bioRxiv preprint doi: https://doi.org/10.1101/2021.09.29.462325; this version posted September 29, 2021. The copyright holder for this preprint

10

11

12

13

14

15

16

17

18

19

20

21

22

(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY 4.0 International license.

An international report on bacterial communities in esophageal squamous cell

carcinoma

Jason Nomburg'23, Susan Bullman#, Dariush Nasrollahzadeh®®, Eric A. Collisson’8,
Behnoush Abedi-Ardekani®, Larry O. Akoko®, Joshua R. Atkins®, Geoffrey C. Buckle’8,
Satish Gopal'®, Nan Hu'', Bongani Kaimila'?, Masoud Khoshnia®, Reza Malekzadeh®,
Diana Menya'3, Blandina T. Mmbaga'#'%, Sarah Moody'¢, Gift Mulima'’, Beatrice P.
Mushi®, Julius Mwaiselage'®, Ally Mwanga®, Yulia Newton'?, Dianna L. Ng”%°, Amie
Radenbaugh'®, Deogratias S. Rwakatema’#'%, Msiba Selekwa®, Joachim Schiiz?’,
Philip R. Taylor'", Charles Vaske'®, Alisa Goldstein'', Michael R. Stratton'¢, Valerie
McCormack?!, Paul Brennan®, James A. DeCaprio' 322, Matthew Meyerson'222.2%" Elia

J. Mmbaga® ?#", Katherine Van Loon’#’

1 Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA

2 Broad Institute of MIT and Harvard, Cambridge, MA

3 Harvard Program in Virology, Harvard Medical School, Boston, MA

4 Fred Hutchinson Cancer Research Center, Seattle, Washington, USA

5 Digestive Oncology Research Center, Digestive Disease Research Institute, Tehran
University of Medical Sciences, Shariati Hospital. Tehran Iran.

6 International Agency for Research on Cancer (IARC/WHO), Genomic Epidemiology

Branch, Lyon, France


https://doi.org/10.1101/2021.09.29.462325
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.09.29.462325; this version posted September 29, 2021. The copyright holder for this preprint

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY 4.0 International license.

7 University of California, San Francisco (UCSF) Helen Diller Family Comprehensive
Cancer Center, San Francisco, CA, USA

8 Division of Hematology/Oncology, Department of Medicine, UCSF, San Francisco,
California, USA

9 Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania

10 University of North Carolina, Chapel Hill, North Carolina, USA

11 Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda,
MD, USA

12 UNC Project - Lilongwe, Malawi

13 School of Public Health, Moi University, Eldoret, Kenya

14 Kilimanjaro Clinical Research Institute, Kilimanjaro Christian Medical Centre, Moshi,
Tanzania

15 Kilimanjaro Christian Medical University College, Moshi, Tanzania

16 Cancer, Ageing and Somatic Mutation, Wellcome Trust Sanger Institute, Wellcome
Trust Genome Campus, Hinxton, Cambridgeshire, UK

17 Kamuzu Central Hospital, Lilongwe, Malawi

18 Ocean Road Cancer Institute, Dar es Salaam, Tanzania

19 NantOmics/NantHealth, Inc., El Segundo, California, USA

20 Department of Pathology, UCSF, San Francisco, CA, USA

21 International Agency for Research on Cancer (IARC/WHOQO), Environment and Lifestyle
Epidemiology Branch, Lyon, France

22 Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School,

Boston, MA


https://doi.org/10.1101/2021.09.29.462325
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.09.29.462325; this version posted September 29, 2021. The copyright holder for this preprint

46

47

48

49

50

51

52

53

54

55

(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

23 Department of Genetics, Harvard Medical School, Boston, MA

24 Department of Community Medicine and Global Health, University of Oslo, Norway

*Correspondence to:
Katherine Van Loon - Katherine.VanLoon@ucsf.edu
Elia J. Mmbaga - eliajelia@yahoo.co.uk

Matthew Meyerson - matthew_meyerson@dfci.harvard.edu


https://doi.org/10.1101/2021.09.29.462325
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.09.29.462325; this version posted September 29, 2021. The copyright holder for this preprint

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY 4.0 International license.

ABSTRACT

The incidence of esophageal squamous cell carcinoma (ESCC) is disproportionately
high in the eastern corridor of Africa and parts of Asia. Emerging research has identified
a potential association between poor oral health and ESCC. One proposed biological
pathway linking poor oral health and ESCC involves the alteration of the microbiome.
Thus, we performed an integrated analysis of four independent sequencing efforts of
ESCC tumors from patients from high- and low-incidence regions of the world. Using
whole genome sequencing (WGS) and RNA sequencing (RNAseq) of ESCC tumors
and WGS of synchronous collections of saliva specimens from 61 patients in Tanzania,
we identified a community of bacteria, including members of the genera Fusobacterium,
Selenomonas, Prevotella, Streptococcus, Porphyromonas, Veillonella, and
Campylobacter, present at high abundance in ESCC tumors. We then characterized the
microbiome of 238 ESCC tumor specimens collected in two additional independent
sequencing efforts consisting of patients from other high-ESCC incidence regions
(Tanzania, Malawi, Kenya, Iran, China). This analysis revealed a similar tumor
enrichment of the ESCC-associated bacterial community in these cancers. Because
these genera are traditionally considered members of the oral microbiota, we explored if
there is a relationship between the synchronous saliva and tumor microbiomes of ESCC
patients in Tanzania. Comparative analyses revealed that paired saliva and tumor
microbiomes are significantly similar with a specific enrichment of Fusobacterium and
Prevotella in the tumor microbiome. Together, these data indicate that cancer-
associated oral bacteria are associated with ESCC tumors at the time of diagnosis and

support a model in which oral bacteria are present in high abundance in both saliva and
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79  tumors of ESCC patients. Longitudinal studies of the pre-diagnostic oral microbiome are
80 needed to investigate whether these cross-sectional similarities reflect temporal

81  associations.
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INTRODUCTION

Esophageal cancer is the sixth most common cause of cancer-related death worldwide
(1).There are two histologic subtypes of esophageal cancer with distinct biological
characteristics, geographic distributions, and risk factors (2). Esophageal
adenocarcinoma is the most common histologic form of esophageal cancer in high-
income countries and is associated with factors including gastroesophageal reflux
disease, Barrett’'s esophagus, and obesity (3, 4). By contrast, esophageal squamous
cell carcinoma (ESCC) represents more than 90% of worldwide esophageal cancer
cases and is the dominant histology in low-resource settings. In particular, there are two
main regions where ESCC is endemic: (1) the Asian esophageal cancer belt, extending
from western/northern China to central and southeast Asia; and (2) the eastern corridor

of Africa, extending from Ethiopia to South Africa (5, 6).

Emerging research has identified a possible association between poor oral health and
ESCC. Studies from Asia, Europe, Latin America, Kenya, and Iran have reported
associations of ESCC with poor oral hygiene, chronic periodontal disease, dental decay,
and tooth loss (7-16). Recently, three parallel case-control studies in Kenya and
Tanzania, conducted as part of the African Esophageal Cancer Consortium (AfrECC)
and ESCCAPE (esccape.iarc.fr) collaborations, reported possible associations of poor

or infrequent oral hygiene with increased risk for ESCC in East Africa (17-20).

Alterations of the oral microbiome due to poor oral health is one proposed biological

pathway that could explain the link between oral health and ESCC. Many bacterial
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genera associated with gastrointestinal cancers contain species that are traditionally
associated with healthy or diseased oral microbiomes. For example, Helicobacter pylori
was discovered to be associated with gastric cancers and mucosa-associated lymphoid
tissue (MALT) lymphomas, indirectly by promoting gastric inflammation and directly by
influencing cellular signaling (21). Similarly, bacteria of the genera Fusobacterium,
Selenomonas, and Prevotella are enriched in colorectal cancers (22-24) and can be
visualized invasively within tumor tissue (25). Fusobacterium, in particular, has been
reported to promote carcinogenesis through the selective expansion or inhibition of
certain classes of immune cells (26) and may drive cellular proliferation by stimulating
Whnt/B-catenin signaling (27, 28). Other bacterial genera such as Porphyromonas,
Campylobacter, and Streptococcus have emerging associations with various human

gastrointestinal cancers (29-35).

As part of ongoing investigation into the microbiome’s association with ESCC, we
performed an integrated analysis of four independent sequencing efforts including
ESCC tumors from patients from both high- and low-incidence regions of the world. In
addition, we investigated the relationship between the microbiomes of matched ESCC

tumors and saliva specimens in a subset of ESCC cases.

RESULTS
Study Population
To evaluate the potential role of the host microbiota in ESCC, we investigated the

microbiome of 299 ESCC specimens from patients in five different countries with a high
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incidence of ESCC. Specimens were collected through four independent sequencing
efforts (Figure 1A). Specimens consisted of whole genome sequencing (WGS) and
RNA sequencing (RNAseq) data from the tumor and saliva of 61 patients from Tanzania
(the “MUHAS Tanzania” cohort) (36), RNAseq data from the tumors of 30 ESCC
patients in Malawi (the “UNC Project — Malawi” cohort) (37), and WGS from 208
additional samples of tumors from patients in high ESCC incidence regions, including
specimens from ESCC patients in Tanzania (n=18) and Kenya (n=64) that were
collected in the ESCCAPE studies (esccape.iarc.fr) and specimens from ESCC patients
in East Golestan, Iran (n=55) and Shanxi, China (n=71) that were sequenced as part of
the Cancer Research UK Mutographs project (“Mutographs” cohorts) (38). In addition,
we analyzed WGS data of ESCC from The Cancer Genome Atlas (39), which includes a
small number of tumors from patients in low-incidence geographic regions including the
United States (n=3), Ukraine (n=3), Vietnam (n=22), and Russia (n=8) (the “TCGA”

cohort). Patient characteristics are shown in Table 1.

Bacterial populations are abundant and diverse in ESCC tumors

We used the metagenomic analysis tool GATK-PathSeq (40) to process the RNAseq
and WGS data. GATK-PathSeq uses a sequential mapping strategy to assign reads to
human and microbial reference genomes, resulting in detailed information on
sequencing reads of human and microbial origin (Figure S1A). We likewise used
GATK-PathSeq to process WGS data sets from 50 colon adenocarcinoma (COAD)
specimens available from TCGA (41) for comparison, as there is strong evidence of

microbial associations with COAD (22-25).
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The bacterial burden of ESCC tumors ranged from 10 to 1000 bacterial reads per
million human reads, similar to numbers observed in TCGA COAD (Figure 1B).
Furthermore, the Shannon diversity of bacterial populations at the genus level ranged
from 2 to 3 (Figure 1C). By comparison, ESCC-associated bacterial communities are as
diverse or more diverse than TCGA COAD. At the phylum level, ESCC bacterial
populations generally consist of Firmicutes, Bacteroidetes, Proteobacteria,
Actinobacteria, and Fusobacteria (Figure 1D, Figure S1B). Of note, the higher than
expected abundance of the phylum Actinobacteria specifically in the TCGA ESCC
samples is attributable, in particular, to a very high abundance of the genus
Tetrasphaera (Figure S1C). This is evidenced by a depressed Shannon diversity of
Actinobacteria genera in these samples (Figure S1D) and may indicate contamination
of the TCGA ESCC samples. Actinobacteria have been reported as a source of

contaminating reads in TCGA gastrointestinal cancer samples (42).

Bacterial genera associated with carcinogenesis are observed at high relative
abundance in ESCC tumors from Tanzania

To determine if bacteria with known associations with cancer are present in ESCC, we
first analyzed the sequencing series of the 61 ESCC cases from the MUHAS Tanzania
cohort with both WGS and RNAseq data. The paired WGS and RNAseq data from
these tumors allowed investigation of bacterial communities at the DNA and RNA levels.
Both WGS and RNAseq data revealed high relative abundance of bacterial genera

previously associated with carcinogenesis in these ESCC tumors (Figure 2A, 2B). The
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high relative abundance of the Fusobacterium genus was particularly notable. Other
bacterial genera of interest include Streptococcus, Porphyromonas, Campylobacter,
Prevotella, Veillonella, and Selenomonas, many of which have been associated with
gastrointestinal malignancies alongside or independently of Fusobacterium (25, 29, 32,
34, 43). The mean Jaccard similarity index between tumor RNAseq and WGS data from
the same tumor is 0.54, greater than the average Jaccard similarity index of random
RNAseq-WGS pairs (0.36), indicating that bacterial populations inferred from WGS and

RNAseq data are generally consistent (Figure 2C).

Next, we attempted to determine if similar bacterial genera were also present in ESCC
from patients in high-incidence countries beyond Tanzania. Investigation of RNA
sequencing data from patients in Malawi, WGS data from patients in Kenya, China, and
Iran, as well as from the independent ESCCAPE Tanzania patient group revealed
pervasive evidence of similar bacterial genera in the tumors of these patients (Figure
2D, Figure S2A). To investigate if similar microorganisms were found in ESCC tumors
from patients in low-incidence regions, we investigated WGS data from ESCC tumors
originating from USA, Ukraine, Vietnam, and Russia that were available through TCGA.
While the number of samples available from low-incidence regions is low and relies on a
single sequencing effort, we found that the tumors of many of these patients contain
similar bacterial genera (Figure 2D, Figure S2A). Colon cancers from the TCGA COAD
cohort revealed evidence of Fusobacterium, as expected; however, these COAD
samples were notable for much lower relative abundance of the other genera of interest,

when compared to ESCC tumors.

10
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Evaluation of association between saliva and tumor microbiomes in ESCC
patients from Tanzania

We next investigated the similarity between the saliva and tumor microbiomes of ESCC
patients. Paired saliva samples were only available from patients in the MUHAS
Tanzania cohort (N=45); these paired saliva specimens were analyzed to evaluate

bacterial abundance as a proxy for the oral microbiome.

We first assessed the similarity between paired saliva and tumor microbiomes with the
Bray Curtis similarity index (44). To avoid potential confounding due to low bacterial
read counts in some tumor samples, we limited these analyses to the 21 tumor-saliva
pairs that contain appreciable microbial sequencing depth (at least 10,000 bacterial
reads each). We found that the saliva and tumor microbiomes from the same patient in
the Tanzanian samples are significantly more similar than random saliva-tumor pairs
(p=0.0003, Wilcoxon rank sum test) (Figure 3A). Next, we asked if there are bacterial
genera whose relative abundance in the saliva correlates with their relative abundance
in the tumor. For this analysis, we included only common-abundant bacterial genera
with at least 1% relative abundance in at least three tumor-oral pairs. The relative
abundance of four bacterial genera (Fusobacterium, Veillonella, Streptococcus, and
Porphyromonas) are strongly correlated between tumor and saliva microbiomes, while
other common-abundant bacterial genera were not (Figure 3B). To assess if any
bacterial genera are preferentially enriched in the tumor microbiome relative to the

saliva microbiome, we next calculated the difference in the relative abundance of the

11
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common-abundant bacterial genera between saliva-tumor pairs. Several genera
including Porphyromonas and Veillonella were at higher relative abundance in the
saliva, while Prevotella and Fusobacterium were enriched in the tumor microbiome
(Figure 3C). Finally, the relative abundance of tumor-associated bacteria including
Fusobacterium, Prevotella, Selenomonas, Veillonella, Streptococcus, and
Campylobacter are strikingly similar between the microbiomes of tumor and oral pairs
(Figure 3D). Altogether, these data support the hypothesis that there is an association

between the oral and tumor microbiome of ESCC patients in Tanzania.

DISCUSSION

This report provides an analysis of bacterial communities present in ESCC tumors from
nine countries from different regions of the world, analyzed in four independent
sequencing efforts. We found traditionally oral, cancer-associated, bacterial genera in
tumors from patients in Tanzania, Malawi, Kenya, China, and Iran. These results
provide evidence that these bacterial genera may be associated with ESCC in high-
incidence regions. We also identified similar bacterial genera in ESCC tumors from low-
incidence regions, although this finding is based on a small sample size and only one
sequencing cohort. Finally, in a sub-analysis of tumor and saliva pairs available from
Tanzania, we demonstrated that the synchronous collected saliva and tumor
microbiomes of ESCC patients are strikingly similar at the time of diagnosis; in
particular, we identified a specific correlation between the saliva and tumor relative

abundance of the bacterial genera Fusobacterium, Veillonella, Streptococcus, and

12
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Porphyromonas, with Prevotella and Fusobacterium significantly enriched in the tumor

microbiome.

Many of the bacterial genera identified in this study have been previously implicated in
the carcinogenesis of gastrointestinal cancers. For example, studies have found that
oral microbiota including Fusobacterium, Prevotella, Selenomonas, Veillonella,
Streptococcus, and Campylobacter can be used to distinguish individuals with colorectal
cancer from healthy controls (45), and that Fusobacterium nucleatum strains that
colonize the oral cavity and tumors of patients with colorectal cancer are identical in
some patients (46), raising the possibility that the oral cavity is a source of extra-oral
cancer microbiota. Our group has previously shown that Fusobacterium, Selenomonas,
and Prevotella can be visualized invasively within colorectal tumors and liver
metastases (25). Fusobactium nucleatum has been previously identified in esophageal
cancers and is associated with shorter survival (47). Members of the genus
Porphyromonas have been previously observed invasively within ESCC tumors (29)
and have been reported to promote oral squamous cell carcinoma through a variety of
mechanisms (30, 31). Campylobacter jejuni has been reported to promote
tumorigenesis in mice (32), and Streptococcus species have been identified in human
esophageal cancers (33). In addition, the striking association of Streptococcus bovis
with colorectal cancer has led to the recommendation that colonoscopy be performed
upon detection of Streptococcus bovis bacteremia or endocarditis (34, 35). Oral
commensal bacteria such as Veillonella species have been previously implicated in

pathogenesis of lung cancer (43). A prospective cohort of American patients (48) and a

13


https://doi.org/10.1101/2021.09.29.462325
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.09.29.462325; this version posted September 29, 2021. The copyright holder for this preprint

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY 4.0 International license.

study of Japanese patients (49) likewise found that oral microbiome composition reflects

risk of esophageal cancers

We found that bacterial genera including Fusobacterium, Prevotella, Selenomonas,
Veillonella, Streptococcus, and Campylobacter are pervasive in the microbiome of
ESCC tumors from patients in high-incidence regions. Moreover, the bacterial
composition of ESCC tumors is remarkably similar across countries in those high-
incidence regions, raising the possibility that these bacterial genera may be involved in
ESCC carcinogenesis or that they may colonize tumors as a result of the common
clinical presentation of patients with severe dysphagia. Notably, there are several
alternative hypotheses that warrant mention. For example, it is possible that the ESCC-
associated bacterial genera simply represent common members of the esophageal
microbiome (50) and that the microbial populations we observed in these cancers are
not significantly different from those found in normal esophagus tissue. A limitation of
our study is a lack of normal esophageal tissue from ESCC cases or healthy controls in
these settings, which would allow us to address this possibility. Another possible
explanation is that ESCC tumors provide a favorable niche in which these bacteria are
sequestered and allowed to colonize due to the propensity of this disease to cause
malignant obstruction. Thus, it is plausible that ESCC-associated bacteria are not
necessarily promoting ESCC carcinogenesis but rather represent passengers resulting
from the sequestration of oral secretions proximal to an obstructing tumor. While the
previous association of these bacterial genera with other cancers is consistent with the

hypothesis that they influence carcinogenesis of ESCC, future studies are necessary to

14
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290 identify which, if any, direct influences these bacterial genera have upon ESCC

291 carcinogenesis. Nevertheless, even if these bacterial genera do not have a role in

292  increasing ESCC risk, but arise at the time of disease onset, they may have an

293  important role to play as part of a non-invasive early-detection biomarker. Finally, a

294  concern of all microbiome analyses is that observed bacteria can be a consequence of
295  contamination at some step between tumor harvest and sequencing. While some TCGA
296 samples may be contaminated by Actinobacteria as previously noted, the presence of
297  Fusobacterium, Prevotella, Selenomonas, Veillonella, Streptococcus, and

298  Campylobacter in four independently collected cohorts indicates that these finding are
299  unlikely due to contamination.

300

301  While this study focused on the presence of bacteria with ESCC in high-incidence

302 regions, we found evidence of similar cancer-associated bacteria in tumors in patients
303 from low-incidence regions (USA, Ukraine, Vietnam, and Russia). A limitation of this
304 assessment is the small sample size (h=36) and reliance on a single TCGA cohort that
305 likely contains contaminants (42). Regardless, this finding does not exclude the

306 possibility that the microbiome could be a factor driving patterns of ESCC incidence. For
307 example, it is possible that the prevalence of ESCC-associated bacteria in people could
308 vary across regions, which in turn could drive these differing rates of ESCC incidence.
309  This is an important topic for future study.

310

311  We found that the structure of synchronous paired tumor and oral microbiomes were

312 strikingly similar. It is possible that this similarity is driven by transient contact of saliva

15
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313  and its associated microbiome with the tumor (e.g., during swallowing or tumor

314  extraction). However, we found that only four of sixteen common-abundant bacterial
315 genera correlate in abundance between the tumor and oral microbiomes, suggesting
316  tumor-oral microbiome similarity is not driven exclusively by “in-trans” interactions
317  between the saliva and tumor. We also found that genera including Prevotella and
318  Fusobacterium are often specifically enriched in the tumor microbiome, supporting a
319  model where specific oral bacterial preferentially colonize the tumor. A caveat of this
320 study is that we infer oral bacterial populations from the saliva, despite diverse

321 communities of bacteria throughout the oral cavity (51). However, we do observe

322 Fusobacterium in the saliva despite its general association with periodontal plaques
323 (52), suggesting saliva is capable of detecting periodontal pathogens. Additionally,
324  because the samples studied here are from patients with late-stage disease, it is

325  possible that tumor-induced changes to upper-gastrointestinal physiology and

326  dysphagia symptom-induced major dietary changes could themselves alter the oral
327  microbiomes of these patients. The previous findings from the ESCCAPE studies in
328 Kenya and Tanzania (17, 19) which found strong associations with dental staining (ORs
329 > 10) and for which photographic validation studies suggest that most dental staining
330 was not fluorosis, also point to a recent build-up of chromogenic bacteria. Studies of the
331 oral microbiome of patients at earlier stages of ESCC and in prospective studies are
332 necessary to address this possibility. We restricted our analysis to 21 tumor-oral pairs
333  that have a sufficient number of bacterial reads (at least 10,000). It is likely that

334  excluded samples are not molecularly distinct from included samples but that the
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335 relatively low bacterial read counts in some tumors is simply reflective of low

336  sequencing depth.

337

338  Our observation of similar tumor and saliva microbiomes in ESCC patients is especially
339 notable considering emerging evidence linking periodontal disease and poor oral health
340  with increased risk of various cancers (17, 53, 54). This raises several important open
341 questions. It will be essential to determine if there is a difference in the oral prevalence
342  of these identified cancer-associated bacteria between ESCC patients and non-patients
343 earlier in the natural history of the disease, for example through comparisons of patients
344  with esophageal squamous dysplasia and healthy controls. Because the prevalence of
345 these bacteria may be associated with factors such as oral health, hygiene, and diet,
346  studies of the impact of these factors on the oral microbiome in the general population
347  would inform whether the oral microbiome is on a pathway linking oral hygiene to ESCC
348 risk and may have a role in prevention.

349

350 In conclusion, we show that cancer-associated, traditionally-oral bacteria including the
351 genera Fusobacterium, Selenomonas, Prevotella, Streptococcus, Porphyromonas,

352 Veillonella, and Campylobacter are highly abundant within ESCC tumors from patients
353 in high-ESCC incidence regions. We also show that there is a correlation between the
354  genus composition of the saliva microbiome and the ESCC tumor microbiome of some
355 ESCC patients. These findings will be foundational for future studies to understand if

356  and how bacteria influence ESCC pathogenesis and to understand the role of the oral
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microbiome in this process. Finally, this study highlights the benefit of collaborative

investigation to evaluate the international heterogeneity of this disease.

MATERIALS AND METHODS

Sample acquisition and sequencing

The sample acquisition and sequencing methods for the studies from the MUHAS
Tanzania cohort (n=61) (36) and UNC Project - Malawi cohort (n=30) (11) have been
previously described. Samples sequenced in the Mutographs study (n=210) (38)
originated from patients in Golestan, Iran (n=55), ESCCAPE case-control studies in
Tanzania (n=18) (19) and Kenya (n=64) (17), and patients in Shanxi, China (n=71).
TCGA ESCC (n=36) and COAD samples (n=51) have been previously described (39,
41). The TCGA ESCC cohort includes tumors from patients in United States (n=3),
Ukraine (n=3), Vietnam (n=22), and Russia (n=8), regions which have lower incidence

of ESCC.

Metagenomic analysis

GATK-PathSeq (40) was used to conduct computational subtraction of human-mapping
reads from input RNAseq and WGS datasets. GATK-PathSeq works by first mapping
reads to a host reference database consisting of the human genome grch38 and
various supplemental human reference sequences. Next, non-human reads are
mapped against a comprehensive microbial database, and microbe read assignments

are reported for further study. From the MUHAS Tanzania cohort, a total of 61 tumor
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380 WGS samples, 45 saliva WGS samples, and 59 RNAseq samples were processed

381 through GATK-PathSeq.

382

383  Bacterial abundance analyses and plotting were conducted in R (v3.5.1). To calculate
384 relative abundance at a phylogenetic level (e.g., phylum or genus), GATK-PathSeq
385  results were filtered for taxa at the level, and relative abundance was calculated for
386 each taxon as follows: (# of taxon reads)/(total # reads at the selected phylogenetic
387 level). The rows of all bacterial abundance heatmaps are arranged according to the
388 mean abundance across all samples. The sample order of relative abundance stacked
389 barplots were determined based on Fusobacterium genus relative abundance except
390 where noted. In Figure 2D, if any cohort contained more than 50 samples, 50 samples
391  were randomly selected for plotting. The distribution of relative abundances of genera of
392 interest in all samples can be found in Figure S2, where width of each violin represents
393 the relative distribution of observed bacterial relative abundance for all patients in each
394  patient cohort.

395

396 Jaccard distance between RNAseq and WGS data from each ESCC tumor was

397 calculated in R based on bacterial genera with at least 1% relative abundance. The
398 qualitative Jaccard index was used in this case because the comparison was between
399 DNA and RNA analytes which would not be expected to be quantitatively identical.

400

401 Tumor-saliva similarity
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402  Only tumor-saliva pairs from the MUHAS Tanzania cohort with at least 10,000 reads
403  mapped to the bacterial superkingdom were available for analysis. This resulted in a
404  total of 21 tumor-oral pairs. Bray-Curtis dissimilarity metrics between tumor-oral pairs
405  were calculated using the R package vegan (55). Figure 3A presents the Bray-Curtis
406  similarity (1 — Bray-Curtis dissimilarity), for each tumor-oral pair.

407

408 To determine the correlation between the relative abundance of specific genera

409  between tumor and saliva microbiomes, common-abundant genera that are at least 1%
410 abundance in at least 3 tumor-oral pairs were identified. This resulted in the

411 identification of 16 common-abundant genera. Correlations represent a two-sided

412 Pearson correlation coefficient. To determine tumor-oral enrichment of common-

413  abundant genera, the difference in relative abundance of each genus between each
414  tumor-oral pair was plotted (Figure 3C). For the relative abundance bar plots of tumor-
415 saliva pairs (Figure 3D), bacterial genera that had been highlighted in previous figures
416  are labeled.

417

418 Code and processed data availability

419  All GATK-PathSeq output files and reproducible analysis and plotting R Notebooks are
420  available.

421  Zenodo: https://doi.org/10.5281/zenodo.4750577

422  GitHub: https://github.com/jnoms/ESCC microbiome

423
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Furthermore, all analysis and figures can be automatically reproduced through a series
of Google Colab documents.
Figure 1 and Supplementary Figure 1:

https://qgithub.com/inoms/ESCC microbiome/blob/main/collab/Figure.ipynb

Figure 2 and Supplementary Figure 2:

https://qithub.com/inoms/ESCC microbiome/blob/main/collab/Figure2.ipynb

Figure 3: https://github.com/jnoms/ESCC_microbiome/blob/main/collab/Figure3.ipynb

ABBREVIATIONS

AFRECC - African Esophageal Cancer Consortium

COAD - Colon adenocarcinoma

ESCA — Esophageal adenocarcinoma

ESCC - Esophageal squamous cell carcinoma

ESCCAPE - Esophageal Squamous Cell Carcinoma African Prevention Research
MUHAS — Muhimbili University of Health and Allied Sciences

RNAseq — RNA sequencing

TCGA — The Cancer Genome Atlas

WGS — Whole genome sequencing
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481

482 FIGURE LEGENDS

483

484  Figure 1. Microbiome structure and composition of ESCC tumors

485 A. Description of ESCC patients, and sample types, assessed in this study. TCGA —
486 The Cancer Genome Atlas; ESCCAPE — Esophageal Squamous Cell Carcinoma
487 African Prevention Research; Mutographs — Cancer Research UK Mutographs
488 Project.

489 B. Bacterial burden of ESCC tumors for each patient cohort. Units are bacterial

490 reads per million human reads as determined by GATK-PathSeq analysis. Each
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dot represents one sample. Analyte type (RNA or DNA) and tumor type (ESCC

or COAD) are indicated by color.

. Shannon diversity of ESCC tumors for each patient cohort. Shannon diversity

was determined for each sample at the genus level based on genera that are at
least 1% relative abundance. Each dot represents one sample. Analyte type

(RNA or DNA) and tumor type (ESCC or COAD) are indicated by color.

. Heatmap describing the relative abundance of the five top phyla sorted by

average phylum relative abundance. Each column represents one sample. Rows
represent the indicated phyla. Units are relative abundance. Samples from each

cohort are WGS unless noted with “(RNA)”, in which case they are RNAseq.

Figure 2. Identification of bacterial genera associated with carcinogenesis

A. Bacterial genera relative abundance of WGS data from the MUHAS Tanzania

cohort. Each column represents a single sample. Samples are ordered by
decreasing Fusobacterium relative abundance. Units are relative abundance of
bacterial genus-mapping reads. Color indicates the genus, and seven genera are
specified. Only patients with GATK-PathSeq analysis from both RNAseq and
WGS tumor data are plotted (n=59). Columns are ordered by decreasing relative

abundance of Fusobacterium genus reads.

. Bacterial genera relative abundance of RNAseq data from the MUHAS Tanzania

cohort. Each column represents a single sample. Here, column order is dictated
according to the patient order in Figure 2A. Units are relative abundance of

bacterial genus-mapping reads. Color indicates the genus, and seven genera are
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specified. Only patients with GATK-PathSeq analysis from both RNAseq and
WGS tumor data are plotted (n=59). Samples are ordered in the same order as
Figure 2A, which is by Fusobacterium genus relative abundance in the WGS

data.

. Jaccard index between RNAseq and WGS data of tumors from the MUHAS

Tanzania cohort. For the “Paired by Sample” column, Jaccard indices were
calculated only between the WGS and RNAseq data from the same tumor (n=59
comparisons). For the “Random Pairs” column, Jaccard indices were calculated
between all possible WGS-RNAseq pairs independent of patient of origin to
represent the expected random distribution of Jaccard indices (n=3,481
comparisons). Jaccard index was calculated from relative abundance at the
genus level based on genera that are at least 1% relative abundance. The width
of the violin represents the relative proportion of comparisons with each Jaccard

index, and lines indicate 25", 50", and 75" percentiles.

. Bacterial genera relative abundance of the remaining patient cohorts, including

RNAseq and WGS data as indicated. Each column represents a single sample.
Samples are ordered by decreasing Fusobacterium relative abundance within
each patient cohort. Units are relative abundance of bacterial genus-mapping
reads. Color indicates the genus, and seven genera are specified. Here, if there
were more than 50 samples in a patient cohort, 50 samples were randomly
selected for visualization. USA — United States, UA — Ukraine, RU — Russia. All
cohorts consist of WGS data, with the exception of the tumors from Malawi which

are RNAseq. (Number of samples plotted: UNC Project - Malawi 30; ESCCAPE
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537 Tanzania 18; ESCCAPE Kenya 50; Shanxi, China 50; Golestan, Iran 50; TCGA
538 ESCC Vietnam 22; TCGA ESCC USA/UA/RU 14).
539

540 Figure 3. Association between synchronous saliva and tumor microbiomes in

541 Tanzanian ESCC patients

542 A. Bray Curtis Similarity comparing tumor-saliva pairs from patients in the MUHAS
543 Tanzania cohort. Analysis was restricted to the 21 tumor-saliva pairs that

544 contained at least 10,000 bacterial reads. This analysis was conducted at the

545 genus level and using relative abundance. For the “Paired by Patient” column,
546 Bray Curtis Similarity was calculated only between the tumor and saliva WGS
547 data from the same patient. For the “Random Pairs” column, Bray Curtis

548 Similarity was calculated between all possible tumor-saliva pairs independent of
549 patient of origin to represent the expected random distribution of Bray Curtis

550 Similarity. (p=0.0003, Wilcoxon rank sum test).

551 B. Correlation between the relative abundance of common-abundant bacterial

552 genera in paired saliva and tumor WGS data. Analysis was restricted to the 21
553 tumor-saliva pairs that contained at least 10,000 bacterial reads. Common-

554 abundant bacterial genera are bacterial genera that are at least 1% abundance in
555 at least 3 tumor-saliva pairs — 16 bacterial genera made this cutoff. Correlation
556 represents a two-sided Pearson correlation. X-axis is the correlation coefficient,
557 and Y axis is the correlation P-Value plotted on a log scale.

558 C. Enrichment of genera in the oral or tumor microbiome. Each row details one of
559 the 16 common-abundant bacterial genera. Each row contains one data point per
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patient, for a total of 21 data points. The value of each point represents the
difference in the relative abundance of the specified genus in the tumor and oral
microbiomes of one patient, with positive values indicating a genus is at higher
relative abundance in a patient’s tumor. For example, if a genus is at a relative
abundance of 0.7 (70%) in the tumor and 0.3 (30%) in the saliva of a patient, the
plotted value for that genus and that patient is 0.4. Curves represent the
distribution of this relative abundance difference across the tumor-oral pairs, with

dots indicating individual tumor-oral pairs. Vertical red lines indicate quartiles.

. Relative abundance bar charts of tumor-saliva pairs. Analysis was restricted to

the 21 tumor-saliva pairs that contained at least 10,000 bacterial reads. Units are
relative abundance of bacterial genus-mapping reads. Color indicates the genus,

and seven genera are specified. (abbreviations: T — tumor, S — saliva).

Figure S1. GATK-PathSeq statistics and extended phyla and genera information

A. Boxplots indicating the number of GATK-PathSeq Human-mapped reads and

GATK-PathSeq microbe-mapped reads for each patient cohort. Samples from
each cohort are WGS unless noted with “(RNA)”, in which case they are

RNAseq.

. Heatmap describing the relative abundance of the 15 top phyla sorted by

average phylum relative abundance. Each column represents one sample. Rows
represent the indicated phyla. Units are relative abundance. Samples from each

cohort are WGS unless noted with “(RNA)”, in which case they are RNAseq.
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C. Heatmap describing the relative abundance of the 15 top genera sorted by

average genera relative abundance. Each column represents one sample. Rows
represent the indicated genera. Units are relative abundance. Samples from
each cohort are WGS unless noted with “(RNA)”, in which case they are

RNAseq.

. Boxplot representing the Shannon diversity of genera that fall within the phylum

Actinobacteria for each patient in each cohort. Samples from each cohort are

WGS unless noted with “(RNA)”, in which case they are RNAseq.

Figure S2. Distribution of Fusobacterium, Selenomonas, Prevotella,
Streptococcus, Porphyromonas, Veillonella, and Campylobacter relative
abundance of genus reads for all samples in each study

A. The distribution of the relative abundance of genus-mapping reads for seven

selected genera in all studies. The width of each violin represents the proportion
of samples which have the indicated relative abundance of each genus. In
contrast to Figure 2D, which only plots up to 50 samples per study, this plot
includes all patients. Samples from each study are WGS unless noted with

“(RNA)”, in which case they are RNAseq.
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Figure 1. Microbiome structure and composition of ESCC tumors.

A. Description of ESCC patients, and sample types, assessed in this study. TCGA — The Cancer Genome Atlas; ESCCAPE - Esophageal
Squamous Cell Carcinoma African Prevention Research; Mutographs — Cancer Research UK Mutographs Project.

B. Bacterial burden of ESCC tumors for each patient cohort. Units are bacterial reads per million human reads as determined by
GATK-PathSeq analysis. Each dot represents one sample. Analyte type (RNA or DNA) and tumor type (ESCC or COAD) are indicated by
color.

C Shannon diversity of ESCC tumors for each patient cohort. Shannon diversity was determined for each sample at the genus level based

on genera that are at least 1% relative abundance. Each dot represents one sample. Analyte type (RNA or DNA) and tumor type (ESCC
or COAD) are indicated by color.

D. Heatmap describing the relative abundance of the five top phyla sorted by average phylum relative abundance. Each column
represents one sample. Rows represent the indicated phyla. Units are relative abundance. Samples from each cohort are WGS unless
noted with “(RNA)’, in which case they are RNAseq.
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Identification of bacterial genera associated with carcinogenesis.

Bacterial genera relative abundance of WGS data from the MUHAS Tanzania cohort. Each column represents a single sample. Samples are ordered
by decreasing Fusobacterium relative abundance. Units are relative abundance of bacterial genus-mapping reads. Color indicates the genus, and
seven genera are specified. Only patients with GATK-PathSeq analysis from both RNAseq and WGS tumor data are plotted (n=59). Columns are
ordered by decreasing relative abundance of Fusobacterium genus reads.

Bacterial genera relative abundance of RNAseq data from the MUHAS Tanzania cohort. Each column represents a single sample. Here, column
order is dictated according to the patient order in Figure 2A. Units are relative abundance of bacterial genus-mapping reads. Color indicates the
genus, and seven genera are specified. Only patients with GATK-PathSeq analysis from both RNAseq and WGS tumor data are plotted (n=59).
Samples are ordered in the same order as Figure 2A, which is by Fusobacterium genus relative abundance in the WGS data.

Jaccard index between RNAseq and WGS data of tumors from the MUHAS Tanzania cohort. For the “Paired by Sample” column, Jaccard

indices were calculated only between the WGS and RNAseq data from the same tumor (n=59 comparisons). For the “Random Pairs” column, Jaccard
indices were calculated between all possible WGS-RNAseq pairs independent of patient of origin to represent the expected random distribution
of Jaccard indices (n=3,481 comparisons). Jaccard index was calculated from relative abundance at the genus level based on genera that are at
least 1% relative abundance. The width of the violin represents the relative proportion of comparisons with each Jaccard index, and lines
indicate 25th, 50th, and 75th percentiles.

Bacterial genera relative abundance of the remaining patient cohorts, including RNAseq and WGS data as indicated. Each column represents

a single sample. Samples are ordered by decreasing Fusobacterium relative abundance within each patient cohort. Units are relative abundance
of bacterial genus-mapping reads. Color indicates the genus, and seven genera are specified. Here, if there were more than 50 samples in a
patient cohort, 50 samples were randomly selected for visualization. USA — United States, UA — Ukraine, RU - Russia. All cohorts consist of WGS
data, with the exception of the tumors from Malawi which are RNAseq. (Number of samples plotted: UNC Project - Malawi 30; ESCCAPE Tanzania
18; ESCCAPE Kenya 50; Shanxi, China 50; Golestan, Iran 50; TCGA ESCC Vietnam 22; TCGA ESCC USA/UA/RU 14).
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Figure 3. Association between synchronous saliva and tumor microbiomes in Tanzanian ESCC patients.

A. Bray Curtis Similarity comparing tumor-saliva pairs from patients in the MUHAS Tanzania cohort. Analysis was restricted to the 21
tumor-saliva pairs that contained at least 10,000 bacterial reads. This analysis was conducted at the genus level and using relative abundance.
For the “Paired by Patient” column, Bray Curtis Similarity was calculated only between the tumor and saliva WGS data from the same patient.
For the “Random Pairs” column, Bray Curtis Similarity was calculated between all possible tumor-saliva pairs independent of patient of origin to
represent the expected random distribution of Bray Curtis Similarity. (p=0.0003, Wilcoxon rank sum test).

B. Correlation between the relative abundance of common-abundant bacterial genera in paired saliva and tumor WGS data. Analysis was
restricted to the 21 tumor-saliva pairs that contained at least 10,000 bacterial reads. Common-abundant bacterial genera are bacterial genera
that are at least 1% abundance in at least 3 tumor-saliva pairs — 16 bacterial genera made this cutoff. Correlation represents a two-sided
Pearson correlation. X-axis is the correlation coefficient, and Y axis is the correlation P-Value plotted on a log scale.

C. Enrichment of genera in the oral or tumor microbiome. Each row details one of the 16 common-abundant bacterial genera. Each row contains
one data point per patient, for a total of 21 data points. The value of each point represents the difference in the relative abundance of the
specified genus in the tumor and oral microbiomes of one patient, with positive values indicating a genus is at higher relative abundance in a
patient’s tumor. For example, if a genus is at a relative abundance of 0.7 (70%) in the tumor and 0.3 (30%) in the saliva of a patient, the plotted
value for that genus and that patient is 0.4. Curves represent the distribution of this relative abundance difference across the tumor-oral pairs,
with dots indicating individual tumor-oral pairs. Vertical red lines indicate quartiles.

D. Relative abundance barcharts of tumor-saliva pairs. Analysis was restricted to the 21 tumor-saliva pairs that contained at least 10,000 bacterial
eads. Units are relative abundance of bacterial genus-mapping reads. Color indicates the genus, and seven genera are specified. (Abbreviations:
T -tumor, S-saliva.)
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Figure S1. GATK-PathSeq statistics and extended phyla and genera information.
A.

Samples from each cohort are WGS unless noted with “(RNA)”, in which case they are
B.

Boxplots indicating the number of GATK-PathSeq Human-mapped reads and GATK-PathSeq microbe-mapped reads for each patient cohort.

RNAseq.

Heatmap describing the relative abundance of the 15 top phyla sorted by average phylum relative abundance. Each column represents one

sample. Rows represent the indicated phyla. Units are relative abundance. Samples from each cohort are WGS unless noted with “(RNA)”, in

which case they are RNAseq.

Heatmap describing the relative abundance of the 15 top genera sorted by average genera relative abundance. Each column represents one

sample. Rows represent the indicated genera. Units are relative abundance. Samples from each cohort are WGS unless noted with “(RNA), in

which case they are RNAseq.

each cohort are WGS unless noted with “(RNA)", in which case they are RNAseq.

Boxplot representing the Shannon diversity of genera that fall within the phylum Actinobacteria for each patient in each cohort. Samples from
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Figure S2. Distribution of Fusobacterium, Selenomonas, Prevotella, Streptococcus, Porphyromonas, Veillonella, and Campylobacter relative

abundance of genus reads for all samples in each study.

A. The distribution of the relative abundance of genus-mapping reads for seven selected genera in all studies. The width of each violin represents
the proportion of samples which have the indicated relative abundance of each genus. In contrast to Figure 2D, which only plots up to 50
samples per study, this plot includes all patients. Samples from each study are WGS unless noted with “(RNA)", in which case they are RNAseq.
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TABLE 1

Study Tanzania Malawi** ESCCAPE ESCCAPE East Shanxi,
Tanzania*** Kenya*** Golestan, China****
Iran****
No. cases included 61 30 18 65 55 71
Demographics
Median age (IQR) 49 (44-62) 56 65 (61-73) 64 (53, 71) 62 (54,73) 56 (50, 64)
% male 67% 45.8% 61% 68% 55% 56%
Status at diagnosis
Weight (kg), median (IQR) 44 (40-52) 52 (46, 60)
Body mass index (kg/m?) median (IQR) 15.8 (15.4,19.1) | 19.5(15.6, 22.0)
Median months ill before coming to 2(1,6) 3(2,4.5)
endoscopy (IQR)
HIV status: Positive 2 (3.2%) 10 (16.9%) 1 (5%) 5 (8%)
Negative 36 (59.0%) 44 (74.6%) 10 (56%) 48 (74%)
Not known 23 (37.7%) 5 (8.5%) 7 (39%) 12 (18%)
Key lifestyle habits
N (%) ever tobacco users 11 (61%) 38 (58%) 17 (31%) 35 (49%)
N (%) who brush teeth daily:
With toothbrush 12 (67%) 16 (25%)*
With stick 6 (33%) 10 (15%)
Median no missing teeth (IQR) 3(1,5) 4(1,8)

*N=22 (34%) brush once per week or never, n=17 (26%) brush 2 to 6 times/week

**Indicates demographics are from the entire patient population, consisting of both included and unincluded patients.

***|ndicates demographic percentages are from the entire patient population, with discrete counts scaled to the number of cases included.
****Indicates demographic information is exclusively for included patients.
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