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ABSTRACT 10 

For many environments, biome-specific microbial gene catalogues are being recovered using 11 

shotgun metagenomics followed by assembly and gene-calling on the assembled contigs. The 12 

assembly can be conducted either by individually assembling each sample or by co-assembling 13 

reads from all the samples. The co-assembly approach can potentially recover genes that display 14 

too low abundance to be assembled from individual samples.  On the other hand, combining 15 

samples increases the risk of mixing data from closely related strains, which can hamper the 16 

assembly process. In this respect, assembly on individual samples followed by clustering of (near) 17 

identical genes is likely preferable. Thus, both approaches have pros and cons and it remains to be 18 

evaluated which assembly strategy is most effective. Here, we have evaluated three assembly 19 

strategies for generating gene catalogues from metagenomes using a dataset of 124 samples from 20 

the Baltic Sea: 1) assembly on individual samples followed by clustering of the resulting genes, 2) 21 
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co-assembly on all samples, and 3) mix-assembly, combining individual and co-assembly. The 22 

mix-assembly approach resulted in a more extensive non-redundant gene set than the other 23 

approaches, and with more genes predicted to be complete and that could be functionally 24 

annotated. The mix-assembly consists of 67 million genes (Baltic Sea gene set; BAGS) that have 25 

been functionally and taxonomically annotated. The majority of the BAGS genes are dissimilar 26 

(<95% amino acid identity) to the Tara Oceans gene dataset, and hence BAGS represents a 27 

valuable resource for brackish water research. 28 

 29 

IMPORTANCE 30 

Several ecosystem types, such as soils and oceans, are studied through metagenomics. It allows 31 

the analysis of genetic material of the microbes within a sample without the need for cultivation. 32 

When performing the DNA sequencing with an instrument that generates short sequence reads, 33 

these reads need to be assembled in order to obtain more complete gene sequences. In this paper, 34 

we have evaluated three strategies for assembling metagenome sequences using a large 35 

metagenomic dataset from the Baltic Sea. The method that we call mix-assembly generated the 36 

greatest number of non-redundant genes and the largest fraction of genes that were predicted to be 37 

complete. The resulting gene catalogue will serve as an important resource for brackish water 38 

research. We believe this method to be efficient also for generating gene catalogs for other biomes.  39 

  40 

41 
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INTRODUCTION 42 

High-throughput sequencing has led to the establishment of the metagenomic field, allowing the 43 

direct analysis of genetic material contained within an environmental sample (1). This approach 44 

offers a detailed characterization of complex microbial communities without the need for 45 

cultivation. It can be used to address questions like which microorganisms are present, what are 46 

they capable of doing, and how do they interact. Metagenomics has been used for studying several 47 

ecosystem types, such as soils, human gut and oceans (2–4) 48 

For many environments, biome-specific gene catalogues have been recovered using shotgun 49 

metagenomics, followed by assembly and gene calling on the assembled contigs. Examples are the 50 

Integrated Reference Catalog of the Human Microbiome (4) and the Tara Oceans gene catalog (2). 51 

Gene catalogs facilitate the discovery of novel gene functions and gene variants. Annotated gene 52 

catalogs can also serve as genomic backbones onto which sequencing reads from metagenomes 53 

and metatranscriptomes, as well as mass-spectrometry spectra from metaproteomics, can be 54 

mapped, which enables fast and accurate taxonomic and functional profiling with such datasets.  55 

The assembly can be carried out either by co-assembling reads from all the samples (or 56 

groups of samples) or individually assembling reads from each sample. The co-assembly approach 57 

has the advantage that some genes displaying too low abundance to be assembled from individual 58 

samples may reach enough coverage to be recovered.  However, combining data from many 59 

samples often means mixing data from a diversity of closely related strains (from the same 60 

species). This fine-scale genomic variation can compromise the assembly process because the de-61 

Bruijn graph will include many alternative paths. Consequently, the assembler may decide to break 62 

the graph in smaller pieces, which can result in fragmented genes. 63 
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An alternative approach is to perform assembly on each sample individually. The 64 

individually assembled samples approach will minimize the mixing of data from different strains 65 

and therefore potentially result in more completely assembled genes, at least for fairly abundant 66 

genomes. However, another problem arises, which is that (more or less) identical genes from 67 

multiple samples will be reconstructed. To serve as a reference dataset, it is desirable to have a 68 

non-redundant set of genes. Sequence redundancy removal can be achieved by clustering the gene 69 

sequences (or their protein translations (5) ) resulting from the different assemblies based on 70 

sequence similarity, using some cut-off criteria. For each gene cluster, a representative sequence 71 

is then chosen based on e.g., gene completeness, centrality in the cluster, or abundance in the 72 

dataset. 73 

Recently, a Baltic Sea specific gene catalog with 6.8 million genes was constructed based 74 

on the metagenomic data from 81 water samples spanning the spatiotemporal gradients of the 75 

Baltic Sea (6). For the construction of the Baltic Sea specific gene catalog, all the 2.6 billion (i.e., 76 

109) reads were co-assembled and genes called on all contigs >1,000 bp. While this gene catalogue 77 

has established itself as a useful resource for analysing metagenome and metatranscriptome 78 

datasets from brackish environments (7–11), only ca 10% of the shotgun reads from a typical 79 

Baltic Sea metagenome sample are mapping to genes with a functional annotation (6). A reason 80 

for the seemingly low coverage could be that the co-assembly approach has resulted in a 81 

fragmented assembly. A more comprehensive reference gene catalogue would hence be desirable 82 

for this environment. In this study, we conduct an extensive comparison of three assembly 83 

approaches on an expanded set of metagenome samples from the Baltic Sea, and present an 84 

updated gene catalogue for the Baltic Sea microbiome. 85 

 86 
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MATERIALS AND METHODS 87 

Metagenome samples. Five previously published sample sets (6, 7, 12) were used in this study. 88 

The sampling locations are shown in Fig. S1 and a brief description of sample retrieval and 89 

sequencing is given in Table S1; for further details we refer to the original publications. 90 

Sequencing of all sample sets was conducted using Illumina Hiseq 2500. 91 

 92 

Pre-processing of reads. Removal of low-quality bases was performed earlier (7) using Cutadapt 93 

(13) (parameters -q 15,15) followed by adapter removal (parameters -n 3 –minimum-length 31). 94 

The resulting read files were thereafter screened for PCR duplicates using FastUniq (14) with 95 

default parameters. 96 

 97 

Assembly. Individual assemblies on the 124 samples were performed earlier (7), using MEGAHIT 98 

(15) v.1.1.2 with the “--presets meta-sensitive” option. For the co-assembly conducted here, all 99 

pre-processed reads were first combined and normalised using BBnorm of BBmap v.38.08 100 

(https://sourceforge.net/projects/bbmap/) with the following parameters: target=70, mindepth=2, 101 

prefilter=t. Also, the normalized read set was too extensive to allow co-assembly with the tag 102 

“presets –meta-sensitive” with MEGAHIT. Therefore, they were assembled with “--presets meta-103 

large” (using MEGAHIT v.1.1.2), as recommended for complex metagenomes in the MEGAHIT 104 

documentation. 105 

 106 

Gene prediction. Genes were predicted on contigs (from the co-assembly and from the individual 107 

assemblies) using Prodigal (16) v.2.6.3 with the -p meta option. 108 

 109 
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Protein clustering. Clustering of the proteins stemming from the different samples for the 110 

individual-assembly, and from the co-assembly for the mix-assembly strategy, was performed 111 

using MMseqs2 (17) using the cascaded clustering mode (mmseqs cluster, 112 

https://mmseqs.com/latest/userguide.pdf).  Clustering was first performed on the proteins from the 113 

individual assemblies, and the cluster-representative proteins were subsequently clustered with the 114 

co-assembly proteins. The following parameters were used in the two MMseqs2 runs: -c 0.95; --115 

min-seq-id 0.95; --cov-mod 1; --clust-mod 2. This means proteins displaying ≥95% amino acid 116 

identity were clustered. Strains belonging to the same prokaryotic species generally display >95% 117 

average amino acid identity (18). As recommended in the MMseq2 user guide, -cov-mod 1 was 118 

used, since it allows clustering of fragmented proteins (as often occurs in metagenomic datasets). 119 

With --cov-mode 1 only sequences are clustered that have a sequence length overlap greater than 120 

the percentage specified by -c (i.e. 95% with -c 0.95) of the target sequence. In MMseqs2, the 121 

query is seen as the representative sequence, and the target is a member sequence. To lower the 122 

risk for fragmented proteins becoming cluster-representative sequences, -cluster-mode 2 was used, 123 

again following the recommendations of the MMseq2 user guide. It sorts sequences by length and 124 

in each clustering step forms a cluster containing the longest sequence and the sequences that it 125 

matches. 126 

 127 

Read mapping and counting. Random subsets of 10,000 non-normalized forward reads per 128 

sample were created using seqtk v.1.2-r101-dirty (https://github.com/lh3/seqtk), with seed 100 (-s 129 

100). These reads (12.4 million in total) were mapped to the representative gene sequences from 130 

either the individual, co-, or mix-assembly using Bowtie2 v.2.3.4.3 (19), with the parameter “--131 

local”. The resulting SAM files were converted to BAM with Samtools v.1.9 (20). The htseq-count 132 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 2, 2021. ; https://doi.org/10.1101/2021.09.30.462683doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.30.462683
http://creativecommons.org/licenses/by-nd/4.0/


7 

 

script from HTSeq (21) v.0.11.2 was used to obtain raw counts per gene, with the parameters “-f 133 

bam -r pos -t CDS -i ID -s no -a 0”. For the counting, GFF input files were used, created using the 134 

script create_gff.py available at https://github.com/EnvGen/toolbox/tree/master/scripts. In order to 135 

estimate read depth coverage of the genes in the total metagenome, we multiplied the counts per 136 

gene by the average read-pair length divided by the length of the gene, and multiplied this number 137 

with the total number of read-pairs in the whole dataset divided by the total number of randomly 138 

sampled forward reads. This is a rough estimation of the coverage of each gene in the total 139 

metagenome, however after normalisation with BBnorm, high coverage genes will get a lower 140 

coverage. 141 

 142 

Functional annotations. Functional annotation of proteins were conducted using EggNOG (22), 143 

Pfam (23), and dbCAN (24). Annotations against Pfam v.31.0 and dbCAN v.5.0 were conducted 144 

with hmmsearch and hmmscan (25), respectively, in HMMER v.3.2.1, selecting hits with E-value 145 

< 0.001. Annotations against EggNOG v.4.5.1 were performed using eggNOG-mapper v.1.0.3 146 

(26), using Accelerated Profile HMM Searches (27), following the recommendation for setting up 147 

large annotation jobs. 148 

 149 

Taxonomic affiliation. MMseqs2 (v13.45111) taxonomy (28), with parameters "--orf-filter 0 --150 

tax-lineage 1",  was used to assign taxonomic labels to contigs from which representative genes 151 

were predicted. MMseqs2 taxonomy uses an approximate 2bLCA (Lowest Common Ancestor, 152 

LCA) approach. GTDB (29, 30) v.202 was used as a reference database for Bacteria and Archaea 153 

and Uniprot90 (31) (downloaded on June 4th, 2021) for Eukaryota and Viruses. 154 

 155 
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RNA gene screening. Barrnap v.0.9 (32), using default parameters, was used to identify potential 156 

rRNA genes, and identification of rRNA and other potential RNA genes in the mix-assembly gene 157 

set was conducted using the Rfam v.14.6 (33) database, with hmmsearch (25), in HMMER v.3.3.2, 158 

with flag “--cut_ga”.  The union of genes identified as rRNA by Barnap and Rfam/hmmsearch 159 

were removed from the final gene set. 160 

 161 

Data availability.  The shotgun reads and individual sample assemblies have been published 162 

earlier (6, 7, 12). The co-assembly contigs and the mix-assembly gene set (BAGS) together with 163 

annotations are available at the SciLifeLab Data Repository powered by Figshare, 164 

https://doi.org/10.17044/scilifelab.16677252. The contigs for the individual assemblies were 165 

published earlier (7) and are available at ENA hosted by EMBL-EBI under the study accession 166 

number PRJEB34883. When using the BAGS gene set in your work, please cite Alneberg et al. 167 

(2020)(7) in addition to this study.   168 

RESULTS 169 

We used a set of 124 metagenome samples from the Baltic Sea ((6, 7, 12); Fig. S1) to evaluate 170 

three assembly approaches for generating a non-redundant gene catalogue: co-assembly on all 171 

samples (‘co-assembly’), assembly on individual samples (‘individual-assembly’), and a 172 

combination of the previous two (‘mix-assembly’). For the co-assembly, due to the complexity of 173 

the dataset, direct co-assembly of all reads was not possible, even on a server with 1 TB of memory. 174 

Therefore, the reads were first normalised such that reads stemming from highly abundant 175 

genomes (with high-frequency k-mers) were down-sampled (to a depth of 70x coverage), and those 176 
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presumably derived from errors (with a depth below 2x) were removed. This reduced the total 177 

number of read-pairs from 5.4 to 2.9 billion. 178 

Since the contigs of the co-assembly are derived from reads from all samples, it will result 179 

in a non-redundant set of genes. In contrast, genes from the individually assembled samples may 180 

overlap between samples. To reduce this redundancy, clustering was conducted on the encoded 181 

proteins (17). We used a cutoff of 95% amino acid identity, conforming to that strains belonging 182 

to the same species typically display more than 95% average amino acid identity (18). This reduced 183 

the number of individual-assembly genes from 134 to 50 million. Likewise, clustering was 184 

conducted on the co-assembly proteins together with the non-redundant set of individual-assembly 185 

proteins, to generate the mix-assembly gene set. 186 

The mix-assembly approach resulted in the largest number of non-redundant genes (67 M), 187 

followed by individual assembly (50 M) and co-assembly (45 M; Table 1). Mix-assembly also had 188 

the largest number of genes predicted to be complete (12 M) followed closely by co-assembly (11 189 

M), but twice as many as individual assembly (6 M; Table 1).  190 

The gene size distributions were fairly similar for the three approaches (Fig. 1), with peaks 191 

in the distributions between 300 and 350 bp. Co-assembly had the largest median gene length (336 192 

bp), although mix-assembly had the largest number of genes along the full range of gene sizes 193 

(Fig. 2).  194 

Annotating the proteins against Pfam (23) gave the largest number of annotated genes for 195 

mix-assembly (15 M) followed by co-assembly (13 M) and individual-assembly (12 M), despite 196 

that co-assembly had a higher proportion of genes with annotation (29.4%) compared to the other 197 

two (23.0% for mix-assembly, 23.8% for individual assembly; Table 2). 198 
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Since biome-specific gene catalogues are often used as reference sequences for mapping 199 

of shotgun reads from metagenomes or transcriptomes, we further evaluated the gene sets by 200 

mapping reads from the metagenome samples to them. The average mapping rates for the 124 201 

samples were 83.9, 84.7, and 87.7% for individual-, co- and mix-assembly, respectively, with 202 

numbers ranging from 47.5, 49.2 and 53.2% to 96.2, 96.1 and 97.3% for individual-, co- and mix-203 

assembly. The mix-assembly read-mapping rate was significantly higher than the individual- 204 

(Wilcoxon rank-sum test, P < 10-5) and co-assembly (P < 10-4) rates (Fig. 3a). Fig. 4 presents the 205 

cumulative mapping rate by gene size, showing the proportion of reads mapping at different gene 206 

length cut-offs. For all three assembly strategies, the highest fraction of reads mapping corresponds 207 

to complete genes, followed by partial genes. Of the three, mix-assembly had the highest fraction 208 

of mapping reads mapping to complete genes (42.6%), and the lowest to partial (32.0%) and 209 

incomplete (13.1%) genes. Mix-assembly also had the highest proportion of reads mapping to 210 

genes with a Pfam annotation (56.9%, p.adj.value = 0.052 - Wilcoxon rank-sum test - p-value 211 

adjust method FDR), followed by co-assembly (54.0%) and individual-assembly (54.0%)(Fig. 3b). 212 

The contribution of genes from the individual- and co-assembly to the mix-assembly set of 213 

genes is shown in Fig 5. A majority (52%) of the mix-assembly genes originates from co-assembly 214 

genes (Fig. 5a), representing 67% of the complete and 50% and 45% of the partial and incomplete 215 

genes, respectively (data not shown). However, among the reads that map to the mix-assembly 216 

genes, a larger fraction of reads map to genes derived from the individual-assembly than to genes 217 

derived from the co-assembly (Fig. 5b). These seemingly conflicting results may reflect that mix-218 

assembly genes derived from the individual-assembly tend to be of higher abundance in the 219 

microbial communities than those from the co-assembly. This was confirmed by grouping the mix-220 

assembly genes in low, median and high coverage genes, where the majority of mapping reads 221 
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mapped to genes derived from co-assembly for low coverage genes but to genes derived from 222 

individual-assembly for high coverage genes (Fig. 5c). 223 

The mix-assembly gene set is significantly more extensive than the previously published 224 

Baltic Sea gene catalogue (BARM;(6)) and may serve as a valuable resource for brackish water 225 

research We compared the mix-assembly protein set with the Tara Ocean Microbial Reference 226 

Gene Catalog (OMG-RGC.v2 (34)). Of the 67.5 M representative mix-assembly proteins, only 1.4 227 

M were >95% identical to Tara proteins, and vice versa, of the 46.7 M Tara proteins, 1.3 M were 228 

>95% identical to the representative mix-assembly proteins. Hence, the vast majority of the mix-229 

assembly gene sequences are distinct from Tara genes. To increase the usefulness of the mix-230 

assembly gene set, we removed genes potentially encoding ribosomal RNA and thus falsely 231 

predicted as protein-coding (n=16,804), and conducted taxonomic and functional annotation on 232 

the remaining genes. A subset of the genes (n=70,223) was predicted to include encodings of other 233 

structural RNAs (in Rfam (33)), but we decided to keep these since they may also encode important 234 

protein-coding regions. The resulting gene set, that we call BAltic Gene Set (BAGS.v1), 235 

encompasses 67,566,251 genes, of which 31.0 M have a taxonomic affiliation (Fig. S2) and 23.4 236 

M have at least one type of functional annotation: 15.5 M with PFAM, 21.5 M with EggNOG (22), 237 

1.5 M with dbCAN (24) annotation (Table 3). Twentyseven percent of the BAGS.v1 genes were 238 

predicted to be of eukaryotic origin. It should however be noted that the gene predictions were 239 

conducted with a gene caller for prokaryotic genes (Prodigal) and that a fraction of the eukaryotic 240 

genes has likely been imperfectly predicted. 241 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 2, 2021. ; https://doi.org/10.1101/2021.09.30.462683doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.30.462683
http://creativecommons.org/licenses/by-nd/4.0/


12 

 

DISCUSSION 242 

Metagenome assembly is commonly carried out either by individually assembling reads from each 243 

sample (35) or by co-assembling reads from all the samples of a dataset (2, 6). Here, the 244 

performance of these assembly approaches was compared. Although the number of genes was 245 

lower for the co-assembly, the total length (in number of base pairs) was higher than for the 246 

individual assembly. The two gene sets reported a similar mapping rate, although the co-assembly 247 

set had a higher number of genes predicted to be complete and a lower number of partial and 248 

incomplete genes than the individual-assembly set. In this study, we also proposed a new approach 249 

for assembly, aiming to combine the advantages of the individual- and co-assembly approaches, 250 

referred to as mix-assembly. The mix-assembly strategy resulted in significantly (35 and 48%) 251 

more genes than the other approaches and also in the largest number of complete genes. It further 252 

gave the highest mapping rates and the greatest number of genes with a Pfam annotation. The 253 

reason why not only the number of genes, but also the number of complete genes increased 254 

compared to the other approaches, is likely because in the protein clustering process the longest 255 

proteins were selected to form cluster seeds. Thus, if for example an incomplete or partial protein 256 

from the co-assembly set forms a cluster with a complete protein from the individual-assembly, 257 

the complete protein will likely represent this cluster in the mix-assembly, since it is longer. 258 

Thereby, the clustering step that combines the two gene sets enriches for complete proteins. 259 

However, it may also to some extent enrich for artificially long proteins that may stem from 260 

sequencing or gene calling errors.  261 

 Analysing the contribution of individual- and co-assembly genes in the set of mix-assembly 262 

genes showed that genes with relatively low coverage (low number of mapping reads) in the 263 

samples were mainly stemming from the co-assembly. This likely reflects that co-assembly 264 
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sometimes is able to recover genes that display too low coverage to be assembled from individual 265 

samples. On the other hand, genes with relatively high coverage were mostly originating from the 266 

individual-assembly, which may be caused by the co-assembly sometimes breaking in such genes 267 

due to strain variation. If strain variation for such a gene is less pronounced in at least one of the 268 

individual samples, a longer fraction of the gene could be recovered in the individual-assembly. 269 

 The 67 million genes of the mix-assembly are based on 124 metagenome samples that span 270 

the salinity and oxygen gradients of the Baltic Sea and also capture seasonal dynamics at two 271 

locations (7). This dataset (BAGS.v1) is a 10-fold expansion compared to our previous gene set 272 

(6) and has the potential to serve as an important resource for exploring gene functions and serve 273 

as a backbone for mapping of meta-omics data from brackish environments. Consistent with our 274 

earlier study showing that the prokaryotes of the Baltic Sea are closely related to but genetically 275 

distinct from freshwater and marine relatives (35), only a small fraction of the mix-assembly genes 276 

displayed >95% amino acid similarity to genes of the Tara Ocean gene catalogue. This implies 277 

that the Tara Ocean catalogue is not suitable for mapping of meta-omics data from the Baltic Sea 278 

and emphasizes the need for a brackish water microbiome reference gene catalogue. The gene 279 

catalog BAGS.v1, including gene and protein sequences, and taxonomic and functional 280 

annotations, is publicly available at the SciLifeLab Data Repository, 281 

https://doi.org/10.17044/scilifelab.16677252.   282 
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FIGURE LEGENDS 400 

FIG 1  Gene size distributions of the three assembly approaches. (a) Co-assembly. (b) 401 

Individual-assembly. (c) Mix-assembly. Only genes ≤1500 bp are included in the histograms. 402 

 403 

FIG 2  Cumulative distribution of gene sizes for the three assembly approaches. (a) All genes. 404 

(b) Complete genes. (c) Partial genes. (d) Incomplete genes. 405 

 406 

FIG 3  Read mapping rates to genes from the three assembly approaches. The boxplots 407 

show the distribution of mapping rate (% of reads) for the 124 samples, based on a random 408 

subset of 10,000 forward reads per sample. (a) For all genes. (b) For genes with Pfam annotation. 409 

 410 

FIG 4  Read mapping rate as a function of gene length cut off. The plots show the ratio of 411 

reads mapping at different cut-offs on minimum gene length. (a) All genes. (b) Complete genes. 412 

(c) Partial genes. (d) Incomplete genes. 413 

 414 

FIG 5  Contribution of genes from individual-assembly and co-assembly to the mix-415 

assembly gene set. (a) Cumulative distribution of gene sizes for the mix-assembly genes: for all 416 

(‘All Mix’) and for those derived from individual-assembly (‘from  Ind’) and co-assembly (‘from 417 

Co’). (b) Read mapping rate as a function of gene size cut off.(c)  Total number of reads 418 

mapping to mix-assembly genes derived from either individual-assembly or co-assembly, for 419 

four bins of genes binned by their estimated coverage in the total metagenome (see Methods): 420 

low (0 - 50 x), median (50 - 500 x), high (500 - 5,000 x) and very high (5,000 - 250,000 x) read 421 

depth coverage.  422 
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FIG S1  Map with sampling locations. The marker colour shows the salinity of the water sample 423 

and its size, the sampling depth. The contour lines indicate depth with 50 m intervals.  424 

 425 

FIG S2  BAG interactive taxonomic affiliation figure. Available at the SciLifeLab Data 426 

Repository, https://doi.org/10.17044/scilifelab.16677252  427 

 428 

TABLE FOOTNOTES 429 

TABLE 1  Assembly and gene statistics of the different assembly approaches. 430 

TABLE 2  Statistics on Pfam annotations for the different assembly approaches. 431 

TABLE 3  Statistics on mix-assembly proteins annotated against different databases. 432 

TABLE S1  Sample retrieval and sequencing description (further sample description in 433 

references). 434 
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 Table 1. Representative gene characterisation of different assembly approaches. 

Assembly 

approach 
Total bps 

Number of 

genes 

Num. of 

genes ≥100 

bp 

Num. of 

Complete 

genes 

Num. of 

Partial 

genes 

Num. of 

Incomplete 

Genes 

Individual 18,770,879,205 50,045,582 45,859,319 6,258,868 27,073,554 16,713,160 

Co 20,347,887,912 45,455,222 42,278,556 11,443,584 23,815,733 10,195,905 

Mix 27,043,772,505 67,583,055 61,576,531 12,690,647 37,345,617 17,546,791 
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Table 2. Pfam annotation of representative proteins from different assembly 

approaches. 

Assembly 

approach 

Total number of 

annotated genes  

Number of 

annotated complete 

genes  

Number of 

annotated partial 

genes 

Number of 

annotated 

incomplete genes 

Individual 11 930 617 2 422 526 4 751 188 4 756 903 

Co 13 343 858 4 514 607 5 128 252 3 700 999 

Mix 15 566 195 4 584 290 5 751 705 5 230 200 
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Table 3. Number of mix-assembly representative genes annotated against several 

databases. 

Gene 

completeness 
dbCAN EggNOG Pfam 

complete 420 422 5 354 169  4 582 506 

partial 562 445 8 374 034 5 751 622 

Incomplete 603 580 7 865 395 5 230 173 

TOTAL 1 586 447 21 593 598 15 564 301 
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