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ABSTRACT 15 

Wild birds can carry avian influenza viruses (AIV), including those with pandemic or panzootic 16 

potential, long distances. Even though AIV has a broad host range, few studies account for host 17 

diversity when estimating AIV spread. We analyzed AIV genomic sequences from North 18 

American wild birds, including 303 newly sequenced isolates, to estimate interspecies 19 

transmission and geographic diffusion patterns among multiple co-circulating subtypes. Our 20 

results show high transition rates within Anseriformes and Charadriiformes, but limited 21 

transitions between these orders. Patterns of interspecies transmission were positively associated 22 

with breeding habitat range overlap, and negatively associated with host genetic distance. 23 

Distance between regions (negative correlation) and summer temperature at origin (positive 24 

correlation) were strong predictors of diffusion. Taken together, this study demonstrates that host 25 

diversity and ecology can determine evolutionary processes that underlie AIV natural history and 26 

spread. Understanding these processes can provide important insights for effective control of 27 

AIV.  28 

  29 
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INTRODUCTION 31 

Avian influenza viruses (AIV) are globally distributed pathogens maintained within wild 32 

waterfowl (order Anseriformes) and shorebirds (order Charadriiformes) (1). Despite being 33 

largely asymptomatic within wild birds, AIV provide cause for global concern as sources of 34 

influenza A viral diversity for domestic avian and mammalian hosts (2). AIV hemagglutinin 35 

(HA) subtypes H5 and H7 have repeatedly evolved into highly pathogenic viruses in domestic 36 

poultry causing devastating loss (3). Furthermore, all modern pandemic influenza viruses contain 37 

gene segments of avian origin, suggesting reassortment with avian viruses plays a crucial role in 38 

pandemic emergence (4). The segmented genome is an important characteristic of influenza 39 

viruses because it facilitates continual reassortment and promotes diversity of AIV within wild 40 

avian populations (1,5,6). AIV segments are habitually interchanging, existing as functionally 41 

equivalent arrangements (5). Due to the unlinked nature of the AIV genes, each segment can be 42 

considered as an independent hereditary particle with its own evolutionary history (7). 43 

Understanding the host behavior and environmental drivers of AIV susceptibility and 44 

dispersal remain a top priority for avian influenza surveillance, but the vast array of susceptible 45 

host species and ecological variables hampers the prediction of AIV emergence and incidence 46 

(8). Surveillance data and spatial analysis have begun to assess the association between avian 47 

influenza prevalence and environmental variables, including land use (9,10), temperature 48 

measures (9,11,12), altitude (10), distance to water (10), and precipitation (11). Fewer studies 49 

have assessed the impact of host characteristics on the prevalence of AIV within individual avian 50 

species although migration distance, habitat water salinity, and surface foraging methods have 51 

been implicated as important predictors in one such study (13). Sequence data acquired by viral 52 

surveillance provide further information to understand AIV dynamics. Because viral evolution, 53 
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host ecology, and environmental factors necessarily interact, phylogenetic studies can help 54 

elucidate the paths of AIV dispersal (Figure 1). For example, previous phylogeographic analysis 55 

(7) of AIV within North America provided evidence that migratory flyways are not as strong a 56 

barrier to viral dispersal as previously believed (14). 57 

Although phylogenetic studies to date have been able to interrogate the impact of broad 58 

ecological patterns such as migratory flyways and interhemispheric viral exchange, few 59 

incorporate characteristics of the location or host from which the virus was sampled. Prevalence 60 

studies include these characteristics into regression and spatial models, but are limited due to the 61 

long-distance migration of wildlife hosts. Generalized linear models (GLM) implemented within 62 

a Bayesian phylogenetic framework have made it possible to include environmental and 63 

ecological covariates into phylogenetic models (15,16). This allows the simultaneous inference 64 

of viral transition rates among specified traits (i.e., hosts or locations) and their association with 65 

covariates that may drive viral movement. This approach has been adapted to investigate the role 66 

of anthropogenic and environmental variables on the diffusion of avian influenza within China 67 

(17) as well as of avian influenza subtype H9N2 on a global scale (18). The GLM has also been 68 

used to uncover the impact of host behavior on the dispersal of rabies virus among bat species 69 

(19). Previous analyses have also demonstrated the importance of environmental transmission on 70 

AIV prevalence and evolution (20,21), suggesting ecological factors may influence AIV 71 

transmission. Understanding how avian host characteristics and environmental variables impact 72 

zoonotic transmission and geographic dispersal will be key to identify surveillance priorities 73 

among species and locations. In the presented analysis, using an extensive publicly-available 74 

dataset of multiple AIV subtypes collected from North American wild birds supplemented with 75 

newly sequenced surveillance samples, we implemented the GLM to assess the impact of 76 
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ecological and environmental characteristics on the dispersal of AIV across the North American 77 

continent and among frequently sampled Anseriformes and Charadriiformes. 78 

RESULTS 79 

Summary of Newly Sequenced Data 80 

Supplementary Table S1 describes the characteristics of 303 newly sequenced AIV 81 

isolates, which originated from samples collected from wild birds between 2003 and 2016 in 82 

Delaware Bay, New Jersey, United States (86.5%) and Alberta, Canada (13.5%). All sequenced 83 

samples from Alberta were exclusively of waterfowl origin (order Anseriformes). Delaware Bay 84 

samples originated almost exclusively from shorebirds (order Charadriiformes), except for a 85 

single Canada goose (Branta canadensis) sample. Among all newly sequenced viral isolates, 86 

most (60.4%) were isolated from samples collected from the ruddy turnstone (Arenaria 87 

interpres), a migratory shorebird of the wader family with near global distribution and 88 

intercontinental migration patterns. Nine samples were found to be co-infected with avian 89 

paramyxovirus and were excluded from further analysis. The most frequently isolated 90 

hemagglutinin (HA) subtype was H10 (27.4%), followed by H12 (18.8%) and H3 (9.2%). Most 91 

HA subtypes were collected in Delaware Bay, including H1, H3, H5, H6, H7, H8, H9, H10, H11, 92 

H12, H13, and H16. Only H4 was exclusively isolated from Alberta. The most frequent 93 

neuraminidase (NA) subtypes were N5 (20.1%), N7 (13.9%), and N8 (13.5%). All but two NA 94 

subtypes were isolated from both Delaware Bay and Alberta; N3 and N9 were only recovered 95 

from Delaware Bay. 96 

Evolutionary Comparison Between Segments and Subtypes 97 

The newly sequenced data were aligned with publicly available sequences and 98 

subsampled in two methods to help address sampling biases in surveillance: a phylogenetic 99 
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diversity-based analysis method (PDA sample) and a simple stratified random sample method 100 

(stratified sample). Evolutionary models were constructed separately for each gene segment; HA, 101 

NA, and NS segment datasets were further subdivided by subtype or allele. Because the PDA 102 

sample maintains the total genetic diversity of the original sample, the evolutionary parameters 103 

of the PDA sample are discussed here. In general, the two samples produced similar comparative 104 

relationships of evolutionary parameters among the analyzed gene segments; however, the 105 

stratified sample had consistently lower molecular clock rates and effective population sizes 106 

compared to the PDA sample (Supplementary Figure S1). Compared with the HA and NA 107 

surface proteins, the internal gene segments tended to have older times to the most recent 108 

common ancestor (TMRCA) (Supplementary Figure S1A; Supplementary Table S2), except the 109 

included sequences of the NS gene B allele, which shared a common ancestor around 1965 (95% 110 

Highest Posterior Density Bayesian Credibility Interval (HPD) 1958.5 – 1969.7). HA and NA 111 

genes tended to have a TMRCA within the mid- to latter-half of the twentieth century, although 112 

this pattern deviated for H3 and N3, which had TMRCA older than other HA and NA subtypes 113 

(H3: 1929.0, 95% HPD 1900.0 – 1948.5; N3: 1895.6, 95% HPD 1830.8 – 1944.7). The 114 

uncertainty of the N3 subtype TMRCA is most likely due to the lack of older sequences which 115 

would help calibrate the divergence time of apparent Eurasian-origin viruses that circulate in 116 

North America. 117 

As compared to the HA and NA surface proteins which contend with greater selection 118 

pressure, the internal gene segments tended to have slower evolutionary rates as measured by the 119 

mean substitution rate of the uncorrelated relaxed molecular clock (Supplementary Figure S1B; 120 

Supplementary Table S2). The two NS alleles had differing substitution rates with the A allele 121 

evolving faster (3.4x10-3 substitutions/site/year; 95% HPD 3.0x10-3 – 3.7x10-3) compared to the 122 
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B allele (2.6x10-3 substitutions/site/year; 95% HPD 2.3x10-3 – 2.9x10-3). In comparison to the 123 

internal gene segments, the HA and NA surface proteins were estimated to have more variable 124 

substitution rates with median rates ranging from 2.5x10-3 (H3) to 5.8x10-3 (H7) 125 

substitutions/site/year. Six of the eight analyzed HA subtypes had estimated median substitution 126 

rates above 3.8x10-3 substitutions/site/year. In contrast, H3 and H4 were estimated to have much 127 

slower substitution rates at 2.5x10-3 (95% HPD 2.2x10-3 – 2.7x10-3) and 2.8x10-3 (95% HPD 128 

2.6x10-3 – 3.1x10-3) substitutions/site/year, respectively. The NA subtype with the fastest 129 

substitution rate was N7 (5.0x10-3 substitutions/site/year; 95% HPD 4.4x10-3 – 5.6x10-3). 130 

Internal gene segments were estimated to be sustained by a much larger effective 131 

population size as compared to the surface proteins (Supplementary Figure S1C; Supplementary 132 

Table S2). NS alleles differed from the remaining internal gene segments, with median effective 133 

population sizes around half that of PB2, PB1, PA, NP, and MP segments.  Similarly, the 134 

effective population sizes of the various HA and NA subtypes were considerably lower than that 135 

of the non-subdivided internal gene segments. Because the genetic diversity of the NS, HA, and 136 

NA gene segments was divided between datasets, lower population sizes are needed to explain 137 

the observed viral circulation. Variation among HA and NA subtypes was also noted. Most HA 138 

subtypes were estimated to have median effective population sizes below 20, but those of H3 and 139 

H4 were substantially larger (H3: 99.3, 95% HPD 87.2 – 112.5; H4: 78.0, 95% HPD 68.3 – 140 

88.2). The effective population sizes of the NA subtypes also varied considerably with median 141 

sizes ranging from 8.5 (N7) to 85 (N8).  142 

Discrete Trait Diffusion Models 143 

Two discrete trait diffusion models were estimated for each of 22 gene segment or 144 

subtype datasets to assess how AIV disperses among host species and geographic regions of 145 
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North America. North American regions were categorized into eight Canadian provinces and 146 

territories (Alberta, British Columbia, New Brunswick, Newfoundland and Labrador, Nova 147 

Scotia, Ontario, Prince Edward Island, and Quebec), ten United States climate regions (Alaska, 148 

Midwest, Northeast, Northwest, Ohio Valley, Northern Rockies and Plains, South, Southeast, 149 

Southwest, and West), one Mexican state (Sonora), and Guatemala. Represented host species 150 

were of the taxonomic orders Anseriformes (waterfowl) and Charadriiformes (shorebirds). The 151 

16 Anseriformes species included American black duck (Anas rubripes), bufflehead (Bucephala 152 

albeola), blue-winged teal (Anas discors), Canada goose (Branta canadensis), cinnamon teal 153 

(Anas cyanoptera), emperor goose (Anser canagicus), gadwall (Mareca strepera), greater white-154 

fronted goose (Anser albifrons), green-winged teal (Anas crecca), mallard (Anas platyrhynchos), 155 

northern pintail (Anas acuta), redhead (Aythya americana), ring-necked duck (Aythya collaris), 156 

northern shoveler (Anas clypeata), snow goose (Anser caerulescens), and American wigeon 157 

(Anas americana). Five species of Charadriiformes were represented among the host models: 158 

glaucous-winged gull (Larus glaucescens), laughing gull (Leucophaeus atricilla), red knot 159 

(Calidris canutus), ruddy turnstone (Arenaria interpres), and sanderling (Calidris alba). 160 

Henceforth, all host species will be referenced using common names.  161 

The distribution of hosts and geographic regions were similar among the internal gene 162 

segments by both PDA and stratified subsampling strategies (Supplementary Table S3; 163 

Supplementary Table S4). Subsampling strategy had an effect on the temporal distribution of 164 

host and geographic region variables; proportions were more consistent between 2005 and 2016 165 

in the stratified sample compared with the PDA sample (Supplementary Figures S2 & S3). 166 

Within both the PDA and stratified samples, Alaska, the Ohio Valley, and the Northeast were the 167 

most frequently represented regions between 2005 and 2016 among the internal genes. Regional 168 
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distribution varied considerably across HA and NA subtypes. Within the PDA sample, the most 169 

frequently represented regions’ HA subtypes included Alaska (H3: 30.5%, H4: 20.5%), 170 

Northeast (H1: 20.7%, H10: 31.1%, H11: 20.0%), South (H7: 23.7%), and West (H5: 20.5%, 171 

H6: 28.1%, H11: 20.0%). The most frequently represented regions among NA subtypes in the 172 

PDA sample included Alaska (N3: 18.3%, N6: 25.9%, N8: 24.5%), Midwest (N2: 20.3%, N9: 173 

20.3%), and Northeast (N1: 19.2%, N7: 25.2%). Although host species distribution differed 174 

among gene segments and subtypes, all shared mallard as the most frequently sampled avian 175 

species (28.1 – 52.7%). The stratified sample attempted to counteract the oversampling of 176 

mallards resulting in lower percentages of these hosts within the sample (20.6 – 35.7%). The 177 

stratified method also tended to increase the frequency of the more sparsely represented regions 178 

and hosts within the models. 179 

Asymmetrical diffusion models allow directionality to be inferred so that each viral 180 

transition is characterized by a source (i.e., origin of the virus) and a sink (i.e., destination). 181 

Because the rates of transition between two locations, for instance, are asymmetrical, the 182 

transition rate from location A to location B is permitted to differ from the rate in the opposing 183 

direction (from location B to A). Across all gene segments, the highest rate of transition between 184 

host species was 19.6 transitions/year (95% HPD 16.0 – 23.6) of the PB1 gene segment from 185 

mallards to blue-winged teals within the PDA sample (Supplemental Figure S4). In the PDA 186 

sample, the N8 transition rate from mallards to blue-winged teals was highest among the NA 187 

subtypes at 13.3 transitions/year (95% HPD 9.3 – 17.7). In contrast, among HA subtypes, the 188 

reverse transition (that is, blue-winged teals to mallards) within the PDA H4 model had the 189 

highest rate (16.1 transitions/year; 95% HPD 10.9 – 21.4). Mallards were supported as the source 190 

of AIV across all gene segments and subtypes for green-winged teals and northern shovelers 191 
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within the stratified sample. These rates were also supported in the PDA sample in all gene 192 

segments and subtypes except N6. The rates from mallards to blue-winged teals were also 193 

supported among all gene segments and subtypes except H7 in both samples. Within the PDA 194 

sample, American black ducks, blue-winged teals, Canada geese, greater white-fronted geese, 195 

ring-necked ducks and snow geese were only supported to receive viral diversity from mallards. 196 

In contrast, only American black ducks and Canada geese exclusively received virus from 197 

mallards in the stratified sample. Similarly, ruddy turnstones were the exclusive source of viral 198 

diversity for laughing gulls and sanderlings in both samples, as well as red knots in the stratified 199 

sample.  200 

A single host diffusion model was also jointly estimated across all internal gene 201 

segments, all HA subtypes, and all NA subtypes (Figure 2, Supplementary Figure S5). For each 202 

joint host model, the highest transition rate occurred from blue-winged teals to mallards (PDA 203 

internal gene model: 40.7 transitions/year, 95% HPD 32.5 – 49.2; PDA HA model: 22.0 204 

transitions/year, 95% HPD 16.6 – 27.5; Stratified NA model: 22.6 transitions/year, 95% HPD 205 

14.2 – 31.7; Tables S5, S6 & S7). In all three joint host models, all species were supported as 206 

receiving virus from at least one other species, except snow geese within the NA models. Not all 207 

species acted as a source, however. Cinnamon teals, gadwalls, and red knots were included in all 208 

three joint host models, but none were supported to contribute AIV genetic diversity to any other 209 

host species. In addition, Canada geese, emperor geese, ring-necked ducks, snow geese, laughing 210 

gulls, and sanderlings, which were only included in the internal gene and NA models, were also 211 

not supported as viral sources. A marked difference between the PDA and stratified samples can 212 

be noted in this regard. Whereas green-winged teals were not supported as a source of virus for 213 

any other species within the PDA internal gene segment model, the stratified sample estimates 214 
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green-winged teals as the source of viral genetic diversity for nine other avian species within the 215 

internal gene model. This provides evidence that sampling methods can influence discrete trait 216 

diffusion model results. 217 

Among the North American regional models, the highest transition rate was observed 218 

from the Ohio Valley to the South within the PA gene segment of the PDA sample at a rate of 219 

23.3 transitions/year (95% HPD 17.6 – 29.0; BF = 73,262) (Figure S6). In the PDA sample, the 220 

N6 model showed the highest transition rate of the NA subtypes with a Midwest to South 221 

transition rate of 11.4 transitions/year (95% HPD 7.5 – 15.7; BF = 46,210). Within the stratified 222 

sample, the highest transition rate among HA subtypes occurred from the Midwest into the Ohio 223 

Valley in the H4 model at 14.9 transitions/year (95% HPD 9.9 – 20.1, BF = 46,210). No single 224 

transition rate was supported across all gene segments or subtypes. The internal gene segments 225 

and the HA and NA subtype models differed in regard to support for the Northeast region of the 226 

United States as a source of AIV for other North American regions. Across the HA and NA 227 

subtypes, there is only sporadic support for the Northeast as a source of AIV, with only three 228 

rates among the subtypes supported in the PDA sample, and four supported in the stratified 229 

sample. In contrast, each internal gene segment model within the PDA sample has at least six 230 

rates in support of the Northeast as a source. Support for a Northeastern source is less consistent 231 

across the stratified sample internal gene segments: while nine rates are supported in the PB2 232 

model, no rates in the PB1 model are supported. The internal genes further differ between PDA 233 

and stratified samples in terms of their support for New Brunswick as a viral source. No New 234 

Brunswick source rates are supported within the PDA internal gene segment models, yet 16 rates 235 

are supported in the stratified models among four sink regions (Northeast, Nova Scotia, Ohio 236 

Valley, and Prince Edward Island). 237 
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Among the three joint models, the internal gene model has the largest number of 238 

decisively supported transition rates between regions (Figure 2, Supplementary Figure S5). The 239 

highest rate among the internal genes occurred from the South to the Ohio Valley (PDA sample: 240 

48.5 transitions/year, 95% HPD 42.5 – 55.0; Table S8). The highest transition rate among both 241 

HA and NA models occurred from the Midwest to the Ohio Valley (stratified HA: 17.8 242 

transitions/year, 95% HPD 12.7 – 23.4; PDA NA: 21.3 transitions/year, 95% HPD 16.7 – 26.2; 243 

Tables S9 & S10). Similar patterns can be observed across the three models. For instance, due to 244 

their frequent support and large transition rates, the West, Midwest, South, and Ohio Valley all 245 

appear to be important regions in the dispersal of AIV across the North American continent. 246 

Furthermore, while most decisively supported rates are between neighboring regions, longer 247 

distance transitions are also observed in all three models, including between the West and 248 

Alaska, the South and Guatemala, and the West and the Ohio Valley. Many supported rates also 249 

align with an East-West axis, suggesting viral exchange across migratory flyways. 250 

Generalized Linear Model 251 

The discrete trait diffusion models were extended with a GLM to evaluate the impact of 252 

host and geographic ecological characteristics on AIV dispersal among host species and 253 

geographic regions within North America. Table 1 summarizes host species and regional 254 

characteristics included in the GLM. Genetic distance of host species ranged widely, from 0.3 to 255 

196.7 million years (Figure 3). As expected, the host phylogeny is composed of two main clades, 256 

Anseriformes and Charadriiformes, which diverged between 86.6 and 110.2 million years ago. 257 

Included Charadriiformes species shared a most recent common ancestor between 46.0 and 64.2 258 

million years ago, whereas Anseriformes species diverged into familial clades of Anatidae 259 

(ducks) and Anser (geese) between 10.0 and 31.4 million years ago. All nodes within the 260 
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phylogeny were highly supported (posterior probability > 0.98) except for the ancestral node of 261 

the green-winged teal and Northern pintail (posterior probability = 0.67). Host habitat 262 

distributions tended to have greater percentage of overlap during the nonbreeding winter months 263 

versus the breeding summer months. Migration propensity and distance were calculated based on 264 

distribution maps and varied widely among included species. On average, 84% of a species’ 265 

breeding season distribution was considered migratory as opposed to resident. The average 266 

distance between North American geographic regions was 2,716 km, and geographic regions 267 

overlapped with 47% and 48% of the breeding and nonbreeding distributions, respectively. 268 

Regions tended to have greater precipitation, lower humidity, and more lush vegetation during 269 

the summer months compared to the winter months. Variables such as host genetic relatedness, 270 

habitat overlap, and geographic distance reflect the relationship between two variables, whereas 271 

the remaining ecological variables summarize aggregate measurements. For this reason, the 272 

relational variables were only included in the GLM once, but the remaining characteristics were 273 

each included twice to capture directionality of the viral transition rate. For instance, the average 274 

temperature during the summer months was included twice to assess if the summer temperature 275 

of the source region was associated with viral transition or if the summer temperature of the sink 276 

region impacted viral transition. 277 

The host and region GLM models tested the same covariates across all gene segments 278 

and subtypes, individually. Overall, the internal gene segments held higher support for the 279 

inclusion of both host and region covariates as compared to the HA and NA subtype models 280 

(Figure 4). On average 20 of the 32 tested variables were supported for inclusion among the 281 

internal gene segments compared to five and seven supported variables among HA and NA 282 

subtypes, respectively. In the PDA sample, the H5 and N7 subtype models each supported only 283 
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one variable across both host and region GLMs. Nonbreeding distribution overlap and migratory 284 

distance of the sink host species, as well as summer distribution overlap of the source region, 285 

winter temperature of both source and sink regions, winter precipitation of both source and sink 286 

regions, and winter humidity of source regions tended to have lower support among internal gene 287 

segment models. Overlap of host breeding distribution was supported across all gene segments 288 

and subtypes except H5 in both PDA and stratified samples and N6 in the PDA sample. Regional 289 

distance was also frequently supported across the gene segments and subtypes, with support in 290 

all but H10, N1, and N7 in both samples as well as H11 in the stratified sample. Summer 291 

temperature of the source region was supported in both samples for all internal gene segments as 292 

well as subtypes H1, H3, H4, H11, N2, and N3. Host genetic relatedness was supported in all 293 

internal gene segments and all but two NA subtypes, N7 and N9, yet there was no support for 294 

this variable among HA subtypes. 295 

The magnitude and direction of variable effect size differed among the various gene 296 

segments although most variables demonstrated the same directional effect across multiple gene 297 

segments. Among the variables supported in the models, 22 had the same directional effect 298 

(positive or negative) without regard to gene segment or subtype. Host variables which were 299 

consistently positively-associated with interspecies transmission included breeding distribution 300 

overlap, nonbreeding latitude and migration distance of the source host. Consistent negatively-301 

associated host characteristics included genetic distance between host species and migration 302 

propensity of both the source and sink host species. Among North American regional geographic 303 

models, the proportion of avian hosts in source regions with summer distribution overlap , the 304 

proportion of avian hosts in sink regions with winter distribution overlap , both source and sink 305 

summer temperature measures, and source summer normalized difference vegetation index 306 
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(NDVI) were positively associated with viral dispersal across all segments and subtypes in which 307 

the variables had support for inclusion. The following region characteristics were consistently 308 

negatively-associated with viral dispersal: distance between regions, summer precipitation of the 309 

sink region, and both winter NDVI measures. Several directional effects conflicted among 310 

subtypes and gene segments, including nonbreeding distribution overlap, nonbreeding latitude of 311 

the sink host, summer habitat overlap in the sink region, summer precipitation of the source 312 

region, winter precipitation of the sink region, summer humidity of the sink region, winter 313 

humidity of the source region, and summer NDVI of the sink region. These conflicts tended to be 314 

observed in variables with infrequent support, especially within the stratified sample. 315 

DISCUSSION 316 

The presented analysis provides insight into the potential impact of ecological variables 317 

that influence AIV dispersal and diversity within North American wild birds. While the 318 

evolution and dispersal of AIV within North America has been previously examined 319 

(7,8,14,22,23), this study employs a discrete trait diffusion GLM to incorporate ecological data 320 

into such estimates. Using new and historical AIV sequences, we demonstrate that host and 321 

geographic characteristics are associated with viral movement among avian species and North 322 

American regions. Because AIV gene segments can be treated as independent hereditary 323 

particles, genetic similarities can be used to infer information regarding the ecological pressures 324 

experienced by viral populations. By estimating ecological models separately for each AIV gene 325 

segment, dispersal patterns and their associations with ecological characteristics can be tested 326 

independently and compared. Consistent support for a variable across multiple gene segments 327 

and subtypes, such as breeding distribution overlap and geographic distance between regions, 328 

suggest that these host habitat characteristics play an important role in the evolution and ecology 329 
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of AIV. Although AIV hosts often migrate and potentially carry virus over long distances, a 330 

geographic distance effect can be noted: as the distance between two regions increases, the 331 

frequency of AIV transition decreases. The importance of proximity is reinforced by the 332 

consistent support of distribution overlap, particularly in the summer breeding season. A similar 333 

finding has been observed in bats, in which viral transmission of rabies virus was associated with 334 

host distribution overlap in North America (19). Species that have greater overlap during the 335 

breeding months tend to have a higher frequency of AIV transition due to a larger population of 336 

immunologically naïve juvenile hosts.  337 

Another frequently supported host characteristic is the genetic distance or relatedness 338 

between two species, a characteristic that has been suggested to influence the rate of interspecies 339 

transmission of pathogens in general (24). Genetic relatedness may be a proxy for a suite of 340 

shared characteristics that would increase the likelihood of two hosts sharing a pathogen. For 341 

instance, viruses that infect multiple species are most likely targeting conserved molecular 342 

mechanisms, and related hosts will most likely have similar physiological responses (25). 343 

Furthermore, related species typically share similar ecology, i.e. breeding and feeding behavior 344 

or habitat, which can increase the likelihood of contact between the two species, a prerequisite 345 

for pathogen transmission. Experimental studies (26) and mathematical models (27) have shown 346 

that host relatedness is associated with successful host transition. Genetic distance, however,  347 

was not supported among any of the HA models. The HA models in general tended to have 348 

lower frequency of support for the included GLM models. This may suggest that the host 349 

immune pressure exerted on the HA supersedes influence of ecological determinants. In other 350 

words, because HA subtypes exist as a constellation of fitness peaks, these genes may be unable 351 

to provide information on ecological factors that affect viral transmission. Rather they are 352 
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coerced by immune pressure to constantly accumulate mutations that provide fitness advantages 353 

to evade host immune systems. 354 

Somewhat surprisingly, summer temperature of the originating region was positively 355 

associated with viral dispersal among regions in multiple gene segments. Environmental 356 

durability experiments (28,29) and AIV prevalence studies (11,12) have demonstrated evidence 357 

that colder temperatures increase risk of AIV infection due to environmental persistence of the 358 

virus. In contrast, our geographic model suggests that regions that are warmer on average during 359 

the summer are more likely to act as sources of the virus to other regions. It should be noted that 360 

causality cannot be established for this association. Proper interpretation of this result is that 361 

warmer regions are merely associated with viral dispersal, not that virus is more likely to arise 362 

from regions during summer. Summer temperature may be a proxy for other environmental or 363 

temporal characteristics. The effect of temperature on AIV dispersal can also be observed in the 364 

host models in which latitude of the breeding distribution was negatively associated with viral 365 

transitions between host species. In other words, species that breed farther south were more 366 

likely to act as sources of AIV diversity to other host species. Similarly, species that overwinter 367 

farther north were also more likely to act as sources of the virus. In corroboration with our 368 

model, one prevalence study (9) revealed an earlier thaw date of a location to be associated with 369 

higher AIV prevalence. Our results may be best explained by timing of breeding and migration 370 

rather than environmental persistence alone. Those locations that thaw first (i.e., are warmer in 371 

general) become available as breeding habitat sooner than regions farther north. Because 372 

breeding marks the influx of new, immunologically naïve juveniles, populations that breed 373 

earlier tend to become infected earlier, which may increase their capacity to serve as a source of 374 

virus to other hosts and locations.  375 
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As with analyses reliant on publicly available data, these results are limited by potential 376 

sampling bias of available surveillance and sequence data. As demonstrated, mallards markedly 377 

dominate the diffusion models as sources of virus to other species. Mallards are the most 378 

populous of the dabbling ducks and therefore are more frequently included in AIV surveillance, 379 

but they are often also the species with the highest prevalence of AIV (30). While one 380 

explanation for the estimation of mallards as frequent viral sources is their predominance in 381 

surveillance, the analysis methods were intended to limit the effects of sampling biases. 382 

Sequences collected prior to 2005 when sequencing efforts were irregular were not permitted to 383 

influence the discrete trait diffusion models. Further, by subsampling the datasets based on 384 

phylogenetics, we preserved the genetic diversity of the sequence data. The fact that mallards 385 

predominate in the PDA sample suggests that, as a primary reservoir species, mallards harbor a 386 

large diversity of AIV. A second subsampling technique (stratified random sample) was also 387 

performed in attempt to limit oversampling bias and increase the frequency of underrepresented 388 

hosts and regions. By comparing results between the two datasets, the influence of sampling 389 

schemes on the observed results can be approximated. Estimating the models across multiple 390 

gene segments and subtypes also allowed the host and regional proportions to vary, which is 391 

more apparent among the HA and NA subtypes. It should be noted that the magnitude of the 392 

effective population size across all segments tracked closely with the sample size of sequences 393 

included within the analysis. As the sample size was proportional to the number of available 394 

sequences that met inclusion criteria, the sample size may indicate the overall genetic diversity 395 

available for analysis, which would then be reflected in the estimated effective population size. 396 

This is supported by the use of phylogenetic diversity as a means to sub-sample the data, which 397 

ensures that both the full available sequences and the sampled sequences would have equivalent 398 
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genetic diversity, unlike a simple random sample which, by chance, may remove some genetic 399 

diversity. 400 

Although causality between ecologic factors and AIV diffusion cannot be inferred from 401 

this analysis, our results provide further evidence of the association of geographic and host 402 

characteristics with AIV diversity and dispersal. Continued AIV surveillance, especially in 403 

undersampled regions and hosts, provides valuable information on AIV evolution and diffusion. 404 

Furthermore, the inclusion of detailed environmental and host measures within AIV sequence 405 

databases will help add granularity to future models. 406 

MATERIALS AND METHODS 407 

Sequence data sets 408 

Systematic avian influenza surveillance of wild birds has been performed in Alberta, 409 

Canada and Delaware Bay, New Jersey, United States since 1976 and 1985 respectively. 410 

Surveillance efforts, viral isolation, and genomic sequencing methods were performed as 411 

previously described (7). Newly sequenced genomes from 303 viral isolates were deposited in 412 

GenBank (Supplementary Table S11) and were aligned with publicly available AIV sequences 413 

from within North America between 1970 and 2016, which were downloaded from the Influenza 414 

Research Database (IRD; www.fludb.org) on March 26, 2018. Sequences with vague host (e.g., 415 

“avian,” “bird,” “duck,” etc.) or location (i.e., only country level data for the United States, 416 

Canada, or Mexico), more than 10% missing nucleotide sites, or isolated from domestic poultry 417 

were removed from the dataset. Internal gene segments PB2, PB1, PA, NP, and MP were aligned 418 

separately. Alignments of gene segments NS, HA, and NA were further subdivided: NS by allele 419 

group (A and B) and HA and NA by subtype. HA and NA subtypes with sparse representation 420 

(<250 sequences between 2005 and 2016) were excluded from the analysis (subtypes H2, H8, 421 
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H9, H12, H13, H14, H16, N4, N5). Initial maximum likelihood phylogenetic trees were 422 

estimated using RAxML v8 (31) with a general time reversible nucleotide substitution model and 423 

gamma distribution of sites. TempEst v1.5 (32) was used to identify sequences with a rate of 424 

evolutionary divergence out of the expected bounds as compared to the remaining sequences in 425 

the dataset. This helps to identify poor quality sequences or viruses under unexpected 426 

evolutionary pressure. Eurasian lineages with little continued North American circulation or 427 

associated with highly pathogenic avian influenza viruses were removed from the dataset. For 428 

each sequence, host of origin was categorized based on host species. Location of origin was 429 

categorized based on United States National Oceanic and Atmospheric Administration historical 430 

climate region for United States isolates, province and territory for Canadian isolates, state for 431 

Mexican isolates, and country for Guatemalan isolates. Categories to be included in the discrete 432 

trait models were determined separately for the internal genes, HA subtypes, and NA subtypes. 433 

For internal genes, the 20 most common host species and regions (based on average rank among 434 

the segments) were chosen to be included in the discrete trait diffusion models. For both HA and 435 

NA subtypes, categories with greater than one sequence in a majority of the HA or NA subtypes 436 

were included in the models.  437 

All sequences collected before 2005 were combined into a single category that was 438 

masked in the diffusion models to prevent the influence of inconsistent sampling and to focus 439 

diffusion summaries on the most recent years. To mitigate oversampling, two subsampling 440 

schemes were used: simple stratified random sampling and phylogenetic diversity-based 441 

sampling. In the simple random sample, sequences were stratified by region, host species, and 442 

year, and a maximum sample size of three sequences for each stratum were maintained in the 443 

dataset. Developed to help make economic decisions for conservation purposes, Phylogenetic 444 
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Diversity Analyzer (PDA; http://www.cibiv.at/software/pda/) was used to select a subsample for 445 

each segment or subtype that maximized the represented genetic diversity (33). This process was 446 

weighted to prevent over-representation of samples before 2005 which, though diverse, were 447 

masked in the diffusion model. As PDA allows the user to select the desired sample size, the 448 

number of selected sequences was specified to match the stratified sample and ensure datasets 449 

were proportional. 450 

Phylogenetic analysis 451 

Using ModelFinder algorithm (34) implemented in the program IQTree 452 

(http://www.iqtree.org/), the best fit nucleotide substitution model was determined. The 453 

empirical sets of phylogenetic trees were estimated under the same model assumptions for all 454 

sequence datasets in BEAST v1.10.4 (35). A general time reversible (GTR) nucleotide 455 

substitution model (36–38) with a 4-category gamma distribution of variation among sites and a 456 

proportion of invariant sites (39,40) was implemented with a lognormal uncorrelated relaxed 457 

molecular clock (41) (mean clock rate prior distribution: uniform 0 – 1, initial value = 0.0033) 458 

and a constant coalescent population model (42,43) (population size prior distribution: lognormal 459 

distribution with mean = 50 and standard deviation = 50). At least four independent Markov 460 

chain Monte Carlo (MCMC) runs of 100 million state length and sampling every 10,000 states 461 

were performed. To ensure proper convergence and parameter mixing with an effective sample 462 

size (ESS) of at least 200, a minimum of 10% burn-in was removed. Non-convergent runs were 463 

discarded, larger burn-in percentages were removed, and additional MCMC runs were performed 464 

to achieve ESS > 200. Empirical tree sets were obtained by combining and resampling tree log 465 

files from non-discarded runs with LogCombiner to achieve a tree file length of at least 1,500 466 

trees. 467 
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Discrete trait diffusion models 468 

With the ability to incorporate ecological and epidemiological metadata, the discrete trait 469 

diffusion model uses a continuous-time Markov chain as its basis to estimate the ancestral 470 

history of trait changes across a phylogenetic tree, in essence treating the trait as a characteristic 471 

that evolves over time (44,45). To investigate recent movement of AIV among avian hosts and 472 

North American regions, discrete trait diffusion models based on the empirical tree sets 473 

described above were estimated using BEAST v1.10.4. Estimating the posterior distribution of 474 

phylogenetic trees based on sequence data alone can be performed separately from the discrete 475 

trait diffusion models because the discrete traits represent only two sites (as opposed to the 476 

hundreds of nucleotide sites of a genetic sequence) at which the tree likelihood can be calculated. 477 

For this reason, the discrete trait model has an insignificant impact on phylogenetic estimation 478 

(16). Furthermore, this approach enables the inference of a single diffusion model across 479 

multiple empirical tree sets, allowing the genetic information from multiple gene segments to 480 

inform the model. Due to the high level of reassortment of gene segments within low pathogenic 481 

AIV in wild birds (5), each gene segment can be treated as an independent hereditary particle, 482 

providing separate evolutionary and ecological information within its phylogenetic history (7). 483 

Asymmetrical discrete trait diffusion models were estimated across empirical tree sets for the 484 

following: 1) each gene segment or subtype dataset individually, 2) all internal gene segments 485 

together, 3) all represented HA subtypes together, and 4) all represented NA subtypes together. 486 

Discrete host and geographic traits were specified as described above. Pre-2005 sequences and 487 

rare categories were masked from the discrete trait diffusion model, providing an estimate of 488 

viral transitions between common host species and regions between 2005 and 2016.  489 
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The discrete trait diffusion models were extended using a generalized linear model 490 

(GLM) to evaluate predictors associated with the discrete trait transition rates among host 491 

species and geographic regions. Using the transition rates as the outcome to a log-linear 492 

combination of covariate predictors, BEAST v1.10 estimates the GLM at each state in the 493 

MCMC simulation, integrating across the empirical phylogenetic tree space. Host diffusion 494 

predictors included genetic distance between species, habitat distribution overlap, migration 495 

distance, migration propensity, and latitudinal distribution. Genetic distance between species was 496 

calculated as the average patristic distance, represented as total evolutionary time in million 497 

years, across a sample of 1,000 phylogenetic trees estimated under a fossil-calibrated relaxed 498 

molecular clock (46). Habitat overlap, migration distance, migration propensity, and latitudinal 499 

distribution were summarized from BirdLife species range maps (47) using ArcGIS Pro 500 

software. Habitat distribution overlap was calculated as the percentage of a source host’s 501 

geographic distribution shared with that of a sink host. Migration distance was estimated by the 502 

difference between the mean breeding distribution latitude and the mean wintering distribution 503 

latitude (13). Migration propensity was estimated as the percentage of total summer distribution 504 

range considered to be migratory as opposed to resident (13). Latitudinal distribution was the 505 

average latitude for breeding and wintering ranges and served as an estimate of habitat 506 

temperature. Geographic diffusion predictors included distance between regions as well as 507 

summer and winter summaries of each of the following: average temperature, average 508 

precipitation, average relative humidity, average normalized difference vegetation index (NDVI), 509 

and proportion of included host species that reside in the region. All geographic variables were 510 

summarized between 2005 and 2016 and aggregated in ArcGIS Pro. Climatological data 511 

originated from the National Centers for Environmental Prediction North American Regional 512 
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Reanalysis (48) provided by the National Oceanic and Atmospheric Administration Oceanic and 513 

Atmospheric Research Earth System Research Laboratory’s Physical Sciences Division, 514 

Boulder, Colorado, USA, from their website at https://www.esrl.noaa.gov/psd/. NDVI data 515 

originated from the Terra Moderate Resolution Imaging Spectroradiometer (MODIS) Vegetation 516 

Indices (MOD13A3) Version 6 (49). All covariates were log-transformed and standardized 517 

before inclusion in the GLM. Each discrete trait diffusion model and GLM were performed with 518 

at least three independent MCMC runs of 1 million chain length sampling every 100 states. 519 

Statistical analysis 520 

For both the discrete trait diffusion model and the GLM, Bayesian stochastic search 521 

variable selection (BSSVS) was used to estimate the statistical support for diffusion rates and 522 

coefficients, respectively, by enabling the calculation of a Bayes factor (BF) (50). A larger BF 523 

indicates stronger support that the parameter (i.e., transition rate between two hosts or GLM 524 

coefficient) is non-zero. Due to the number of models tested, a stringent statistical cutoff was 525 

implemented, only allowing those with BF > 100 to signify statistical support. Median 526 

conditional transition rates, median conditional coefficients, 95% highest posterior density 527 

(HPD) intervals, and BF were calculated from BEAST posterior samples with personalized 528 

Python scripts using the PyMC3 package for Bayesian statistical modeling (51). 529 
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TABLES 727 

Table 1. Summary of host and geographic variables used to inform the Bayesian discrete 728 
diffusion generalized linear model describing avian influenza virus dispersal among North 729 
American wild birds.  730 
 Mean Standard Deviation Range 
Genetic Distance (Myr) 92.9 83.4 0.3 – 196.7 
Summer Distribution Overlap (%) 26.6 32.0 0.0 – 99.99 
Winter Distribution Overlap (%) 40.9 32.2 0.0 – 99.6 
Breeding Latitude 56.4 11.7 28.0 – 76.7 
Nonbreeding Latitude 34.1 8.3 21.6 – 56.6 
Migration Distance (km) 2469.2 1447.9 473.8 – 5651.8 
Migration Propensity (%) 84.4 22.1 18.1 – 100.0 
    
Geographic Distance (km) 2716.9 1342.2 138.5 – 7087.5 
Summer Proportion (%) 46.7 20.3 0.0 – 85.7 
Winter Proportion (%) 48.1 28.2 0.0 – 90.5 
Summer Temperature (C) 19.7 5.1 11.0 – 28.9 
Winter Temperature (C) -2.7 9.4 -15.6 – 19.7 
Summer Precipitation (kg/m2) 2.7 1.4 0.3 – 7.5 
Winter Precipitation (kg/m2) 1.9 0.9 0.4 – 3.4 
Summer Humidity (%) 66.9 15.7 31.4 – 86.1 
Winter Humidity (%) 78.1 10.6 47.4 – 86.3 
Summer NDVI* 0.63 0.16 0.31 – 0.82 
Winter NDVI* 0.29 0.16 0.02 – 0.75  

*NDVI – Normalized difference vegetation index 731 
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FIGURE CAPTIONS 733 

Figure 1. Interaction of viral evolution, host ecology and the environment. Viral genetic 734 

sequences contain information regarding virus evolution and diversity (A). Because their 735 

evolution occurs at a rapid pace, evolutionary patterns can be used in conjunction with location 736 

and species data to infer rates of viral dispersal among sampled geographic regions and host 737 

species. Many factors may influence observed virus transmission and spread. For instance, host 738 

factors (B) such as relatedness of host species and overlap of habitat distributions may be 739 

associated with viral transitions between host species. Further, environmental factors (C) may 740 

also play a role in the spatial diffusion of the virus. By incorporating viral, host and 741 

environmental information into computational models, the impact of host and environmental 742 

characteristics on virus spread can be estimated. 743 

Figure 2. Discrete trait diffusion models of North American avian influenza using a sample of 744 

genetic sequences based on phylogenetic diversity. Host models (left) are presented for 745 

combined internal gene segment (A), hemagglutinin gene subtype (B), and neuraminidase gene 746 

subtype (C) models. Source host species on the left of the chord diagrams contribute viral 747 

diversity to sink host species on the right. The magnitude of the viral transition rate is 748 

proportional to the width of the band, and statistically supported rates are darkened. Bands are 749 

colored by the host order of the source species (Charadriiformes – red; Anseriformes – blue). 750 

Similarly, geographic models (right) are summarized for combined internal gene segment (D), 751 

hemagglutinin gene subtype (E), and neuraminidase gene subtype (F) models. Arrow width is 752 

proportional to the magnitude of the transition rate, and only statistically supported rates are 753 

displayed. (AK – Alaska, AB – Alberta, BC – British Columbia, GT – Guatemala, MW – 754 

Midwest, NB – New Brunswick, NE – Northeast, NL – Newfoundland and Labrador, NRP – 755 
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Northern Rockies and Plains, NS – Nova Scotia, NW – Northwest, OV – Ohio Valley, PE – 756 

Prince Edward Island, QC – Quebec, S – South, SE – Southeast, SON – Sonora, SW – 757 

Southwest, W – West) 758 

Figure 3. Viral and host phylogenetic diversity of North American AIV. (A) Estimation of the 759 

phylogenetic history of the PB2 AIV gene segment within North American wild birds. Color 760 

bands at the tips of the tree denote the host species distribution. This is contrasted with the 761 

phylogenetic history of the avian host species included in this analysis (B). Light gray node bars 762 

represent the 95% highest posterior density of the node height. The redhead species was not 763 

categorized in the internal gene segment models and is therefore not included.  764 

Figure 4. Heat map of conditional coefficient values for host and region generalized linear 765 

models of North American avian influenza discrete trait diffusion models. Conditional 766 

coefficient effect sizes are presented for each supported ecological variable across all gene 767 

segment and subtype datasets and both subsampling strategies (phylogenetic diversity analyzer 768 

(PDA) vs. stratified random sample). Only supported coefficients are displayed. Color darkness 769 

is proportional to the magnitude of the effect. Orange represents a negative correlation and blue 770 

represents a positive correlation. 771 
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SUPPLEMENTARY MATERIAL CAPTIONS 773 

Figure S1. Evolutionary parameter estimation for North American avian influenza viruses of 774 

wild birds. Estimated parameters include A) time to most recent common ancestor (TMRCA), B) 775 

molecular clock rate, and C) effective population size. Parameters are compared across internal 776 

gene segments (blue), hemagglutinin gene subtypes (orange), and neuraminidase gene subtypes 777 

(purple) as well as between subsampling strategies, phylogenetic diversity-based sample (left, 778 

dark grey) and stratified random sample (right, light grey). Median values (black midline) 779 

indicated as well as the 95% highest posterior density (whiskers). 780 

Figure S2. Host species temporal distribution of sampled North American avian influenza virus 781 

PB2 gene segment sequences, 2005 – 2016. Proportions of represented host species are 782 

compared between the phylogenetic diversity-based sample (PDA) and the stratified random 783 

sample (stratified). 784 

Figure S3. Geographic region temporal distribution of sampled North American avian influenza 785 

virus PB2 gene segment sequences, 2005 – 2016. Proportions of represented regions are 786 

compared between the phylogenetic diversity-based sample (PDA) and the stratified random 787 

sample (stratified). 788 

Figure S4. Heat map of supported viral transition rates among host species across avian influenza 789 

virus gene segments and subtypes. Colored cells represent the magnitude of the transition rate 790 

from the species in the first column (source) to the species in the second column (sink). White 791 

cells were transition rates that were not supported (Bayes factor < 100). Results from both 792 

subsampling strategies (phylogenetic diversity-based sample (PDA) and stratified random 793 

sample (stratified)) are presented for comparison. 794 
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Figure S5. Discrete trait diffusion models of North American avian influenza using a stratified 795 

random sample of genetic sequences. Host models (left) are presented for combined internal 796 

gene segment (A), hemagglutinin gene subtype (B), and neuraminidase gene subtype (C) models. 797 

Source host species on the left of the chord diagrams contribute viral diversity to sink host 798 

species on the right. The magnitude of the viral transition rate is proportional to the width of the 799 

band, and statistically supported rates darkened. Bands are colored by the host order of the 800 

source species (Charadriiformes – red; Anseriformes – blue). Similarly, geographic models 801 

(right) are summarized for combined internal gene segment (D), hemagglutinin gene subtype (E), 802 

and neuraminidase gene subtype (F) models. Arrow width is proportional to the magnitude of the 803 

transition rate, and only statistically supported rates are displayed. (AK – Alaska, AB – Alberta, 804 

BC – British Columbia, GT – Guatemala, MW – Midwest, NB – New Brunswick, NE – 805 

Northeast, NL – Newfoundland and Labrador, NRP – Northern Rockies and Plains, NS – Nova 806 

Scotia, NW – Northwest, OV – Ohio Valley, PE – Prince Edward Island, QC – Quebec, S – 807 

South, SE – Southeast, SON – Sonora, SW – Southwest, W – West) 808 

Figure S6. Heat map of supported viral transition rates among geographic regions across avian 809 

influenza virus gene segments and subtypes. Colored cells represent the magnitude of the 810 

transition rate from the region in the first column (source) to the region in the second column 811 

(sink). White cells were transition rates that were not supported (Bayes factor < 100). Results 812 

from both subsampling strategies (phylogenetic diversity-based sample (PDA) and stratified 813 

random sample (stratified)) are presented for comparison. 814 

Table S1. Demographic characteristics of 303 wild bird surveillance samples with newly 815 

sequenced avian influenza isolates, 2003 – 2016. 816 
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Table S2. Evolutionary parameters of avian influenza virus gene segments collected from North 817 

American wild birds between 1970 and 2016. Datasets were sampled so as to maintain the total 818 

phylogenetic diversity of the original publicly available sequence sample. 819 

Table S3. Host and regional distribution of phylogenetic diversity-based subsample of influenza 820 

virus gene segments isolated from North American wild birds. 821 

Table S4. Host and regional distribution of stratified subsample of influenza virus gene segments 822 

isolated from North American wild birds. 823 

Tables S5 – S7. Host species transition rate matrix from combined internal gene model (Table 824 

S5), combined hemagglutinin subtype model (Table S6), and combined neuraminidase subtype 825 

model (Table S7). Median rates and 95% highest posterior density intervals are displayed for 826 

both subsampling strategies. Rates colored in blue are statistically supported (Bayes factor > 827 

100). (ABD – American black duck, BUF – bufflehead, BWT – blue-winged teal, CAN – 828 

Canada goose, CIN – cinnamon teal, EMP – emperor goose, GAD – gadwall, GWF – greater 829 

white-fronted goose, GWG – glaucous-winged gull, GWT – green-winged teal, LAU – laughing 830 

gull, MAL – mallard, PIN – northern pintail, RED – redhead, RKN – red knot, RND – ring-831 

necked duck, RUD – ruddy turnstone, SHO – northern shoveler, SND – sanderling, SNO – snow 832 

goose, WIG – American wigeon). 833 

Tables S8 – 10. Geographic region transition rate matrix from combined internal gene model 834 

(Table S8), combined hemagglutinin subtype model (Table S9), and combined neuraminidase 835 

subtype model (Table S10). Median rates and 95% highest posterior density intervals are 836 

displayed for both subsampling strategies. Rates colored in blue are statistically supported 837 

(Bayes factor > 100). (AK – Alaska, ALB – Alberta, BCO – British Columbia, GUA – 838 

Guatemala, MW – Midwest, NBR – New Brunswick, NE – Northeast, NFL – Newfoundland and 839 
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Labrador, RP – Northern Rockies and Plains, NSC – Nova Scotia, NW – Northwest, OV – Ohio 840 

Valley, PEI – Prince Edward Island, QUE – Quebec, S – South, SE – Southeast, SON – Sonora, 841 

SW – Southwest, W – West) 842 

Table S11. Names and GenBank accession numbers of 303 newly sequenced AIV nucleotide 843 

sequences. 844 
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