2010), and structures were analysed using PISA (Krissinel and Henrick,
162 2007), Pymol (Schrodinger) and ChimeraX (Goddard et al., 2018). Figures were prepared
163 using ChimeraX.

164 SEC-MALS experiments

165 SEC-MALS (size-exclusion chromatography coupled with multi-angle light scattering) was
166 performed as described by Horsefield et al. (2019), using a Superdex S200 1/150 Increase
167 column (Cytiva). RUN1^{TIR} was incubated at room temperature with 2 mM NAD⁺ or NADP⁺ for
168 30 minutes prior to loading onto the column.

169 Fluorescence assay for NAD⁺ hydrolysis

170 Assays using a fluorescent NAD⁺ analog, ϵ NAD (nicotinamide 1,N⁶-ethenoadenine
171 dinucleotide), were performed as described by Pergolizzi et al. (2011) and Horsefield et al.
172 (2019). Briefly, purified 50 μ M RUN1^{TIR}, and mutants were added to a black 96 well plate in
173 10 mM HEPES pH 7.5, 150 mM NaCl with 25% (w/v) PEG3350. After incubation in the dark
174 for 15 min at 25°C, 100 μ M of ϵ NAD was added to each well. Fluorescence intensity was
175 measured in a CLARIOstar® microplate reader, using an excitation of wavelength of 310-
176 330 nm and emission wavelength of 390-410 nm, with readings every two minutes over four
177 hours. The change in fluorescence over time was determined by calculation of slopes of the
178 linear component of the curves. Data analysis was performed using Prism (GraphPad). All
179 measurements, including controls were made in triplicate.

180 Cycling assays for NAD⁺ hydrolysis

181 Cycling assays were performed as described by (Horsefield et al., 2019), except using
182 purified protein instead of bacterial lysate extracts. To prepare the NAD⁺ samples, 100 μ M of
183 RUN1^{TIR} was mixed with 10 μ L of a 50% slurry of Ni-NTA beads washed in 10 mM HEPES
184 pH 7.5, 150 mM NaCl, and NAD⁺ at various concentrations (100-5000 μ M) in a final volume
185 of 200 μ L. At set time points (ranging from 20 minutes, to up to 24 hours), 20 μ L was
186 removed and heated at 95°C for one minute to deactivate the protein, then stored at -20°C
187 until required. This sample was then used in the enzyme-linked cycling assay, and NAD⁺
188 concentrations of the samples were determined using a standard curve of known NAD⁺
189 concentrations.

190 Results

191 RUN1^{TIR} readily crystallises under several different conditions

192 For many TIR-NLRs, recombinant production of the full-length protein has been challenging,
193 but it has been possible in *E. coli* for the TIR domain only. Bacterially expressed RUN1^{TIR}
194 yielded crystals in several conditions and we determined four unique structures to date. The
195 “RUN1^{TIR} NADP⁺” crystal structure (6o0w) was the first to be determined and has been
196 described previously (Horsefield et al., 2019). Each of the other RUN1^{TIR} structures have

197 different packing arrangements (Supplementary Figure 2), and when compared to other TIR
198 structures, provide insights into how plant TIR domains might self-associate during the
199 processes of regulation and activation. Interestingly, none of the structures features both the
200 AE and BE interfaces observed in the ROQ1 and RPP1 resistosome structures. Three
201 structures of note will be discussed further here: “RUN1^{TIR} ΔAE”, lacking the AE interface (as
202 well as the symmetric DE interface) in the crystal packing; “RUN1^{TIR} RPV1-like” that features
203 the AE interface and has a packing arrangement similar to the RPV1^{TIR} crystal structure
204 (PDB ID:5ku7) (Williams et al., 2016); and “RUN1^{TIR-E100A} NAD⁺”, a structure of RUN1 with a
205 mutation to the catalytic glutamate, bound to NAD⁺. Each structure informs how AE interface
206 formation, and of NAD⁺ binding to the BE interface may occur in context of the full-length
207 resistosome structures of ROQ1 and RPP1 (Figure 2A).

208 **AE interface formation induces conformational changes in the RUN1^{TIR}**
209 **NAD⁺-binding site**

210 When RUN1^{TIR} structures that possess an AE interface are compared with those that do not,
211 distinct structural changes in positions of NAD⁺-binding-site residues become evident. All
212 RUN1^{TIR} structures contain the canonical AE interface, except for the “RUN1^{TIR} ΔAE” crystal
213 structure. The histidine (H45) in the core of the AE interface is rotated approximately 90°
214 between the two structures. On the N-terminal end of the α A helix, there is a cis-peptide
215 conformation between residues 40 and 41 that is present in the “RUN1^{TIR} ΔAE” structure, but
216 not in other crystals. This conformation places the “RUN1^{TIR} ΔAE” N41 side chain away from
217 the β -sheet core of the TIR domain (Figure 2B).

218 If N41 were to adopt this cis-peptide conformation in a RUN1 crystal with an AE interface,
219 there would be a steric clash between it and E175 from the other TIR in the dimer.
220 Superposition of a “RUN1^{TIR} ΔAE” crystal monomer onto one of the molecules of the AE-
221 interface dimer pair from the “RUN1^{TIR} RPV1-like” crystal reveals a number of additional
222 clashes at the interface, including R39-Y174, H45-S176, and F40-G173 (considering the
223 “RUN1^{TIR} ΔAE” and the “RUN1^{TIR} NADP⁺” monomers in the superposition, respectively). The
224 rest of the AE interface is clash-free; thus, if R39, F40, N41 and H45 shift to accommodate
225 G173, Y174, E175 and S176, the AE interface can form. If the RUN1^{TIR} domains were
226 brought together in the confirmation seen in ROQ1 and RPP1 resistosome structures, the
227 N41 shifting away would lead to a cis-trans isomerisation of the peptide. This peptide
228 isomerisation would in turn move R39 and F40 away from the AE interface, and toward the
229 NAD⁺-binding site. Non-proline cis-trans peptide isomerisation is often found to play roles in
230 the regulation of protein activities, including many signalling proteins (Joseph et al., 2012).

231 Movement of this conserved arginine (R39) in RUN1, in response to AE-interface
232 formation, is likely key to conformational changes in the binding site. Superposition of the
233 “RUN1^{TIR} ΔAE” structure “RUN1^{TIR} RPV1-like” crystals AE-interface dimers shows a large
234 clash between R39 of RUN1^{TIR} from the AE-interface dimer and D61 from the “RUN1^{TIR}
235 ΔAE” structure. D60 and D61 are moved out to accommodate R39 in the AE-interface dimer
236 (Figure 2B). Another substantial change, when comparing the “RUN1^{TIR} RPV1-like” and
237 “RUN1^{TIR} ΔAE” crystals, involves D60 and D61. In the “RUN1^{TIR} ΔAE” crystals, D60 is in
238 close proximity to E100 (Figure 2B). D61 is also positioned closer to E100 in the NAD⁺-
239 binding site, compared to the “RUN1^{TIR} RPV1-like” crystals. D60 and D61 move away from
240 E100 upon AE-interface formation (Figure 2B). This change in position of D60 effectively
241 ‘opens’ the NAD⁺-binding site, as it enables the whole BB loop to move further away from
242 the core of the TIR domain, increasing solvent accessibility. This open state can be
243 observed in the RPP1 resistosome structure (Figure 2C). The opening can be measured by
244 the distance of D60 to E100 side chain atoms. In the RUN1 closed conformation, D60
245 carboxyl groups are within 3 Å of E100, while in the open confirmation, they move to 6-7 Å
246 away. These distances are even greater for the RPP1 resistosome structure. We propose
247 that a combination of the F40-N41 peptide isomerisation, and the steric clashes that would
248 occur between E175 and H45, and Y174 and R39, drive the opening of the NAD⁺-binding

249 site, by shifting D60 and D61 away from the catalytic glutamate (Figure 2B). This initial
250 opening of the binding site would be required to allow the BB-loop to be positioned under the
251 DE surface in the BE dimer, as seen in both ROQ1 and RPP1 structures.

252 DE surface represents one half of the BE interface and forms part of the 253 NAD⁺-binding site

254 The AE interfaces are highly similar in different plant TIR-domain structures, but this is not
255 the case for the DE interfaces. In all AE-interface containing plant TIR structures, the two
256 subunits have identical orientations relative to one another. By contrast, the orientations of
257 the subunits in the DE-interface dimers vary significantly, even between different RUN1^{TIR}
258 structures. Mutations in the DE interface appear have less impact on HR and self-
259 association than those in the AE interfaces (Bernoux et al., 2011, Bernoux et al., 2016,
260 Zhang et al., 2017). The ROQ1 and RPP1 resistosome structures reveal that the DE
261 interface surface in fact forms one half of the BE interface, and not a symmetric interface as
262 previously expected.

263 During attempts to crystallise RUN^{TIR} with NAD⁺ bound, we noticed multiple RUN1^{TIR}
264 structures had NAD⁺ or the non-hydrolysable analogue carbaNAD binding at the DE surface
265 (Figure 3A,B). The ROQ1 and RPP1 resistosome structures reveal that this NAD⁺ molecule
266 would sit in the open cleft of the BE interface at the active site of the neighboring monomer.
267 Strikingly, it occupies the same position as the ATP molecule captured in the RPP1 and
268 ROQ1 TIR domains (Figure 3A-C). There was some additional density in this structure
269 around the catalytic binding site, particularly around residue W96, that we could not
270 definitively build a model into; however, there was clear density for NAD⁺ bound to the DE
271 surface of the BE interface (Figure 3D).

272 The NAD⁺ molecule folds back onto itself, with the nicotinamide group packing against the
273 adenine moiety (Figure 3D). The adenosine moiety of NAD⁺ makes contact with the DE
274 surface, leaving the nicotinamide moiety free to move toward the catalytic glutamate of the
275 NAD⁺ active site. Residues P127, R131, A163, N164, L165, S166 and P169 are all involved
276 in interactions or contribute to a large proportion of the buried surface area of this binding
277 site (Figure 3B). Mutations of three of these residues in other plant TIRs impair HR; the
278 mutation of the residue equivalent to P127 impairs HR in L6 (Bernoux et al., 2011, Bernoux
279 et al., 2016), N (Dinesh-Kumar et al., 2000, Mestre and Baulcombe, 2006), RPS4 (Swiderski
280 et al., 2009) and RPV1 (Williams et al., 2016); the mutation of the residue equivalent to
281 R131 impairs HR in L6 (Bernoux et al., 2011, Bernoux et al., 2016), RPS4 (Swiderski et al.,
282 2009), RPV1 (Williams et al., 2016) and SNC1 (Zhang et al., 2017); and the mutation of the
283 residue equivalent to S166 impairs HR in L6 (Bernoux et al., 2011, Bernoux et al., 2016) and
284 RPS4 (Swiderski et al., 2009). While they all impair HR, they do not all affect self-association
285 of L6 (Bernoux et al., 2011, Bernoux et al., 2016, Zhang et al., 2017).

286 NAD⁺ and NADP⁺ do not induce self-association of RUN1^{TIR} in solution

287 Based on the differences in the active-site accessibility between the RUN1^{TIR} structures with
288 and without the AE interface, we wanted to test, using the SEC-MALS technique, if NAD⁺
289 binding could stimulate AE interface-mediated self-association. Purified RUN1^{TIR} protein was
290 incubated with NAD⁺ or NADP⁺, prior to running SEC-MALS. Given that RUN1^{TIR} is
291 monomeric in solution, an increase in molecular weight after incubation with NAD⁺ would
292 imply that NAD⁺ binding stimulates RUN1^{TIR} self-association. At a range of protein
293 concentrations, 2 mM of NAD⁺ or NADP⁺ do not stimulate RUN1^{TIR} to self-associate (Figure
294 4 and Supplementary Figure 3). RUN1^{TIR(RRAA)} is a mutant with higher NADase activity,
295 presumably due to a more accessible NAD⁺ binding site (Horsefield et al., 2019). This
296 mutant is monomeric in solution at 2 mg.mL⁻¹, and addition of 2 mM NAD⁺ or 2 mM NADP⁺
297 also does not stimulate self-association or higher-order oligomers. Therefore, we suggest
298 that in the context of full-length plant NLRs, self-association of the NB-ARC domain and
299 resistosome formation facilitates AE-interface and BE-interface formation. These results,

300 along with the closed BB-loop conformation of RUN1 TIR domains without an AE interface
301 suggests the AE and BE oligomerisation precedes NAD⁺ or NADP⁺ binding. Further
302 experiments would be required to test this hypothesis, however.

303 Effects of mutations, in the DE-surface NAD⁺-binding site, on NADase 304 activity

305 The effects of mutations in the AE interface and the DE surface, as well as the NAD⁺-binding
306 site, on the NAD⁺-cleavage activity, were tested by the fluorescence NAD⁺ assay (Horsefield
307 et al., 2019). As seen in Figure 5A, R131E, the mutation of a residue on the periphery of the
308 BE interface does not impair NADase activity, while P169R, closer to the proposed active
309 site, reduces but does not abolish NADase activity. F33A, R34A, S94A, W96A, W96T and
310 E100A mutations, all within or near the NAD⁺-binding site, impair NAD⁺-cleavage activity,
311 consistent with previous results. R39A, a mutation of a residue important for the AE
312 interface-induced switch, knocks out NADase activity completely. D44A, R64A and C97A all
313 severely reduce NADase activity. Consistent with the need to self-associate, we observe an
314 increase in the ability of purified RUN1^{TIR} to cleave NAD⁺, when immobilised on Ni-NTA
315 beads (Figure 5B).

316 Discussion

317 AE interface is required for NADase activity

318 We show that conserved residues of plant TIR domains are involved in a series of
319 conformational changes, regulating NAD⁺ binding site accessibility and BE interface
320 formation. Mutations that prevent formation of the AE interface impair self-association
321 (Williams et al., 2014, Zhang et al., 2017), HR (Williams et al., 2014, Williams et al., 2016,
322 Zhang et al., 2017, Martin et al., 2020, Ma et al., 2020), NADase activity (Wan et al., 2019)
323 and variant cyclic ADPR (v-cADPR) formation (Wan et al., 2019). NAD⁺ does not induce self-
324 association of TIR domains (Figure 4); thus, we propose that the AE interface must form to
325 allow NAD⁺ to bind.

326 Based on structural information, a key residue that transfers the AE interface formation into
327 BB-loop opening and the formation of the active site in RUN1, is R39 (Figure 2B). In different
328 plant TIR domains, mutation of this residue does not substantially affect TIR-domain self-
329 association (Bernoux et al., 2011); however, the mutation impairs NADase activity (Figure
330 5), autoactivity by TIR domains (Bernoux et al., 2011, Williams et al., 2016) and effector-
331 dependent HR (Mestre and Baulcombe, 2006). This residue moves toward the BB-loop upon
332 AE interface formation, facilitating the opening of the BB-loop. This is likely occurring around
333 residues D60 and D61 in RUN1 (Figure 2B). D60 in particular is highly conserved among
334 plant TIRs (Figure S1). A cis-to-trans peptide isomerisation of F40-N41 likely facilitates the
335 movement of R39; however, experimental evidence in solution would be required to confirm
336 this. Thus, formation of the AE interface acts as an allosteric regulator of NADase activity,
337 with R39 propagating this signal from AE interface to NAD⁺ active site. This additional layer
338 of regulation of NADase activity likely helps prevent cell death or immune signalling in the
339 absence of pathogens.

340 DE surface may facilitate v-cADPR formation

341 The ROQ1 and RPP1 resistosome structures provide new insight into the DE surface
342 mutations tested in the past. In contrast to the symmetrical DE interfaces observed in crystal
343 packing of several plant TIR domains, the DE surface forms an asymmetric interface with
344 the BB-loop of an adjoining AE dimer pair in the ROQ1 and RPP1 resistosome structures.
345 Some mutations to the conserved glycine in this interface support this, with mutation to large
346 bulky charged residues having a much more significant effect on HR, self-association and
347 NADase activity than more subtle mutations. For example, RPP1-WsB G223A shows only
348 reduced NADase activity (Ma et al., 2020), while RBA1 G151R, RPS4 G151R, and RPP1-

349 NdA G229R have NADase activity abolished (Wan et al., 2019). Similarly, the L6 G201C
350 and G201Y mutations have only reduced TIR autoactivity (Bernoux et al., 2011), compared
351 to complete loss of autoactivity seen in L6 G201R (Bernoux et al., 2011), RPV1 G161R
352 (Williams et al., 2016), RBA1 G151R, RPS4 G151R, and RPP1-NdA G229R (Wan et al.,
353 2019). The L6 mutants also show a consistent pattern with regards to self-association, with
354 L6 G201C still able to self-associate, L6 G201Y having slightly reduced self-association
355 compared to the wild-type protein, and G201R not being able to self-associate at all
356 (Bernoux et al., 2011). This arginine mutation may potentially protrude into the NAD⁺-
357 binding site, additionally inhibiting NADase activity. This surface of the TIR domain is crucial
358 for both NADase activity and self-association of TIR domains, and appears to form one half
359 of the catalytic site.

360 The RPP1 G223A mutant has only reduced NADase activity, and induces HR (Ma et al.,
361 2020), but the analogous mutation G153A in ROQ1 completely abolishes HR (Martin et al.,
362 2020). Mutation of RPP1 A222E severely abrogates NADase activity, and also HR (Ma et al.,
363 2020). Assuming v-cADPR is the signalling product, disruption of the second half of the
364 active site with a subtle alanine mutation may still allow NAD⁺ cleavage, but disrupt the BE
365 interface such that v-cADPR cannot be produced. We observe some residual NADase
366 activity for proteins with mutations in this surface (R131E and P169R) in RUN1 (Figure 5A).
367 Analysis of the products of such mutations *in vivo* and *in vitro* would provide greater insight
368 to the role of the BE interface in v-cADPR cyclisation.

369 RUN1 RRAA mutant

370 The RUN1^{TIR} RRAA mutant has increased NADase activity compared to the wild-type
371 protein; however, it does not show stronger self-association *in vitro*, as measured by SEC-
372 MALS (Figure 4). This mutant also has increased autoactivity by the TIR domain *in planta*,
373 so much so that it is able to induce HR in *eds1* knock-out lines, much like SARM1 is able to
374 (Horsefield et al., 2019). We suggest the RRAA mutant is able to induce cell death through
375 loss of NAD⁺, as SARM1^{TIR} can when transiently expressed *in planta* (Horsefield et al.,
376 2019). Residues on the BB-loop thus are key to both regulating NADase activity, and to
377 facilitating correct active site formation.

378 SARM1 NADase activity

379 The observations made here on how self-association relates to NAD⁺ cleavage in plant TIR
380 domains are consistent with the observations made for the TIR domain from the mammalian
381 protein SARM1. The crystal structures of SARM1^{TIR} and its mutants have revealed that
382 SARM1^{TIR} also requires two major interfaces, a BB-loop mediated interface, and an AE
383 interface (Figure S4A-C). Mutational studies show that both these interfaces are crucial for
384 NADase activity (Horsefield et al., 2019). SARM1 G601P, a mutation in the BB-loop, locks
385 the TIR into a closed conformation (Figure S4D,E). This mutation also impairs ROQ1 HR
386 (Martin et al., 2020), suggesting this BB loop open and closing mechanism is conserved
387 between SARM1 and plant TIR domains. A SARM1 mutation in the AE interface, involving
388 H685, also impairs activity, by disrupting interactions with Y568, R570 and H685 (Figure
389 S4D,F). This histidine mutation affects the interaction between residues around the position
390 of R39, D60 and D61 in RUN1^{TIR}, and suggesting both RUN1 and SARM1 form AE
391 interfaces and change BB-loop conformations in an analogous manner.

392 Conclusions

393 We propose that the AE interface is required to open the NAD⁺-binding site and our
394 structural work reveals the molecular basis for this process. The absence of an AE-interface
395 formation precludes NAD⁺ binding. AE interface-mediated self-association therefore works
396 as a regulatory mechanism, activating TIR domains only when they are positioned correctly.
397 In light of the ROQ1 and RPP1 structures revealing the arrangement of TIR domains on top
398 of the resistosome, we propose that the DE surface is required to facilitate NAD⁺ binding to
399 the BB-loop and packing of the AE-interface TIR domain dimers. The DE surface may also

400 be required to aid correct cyclisation of v-cADPR, the possible signalling product of NAD⁺
401 cleavage. Whether all TIR-containing NLRs form a tetramer when activated is still not
402 known; more structural data will be required to test this hypothesis.

403 **Acknowledgments**

404 We acknowledge the use of the University of Queensland Remote Operation Crystallization
405 and X-Ray Diffraction (UQ-ROCX) Facility within the Centre for Microscopy and
406 Microanalysis, and the macromolecular crystallography (MX) beamlines at the Australian
407 Synchrotron, Victoria, Australia.

408 Molecular graphics and analyses were performed with UCSF ChimeraX, developed by the
409 Resource for Biocomputing, Visualization, and Informatics at the University of California,
410 San Francisco, with support from National Institutes of Health R01-GM129325 and the
411 Office of Cyber Infrastructure and Computational Biology, National Institute of Allergy and
412 Infectious Diseases.

413 We thank Jeffrey Nanson and Zhenyao Luo (University of Queensland), Thomas Ve (Griffith
414 University) and Simon Williams (Australian National University) for advice on structure
415 refinement and interpretation.

416 We also thank Adam Bentham (John Innes Centre) and Megan Outram (Australian National
417 University) for helpful discussions.

418 We thank Thomas Ve and Mark von Itzstein (Griffith University) for the generous gift of
419 carbaNAD.

420 **Data availability**

421 Coordinates for all structures deposited have been to the Protein Data Bank: RUN1^{TIR} ΔAE,
422 PDB ID: 7rts; RUN1^{TIR} RPV1-like, PDB ID: 7rx1; RUN1^{TIR(E100A)} NAD⁺, PDB ID: 7s2z.

423 **Supporting information**

424 This article contains supporting information.

425 **Funding and additional information**

426 The work was supported by the Australian Research Council (ARC; DP160102244 and
427 DP190102526 to B.K.). B.K. is an ARC Laureate Fellow (FL180100109).

428 **Conflict of interest**

429 B.K. is shareholder, consultant and receives research funding from Disarm Therapeutics, a
430 wholly owned subsidiary of Eli Lilly & Company.

431 **Bibliography**

432 Adams, P. D., Baker, D., Brunger, A. T., Das, R., Dimaio, F., Read, R. J.,
433 Richardson, D. C., Richardson, J. S. & Terwilliger, T. C. 2013. Advances,
434 Interactions, and Future Developments in the CNS, Phenix, and Rosetta
435 Structural Biology Software Systems. *Annual Review of Biophysics*, 42, 265-
436 287.

437 Beilsten-Edmands, J., Winter, G., Gildea, R., Parkhurst, J., Waterman, D. & Evans,
438 G. 2020. Scaling diffraction data in the DIALS software package: algorithms
439 and new approaches for multi-crystal scaling. *Acta Crystallographica Section*
440 *D*, 76, 385-399.

441 Bernoux, M., Burdett, H., Williams, S. J., Zhang, X., Chen, C., Newell, K., Lawrence,
442 G. J., Kobe, B., Ellis, J. G., Anderson, P. A. & Dodds, P. N. 2016.
443 Comparative analysis of the flax immune receptors L6 and L7 suggests an
444 equilibrium-based switch activation model. *Plant Cell*, 28, 146-159.

445 Bernoux, M., Ve, T., Williams, S. J., Warren, C., Hatters, D., Valkov, E., Zhang, X.,
446 Ellis, J. G., Kobe, B. & Dodds, P. N. 2011. Structural and functional analysis
447 of a plant resistance protein TIR domain reveals interfaces for self-
448 association, signaling, and autoregulation. *Cell Host Microbe*, 9, 200-211.

449 Bi, G., Su, M., Li, N., Liang, Y., Dang, S., Xu, J., Hu, M., Wang, J., Zou, M., Deng, Y.,
450 Li, Q., Huang, S., Li, J., Chai, J., He, K., Chen, Y.-H. & Zhou, J.-M. 2021. The
451 ZAR1 resistosome is a calcium-permeable channel triggering plant immune
452 signaling. *Cell*, 184, 3528-3541.e12.

453 Burdett, H., Bentham, A. R., Williams, S. J., Dodds, P. N., Anderson, P. A., Banfield,
454 M. J. & Kobe, B. 2019. The Plant “Resistosome”: Structural Insights into
455 Immune Signaling. *Cell Host & Microbe*, 26, 193-201.

456 Chen, V. B., Arendall, W. B., 3rd, Headd, J. J., Keedy, D. A., Immormino, R. M.,
457 Kapral, G. J., Murray, L. W., Richardson, J. S. & Richardson, D. C. 2010.
458 MolProbity: all-atom structure validation for macromolecular crystallography.
459 *Acta Crystallographica. Section D: Biological Crystallography*, 66, 12-21.

460 Dinesh-Kumar, S. P., Tham, W. H. & Baker, B. J. 2000. Structure-function analysis
461 of the tobacco mosaic virus resistance gene *N*. *Proceedings of the National*
462 *Academy of Sciences of the United States of America*, 97, 14789-14794.

463 Duxbury, Z., Wang, S., Mackenzie, C. I., Tenthorey, J. L., Zhang, X., Huh, S. U., Hu,
464 L., Hill, L., Ngou, P. M., Ding, P., Chen, J., Ma, Y., Guo, H., Castel, B.,
465 Moschou, P. N., Bernoux, M., Dodds, P. N., Vance, R. E. & Jones, J. D. G.
466 2020. Induced proximity of a TIR signaling domain on a plant-mammalian
467 NLR chimera activates defense in plants. *Proceedings of the National*
468 *Academy of Sciences*, 117, 18832-18839.

469 Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. 2010. Features and
470 development of Coot. *Acta Crystallographica. Section D: Biological*
471 *Crystallography*, 66, 486-501.

472 Evans, P. 2006. Scaling and assessment of data quality. *Acta Crystallographica*
473 *Section D*, 62, 72-82.

474 Goddard, T. D., Huang, C. C., Meng, E. C., Pettersen, E. F., Couch, G. S., Morris, J.
475 H. & Ferrin, T. E. 2018. UCSF ChimeraX: Meeting modern challenges in
476 visualization and analysis. *Protein Science*, 27, 14-25.

477 Horsefield, S., Burdett, H., Zhang, X., Manik, M. K., Shi, Y., Chen, J., Qi, T., Gilley,
478 J., Lai, J.-S., Rank, M. X., Casey, L. W., Gu, W., Ericsson, D. J., Foley, G.,
479 Hughes, R. O., Bosanac, T., Von Itzstein, M., Rathjen, J. P., Nanson, J. D.,
480 Boden, M., Dry, I. B., Williams, S. J., Staskawicz, B. J., Coleman, M. P., Ve,

481 T., Dodds, P. N. & Kobe, B. 2019. NAD⁺ cleavage activity by animal and plant
482 TIR domains in cell death pathways. *Science*, 365, 793-799.

483 Joseph, A. P., Srinivasan, N. & De Brevern, A. G. 2012. Cis-trans peptide variations
484 in structurally similar proteins. *Amino Acids*, 43, 1369-1381.

485 Kabsch, W. 2010. XDS. *Acta Crystallographica Section D*, 66, 125-132.

486 Krissinel, E. & Henrick, K. 2007. Inference of Macromolecular Assemblies from
487 Crystalline State. *Journal of Molecular Biology*, 372, 774-797.

488 Ma, S., Lapin, D., Liu, L., Sun, Y., Song, W., Zhang, X., Logemann, E., Yu, D.,
489 Wang, J., Jirschitzka, J., Han, Z., Schulze-Lefert, P., Parker, J. E. & Chai, J.
490 2020. Direct pathogen-induced assembly of an NLR immune receptor
491 complex to form a holoenzyme. *Science*, 370, eabe3069.

492 Martin, R., Qi, T., Zhang, H., Liu, F., King, M., Toth, C., Nogales, E. & Staskawicz, B.
493 J. 2020. Structure of the activated ROQ1 resistosome directly recognizing the
494 pathogen effector XopQ. *Science*, 370, eabd9993.

495 Mccoy, A. J. 2007. Solving structures of protein complexes by molecular
496 replacement with Phaser. *Acta Crystallographica. Section D: Biological
497 Crystallography*, 63, 32-41.

498 Mestre, P. & Baulcombe, D. C. 2006. Elicitor-mediated oligomerization of the
499 tobacco N disease resistance protein. *Plant Cell*, 18, 491-501.

500 Nishimura, M. T., Anderson, R. G., Cherkis, K. A., Law, T. F., Liu, Q. L., Machius, M.,
501 Nimchuk, Z. L., Yang, L., Chung, E.-H., El Kasmi, F., Hyunh, M., Osborne
502 Nishimura, E., Sondek, J. E. & Dangl, J. L. 2017. TIR-only protein RBA1
503 recognizes a pathogen effector to regulate cell death in Arabidopsis.
504 *Proceedings of the National Academy of Sciences of the United States of
505 America*, 114, E2053-E2062.

506 Pergolizzi, G., Butt, J. N., Bowater, R. P. & Wagner, G. K. 2011. A novel fluorescent
507 probe for NAD-consuming enzymes. *Chemical Communications*, 47, 12655-
508 12657.

509 Schreiber, K. J., Bentham, A., Williams, S. J., Kobe, B. & Staskawicz, B. J. 2016.
510 Multiple domain associations within the Arabidopsis immune receptor RPP1
511 regulate the activation of programmed cell death. *PLOS Pathogens*, 12,
512 e1005769.

513 Studier, F. W. 2005. Protein production by auto-induction in high density shaking
514 cultures. *Protein Expression and Purification*, 41, 207-234.

515 Swiderski, M. R., Birker, D. & Jones, J. D. 2009. The TIR domain of TIR-NB-LRR
516 resistance proteins is a signaling domain involved in cell death induction.
517 *Molecular Plant-Microbe Interactions*, 22, 157-165.

518 Tameling, W. I., Elzinga, S. D., Darmin, P. S., Vossen, J. H., Takken, F. L., Haring,
519 M. A. & Cornelissen, B. J. 2002. The tomato R gene products I-2 and MI-1 are
520 functional ATP binding proteins with ATPase activity. *Plant Cell*, 14, 2929-
521 2939.

522 Tameling, W. I. L., Vossen, J. H., Albrecht, M., Lengauer, T., Berden, J. A., Haring,
523 M. A., Cornelissen, B. J. C. & Takken, F. L. W. 2006. Mutations in the NB-
524 ARC domain of I-2 that impair ATP hydrolysis cause autoactivation. *Plant
525 Physiology*, 140, 1233-1245.

526 Wan, L., Essuman, K., Anderson, R. G., Sasaki, Y., Monteiro, F., Chung, E.-H.,
527 Osborne Nishimura, E., Diantonio, A., Milbrandt, J., Dangl, J. L. & Nishimura,
528 M. T. 2019. TIR domains of plant immune receptors are NAD⁺-cleaving
529 enzymes that promote cell death. *Science*, 365, 799-803.

530 Wang, J., Hu, M., Wang, J., Qi, J., Han, Z., Wang, G., Qi, Y., Wang, H.-W., Zhou, J.-
531 M. & Chai, J. 2019a. Reconstitution and structure of a plant NLR resistosome
532 conferring immunity. *Science*, 364, eaav5870.

533 Wang, J., Wang, J., Hu, M., Wu, S., Qi, J., Wang, G., Han, Z., Qi, Y., Gao, N., Wang,
534 H.-W., Zhou, J.-M. & Chai, J. 2019b. Ligand-triggered allosteric ADP release
535 primes a plant NLR complex. *Science*, 364, eaav5868.

536 Williams, S. J., Sohn, K. H., Wan, L., Bernoux, M., Sarris, P. F., Segonzac, C., Ve,
537 T., Ma, Y., Saucet, S. B., Ericsson, D. J., Casey, L. W., Lohmienne, T.,
538 Winzor, D. J., Zhang, X., Coerdt, A., Parker, J. E., Dodds, P. N., Kobe, B. &
539 Jones, J. D. 2014. Structural basis for assembly and function of a
540 heterodimeric plant immune receptor. *Science*, 344, 299-303.

541 Williams, S. J., Sornaraj, P., Decourcy-Ireland, E., Menz, R. I., Kobe, B., Ellis, J. G.,
542 Dodds, P. N. & Anderson, P. A. 2011. An autoactive mutant of the M flax rust
543 resistance protein has a preference for binding ATP, whereas wild-type M
544 protein binds ADP. *Molecular Plant-Microbe Interactions*, 24, 897-906.

545 Williams, S. J., Yin, L., Foley, G., Casey, L. W., Outram, M. A., Ericsson, D. J., Lu,
546 J., Boden, M., Dry, I. B. & Kobe, B. 2016. Structure and function of the TIR
547 domain from the grape NLR protein RPV1. *Frontiers in Plant Science*, 7,
548 1850.

549 Zhang, X., Bernoux, M., Bentham, A. R., Newman, T. E., Ve, T., Casey, L. W.,
550 Raaymakers, T. M., Hu, J., Croll, T. I., Schreiber, K. J., Staskawicz, B. J.,
551 Anderson, P. A., Sohn, K. H., Williams, S. J., Dodds, P. N. & Kobe, B. 2017.
552 Multiple functional self-association interfaces in plant TIR domains.
553 *Proceedings of the National Academy of Sciences of the United States of
554 America*, 114, E2046-E2052.

555

556

557 Table 1. Data collection and refinement statistics.

Crystals	RUN1 ^{TIR} ΔAE	RUN1 ^{TIR} RPV1-like	RUN1 ^{TIR(E100A)} NAD ⁺
PDB ID	7rts	7rx1	7s2z
X-ray wavelength	0.9537 \AA	0.9537 \AA	0.9537 \AA
Resolution range (Å)	38.62 - 1.74 (1.80 - 1.74)	33.49 - 1.89 (1.96 - 1.89)	47.08 - 2.35 (2.43 - 2.35)
Space group	P 41 21 2	C 1 2 1	P 2 21 21
Unit cell (Å³)	50.37 50.37 120.31 90 90 90	152.44 41.47 77.23 90 118.51 90	79.74 116.64 122.22 90 90 90
Total reflections	429,425 (42,566)	115,763 (11,165)	350,462 (31,322)
Unique reflections	16,630 (1,600)	34,127 (3,294)	47,985 (4,645)
Multiplicity	25.8 (26.6)	3.4 (3.4)	7.3 (7.3)
Completeness (%)	99.90 (99.94)	99.48 (97.60)	99.80 (98.22)
Mean I/sigma(I)	41.4 (6.2)	12.1 (0.9)	13.1 (2.5)
Wilson B-factor (Å²)	25.65	34.67	36.54
R-merge	0.048 (0.492)	0.062 (1.262)	0.096 (0.736)
R-meas	0.049 (0.502)	0.074 (1.499)	0.112 (0.792)
R-pim	0.001 (0.096)	0.040 (0.801)	0.057 (0.290)
CC_{1/2}	1.000 (0.980)	0.997 (0.358)	0.999 (0.906)
CC*	1.000 (0.995)	0.999 (0.726)	0.999 (0.975)
Reflections used in refinement	16,614 (1,599)	34,117 (3,291)	47,818 (4,634)
Reflections used for R-free	851 (91)	1,627 (152)	2,350 (213)
R-work	0.2002 (0.2402)	0.2085 (0.3207)	0.2177 (0.2710)
R-free	0.2275 (0.3724)	0.2279 (0.3392)	0.2547 (0.3477)
Number of non-hydrogen atoms	1,430	2,975	5,988
Macromolecules	1,357	2,825	5,602
Ligands	20	35	266
Solvent	53	115	120
No. of molecules in the ASU	1	2	4
Protein residues	165	344	684
RMS (bonds, Å)	0.006	0.003	0.003
RMS (angles, °)	0.89	0.55	0.57
Ramachandran favored (%)	95.65	97.65	97.19
Ramachandran allowed (%)	3.73	2.06	2.81
Ramachandran outliers (%)	0.62	0.29	0.00
Rotamer outliers (%)	1.39	0.00	0.34
Clashscore	2.95	3.73	2.09
Average B-factor (Å²)	31.50	39.85	46.60
Macromolecules	31.04	39.67	46.08
Ligands	53.07	58.23	59.29
Solvent	35.06	38.83	42.40

558 The statistics were calculated using AIMLESS (Evans, 2006) and MolProbity (Chen et al.,
559 2010).

560 Statistics for the highest-resolution shell are shown in parentheses.

561 $R_{\text{merge}} = \sum_{hkl} \sum_i |I_{hkl,i} - \langle I_{hkl} \rangle| / (\sum_{hkl} \sum_j I_{hkl,j})$

562 $R_{\text{work}} / R_{\text{free}} = \sum_{hkl} |F_{\text{obs},hkl} - F_{\text{calc},hkl}| / (\sum_{hkl} F_{\text{obs},hkl})$; R_{free} was calculated using randomly chosen
563 5% fraction of data that was excluded from refinement.

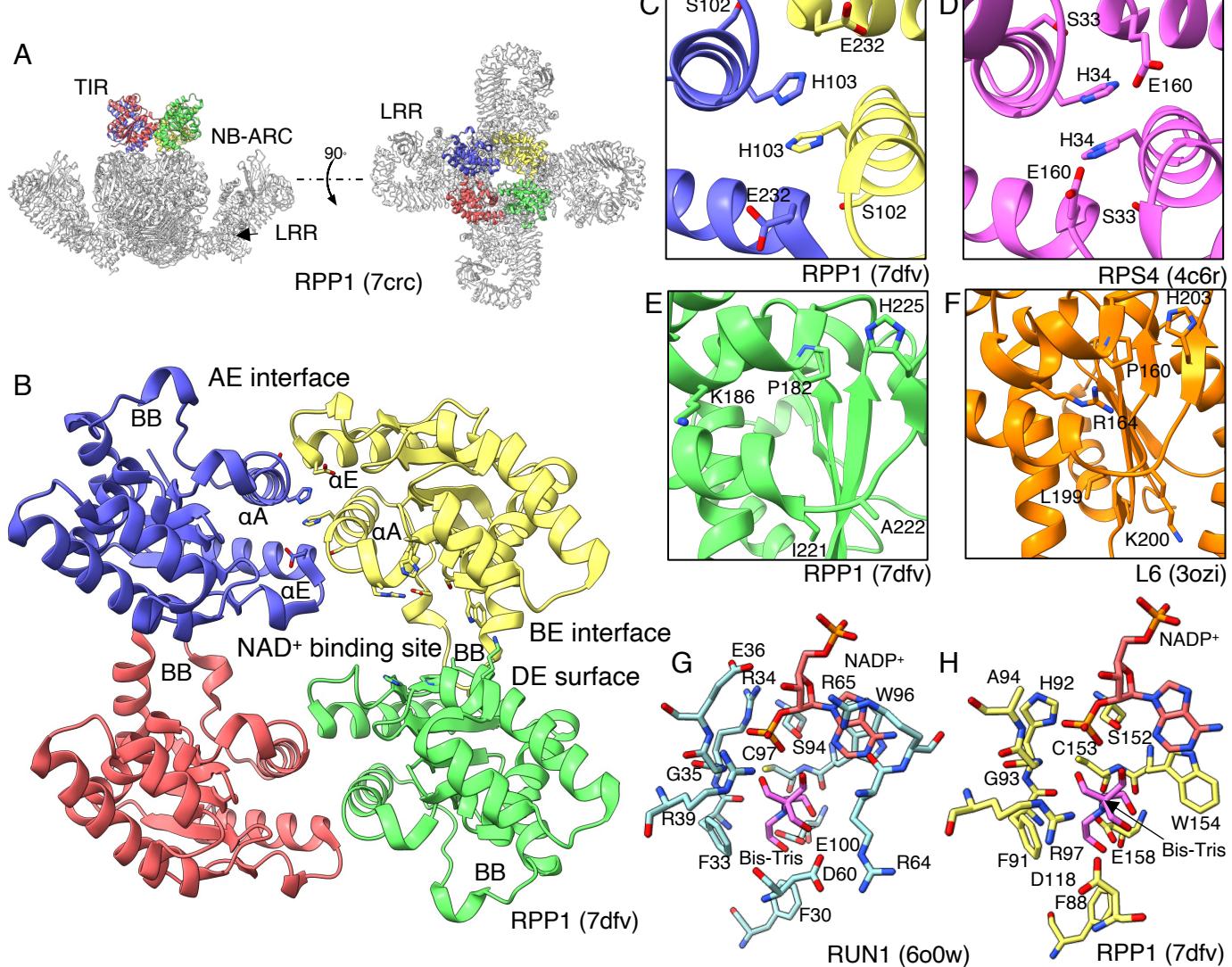
564 Figure 1. The TIR-domain tetramer, with key interfaces and binding sites. **A**, relative position
565 and conformation of the RPP1^{TIR} tetramer in relation to the RPP1 resistosome (PDB ID:
566 7crc). **B**, locations of interfaces and binding sites are shown on the RPP1^{TIR} tetramer (PDB
567 ID: 7dfv). **C** and **D**, residues involved in formation of the AE interface, of RPP1^{TIR} and
568 RPS4^{TIR} (PDB ID: 4c6r), respectively. **E** and **F**, residues on the DE surface of RPP1^{TIR} and
569 L6^{TIR} (PDB ID: 3ozi), respectively. **G** and **H**, residues in the Bis-Tris/NADP⁺ binding site of
570 RUN1^{TIR} (PDB ID: 6o0w) and RPP1^{TIR}, respectively.

571 Figure 2. AE interface formation opens BB loop. **A**, superimposition of the RPP1^{TIR} tetramer
572 from the resistosome (yellow, PDB ID: 7dfv), the RUN1^{TIR} structure with no AE interface
573 (red, PDB ID: 7rts) and RUN1 structure with the AE interface (green, PDB ID: 7rx1). **B**, key
574 residues involved in confirmational changes between different RUN1^{TIR} structures. The steps
575 involve: (1) residues at the N-terminal end of the α A helix need to move upon formation of
576 AE interface in RUN1^{TIR}. This movement causes (2) a conserved arginine residue to move
577 toward (3) a conserved aspartate at the C-terminal end of the β B sheet. The arginine moves
578 the conserved aspartate away from the conserved catalytic glutamate, partially opening the
579 proposed NAD⁺ binding site. The formation of the BE interface then follows, creating the
580 TIR-domain tetramer, and the complete NAD⁺ binding site. **C** The open conformation can be
581 seen in the RPP1^{TIR} tetrameric structure.

582 Figure 3. NAD⁺ bound to RUN1^{TIR} may represent biologically the relevant NAD⁺-binding site
583 of plant TIRs. **A**, a superposition of RUN^{TIR-E100A} (cyan, PDB ID: 7s2z) onto the 'E' monomer
584 of the ROQ1 (purple, PDB ID: 7jlx) and RPP1 (yellow, PDB ID: 7dfv), BE interface dimer.
585 NAD⁺ sits directly above the BB loop, with the nicotinamide moiety positioned toward the
586 open primary NAD⁺ binding site in the 'B' monomer. **B** and **C** shows residues of the DE
587 surface of RUN1^{TIR} and RPP1^{TIR} in proximity to the bound NAD⁺ and ATP, respectively. **D**
588 shows the omit map of the NAD⁺ molecule from RUN^{TIR-E100A} structure in **A** and **B**.

589 Figure 4. NAD⁺ and NADP⁺ do not induce self-association of RUN1^{TIR} or RUN1^{TIR(RRAA)}
590 proteins. The proteins were incubated with 2 mM NAD⁺ or 2 mM NADP⁺ for 20 minutes at
591 room temperature, before SEC-MALS analysis. RUN1^{TIR} at 2 and 5 mg.mL⁻¹ elutes with a
592 peak of a molar mass consistent with a monomeric RUN1^{TIR} (~ 23 kDa). Addition of 2 mM
593 NADP⁺ or NADP⁺ does not stimulate an increase in this molecular weight at 2 or 5 mg.mL⁻¹.
594 The mutant RUN1^{TIR(RRAA)} with increased activity was also tested at 2 mg.mL⁻¹ protein
595 concentration, and similar results were observed. NAD⁺ and NADP⁺ can also be seen on the
596 differential refractive index (dRI) trace, eluting at ~ 2.5 mL. RUN1 in this instance refers to
597 the TIR domain of RUN1, NAD to NAD⁺ and NADP to NADP⁺.

598 Figure 5. NADase activity of RUN1 TIR domains requires self-association, and intact
599 NADase binding site. **A**, Fluorescence-based NADase assay with the molecular-crowding
600 agent PEG3350 added. Samples in red shaded area contain PEG 3350 as a molecular
601 crowding agent **B**, NAD⁺ assay, using NAD⁺ as a substrate, His-tagged protein on Ni-NTA
602 agarose beads, and the cycling assay to measure NAD⁺ concentration.


603 Figure S1. Sequence alignment of various plant TIR domains and SARM1, showing
604 conserved residues important for self-association and NADase activity.

605 Figure S2. Crystal structures of RUN1^{TIR} domain. RUN1^{TIR} bound to NADP⁺ from Horsefield
606 et al. (2019) (yellow, PDB ID: 6o0w); RUN1^{TIR} with no AE interface (red, PDB ID: 7rts);
607 RUN1^{TIR} with packing arrangement similar to RPV1^{TIR} structure (PDB ID: 5ku7) from
608 Williams et al. (2016) (green, PDB ID: 7rx1); RUN1^{TIR(E100A)} bound to NAD⁺ (cyan, PDB ID:
609 7s2z).

610 Figure S3. RUN1^{TIR}, NAD⁺ and NADP⁺ SEC-MALS traces. The proteins were incubated with
611 2 mM NAD⁺ or 2 mM NADP⁺ for 20 minutes at room temperature, before SEC-MALS
612 analysis. RUN1^{TIR} 10 mg.mL⁻¹ elutes with a peak of a molar mass consistent with a
613 monomeric RUN1^{TIR} (~ 23 kDa). NAD⁺ and NADP⁺ can also be seen on the differential

614 refractive index (dRI) trace, eluting at ~ 2.5 mL. RUN1 in this instance refers to the TIR
615 domain of RUN1, NAD to NAD⁺ and NADP to NADP⁺.

616 Figure S4. Comparison of the structures of TIR domains from SARM1, RUN1, ROQ1 and
617 RPP1. **A**, superimposition of RPP1^{TIR} (yellow, PDB ID: 7dfv), ROQ1^{TIR} (purple, PDB ID: 7jlx),
618 RUN1^{TIR} (green, PDB ID: 7rx1) and SARM1^{TIR} (cyan, PDB ID: 6o0r), shows a similar packing
619 arrangement between SARM1^{TIR} and plant TIRs. **B**, RUN1^{TIR} AE interface and SARM1^{TIR}
620 interface. **C**, RPP1^{TIR} and SARM1^{TIR} BE interface superimposition. The position of the BB-
621 loop is strikingly similar between RPP1^{TIR} tetramer and SARM1^{TIR}. **D-F**, position of residues
622 in the α E helix, and BB-loop and NAD⁺ binding site of SARM1^{TIR} and mutants. **D**, shows the
623 wild type SARM1^{TIR} (PDB ID: 6o0r), **E**, shows SARM1^{TIR(G601P)} (PDB ID: 6o0v). The BB-loop
624 has adopted a closed conformation. **F**, shows SARM1^{TIR(H685A)} (PDB ID: 6o0u), effecting
625 some positions of residues around the NAD⁺ binding site.

Figure 1. The TIR-domain tetramer, with key interfaces and binding sites. **A**, relative position and conformation of the RPP1^{TIR} tetramer in relation to the RPP1 resistosome (PDB ID: 7crc). **B**, locations of interfaces and binding sites are shown on the RPP1^{TIR} tetramer (PDB ID: 7dfv). **C** and **D**, residues involved in formation of the AE interface, of RPP1^{TIR} and RPS4^{TIR} (PDB ID: 4c6r), respectively. **E** and **F**, residues on the DE surface of RPP1^{TIR} and L6^{TIR} (PDB ID: 3ozi), respectively. **G** and **H**, residues in the Bis-Tris/NADP⁺ binding site of RUN1^{TIR} (PDB ID: 6o0w) and RPP1^{TIR}, respectively.

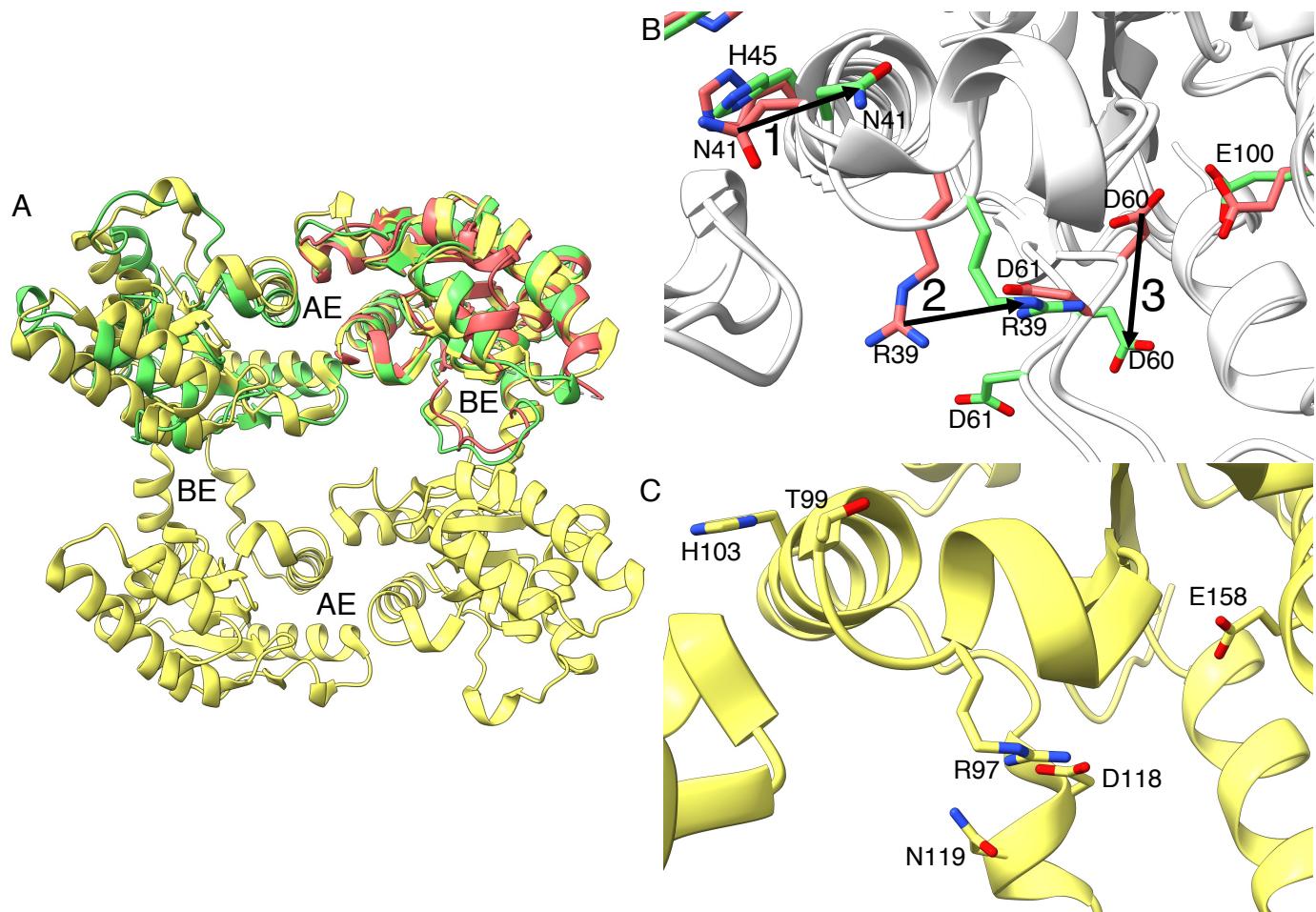
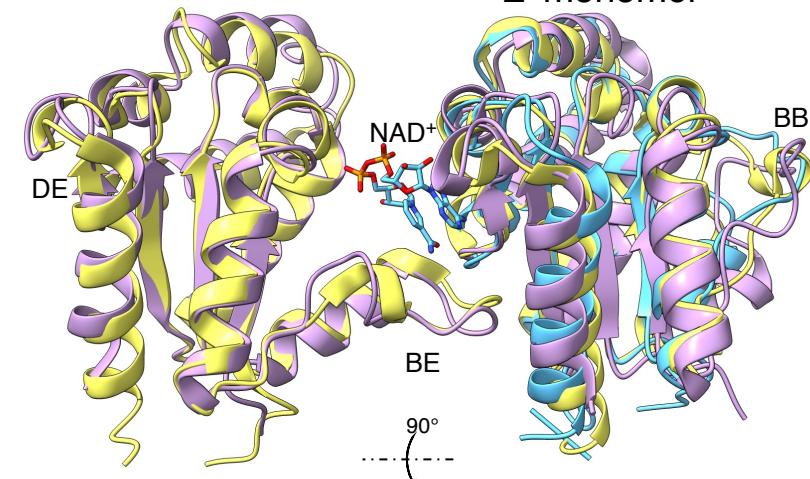
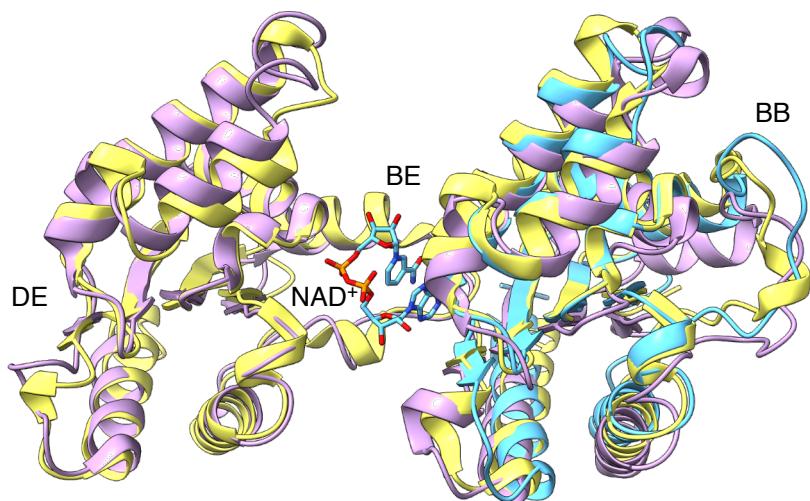
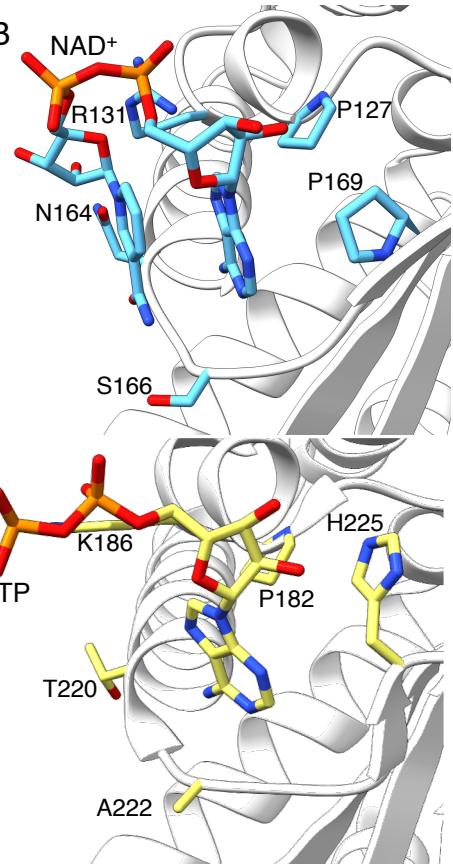
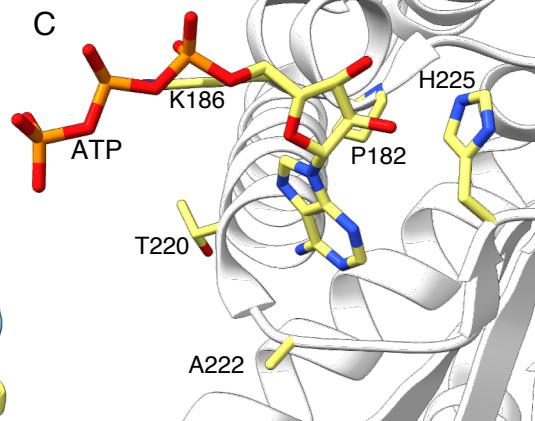



Figure 2. AE interface formation opens BB loop. **A**, superimposition of the RPP1^{TIR} tetramer from the resistosome (yellow, PDB ID: 7dfv), the RUN1^{TIR} structure with no AE interface (red, PDB ID: 7rts) and RUN1 structure with the AE interface (green, PDB ID: 7rx1). **B**, key residues involved in confirmational changes between different RUN1^{TIR} structures. The steps involve: (1) residues at the N-terminal end of the α A helix need to move upon formation of AE interface in RUN1^{TIR}. This movement causes (2) a conserved arginine residue to move toward (3) a conserved aspartate at the C-terminal end of the β B sheet. The arginine moves the conserved aspartate away from the conserved catalytic glutamate, partially opening the proposed NAD⁺ binding site. The formation of the BE interface then follows, creating the TIR-domain tetramer, and the complete NAD⁺ binding site. **C** The open conformation can be seen in the RPP1^{TIR} tetrameric structure.

A 'B' monomer

'E' monomer

B**C****D**

Figure 3. NAD⁺ bound to RUN1^{TIR} may represent biologically the relevant NAD⁺-binding site of plant TIRs. **A**, a superposition of RUN^{TIR-E100A} (cyan, PDB ID: 7s2z) onto the 'E' monomer of the ROQ1 (purple, PDB ID: 7jlx) and RPP1 (yellow, PDB ID: 7dfv), BE interface dimer. NAD⁺ sits directly above the BB loop, with the nicotinamide moiety positioned toward the open primary NAD⁺ binding site in the 'B' monomer. **B** and **C** shows residues of the DE surface of RUN1^{TIR} and RPP1^{TIR} in proximity to the bound NAD⁺ and ATP, respectively. **D** shows the omit map of the NAD⁺ molecule from RUN^{TIR-E100A} structure in **A** and **B**.

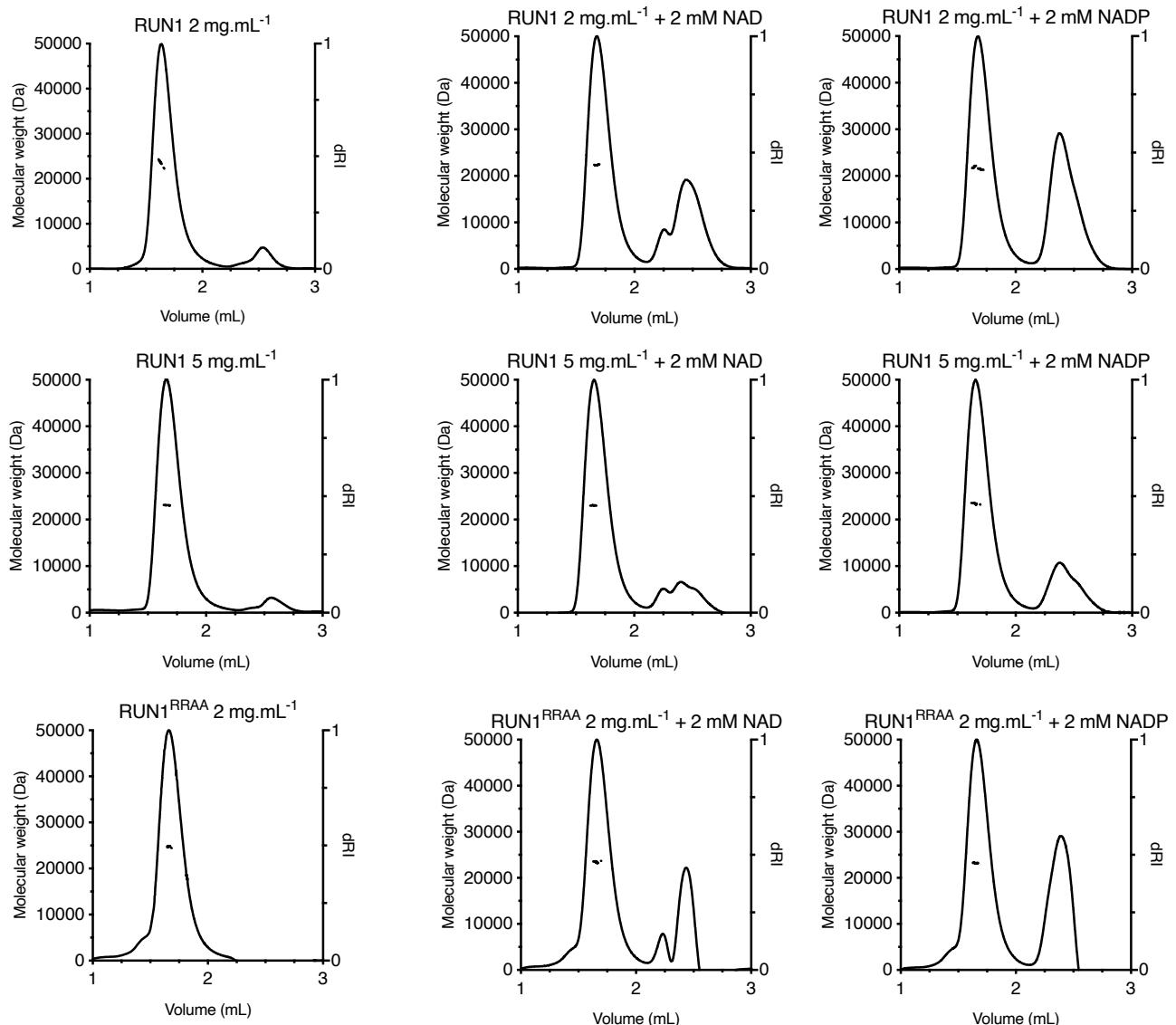


Figure 4. NAD⁺ and NADP⁺ do not induce self-association of RUN1^{TIR} or RUN1^{TIR(RRAA)} proteins. The proteins were incubated with 2 mM NAD⁺ or 2 mM NADP⁺ for 20 minutes at room temperature, before SEC-MALS analysis. RUN1^{TIR} at 2 and 5 mg.mL⁻¹ elutes with a peak of a molar mass consistent with a monomeric RUN1^{TIR} (~ 23 kDa). Addition of 2 mM NADP⁺ or NADP⁺ does not stimulate an increase in this molecular weight at 2 or 5 mg.mL⁻¹. The mutant RUN1^{TIR(RRAA)} with increased activity was also tested at 2 mg.mL⁻¹ protein concentration, and similar results were observed. NAD⁺ and NADP⁺ can also be seen on the differential refractive index (dRI) trace, eluting at ~ 2.5 mL. RUN1 in this instance refers to the TIR domain of RUN1, NAD to NAD⁺ and NADP to NADP⁺.

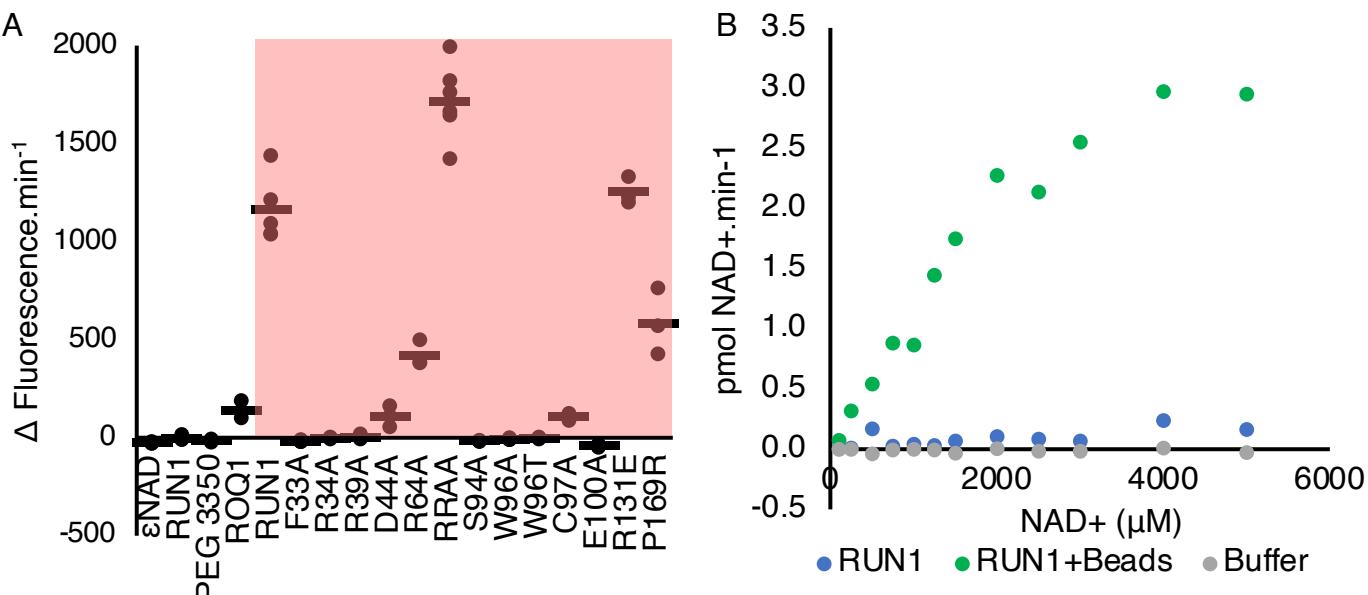
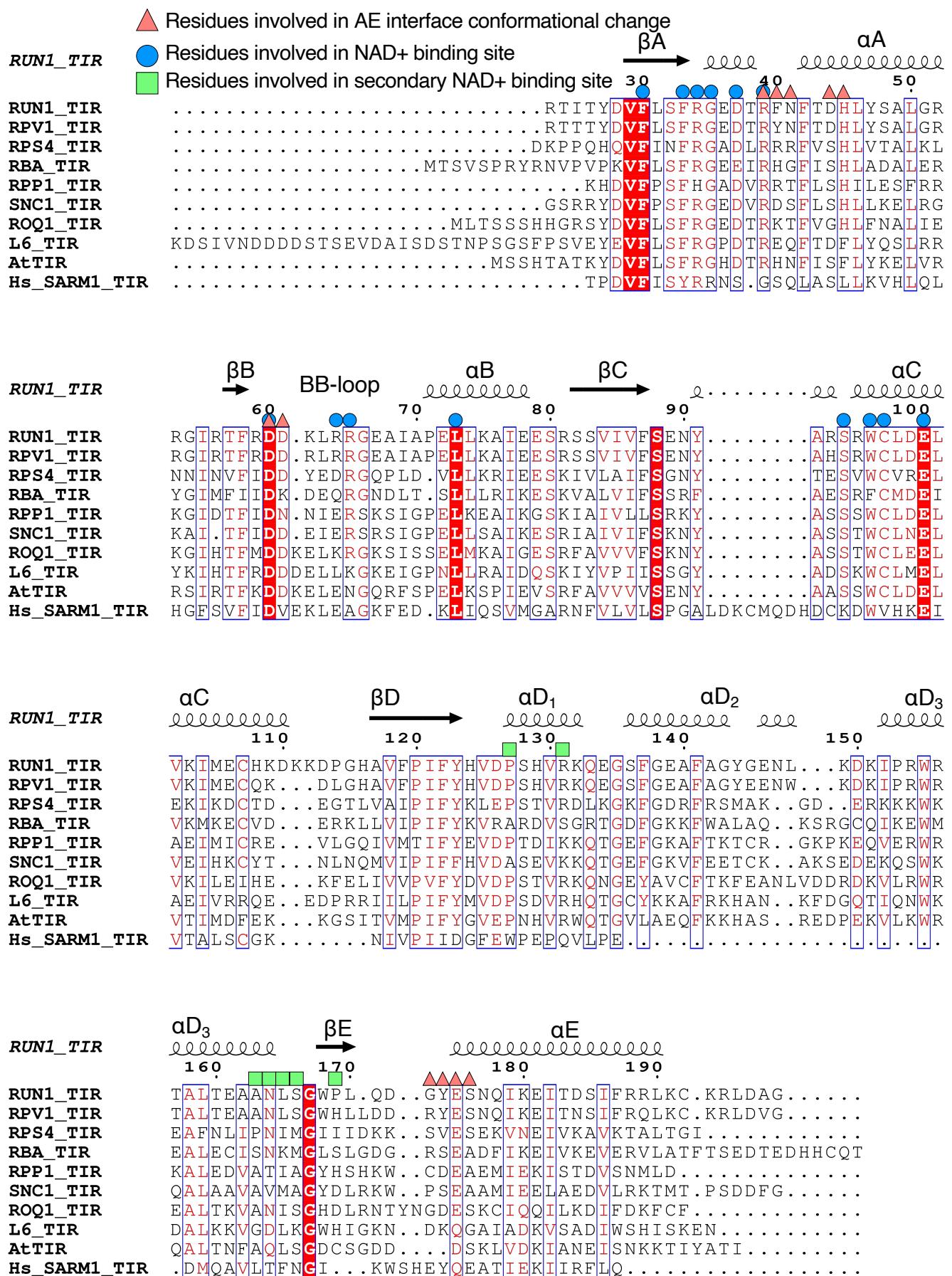
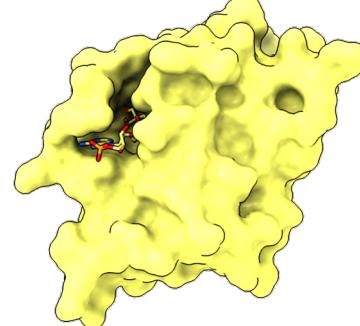
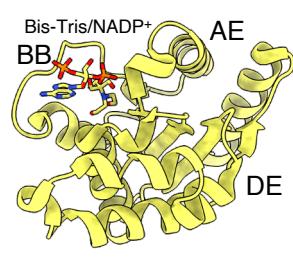
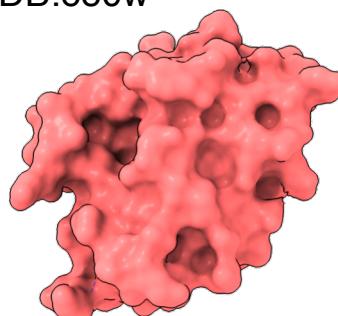
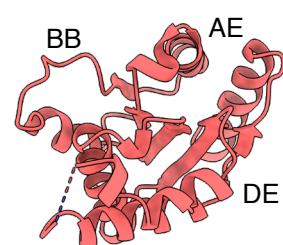
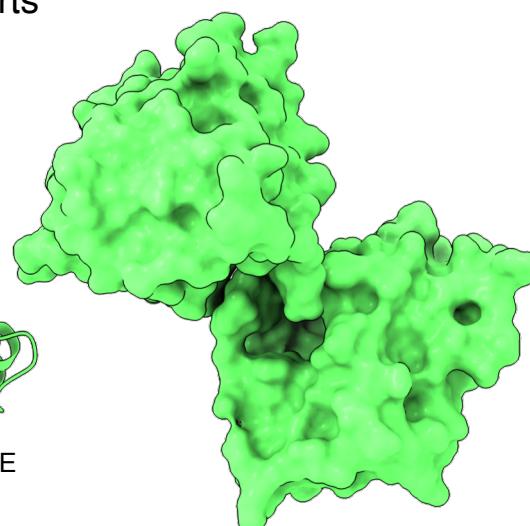
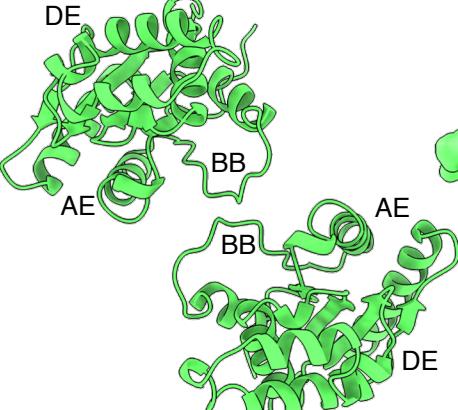
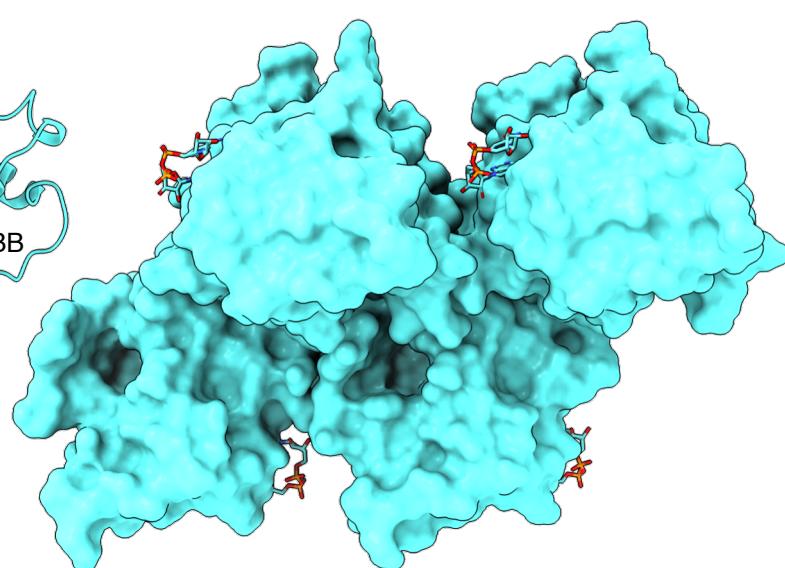
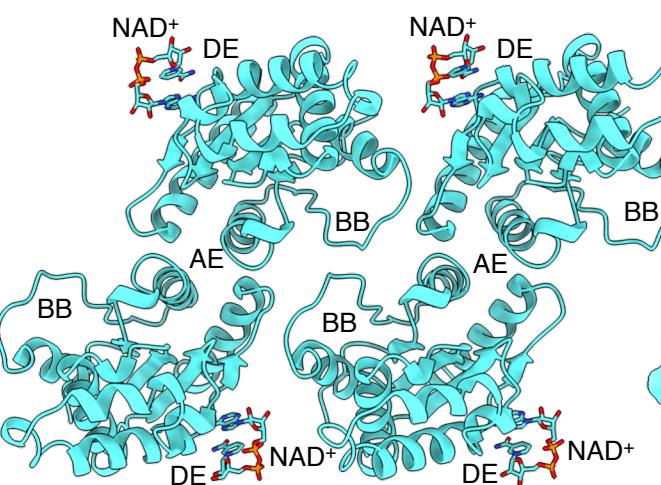


Figure 5. NADase activity of RUN1 TIR domains requires self-association, and intact NADase binding site. **A**, Fluorescence-based NADase assay with the molecular-crowding agent PEG3350 added. Samples in red shaded area contain PEG 3350 as a molecular crowding agent **B**, NAD⁺ assay, using NAD⁺ as a substrate, His-tagged protein on Ni-NTA agarose beads, and the cycling assay to measure NAD⁺ concentration.



Figure S1. Sequence alignment of various plant TIR domains and SARM1, showing conserved residues important for self-association and NADase activity.



RUN1^{TIR} NADP^+ - PDB:6o0w

RUN1^{TIR} ΔAE - PDB:7rts

RUN1^{TIR} RPV1-like - PDB:7rx1

$\text{RUN1}^{\text{TIR}(\text{E}100\text{A})}$ NAD^+ - PDB:7s2z

Figure S2. Crystal structures of RUN1^{TIR} domain. RUN1^{TIR} bound to NADP^+ from Horsefield et al. (2019) (yellow, PDB ID: 6o0w); RUN1^{TIR} with no AE interface (red, PDB ID: 7rts); RUN1^{TIR} with packing arrangement similar to RPV1 $^{\text{TIR}}$ structure (PDB ID: 5ku7) from Williams et al. (2016) (green, PDB ID: 7rx1); $\text{RUN1}^{\text{TIR}(\text{E}100\text{A})}$ bound to NAD^+ (cyan, PDB ID: 7s2z).

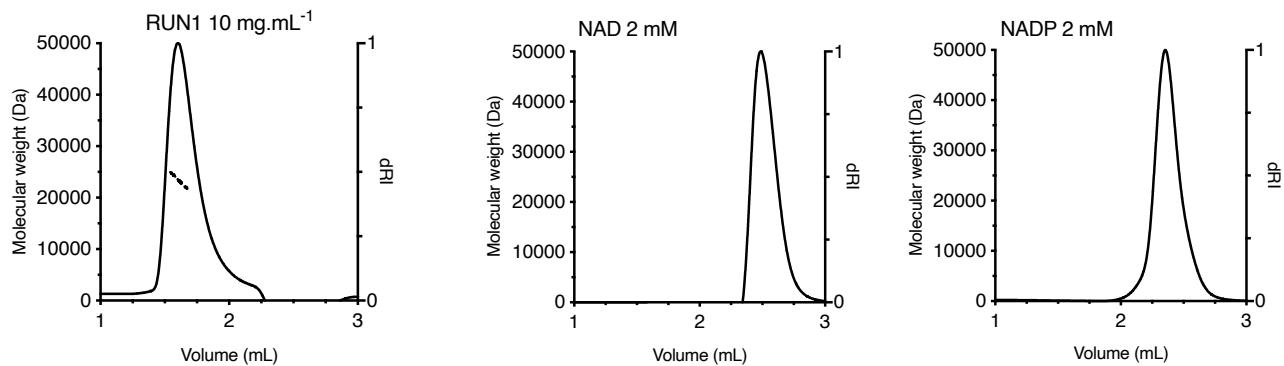
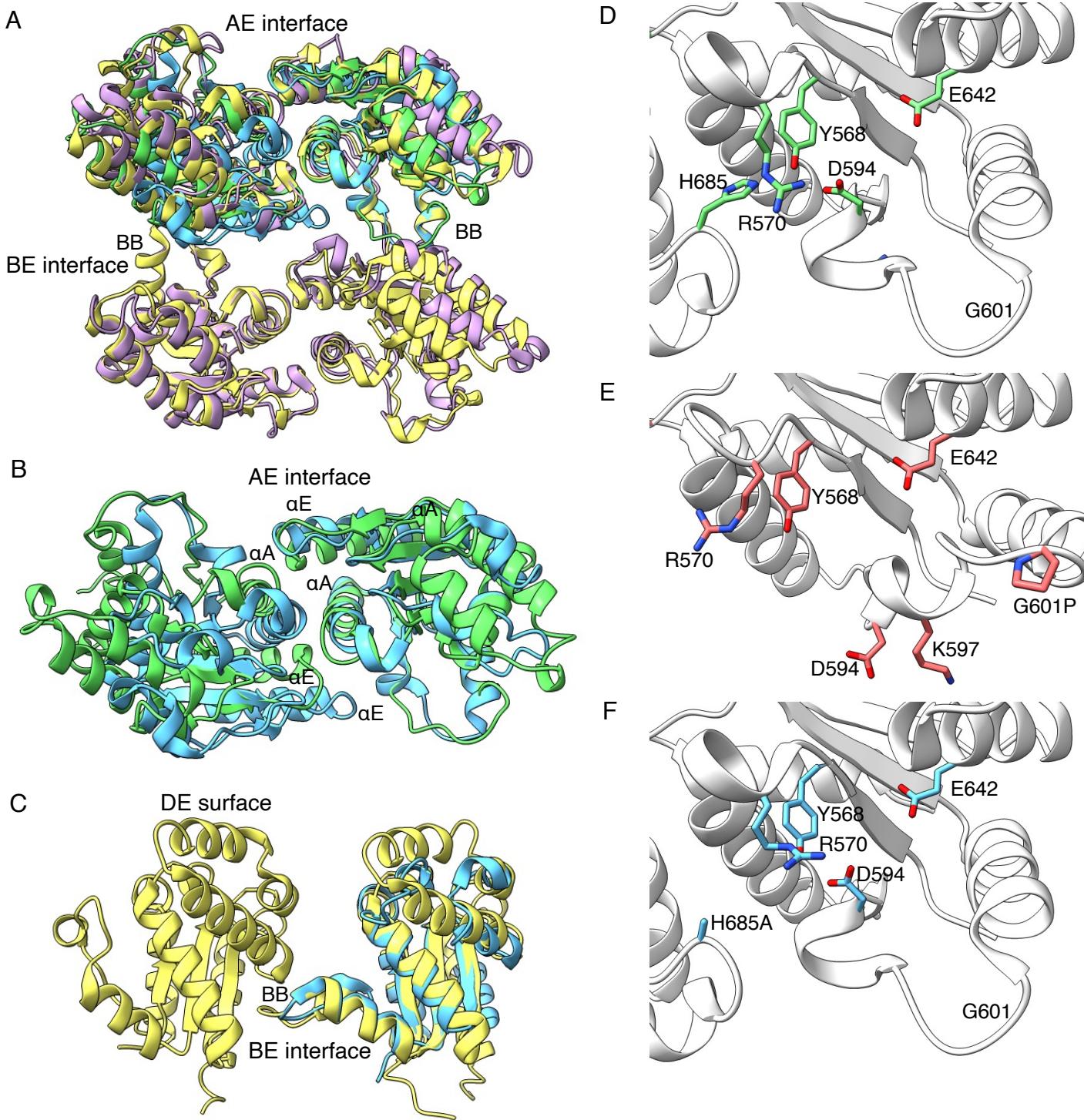



Figure S3. RUN1^{TIR} , NAD^+ and NADP^+ SEC-MALS traces. The proteins were incubated with 2 mM NAD^+ or 2 mM NADP^+ for 20 minutes at room temperature, before SEC-MALS analysis. $\text{RUN1}^{\text{TIR}} 10 \text{ mg.mL}^{-1}$ elutes with a peak of a molar mass consistent with a monomeric RUN1^{TIR} (~ 23 kDa). NAD^+ and NADP^+ can also be seen on the differential refractive index (dRI) trace, eluting at ~ 2.5 mL. RUN1 in this instance refers to the TIR domain of RUN1 , NAD to NAD^+ and NADP to NADP^+ .

Figure S4. Comparison of the structures of TIR domains from SARM1, RUN1, ROQ1 and RPP1. **A**, superimposition of RPP1^{TIR} (yellow, PDB ID: 7dfv), ROQ1^{TIR} (purple, PDB ID: 7jlx), RUN1^{TIR} (green, PDB ID: 7rx1) and SARM1^{TIR} (cyan, PDB ID: 6o0r), shows a similar packing arrangement between SARM1^{TIR} and plant TIRs. **B**, RUN1^{TIR} AE interface and SARM1^{TIR} interface. **C**, RPP1^{TIR} and SARM1^{TIR} BE interface superimposition. The position of the BB-loop is strikingly similar between RPP1^{TIR} tetramer and SARM1^{TIR}. **D-F**, position of residues in the aE helix, and BB-loop and NAD⁺ binding site of SARM1^{TIR} and mutants. **D**, shows the wild type SARM1^{TIR} (PDB ID: 6o0r), **E**, shows SARM1^{TIR(G601P)} (PDB ID: 6o0v). The BB-loop has adopted a closed conformation. **F**, shows SARM1^{TIR(H685A)} (PDB ID: 6o0u), effecting some positions of residues around the NAD⁺ binding site.