

1 **GpsB coordinates cell division and cell surface decoration by wall teichoic acids**
2 **in *Staphylococcus aureus***

3

4 Lauren R. Hammond¹, Sebastian J. Khan¹, Michael D. Sacco², Catherine Spanoudis¹,
5 Abigail Hough¹, Yu Chen² and Prahathees J. Eswara^{1*}

6

7 ¹ Department of Cell Biology, Microbiology and Molecular Biology, University of South
8 Florida, Tampa, Florida, USA

9 ² Department of Molecular Medicine, University of South Florida, Tampa, Florida, USA

10

11 *To whom correspondence should be addressed. Email: eswara@usf.edu

12

13 Keywords: GpsB; FtsZ; suppressors; cell division; cell wall; cell shape; WTA.

14

15 **ABSTRACT**

16 Bacterial cell division is a complex and highly regulated process requiring the
17 coordination of many different proteins. Despite substantial work in model organisms,
18 our understanding of the systems regulating cell division in non-canonical organisms,
19 including critical human pathogens, is far from complete. One such organism is
20 *Staphylococcus aureus*, a spherical bacterium that lacks known cell division regulatory
21 proteins. Recent studies on GpsB, a protein conserved within the Firmicutes phylum,
22 have provided insight into cell division regulation in *S. aureus* and other related
23 organisms. It has been revealed that GpsB coordinates cell division and cell wall

24 synthesis in multiple species by interacting with Penicillin Binding Proteins (PBPs) and
25 other partners. In *S. aureus*, we have previously shown that GpsB directly regulates
26 FtsZ polymerization. In this study, using *Bacillus subtilis* as a tool, we isolated intragenic
27 and extragenic spontaneous suppressor mutants that abrogate the lethality of *S. aureus*
28 GpsB overproduction in *B. subtilis*. Through characterization of these mutants, we
29 identified several key residues important for the function of GpsB. Furthermore, we
30 discovered an additional role for GpsB in wall teichoic acid (WTA) biosynthesis in *S.*
31 *aureus*. Specifically, we show that GpsB directly interacts with the wall teichoic acid
32 export protein TarG using a bacterial two-hybrid analysis. We also identified a three-
33 residue motif in GpsB that is crucial for this interaction. Based on the analysis of the
34 localization of TagG in *B. subtilis* and its homolog TarG in *S. aureus*, it appears that
35 WTA machinery is a part of the divisome complex. As such, we show additional
36 evidence to the growing body of work that suggests that along with peptidoglycan
37 synthesis, WTA biosynthesis and export may take place at the site of cell division.
38 Taken together, this research illustrates how GpsB performs an essential function in *S.*
39 *aureus* by directly linking the tightly regulated cell cycle processes of cell division and
40 WTA-mediated cell surface decoration.

41

42 **IMPORTANCE/AUTHOR SUMMARY**

43 Cytokinesis in bacteria involves an intricate orchestration of several key cell division
44 proteins and other factors involved in building a robust cell envelope. One of the key
45 factors that differentiates Gram-positive bacteria from Gram-negative bacteria is the
46 presence of teichoic acids interlaced within the Gram-positive cell wall. By

47 characterizing the role of *Staphylococcus aureus* GpsB, an essential cell division protein
48 in this organism, we have uncovered an additional role for GpsB in wall teichoic acids
49 (WTA) biosynthesis. We show that GpsB directly interacts with TarG of the WTA export
50 complex. We also show this function of GpsB may be conserved in other GpsB
51 homologs as GpsB and the WTA exporter complex follow similar localization patterns. It
52 has been suggested that WTA acts as a molecular signal to control the activity of
53 autolytic enzymes, especially during the separation of conjoined daughter cells. Thus,
54 our results reveal that GpsB, in addition to playing a role in cell division, may also help
55 coordinate WTA biogenesis.

56

57 **INTRODUCTION**

58 One of the defining characteristics of life is the ability for a cell to grow and divide.
59 Although there are some exceptions, the predominate process for growth and division in
60 bacteria is binary fission where one bacterial cell grows and divides to produce two
61 similarly sized daughter cells [1, 2]. This tightly regulated process coordinates
62 chromosome segregation, cell elongation, and controls the activity of cell division
63 proteins [3, 4]. Although significant strides have been made to identify the molecular
64 mechanism regulating the cell division machinery, gaps remain in our knowledge,
65 particularly in the non-model organisms [2, 5]. For example, GpsB (the central protein of
66 interest in this study) plays an important, and in some cases essential, role in the cell
67 growth regulation of multiple clinically-relevant Gram-positive organisms (specifically
68 Firmicutes), but is absent in Gram-negative organisms [6, 7]. This highlights the need
69 for a closer analysis of such processes and proteins in multiple species.

70

71 In *Bacillus subtilis*, *Listeria monocytogenes* and *Streptococcus pneumoniae*, GpsB links
72 cell wall biosynthesis with the cell division process by interacting with penicillin binding
73 proteins (PBPs), thereby helping to regulate and maintain proper cell shapes [8-14]. Our
74 lab reported that *S. aureus* GpsB directly interacts with FtsZ and affects its
75 polymerization characteristics [15]. In our previous study, we described the lethal
76 phenotype associated with the overproduction of *S. aureus* GpsB (GpsB^{SA}) in its
77 Firmicutes relative *B. subtilis*. In this study, we utilized this phenotype to conduct a
78 suppressor screen to identify residues that are important for the function of GpsB^{SA} and
79 pathways through which GpsB^{SA} may exert its function. Herein, we describe the effects
80 of seven intragenic GpsB^{SA} suppressor mutations and characterize their ability to
81 abrogate cell division inhibition. Additionally, we investigated extragenic suppressor
82 mutations through whole genome sequencing that allowed us to delineate a novel role
83 for GpsB in linking central cell division directly to the wall teichoic acids (WTA) pathway.
84 Specifically, suppressor mutations were mapped to *tagG/tagH* genes in *B. subtilis*, and
85 subsequent bacterial two-hybrid (BACTH) analysis confirmed the direct interaction
86 between GpsB^{SA} and the *S. aureus* homolog of TagG, TarG. We also show a 3-amino
87 acid motif, positioned away from the well-characterized PBP binding site, that appears
88 to be important for TarG binding. Furthermore, we show that the interaction between
89 GpsB and the WTA export complex may be conserved beyond *S. aureus*, as we also
90 note that TagH has similar spatiotemporal localization pattern as GpsB in *B. subtilis*
91 cells. In *S. aureus*, treatment with antibiotics that target the WTA pathway drastically
92 alters the localization pattern of GpsB, although targeting of GpsB to new division sites

93 remain unaffected. Thus, it appears that GpsB, an essential protein in *S. aureus*,
94 coordinates cell division and WTA production/transport through direct interaction with
95 FtsZ and TarG respectively.

96

97 **RESULTS**

98 **Isolation of suppressor mutations of GpsB^{SA} overproduction in *B. subtilis***

99 To build upon our previous report and further explore other cell cycle processes that
100 involve GpsB^{SA} in an unbiased manner, we isolated suppressors that can tolerate the
101 lethal overproduction of GpsB^{SA} in *B. subtilis* [15]. Briefly, a *B. subtilis* strain harboring
102 an IPTG-inducible *gpsB*^{SA}-*gfp* was streaked out on plates containing IPTG and
103 incubated overnight. Following incubation, the colonies that appeared on the plates
104 containing the inducer were presumed to contain spontaneous suppressor mutations.
105 Non-GFP producing isolates were discarded, as the likely cause of the suppression of
106 lethality could be a promoter mutation turning off the expression of *gpsB*^{SA}-*gfp*, a
107 frameshift mutation, or a premature truncation. After multiple rounds of confirmatory
108 screening, the mutations were classified to be either intragenic or extragenic (**Fig. 1A**)
109 [16]. Using this method, we isolated seven intragenic mutations, Y14F, L35S, D41N,
110 D41G, R72H, as well as a deletion and repeat of a 3-amino acid stretch 66-68 LEE
111 (Δ LEE and LEE_{pt}) that are listed in **Fig. 1B**, of these L35S was reported previously
112 [15]. Throughout the manuscript, these suppressor mutations as a group will be referred
113 to as *GpsB-GFP. We then analyzed the multiple sequence alignment of GpsB from *S.*
114 *aureus*, *B. subtilis*, *L. monocytogenes*, and *S. pneumoniae* (**Fig. 1C**). Of the first four
115 mutations (Y14F, L35S, D41N, and D41G), the latter three occur in highly conserved

116 residues. Tyr14 is wedged between a conserved Lys (Lys11) which was reported to be
117 important for forming a bidentate salt bridge with the proximal glutamate/aspartate
118 (Glu15 in *S. aureus*) in other organisms [6]. Of note, Phe replaces Tyr in the
119 corresponding position (Tyr14 of *S. aureus*) in *S. pneumoniae* GpsB. The remaining
120 three mutations (Δ LEE, LEErpt, and R72H) are near the disordered linker connecting
121 the N- and C-terminal domains (**Fig. 1C**). The Leu, Glu, Glu (LEE) motif is conserved in
122 *B. subtilis*, however Arg72 is less conserved but appears in *L. monocytogenes*.

123

124 **Suppressor mutations of $GpsB^{SA}$ abolish cell division inhibition in *B. subtilis* cells**

125 To examine the ability of *B. subtilis* to tolerate the expression of $^*gpsB^{SA}$ -*gfp*, we
126 conducted a spot titer assay with a clean copy of $gpsB^{SA}$ -*gfp* harboring the suppressor
127 mutation cloned into PY79 cells under the control of an inducible promoter, similar to
128 how the wildtype $gpsB^{SA}$ -*gfp* was constructed. Cultures containing each of the strains
129 were grown, serially diluted, and then plated onto LB agar plates both with and without
130 inducer (**Fig. 2A**). On the minus inducer plate, all strains were able to grow and no
131 growth defects were noted. On the plus inducer plate, the strain containing unmutated
132 $GpsB^{SA}$ -GFP showed a severe growth defect consistent with our previous report. In
133 contrast, the growth on the minus and plus inducer plates for each of the suppressor
134 mutations was indistinguishable from each other. Western blot analysis was used to
135 confirm the stable production of each mutant in *B. subtilis* (**Fig. S1A**). Although most
136 suppressors are stably produced, L35S displayed a distinct cleavage product (**Fig. S1B**)
137 and LEErpt appears to be more stable as it accumulates to a larger extent even in the

138 absence of the inducer. Regardless, all seven suppressor mutations in $GpsB^{SA}$ allow *B.*
139 *subtilis* cells to grow on solid medium in the presence of inducer.

140

141 We previously reported that the growth defect caused by the expression of $gpsB^{SA}$ in *B.*
142 *subtilis* was due to severe filamentation, which is characteristic of cell division inhibition
143 in this organism [15]. To investigate the effect of the suppressor mutations on cell
144 division inhibition, we performed high resolution fluorescence microscopy (**Fig. 2B**).

145 Upon expression of $gpsB^{SA}$ -*gfp*, we observed the previously reported cell division
146 inhibition and filamentous phenotype (**Fig. 2B ix**). Notably, upon expression of each of
147 the suppressor mutations, the *B. subtilis* cells no longer display the filamentous
148 phenotype and appear to be dividing normally (**Fig. 2B x - xvi**). We also examined
149 *GpsB-GFP localization in all strains (**Fig. S1C**). Diffused localization was observed for
150 the L35S (as noted previously; [15]) and D41N suppressors (**Fig. S1C iii and v**).
151 Otherwise, all *GpsB-GFP strains displayed a mostly wildtype-like localization pattern.

152

153 **Most * $gpsB^{SA}$ mutants are dominant alleles and can suppress the toxicity of**
154 **$gpsB^{SA}$ upon co-expression**

155 To determine if any of the * $gpsB$ mutations suppress the toxicity of the wildtype $gpsB^{SA}$
156 allele, we engineered a *B. subtilis* strain to co-express both $gpsB^{SA}$ -*gfp* and * $gpsB^{SA}$ -*gfp*
157 under the control of an IPTG-inducible promoter to produce stoichiometrically equivalent
158 amounts of both wildtype and mutant proteins. We then performed a spot titer assay to
159 examine any growth defects in these strains (**Fig. S2A**). In the strains carrying the
160 suppressor mutations, six were able to restore growth and grow both in the absence

161 and presence of inducer. The seventh mutation, Y14F, showed a weak dominant
162 negative effect as it was able to grow in serial dilutions 2 to 3 log-fold higher than
163 GpsB^{SA} -GFP alone. However, it was not as strong as the other mutations that grew in a
164 serial dilution that was 5 to 6 log-fold higher than GpsB^{SA} -GFP. Interestingly cells
165 overproducing Y14F variants are on average longer (3.92 μm , n=100) when compared
166 to minus inducer control (2.18 μm , n=100) implying partial functionality of this mutant
167 (compare Fig. 2B panels ii and x). Next, we used a BACTH assay to examine the
168 protein-protein interactions that could explain this dominant negative effect. Since GpsB
169 is known to form a hexamer (trimer of dimers), we tested the ability of each mutant to
170 interact with WT GpsB^{SA} by cloning GpsB^{SA} and $^*\text{GpsB}^{\text{SA}}$ into the BACTH plasmids [17].
171 Pairs of these plasmids were transformed into BTH101 *Escherichia coli* cells for protein-
172 protein interaction analysis on MacConkey agar and by β -galactosidase assay in liquid
173 cultures (**Fig. S2B**). We found that all the mutants retained their ability to interact with
174 WT GpsB . Thus, we believe that a $\text{GpsB}^{\text{SA}}\text{-}^*\text{GpsB}^{\text{SA}}$ interaction is likely the reason for
175 the suppression in toxicity observed in **Fig. S2A**.

176
177 As GpsB is an essential protein in *S. aureus*, we wondered if the expression of these
178 dominant suppressor mutation harboring copies of *gpsB* would impair the essential
179 function of GpsB^{SA} in its native organism and be lethal to the cells. This straightforward
180 analysis was complicated by the fact that overproduction of *gpsB-gfp* in *S. aureus* by
181 itself is toxic and results in cell enlargement as reported previously [15]. Thus, we were
182 not able to conduct a thorough analysis. However, among these suppressors it appears
183 that Y14F, ΔLEE , and R72H are the most potent in inhibiting the function of native

184 GpsB, as colony formation is almost completely eliminated upon their overproduction
185 (**Fig. S2C**). Stable production of *GpsB^{SA}-GFP in *S. aureus* cells was also confirmed
186 through western blotting (**Fig. S2D**). Despite being one of the most toxic mutations, the
187 Δ LEE mutant accumulates to a much lower extent than the other mutants.

188

189 **Structural analysis of GpsB^{SA} suppressor mutations**

190 The N-terminal domain of GpsB is characterized by an elongated coiled-coil dimer that
191 is highly conserved among homologs (**Figs. 3 and S3**) and is highly similar to the lipid-
192 binding domain of DivIVA [6]. The GpsB monomer has two regions of organized
193 secondary structure: a long α -helix of approximately 35-40 residues (α -helix 2) and a
194 shorter, two turn α -helix of approximately 8 residues (α -helix 1) (**Fig. 3A**). Near the
195 membrane-binding region, α -helix 1 from one protomer converges at the interface of α -
196 helix 2 and α -helix 1 from the other protomer to form a groove that binds to the
197 cytoplasmic N-terminal domain of PBPs. Although the PBP binding site is conserved
198 among GpsB homologs, a conclusive positive interaction between *S. aureus* GpsB and
199 any of the PBPs has not been observed yet. The N-terminal domain of GpsB is
200 connected by a non-conserved, disordered linker to a short, helical C-terminal domain.

201

202 Using the SWISS-MODEL homology-server, a homology model for the N-terminus of *S.*
203 *aureus* GpsB was constructed, allowing us to predict the structural effects of these
204 suppressor mutations (**Fig. 3**) [18]. The mutations described in our experiments likely
205 disrupt the structural integrity of GpsB (L35S, D41N/D41G) or alter the recognition
206 elements required for partner binding (Y14F, R72H, LEE repeat/deletion).

207

208 *Tyr14 → Phe*

209 Tyr14 is located on α -helix 1 near the PBP-binding groove where it is oriented outwards,
210 away from the core and into the solvent accessible region (**Fig. 3B**). The aliphatic
211 nature of the Tyr side chain is conserved in *S. pneumoniae*, *L. monocytogenes*, and *B.*
212 *subtilis* where it is Phe, Leu, and Leu respectively. Using the structures of *L.*
213 *monocytogenes*, *B. subtilis*, and *S. pneumoniae* GpsB complexed with their PBP
214 binding partner (PDB IDs 6GPZ, 6GP7, and 6GQN, respectively), we observe that
215 Tyr14 projects directly towards the PBP N-terminal helix [10, 14]. Because Tyr14 does
216 not interact with other residues in GpsB and the Tyr → Phe mutation is relatively minor,
217 a likely scenario for the more toxic phenotype (**Fig. S2C**), is that Tyr14 facilitates
218 interaction with a binding partner. Furthermore, because the Tyr → Phe mutation
219 corresponds to the loss of a phenolic hydroxyl group, the interaction likely involves the
220 formation of a hydrogen bond.

221

222 *Leu35 → Ser*

223 Leu35 is positioned at the interface of the PBP binding site and the core of the coiled
224 coil junction (**Fig. 3C**). Despite interacting with adjacent hydrophobic residues near the
225 interfacial core, Leu35 is in immediate proximity to the canonical arginine that is
226 required for PBP binding. However, a mutation to a more polar residue that is capable
227 of hydrogen bonding would seemingly improve this interaction. Therefore, it is most
228 likely that the L35S mutation disrupts the core hydrophobic interactions that are critical
229 for maintaining either the overall structure, or the shape of the PBP binding groove. This

230 may explain the diffused localization (**Fig. S1**). Further supporting this hypothesis is an
231 equivalent mutation at this position in *L. monocytogenes* GpsB, L36A that prevents
232 oligomerization of GpsB, presumably due to the disruption of this hydrophobic core [10].

233

234 Asp41 → Asn, Gly

235 Asp41 is located on α -helix 2 where it interacts with a loop formed by the first 10
236 residues of GpsB that precedes α -helix 1 (**Figs. 3E, S3C**). Given the proximity of Asp41
237 to Lys7 and the fact that a mutation to the chemically similar, but neutral Asn produces
238 a non-functional variant, one could mistakenly assume this is a critical electrostatic
239 interaction. However, the side chain of Lys7 is 5.8 Å away from the closest Asp side
240 chain oxygen, well beyond the expected range of favorable electrostatic interactions.
241 Furthermore, Lys7 is not conserved amongst *L. monocytogenes* and *S. pneumoniae*;
242 significantly, *S. pneumoniae* GpsB has an isoleucine at this position (**Fig. S3C**). A
243 closer inspection of this region reveals that Asp41 is an important acceptor of three
244 hydrogen bonds: from the strictly conserved Tyr42 of the adjacent protomer, and the
245 amide nitrogen of the Lys7 and Leu8 main chain. The hydrogen bonds with the
246 backbone nitrogen of Lys7 and Leu8 are important interactions because this attracts the
247 loop to the helical core of GpsB, allowing α -helix 1 to interact with α -helix 2, thus
248 correctly forming the PBP binding groove. Therefore, the replacement of any of the Asp
249 oxygen atoms, even with a nitrogen hydrogen bond donor, would likely prohibit the
250 formation of these three highly coordinated hydrogen bonds.

251

252 LEE deletion/repeat and Arg72 → His

253 The last two turns of the GpsB N-terminal α -helix 2 are composed of residues 66-
254 LEELRLR-72. They are followed by a flexible linker region of approximately 20 amino
255 acids that connects to the C-terminal domain. Interestingly, the LEELRLR region is not
256 conserved amongst other Firmicutes and is unique to *S. aureus*. Multiple $i+3$ and $i+4$
257 electrostatic interactions are formed laterally along LEELRLR by Arg and Glu sidechains
258 and Lys64 (**Figs. 3D, S4**). Additionally, the Leu residues interact through hydrophobic
259 interactions in the core with the corresponding residue of the adjacent protomer and the
260 neighboring Leu of its own chain. The insertion or deletion of a LEE sequence would
261 disrupt the complementarity of sidechain interactions and cause charge-charge
262 repulsion. Deletion of LEE eliminates a pair of ($N+3/N+4$) +/- interactions (K64-E67,
263 E68) and (E68-R72) while adding one pair of +/- interactions (K63, K64 -E67R) (**Fig.**
264 **S4C**). A LEE repeat eliminates one +/- interaction (E68-R72) and adds two pairs of -/-
265 interactions: (E67-R70E, L71E) and (E68- L71E, R72E) (**Fig. S4B**). Therefore, the
266 insertion or deletion of LEE will decrease the helical propensity of this region. Because
267 the disruption of secondary structure is restricted to a small region that is adjacent to a
268 disordered linker, the impact on the overall structure of GpsB structure could be
269 minimal, meaning this specific area may have functional importance for binding to other
270 proteins. Possible proteins include FtsZ [15] or other unique interaction partners (such
271 as TarG discussed later in this report) that could interact with GpsB through LEELRLR.
272 Additionally, Arg72 is either the last residue of α -helix 2 or the beginning of the
273 disordered, linker region that connects the N-terminal domain to the C-terminal domain.
274 Either way, it is unlikely to affect the overall structure of GpsB and could also be a

275 critical residue that interacts with another protein, likely through electrostatic interactions
276 with a Glu or Asp residue.

277

278 **Isolation of extragenic suppressors reveals a link between GpsB and wall teichoic
279 acid machinery**

280 In addition to the intragenic suppressors described above, we also isolated extragenic
281 suppressors and then analyzed these mutants through whole genome sequencing (**Fig.**
282 **1A**). Through this process we isolated three different suppressor mutations
283 independently. Two of the mutants had the same mutation in *tagH* (Y233C) and the
284 third suppressor had a mutation in *tagG* (R20K) (**Fig. 4A**). TagG and TagH work
285 together to form a complex that exports wall teichoic acids (WTA) that are made
286 intracellularly so they can be anchored to the cell wall [19]. As these WTA genes are
287 essential in *B. subtilis*, to confirm that the extragenic suppressors harbor true
288 suppressor mutations we utilized the previously developed essential gene knockdown
289 tool based on CRISPR interference (CRISPRi) with deactivated Cas9 [20], to disrupt the
290 expression of either *tagG* or *tagH*. Briefly, we investigated the fate of wildtype GpsB^{SA}-
291 GFP overproducing cells when *tagG* or *tagH* expression was knocked down (+ xylose)
292 or not (**Fig. 4C**). When we imaged these *tagG* or *tagH* strains without xylose (**Fig. 4B i**
293 **and iii**), the strains appeared similar to wildtype. Upon addition of xylose, we noted
294 areas of membrane enrichment near cell poles (**Fig. 4B ii and iv**), consistent with the
295 previous report of bulging [20]. As shown before (**Fig. 2B**), induction of *gpsB*^{SA}-*gfp*
296 expression with IPTG leads to filamentation (**Fig. 4C i and ii**). In the CRISPRi strains of
297 *tagG* or *tagH* with GpsB^{SA}-GFP, the IPTG-mediated filamentation is also seen in the

298 absence of xylose (no interference in the expression of *tagG* or *tagH*) (**Fig. 4C iv and**
299 **viii**). Finally, when we add both IPTG and xylose to induce GpsB^{SA} -GFP production and
300 knockdown of *tagG* or *tagH*, the cells are no longer filamentous (**Fig. 4C vi and x**), thus
301 confirming that *tagG* and *tagH* are true suppressors of GpsB^{SA} -GFP mediated cell
302 division inhibition. Therefore, it is likely that the extragenic suppressor mutations result
303 in dysregulation of the TagGH complex to suppress the lethal overexpression of gpsB^{SA} .

304

305 To our knowledge, a direct relationship of GpsB and WTA synthesis has not been
306 reported in *B. subtilis*. So, to investigate how TagGH could suppress GpsB^{SA} -GFP
307 mediated cell division inhibition, we monitored both GpsB and TagGH localization in *B.*
308 *subtilis* cells. Using GpsB^{BS} -GFP and GFP-TagH^{BS} [21], we analyzed when TagH
309 arrived at the division site (**Fig. 4D**). We found that both GpsB^{BS} and TagH^{BS} arrives at
310 mid-cell early in the division cycle, (at a similar time to GpsB^{SA} in *B. subtilis* [15]), in
311 areas of membrane enrichment (indicating the regions of septal membrane
312 invagination) (**Fig. 4D i and iv; see arrowhead**) and stays at the mature septum (**Fig.**
313 **4D ii and v**), at least until the septum transforms into hemispherical cell poles (**Fig. 4D**
314 **iii and vi**). This is consistent with the previous reports of TagH^{BS} [21] and GpsB^{BS}
315 localization [8, 9]. Thus, it appears that GpsB may play a role in WTA biosynthesis by
316 interacting with one or more of the WTA biosynthesis proteins, and the toxicity
317 stemming from GpsB^{SA} production in *B. subtilis* could be due to an interaction between
318 GpsB^{SA} and the TagGH^{BS} WTA exporter complex.

319

320 **GpsB^{SA} directly interacts with *S. aureus* wall teichoic acid export protein TarG**

321 Next, we analyzed whether GpsB^{SA} could interact directly with the *S. aureus* homologs
322 of TagGH, TarGH (Tag - teichoic acid glycerol | Tar - teichoic acid ribitol; [19]), using a
323 BACTH assay. We detected a strong positive interaction between TarG^{SA} and GpsB^{SA}
324 (**Fig. 5A**). We further confirmed the strong positive interaction by quantifying the
325 production of β -galactosidase enzyme (**Fig S5A**). Interestingly, a previous work has
326 showed an interaction between GpsB^{SA} and TarO^{SA} via BACTH [22].

327

328 Since we could detect an interaction between GpsB and the WTA export complex, we
329 were curious if overexpression of *gpsB* would affect WTA levels in *S. aureus* cells.
330 Crude WTA extracts from *S. aureus* cells containing either an empty vector or one
331 overproducing GpsB were visualized under Alcian blue silver staining, but we did not
332 detect any changes in WTA levels in these cells at the condition tested (**Fig. S5B**). In
333 addition, we also observed early division site localization of GFP-TarG (**Fig. S5C**),
334 which supports the physiological significance of GpsB-TarG interaction given that GpsB
335 also localizes to nascent division sites (**Fig. 5B**; [15]). Division site localization of the
336 WTA biosynthesis protein TarO (TagO) has also been noted in *S. aureus* [23]. The
337 division site localization of TarO and TarG and their direct interaction between GpsB
338 reveal that WTA machinery may be part of the divisome complex in *S. aureus*.

339

340 **GpsB regulation of FtsZ is independent of wall teichoic acid synthesis**

341 Our previous report showed that GpsB interacts with FtsZ and localizes to the site of
342 division in *S. aureus*, so we wanted to see if GpsB localization at mid-cell was
343 dependent on ongoing wall teichoic acid synthesis/export (**Fig. 5B**). For this purpose,

344 we used two inhibitors of wall teichoic acid synthesis, tunicamycin (early WTA
345 biosynthesis by TarO is inhibited [24]) and targocil (TarGH-mediated WTA export is
346 inhibited [25]). It is noteworthy that in addition to targeting TarO, tunicamycin could also
347 target the early-stage peptidoglycan biosynthesis protein MraY at higher concentration
348 [24]. Based on previous observations, treatment with these antibiotics does not halt cell
349 division, however, the placement of the septa and overall regulation of division is
350 disrupted. Treated cells also had significant cell separation defects presumably due to
351 limited autolysin activity [24-28]. Given this information, we used high resolution
352 fluorescence microscopy to monitor the localization of GpsB^{SA} -GFP in cells treated with
353 tunicamycin or targocil. *S. aureus* cells containing GpsB^{SA} -GFP were grown to mid-log
354 and then the inducer (IPTG) and the antibiotics (tunicamycin or targocil) were added,
355 and cells were grown for an additional hour. At this point the majority of cells were
356 expected to have completed a full round of division in our experimental condition. In the
357 cultures treated with either tunicamycin or targocil, cells were significantly larger (**Figs.**
358 **5B and 5D**). The impaired autolytic activity is also evident with (25%) of cells having a
359 completed septum designated “Stage 3” in the no antibiotic treatment control, vs (66%)
360 in the tunicamycin treated cells and (78%) in the targocil treated cells (**Fig. 5C**). Despite
361 the impaired cell separation in both the tunicamycin and targocil treated cells, we noted
362 evidence of GpsB localizing to sites perpendicular to the previous plane of division (**Fig.**
363 **5B vi and ix**; white arrow heads) suggesting that although the cells are not separating
364 properly, they are still attempting to undergo another round of division and that GpsB
365 and presumably FtsZ localization/regulation remain intact. Interestingly, we did note one
366 distinct phenotype between the tunicamycin and targocil treated cells. In the cells

367 treated with tunicamycin, GpsB-GFP appears to remain localized in the peripheral
368 membrane in addition to sites of division, however in the targocil treated cells there is
369 very little peripheral membrane localization (**Figs. 5B panels v and viii; and Fig. 5E**).
370

371 **Intragenic mutants reveal critical residues for GpsB/TarG interaction**

372 The homology modeling of our intragenic GpsB mutants revealed that three of the
373 mutations, Δ LEE, LEErpt, and R72H could disrupt protein-protein interactions. To
374 investigate whether any of these three mutations affected their localization, we imaged
375 these strains under fluorescence microscopy. As longer incubation with Δ LEE and
376 R72H is lethal (**Fig. S2C**), cells were imaged at an earlier time point (1 h post-
377 induction). We noted that all three mutations, Δ LEE, LEErpt, and R72H retained
378 wildtype-like localization (**Fig. 6A**). Next, we tested the ability of these mutants to
379 interact with TarG. Using the BACTH assay, we tested the interactions of Δ LEE,
380 LEErpt, and R72H with TarG. We observed that LEErpt and R72H were still able to
381 interact with TarG, however Δ LEE no longer interacted with TarG (**Fig. 6B**). This
382 suggests that the presence of these three residues (or the length of the disordered
383 linker connecting the N- and C-terminal domains) are important for the GpsB-TarG
384 interaction. As such, it is tempting to speculate whether the lethality of dominant Δ LEE
385 overproduction (**Fig. S2C**) could be due to the impairment of the native GpsB and TarG
386 interaction.

387

388 It has been reported that targocil treatment (inhibition of WTA export) could prevent the
389 translocation of major autolysin, Atl [28]. It was shown that *S. aureus* cells treated with

390 targocil exhibited reduced autolysis in comparison to untreated cells. We were
391 interested in testing whether GpsB promoted or inhibited WTA export-mediated
392 autolysis (**Fig. S5D**). The rate of autolysis did not change significantly between cells
393 harboring an inducible copy of *gpsB*, *gpsB*^{ΔLEE}, and the empty vector (EV) control.
394 However, as reported previously, subsequent to targocil treatment, the strain harboring
395 EV control displayed reduced autolysis. Interestingly, in targocil-treated cells
396 overproducing GpsB, the autolysis was reproducibly higher compared to the EV control.
397 This increased autolysis is dependent on TarG interaction, as overproduction of ΔLEE
398 (which lacks the interaction with TarG; **Fig. 6B**) mimicked EV control. Thus, it appears
399 that GpsB may facilitate autolysin (Atl) translocation through its interaction with the TarG
400 component of the WTA export machinery.

401

402 **DISCUSSION**

403 GpsB is highly conserved across the Firmicute phylum. In *B. subtilis*, *S. pneumoniae*,
404 and *L. monocytogenes*, GpsB is involved in the coordination of cell division and cell wall
405 synthesis through the binding of PBPs and other partners [6, 7, 14]. Our lab recently
406 reported a novel function of *S. aureus* GpsB in regulating FtsZ polymerization by
407 promoting lateral interactions and facilitating GTP hydrolysis [15]. In this study, we
408 characterized several different mutations in GpsB^{SA} in an effort to more thoroughly
409 understand GpsB mediated cell division regulation in *S. aureus*. Subsequent to a
410 suppressor screen, we identified TarG as a protein interaction partner of GpsB in *S.*
411 *aureus* and found that residues 66-68 (LEE) of GpsB are critical for this interaction. An
412 earlier BACTH investigation of *S. aureus* cell division factors and peptidoglycan

413 synthesis machinery identified an interaction between EzrA and GpsB, however it failed
414 to show an interaction between GpsB and any other proteins including PBPs (PBP1,
415 PBP2, and PBP3) [29]. However, it appears that GpsB may interact with PBP4 [22],
416 which plays a role in peripheral peptidoglycan synthesis in *S. aureus* [30]. An extensive
417 BACTH-based interaction analysis between lipoteichoic acid (LTA) biosynthesis
418 proteins and cell division factors also revealed that GpsB is not part of the LTA complex
419 in *S. aureus* [31]. Thus, our finding of TarG-GpsB interaction is insightful and was only
420 suspected based on our unbiased approach. In addition to the GpsB interaction with
421 TarG shown here, previous work showed that GpsB interacts with TarO in *S. aureus*
422 (among other proteins) [22].

423

424 Traditionally, WTA export has been alluded to occur along the lateral cell wall with the
425 possible help of shape-determining MreB, MreC, and/or MreD proteins in *B. subtilis* [21,
426 32-34], which could allow for higher order accumulation of WTA at lateral cell wall.
427 Consistent with this model, several WTA biosynthesis proteins including TagGH also
428 interacts with FtsEX which is involved in cell elongation in *B. subtilis* [35, 36]. However,
429 evidence suggests that WTA synthesis is not only important for cell elongation as a role
430 for FtsEX in cell division and cell separation has been elucidated in *S. pneumoniae* [37]
431 (and it is also known that FtsEX can directly interact with FtsZ in the Gram-negative
432 organism *E. coli* [38]). A role for FtsEX in the activation of a specific peptidoglycan
433 hydrolase has been well documented in these organisms [36-39]. Additionally, of the
434 proteins discussed above, MreC is a known interaction partner of GpsB in *B. subtilis*, *S.*
435 *pneumoniae*, and *L. monocytogenes* [8, 14]. Interestingly, MreC and other GpsB

436 interaction partners, PBP1 and EzrA also interact with FtsEX in *B. subtilis* [35]. Thus, it
437 is possible to envision a complex made of Mre proteins, FtsEX, PBPs, and GpsB
438 moderating the WTA biosynthesis in *B. subtilis*. Although well-studied MreB is absent in
439 *S. aureus*, MreC and MreD proteins are present and are targeted to the division sites
440 [40], similar to GpsB [15]. Surprisingly, *S. aureus* lack the genes for FtsE and FtsX (L.
441 Aravind - National Center for Biotechnology Information/National Institutes of Health;
442 personal communication). During the course of evolution into a spherical organism from
443 a rod-shaped ancestor, it appears that *S. aureus* has lost the need for the FtsEX
444 complex. However, other alternate mechanism(s) to activate cell wall hydrolases, such
445 as LytH/ActH [41], exists. Thus, it is possible in *S. aureus* the WTA machinery is
446 positioned and regulated differently than its non-spherical counterparts in a manner that
447 involves GpsB.

448

449 There are several other lines of evidence that give additional credence to the GpsB-
450 WTA link. The first comes from the suppressor analysis in *L. monocytogenes* [42],
451 where Rismondo et al. show that suppressor mutations in the WTA biosynthesis
452 pathway can suppress the lethality of cells growing without *gpsB* at a higher non-
453 permissive temperature. These suppressors could be freeing lipid-II/UDP-GlcNAc for
454 the essential peptidoglycan biosynthesis pathway. It may be possible that several lipid-II
455 and/or UDP-GlcNAc utilizing WTA proteins and peptidoglycan synthesis components
456 could be streamlined with the help of GpsB as a central coordinator for efficient cell
457 cycle progression.

458

459 Another line of evidence supporting a GpsB-WTA link is the connection between WTA
460 and division site localization/selection in multiple organisms. It has been shown that
461 WTA machinery is enriched at the division site in both *B. subtilis* and *S. aureus* from the
462 very start of septal membrane invagination [21, 23]. Interestingly, PBP4, a likely
463 interaction partner of GpsB [22], depends on TarO for division site localization [23].
464 Investigations showed that inhibition of WTA synthesis [24, 43] or prevention of WTA
465 transfer to peptidoglycan [44-46], affect the positioning of division septum in *S. aureus*,
466 which indicate a direct or indirect role for WTA in division site selection. Of note, at least
467 one of the WTA ligases in *S. aureus*, SA1195 (MsrR) may interact with GpsB [22].
468 Additionally, division site localization of lipoteichoic acids (LTA) synthesis complex in *S.*
469 *aureus* has been noted previously [31] and it was shown that multiple proteins in the
470 LTA machinery interact with the divisome, including PBPs and the well-characterized
471 interaction partner of GpsB, EzrA. It is important to note that LTA synthesis happens
472 extracellularly in the periplasmic space between the high-density cell wall zone and the
473 membrane [47]. WTA synthesis on the other hand occurs intracellularly and is exported
474 for covalent attachment to the peptidoglycan to be part of the high-density cell wall zone
475 [47]. It is estimated that WTA makes up nearly 60% of the cell wall composition [19].
476
477 Evidence showing the presence of septal WTA is available [19, 24, 48, 49], and multiple
478 studies have investigated the role and importance of WTA at sites of division. It has
479 been proposed that the maturation (such as D-alanylation) and/or accumulation of WTA
480 may then take place subsequent to cell division in order to not interfere with (or allow)
481 the autolysin function [19, 23, 27, 50-53]. In support of this idea, it was reported that

482 LytF, a major autolysin in *B. subtilis*, is excluded from the lateral cell wall and localizes
483 specifically to division sites in a WTA-dependent manner [33]. Perhaps autolysins
484 interact with WTAs to allow for efficient separation of conjoined daughter cells in one, or
485 a combination of, the following three ways: autolysins are actively recruited to the
486 division sites with the aid of immature WTAs [51]; secretion of autolysins preferentially
487 happen with WTA export at sites of division [28]; and/or septum-localized proteins such
488 as FmtA selectively remove D-alanylation at the division site [54]. Additionally, other
489 proteins that are translocated specifically at division sites, such as those with YSIRK
490 signal, may rely on teichoic acids as well [55].

491
492 Taking the multiple lines of evidence into consideration, it is reasonable to postulate the
493 presence of a multiprotein complex of complexes comprised of the divisome (including
494 septal peptidoglycan synthesis components) and machineries involved in synthesizing
495 both WTA and LTA at the site of cell division. As such, we propose a model taking
496 previously published reports into account (**Fig. 7**). GpsB initially localizes to the sites of
497 cell division in a FtsZ-dependent manner [15]. As shown in this study, TarG is
498 preferentially enriched at the division site (**Fig. S5C**) and directly interacts with GpsB
499 (**Fig. 5A**). Thus, we believe the TarGH WTA export complex and possibly TarO (based
500 on its interaction with GpsB [22]; and enrichment at division site [23]) is recruited to the
501 division site by GpsB in *S. aureus*. Subsequent to the creation of the highly crosslinked
502 WTA-containing cell wall at the septum (shown as dark gray lines in **Fig. 7B and C**) and
503 secretion of autolysin at the division site, regulated autolysis allows for daughter cell
504 separation, within the scale of milliseconds [30, 56]. Immediately after cell separation,

505 peripherally-localized GpsB [15] may facilitate the continuous incorporation of WTA
506 along the surface of the cell to further strengthen the cell envelope. Thus, we propose
507 that GpsB aids in the coordination of cell division and WTA synthesis/export
508 machineries in *S. aureus*. Further investigation is necessary to shed light on the
509 dependency of multiple crucial cellular processes on GpsB and the nature of molecular
510 interaction between GpsB and its multiple partners. Given the significance of GpsB in
511 multiple cellular pathways, it is an attractive drug target for the development of anti-
512 staphylococcal/antibiotic compounds.

513

514 **MATERIALS AND METHODS**

515 **Suppressor Screen**

516 Suppressor screening was carried out in the same manner as previously described [16].
517 Strain GG8 (*gpsB*^{SA}-*gfp*), was plated onto LB agar plates supplemented with 1 mM
518 IPTG to induce expression of *gpsB*^{SA}-*gfp* and incubated at 37 °C overnight. Single
519 colonies that were able to grow were then isolated from the plates and streaked onto
520 new LB agar plates supplemented with 1 mM IPTG and incubated overnight at 37 °C.
521 After confirming the ability of these strains to grow, genomic DNA was extracted and
522 transformed into fresh wildtype PY79 cells and screened for *amyE* integration. These
523 colonies were then streaked onto LB agar plates supplemented with 1 mM IPTG, with
524 PY79 serving as the control, and incubated overnight at 37 °C. Strains that were not
525 able to grow were denoted as possible extragenic mutations and sent for whole genome
526 sequencing (MiGS Microbial Genome Sequencing center – Pittsburgh, PA). In contrast,
527 any strains that were able to grow in the presence of the IPTG inducer were denoted as

528 possible **gpsB-gfp* intragenic suppressors. These strains were then screened via
529 fluorescence microscopy to detect GFP signal and rule out possible promoter or frame
530 shift mutations or the introduction of a premature stop codon. The genomic DNA from
531 the **gpsB-gfp* strains was isolated, the *amyE* locus carrying *gpsB-gfp* was PCR
532 amplified (op36/op24), and subsequently sequenced. Analysis of the sequences was
533 done using the ApE – A plasmid Editor (M. Wayne Davis), and multiple sequence
534 alignments were analyzed by using the Clustal Omega multiple sequence alignment
535 software [57].

536

537 **Strain construction**

538 All relevant strain and oligonucleotide information is listed in Table S1. Construction of
539 plasmids were performed with *E. coli* DH5α according to standard laboratory
540 procedures. To generate *B. subtilis* strains carrying both mutated (labelled collectively
541 as **gpsB-gfp*) and unmutated copies of *gpsB-gfp* we utilized a PY79 [58] derivative that
542 contains a second *amyE* locus (bkdB::Tn917::amyE::cat; Amy Camp). pGG4 [15] was
543 used to clone *gpsB-gfp* into the second *amyE* locus making strain LH72. The resistance
544 cassette was then switched from specR to ermR using pQP1 (Qi Pan) resulting in strain
545 LH73. Following screening, genomic DNA from the **gpsB-gfp* strains was transformed
546 into LH73 and colonies were screened for integration at the primary *amyE* locus. This
547 process resulted in strains LH75-LH80 that have IPTG inducible copies of both *gpsB-*
548 *gfp* and **gpsB-gfp*. Initial generation of *B. subtilis* strains containing the **gpsB-gfp*
549 mutations is described above (See *Suppressor Screen*). *S. aureus* strains were
550 constructed to place **gpsB-gfp* under the control of an IPTG inducible promoter using

551 the pCL15 plasmid backbone [59]. The plasmid containing unmutated GpsB-GFP,
552 pPE46 [15] was transformed into RN4220 cells resulting in strain GGS2. DNA for Y14F,
553 D41G, D41G, Δ LEE and R72H was PCR amplified (op36/oGG2; HindIII/Sall) and
554 cloned into the pCL15 plasmid creating plasmids pLH5-pLH9. L35S and LEErpt were
555 made though QuikChange (Agilent) of pPE46 resulting in pPE78 and pPE80. These
556 plasmids were then transformed into RN4220 cells creating strains LH17-20, and LH35-
557 LH36. These plasmids were also transformed into the *S. aureus* RN4220 Δ spa
558 background (SEJ1; [60]) resulting in strains LH141-LH159. The untagged Δ LEE strain
559 was similarly created through PCR amplification (op36/op38 HindIII/SphI) and cloned
560 into the pCL15 plasmid background creating pAH1 and transformed into RN4220 cells
561 resulting in strain AH2. Plasmids for Bacterial Two Hybrid analysis were created using
562 pEB354 and pEB355 which carry the pUT25 and pUT18 subunits of adenylate cyclase
563 respectively [17]. DNA for GpsB^{SA} and *GpsB^{SA} (BTH 11/BTH 12; EcoRI/XhoI) (LH39-
564 LH40, LH43-56), TarG (BTH62/BTH63; EcoRI/XhoI) (SKB1-SKB2), and TarH (BTH
565 60/BTH61; EcoRI/XhoI) (SKB3-SKB4), was PCR amplified and cloned into both
566 pEB354 and pEB355. To create the gfp-tagH strain in *B. subtilis* cells, chromosomal
567 DNA from Bacillus Genetic Stock Center (BGSC) 1A1119 [21] was transformed into
568 PY79 cells to create PE528. Similarly, to create the CRISPRi TagG/TagH strains,
569 chromosomal DNA was extracted from strains BEC35710 and BEC35700 (from BGSC)
570 respectively and transformed into PY79 cells to make SK15-SK16. Then, to create cells
571 that contained the CRISPRi knockdown for TagG or TagH as well as IPTG inducible
572 *gpsB*^{SA}-*gfp*, the same DNA was transformed into LH72 resulting in SK17-SK18. Finally,
573 to create *gfp-tarG*, DNA was PCR amplified (oLH11/12; Sall/BamHI and oLH13/14;

574 BamHI/EcoRI) and ligated into the pJB67 vector [61] resulting in pLH64 which was then
575 transformed into RN4220 cells to make LH136.

576

577 **Spot Titer Assay**

578 The spot titer assays for *B. subtilis* strains were carried out on LB agar plates
579 supplemented with 1 mM IPTG where needed to induce the expression of *gpsB*^{SA}-*gfp* or
580 **gpsB*^{SA}-*gfp*. Cultures of the strains were first grown to mid-logarithmic phase
581 (OD₆₀₀=0.4-0.6) and subsequently standardized to OD₆₀₀=0.1. The standardized
582 cultures were then serially diluted and 1 μ l of the liquid culture was spotted onto the
583 appropriate plate. These plates were then incubated overnight at 37 °C. Spot titer
584 assays for *S. aureus* strains were completed in the same manner using Tryptic Soy
585 Agar plates supplemented with 10 μ g/ml chloramphenicol, and where needed, 1 mM
586 IPTG. The serial dilutions of the standardized cultures were spotted onto the plates with
587 a volume of 1 μ l.

588

589 **Fluorescence Microscopy**

590 Fluorescence microscopy was carried out as previously described [62]. Overnight
591 cultures of *B. subtilis* strains in LB liquid media, or *S. aureus* strains in TSB
592 supplemented with 10 μ g/ml chloramphenicol (pCL15 backbone) or 5 μ g/ml
593 erythromycin (pJB67 backbone), were diluted to OD₆₀₀=0.1 and grown at 37 °C to mid
594 logarithmic phase (OD₆₀₀= 0.4-0.6). Then, for *B. subtilis* cultures, where needed, 1 mM
595 IPTG or 1% xylose was added to the cultures and grown for an additional 3 h. For *S.*
596 *aureus*, 1 mM IPTG (pCL15) or 1.25 μ M CdCl₂ (pJB67) was added to the cultures

597 (except GFP-TarG where no inducer was added) and where needed, 20 µg/ml
598 tunicamycin, or 8 µg/mL targocil was also added. Cells were then grown for an
599 additional 1 h. Following incubation, 1 ml aliquots were then pelleted and resuspended
600 in 100 µl PBS and 1 µg/ml SynaptoRed fluorescent dye to allow for visualization of the
601 cell membranes. A culture aliquot (5 µl) was then transferred to a glass bottom dish
602 (Mattek) and covered with a 1% agarose pad. Samples were imaged on a DeltaVision
603 Core microscope system (Applied Precision/GE Healthcare) equipped with a
604 Photometrics CoolSnap HQ2 camera and an environmental chamber. Seventeen
605 planes were acquired every 200 nm and the data were deconvolved using SoftWorx
606 software. Cell diameter was measured using ImageJ and analysis completed in
607 GraphPad Prism 9.

608

609 **Bacterial Two Hybrid Assay**

610 Plasmids carrying our genes of interest were transformed into *E. coli* BTH101 cells and
611 plated onto LB agar containing 100 µg/ml ampicillin and 50 µg/ml kanamycin and
612 incubated at 30 °C for 48 h. A positive control strain was made by transforming PE87
613 and PE88 carrying pUT25-zip and pUT18-zip into the BTH101 cells. A negative control
614 was made by transforming empty pEB354 and pEB355 into the cells. The resulting
615 colonies harboring the pairs of plasmids of interest were then isolated and grown
616 overnight in liquid LB media at 30 °C supplemented with 100 µg/ml ampicillin, 50 µg/ml
617 kanamycin, and 0.5 mM IPTG. The following day, 2 µl of culture was spotted onto
618 MacConkey plates (BD Biosciences) supplemented with 10 mg/ml maltose, 100 µg/ml
619 ampicillin, 50 µg/ml kanamycin, and 0.5 mM IPTG. Plates were then incubated for 24 h

620 at 30 °C. β -galactosidase assays were completed in the 96 well plate reader as
621 previously described with some modification [63]. A mixture of 450 μ l Z buffer, 120 μ l
622 ONPG (4 mg/ml in Z buffer), 5.7 μ l β -mercaptoethanol, 285 μ l (polymyxin B 20 mg/ml),
623 and 60 μ l of culture for each strain tested was prepared. 200 μ l of each mixture was
624 then transferred in triplicate to a 96 well plate. Readings were taken in a BioTek plate
625 reader and Miller units calculated. Results were graphed using GraphPad Prism 9.

626

627 **Immunoblotting**

628 Cells were grown overnight and the next morning diluted to an $OD_{600}=0.1$. At $OD_{600}=$
629 0.4-0.6, IPTG was added to the appropriate cultures and then grown for an additional 1
630 h (*S. aureus*) or 3 h (*B. subtilis*). Aliquots of cultures (1 ml) were then collected and
631 pelleted. Cell lysis of *B. subtilis* cells was completed by using a protoplast buffer
632 containing 0.5 M sucrose, 20 mM MgCl₂, 10 mM KH₂PO₄, and 0.1 mg/ml lysozyme. *S.*
633 *aureus* cells (in RN4220 Δ spa background [60]) were resuspended in 500 μ l PBS with 5
634 μ l lysostaphin (1 mg/ml in 20 mM sodium acetate) and incubated for 30 min at 37 °C. 1
635 μ l of DNase A (1U/ μ l) was then added and allowed to incubate for an additional 30 min.
636 Samples were then prepared for SDS-PAGE analysis. After electrophoresis, the
637 samples were transferred to a membrane and probed with rabbit antisera raised against
638 GFP (K. Ramamurthi) and SigA (M. Fujita) for *B. subtilis*, and GpsB-GFP for *S. aureus*
639 with total protein visualized using the GelCode Blue Safe Protein Stain (ThermoFisher).

640

641 **WTA Extraction**

642 WTAs were extracted and visualized as previously described [64]. Briefly, cultures of
643 PES5 and PES13 were grown overnight and back diluted to an OD_{600} of 0.1 the next
644 day. Cultures were then grown to mid-log before 1 mM IPTG was added, and then the
645 cultures were grown for an additional 3 h. Cells were standardized to the same OD
646 (OD_{600} of 1) and then pelleted and washed in SDS buffer. Cells were then boiled for 1 h
647 and subsequently extensively washed in SDS buffer. The cells were then subjected to
648 proteinase K treatment, and following washes in sterile distilled water, the WTAs were
649 extracted with NaOH overnight. The following day the tubes were centrifuged to
650 separate the WTA from leftover debris. The supernatant was then run on a Native
651 PAGE gel and visualized with Alcian Blue (1:20 dilution of 1.25% stock solution in 2%
652 acetic acid) followed by Silver Staining (ThermoFisher) following manufacturer protocols
653 and imaged on the Bio-Rad Chemidoc MP Imaging System.

654

655 **Autolysis Assay**

656 Autolysis assays were carried out as previously described [28]. Overnight cultures were
657 back diluted to an OD_{600} of 0.1. Cultures were grown at 37°C to mid-log (OD_{600} 0.4-0.6)
658 and then 1mM IPTG was added and when needed targocil (5 μ g/ml). Cells were then
659 grown for an additional hour. Cells were then pelleted, washed twice in cold H₂O, and
660 standardized to an OD_{600} of 0.8. Cells were then spun and resuspended in 0.5M Tris-
661 HCl (pH 7.2) and 0.05% Triton -X 100. OD_{600} was monitored in a 96-well plate reader
662 for 10 hours at 37°C. Results were graphed using Graphpad Prism 9.

663 **Structural analysis and Multiple Sequence Alignment**

664 The 3-dimensional model for the N-terminal domain of GpsB^{Sa} (res. 1-70) was
665 generated with the SWISS-MODEL homology-model server [18]. GpsB suppressor
666 mutants, and simulated interactions with homologous PBP complexes were generated
667 with PyMOL (Schrödinger, LLC). PDB coordinates for *S. pneumoniae*, *B. subtilis*, and *L.*
668 *monocytogenes* GpsB in complex with their associated PBPs were retrieved from the
669 PDB, with accession IDs 6GQN, 6GP7, and 6GPZ [14].

670

671 **ACKNOWLEDGEMENTS**

672
673 We thank our lab members for comments on the manuscript. This work was funded by
674 the National Institutes of Health grants (R35GM133617; PE) and (R21AI164775; YC
675 and PE).

676

677 **AUTHOR CONTRIBUTIONS**

678 The conception and design of the study (LH, CS, PE), data acquisition (LH, SK, MS,
679 AH, CS), analysis and/or interpretation of the data (LH, SK, MS, CS, YC, PE), and
680 writing of the manuscript (LH, MS, YC, PE).

681

682

683 **FIGURE LEGENDS**

684

685 **Figure 1**

686 GpsB^{SA}-GFP Suppressor Screen. (A) Cartoon diagram depicting workflow for GpsB^{SA}-
687 GFP suppressor screen. Figure generated using Biorender.com (B) Table describing

688 seven isolated GpsB^{SA} -GFP intragenic suppressor mutations detailing the mutation,
689 amino acid change, and amino acid position. (C) Multiple sequence alignment of GpsB
690 from *S. aureus*, *S. pneumoniae*, *B. subtilis*, and *L. monocytogenes*. Intragenic
691 suppressor mutations identified in the GpsB^{SA} -GFP suppressor screen are highlighted
692 in yellow and labeled above the residue locations. *, :, and ., indicate fully, strongly, or
693 weakly conserved residues respectively. The structured N- and C-terminal domains are
694 shown under the sequence alignment as reported previously [6].

695

696 **Figure 2**

697 Growth characteristics of intragenic suppressor mutations of GpsB^{SA} -GFP. (A) Spot titer
698 assay of unmutated GpsB^{SA} -GFP (GG8) (top row) and isolated * GpsB^{SA} -GFP intragenic
699 suppressor mutations (CS89-CS93, PE377, and PE448) were serially diluted, spotted
700 on plates, and grown in the absence (left panel) or presence (right panel) of 1 mM
701 IPTG. (B) Cell morphology of cells harboring unmutated GpsB^{SA} -GFP (GG8) and the
702 * GpsB^{SA} -GFP intragenic suppressor mutations (CS89-CS93, PE377, and PE448) grown
703 in the absence (i-viii) or presence (ix-xvi) of 1 mM IPTG. Images were taken 3 h after
704 addition of inducer. Membrane was stained with SynaptoRed membrane dye. Scale bar
705 is 1 μm .

706

707 **Figure 3**

708 Homology model of *S. aureus* GpsB . Residues mutated in the experiments are colored
709 in yellow. The 8 residues of α -helix 2 S9-E15 are colored in blue. (A) The N-terminal
710 domains of *S. pneumoniae* PBP2a (PDB ID 6GQN, orange), *B. subtilis* PBP1a (PDB ID

711 6GP7, lavender) and *L. monocytogenes* PBPA1 (PDB ID 6GPZ, magenta) bound to
712 GpsB were superimposed and are shown to illustrate the highly conserved PBP-binding
713 groove. (B) The Y14F mutation occurs on α -helix 1 and points directly towards the
714 putative PBP-binding partner. (C) The L35S mutation occurs at the junction of the
715 hydrophobic, coiled-coiled core of α -helices 2_{A,B} and the PBP-binding groove. (D) The
716 D41N, D41G mutations occur at the interface of the loop formed by the first 8 residues
717 and the two adjacent helices of α -helix 2 from protomers A and B. (E) The LEELR
718 sequence is the last of α helix 2 before it transitions into a disordered linker sequence
719 that bridges the N-terminal domain to the C-terminal domain.

720

721 **Figure 4**

722 Analysis of GpsB^{SA}-GFP extragenic suppressor mutations. (A) Table describing the
723 three isolated extragenic suppressor mutations detailing the specified gene, mutation,
724 and amino acid change. (B) Fluorescence microscopy showing the cell morphology of
725 strains containing a CRISPRi knockdown of *tagH* (SK16) and *tagG* (SK15) in *B. subtilis*
726 grown in the absence (i and iii) and presence (ii and iv) of 1% xylose. (C) Cells
727 containing inducible *gpsB*^{SA}-*gfp* (GG8) grown in the absence (i) and presence (ii) of 1
728 mM IPTG. Strains constructed to have both the CRISPRi knockdown of either *tagH* or
729 *tagG* as well as inducible *gpsB*^{SA}-*gfp* (SK18 and SK17) were imaged in the absence of
730 xylose and IPTG (iii and vii), in the presence of xylose only (v and ix), in the presence
731 IPTG only (iv and viii), and finally in the presence of both xylose and IPTG (vi and x).
732 Cells imaged 3 h after the addition of xylose and/or IPTG. Scale bar 1 μ m. (D)
733 Fluorescence micrographs tracking the localization pattern of GpsB^{BS}-GFP (i – iii) and

734 GFP-TagH^{BS} (PE528) (iv – vi) through different stages of the cell division (see
735 arrowheads). Cell membrane is visualized with SynaptoRed membrane dye. Scale bar 1
736 μm.

737

738 **Figure 5**

739 Characterization of the link between WTA exporter TarGH and GpsB in *S. aureus*. (A)
740 Bacterial Two Hybrid Assay to investigate pairwise interactions of GpsB^{SA} with *S.*
741 *aureus* TarG (SKB1 and SKB2) and TarH (SKB3 and SKB4). A color change to deep
742 pink indicates a positive interaction. Images taken after 24 h of incubation. (B)
743 Localization pattern of GpsB^{SA}-GFP (PES6) in SH1000 *S. aureus* cells following 1 h of
744 treatment with 20 μg/ml tunicamycin (iv-vi) or 8 μg/mL targocil (vii-ix). White arrowheads
745 show instances of GpsB^{SA}-GFP localizing to the next division site despite incomplete
746 cell separation. Cell membranes visualized with SynaptoRed membrane dye. Scale bar
747 is 1 μm. (C) Number of cells in each stage of division following 1 h of treatment with
748 tunicamycin or targocil. Stage 1 (black bars) cells show no membrane enrichment at
749 mid-cell. Stage 2 cells (pink bars) have some membrane enrichment at mid-cell but do
750 not have fully formed septa. Stage 3 (teal bars) are cells that have fully formed septa at
751 mid-cell. (D) Quantification of cell diameters from Stage 3 cells treated with tunicamycin
752 or targocil, n = 100 cells, *** P = 0.0002, **** P < 0.0001. One-way ANOVA analysis and
753 multiple comparisons performed in GraphPad Prism 9. (E) Number of Stage 3 cells
754 showing localization of GpsB-GFP at the division site only (grey) or at the division site
755 and the periphery (purple) following 1 h of treatment of tunicamycin or targocil n = 100
756 cells.

757

758 **Figure 6**

759 Characterizing GpsB residues important for TarG interaction. (A) Localization pattern of
760 GpsB-GFP (GGS2) or *GpsB-GFP (Δ LEE, LEErpt, R72H) (LH17, LH35, LH18) in
761 RN4220 *S. aureus* cells. Cells imaged 1 h after the addition of 1 mM IPTG and stained
762 with SynaptoRed membrane dye. Scale bar is 1 μ m. (B) Bacterial Two Hybrid Assay of
763 pairwise interactions of TarG (SKB2) and GpsB (LH39) or *GpsB (Δ LEE, LEErpt, R72H)
764 (LH47, LH43, LH55). A color change to deep pink indicates a positive interaction.
765 Images taken after 24 h of incubation.

766

767 **Figure 7**

768 Model of GpsB-mediated coordination of cell division and wall teichoic acid export. (A)
769 GpsB localizes to the division site in a FtsZ dependent manner [15]. (B) At the onset of
770 membrane invagination, GpsB recruits WTA export machinery to the site of cell division.
771 (C) Autolysins specifically act at the division septum to detach the daughter cells. GpsB
772 – green; TarGH – blue; Autolysins – red; membrane – orange; light & dark gray – less-
773 crosslinked cell wall and WTA-rich highly-crosslinked cell wall respectively [24, 48, 49].
774

775

776 **REFERENCES**

777 1. Haeusser DP, Margolin W. Splitsville: structural and functional insights into the
778 dynamic bacterial Z ring. *Nat Rev Microbiol.* 2016;14(5):305-19. Epub 2016/04/05. doi:
779 10.1038/nrmicro.2016.26. PubMed PMID: 27040757; PubMed Central PMCID:
780 PMC5290750.
781 2. Eswara PJ, Ramamurthi KS. Bacterial Cell Division: Nonmodels Poised to Take
782 the Spotlight. *Annu Rev Microbiol.* 2017;71:393-411. Epub 2017/07/13. doi:

783 10.1146/annurev-micro-102215-095657. PubMed PMID: 28697666; PubMed Central
784 PMCID: PMCPMC6291244.

785 3. Errington J, Wu LJ. Cell Cycle Machinery in *Bacillus subtilis*. *Subcell Biochem*.
786 2017;84:67-101. Epub 2017/05/14. doi: 10.1007/978-3-319-53047-5_3. PubMed PMID:
787 28500523; PubMed Central PMCID: PMCPMC6126333.

788 4. Egan AJF, Errington J, Vollmer W. Regulation of peptidoglycan synthesis and
789 remodelling. *Nat Rev Microbiol*. 2020;18(8):446-60. Epub 2020/05/20. doi:
790 10.1038/s41579-020-0366-3. PubMed PMID: 32424210.

791 5. Pinho MG, Kjos M, Veening JW. How to get (a)round: mechanisms controlling
792 growth and division of coccoid bacteria. *Nat Rev Microbiol*. 2013;11(9):601-14. Epub
793 2013/08/21. doi: 10.1038/nrmicro3088. PubMed PMID: 23949602.

794 6. Halbedel S, Lewis RJ. Structural basis for interaction of DivIVA/GpsB proteins
795 with their ligands. *Mol Microbiol*. 2019;111(6):1404-15. Epub 2019/03/20. doi:
796 10.1111/mmi.14244. PubMed PMID: 30887576.

797 7. Hammond LR, White ML, Eswara PJ. γ IVIA la DivIVA! *J Bacteriol*. 2019;201(21).
798 Epub 2019/08/14. doi: 10.1128/JB.00245-19. PubMed PMID: 31405912; PubMed
799 Central PMCID: PMCPMC6779457.

800 8. Claessen D, Emmins R, Hamoen LW, Daniel RA, Errington J, Edwards DH.
801 Control of the cell elongation-division cycle by shuttling of PBP1 protein in *Bacillus*
802 *subtilis*. *Mol Microbiol*. 2008;68(4):1029-46. Epub 2008/03/28. doi: 10.1111/j.1365-
803 2958.2008.06210.x. PubMed PMID: 18363795.

804 9. Tavares JR, de Souza RF, Meira GL, Gueiros-Filho FJ. Cytological
805 characterization of YpsB, a novel component of the *Bacillus subtilis* divisome. *J*
806 *Bacteriol*. 2008;190(21):7096-107. Epub 2008/09/09. doi: 10.1128/JB.00064-08.
807 PubMed PMID: 18776011; PubMed Central PMCID: PMCPMC2580690.

808 10. Rismondo J, Cleverley RM, Lane HV, Grosshennig S, Steglich A, Moller L, et al.
809 Structure of the bacterial cell division determinant GpsB and its interaction with
810 penicillin-binding proteins. *Mol Microbiol*. 2016;99(5):978-98. Epub 2015/11/18. doi:
811 10.1111/mmi.13279. PubMed PMID: 26575090.

812 11. Land AD, Tsui HC, Kocaoglu O, Vella SA, Shaw SL, Keen SK, et al.
813 Requirement of essential Pbp2x and GpsB for septal ring closure in *Streptococcus*
814 *pneumoniae* D39. *Mol Microbiol*. 2013;90(5):939-55. Epub 2013/10/15. doi:
815 10.1111/mmi.12408. PubMed PMID: 24118410; PubMed Central PMCID:
816 PMCPMC4120849.

817 12. Fleurie A, Manuse S, Zhao C, Campo N, Cluzel C, Lavergne JP, et al. Interplay
818 of the serine/threonine-kinase StkP and the paralogs DivIVA and GpsB in
819 pneumococcal cell elongation and division. *PLoS Genet*. 2014;10(4):e1004275. Epub
820 2014/04/12. doi: 10.1371/journal.pgen.1004275. PubMed PMID: 24722178; PubMed
821 Central PMCID: PMCPMC3983041.

822 13. Rued BE, Zheng JJ, Mura A, Tsui HT, Boersma MJ, Mazny JL, et al.
823 Suppression and synthetic-lethal genetic relationships of DeltagpsB mutations indicate
824 that GpsB mediates protein phosphorylation and penicillin-binding protein interactions in
825 *Streptococcus pneumoniae* D39. *Mol Microbiol*. 2017;103(6):931-57. Epub 2016/12/24.
826 doi: 10.1111/mmi.13613. PubMed PMID: 28010038; PubMed Central PMCID:
827 PMCPMC5344783.

828 14. Cleverley RM, Rutter ZJ, Rismondo J, Corona F, Tsui HT, Alatawi FA, et al. The
829 cell cycle regulator GpsB functions as cytosolic adaptor for multiple cell wall enzymes.
830 *Nat Commun.* 2019;10(1):261. Epub 2019/01/18. doi: 10.1038/s41467-018-08056-2.
831 PubMed PMID: 30651563; PubMed Central PMCID: PMCPMC6335420.

832 15. Eswara PJ, Brzozowski RS, Viola MG, Graham G, Spanoudis C, Trebino C, et al.
833 An essential *Staphylococcus aureus* cell division protein directly regulates FtsZ
834 dynamics. *Elife.* 2018;7. Epub 2018/10/03. doi: 10.7554/eLife.38856. PubMed PMID:
835 30277210; PubMed Central PMCID: PMCPMC6168285.

836 16. Brzozowski RS, Tomlinson BR, Sacco MD, Chen JJ, Ali AN, Chen Y, et al.
837 Interdependent YpsA- and YfhS-Mediated Cell Division and Cell Size Phenotypes in
838 *Bacillus subtilis*. *mSphere.* 2020;5(4). Epub 2020/07/24. doi: 10.1128/mSphere.00655-
839 20. PubMed PMID: 32699122; PubMed Central PMCID: PMCPMC7376506.

840 17. Battesti A, Bouveret E. The bacterial two-hybrid system based on adenylate
841 cyclase reconstitution in *Escherichia coli*. *Methods.* 2012;58(4):325-34. Epub
842 2012/07/31. doi: 10.1016/j.ymeth.2012.07.018. PubMed PMID: 22841567.

843 18. Schwede T, Kopp J, Guex N, Peitsch MC. SWISS-MODEL: An automated
844 protein homology-modeling server. *Nucleic Acids Res.* 2003;31(13):3381-5. Epub
845 2003/06/26. doi: 10.1093/nar/gkg520. PubMed PMID: 12824332; PubMed Central
846 PMCID: PMCPMC168927.

847 19. Brown S, Santa Maria JP, Jr., Walker S. Wall teichoic acids of gram-positive
848 bacteria. *Annu Rev Microbiol.* 2013;67:313-36. Epub 2013/09/13. doi: 10.1146/annurev-
849 micro-092412-155620. PubMed PMID: 24024634; PubMed Central PMCID:
850 PMCPMC3883102.

851 20. Peters JM, Colavin A, Shi H, Czarny TL, Larson MH, Wong S, et al. A
852 Comprehensive, CRISPR-based Functional Analysis of Essential Genes in Bacteria.
853 *Cell.* 2016;165(6):1493-506. Epub 2016/05/31. doi: 10.1016/j.cell.2016.05.003. PubMed
854 PMID: 27238023; PubMed Central PMCID: PMCPMC4894308.

855 21. Formstone A, Carballido-Lopez R, Noirot P, Errington J, Scheffers DJ.
856 Localization and interactions of teichoic acid synthetic enzymes in *Bacillus subtilis*. *J*
857 *Bacteriol.* 2008;190(5):1812-21. Epub 2007/12/25. doi: 10.1128/JB.01394-07. PubMed
858 PMID: 18156271; PubMed Central PMCID: PMCPMC2258661.

859 22. Kent VL. Cell wall architecture and the role of wall teichoic acid in
860 *Staphylococcus aureus*. White Rose eTheses Online: University of Sheffield; 2013.

861 23. Atilano ML, Pereira PM, Yates J, Reed P, Veiga H, Pinho MG, et al. Teichoic
862 acids are temporal and spatial regulators of peptidoglycan cross-linking in
863 *Staphylococcus aureus*. *Proc Natl Acad Sci U S A.* 2010;107(44):18991-6. Epub
864 2010/10/15. doi: 10.1073/pnas.1004304107. PubMed PMID: 20944066; PubMed
865 Central PMCID: PMCPMC2973906.

866 24. Campbell J, Singh AK, Santa Maria JP, Jr., Kim Y, Brown S, Swoboda JG, et al.
867 Synthetic lethal compound combinations reveal a fundamental connection between wall
868 teichoic acid and peptidoglycan biosyntheses in *Staphylococcus aureus*. *ACS Chem*
869 *Biol.* 2011;6(1):106-16. Epub 2010/10/22. doi: 10.1021/cb100269f. PubMed PMID:
870 20961110; PubMed Central PMCID: PMCPMC3025082.

871 25. Campbell J, Singh AK, Swoboda JG, Gilmore MS, Wilkinson BJ, Walker S. An
872 antibiotic that inhibits a late step in wall teichoic acid biosynthesis induces the cell wall
873 stress stimulon in *Staphylococcus aureus*. *Antimicrob Agents Chemother.*

874 2012;56(4):1810-20. Epub 2012/02/01. doi: 10.1128/AAC.05938-11. PubMed PMID:
875 22290958; PubMed Central PMCID: PMCPMC3318382.

876 26. Biswas R, Martinez RE, Gohring N, Schlag M, Josten M, Xia G, et al. Proton-
877 binding capacity of *Staphylococcus aureus* wall teichoic acid and its role in controlling
878 autolysin activity. *PLoS One*. 2012;7(7):e41415. Epub 2012/08/23. doi:
879 10.1371/journal.pone.0041415. PubMed PMID: 22911791; PubMed Central PMCID:
880 PMCPMC3402425.

881 27. Schlag M, Biswas R, Krismer B, Kohler T, Zoll S, Yu W, et al. Role of
882 staphylococcal wall teichoic acid in targeting the major autolysin Atl. *Mol Microbiol*.
883 2010;75(4):864-73. Epub 2010/01/29. doi: 10.1111/j.1365-2958.2009.07007.x. PubMed
884 PMID: 20105277.

885 28. Tiwari KB, Gatto C, Walker S, Wilkinson BJ. Exposure of *Staphylococcus aureus*
886 to Targocil Blocks Translocation of the Major Autolysin Atl across the Membrane,
887 Resulting in a Significant Decrease in Autolysis. *Antimicrob Agents Chemother*.
888 2018;62(7). Epub 2018/05/08. doi: 10.1128/AAC.00323-18. PubMed PMID: 29735561;
889 PubMed Central PMCID: PMCPMC6021642.

890 29. Steele VR, Bottomley AL, Garcia-Lara J, Kasturiarachchi J, Foster SJ. Multiple
891 essential roles for EzrA in cell division of *Staphylococcus aureus*. *Mol Microbiol*.
892 2011;80(2):542-55. Epub 2011/03/16. doi: 10.1111/j.1365-2958.2011.07591.x. PubMed
893 PMID: 21401734.

894 30. Monteiro JM, Fernandes PB, Vaz F, Pereira AR, Tavares AC, Ferreira MT, et al.
895 Cell shape dynamics during the staphylococcal cell cycle. *Nat Commun*. 2015;6:8055.
896 Epub 2015/08/19. doi: 10.1038/ncomms9055. PubMed PMID: 26278781; PubMed
897 Central PMCID: PMCPMC4557339.

898 31. Reichmann NT, Picarra Cassona C, Monteiro JM, Bottomley AL, Corrigan RM,
899 Foster SJ, et al. Differential localization of LTA synthesis proteins and their interaction
900 with the cell division machinery in *Staphylococcus aureus*. *Mol Microbiol*.
901 2014;92(2):273-86. Epub 2014/02/19. doi: 10.1111/mmi.12551. PubMed PMID:
902 24533796; PubMed Central PMCID: PMCPMC4065355.

903 32. Schirner K, Marles-Wright J, Lewis RJ, Errington J. Distinct and essential
904 morphogenetic functions for wall- and lipo-teichoic acids in *Bacillus subtilis*. *EMBO J*.
905 2009;28(7):830-42. Epub 2009/02/21. doi: 10.1038/emboj.2009.25. PubMed PMID:
906 19229300; PubMed Central PMCID: PMCPMC2670855.

907 33. Yamamoto H, Miyake Y, Hisaoka M, Kurosawa S, Sekiguchi J. The major and
908 minor wall teichoic acids prevent the sidewall localization of vegetative DL-
909 endopeptidase LytF in *Bacillus subtilis*. *Mol Microbiol*. 2008;70(2):297-310. Epub
910 2008/09/03. doi: 10.1111/j.1365-2958.2008.06397.x. PubMed PMID: 18761696.

911 34. Kawai Y, Marles-Wright J, Cleverley RM, Emmins R, Ishikawa S, Kuwano M, et
912 al. A widespread family of bacterial cell wall assembly proteins. *EMBO J*.
913 2011;30(24):4931-41. Epub 2011/10/04. doi: 10.1038/emboj.2011.358. PubMed PMID:
914 21964069; PubMed Central PMCID: PMCPMC3243631.

915 35. Dominguez-Cuevas P, Porcelli I, Daniel RA, Errington J. Differentiated roles for
916 MreB-actin isologues and autolytic enzymes in *Bacillus subtilis* morphogenesis. *Mol
917 Microbiol*. 2013;89(6):1084-98. Epub 2013/07/23. doi: 10.1111/mmi.12335. PubMed
918 PMID: 23869552; PubMed Central PMCID: PMCPMC3817527.

919 36. Meisner J, Montero Llopis P, Sham LT, Garner E, Bernhardt TG, Rudner DZ.
920 FtsEX is required for CwlO peptidoglycan hydrolase activity during cell wall elongation
921 in *Bacillus subtilis*. *Mol Microbiol*. 2013;89(6):1069-83. Epub 2013/07/17. doi:
922 10.1111/mmi.12330. PubMed PMID: 23855774; PubMed Central PMCID:
923 PMCPMC3786131.

924 37. Sham LT, Barendt SM, Kopecky KE, Winkler ME. Essential PcsB putative
925 peptidoglycan hydrolase interacts with the essential FtsXSpn cell division protein in
926 *Streptococcus pneumoniae* D39. *Proc Natl Acad Sci U S A*. 2011;108(45):E1061-9.
927 Epub 2011/10/19. doi: 10.1073/pnas.1108323108. PubMed PMID: 22006325; PubMed
928 Central PMCID: PMCPMC3215045.

929 38. Du S, Henke W, Pichoff S, Lutkenhaus J. How FtsEX localizes to the Z ring and
930 interacts with FtsA to regulate cell division. *Mol Microbiol*. 2019;112(3):881-95. Epub
931 2019/06/09. doi: 10.1111/mmi.14324. PubMed PMID: 31175681; PubMed Central
932 PMCID: PMCPMC6831102.

933 39. Pichoff S, Du S, Lutkenhaus J. Roles of FtsEX in cell division. *Res Microbiol*.
934 2019;170(8):374-80. Epub 2019/08/04. doi: 10.1016/j.resmic.2019.07.003. PubMed
935 PMID: 31376483; PubMed Central PMCID: PMCPMC6899183.

936 40. Tavares AC, Fernandes PB, Carballido-Lopez R, Pinho MG. MreC and MreD
937 Proteins Are Not Required for Growth of *Staphylococcus aureus*. *PLoS One*.
938 2015;10(10):e0140523. Epub 2015/10/16. doi: 10.1371/journal.pone.0140523. PubMed
939 PMID: 26470021; PubMed Central PMCID: PMCPMC4607420.

940 41. Do T, Schaefer K, Santiago AG, Coe KA, Fernandes PB, Kahne D, et al.
941 *Staphylococcus aureus* cell growth and division are regulated by an amidase that trims
942 peptides from uncrosslinked peptidoglycan. *Nat Microbiol*. 2020;5(2):291-303. Epub
943 2020/01/15. doi: 10.1038/s41564-019-0632-1. PubMed PMID: 31932712; PubMed
944 Central PMCID: PMCPMC7046134.

945 42. Rismundo J, Bender JK, Halbedel S. Suppressor Mutations Linking *gpsB* with the
946 First Committed Step of Peptidoglycan Biosynthesis in *Listeria monocytogenes*. *J*
947 *Bacteriol*. 2017;199(1). Epub 2016/11/01. doi: 10.1128/JB.00393-16. PubMed PMID:
948 27795316; PubMed Central PMCID: PMCPMC5165104.

949 43. Santa Maria JP, Jr., Sadaka A, Moussa SH, Brown S, Zhang YJ, Rubin EJ, et al.
950 Compound-gene interaction mapping reveals distinct roles for *Staphylococcus aureus*
951 teichoic acids. *Proc Natl Acad Sci U S A*. 2014;111(34):12510-5. Epub 2014/08/12. doi:
952 10.1073/pnas.1404099111. PubMed PMID: 25104751; PubMed Central PMCID:
953 PMCPMC4151746.

954 44. Over B, Heusser R, McCallum N, Schulthess B, Kupferschmied P, Gaiani JM, et
955 al. LytR-CpsA-Psr proteins in *Staphylococcus aureus* display partial functional
956 redundancy and the deletion of all three severely impairs septum placement and cell
957 separation. *FEMS Microbiol Lett*. 2011;320(2):142-51. Epub 2011/05/11. doi:
958 10.1111/j.1574-6968.2011.02303.x. PubMed PMID: 21554381.

959 45. Chan YG, Frankel MB, Dengler V, Schneewind O, Missiakas D. *Staphylococcus*
960 *aureus* mutants lacking the LytR-CpsA-Psr family of enzymes release cell wall teichoic
961 acids into the extracellular medium. *J Bacteriol*. 2013;195(20):4650-9. Epub 2013/08/13.
962 doi: 10.1128/JB.00544-13. PubMed PMID: 23935043; PubMed Central PMCID:
963 PMCPMC3807444.

964 46. Li FKK, Rosell FI, Gale RT, Simorre JP, Brown ED, Strynadka NCJ.
965 Crystallographic analysis of *Staphylococcus aureus* LcpA, the primary wall teichoic acid
966 ligase. *J Biol Chem.* 2020;295(9):2629-39. Epub 2020/01/24. doi:
967 10.1074/jbc.RA119.011469. PubMed PMID: 31969390; PubMed Central PMCID:
968 PMCPMC7049971.

969 47. Reichmann NT, Grundling A. Location, synthesis and function of glycolipids and
970 polyglycerolphosphate lipoteichoic acid in Gram-positive bacteria of the phylum
971 Firmicutes. *FEMS Microbiol Lett.* 2011;319(2):97-105. Epub 2011/03/11. doi:
972 10.1111/j.1574-6968.2011.02260.x. PubMed PMID: 21388439; PubMed Central
973 PMCID: PMCPMC3089915.

974 48. Matias VR, Beveridge TJ. Cryo-electron microscopy of cell division in
975 *Staphylococcus aureus* reveals a mid-zone between nascent cross walls. *Mol Microbiol.*
976 2007;64(1):195-206. Epub 2007/03/23. doi: 10.1111/j.1365-2958.2007.05634.x.
977 PubMed PMID: 17376082.

978 49. Matias VR, Beveridge TJ. Native cell wall organization shown by cryo-electron
979 microscopy confirms the existence of a periplasmic space in *Staphylococcus aureus*. *J*
980 *Bacteriol.* 2006;188(3):1011-21. Epub 2006/01/24. doi: 10.1128/JB.188.3.1011-
981 1021.2006. PubMed PMID: 16428405; PubMed Central PMCID: PMCPMC1347357.

982 50. Nega M, Tribelli PM, Hipp K, Stahl M, Gotz F. New insights in the coordinated
983 amidase and glucosaminidase activity of the major autolysin (Atl) in *Staphylococcus*
984 *aureus*. *Commun Biol.* 2020;3(1):695. Epub 2020/11/22. doi: 10.1038/s42003-020-
985 01405-2. PubMed PMID: 33219282; PubMed Central PMCID: PMCPMC7679415.

986 51. Bonnet J, Durmorth C, Mortier-Barriere I, Campo N, Jacq M, Moriscot C, et al.
987 Nascent teichoic acids insertion into the cell wall directs the localization and activity of
988 the major pneumococcal autolysin LytA. *Cell Surf.* 2018;2:24-37. Epub 2018/06/12. doi:
989 10.1016/j.tcs.2018.05.001. PubMed PMID: 32743129; PubMed Central PMCID:
990 PMCPMC7389264.

991 52. Frankel MB, Schneewind O. Determinants of murein hydrolase targeting to
992 cross-wall of *Staphylococcus aureus* peptidoglycan. *J Biol Chem.* 2012;287(13):10460-
993 71. Epub 2012/02/04. doi: 10.1074/jbc.M111.336404. PubMed PMID: 22303016;
994 PubMed Central PMCID: PMCPMC3323028.

995 53. Qamar A, Golemi-Kotra D. Dual roles of FmtA in *Staphylococcus aureus* cell wall
996 biosynthesis and autolysis. *Antimicrob Agents Chemother.* 2012;56(7):3797-805. Epub
997 2012/05/09. doi: 10.1128/AAC.00187-12. PubMed PMID: 22564846; PubMed Central
998 PMCID: PMCPMC3393393.

999 54. Rahman MM, Hunter HN, Prova S, Verma V, Qamar A, Golemi-Kotra D. The
1000 *Staphylococcus aureus* Methicillin Resistance Factor FmtA Is a d-Amino Esterase That
1001 Acts on Teichoic Acids. *mBio.* 2016;7(1):e02070-15. Epub 2016/02/11. doi:
1002 10.1128/mBio.02070-15. PubMed PMID: 26861022; PubMed Central PMCID:
1003 PMCPMC4752606.

1004 55. Zhang R, Shebes MA, Kho K, Scaffidi SJ, Meredith TC, Yu W. Spatial regulation
1005 of protein A in *Staphylococcus aureus*. *Mol Microbiol.* 2021. Epub 2021/05/06. doi:
1006 10.1111/mmi.14734. PubMed PMID: 33949015.

1007 56. Zhou X, Halladin DK, Rojas ER, Koslover EF, Lee TK, Huang KC, et al. Bacterial
1008 division. Mechanical crack propagation drives millisecond daughter cell separation in
1009 *Staphylococcus aureus*. *Science.* 2015;348(6234):574-8. Epub 2015/05/02. doi:

1010 10.1126/science.aaa1511. PubMed PMID: 25931560; PubMed Central PMCID:
1011 PMCPMC4864021.

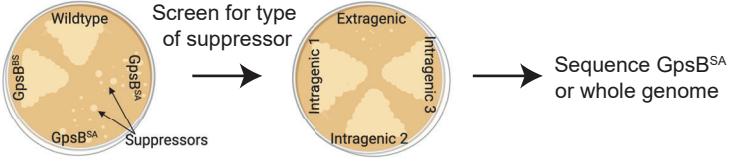
1012 57. Sievers F, Wilm A, Dineen D, Gibson TJ, Karplus K, Li W, et al. Fast, scalable
1013 generation of high-quality protein multiple sequence alignments using Clustal Omega.
1014 Mol Syst Biol. 2011;7:539. Epub 2011/10/13. doi: 10.1038/msb.2011.75. PubMed PMID:
1015 21988835; PubMed Central PMCID: PMCPMC3261699.

1016 58. Youngman P, Perkins JB, Losick R. Construction of a cloning site near one end
1017 of Tn917 into which foreign DNA may be inserted without affecting transposition in
1018 *Bacillus subtilis* or expression of the transposon-borne erm gene. Plasmid.
1019 1984;12(1):1-9. Epub 1984/07/01. doi: 10.1016/0147-619x(84)90061-1. PubMed PMID:
1020 6093169.

1021 59. Luong TT, Lee CY. The arl locus positively regulates *Staphylococcus aureus*
1022 type 5 capsule via an mgrA-dependent pathway. Microbiology (Reading). 2006;152(Pt
1023 10):3123-31. Epub 2006/09/29. doi: 10.1099/mic.0.29177-0. PubMed PMID: 17005991.

1024 60. Yu W, Missiakas D, Schneewind O. Septal secretion of protein A in
1025 *Staphylococcus aureus* requires SecA and lipoteichoic acid synthesis. eLife. 2018;7.
1026 Epub 2018/05/15. doi: 10.7554/eLife.34092. PubMed PMID: 29757141; PubMed
1027 Central PMCID: PMCPMC5962339.

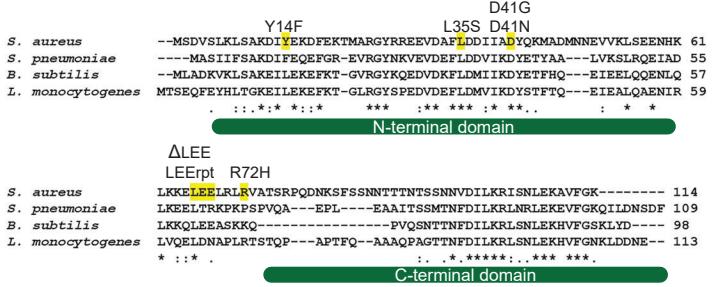
1028 61. Windham IH, Chaudhari SS, Bose JL, Thomas VC, Bayles KW. SrrAB Modulates
1029 *Staphylococcus aureus* Cell Death through Regulation of cidABC Transcription. J
1030 Bacteriol. 2016;198(7):1114-22. Epub 2016/01/27. doi: 10.1128/JB.00954-15. PubMed
1031 PMID: 26811317; PubMed Central PMCID: PMCPMC4800867.

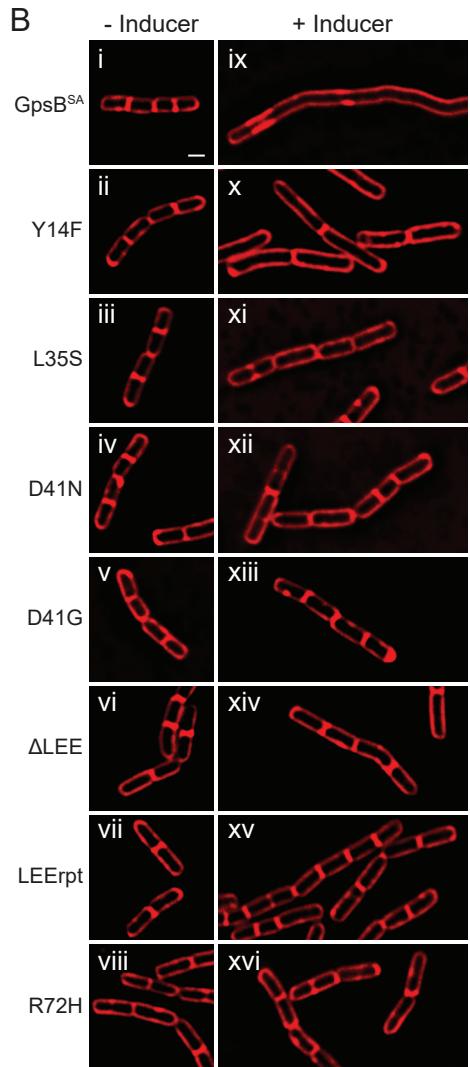
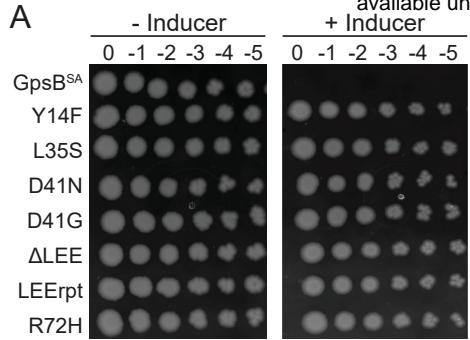

1032 62. Brzozowski RS, White ML, Eswara PJ. Live-Cell Fluorescence Microscopy to
1033 Investigate Subcellular Protein Localization and Cell Morphology Changes in Bacteria. J
1034 Vis Exp. 2019;(153). Epub 2019/12/10. doi: 10.3791/59905. PubMed PMID: 31814606;
1035 PubMed Central PMCID: PMCPMC7409980.

1036 63. Priest DG, Cui L, Kumar S, Dunlap DD, Dodd IB, Shearwin KE. Quantitation of
1037 the DNA tethering effect in long-range DNA looping in vivo and in vitro using the Lac
1038 and lambda repressors. Proc Natl Acad Sci U S A. 2014;111(1):349-54. Epub
1039 2013/12/18. doi: 10.1073/pnas.1317817111. PubMed PMID: 24344307; PubMed
1040 Central PMCID: PMCPMC3890862.

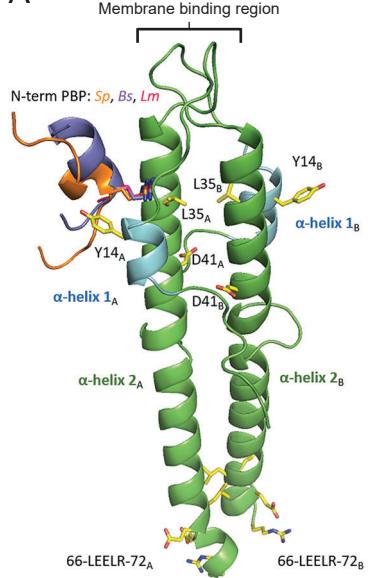
1041 64. Kho K, Meredith TC. Salt-Induced Stress Stimulates a Lipoteichoic Acid-Specific
1042 Three-Component Glycosylation System in *Staphylococcus aureus*. J Bacteriol.
1043 2018;200(12). Epub 2018/04/11. doi: 10.1128/JB.00017-18. PubMed PMID: 29632092;
1044 PubMed Central PMCID: PMCPMC5971477.

1045

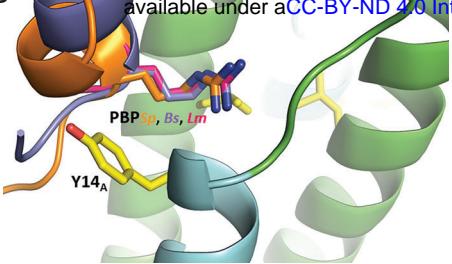

A

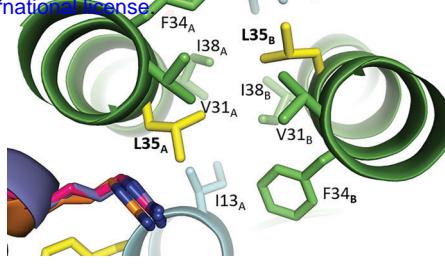



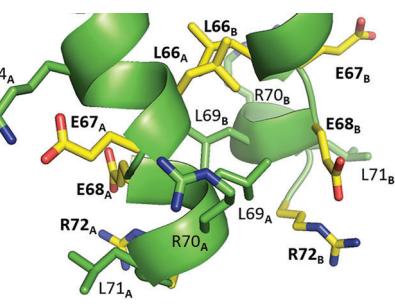
B


Suppressor #	Mutation	Amino Acid Change	Position
1	TAT to TIT	Y14F	14
2	TIA to TCA	L35S	35
3	GAT to GGT	D41G	41
4	GAT to AAT	D41N	41
5	(TTAGAAGAA) deletion	ΔLEE	66-68
6	(TTAGAAGAA) repeat	LEEpt	66-68
7	CGT to CAT	R72H	72

C




A


B

C

D

E

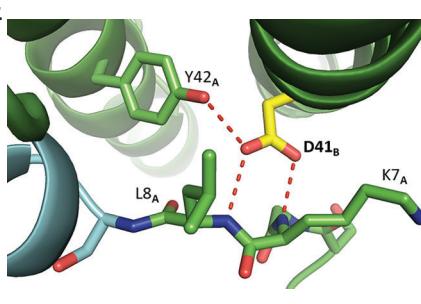
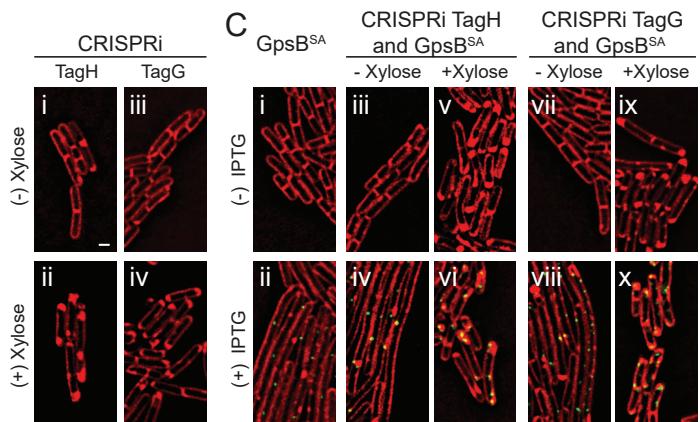
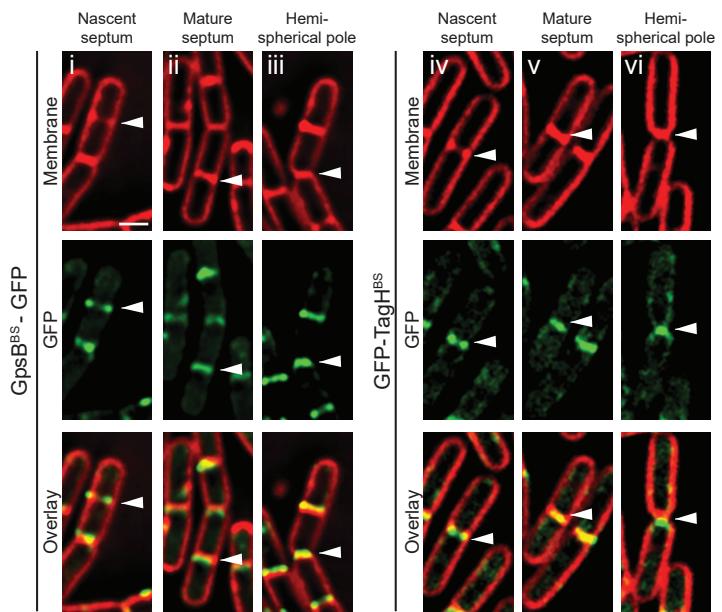



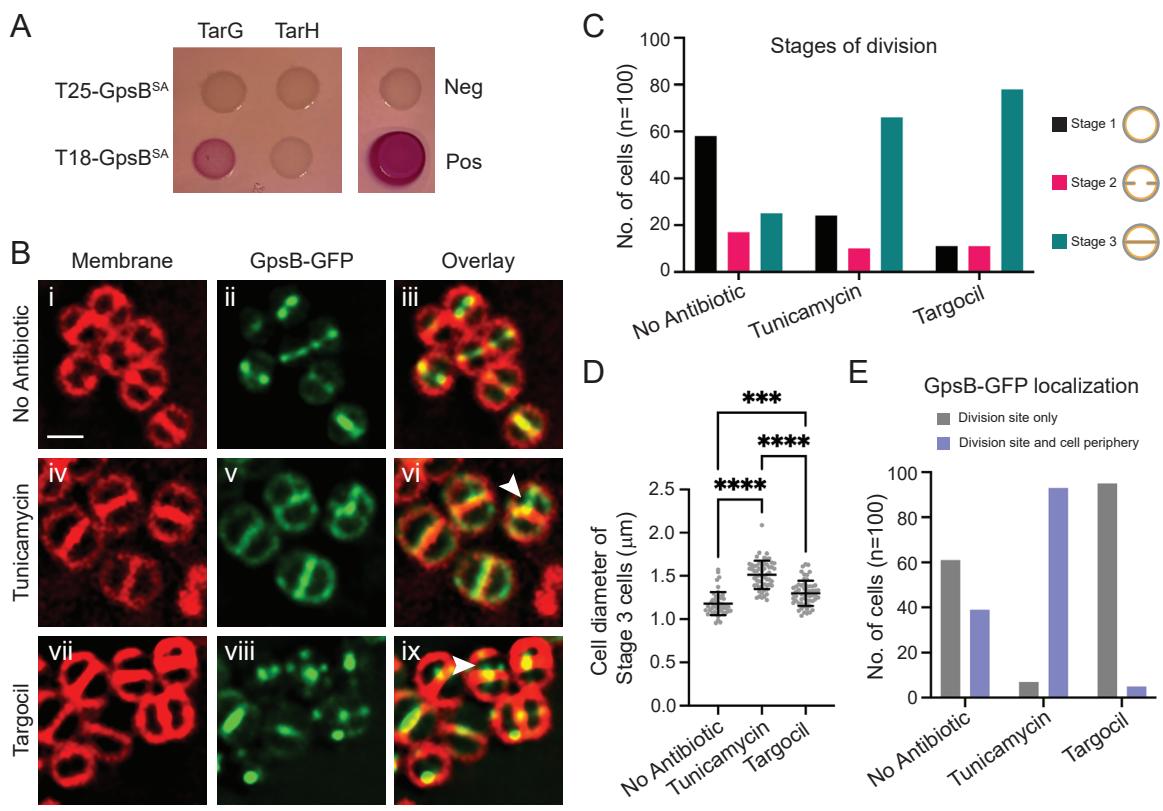
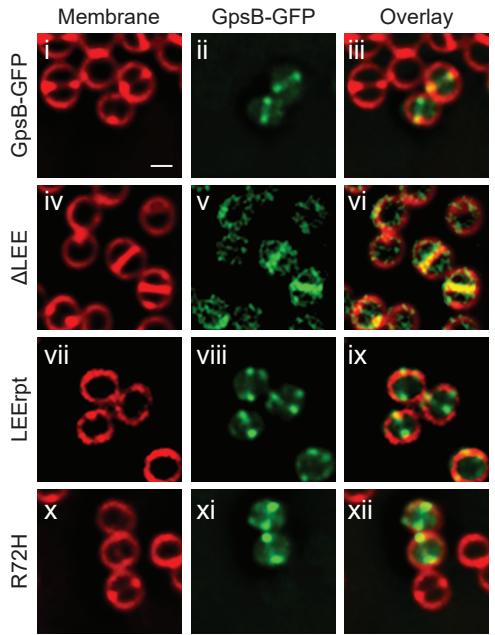
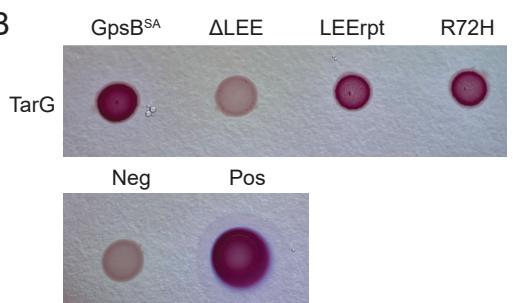
Figure 3

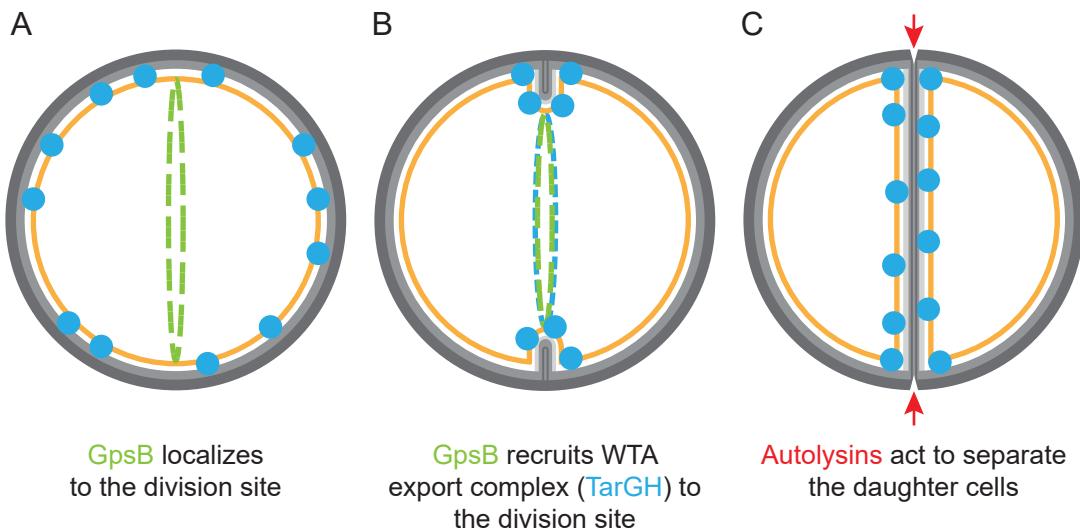

A

Suppressor #	Gene	Mutation	Amino Acid Change
1	<i>tagH</i>	TAC to T <u>GC</u>	Y233C
2	<i>tagH</i>	TAC to T <u>GC</u>	Y233C
3	<i>tagG</i>	AGA to AAA	R20K

B

D


Figure 5

A

B

