

1 **CellDepot: A unified repository for scRNA-seq data and visual exploration**

2 Authors: Dongdong Lin^{1†}, Yirui Chen^{1†}, Soumya Negi¹, Derrick Cheng², Zhengyu Ouyang²,
3 David Sexton¹, Kejie Li¹, Baohong Zhang^{1*}

4 Affiliations:

5 ¹Research Department, Biogen, Inc., 225 Binney St, Cambridge, MA 02142, USA

6 ²BioInfoRx, Inc., 510 Charmany Dr, Suite 275A, Madison, WI 53719, USA

7 Emails:

8 DL: dongdong.lin@biogen.com

9 YC: yirui.chen@biogen.com

10 SN: soumya.negi@biogen.com

11 DC: derrick@bioinforx.com

12 ZO: oyoung@bioinforx.com

13 DS: david.sexton@biogen.com

14 KL: kejie.li@biogen.com

15 BZ: baohong.zhang@biogen.com

16 [†] These authors contributed equally to this work

17 * Correspondence: Baohong Zhang, baohong.zhang@biogen.com

18

19 **Abstract**

20 CellDepot serves as an integrated web application to assist users in exploring single-cell
21 RNA-seq (scRNA-seq) datasets and comparing the datasets among various studies through a
22 user-friendly interface with advanced visualization and analytical tools. To begin with, it provides
23 an efficient data management system that users can upload single cell datasets and query the
24 database by multiple attributes such as species and cell types. In addition, the advanced query
25 function incorporated in MySQL database system and its conditional filtering, allows users to
26 quickly query and compare the expression of gene(s) across the datasets of interest. Moreover,
27 by embedding the cellxgene VIP tool, CellDepot enables fast exploration of individual dataset in
28 the manner of interactivity and scalability to gain more refined insights such as cell composition,
29 gene expression profiles, and differentially expressed genes among cell types. In summary, the
30 web portal allows large scale single cell data sharing, analysis and visualization for supporting
31 decision-making, and encouraging scientists to contribute to the single-cell community in a
32 tractable and collaborative way. Finally, CellDepot is released as open-source software to
33 motivate crowd contribution, broad adoption, and local deployment for private data.

34

35 **Keywords**

36 Single cell, Single-cell RNAseq, cellxgene, data visualization, scRNA-seq portal

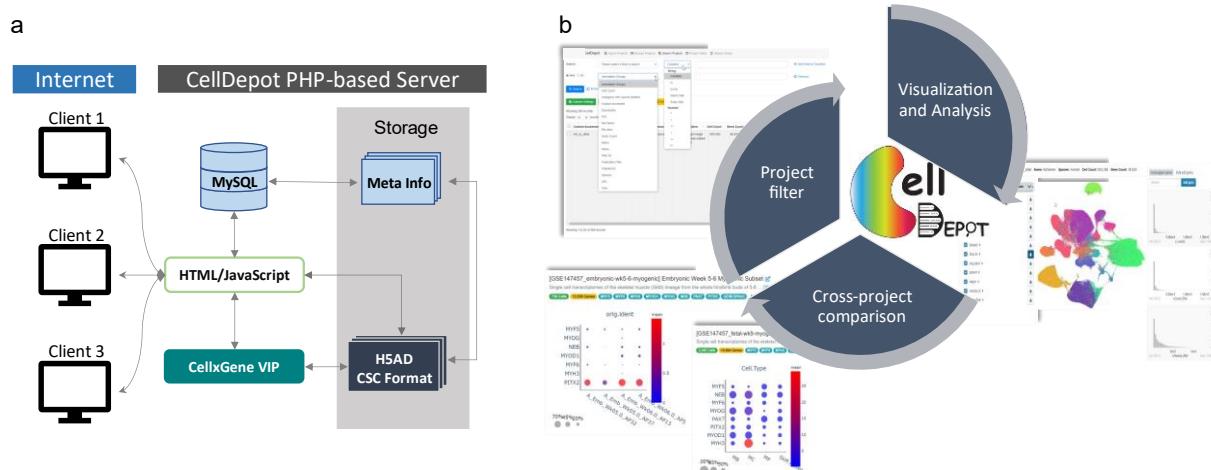
37 **Introduction**

38 Since the first print of using next-generation sequencing technology to analyze the single-
39 cell transcriptome in 2009 [1], this technology has massively ignited the interest in obtaining high-
40 resolution characterizations of each cell's transcriptome. Afterwards, an exponentially growing
41 number of studies utilized this advanced scRNA-seq technology to investigate the expression
42 changes among cells or groups from various sources such as cell lines, tissues, or species [2-5].
43 Meanwhile, substantial efforts have been invested in developing computational pipelines and
44 tools to advance the analysis and visualization of large-scale scRNA-seq data [6-10]. With more
45 scRNA-seq datasets have been published by community, it is urgent to launch some in-depth
46 investigations of the associations of those identified biological variations with cellular
47 heterogeneity. However, many datasets are from different studies or individual labs that are
48 preprocessed in varied ways. Therefore, it is necessary to build a centralized space for managing,
49 analyzing, and visualizing those datasets to yield comprehensive insights from this big data.

50 Several tools and databases have been built to store, analyze, and visualize scRNA-seq
51 datasets, which allow scientists to compile and query the information at their hand. The 'Human
52 Cell Atlas' consortium [11] leads an international collaboration to generates single-cell datasets
53 from human body tissues, which are manually curated and processed by a uniform pipeline.
54 'JingleBells' provides single-cell data [12] focusing on immune cells. The 'conquer' database
55 provides uniformly processed single-cell expression data to facilitate benchmarking of
56 computational tools [13]. The 'PanglaoDB' database provides single-cell RNA-seq count matrices
57 from public sequencing data in the National Center for Biotechnology Information Sequence Read
58 Archive [14]. The 'EMBL-EBI Single-Cell Expression Atlas' provides uniformly processed data
59 from submissions to 'ArrayExpress' [15]. The Broad Institute also offers a public 'Single-Cell
60 Portal' (https://singlecell.broadinstitute.org/single_cell). Although those 'atlas' and portals have
61 greatly facilitated the exploration of single-cell datasets from the database [16-20], they usually

62 tackle certain aspects of managing, visualizing, or analyzing scRNA-seq datasets with limitations
63 on both query and visualization functionalities. For comprehensive review of these portals,
64 detailed feature comparison is outlined in supplementary Table S1.

65 We developed a database-backed single cell portal available at
66 <http://celldepot.bxgenomics.com> with user-friendly interactive visualization and analysis
67 capabilities, namely CellDepot to empower biologists and bioinformaticians to manage, explore,
68 visualize, and compare scRNA-seq datasets in a comprehensive, flexible, and collaborative
69 manner.


70 **Results and Discussion**

71 1. Overview of CellDepot

72 CellDepot is a user-friendly centralized database platform that integrates the database
73 management system along with the search engine. The web-based platform enables the share
74 of scRNA-seq data and efficient communication among the community, which in turn encourages
75 crowd contributions to the online scRNA-seq data portal. Currently, there are more than two
76 hundred scRNA-seq datasets from eight species hosted on the portal for public access. Notably,
77 CellDepot integrates with advanced single-cell transcriptomic data explorer to conduct all
78 analytical tasks on the webserver while presenting interactive results on the webpage through
79 leveraging modern web development techniques (Figure 1a).

80 Highly unified space for managing, exploring, and analyzing comprehensive single-cell
81 datasets is one of the significant strengths of CellDepot. Nowadays, while a few web-based
82 portals for both visualizing and analyzing scRNA-seq datasets are available, they have limitations
83 on scalability and capability in comparing among various datasets to meet increasing demands
84 on examining single-cell RNA-seq datasets. CellDepot employs the MySQL relational database
85 management system, a robust scRNA-seq data visualization tool cellxgene [21], and its versatile
86 plugin cellxgene VIP [22] to allow project selection and filtering, scRNA-seq data visualization and

87 analysis, and cross-project comparison of targeted genes as illustrated Figure 1b.

88

89 Figure 1. CellDepot portal overview. (a) The architecture of CellDepot. (b) Functional structure of CellDepot.

90 2. Features of CellDepot

91 There are mainly three functions built in the platform: project search/filter, visualization and
92 analysis, and cross-project comparison, which will be discussed thoroughly in the following
93 sections.

94 a. Data filtering

95 scRNA-seq datasets are stored as h5ad files in the compressed sparse column (CSC)
96 format and managed efficiently in the CellDepot together with the metadata table of projects. For
97 each dataset, some primary metadata fields are inputted by users and can be updated as needed.

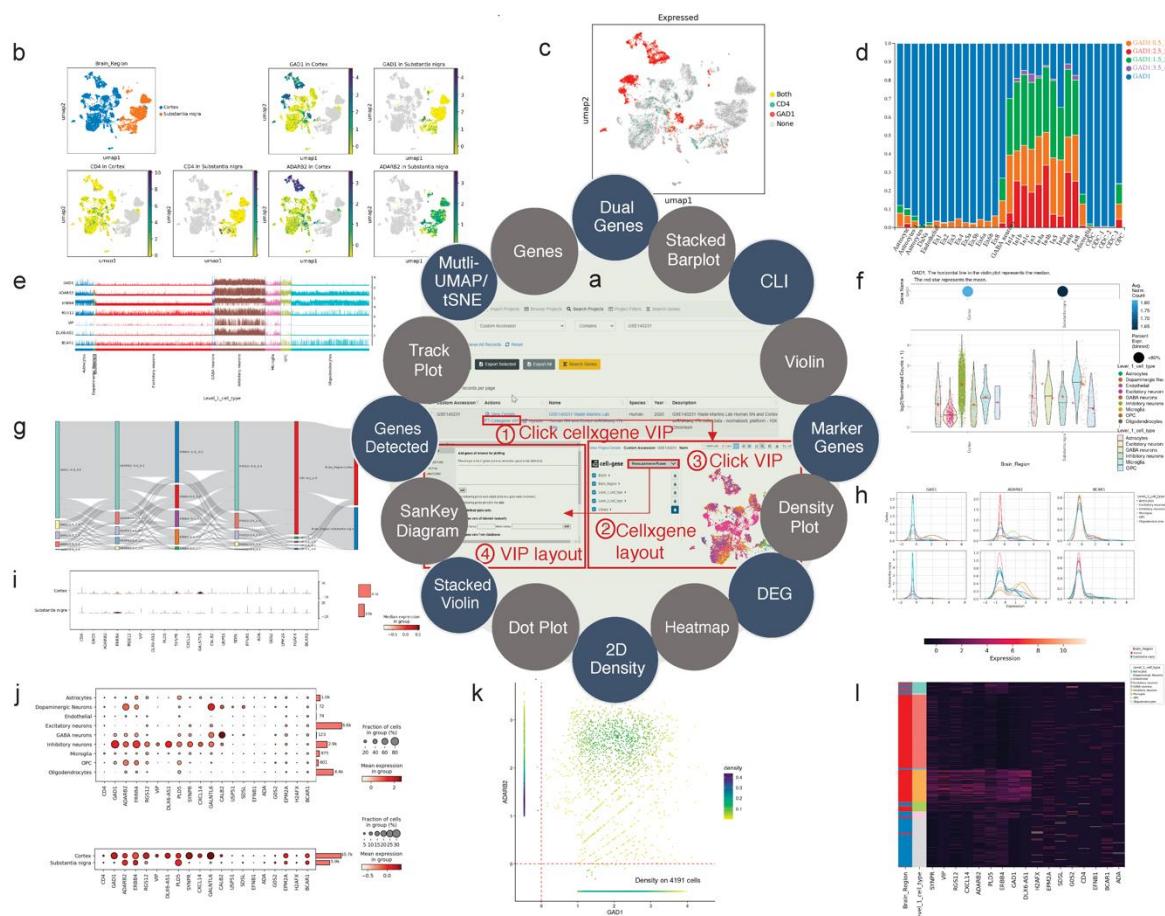
98 The main CellDepot application consists of five functionalities:

- 99 • **Importing projects** provides a user-friendly way to upload processed public or
100 private datasets in h5ad format.
- 101 • **Browsing projects** displays a quick overview of all datasets in CellDepot with a
102 quick search function and customized column setting such that users can easily
103 find the projects of interest, personalize the look-n-feel of the project table and
104 export the customized project spreadsheet.

105 • **Searching projects** enables advanced query of projects by joining multiple search
106 conditions with the logical operators.

107 • **Project filters** refines the matched datasets by simply selecting 'Year' and/or
108 'Species'. It is a user-friendly feature for a first-time user who is not familiar with
109 the content of the database.

110 • **Searching genes** allows users to input any gene(s) of interest and generate the
111 cross-dataset plots for those targeted genes.


112 Based on available meta information stored in the h5ad files, multiple dataset attributes
113 are extracted for searching and filtering, such as species, cell type annotation, published year,
114 etc. As shown in Figure S1, there are six datasets when searching by 'Species is Human' and
115 'Annotation Group contains Neuron'.

116 It is desirable to include all possible abbreviations and synonyms of genes or cell types in
117 the database to make search more flexible. In reality, CellDepot has not enumerated and
118 standardized all possible terms used to name cell types in the query function beyond metadata
119 collected from h5ad files. In the future, a comprehensive mapping table of terms based on cell
120 ontology could be implemented to standardize keywords for searching. Alternatively, user can
121 use advanced search function to query a cell type by multiple synonyms, e.g., searching by
122 'Annotation Groups contains OPC' or 'Annotation Groups contains oligodendrocyte' to identify
123 datasets containing oligodendrocyte cell type.

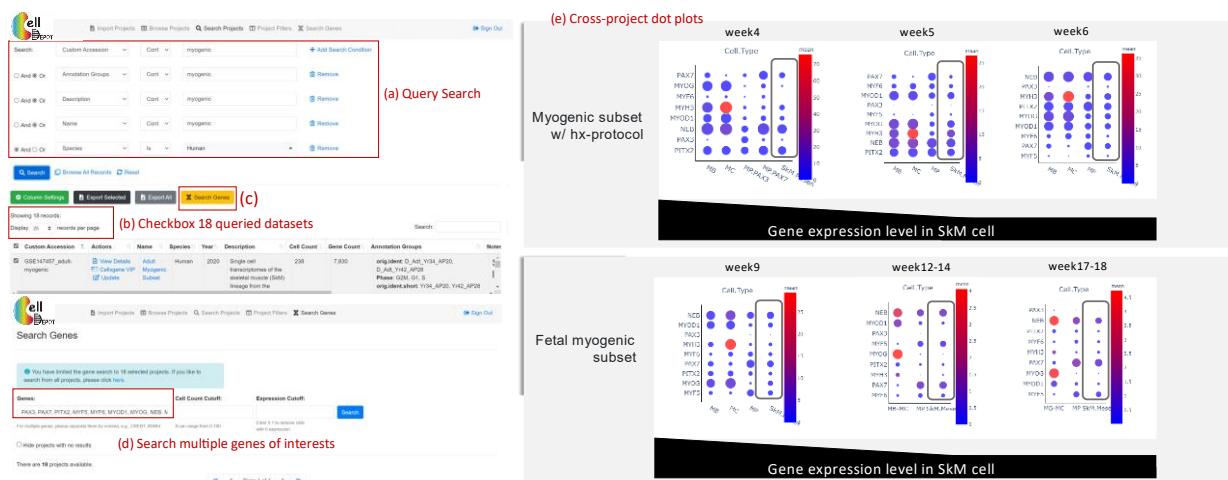
124 b. Data visualization and analysis

125 Users can launch a cellxgene VIP instance (such as dataset GSE140231) [23] as shown
126 in Figure 2 to explore a dataset interactively. Cellxgene VIP is based on the cellxgene platform
127 where users can quickly overview meta information and cell embedding after dimensional
128 reduction (e.g., TSNE or UMAP). In addition, users can use lasso selection from embedded cell
129 maps to interactively select any cell cluster(s) as a group for refined analysis via a rich set of
130 visualization and analysis functions provided in cellxgene VIP.

131

132

133 Figure 2. Exploration of visualization and analysis functions in cellxgene VIP on dataset GSE140231 [23]. (a) Cellxgene VIP, providing a plugin ecosystem of interactive data visualization, can be launched within four steps after querying 'custom accession contains GSE140231'. (b) Mutli-tSNE/UMAP plot shows the differential expression of genes on split brain regions. (c) Dual-gene plot demonstrates the expression of CD4 and GAD1 on the selected embedding layout. (d) Stacked barplot indicates the fraction of cell distribution of the selected gene over different cell types. (e) Trackplot represents the distribution of gene expression across individual cells in annotated clusters. (f) Sub-grouped violin plot shows the GAD1 gene expression across the groups of cell types and subgroups of the brain regions. (g) Sankey diagram illustrates the inter-dependent relationship of annotated clusters based on the selected genes. (h) Density plots show expression of marker gene across varied cell types and split across the brain regions. (i) Stacked violin plot highlights the selected cell markers over cell types. (j) Dot plots highlights the gene markers over different annotated clusters. (k) 2D-density plot illustrates the expression relationship of two genes (GAD1 and ADARB2). (l) Heatmap of selected marker genes in various cell types.


145

146 For example, user can go deep-dive to explore and visualize the expression of gene(s) across
147 the cluster of cells under various conditions (Figure S2). As shown in Figure S2a, two cell
148 groups from Astrocytes (1036 cells) and Oligodendrocytes (4417 cells) are selected. By running
149 differential analysis with one of the built-in statistical methods such as Welch's t-test, we
150 detected 1578 differential expressed genes (DEGs), including 715 up-regulated and 853 down-
151 regulated genes in astrocytes compared to oligodendrocytes (Figure S2a). The expression of
152 the top four DEGs among the cell types indicates that gene MBP, ST18 and RNF220 are
153 expressed explicitly in oligodendrocytes, while gene PITPN3 is expressed mainly in astrocytes
154 and endothelial cells (Figure S2b). In the future, we plan to add other multi-omics data
155 modalities, which can be incorporated and integrated with scRNA-seq, such as spatial
156 transcriptomics and scATAC-seq data.

157 c. Cross-dataset query

158 Besides the function to visualize and explore individual datasets, CellDepot also allows
159 users to query and compare the expression of genes of interest across multiple datasets to
160 understand their cellular heterogeneity. As shown in Figure 3, users can explore the expression
161 of skeletal muscle marker genes PAX3, PAX7, PITX2, MYF5, MYF6, MYOD1, MYOG, NEB,
162 and MYH3 during human myogenic cells of development and differentiation from hx-protocol 4-6
163 weeks to fetal 9-18 weeks from datasets whose custom accession starting with GSE147457
164 [24]. Gene expression level in SkM cells highlighted by grey boxes in of Figure 3e decreases
165 around 40% from week 4 to week 5 with hx-protocol until level-off at week 6. The expression
166 level of genes in fetal stage over week 9 also shows the same trend, especially the gene
167 expression level drops dramatically starting from week 12.

168 In summary, CellDepot is an easy-to-use and elaborative web portal for the exploration of
169 the scRNA-seq datasets and data analysis results such that it allows biologists to easily access
170 and reuse the rapid-increased scRNA-seq datasets in a highly scalable and interactive manner.

171

172 Figure 3. Cross-project view of the expression of genes among skeletal muscle development and differentiation times. (a) Search
 173 and (b) select the targeted datasets whose custom accession starting with GSE147457 [24]. Navigate to (c) 'Search Genes' page
 174 and (d) search genes of interest. (e) The summary of interactive plots from CellDepot that shows the cross-project comparison of
 175 gene expression level under varied conditions.

176 Materials and Methods

177 Sources of annotation and metadata

178 The original metadata information of each single cell RNA-seq dataset is retrieved from
 179 h5ad file, which is a preferred way of sharing and storing an on-disk representation of anndata
 180 object [6]. When importing the dataset to the system, user inputs additional metadata
 181 information as shown in Figure S5. Both metadata are collected and stored in a MySQL
 182 database table that is presented at <http://celldepot.bxgenomics.com>.

183 Data format, availability and preparation

184 CellDepot requires scRNA-seq data in h5ad file where the expression matrix is stored in
 185 CSC (compressed sparse column) instead of CSR (compressed sparse row) format to improve
 186 the speed of data retrieving. For example, designating genes as columns in the h5ad file
 187 creates the interactive plot five times faster than as rows. Just in case, we provide sample
 188 scripts to help users generate h5ad files. Having gene expression matrix, metadata, and layout
 189 files, users can easily combine and convert their data to h5ad file by following this R script on

190 <https://github.com/interactivereport/CellDepot/blob/main/toH5ad.R>. In the case of lacking layout
191 file, users can also create h5ad file by following the Jupyter notebook
192 <https://github.com/interactivereport/CellDepot/blob/main/raw2h5ad.ipynb> with custom python
193 script tailored to their own data. Categorical features extracted from a h5ad file are shown in the
194 'annotation groups' column of the table on CellDepot home page, while the numerical features
195 are shown as the distributions in the rightmost panel on cellxgene VIP (Figure S3).

196 *CellDepot platform and installation*

197 The public version of CellDepot web portal is hosted at the web site,
198 <http://celldepot.bxgenomics.com> and is implemented with MySQL database, an advanced
199 search engine, and powerful interactive visualizing tools that allow users to explore attributes of
200 datasets as well as scRNA-seq analysis results. Also, users can intentionally select single-cell
201 RNA-seq datasets on the web interface by simply browsing the online dataset table or applying
202 advanced search to perform the cross-dataset comparison. Moreover, CellDepot also provides
203 comprehensive data analysis tools via an embedded interactive visualization plugin. To host
204 private datasets, local instance of CellDepot on Unix server can be installed by following the
205 guide here, https://celldepot.bxgenomics.com/celldepot_manual/install_environment.php.

206 *Data import on user's server*

207 The prepared h5ad files are required to copy to a folder defined in the configuration file,
208 e.g., /data/celldepot/all_h5ad_files/. Afterwards, users can navigate to the CellDepot home
209 page, click 'Import Project' at the top menu, then 'Download Example File' to fill in meta
210 information of datasets into the downloaded template for submission. After the metadata file is
211 uploaded, CellDepot will automatically convert the dataset to CSC format if needed through a
212 cron job (Supplementary Tutorial Section 5). To explore the detail of imported datasets, users
213 can enter 'Browse Projects' page and then search these datasets by user assigned accessions
214 in the metadata file.

215 *CellDepot API (Application Programming Interface)*

216 The CellDepot API web service provides a direct way to generate figures for users to
217 share or embed in web page. For example, the following URL will generate a gene expression
218 violin plot across cell clusters for IRAK4 gene for the data set with ID equaling one,
219 https://celldepot.bxgenomics.com/celldepot/app/core/api_gene_plot.php?ID=1&Genes=IRAK4&Plot_Type=violin&Subsampling=0&n=0&g=0&Project_Group=CLUSTER. The complete format
220 of the URL and explanation of parameters are detailed in the web page,
221 https://celldepot.bxgenomics.com/celldepot_manual/api_gene_plot.php.

223 *Code availability*

224 The source code, local installation guide and complete tutorial of visualization and
225 analysis tool are provided at <https://github.com/interactiveReport/CellDepot>. With broad adoption
226 and contribution in mind, CellDepot is released under the MIT License.

227 **Author Contributions**

228 Dongdong Lin: Conceptualization, Methodology, Manuscript – writing & review

229 Yirui Chen: Testing, Manuscript – writing, review & editing

230 Kejie Li: Conceptualization, Testing, Manuscript – review & editing

231 Soumya Negi: Methodology, Testing, Manuscript – review & editing

232 Derrick Cheng: Web application development, Manuscript - review

233 Zhengyu Ouyang: Data curation, Manuscript - review

234 David Sexton: Conceptualization, Manuscript - review

235 Baohong Zhang: Conceptualization, Testing, Methodology, Manuscript – writing, review &
236 editing

237 **Declaration of competing interest**

238 DL, KL, SN, DS and BZ hold Biogen stocks as Biogen employee.

239 **Acknowledgements**

240 The authors are grateful and indebted to BioInfoRx, Inc. for the management of server and
241 storage to host the public web site.

242

243 **References**

244 1. Tang F, Barbacioru C, Wang Y, Nordman E, Lee C, Xu N, et al., (2009). mRNA-Seq whole-
245 transcriptome analysis of a single cell. *Nat Methods* **6**, 377-82.

246 2. Katzenelenbogen Y, Sheban F, Yalin A, Yofe I, Svetlichnyy D, Jaitin DA, et al., (2020).

247 Coupled scRNA-Seq and Intracellular Protein Activity Reveal an Immunosuppressive Role of
248 TREM2 in Cancer. *Cell* **182**, 872-85 e19.

249 3. Madissoon E, Wilbrey-Clark A, Miragaia RJ, Saeb-Parsy K, Mahbubani KT, Georgakopoulos
250 N, et al., (2019). scRNA-seq assessment of the human lung, spleen, and esophagus tissue
251 stability after cold preservation. *Genome Biol* **21**, 1.

252 4. Wang Z, Xu X. (2020). scRNA-seq Profiling of Human Testes Reveals the Presence of the
253 ACE2 Receptor, A Target for SARS-CoV-2 Infection in Spermatogonia, Leydig and Sertoli Cells.

254 *Cells* **9**.

255 5. Qi J, Zhou Y, Hua J, Zhang L, Bian J, Liu B, et al., (2021). The scRNA-seq Expression
256 Profiling of the Receptor ACE2 and the Cellular Protease TMPRSS2 Reveals Human Organs
257 Susceptible to SARS-CoV-2 Infection. *Int J Environ Res Public Health* **18**.

258 6. Wolf FA, Angerer P, Theis FJ. (2018). SCANPY: large-scale single-cell gene expression data
259 analysis. *Genome Biol* **19**, 15.

260 7. Satija R, Farrell JA, Gennert D, Schier AF, Regev A. (2015). Spatial reconstruction of single-
261 cell gene expression data. *Nat Biotechnol* **33**, 495-502.

262 8. Butler A, Hoffman P, Smibert P, Papalexi E, Satija R. (2018). Integrating single-cell
263 transcriptomic data across different conditions, technologies, and species. *Nat Biotechnol* **36**,
264 411-20.

265 9. Stuart T, Butler A, Hoffman P, Hafemeister C, Papalexi E, Mauck WM, 3rd, et al., (2019).
266 Comprehensive Integration of Single-Cell Data. *Cell* **177**, 1888-902 e21.

267 10. Hao Y, Hao S, Andersen-Nissen E, Mauck WM, 3rd, Zheng S, Butler A, et al., (2021).
268 Integrated analysis of multimodal single-cell data. *Cell* **184**, 3573-87 e29.

269 11. Regev A, Teichmann SA, Lander ES, Amit I, Benoist C, Birney E, et al., (2017). The Human
270 Cell Atlas. *Elife* **6**.

271 12. Ner-Gaon H, Melchior A, Golan N, Ben-Haim Y, Shay T. (2017). JingleBells: A Repository of
272 Immune-Related Single-Cell RNA-Sequencing Datasets. *J Immunol* **198**, 3375-9.

273 13. Soneson C, Robinson MD. (2018). Bias, robustness and scalability in single-cell differential
274 expression analysis. *Nat Methods* **15**, 255-61.

275 14. Franzen O, Gan LM, Bjorkegren JLM. (2019). PanglaoDB: a web server for exploration of
276 mouse and human single-cell RNA sequencing data. *Database (Oxford)* **2019**.

277 15. Papatheodorou I, Moreno P, Manning J, Fuentes AM, George N, Fexova S, et al., (2020).
278 Expression Atlas update: from tissues to single cells. *Nucleic Acids Res* **48**, D77-D83.

279 16. Bernstein MN, Ni Z, Collins M, Burkard ME, Kendzierski C, Stewart R. (2020). CHARTS: A
280 web application for characterizing and comparing tumor subpopulations in publicly available
281 single-cell RNA-seq datasets. 2020.09.23.310441.

282 17. Orvis J, Gottfried B, Kancherla J, Adkins RS, Song Y, Dror AA, et al., (2021). gEAR: Gene
283 Expression Analysis Resource portal for community-driven, multi-omic data exploration. *Nat
284 Methods* **18**, 843-4.

285 18. Cai G, Xiao F. (2020). SCANNER: A Web Server for Annotation, Visualization and Sharing
286 of Single Cell RNA-seq Data, *bioRxiv* 2020.01.25.919712 [Preprint], doi:
287 <https://doi.org/10.1101/2020.01.25.919712>.

288 19. Darde TA, Lecluze E, Lardenois A, Stevant I, Alary N, Tuttelmann F, et al., (2019). The
289 ReproGenomics Viewer: a multi-omics and cross-species resource compatible with single-cell
290 studies for the reproductive science community. *Bioinformatics* **35**, 3133-9.

291 20. Cao Y, Zhu J, Han G, Jia P, Zhao Z. (2017). scRNASeqDB: a database for gene expression
292 profiling in human single cell by RNA-seq. 104810.

293 21. Megill C, Martin B, Weaver C, Bell S, Prins L, Badajoz S, et al., (2021). cellxgene: a
294 performant, scalable exploration platform for high dimensional sparse matrices, *bioRxiv*
295 2021.04.05.438318 [Preprint], doi: <https://doi.org/10.1101/2021.04.05.438318>

296 22. Li K, Ouyang Z, Lin D, Mingueneau M, Chen W, Sexton D, et al., (2020). cellxgene VIP
297 unleashes full power of interactive visualization, plotting and analysis of scRNA-seq data in the
298 scale of millions of cells, *bioRxiv* 2020.08.28.270652 [Preprint], doi:
299 <https://doi.org/10.1101/2020.08.28.270652>.

300 23. Agarwal D, Sandor C, Volpato V, Caffrey TM, Monzon-Sandoval J, Bowden R, et al., (2020).
301 A single-cell atlas of the human substantia nigra reveals cell-specific pathways associated with
302 neurological disorders. *Nat Commun* **11**, 4183.

303 24. Xi H, Langerman J, Sabri S, Chien P, Young CS, Younesi S, et al., (2020). A Human
304 Skeletal Muscle Atlas Identifies the Trajectories of Stem and Progenitor Cells across
305 Development and from Human Pluripotent Stem Cells. *Cell Stem Cell* **27**, 181-5.

306

307

308

309 **Supplementary Information**

310 **Supplementary Tables**

311 **Table S1. Comparison matrix of web portal tools**

Web application	CellDepot	Corpora Data Portal	gEAR	CHARTS	SCANNER	Single Cell Portal	Sfaria	Repro-Genomics	PanglaoDB	Expression Atlas	scRNA-SeqDB	conquer	Jingle-Bells	Human Cell ATLAS
Year	2021	2021	2021	2020	2020	2020	2020	2019	2019	2019	2019	2018	2017	2017
Main function														
Database Explorer	Y	Y	Y	Y	NA	Y	Y	Y	Y	Y	Y	Y	Y	Y
Query Search	Advanced	NA	Basic I	NA	Intermediate	Advanced	Basic II	Intermediate	Advanced	Intermediate	Basic I	Basic I	Basic I	Advanced
Data Analysis Explorer	Advanced	Advanced	Advanced	Intermediate	Intermediate	Intermediate - Advanced	NA	Basic	Intermediate	Intermediate	Basic - Intermediate	Basic	NA	NA
Visualization features	Violin, dot, heatmap, bar, QC, scatter, density, embedding plots	Bar, scatter, embedding plots	Violin, dot, line, bar, QC, embedding plots, genome browser	Bar, embedding plots	Violin, dot, scatter, heatmap, embedding plots	Violin, scatter, heatmap, embedding plots	NA	Violin, density, scatter plots, genome browser	Bar, QC, scatter, embedding plots	Heatmap, scatter, embedding plots	Scatter, bar plots	Scatter, genome plots	Genome browser	NA
Data type supported														
Datasets	diverse	diverse	hearing/brain	tumor	diverse	diverse	diverse	reproduction	diverse	diverse	diverse	diverse	immune-related	diverse
Datatypes	Single-cell	Single-cell	Single-cell	Single-cell	Single-cell	Single-cell	Single-cell	Single-cell, Multi-omics	Single-cell	Single-cell, Proteomics	Single-cell	Single-cell	Single-cell	Single-cell, Multi-omics
Links	https://github.com/ubc-com/active-reactiverse-cellport https://github.com/ubc-com/intergen-corporate-celldepot https://github.com/anzuckerberg/celldepot-a-data-portal https://github.com/berg/corporate-celldepot													
Source Code link	https://github.com/intanzuckerberg/corporate-celldepot https://github.com/berg/corporate-celldepot													
Demo link	http://celldx.bx.psu.edu/ https://cellxgene.czi.umassmed.org/ https://chart.sanger.ac.uk/ https://www.sanger.ac.uk/microbiology/science/omics/cell/													

312 Note: The criteria for query search and data analysis explorer please see Table S2 and S3.

313

314

Table S2. Criterion for query search

Query Search	Keyword Search	Multiple Object Search	Category Filters
Basic	Y		
Intermediate	Y		Y
Advanced	Y	Y	Y

315

316

Table S3. Criterion for data analysis explorer

Data Analysis Explorer	Visualization and Analyze scRNA-seq Data	Visualization and Analyze scRNA-seq Data	Analyze Gene Expression	Customize Displays
Basic	Y			
Intermediate	Y		Y	
Advanced	Y		Y	Y

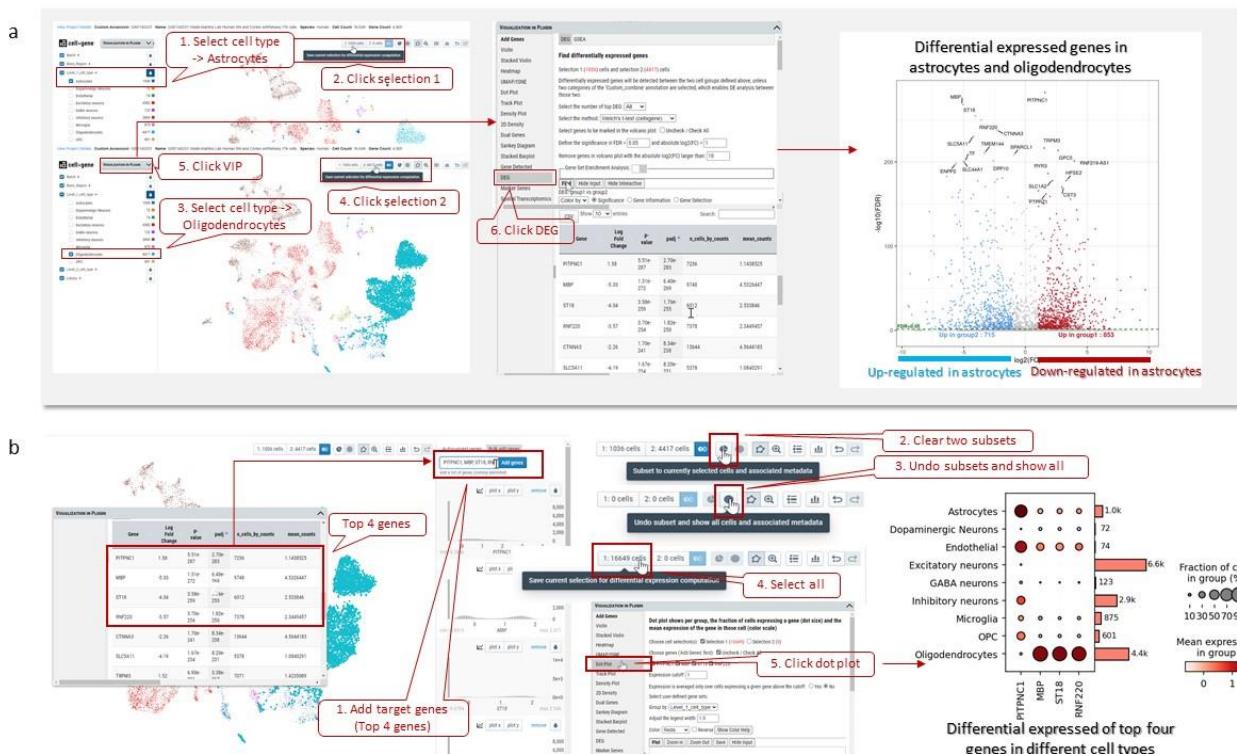
317

318

319

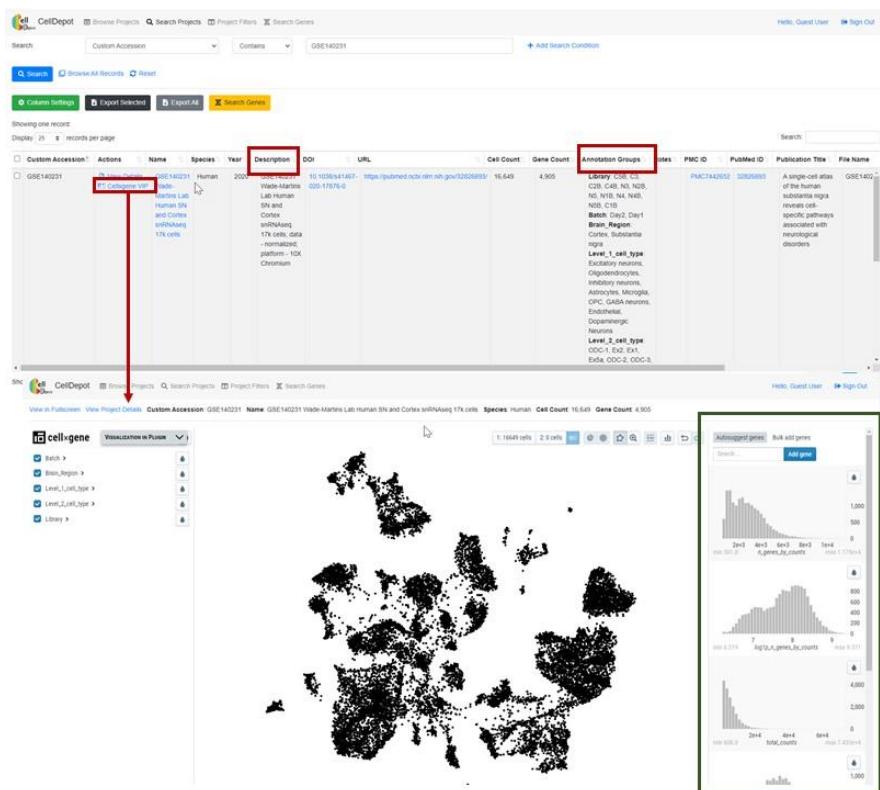
Table S4. Project metadata captured in CellDepot

General Category	Variable type	Description
Project Browser/Search	Annotation Groups	String
	Cell Count	Integer
	Actions	Link
	Custom Accession	String
	Description	String
	DOI	Link
	File Name	String
	File Size	Integer
	Gene Count	Integer
	Name	Link
	Notes	String
	PMC ID	Link
	Publication Title	String
	PubMed ID	Link
	Species	String
	URL	Link
	Year	String


320

321 **Supplementary Figures**

The screenshot shows the CellDepot web interface. The search bar at the top has 'Species' set to 'Human' and 'Annotation Groups' set to 'Neuron'. Below the search bar, a message says 'Showing 6 records:'. The main table displays six datasets, each with a 'View Details' button. One dataset is highlighted: 'SCP1038' (Cellxgene VIP), which is described as 'The human and mouse enteric nervous system at single cell'.

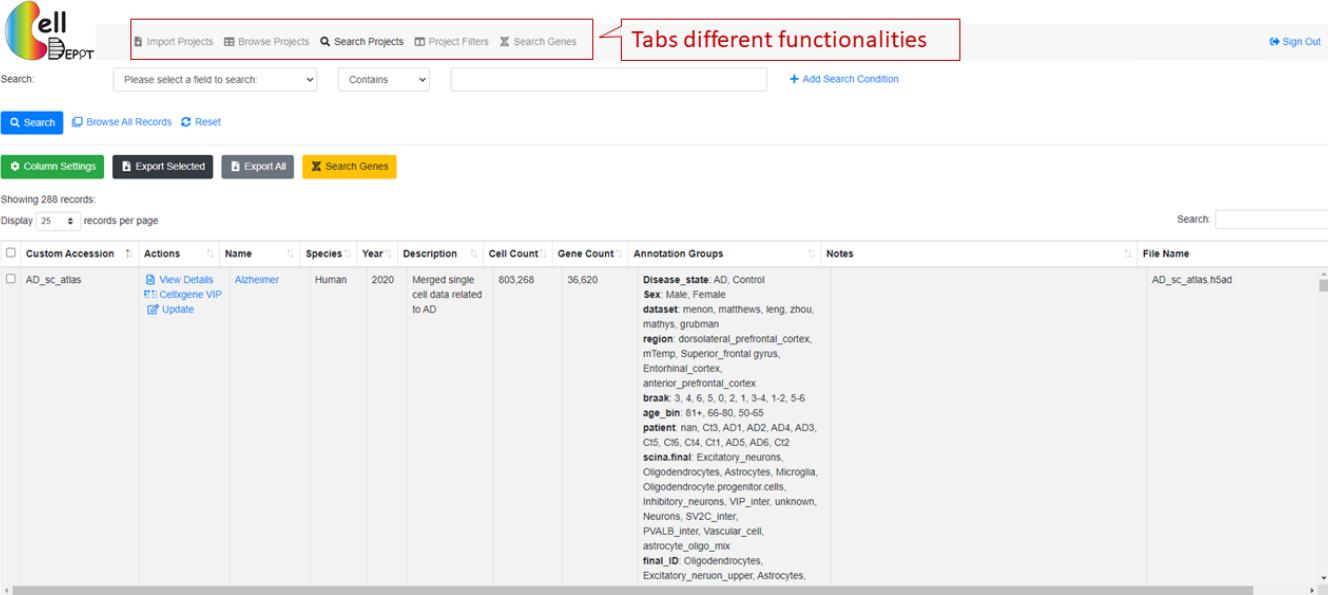

322 Showing 1 to 6 of 6 records

323 Figure S1. Data Filtering. Query search of 'Species is Human' and 'Annotation Groups contains Neuron'
 324 brings about nine datasets of interest.
 325

326

327 Figure S2. Exploration of differential expressed genes in dataset GSE140231 through cellxgene VIP [1].
 328 (a) Differential expressed genes in astrocytes and oligodendrocytes. (b) The expression of top four genes
 329 in different cell types.

The annotation of the observation features from GSE140231.h5ad:
Index(['Library', 'Batch',
'Brain_Region', 'Level_1_cell_type',
'Level_2_cell_type', 'percent_mito',
'n_genes_by_counts',
'log1p_n_genes_by_counts',
'total_counts', 'log1p_total_counts',
'pct_counts_in_top_50_genes',
'pct_counts_in_top_100_genes',
'pct_counts_in_top_200_genes',
'pct_counts_in_top_500_genes',
>'Description'], dtype='object')


330
331 Figure S3. The exploration of observation features of dataset GSE140231. Red-marked categorical
332 features are shown on CellDepot Project page (highlighted by red framed box), the numerical features
333 marked in green color can be visualized as distribution plots on the rightmost panel in cellxgene VIP tool,
334 which is highlighted by green box.

335 **Supplementary Tutorial**

1. Introduction

337 CellDepot is database management system integrated with management system, query
338 searching and data visualization tools [2, 3] for scRNA-seq datasets, which can be accessed by
339 the link <http://celldepot.bxgenomics.com>. This is a supplemental tutorial provides a detailed
340 guide.

341

342

Figure S4. CellDepot website.

344 The interface contains multiple tabs, corresponding to import and/or select objects in CellDepot scRNA-
345 seq database, that can be accessed on top panel of the webpage. Users can upload their own dataset or
346 explore the existing datasets for visualization and analysis.

2. Upload Projects

348 To upload new projects in CellDepot database, two files are required: 1) .h5ad files and 2)
349 project information in csv format. Detailed formatting guidance can be found by 'Download
350 Example File' hyperlink on webpage. In addition, two cellxgene VIP launch methods are
351 provided: standard and preload in memory. Standard mode is for the first-time imported
352 datasets, while preload in memory should be chosen when users update the meta information
353 of datasets.

354 After the projects are submitted, CellDepot will automatically analyze the datasets. To
355 explore the detail of uploaded datasets, users can navigate to 'browse projects' page and then
356 search the imported datasets by the customized accession number.

357

The screenshot illustrates the workflow for importing personal datasets into the CellDepot database. It is divided into two main sections: 'Import Projects' and 'Browse Projects'.

Import Projects Section:

1. Click Import: A red box highlights the 'Import Projects' button in the top navigation bar.
2. Click to download 'Example File' and modify this .csv file based on your own datasets: A red box highlights the 'Download Example File' button and the 'Choose File' input field where 'SCP1' is selected.
3. Choose the modified .csv file to upload: A red box highlights the 'Choose File' input field where 'SCP1' is selected.
4. Choose 'Standard' for upload, 'Preload in memory' for update: A red box highlights the 'Cellxgene VIP Launch Method' dropdown set to 'Standard'.
5. Click submit button: A red box highlights the 'Submit' button.

Browse Projects Section:

6. Navigate to 'Browse Projects': A red box highlights the 'Browse Projects' link in the top navigation bar.
7. Search uploaded datasets by accession name: A red box highlights the search bar where 'SCP1' is entered.
8. Your uploaded datasets: A red box highlights the table displaying the uploaded dataset 'SCP1'.

The table shows the following data for dataset 'SCP1':

Custom Accession	Actions	Name	Species	Year	Description	Cell Count	Gene Count	Annotation Groups	Notes	File Name
SCP1	View Details Cellxgene VIP Update	Single nucleus RNA-seq of cell diversity in the adult mouse hippocampus (sNuc-Seq)	Mouse	2016	Single nucleus RNA-seq of cell diversity in the adult mouse hippocampus. Habib N, Li Y, Heidenreich M, Swelch L, Avraham-David I, Trombetta J, Hession C, Zhang F, Regev A. Div-Seq: Single-nucleus RNA-Seq reveals dynamics of rare adult newborn neurons. <i>Science</i> 28 Jul 2016 DOI:	1,402	25,392	<code>seurat_clusters: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10</code> <code>CLUSTER: DG, Glia, CA1, GABAergic, Non, CA3, CA2, Ependymal</code> <code>SUB_CLUSTER: DG_Cck, EPT, DG_Penk, CA1c_7, ASC, CA1_2, Gad2_Pvalb, Gad2_ProcVcan,</code>		SCP1.h5ad

358
359 Figure S5. Workflow of how to import personal datasets.
360
361

3. Browse Projects

1. Search Projects

363 This function allows the user to search any targeted interests, which also can be accessed
364 through search projects on the top panel of the webpage. Users is allowed to select the projects
365 by 17 attributes: annotation groups, cell count, cellxgene VIP launch method, Custom
366 accession, description, DOI, file name, file size, gene count, name, notes, PMC ID, Publication
367 Title, PubMed ID, Species, URL, Year. These 17 fields can also be (partially) displayed on the
368 webpage through 'column setting' on the webpage. Users can also search projects by the
369 keywords via the search function on the right of the webpage. In addition, by 'column setting',
370 users can set up the customized layout of targeted projects; thereby exporting to csv format.

371 For each project, users can view the datasets information, visualize data analysis, and
372 conduct update through clicking on "View Details", "cellxgene VIP", and "Update" links,
373 respectively.

374
375

1. Click Browse Projects

2. Choose a field to search

3. Choose the condition

4. Type the entry

5. Add additional conditions for multiple select statements

6. add/or

7. Click search

376

2. Export selected datasets or entire database

3. Further cross-project comparison of gene sets among datasets (Details see Figure S3)

1. Click 'column setting' to customize the layout of the query

377

378 Figure S6. Workflow of how to search query on 'Browse Projects' page.

379 2. Case Study 1

380 Cross-project comparison of skeletal muscle marker genes PAX3, PAX7, PITX2, MYF5,
 381 MYF6, MYOD1, MYOG, NEB, and MYH3 among the datasets whose species is human and
 382 cell type is myogenic.

① Query Search

Search: Custom Accession Cont myogenic + Add Search Condition

② And ③ Or Annotation Groups Cont myogenic Remove

② And ③ Or Description Cont myogenic Remove

② And ③ Or Name Cont myogenic Remove

④ And ⑤ Or Species Is Human Remove

Q Search B Browse All Records C Reset

Showing 18 records:

Display 25 records per page

Search:

Custom Accession	Actions	Name	Species	Year	Description	Cell Count	Gene Count	Annotation Groups	Notes
GSE147457_adult-myogenic	View Details Cellgene VIP Update	Adult Myogenic Subset	Human	2020	Single cell transcriptomes of the skeletal muscle (SkM) lineage from the	238	7,830	orig.ident: D_Adult_Yr34_AP20, D_Adult_Yr42_AP28 Phase: G2M, G1, S orig.ident.short: Yr34_AP20, Yr42_AP28	

① You have limited the gene search to 18 selected projects. If you like to search from all projects, please click here.

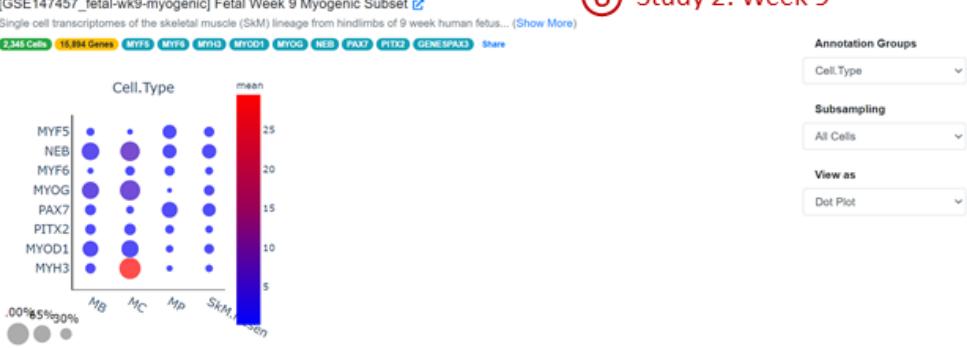
② Genes: PAX3, PAX7, PITX2, MYF5, MYF6, MYOD1, MYOG, NEB, N

③ Cell Count Cutoff: It can range from 0-100

④ Expression Cutoff: Enter 0.1 to remove cells with 0 expression

⑤ Hide projects with no results

⑥ There are 18 projects available.


Page 1 of 4

④ Search multiple genes of interests

⑤ Study 1: Week 4-6

⑥ Study 2: Week 9

384 Figure S7. Workflow of how to conduct the cross-project comparison of gene sets among the selected
385 datasets.
386 3. Project Filters

387 This page provides the matched datasets by simply clicking the categories. It is a first-time
388 user-friendly functionality as users may not be familiar with the content of the database. The
389 advance search function is the same as that on the 'Browse Projects' page (Details see Figure
390 S4).

391
392 Figure S8. The layout of 'Project Filters' page.
393

394 4. Visualize Datasets

395 4.1 View Details

396 The datasets information consists of project summary and annotation groups. The project
397 summary is provided by each user when uploading projects. The information of annotation
398 groups is retrieved from uploaded .h5ad file.

Review Project Annotation groups information from .h5ad file

Annotation Groups

Category	Cell Count
AD1	1377
AD2	2064
AD3	1651
AD5	2831
AD7	3594
AD8	992
AD9	1421
AD10	3295
AD11	5286
AD12	6263
AD13	4252
C1	2852
C2	3683
C3	3879

Project Annotation Groups

SCP1

Custom Accession: AD_sc_atlas
Name: Alzheimer
Species: Human
Description: Merged single cell data related to AD
URL: -
Cell Count: 803,268
Gene Count: 36,620
Annotation Groups: Disease_state: AD, Control
Sex: Male, Female
dataset: menon, matthews, leng, zhou, mathys, g... (Show More)
Notes: -
Publication Title: -
Year: 2020
DOI: -
PMC ID: -
PubMed ID: -
Cellxgene VIP Launch Method: Preload in Memory

Review Project

Annotation Groups

SCP1.h5ad

Figure S9. Visualization of details of datasets.

4.2 Update

Project summary information can be updated on ‘Browse Project’ page with ‘Preload in Memory’ cellxgene VIP launch method via click ‘Update’ hyperlink.

Update Project

Name: Alzheimer

Description: Merged single cell data related to AD

Custom Accession: AD_sc_atlas

URL: -

Notes: -

Publication Title: Merged single cell data related to AD

Year: 2020

DOI: -

PMC ID: -

PubMed ID: -

Cellxgene VIP Launch Method: Preload in Memory

Update

SCP1

Custom Accession: AD_sc_atlas
Name: Alzheimer
Species: Human
URL: -
Notes: -
Publication Title: Merged single cell data related to AD
Year: 2020
DOI: -
PMC ID: -
PubMed ID: -
Cellxgene VIP Launch Method: Preload in Memory

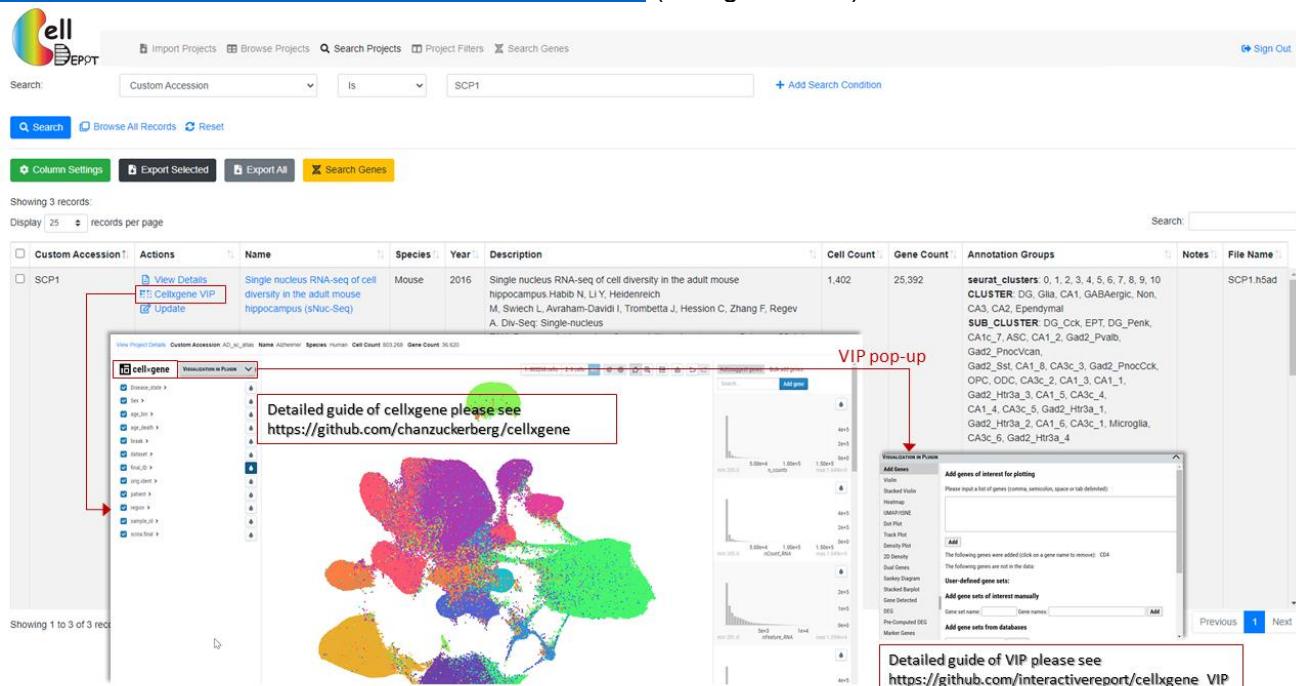
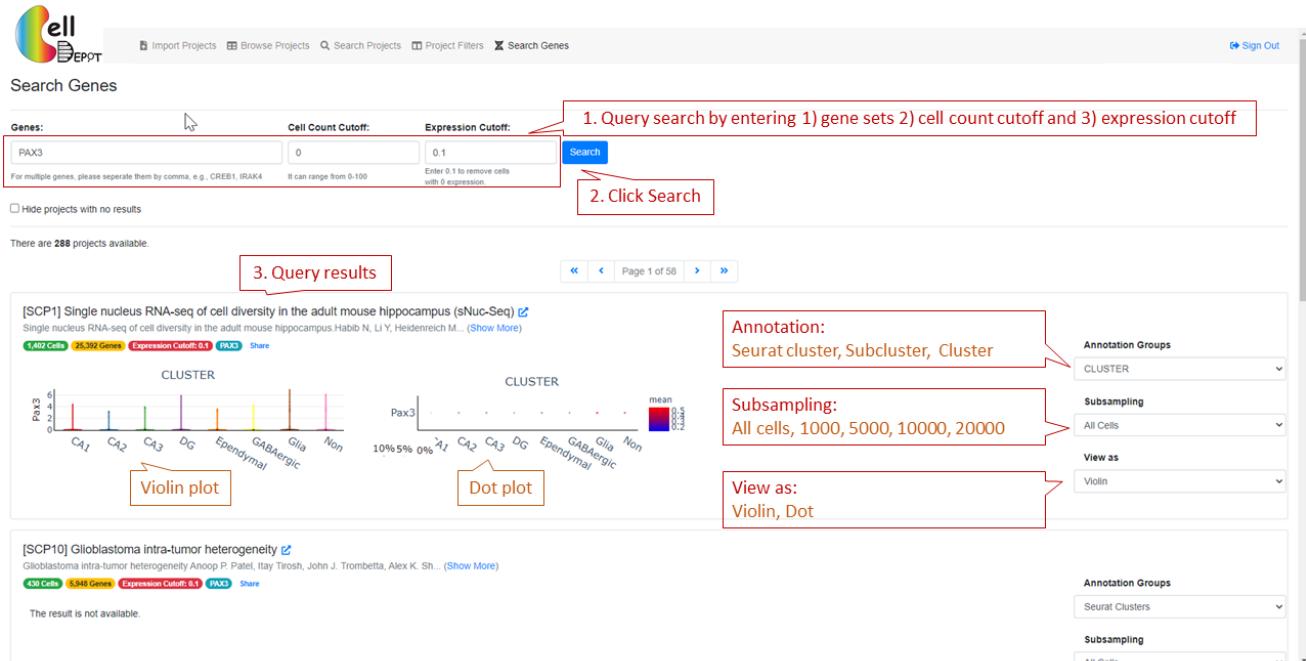

SCP1.h5ad

Figure S10. Update project on ‘Browse Project’ page.

4.3 Data Visualization and Analysis

CellDepot is not only a database management system, but also a web portal to visualize the


410 scRNA-seq dataset. Here, we embed cellxgene and cellxgene VIP in CellDepot. By clicking
411 'Cellxgene VIP', data analysis results can be visualized. Detailed guides of cellxgene and
412 cellxgene VIP, please go to <https://github.com/chanzuckerberg/cellxgene> (cellxgene) and
413 https://github.com/interactivereport/cellxgene_VIP (cellxgene_VIP).

414
415 Figure S11. See visualization of selected datasets.
416

417 5. Search Genes

418 This tab allows searching on targeted genes with cell count cutoff and expression cutoff.
419 The search outcome provides users every project contains the targeted genes. Each project
420 displays a link to project page and a figure plot if applicable. This plot can be either violin plot
421 or dot plot shows the gene expression level in each annotation groups.

422

423 Figure S12. The layout of 'Search Genes'

424

425 6. How to set up cron job?

426 The following cron job entry is needed to convert h5ad file to CSC format on the background,
427 `@hourly <user-name> cd /var/www/html/cellddepot/app/core; php ./api_toCSCh5ad.php`
428 Please make sure that the user has the permission to write in the data directory.

429

430 Reference

431 [1] Agarwal D, Sandor C, Volpato V, Caffrey TM, Monzon-Sandoval J, Bowden R, et al. A
432 single-cell atlas of the human substantia nigra reveals cell-specific pathways associated with
433 neurological disorders. *Nat Commun.* 2020;11:4183.
434 [2] Li K, Ouyang Z, Lin D, Mingueneau M, Chen W, Sexton D, et al. cellxgene VIP unleashes full
435 power of interactive visualization, plotting and analysis of scRNA-seq data in the scale of
436 millions of cells. 2020:2020.08.28.270652.
437 [3] Megill C, Martin B, Weaver C, Bell S, Prins L, Badajoz S, et al. cellxgene: a performant,
438 scalable exploration platform for high dimensional sparse matrices. 2021:2021.04.05.438318.
439