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ABSTRACT

For many environments, biome-specific microbial gene catalogues are being recovered using
shotgun metagenomics followed by assembly and gene-calling on the assembled contigs. The
assembly can be conducted either by individually assembling each sample or by co-assembling
reads from all the samples. The co-assembly approach can potentially recover genes that display
too low abundance to be assembled from individual samples. On the other hand, combining
samples increases the risk of mixing data from closely related strains, which can hamper the
assembly process. In this respect, assembly on individual samples followed by clustering of (near)
identical genes is likely preferable. Thus, both approaches have pros and cons and it remains to be
evaluated which assembly strategy is most effective. Here, we have evaluated three assembly
strategies for generating gene catalogues from metagenomes using a dataset of 124 samples from
the Baltic Sea: 1) assembly on individual samples followed by clustering of the resulting genes, 2)
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co-assembly on all samples, and 3) mix-assembly, combining individual and co-assembly. The
mix-assembly approach resulted in a more extensive non-redundant gene set than the other
approaches, and with more genes predicted to be complete and that could be functionally
annotated. The mix-assembly consists of 67 million genes (Baltic Sea gene set; BAGS) that have
been functionally and taxonomically annotated. The majority of the BAGS genes are dissimilar
(<95% amino acid identity) to the Tara Oceans gene dataset, and hence BAGS represents a

valuable resource for brackish water research.

IMPORTANCE

Several ecosystem types, such as soils and oceans, are studied through metagenomics. It allows
the analysis of genetic material of the microbes within a sample without the need for cultivation.
When performing the DNA sequencing with an instrument that generates short sequence reads,
these reads need to be assembled in order to obtain more complete gene sequences. In this paper,
we have evaluated three strategies for assembling metagenome sequences using a large
metagenomic dataset from the Baltic Sea. The method that we call mix-assembly generated the
greatest number of non-redundant genes and the largest fraction of genes that were predicted to be
complete. The resulting gene catalogue will serve as an important resource for brackish water

research. We believe this method to be efficient also for generating gene catalogs for other biomes.
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INTRODUCTION

High-throughput sequencing has led to the establishment of the metagenomic field, allowing the
direct analysis of genetic material contained within an environmental sample (1). This approach
offers a detailed characterization of complex microbial communities without the need for
cultivation. It can be used to address questions like which microorganisms are present, what are
they capable of doing, and how do they interact. Metagenomics has been used for studying several
ecosystem types, such as soils, human gut and oceans (2-4)

For many environments, biome-specific gene catalogues have been recovered using shotgun
metagenomics, followed by assembly and gene calling on the assembled contigs. Examples are the
Integrated Reference Catalog of the Human Microbiome (4) and the Tara Oceans gene catalog (2).
Gene catalogs facilitate the discovery of novel gene functions and gene variants. Annotated gene
catalogs can also serve as genomic backbones onto which sequencing reads from metagenomes
and metatranscriptomes, as well as mass-spectrometry spectra from metaproteomics, can be
mapped, which enables fast and accurate taxonomic and functional profiling with such datasets.

The assembly can be carried out either by co-assembling reads from all the samples (or
groups of samples) or individually assembling reads from each sample. The co-assembly approach
has the advantage that some genes displaying too low abundance to be assembled from individual
samples may reach enough coverage to be recovered. However, combining data from many
samples often means mixing data from a diversity of closely related strains (from the same
species). This fine-scale genomic variation can compromise the assembly process because the de-
Bruijn graph will include many alternative paths. Consequently, the assembler may decide to break

the graph in smaller pieces, which can result in fragmented genes.
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An alternative approach is to perform assembly on each sample individually. The
individually assembled samples approach will minimize the mixing of data from different strains
and therefore potentially result in more completely assembled genes, at least for fairly abundant
genomes. However, another problem arises, which is that (more or less) identical genes from
multiple samples will be reconstructed. To serve as a reference dataset, it is desirable to have a
non-redundant set of genes. Sequence redundancy removal can be achieved by clustering the gene
sequences (or their protein translations (5) ) resulting from the different assemblies based on
sequence similarity, using some cut-off criteria. For each gene cluster, a representative sequence
is then chosen based on e.g., gene completeness, centrality in the cluster, or abundance in the
dataset.

Recently, a Baltic Sea specific gene catalog with 6.8 million genes was constructed based
on the metagenomic data from 81 water samples spanning the spatiotemporal gradients of the
Baltic Sea (6). For the construction of the Baltic Sea specific gene catalog, all the 2.6 billion (i.e.,
10°) reads were co-assembled and genes called on all contigs >1,000 bp. While this gene catalogue
has established itself as a useful resource for analysing metagenome and metatranscriptome
datasets from brackish environments (7-11), only ca 10% of the shotgun reads from a typical
Baltic Sea metagenome sample are mapping to genes with a functional annotation (6). A reason
for the seemingly low coverage could be that the co-assembly approach has resulted in a
fragmented assembly. A more comprehensive reference gene catalogue would hence be desirable
for this environment. In this study, we conduct an extensive comparison of three assembly
approaches on an expanded set of metagenome samples from the Baltic Sea, and present an

updated gene catalogue for the Baltic Sea microbiome.
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87 MATERIALS AND METHODS
88  Metagenome samples. Five previously published sample sets (6, 7, 12) were used in this study.
89  The sampling locations are shown in Fig. S1 and a brief description of sample retrieval and
90 sequencing is given in Table S1; for further details we refer to the original publications.
91  Sequencing of all sample sets was conducted using lllumina Hiseq 2500.
92
93  Pre-processing of reads. Removal of low-quality bases was performed earlier (7) using Cutadapt
94  (13) (parameters -q 15,15) followed by adapter removal (parameters -n 3 —minimum-length 31).
95  The resulting read files were thereafter screened for PCR duplicates using FastUniq (14) with
96  default parameters.
97
98  Assembly. Individual assemblies on the 124 samples were performed earlier (7), using MEGAHIT
99  (15) v.1.1.2 with the “--presets meta-sensitive” option. For the co-assembly conducted here, all
100  pre-processed reads were first combined and normalised using BBnorm of BBmap v.38.08
101  (https://sourceforge.net/projects/bbmap/) with the following parameters: target=70, mindepth=2,
102  prefilter=t. Also, the normalized read set was too extensive to allow co-assembly with the tag
103 “presets —meta-sensitive” with MEGAHIT. Therefore, they were assembled with “--presets meta-
104  large” (using MEGAHIT v.1.1.2), as recommended for complex metagenomes in the MEGAHIT
105  documentation.
106
107  Gene prediction. Genes were predicted on contigs (from the co-assembly and from the individual
108  assemblies) using Prodigal (16) v.2.6.3 with the -p meta option.

109
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110  Protein clustering. Clustering of the proteins stemming from the different samples for the
111  individual-assembly, and from the co-assembly for the mix-assembly strategy, was performed
112 using MMseqs2 (17) wusing the cascaded clustering mode (mmseqgs cluster,
113 https://mmseqgs.com/latest/userguide.pdf). Clustering was first performed on the proteins from the
114  individual assemblies, and the cluster-representative proteins were subsequently clustered with the
115  co-assembly proteins. The following parameters were used in the two MMseqs2 runs: -c 0.95; --
116  min-seg-id 0.95; --cov-mod 1; --clust-mod 2. This means proteins displaying >95% amino acid
117  identity were clustered. Strains belonging to the same prokaryotic species generally display >95%
118  average amino acid identity (18). As recommended in the MMseq2 user guide, -cov-mod 1 was
119  used, since it allows clustering of fragmented proteins (as often occurs in metagenomic datasets).
120  With --cov-mode 1 only sequences are clustered that have a sequence length overlap greater than
121  the percentage specified by -c (i.e. 95% with -c 0.95) of the target sequence. In MMseqs2, the
122 query is seen as the representative sequence, and the target is a member sequence. To lower the
123 risk for fragmented proteins becoming cluster-representative sequences, -cluster-mode 2 was used,
124  again following the recommendations of the MMseq?2 user guide. It sorts sequences by length and
125 in each clustering step forms a cluster containing the longest sequence and the sequences that it

126  matches.

127
128 Read mapping and counting. Random subsets of 10,000 non-normalized forward reads per

129  sample were created using seqtk v.1.2-r101-dirty (https://github.com/Ih3/seqtk), with seed 100 (-s

130 100). These reads (12.4 million in total) were mapped to the representative gene sequences from
131  either the individual, co-, or mix-assembly using Bowtie2 v.2.3.4.3 (19), with the parameter “--

132 local”. The resulting SAM files were converted to BAM with Samtools v.1.9 (20). The htseqg-count
6
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133 script from HTSeq (21) v.0.11.2 was used to obtain raw counts per gene, with the parameters “-f
134 bam -r pos -t CDS -i ID -s no -a 0”. For the counting, GFF input files were used, created using the

135  script create_gff.py available at https://github.com/EnvGen/toolbox/tree/master/scripts. In order to

136  estimate read depth coverage of the genes in the total metagenome, we multiplied the counts per
137  gene by the average read-pair length divided by the length of the gene, and multiplied this number
138  with the total number of read-pairs in the whole dataset divided by the total number of randomly
139  sampled forward reads. This is a rough estimation of the coverage of each gene in the total
140  metagenome, however after normalisation with BBnorm, high coverage genes will get a lower
141  coverage.

142

143  Functional annotations. Functional annotation of proteins were conducted using EGgNOG (22),
144  Pfam (23), and dbCAN (24). Annotations against Pfam v.31.0 and dbCAN v.5.0 were conducted
145  with hmmsearch and hmmscan (25), respectively, in HMMER v.3.2.1, selecting hits with E-value
146 < 0.001. Annotations against EQgNOG v.4.5.1 were performed using eggNOG-mapper v.1.0.3
147  (26), using Accelerated Profile HMM Searches (27), following the recommendation for setting up
148 large annotation jobs.

149

150  Taxonomic affiliation. MMsegs2 (v13.45111) taxonomy (28), with parameters "--orf-filter O --
151 tax-lineage 1", was used to assign taxonomic labels to contigs from which representative genes
152  were predicted. MMseqs2 taxonomy uses an approximate 2bLCA (Lowest Common Ancestor,
153  LCA) approach. GTDB (29, 30) v.202 was used as a reference database for Bacteria and Archaea
154  and Uniprot90 (31) (downloaded on June 4th, 2021) for Eukaryota and Viruses.

155
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156  RNA gene screening. Barrnap v.0.9 (32), using default parameters, was used to identify potential
157  rRNA genes, and identification of rRNA and other potential RNA genes in the mix-assembly gene
158  set was conducted using the Rfam v.14.6 (33) database, with hmmsearch (25), in HMMER v.3.3.2,
159  with flag “--cut _ga”. The union of genes identified as rRNA by Barnap and Rfam/hmmsearch
160  were removed from the final gene set.

161

162  Data availability. The shotgun reads and individual sample assemblies have been published
163  earlier (6, 7, 12). The co-assembly contigs and the mix-assembly gene set (BAGS) together with
164  annotations are available at the SciLifeLab Data Repository powered by Figshare,

165  https://doi.org/10.17044/scilifelab.16677252. The contigs for the individual assemblies were

166  published earlier (7) and are available at ENA hosted by EMBL-EBI under the study accession
167 number PRJEB34883. When using the BAGS gene set in your work, please cite Alneberg et al.

168  (2020)(7) in addition to this study.

169 RESULTS

170  We used a set of 124 metagenome samples from the Baltic Sea ((6, 7, 12); Fig. S1) to evaluate
171  three assembly approaches for generating a non-redundant gene catalogue: co-assembly on all
172 samples (‘co-assembly’), assembly on individual samples (‘individual-assembly’), and a
173  combination of the previous two (‘mix-assembly’). For the co-assembly, due to the complexity of
174  the dataset, direct co-assembly of all reads was not possible, even on a server with 1 TB of memory.
175  Therefore, the reads were first normalised such that reads stemming from highly abundant

176  genomes (with high-frequency k-mers) were down-sampled (to a depth of 70x coverage), and those
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177  presumably derived from errors (with a depth below 2x) were removed. This reduced the total
178  number of read-pairs from 5.4 to 2.9 billion.

179 Since the contigs of the co-assembly are derived from reads from all samples, it will result
180 in a non-redundant set of genes. In contrast, genes from the individually assembled samples may
181  overlap between samples. To reduce this redundancy, clustering was conducted on the encoded
182  proteins (17). We used a cutoff of 95% amino acid identity, conforming to that strains belonging
183  tothe same species typically display more than 95% average amino acid identity (18). This reduced
184  the number of individual-assembly genes from 134 to 50 million. Likewise, clustering was
185  conducted on the co-assembly proteins together with the non-redundant set of individual-assembly
186  proteins, to generate the mix-assembly gene set.

187 The mix-assembly approach resulted in the largest number of non-redundant genes (67 M),
188  followed by individual assembly (50 M) and co-assembly (45 M; Table 1). Mix-assembly also had
189  the largest number of genes predicted to be complete (12 M) followed closely by co-assembly (11
190 M), but twice as many as individual assembly (6 M; Table 1).

191 The gene size distributions were fairly similar for the three approaches (Fig. 1), with peaks
192  inthe distributions between 300 and 350 bp. Co-assembly had the largest median gene length (336
193  bp), although mix-assembly had the largest number of genes along the full range of gene sizes
194  (Fig. 2).

195 Annotating the proteins against Pfam (23) gave the largest number of annotated genes for
196  mix-assembly (15 M) followed by co-assembly (13 M) and individual-assembly (12 M), despite
197  that co-assembly had a higher proportion of genes with annotation (29.4%) compared to the other

198  two (23.0% for mix-assembly, 23.8% for individual assembly; Table 2).
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199 Since biome-specific gene catalogues are often used as reference sequences for mapping
200  of shotgun reads from metagenomes or transcriptomes, we further evaluated the gene sets by
201  mapping reads from the metagenome samples to them. The average mapping rates for the 124
202  samples were 83.9, 84.7, and 87.7% for individual-, co- and mix-assembly, respectively, with
203 numbers ranging from 47.5, 49.2 and 53.2% to 96.2, 96.1 and 97.3% for individual-, co- and mix-
204  assembly. The mix-assembly read-mapping rate was significantly higher than the individual-
205  (Wilcoxon rank-sum test, P < 10°) and co-assembly (P < 104) rates (Fig. 3a). Fig. 4 presents the
206  cumulative mapping rate by gene size, showing the proportion of reads mapping at different gene
207  length cut-offs. For all three assembly strategies, the highest fraction of reads mapping corresponds
208  to complete genes, followed by partial genes. Of the three, mix-assembly had the highest fraction
209  of mapping reads mapping to complete genes (42.6%), and the lowest to partial (32.0%) and
210 incomplete (13.1%) genes. Mix-assembly also had the highest proportion of reads mapping to
211 genes with a Pfam annotation (56.9%, p.adj.value = 0.052 - Wilcoxon rank-sum test - p-value
212  adjust method FDR), followed by co-assembly (54.0%) and individual-assembly (54.0%)(Fig. 3b).
213 The contribution of genes from the individual- and co-assembly to the mix-assembly set of
214  genes is shown in Fig 5. A majority (52%) of the mix-assembly genes originates from co-assembly
215 genes (Fig. 5a), representing 67% of the complete and 50% and 45% of the partial and incomplete
216  genes, respectively (data not shown). However, among the reads that map to the mix-assembly
217  genes, a larger fraction of reads map to genes derived from the individual-assembly than to genes
218  derived from the co-assembly (Fig. 5b). These seemingly conflicting results may reflect that mix-
219  assembly genes derived from the individual-assembly tend to be of higher abundance in the
220  microbial communities than those from the co-assembly. This was confirmed by grouping the mix-

221 assembly genes in low, median and high coverage genes, where the majority of mapping reads
10
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222  mapped to genes derived from co-assembly for low coverage genes but to genes derived from
223 individual-assembly for high coverage genes (Fig. 5c).

224 The mix-assembly gene set is significantly more extensive than the previously published
225  Baltic Sea gene catalogue (BARM;(6)) and may serve as a valuable resource for brackish water
226  research We compared the mix-assembly protein set with the Tara Ocean Microbial Reference
227  Gene Catalog (OMG-RGC.v2 (34)). Of the 67.5 M representative mix-assembly proteins, only 1.4
228 M were >95% identical to Tara proteins, and vice versa, of the 46.7 M Tara proteins, 1.3 M were
229  >95% identical to the representative mix-assembly proteins. Hence, the vast majority of the mix-
230 assembly gene sequences are distinct from Tara genes. To increase the usefulness of the mix-
231 assembly gene set, we removed genes potentially encoding ribosomal RNA and thus falsely
232  predicted as protein-coding (n=16,804), and conducted taxonomic and functional annotation on
233 the remaining genes. A subset of the genes (n=70,223) was predicted to include encodings of other
234 structural RNAs (in Rfam (33)), but we decided to keep these since they may also encode important
235  protein-coding regions. The resulting gene set, that we call BAltic Gene Set (BAGS.v1),
236  encompasses 67,566,251 genes, of which 31.0 M have a taxonomic affiliation (Fig. S2) and 23.4
237 M have at least one type of functional annotation: 15.5 M with PFAM, 21.5 M with EggNOG (22),
238 1.5 M with dbCAN (24) annotation (Table 3). Twentyseven percent of the BAGS.v1 genes were
239  predicted to be of eukaryotic origin. It should however be noted that the gene predictions were
240  conducted with a gene caller for prokaryotic genes (Prodigal) and that a fraction of the eukaryotic

241  genes has likely been imperfectly predicted.

11
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242  DISCUSSION

243  Metagenome assembly is commonly carried out either by individually assembling reads from each
244 sample (35) or by co-assembling reads from all the samples of a dataset (2, 6). Here, the
245  performance of these assembly approaches was compared. Although the number of genes was
246  lower for the co-assembly, the total length (in number of base pairs) was higher than for the
247  individual assembly. The two gene sets reported a similar mapping rate, although the co-assembly
248  set had a higher number of genes predicted to be complete and a lower number of partial and
249  incomplete genes than the individual-assembly set. In this study, we also proposed a new approach
250  for assembly, aiming to combine the advantages of the individual- and co-assembly approaches,
251  referred to as mix-assembly. The mix-assembly strategy resulted in significantly (35 and 48%)
252  more genes than the other approaches and also in the largest number of complete genes. It further
253  gave the highest mapping rates and the greatest number of genes with a Pfam annotation. The
254 reason why not only the number of genes, but also the number of complete genes increased
255  compared to the other approaches, is likely because in the protein clustering process the longest
256  proteins were selected to form cluster seeds. Thus, if for example an incomplete or partial protein
257  from the co-assembly set forms a cluster with a complete protein from the individual-assembly,
258  the complete protein will likely represent this cluster in the mix-assembly, since it is longer.
259  Thereby, the clustering step that combines the two gene sets enriches for complete proteins.
260  However, it may also to some extent enrich for artificially long proteins that may stem from
261  sequencing or gene calling errors.

262 Analysing the contribution of individual- and co-assembly genes in the set of mix-assembly
263  genes showed that genes with relatively low coverage (low number of mapping reads) in the

264  samples were mainly stemming from the co-assembly. This likely reflects that co-assembly
12
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265  sometimes is able to recover genes that display too low coverage to be assembled from individual
266  samples. On the other hand, genes with relatively high coverage were mostly originating from the
267  individual-assembly, which may be caused by the co-assembly sometimes breaking in such genes
268  due to strain variation. If strain variation for such a gene is less pronounced in at least one of the
269 individual samples, a longer fraction of the gene could be recovered in the individual-assembly.

270 The 67 million genes of the mix-assembly are based on 124 metagenome samples that span
271  the salinity and oxygen gradients of the Baltic Sea and also capture seasonal dynamics at two
272  locations (7). This dataset (BAGS.v1) is a 10-fold expansion compared to our previous gene set
273  (6) and has the potential to serve as an important resource for exploring gene functions and serve
274  as a backbone for mapping of meta-omics data from brackish environments. Consistent with our
275  earlier study showing that the prokaryotes of the Baltic Sea are closely related to but genetically
276  distinct from freshwater and marine relatives (35), only a small fraction of the mix-assembly genes
277  displayed >95% amino acid similarity to genes of the Tara Ocean gene catalogue. This implies
278  that the Tara Ocean catalogue is not suitable for mapping of meta-omics data from the Baltic Sea
279  and emphasizes the need for a brackish water microbiome reference gene catalogue. The gene
280 catalog BAGS.vl, including gene and protein sequences, and taxonomic and functional
281 annotations, is  publicly available at the SciLifeLab Data  Repository,

282  https://doi.org/10.17044/scilifelab.16677252.
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400 FIGURE LEGENDS

401 FIG 1 Gene size distributions of the three assembly approaches. (a) Co-assembly. (b)
402  Individual-assembly. (c) Mix-assembly. Only genes <1500 bp are included in the histograms.
403

404 FIG 2 Cumulative distribution of gene sizes for the three assembly approaches. (a) All genes.
405  (b) Complete genes. (c) Partial genes. (d) Incomplete genes.

406

407 FIG 3 Read mapping rates to genes from the three assembly approaches. The boxplots

408  show the distribution of mapping rate (% of reads) for the 124 samples, based on a random

409  subset of 10,000 forward reads per sample. (a) For all genes. (b) For genes with Pfam annotation.
410

411 FIG 4 Read mapping rate as a function of gene length cut off. The plots show the ratio of
412  reads mapping at different cut-offs on minimum gene length. (a) All genes. (b) Complete genes.
413  (c) Partial genes. (d) Incomplete genes.

414

415 FIG 5 Contribution of genes from individual-assembly and co-assembly to the mix-

416  assembly gene set. (a) Cumulative distribution of gene sizes for the mix-assembly genes: for all
417  (‘All Mix’) and for those derived from individual-assembly (‘from Ind’) and co-assembly (‘from
418 Co’). (b) Read mapping rate as a function of gene size cut off.(c) Total number of reads

419  mapping to mix-assembly genes derived from either individual-assembly or co-assembly, for
420  four bins of genes binned by their estimated coverage in the total metagenome (see Methods):
421  low (0 - 50 x), median (50 - 500 x), high (500 - 5,000 x) and very high (5,000 - 250,000 x) read

422  depth coverage.
20
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423  FIG S1 Map with sampling locations. The marker colour shows the salinity of the water sample
424  and its size, the sampling depth. The contour lines indicate depth with 50 m intervals.

425

426  FIG S2 BAG interactive taxonomic affiliation figure. Available at the SciLifeLab Data

427  Repository, https://doi.org/10.17044/scilifelab.16677252

428

429 TABLE FOOTNOTES

430 TABLE 1 Assembly and gene statistics of the different assembly approaches.

431 TABLE 2 Statistics on Pfam annotations for the different assembly approaches.

432  TABLE 3 Statistics on mix-assembly proteins annotated against different databases.
433 TABLE S1 Sample retrieval and sequencing description (further sample description in

434  references).
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Table 1. Representative gene characterisation of different assembly approaches.

Assembl Number of Num. of Num. of Num. of Num. of
Y Total bps genes 2100  Complete Partial Incomplete
approach genes
bp genes genes Genes
Individual ~ 18,770,879,205 50,045,582 45,859,319 6,258,868 27,073,554 16,713,160
Co 20,347,887,912 45,455,222 42,278,556 11,443,584 23,815,733 10,195,905
Mix 27,043,772,505 67,583,055 61,576,531 12,690,647 37,345,617 17,546,791
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Table 2. Pfam annotation of representative proteins from different assembly

approaches.
Assembly Total number of Number of Number of Number of
approach annotated genes  annotated complete annotated partial annotated
genes genes incomplete genes
Individual 11930617 2422 526 4751 188 4756 903
Co 13 343 858 4514 607 5128 252 3700 999
Mix 15 566 195 4 584 290 5751705 5230200
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Table 3. Number of mix-assembly representative genes annotated against several

databases.
Gene dbCAN EggNOG Pfam
completeness
complete 420422 5354169 4582 506
partial 562 445 8374 034 5751622
Incomplete 603 580 7 865 395 5230173
TOTAL 1 586 447 21593 598 15 564 301
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