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ABSTRACT 56 

The incidence of esophageal squamous cell carcinoma (ESCC) is disproportionately 57 

high in the eastern corridor of Africa and parts of Asia. Emerging research has identified 58 

a potential association between poor oral health and ESCC. One proposed biological 59 

pathway linking poor oral health and ESCC involves the alteration of the microbiome. 60 

Thus, we performed an integrated analysis of four independent sequencing efforts of 61 

ESCC tumors from patients from high- and low-incidence regions of the world. Using 62 

whole genome sequencing (WGS) and RNA sequencing (RNAseq) of ESCC tumors 63 

and WGS of synchronous collections of saliva specimens from 61 patients in Tanzania, 64 

we identified a community of bacteria, including members of the genera Fusobacterium, 65 

Selenomonas, Prevotella, Streptococcus, Porphyromonas, Veillonella, and 66 

Campylobacter, present at high abundance in ESCC tumors. We then characterized the 67 

microbiome of 238 ESCC tumor specimens collected in two additional independent 68 

sequencing efforts consisting of patients from other high-ESCC incidence regions 69 

(Tanzania, Malawi, Kenya, Iran, China). This analysis revealed a similar tumor 70 

enrichment of the ESCC-associated bacterial community in these cancers. Because 71 

these genera are traditionally considered members of the oral microbiota, we explored if 72 

there is a relationship between the synchronous saliva and tumor microbiomes of ESCC 73 

patients in Tanzania. Comparative analyses revealed that paired saliva and tumor 74 

microbiomes are significantly similar with a specific enrichment of Fusobacterium and 75 

Prevotella in the tumor microbiome. Together, these data indicate that cancer-76 

associated oral bacteria are associated with ESCC tumors at the time of diagnosis and 77 

support a model in which oral bacteria are present in high abundance in both saliva and 78 
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tumors of ESCC patients. Longitudinal studies of the pre-diagnostic oral microbiome are 79 

needed to investigate whether these cross-sectional similarities reflect temporal 80 

associations. 81 

 82 

83 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 29, 2021. ; https://doi.org/10.1101/2021.09.29.462325doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.29.462325
http://creativecommons.org/licenses/by/4.0/


 6 

INTRODUCTION 84 

Esophageal cancer is the sixth most common cause of cancer-related death worldwide 85 

(1).There are two histologic subtypes of esophageal cancer with distinct biological 86 

characteristics, geographic distributions, and risk factors (2). Esophageal 87 

adenocarcinoma is the most common histologic form of esophageal cancer in high-88 

income countries and is associated with factors including gastroesophageal reflux 89 

disease, Barrett’s esophagus, and obesity (3, 4). By contrast, esophageal squamous 90 

cell carcinoma (ESCC) represents more than 90% of worldwide esophageal cancer 91 

cases and is the dominant histology in low-resource settings. In particular, there are two 92 

main regions where ESCC is endemic: (1) the Asian esophageal cancer belt, extending 93 

from western/northern China to central and southeast Asia; and (2) the eastern corridor 94 

of Africa, extending from Ethiopia to South Africa (5, 6).  95 

 96 

Emerging research has identified a possible association between poor oral health and 97 

ESCC. Studies from Asia, Europe, Latin America, Kenya, and Iran have reported 98 

associations of ESCC with poor oral hygiene, chronic periodontal disease, dental decay, 99 

and tooth loss (7-16). Recently, three parallel case-control studies in Kenya and 100 

Tanzania, conducted as part of the African Esophageal Cancer Consortium (AfrECC) 101 

and ESCCAPE (esccape.iarc.fr) collaborations, reported possible associations of poor 102 

or infrequent oral hygiene with increased risk for ESCC in East Africa (17-20).  103 

 104 

Alterations of the oral microbiome due to poor oral health is one proposed biological 105 

pathway that could explain the link between oral health and ESCC. Many bacterial 106 
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genera associated with gastrointestinal cancers contain species that are traditionally 107 

associated with healthy or diseased oral microbiomes. For example, Helicobacter pylori 108 

was discovered to be associated with gastric cancers and mucosa-associated lymphoid 109 

tissue (MALT) lymphomas, indirectly by promoting gastric inflammation and directly by 110 

influencing cellular signaling (21). Similarly, bacteria of the genera Fusobacterium, 111 

Selenomonas, and Prevotella are enriched in colorectal cancers (22-24) and can be 112 

visualized invasively within tumor tissue (25). Fusobacterium, in particular, has been 113 

reported to promote carcinogenesis through the selective expansion or inhibition of 114 

certain classes of immune cells (26) and may drive cellular proliferation by stimulating 115 

Wnt/b-catenin signaling (27, 28). Other bacterial genera such as Porphyromonas, 116 

Campylobacter, and Streptococcus have emerging associations with various human 117 

gastrointestinal cancers (29-35).  118 

 119 

As part of ongoing investigation into the microbiome’s association with ESCC, we 120 

performed an integrated analysis of four independent sequencing efforts including 121 

ESCC tumors from patients from both high- and low-incidence regions of the world. In 122 

addition, we investigated the relationship between the microbiomes of matched ESCC 123 

tumors and saliva specimens in a subset of ESCC cases.  124 

 125 

RESULTS 126 

Study Population 127 

To evaluate the potential role of the host microbiota in ESCC, we investigated the 128 

microbiome of 299 ESCC specimens from patients in five different countries with a high 129 
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incidence of ESCC. Specimens were collected through four independent sequencing 130 

efforts (Figure 1A). Specimens consisted of whole genome sequencing (WGS) and 131 

RNA sequencing (RNAseq) data from the tumor and saliva of 61 patients from Tanzania 132 

(the “MUHAS Tanzania” cohort) (36), RNAseq data from the tumors of 30 ESCC 133 

patients in Malawi (the “UNC Project – Malawi” cohort) (37), and WGS from 208 134 

additional samples of tumors from patients in high ESCC incidence regions, including 135 

specimens from ESCC patients in Tanzania (n=18) and Kenya (n=64) that were 136 

collected in the ESCCAPE studies (esccape.iarc.fr) and specimens from ESCC patients 137 

in East Golestan, Iran (n=55) and Shanxi, China (n=71) that were sequenced as part of 138 

the Cancer Research UK Mutographs project (“Mutographs” cohorts) (38). In addition, 139 

we analyzed WGS data of ESCC from The Cancer Genome Atlas (39), which includes a 140 

small number of tumors from patients in low-incidence geographic regions including the 141 

United States (n=3), Ukraine (n=3), Vietnam (n=22), and Russia (n=8) (the “TCGA” 142 

cohort). Patient characteristics are shown in Table 1. 143 

 144 

Bacterial populations are abundant and diverse in ESCC tumors 145 

We used the metagenomic analysis tool GATK-PathSeq (40) to process the RNAseq 146 

and WGS data. GATK-PathSeq uses a sequential mapping strategy to assign reads to 147 

human and microbial reference genomes, resulting in detailed information on 148 

sequencing reads of human and microbial origin (Figure S1A). We likewise used 149 

GATK-PathSeq to process WGS data sets from 50 colon adenocarcinoma (COAD) 150 

specimens available from TCGA (41) for comparison, as there is strong evidence of 151 

microbial associations with COAD (22-25). 152 
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 153 

The bacterial burden of ESCC tumors ranged from 10 to 1000 bacterial reads per 154 

million human reads, similar to numbers observed in TCGA COAD (Figure 1B). 155 

Furthermore, the Shannon diversity of bacterial populations at the genus level ranged 156 

from 2 to 3 (Figure 1C). By comparison, ESCC-associated bacterial communities are as 157 

diverse or more diverse than TCGA COAD. At the phylum level, ESCC bacterial 158 

populations generally consist of Firmicutes, Bacteroidetes, Proteobacteria, 159 

Actinobacteria, and Fusobacteria (Figure 1D, Figure S1B). Of note, the higher than 160 

expected abundance of the phylum Actinobacteria specifically in the TCGA ESCC 161 

samples is attributable, in particular, to a very high abundance of the genus 162 

Tetrasphaera (Figure S1C). This is evidenced by a depressed Shannon diversity of 163 

Actinobacteria genera in these samples (Figure S1D) and may indicate contamination 164 

of the TCGA ESCC samples. Actinobacteria have been reported as a source of 165 

contaminating reads in TCGA gastrointestinal cancer samples (42). 166 

 167 

Bacterial genera associated with carcinogenesis are observed at high relative 168 

abundance in ESCC tumors from Tanzania 169 

To determine if bacteria with known associations with cancer are present in ESCC, we 170 

first analyzed the sequencing series of the 61 ESCC cases from the MUHAS Tanzania 171 

cohort with both WGS and RNAseq data. The paired WGS and RNAseq data from 172 

these tumors allowed investigation of bacterial communities at the DNA and RNA levels. 173 

Both WGS and RNAseq data revealed high relative abundance of bacterial genera 174 

previously associated with carcinogenesis in these ESCC tumors (Figure 2A, 2B). The 175 
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high relative abundance of the Fusobacterium genus was particularly notable. Other 176 

bacterial genera of interest include Streptococcus, Porphyromonas, Campylobacter, 177 

Prevotella, Veillonella, and Selenomonas, many of which have been associated with 178 

gastrointestinal malignancies alongside or independently of Fusobacterium (25, 29, 32, 179 

34, 43). The mean Jaccard similarity index between tumor RNAseq and WGS data from 180 

the same tumor is 0.54, greater than the average Jaccard similarity index of random 181 

RNAseq-WGS pairs (0.36), indicating that bacterial populations inferred from WGS and 182 

RNAseq data are generally consistent (Figure 2C).  183 

 184 

Next, we attempted to determine if similar bacterial genera were also present in ESCC 185 

from patients in high-incidence countries beyond Tanzania. Investigation of RNA 186 

sequencing data from patients in Malawi, WGS data from patients in Kenya, China, and 187 

Iran, as well as from the independent ESCCAPE Tanzania patient group revealed 188 

pervasive evidence of similar bacterial genera in the tumors of these patients (Figure 189 

2D, Figure S2A). To investigate if similar microorganisms were found in ESCC tumors 190 

from patients in low-incidence regions, we investigated WGS data from ESCC tumors 191 

originating from USA, Ukraine, Vietnam, and Russia that were available through TCGA. 192 

While the number of samples available from low-incidence regions is low and relies on a 193 

single sequencing effort, we found that the tumors of many of these patients contain 194 

similar bacterial genera (Figure 2D, Figure S2A). Colon cancers from the TCGA COAD 195 

cohort revealed evidence of Fusobacterium, as expected; however, these COAD 196 

samples were notable for much lower relative abundance of the other genera of interest, 197 

when compared to ESCC tumors. 198 
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 199 

Evaluation of association between saliva and tumor microbiomes in ESCC 200 

patients from Tanzania 201 

We next investigated the similarity between the saliva and tumor microbiomes of ESCC 202 

patients. Paired saliva samples were only available from patients in the MUHAS 203 

Tanzania cohort (N=45); these paired saliva specimens were analyzed to evaluate 204 

bacterial abundance as a proxy for the oral microbiome.  205 

 206 

We first assessed the similarity between paired saliva and tumor microbiomes with the 207 

Bray Curtis similarity index (44). To avoid potential confounding due to low bacterial 208 

read counts in some tumor samples, we limited these analyses to the 21 tumor-saliva 209 

pairs that contain appreciable microbial sequencing depth (at least 10,000 bacterial 210 

reads each). We found that the saliva and tumor microbiomes from the same patient in 211 

the Tanzanian samples are significantly more similar than random saliva-tumor pairs 212 

(p=0.0003, Wilcoxon rank sum test) (Figure 3A). Next, we asked if there are bacterial 213 

genera whose relative abundance in the saliva correlates with their relative abundance 214 

in the tumor. For this analysis, we included only common-abundant bacterial genera 215 

with at least 1% relative abundance in at least three tumor-oral pairs. The relative 216 

abundance of four bacterial genera (Fusobacterium, Veillonella, Streptococcus, and 217 

Porphyromonas) are strongly correlated between tumor and saliva microbiomes, while 218 

other common-abundant bacterial genera were not (Figure 3B). To assess if any 219 

bacterial genera are preferentially enriched in the tumor microbiome relative to the 220 

saliva microbiome, we next calculated the difference in the relative abundance of the 221 
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common-abundant bacterial genera between saliva-tumor pairs. Several genera 222 

including Porphyromonas and Veillonella were at higher relative abundance in the 223 

saliva, while Prevotella and Fusobacterium were enriched in the tumor microbiome 224 

(Figure 3C). Finally, the relative abundance of tumor-associated bacteria including 225 

Fusobacterium, Prevotella, Selenomonas, Veillonella, Streptococcus, and 226 

Campylobacter are strikingly similar between the microbiomes of tumor and oral pairs 227 

(Figure 3D). Altogether, these data support the hypothesis that there is an association 228 

between the oral and tumor microbiome of ESCC patients in Tanzania.  229 

 230 

DISCUSSION 231 

This report provides an analysis of bacterial communities present in ESCC tumors from 232 

nine countries from different regions of the world, analyzed in four independent 233 

sequencing efforts. We found traditionally oral, cancer-associated, bacterial genera in 234 

tumors from patients in Tanzania, Malawi, Kenya, China, and Iran. These results 235 

provide evidence that these bacterial genera may be associated with ESCC in high-236 

incidence regions. We also identified similar bacterial genera in ESCC tumors from low-237 

incidence regions, although this finding is based on a small sample size and only one 238 

sequencing cohort. Finally, in a sub-analysis of tumor and saliva pairs available from 239 

Tanzania, we demonstrated that the synchronous collected saliva and tumor 240 

microbiomes of ESCC patients are strikingly similar at the time of diagnosis; in 241 

particular, we identified a specific correlation between the saliva and tumor relative 242 

abundance of the bacterial genera Fusobacterium, Veillonella, Streptococcus, and 243 
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Porphyromonas, with Prevotella and Fusobacterium significantly enriched in the tumor 244 

microbiome.  245 

 246 

Many of the bacterial genera identified in this study have been previously implicated in 247 

the carcinogenesis of gastrointestinal cancers. For example, studies have found that 248 

oral microbiota including Fusobacterium, Prevotella, Selenomonas, Veillonella, 249 

Streptococcus, and Campylobacter can be used to distinguish individuals with colorectal 250 

cancer from healthy controls (45), and that Fusobacterium nucleatum strains that 251 

colonize the oral cavity and tumors of patients with colorectal cancer are identical in 252 

some patients (46), raising the possibility that the oral cavity is a source of extra-oral 253 

cancer microbiota. Our group has previously shown that Fusobacterium, Selenomonas, 254 

and Prevotella can be visualized invasively within colorectal tumors and liver 255 

metastases (25). Fusobactium nucleatum has been previously identified in esophageal 256 

cancers and is associated with shorter survival (47). Members of the genus 257 

Porphyromonas have been previously observed invasively within ESCC tumors (29) 258 

and have been reported to promote oral squamous cell carcinoma through a variety of 259 

mechanisms (30, 31). Campylobacter jejuni has been reported to promote 260 

tumorigenesis in mice (32), and Streptococcus species have been identified in human 261 

esophageal cancers (33). In addition, the striking association of Streptococcus bovis 262 

with colorectal cancer has led to the recommendation that colonoscopy be performed 263 

upon detection of Streptococcus bovis bacteremia or endocarditis (34, 35). Oral 264 

commensal bacteria such as Veillonella species have been previously implicated in 265 

pathogenesis of lung cancer (43). A prospective cohort of American patients (48) and a 266 
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study of Japanese patients (49) likewise found that oral microbiome composition reflects 267 

risk of esophageal cancers  268 

 269 

We found that bacterial genera including Fusobacterium, Prevotella, Selenomonas, 270 

Veillonella, Streptococcus, and Campylobacter are pervasive in the microbiome of 271 

ESCC tumors from patients in high-incidence regions. Moreover, the bacterial 272 

composition of ESCC tumors is remarkably similar across countries in those high-273 

incidence regions, raising the possibility that these bacterial genera may be involved in 274 

ESCC carcinogenesis or that they may colonize tumors as a result of the common 275 

clinical presentation of patients with severe dysphagia. Notably, there are several 276 

alternative hypotheses that warrant mention. For example, it is possible that the ESCC-277 

associated bacterial genera simply represent common members of the esophageal 278 

microbiome (50) and that the microbial populations we observed in these cancers are 279 

not significantly different from those found in normal esophagus tissue. A limitation of 280 

our study is a lack of normal esophageal tissue from ESCC cases or healthy controls in 281 

these settings, which would allow us to address this possibility. Another possible 282 

explanation is that ESCC tumors provide a favorable niche in which these bacteria are 283 

sequestered and allowed to colonize due to the propensity of this disease to cause 284 

malignant obstruction. Thus, it is plausible that ESCC-associated bacteria are not 285 

necessarily promoting ESCC carcinogenesis but rather represent passengers resulting 286 

from the sequestration of oral secretions proximal to an obstructing tumor. While the 287 

previous association of these bacterial genera with other cancers is consistent with the 288 

hypothesis that they influence carcinogenesis of ESCC, future studies are necessary to 289 
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identify which, if any, direct influences these bacterial genera have upon ESCC 290 

carcinogenesis. Nevertheless, even if these bacterial genera do not have a role in 291 

increasing ESCC risk, but arise at the time of disease onset, they may have an 292 

important role to play as part of a non-invasive early-detection biomarker. Finally, a 293 

concern of all microbiome analyses is that observed bacteria can be a consequence of 294 

contamination at some step between tumor harvest and sequencing. While some TCGA 295 

samples may be contaminated by Actinobacteria as previously noted, the presence of 296 

Fusobacterium, Prevotella, Selenomonas, Veillonella, Streptococcus, and 297 

Campylobacter in four independently collected cohorts indicates that these finding are 298 

unlikely due to contamination.  299 

 300 

While this study focused on the presence of bacteria with ESCC in high-incidence 301 

regions, we found evidence of similar cancer-associated bacteria in tumors in patients 302 

from low-incidence regions (USA, Ukraine, Vietnam, and Russia). A limitation of this 303 

assessment is the small sample size (n=36) and reliance on a single TCGA cohort that 304 

likely contains contaminants (42). Regardless, this finding does not exclude the 305 

possibility that the microbiome could be a factor driving patterns of ESCC incidence. For 306 

example, it is possible that the prevalence of ESCC-associated bacteria in people could 307 

vary across regions, which in turn could drive these differing rates of ESCC incidence. 308 

This is an important topic for future study. 309 

 310 

We found that the structure of synchronous paired tumor and oral microbiomes were 311 

strikingly similar. It is possible that this similarity is driven by transient contact of saliva 312 
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and its associated microbiome with the tumor (e.g., during swallowing or tumor 313 

extraction). However, we found that only four of sixteen common-abundant bacterial 314 

genera correlate in abundance between the tumor and oral microbiomes, suggesting 315 

tumor-oral microbiome similarity is not driven exclusively by “in-trans” interactions 316 

between the saliva and tumor. We also found that genera including Prevotella and 317 

Fusobacterium are often specifically enriched in the tumor microbiome, supporting a 318 

model where specific oral bacterial preferentially colonize the tumor. A caveat of this 319 

study is that we infer oral bacterial populations from the saliva, despite diverse 320 

communities of bacteria throughout the oral cavity (51). However, we do observe 321 

Fusobacterium in the saliva despite its general association with periodontal plaques 322 

(52), suggesting saliva is capable of detecting periodontal pathogens. Additionally, 323 

because the samples studied here are from patients with late-stage disease, it is 324 

possible that tumor-induced changes to upper-gastrointestinal physiology and 325 

dysphagia symptom-induced major dietary changes could themselves alter the oral 326 

microbiomes of these patients. The previous findings from the ESCCAPE studies in 327 

Kenya and Tanzania (17, 19) which found strong associations with dental staining (ORs 328 

> 10) and for which photographic validation studies suggest that most dental staining 329 

was not fluorosis, also point to a recent build-up of chromogenic bacteria. Studies of the 330 

oral microbiome of patients at earlier stages of ESCC and in prospective studies are 331 

necessary to address this possibility. We restricted our analysis to 21 tumor-oral pairs 332 

that have a sufficient number of bacterial reads (at least 10,000). It is likely that 333 

excluded samples are not molecularly distinct from included samples but that the 334 
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relatively low bacterial read counts in some tumors is simply reflective of low 335 

sequencing depth. 336 

 337 

Our observation of similar tumor and saliva microbiomes in ESCC patients is especially 338 

notable considering emerging evidence linking periodontal disease and poor oral health 339 

with increased risk of various cancers (17, 53, 54). This raises several important open 340 

questions. It will be essential to determine if there is a difference in the oral prevalence 341 

of these identified cancer-associated bacteria between ESCC patients and non-patients 342 

earlier in the natural history of the disease, for example through comparisons of patients 343 

with esophageal squamous dysplasia and healthy controls. Because the prevalence of 344 

these bacteria may be associated with factors such as oral health, hygiene, and diet, 345 

studies of the impact of these factors on the oral microbiome in the general population 346 

would inform whether the oral microbiome is on a pathway linking oral hygiene to ESCC 347 

risk and may have a role in prevention.  348 

 349 

In conclusion, we show that cancer-associated, traditionally-oral bacteria including the 350 

genera Fusobacterium, Selenomonas, Prevotella, Streptococcus, Porphyromonas, 351 

Veillonella, and Campylobacter are highly abundant within ESCC tumors from patients 352 

in high-ESCC incidence regions. We also show that there is a correlation between the 353 

genus composition of the saliva microbiome and the ESCC tumor microbiome of some 354 

ESCC patients. These findings will be foundational for future studies to understand if 355 

and how bacteria influence ESCC pathogenesis and to understand the role of the oral 356 
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microbiome in this process. Finally, this study highlights the benefit of collaborative 357 

investigation to evaluate the international heterogeneity of this disease.  358 

 359 

 360 

MATERIALS AND METHODS 361 

Sample acquisition and sequencing 362 

The sample acquisition and sequencing methods for the studies from the MUHAS 363 

Tanzania cohort (n=61) (36) and UNC Project - Malawi cohort (n=30) (11) have been 364 

previously described. Samples sequenced in the Mutographs study (n=210) (38) 365 

originated from patients in Golestan, Iran (n=55), ESCCAPE case-control studies in 366 

Tanzania (n=18) (19) and Kenya (n=64) (17), and patients in Shanxi, China (n=71). 367 

TCGA ESCC (n=36) and COAD samples (n=51) have been previously described (39, 368 

41). The TCGA ESCC cohort includes tumors from patients in United States (n=3), 369 

Ukraine (n=3), Vietnam (n=22), and Russia (n=8), regions which have lower incidence 370 

of ESCC. 371 

 372 

Metagenomic analysis 373 

GATK-PathSeq (40) was used to conduct computational subtraction of human-mapping 374 

reads from input RNAseq and WGS datasets. GATK-PathSeq works by first mapping 375 

reads to a host reference database consisting of the human genome grch38 and 376 

various supplemental human reference sequences. Next, non-human reads are 377 

mapped against a comprehensive microbial database, and microbe read assignments 378 

are reported for further study. From the MUHAS Tanzania cohort, a total of 61 tumor 379 
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WGS samples, 45 saliva WGS samples, and 59 RNAseq samples were processed 380 

through GATK-PathSeq.  381 

 382 

Bacterial abundance analyses and plotting were conducted in R (v3.5.1). To calculate 383 

relative abundance at a phylogenetic level (e.g., phylum or genus), GATK-PathSeq 384 

results were filtered for taxa at the level, and relative abundance was calculated for 385 

each taxon as follows: (# of taxon reads)/(total # reads at the selected phylogenetic 386 

level). The rows of all bacterial abundance heatmaps are arranged according to the 387 

mean abundance across all samples. The sample order of relative abundance stacked 388 

barplots were determined based on Fusobacterium genus relative abundance except 389 

where noted. In Figure 2D, if any cohort contained more than 50 samples, 50 samples 390 

were randomly selected for plotting. The distribution of relative abundances of genera of 391 

interest in all samples can be found in Figure S2, where width of each violin represents 392 

the relative distribution of observed bacterial relative abundance for all patients in each 393 

patient cohort. 394 

 395 

Jaccard distance between RNAseq and WGS data from each ESCC tumor was 396 

calculated in R based on bacterial genera with at least 1% relative abundance. The 397 

qualitative Jaccard index was used in this case because the comparison was between 398 

DNA and RNA analytes which would not be expected to be quantitatively identical.  399 

 400 

Tumor-saliva similarity 401 
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Only tumor-saliva pairs from the MUHAS Tanzania cohort with at least 10,000 reads 402 

mapped to the bacterial superkingdom were available for analysis. This resulted in a 403 

total of 21 tumor-oral pairs. Bray-Curtis dissimilarity metrics between tumor-oral pairs 404 

were calculated using the R package vegan (55). Figure 3A presents the Bray-Curtis 405 

similarity (1 – Bray-Curtis dissimilarity), for each tumor-oral pair.  406 

 407 

To determine the correlation between the relative abundance of specific genera 408 

between tumor and saliva microbiomes, common-abundant genera that are at least 1% 409 

abundance in at least 3 tumor-oral pairs were identified. This resulted in the 410 

identification of 16 common-abundant genera. Correlations represent a two-sided 411 

Pearson correlation coefficient. To determine tumor-oral enrichment of common-412 

abundant genera, the difference in relative abundance of each genus between each 413 

tumor-oral pair was plotted (Figure 3C). For the relative abundance bar plots of tumor-414 

saliva pairs (Figure 3D), bacterial genera that had been highlighted in previous figures 415 

are labeled. 416 

 417 

Code and processed data availability 418 

All GATK-PathSeq output files and reproducible analysis and plotting R Notebooks are 419 

available. 420 

Zenodo: https://doi.org/10.5281/zenodo.4750577 421 

GitHub: https://github.com/jnoms/ESCC_microbiome 422 

 423 
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Furthermore, all analysis and figures can be automatically reproduced through a series 424 

of Google Colab documents. 425 

Figure 1 and Supplementary Figure 1: 426 

https://github.com/jnoms/ESCC_microbiome/blob/main/collab/Figure1.ipynb  427 

Figure 2 and Supplementary Figure 2: 428 

https://github.com/jnoms/ESCC_microbiome/blob/main/collab/Figure2.ipynb  429 

Figure 3: https://github.com/jnoms/ESCC_microbiome/blob/main/collab/Figure3.ipynb  430 

 431 

ABBREVIATIONS 432 

AFRECC – African Esophageal Cancer Consortium 433 

COAD – Colon adenocarcinoma 434 

ESCA – Esophageal adenocarcinoma 435 

ESCC – Esophageal squamous cell carcinoma 436 

ESCCAPE – Esophageal Squamous Cell Carcinoma African Prevention Research  437 

MUHAS – Muhimbili University of Health and Allied Sciences  438 

RNAseq – RNA sequencing 439 

TCGA – The Cancer Genome Atlas 440 

WGS – Whole genome sequencing 441 

 442 

 443 
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 481 

FIGURE LEGENDS 482 

 483 

Figure 1. Microbiome structure and composition of ESCC tumors 484 

A. Description of ESCC patients, and sample types, assessed in this study. TCGA – 485 

The Cancer Genome Atlas; ESCCAPE – Esophageal Squamous Cell Carcinoma 486 

African Prevention Research; Mutographs – Cancer Research UK Mutographs 487 

Project. 488 

B. Bacterial burden of ESCC tumors for each patient cohort. Units are bacterial 489 

reads per million human reads as determined by GATK-PathSeq analysis. Each 490 
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dot represents one sample. Analyte type (RNA or DNA) and tumor type (ESCC 491 

or COAD) are indicated by color. 492 

C. Shannon diversity of ESCC tumors for each patient cohort. Shannon diversity 493 

was determined for each sample at the genus level based on genera that are at 494 

least 1% relative abundance. Each dot represents one sample. Analyte type 495 

(RNA or DNA) and tumor type (ESCC or COAD) are indicated by color. 496 

D. Heatmap describing the relative abundance of the five top phyla sorted by 497 

average phylum relative abundance. Each column represents one sample. Rows 498 

represent the indicated phyla. Units are relative abundance. Samples from each 499 

cohort are WGS unless noted with “(RNA)”, in which case they are RNAseq. 500 

 501 

Figure 2.  Identification of bacterial genera associated with carcinogenesis 502 

A. Bacterial genera relative abundance of WGS data from the MUHAS Tanzania 503 

cohort. Each column represents a single sample. Samples are ordered by 504 

decreasing Fusobacterium relative abundance. Units are relative abundance of 505 

bacterial genus-mapping reads. Color indicates the genus, and seven genera are 506 

specified. Only patients with GATK-PathSeq analysis from both RNAseq and 507 

WGS tumor data are plotted (n=59). Columns are ordered by decreasing relative 508 

abundance of Fusobacterium genus reads.  509 

B. Bacterial genera relative abundance of RNAseq data from the MUHAS Tanzania 510 

cohort. Each column represents a single sample. Here, column order is dictated 511 

according to the patient order in Figure 2A. Units are relative abundance of 512 

bacterial genus-mapping reads. Color indicates the genus, and seven genera are 513 
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specified. Only patients with GATK-PathSeq analysis from both RNAseq and 514 

WGS tumor data are plotted (n=59). Samples are ordered in the same order as 515 

Figure 2A, which is by Fusobacterium genus relative abundance in the WGS 516 

data. 517 

C. Jaccard index between RNAseq and WGS data of tumors from the MUHAS 518 

Tanzania cohort. For the “Paired by Sample” column, Jaccard indices were 519 

calculated only between the WGS and RNAseq data from the same tumor (n=59 520 

comparisons). For the “Random Pairs” column, Jaccard indices were calculated 521 

between all possible WGS-RNAseq pairs independent of patient of origin to 522 

represent the expected random distribution of Jaccard indices (n=3,481 523 

comparisons). Jaccard index was calculated from relative abundance at the 524 

genus level based on genera that are at least 1% relative abundance. The width 525 

of the violin represents the relative proportion of comparisons with each Jaccard 526 

index, and lines indicate 25th, 50th, and 75th percentiles.  527 

D. Bacterial genera relative abundance of the remaining patient cohorts, including 528 

RNAseq and WGS data as indicated. Each column represents a single sample. 529 

Samples are ordered by decreasing Fusobacterium relative abundance within 530 

each patient cohort. Units are relative abundance of bacterial genus-mapping 531 

reads. Color indicates the genus, and seven genera are specified. Here, if there 532 

were more than 50 samples in a patient cohort, 50 samples were randomly 533 

selected for visualization. USA – United States, UA – Ukraine, RU – Russia. All 534 

cohorts consist of WGS data, with the exception of the tumors from Malawi which 535 

are RNAseq. (Number of samples plotted: UNC Project - Malawi 30; ESCCAPE 536 
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Tanzania 18; ESCCAPE Kenya 50; Shanxi, China 50; Golestan, Iran 50; TCGA 537 

ESCC Vietnam 22; TCGA ESCC USA/UA/RU 14). 538 

 539 

Figure 3.  Association between synchronous saliva and tumor microbiomes in 540 

Tanzanian ESCC patients 541 

A. Bray Curtis Similarity comparing tumor-saliva pairs from patients in the MUHAS 542 

Tanzania cohort. Analysis was restricted to the 21 tumor-saliva pairs that 543 

contained at least 10,000 bacterial reads. This analysis was conducted at the 544 

genus level and using relative abundance. For the “Paired by Patient” column, 545 

Bray Curtis Similarity was calculated only between the tumor and saliva WGS 546 

data from the same patient. For the “Random Pairs” column, Bray Curtis 547 

Similarity was calculated between all possible tumor-saliva pairs independent of 548 

patient of origin to represent the expected random distribution of Bray Curtis 549 

Similarity. (p=0.0003, Wilcoxon rank sum test). 550 

B. Correlation between the relative abundance of common-abundant bacterial 551 

genera in paired saliva and tumor WGS data. Analysis was restricted to the 21 552 

tumor-saliva pairs that contained at least 10,000 bacterial reads. Common-553 

abundant bacterial genera are bacterial genera that are at least 1% abundance in 554 

at least 3 tumor-saliva pairs – 16 bacterial genera made this cutoff. Correlation 555 

represents a two-sided Pearson correlation. X-axis is the correlation coefficient, 556 

and Y axis is the correlation P-Value plotted on a log scale.  557 

C. Enrichment of genera in the oral or tumor microbiome. Each row details one of 558 

the 16 common-abundant bacterial genera. Each row contains one data point per 559 
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patient, for a total of 21 data points. The value of each point represents the 560 

difference in the relative abundance of the specified genus in the tumor and oral 561 

microbiomes of one patient, with positive values indicating a genus is at higher 562 

relative abundance in a patient’s tumor. For example, if a genus is at a relative 563 

abundance of 0.7 (70%) in the tumor and 0.3 (30%) in the saliva of a patient, the 564 

plotted value for that genus and that patient is 0.4. Curves represent the 565 

distribution of this relative abundance difference across the tumor-oral pairs, with 566 

dots indicating individual tumor-oral pairs. Vertical red lines indicate quartiles. 567 

D. Relative abundance bar charts of tumor-saliva pairs. Analysis was restricted to 568 

the 21 tumor-saliva pairs that contained at least 10,000 bacterial reads. Units are 569 

relative abundance of bacterial genus-mapping reads. Color indicates the genus, 570 

and seven genera are specified. (abbreviations: T – tumor, S – saliva). 571 

 572 

Figure S1. GATK-PathSeq statistics and extended phyla and genera information 573 

A. Boxplots indicating the number of GATK-PathSeq Human-mapped reads and 574 

GATK-PathSeq microbe-mapped reads for each patient cohort. Samples from 575 

each cohort are WGS unless noted with “(RNA)”, in which case they are 576 

RNAseq. 577 

B. Heatmap describing the relative abundance of the 15 top phyla sorted by 578 

average phylum relative abundance. Each column represents one sample. Rows 579 

represent the indicated phyla. Units are relative abundance. Samples from each 580 

cohort are WGS unless noted with “(RNA)”, in which case they are RNAseq. 581 
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C. Heatmap describing the relative abundance of the 15 top genera sorted by 582 

average genera relative abundance. Each column represents one sample. Rows 583 

represent the indicated genera. Units are relative abundance. Samples from 584 

each cohort are WGS unless noted with “(RNA)”, in which case they are 585 

RNAseq. 586 

D. Boxplot representing the Shannon diversity of genera that fall within the phylum 587 

Actinobacteria for each patient in each cohort. Samples from each cohort are 588 

WGS unless noted with “(RNA)”, in which case they are RNAseq. 589 

 590 

Figure S2. Distribution of Fusobacterium, Selenomonas, Prevotella, 591 

Streptococcus, Porphyromonas, Veillonella, and Campylobacter relative 592 

abundance of genus reads for all samples in each study 593 

A. The distribution of the relative abundance of genus-mapping reads for seven 594 

selected genera in all studies. The width of each violin represents the proportion 595 

of samples which have the indicated relative abundance of each genus. In 596 

contrast to Figure 2D, which only plots up to 50 samples per study, this plot 597 

includes all patients. Samples from each study are WGS unless noted with 598 

“(RNA)”, in which case they are RNAseq. 599 

 600 

 601 

  602 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 29, 2021. ; https://doi.org/10.1101/2021.09.29.462325doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.29.462325
http://creativecommons.org/licenses/by/4.0/


 29 

REFERENCES 603 

1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. 604 
Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality 605 
worldwide for 36 cancers in 185 countries. CA: A Cancer Journal for Clinicians.n/a(n/a). 606 
2. CC MRA, Dawsey S. Oesophageal cancer: A tale of two malignancies. World 607 
Cancer Report: Cancer Research for Cancer Prevention Lyon, France: International 608 
Agency for Research on Cancer Available from: http://publications.iarc.fr/586. 2020. 609 
3. Coleman HG, Xie S-H, Lagergren J. The epidemiology of esophageal 610 
adenocarcinoma. Gastroenterology. 2018;154(2):390-405. 611 
4. Rustgi AK, El-Serag HB. Esophageal carcinoma. New England Journal of 612 
Medicine. 2014;371(26):2499-509. 613 
5. Arnold M, Soerjomataram I, Ferlay J, Forman D. Global incidence of 614 
oesophageal cancer by histological subtype in 2012. Gut. 2015;64(3):381-7. 615 
6. Cheng ML, Zhang L, Borok M, Chokunonga E, Dzamamala C, Korir A, et al. The 616 
incidence of oesophageal cancer in Eastern Africa: identification of a new geographic 617 
hot spot? Cancer epidemiology. 2015;39(2):143-9. 618 
7. Abnet CC, Kamangar F, Islami F, Nasrollahzadeh D, Brennan P, Aghcheli K, et 619 
al. Tooth loss and lack of regular oral hygiene are associated with higher risk of 620 
esophageal squamous cell carcinoma. Cancer Epidemiology and Prevention 621 
Biomarkers. 2008;17(11):3062-8. 622 
8. Abnet CC, Qiao Y-L, Mark SD, Dong Z-W, Taylor PR, Dawsey SM. Prospective 623 
study of tooth loss and incident esophageal and gastric cancers in China. Cancer 624 
Causes & Control. 2001;12(9):847-54. 625 
9. Dar N, Islami F, Bhat G, Shah I, Makhdoomi M, Iqbal B, et al. Poor oral hygiene 626 
and risk of esophageal squamous cell carcinoma in Kashmir. British journal of cancer. 627 
2013;109(5):1367-72. 628 
10. Chen X, Yuan Z, Lu M, Zhang Y, Jin L, Ye W. Poor oral health is associated with 629 
an increased risk of esophageal squamous cell carcinoma-a population-based case-630 
control study in China. International journal of cancer. 2017;140(3):626-35. 631 
11. Sato F, Oze I, Kawakita D, Yamamoto N, Ito H, Hosono S, et al. Inverse 632 
association between toothbrushing and upper aerodigestive tract cancer risk in a 633 
Japanese population. Head & neck. 2011;33(11):1628-37. 634 
12. Liang H, Yang Z, Wang JB, Yu P, Fan JH, Qiao YL, et al. Association between 635 
oral leukoplakia and risk of upper gastrointestinal cancer death: a follow-up study of the 636 
Linxian general population trial. Thoracic cancer. 2017;8(6):642-8. 637 
13. Guha N, Boffetta P, Wünsch Filho V, Eluf Neto J, Shangina O, Zaridze D, et al. 638 
Oral health and risk of squamous cell carcinoma of the head and neck and esophagus: 639 
results of two multicentric case-control studies. American journal of epidemiology. 640 
2007;166(10):1159-73. 641 
14. Chen Q-L, Zeng X-T, Luo Z-X, Duan X-L, Qin J, Leng W-D. Tooth loss is 642 
associated with increased risk of esophageal cancer: evidence from a meta-analysis 643 
with dose-response analysis. Scientific reports. 2016;6(1):1-7. 644 
15. Sheikh M, Poustchi H, Pourshams A, Etemadi A, Islami F, Khoshnia M, et al. 645 
Individual and combined effects of environmental risk factors for esophageal cancer 646 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 29, 2021. ; https://doi.org/10.1101/2021.09.29.462325doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.29.462325
http://creativecommons.org/licenses/by/4.0/


 30 

based on results from the Golestan Cohort Study. Gastroenterology. 2019;156(5):1416-647 
27. 648 
16. Patel K, Wakhisi J, Mining S, Mwangi A, Patel R. Esophageal cancer, the 649 
topmost cancer at MTRH in the Rift Valley, Kenya, and its potential risk factors. 650 
International Scholarly Research Notices. 2013;2013. 651 
17. Menya D, Maina SK, Kibosia C, Kigen N, Oduor M, Some F, et al. Dental 652 
fluorosis and oral health in the African Esophageal Cancer Corridor: Findings from the 653 
Kenya ESCCAPE case–control study and a pan-African perspective. International 654 
journal of cancer. 2019;145(1):99-109. 655 
18. Mmbaga EJ, Mushi BP, Deardorff K, Mgisha W, Akoko LO, Paciorek A, et al. A 656 
Case–Control Study to Evaluate Environmental and Lifestyle Risk Factors for 657 
Esophageal Cancer in Tanzania. Cancer Epidemiology and Prevention Biomarkers. 658 
2020. 659 
19. Mmbaga BT, Mwasamwaja A, Mushi G, Mremi A, Nyakunga G, Kiwelu I, et al. 660 
Missing and decayed teeth, oral hygiene and dental staining in relation to esophageal 661 
cancer risk: ESCCAPE case-control study in Kilimanjaro, Tanzania. International journal 662 
of cancer. 2020. 663 
20. Buckle GC, et al. Risk factors associated with early-onset esophageal cancer in 664 
Tanzania. (Under Review). 665 
21. Ishaq S, Nunn L. Helicobacter pylori and gastric cancer: a state of the art review. 666 
Gastroenterology and hepatology from bed to bench. 2015;8(Suppl1):S6. 667 
22. Kostic AD, Chun E, Robertson L, Glickman JN, Gallini CA, Michaud M, et al. 668 
Fusobacterium nucleatum potentiates intestinal tumorigenesis and modulates the 669 
tumor-immune microenvironment. Cell host & microbe. 2013;14(2):207-15. 670 
23. Kostic AD, Gevers D, Pedamallu CS, Michaud M, Duke F, Earl AM, et al. 671 
Genomic analysis identifies association of Fusobacterium with colorectal carcinoma. 672 
Genome research. 2012;22(2):292-8. 673 
24. Castellarin M, Warren RL, Freeman JD, Dreolini L, Krzywinski M, Strauss J, et al. 674 
Fusobacterium nucleatum infection is prevalent in human colorectal carcinoma. 675 
Genome research. 2012;22(2):299-306. 676 
25. Bullman S, Pedamallu CS, Sicinska E, Clancy TE, Zhang X, Cai D, et al. 677 
Analysis of Fusobacterium persistence and antibiotic response in colorectal cancer. 678 
Science. 2017;358(6369):1443-8. 679 
26. Gur C, Ibrahim Y, Isaacson B, Yamin R, Abed J, Gamliel M, et al. Binding of the 680 
Fap2 protein of Fusobacterium nucleatum to human inhibitory receptor TIGIT protects 681 
tumors from immune cell attack. Immunity. 2015;42(2):344-55. 682 
27. Rubinstein MR, Baik JE, Lagana SM, Han RP, Raab WJ, Sahoo D, et al. 683 
Fusobacterium nucleatum promotes colorectal cancer by inducing Wnt/β-catenin 684 
modulator Annexin A1. EMBO reports. 2019;20(4):e47638. 685 
28. Rubinstein MR, Wang X, Liu W, Hao Y, Cai G, Han YW. Fusobacterium 686 
nucleatum promotes colorectal carcinogenesis by modulating E-cadherin/β-catenin 687 
signaling via its FadA adhesin. Cell host & microbe. 2013;14(2):195-206. 688 
29. Gao S, Li S, Ma Z, Liang S, Shan T, Zhang M, et al. Presence of Porphyromonas 689 
gingivalis in esophagus and its association with the clinicopathological characteristics 690 
and survival in patients with esophageal cancer. Infectious agents and cancer. 691 
2016;11(1):3. 692 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 29, 2021. ; https://doi.org/10.1101/2021.09.29.462325doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.29.462325
http://creativecommons.org/licenses/by/4.0/


 31 

30. Whitmore SE, Lamont RJ. Oral bacteria and cancer. PLoS pathogens. 693 
2014;10(3):e1003933. 694 
31. Inaba H, Sugita H, Kuboniwa M, Iwai S, Hamada M, Noda T, et al. P 695 
orphyromonas gingivalis promotes invasion of oral squamous cell carcinoma through 696 
induction of pro MMP 9 and its activation. Cellular microbiology. 2014;16(1):131-45. 697 
32. He Z, Gharaibeh RZ, Newsome RC, Pope JL, Dougherty MW, Tomkovich S, et 698 
al. Campylobacter jejuni promotes colorectal tumorigenesis through the action of 699 
cytolethal distending toxin. Gut. 2019;68(2):289-300. 700 
33. Narikiyo M, Tanabe C, Yamada Y, Igaki H, Tachimori Y, Kato H, et al. Frequent 701 
and preferential infection of Treponema denticola, Streptococcus mitis, and 702 
Streptococcus anginosus in esophageal cancers. Cancer science. 2004;95(7):569-74. 703 
34. Boleij A, Schaeps RM, Tjalsma H. Association between Streptococcus bovis and 704 
colon cancer. Journal of clinical microbiology. 2009;47(2):516-. 705 
35. Ferrari A, Botrugno I, Bombelli E, Dominioni T, Cavazzi E, Dionigi P. 706 
Colonoscopy is mandatory after Streptococcus bovis endocarditis: a lesson still not 707 
learned. Case report. World journal of surgical oncology. 2008;6(1):49. 708 
36. Van Loon K, et al. A Genomic Analysis of Esophageal Squamous Cell 709 
Carcinoma in Eastern Africa. (Under Review). 710 
37. Liu W, Snell JM, Jeck WR, Hoadley KA, Wilkerson MD, Parker JS, et al. 711 
Subtyping sub-Saharan esophageal squamous cell carcinoma by comprehensive 712 
molecular analysis. JCI insight. 2016;1(16). 713 
38. Moody S, Senkin S, Islam SMA, Wang J, Nasrollahzadeh D, Penha RCC, et al. 714 
Mutational signatures in esophageal squamous cell carcinoma from eight countries of 715 
varying incidence. medRxiv. 2021:2021.04.29.21255920. 716 
39. Network CGAR. Integrated genomic characterization of oesophageal carcinoma. 717 
Nature. 2017;541(7636):169. 718 
40. Walker MA, Pedamallu CS, Ojesina AI, Bullman S, Sharpe T, Whelan CW, et al. 719 
GATK PathSeq: a customizable computational tool for the discovery and identification of 720 
microbial sequences in libraries from eukaryotic hosts. Bioinformatics. 721 
2018;34(24):4287-9. 722 
41. Network CGA. Comprehensive molecular characterization of human colon and 723 
rectal cancer. Nature. 2012;487(7407):330. 724 
42. Dohlman AB, Arguijo Mendoza D, Ding S, Gao M, Dressman H, Iliev ID, et al. 725 
The cancer microbiome atlas: a pan-cancer comparative analysis to distinguish tissue-726 
resident microbiota from contaminants. Cell Host & Microbe. 2020. 727 
43. Tsay J-CJ, Wu BG, Sulaiman I, Gershner K, Schluger R, Li Y, et al. Lower airway 728 
dysbiosis affects lung cancer progression. Cancer Discovery. 2020. 729 
44. Ricotta C, Podani J. On some properties of the Bray-Curtis dissimilarity and their 730 
ecological meaning. Ecological Complexity. 2017;31:201-5. 731 
45. Flemer B, Warren RD, Barrett MP, Cisek K, Das A, Jeffery IB, et al. The oral 732 
microbiota in colorectal cancer is distinctive and predictive. Gut. 2018;67(8):1454-63. 733 
46. Komiya Y, Shimomura Y, Higurashi T, Sugi Y, Arimoto J, Umezawa S, et al. 734 
Patients with colorectal cancer have identical strains of Fusobacterium nucleatum in 735 
their colorectal cancer and oral cavity. Gut. 2019;68(7):1335-7. 736 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 29, 2021. ; https://doi.org/10.1101/2021.09.29.462325doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.29.462325
http://creativecommons.org/licenses/by/4.0/


 32 

47. Yamamura K, Baba Y, Nakagawa S, Mima K, Miyake K, Nakamura K, et al. 737 
Human microbiome Fusobacterium nucleatum in esophageal cancer tissue is 738 
associated with prognosis. Clinical Cancer Research. 2016;22(22):5574-81. 739 
48. Peters BA, Wu J, Pei Z, Yang L, Purdue MP, Freedman ND, et al. Oral 740 
microbiome composition reflects prospective risk for esophageal cancers. Cancer 741 
research. 2017;77(23):6777-87. 742 
49. Kawasaki M, Ikeda Y, Ikeda E, Takahashi M, Tanaka D, Nakajima Y, et al. Oral 743 
infectious bacteria in dental plaque and saliva as risk factors in patients with esophageal 744 
cancer. Cancer. 2021;127(4):512-9. 745 
50. Corning B, Copland AP, Frye JW. The esophageal microbiome in health and 746 
disease. Current gastroenterology reports. 2018;20(8):1-7. 747 
51. Dewhirst FE, Chen T, Izard J, Paster BJ, Tanner AC, Yu W-H, et al. The human 748 
oral microbiome. Journal of bacteriology. 2010;192(19):5002-17. 749 
52. Signat B, Roques C, Poulet P, Duffaut D. Role of Fusobacterium nucleatum in 750 
periodontal health and disease. Curr Issues Mol Biol. 2011;13(2):25-36. 751 
53. Michaud DS, Lu J, Peacock-Villada AY, Barber JR, Joshu CE, Prizment AE, et 752 
al. Periodontal disease assessed using clinical dental measurements and cancer risk in 753 
the ARIC study. JNCI: Journal of the National Cancer Institute. 2018;110(8):843-54. 754 
54. Ahrens W, Pohlabeln H, Foraita R, Nelis M, Lagiou P, Lagiou A, et al. Oral 755 
health, dental care and mouthwash associated with upper aerodigestive tract cancer 756 
risk in Europe: the ARCAGE study. Oral oncology. 2014;50(6):616-25. 757 
55. Oksanen J, Kindt R, Legendre P, O’Hara B, Stevens MHH, Oksanen MJ, et al. 758 
The vegan package. Community ecology package. 2007;10:631-7. 759 
 760 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 29, 2021. ; https://doi.org/10.1101/2021.09.29.462325doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.29.462325
http://creativecommons.org/licenses/by/4.0/


TCGA COAD

TCGA ESCC

Golestan, Iran

Shanxi, China

ESCCAPE Kenya

ESCCAPE Tanzania

MUHAS Tanzania

MUHAS Tanzania (RNA)

UNC Project - Malawi (RNA)

0.1 10.0 1,000.0
Bacterial reads per million human reads.

C
ou

nt
ry

B

0 1 2 3 4
Shannon Diversity

C

Sample_type
ESCC RNA
ESCC DNA
COAD DNA

Firmicutes

Bacteroidetes

Proteobacteria

Actinobacteria

Fusobacteria

Country Country
UNC Project - Malawi (RNA)
MUHAS Tanzania (RNA)
MUHAS Tanzania
ESCCAPE Tanzania
ESCCAPE Kenya
Shanxi, China
Golestan, Iran
TCGA ESCC
TCGA COAD

0

0.2

0.4

0.6

0.8

DNA - 18

ESCCAPE Tanzania
(Mutographs)

DNA - 64

ESCCAPE Kenya
(Mutographs)

DNA - 55

East Golestan, Iran
(Mutographs)

RNA - 30
UNC Project - Malawi

RNA - 59

DNA - 61

MUHAS Tanzania
Saliva DNA
- 45

DNA - 71

Shanxi, China
(Mutographs)

DNA - 8

Russia (TCGA)

DNA - 3

Ukraine (TCGA)

USA (TCGA)

DNA - 3

DNA - 22

Vietnam (TCGA)

Figure 1

ESCC Patient CohortsA

D

Figure 1. Microbiome structure and composition of ESCC tumors.
A. Description of ESCC patients, and sample types, assessed in this study. TCGA – The Cancer Genome Atlas; ESCCAPE – Esophageal
 Squamous Cell Carcinoma African Prevention Research; Mutographs – Cancer Research UK Mutographs Project.
B. Bacterial burden of ESCC tumors for each patient cohort. Units are bacterial reads per million human reads as determined by
 GATK-PathSeq analysis. Each dot represents one sample. Analyte type (RNA or DNA) and tumor type (ESCC or COAD) are indicated by
 color.
C. Shannon diversity of ESCC tumors for each patient cohort. Shannon diversity was determined for each sample at the genus level based
 on genera that are at least 1% relative abundance. Each dot represents one sample. Analyte type (RNA or DNA) and tumor type (ESCC
 or COAD) are indicated by color.
D. Heatmap describing the relative abundance of the !ve top phyla sorted by average phylum relative abundance. Each column
 represents one sample. Rows represent the indicated phyla. Units are relative abundance. Samples from each cohort are WGS unless
 noted with “(RNA)”, in which case they are RNAseq.
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Figure 2. Identi!cation of bacterial genera associated with carcinogenesis.
A. Bacterial genera relative abundance of WGS data from the MUHAS Tanzania cohort.  Each column represents a single sample. Samples are ordered
 by decreasing Fusobacterium relative abundance. Units are relative abundance of bacterial genus-mapping reads. Color indicates the genus, and
 seven genera are speci!ed. Only patients with GATK-PathSeq analysis from both RNAseq and WGS tumor data are plotted (n=59). Columns are
 ordered by decreasing relative abundance of Fusobacterium genus reads. 
B. Bacterial genera relative abundance of RNAseq data from the MUHAS Tanzania cohort. Each column represents a single sample. Here, column
 order is dictated according to the patient order in Figure 2A. Units are relative abundance of bacterial genus-mapping reads. Color indicates the
 genus, and seven genera are speci!ed. Only patients with GATK-PathSeq analysis from both RNAseq and WGS tumor data are plotted (n=59).
 Samples are ordered in the same order as Figure 2A, which is by Fusobacterium genus relative abundance in the WGS data.
C. Jaccard index between RNAseq and WGS data of tumors from the MUHAS Tanzania cohort. For the “Paired by Sample” column, Jaccard
 indices were calculated only between the WGS and RNAseq data from the same tumor (n=59 comparisons). For the “Random Pairs” column, Jaccard
 indices were calculated between all possible WGS-RNAseq pairs independent of patient of origin to represent the expected random distribution
 of Jaccard indices (n=3,481 comparisons). Jaccard index was calculated from relative abundance at the genus level based on genera that are at
 least 1% relative abundance. The width of the violin represents the relative proportion of comparisons with each Jaccard index, and lines
 indicate 25th, 50th, and 75th percentiles. 
D. Bacterial genera relative abundance of the remaining patient cohorts, including RNAseq and WGS data as indicated. Each column represents
 a single sample. Samples are ordered by decreasing Fusobacterium relative abundance within each patient cohort. Units are relative abundance
 of bacterial genus-mapping reads. Color indicates the genus, and seven genera are speci!ed. Here, if there were more than 50 samples in a
 patient cohort, 50 samples were randomly selected for visualization. USA – United States, UA – Ukraine, RU – Russia. All cohorts consist of WGS
 data, with the exception of the tumors from Malawi which are RNAseq. (Number of samples plotted: UNC Project - Malawi 30; ESCCAPE Tanzania
 18; ESCCAPE Kenya 50; Shanxi, China 50; Golestan, Iran 50; TCGA ESCC Vietnam 22; TCGA ESCC USA/UA/RU 14).
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Figure 3

Figure 3. Association between synchronous saliva and tumor microbiomes in Tanzanian ESCC patients.
A. Bray Curtis Similarity comparing tumor-saliva pairs from patients in the MUHAS Tanzania cohort. Analysis was restricted to the 21
 tumor-saliva pairs that contained at least 10,000 bacterial reads. This analysis was conducted at the genus level and using relative abundance.
 For the “Paired by Patient” column, Bray Curtis Similarity was calculated only between the tumor and saliva WGS data from the same patient.
 For the “Random Pairs” column, Bray Curtis Similarity was calculated between all possible tumor-saliva pairs independent of patient of origin to
 represent the expected random distribution of Bray Curtis Similarity. (p=0.0003, Wilcoxon rank sum test).
B. Correlation between the relative abundance of common-abundant bacterial genera in paired saliva and tumor WGS data. Analysis was
 restricted to the 21 tumor-saliva pairs that contained at least 10,000 bacterial reads. Common-abundant bacterial genera are bacterial genera
 that are at least 1% abundance in at least 3 tumor-saliva pairs – 16 bacterial genera made this cuto". Correlation represents a two-sided
 Pearson correlation. X-axis is the correlation coe#cient, and Y axis is the correlation P-Value plotted on a log scale. 
C. Enrichment of genera in the oral or tumor microbiome. Each row details one of the 16 common-abundant bacterial genera. Each row contains
 one data point per patient, for a total of 21 data points. The value of each point represents the di"erence in the relative abundance of the
 speci!ed genus in the tumor and oral microbiomes of one patient, with positive values indicating a genus is at higher relative abundance in a
 patient’s tumor. For example, if a genus is at a relative abundance of 0.7 (70%) in the tumor and 0.3 (30%) in the saliva of a patient, the plotted
 value for that genus and that patient is 0.4. Curves represent the distribution of this relative abundance di"erence across the tumor-oral pairs,
 with dots indicating individual tumor-oral pairs. Vertical red lines indicate quartiles.
D. Relative abundance barcharts of tumor-saliva pairs. Analysis was restricted to the 21 tumor-saliva pairs that contained at least 10,000 bacterial 
 eads. Units are relative abundance of bacterial genus-mapping reads. Color indicates the genus, and seven genera are speci!ed. (Abbreviations: 
 T – tumor,  S – saliva.)

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 29, 2021. ; https://doi.org/10.1101/2021.09.29.462325doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.29.462325
http://creativecommons.org/licenses/by/4.0/


TCGA COAD

TCGA ESCC

Golestan, Iran

Shanxi, China

ESCCAPE Kenya

ESCCAPE Tanzania

MUHAS Tanzania

MUHAS Tanzania (RNA)

UNC Project - Malawi (RNA)

0 1 2 3
Genus Shannon Diversity

C
oh

or
t Sample_type

ESCC RNA
ESCC DNA
COAD DNA

Shannon Diversity Within
The Phylum Actinobacteria

Figure S1

A

B C

D

Top 15 Phyla Top 15 Genera

Figure S1. GATK-PathSeq statistics and extended phyla and genera information.
A. Boxplots indicating the number of GATK-PathSeq Human-mapped reads and GATK-PathSeq microbe-mapped reads for each patient cohort.
 Samples from each cohort are WGS unless noted with “(RNA)”, in which case they are RNAseq.
B. Heatmap describing the relative abundance of the 15 top phyla sorted by average phylum relative abundance. Each column represents one
 sample. Rows represent the indicated phyla. Units are relative abundance. Samples from each cohort are WGS unless noted with “(RNA)”, in
 which case they are RNAseq.
C. Heatmap describing the relative abundance of the 15 top genera sorted by average genera relative abundance. Each column represents one
 sample. Rows represent the indicated genera. Units are relative abundance. Samples from each cohort are WGS unless noted with “(RNA)”, in
 which case they are RNAseq.
D. Boxplot representing the Shannon diversity of genera that fall within the phylum Actinobacteria for each patient in each cohort. Samples from
 each cohort are WGS unless noted with “(RNA)”, in which case they are RNAseq.
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Figure S2. Distribution of Fusobacterium, Selenomonas, Prevotella, Streptococcus, Porphyromonas, Veillonella, and Campylobacter relative
abundance of genus reads for all samples in each study.
A. The distribution of the relative abundance of genus-mapping reads for seven selected genera in all studies. The width of each violin represents
 the proportion of samples which have the indicated relative abundance of each genus. In contrast to Figure 2D, which only plots up to 50
 samples per study, this plot includes all patients. Samples from each study are WGS unless noted with “(RNA)”, in which case they are RNAseq.
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TABLE 1       

Study Tanzania Malawi** ESCCAPE 
Tanzania*** 

ESCCAPE 
Kenya*** 

East 
Golestan, 
Iran**** 

Shanxi, 
China**** 

No. cases included 61 30 18 65 55 71 

Demographics       

Median age (IQR) 49 (44-62) 56 65 (61-73) 64 (53, 71) 62 (54,73) 56 (50, 64) 

% male  67% 45.8% 61% 68% 55% 56% 

Status at diagnosis       

Weight (kg), median (IQR)   44 (40-52) 52 (46, 60)   

Body mass index (kg/m2) median (IQR)   15.8 (15.4, 19.1) 19.5 (15.6, 22.0)   

Median months ill before coming to 
endoscopy (IQR) 

  2 (1, 6) 3 (2, 4.5)   

HIV status:                 Positive 
Negative 

Not known 

2 (3.2%) 
36 (59.0%) 
23 (37.7%) 

10 (16.9%) 
44 (74.6%) 

5 (8.5%) 

1 (5%) 
10 (56%) 
7 (39%) 

5 (8%) 
48 (74%) 
12 (18%) 

  

Key lifestyle habits        

N (%) ever tobacco users   11 (61%) 38 (58%) 17 (31%) 35 (49%) 

N (%) who brush teeth daily: 
With toothbrush 

With stick 

   
12 (67%) 
6 (33%) 

 
16 (25%)* 
10 (15%) 

  

Median no missing teeth (IQR)   3 (1, 5) 4 (1, 8)   

*N=22 (34%) brush once per week or never, n=17 (26%) brush 2 to 6 times/week 
**Indicates demographics are from the entire patient population, consisting of both included and unincluded patients. 
***Indicates demographic percentages are from the entire patient population, with discrete counts scaled to the number of cases included. 
****Indicates demographic information is exclusively for included patients. 
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