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 Abstract 
 Selecting  the  optimal  cancer  cell  line  for  an  experiment  can  be  challenging  given  the  diversity  of 
 lines  available.  Cell  lines  are  often  chosen  based  on  their  tissue  of  origin,  however,  the  results  of 
 large-scale  pan-cancer  studies  suggest  that  matching  lines  based  on  molecular  features  may  be 
 more  appropriate.  Existing  approaches  are  available  for  matching  lines  based  on  gene  expression, 
 DNA  methylation  or  low  resolution  DNA  copy  number  features.  However,  a  specific  tool  for 
 computing  similarity  based  on  high  resolution  genome-wide  copy  number  profiles  is  lacking.  Here, 
 we  present  CNpare,  which  identifies  similar  cell  line  models  based  on  genome-wide  DNA  copy 
 number.  CNpare  compares  copy  number  profiles  using  four  different  similarity  metrics,  quantifies 
 the  extent  of  genome  differences  between  pairs,  and  facilitates  comparison  based  on  copy  number 
 signatures.  CNpare  incorporates  a  precomputed  database  of  1,170  human  cancer  cell  line  profiles 
 for  comparison.  In  an  analysis  of  separate  cultures  of  304  cell  line  pairs,  CNpare  identified  the 
 matched  lines  in  all  cases.  CNpare  provides  a  powerful  solution  to  the  problem  of  selecting  the 
 best  cell  line  models  for  cancer  research,  especially  in  the  context  of  studying  chromosomal 
 instability. 
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 Introduction 
 Immortalised  cancer  cell  lines  are  an  integral  part  of  cancer  research  and  the  development  of  new 
 therapies  1,2  .  Cell  lines  are  often  selected  based  on  their  tissue  of  origin.  However,  a  suite  of 
 approaches  are  emerging  which  facilitate  appropriate  cell  line  selection  based  on  molecular 
 features  such  as  gene  expression,  DNA  methylation,  and  genomics  3–13  .  A  subset  of  these 
 approaches  perform  DNA  copy  number  based  comparison  at  different  resolutions  including 
 gene-level  copy  number,  chromosome  arm  copy  number,  ploidy,  or  genome  doubling  status  9  . 
 However, a specific tool for computing similarity based on genome-wide copy number is lacking. 

 Sophisticated  tools  using  evolutionary  models  can  be  used  to  compare  genome-wide  copy  number 
 between  tumours  from  the  same  patient  14  and  cells  within  a  tumour  15  .  However,  tumours  from 
 different  patients  do  not  share  an  evolutionary  relationship,  therefore  more  traditional  similarity 
 metrics  can  be  used.  Here,  we  present  CNpare,  which  can  be  used  to:  1)  calculate  similarities 
 between  genome-wide  copy-number  profiles;  2)  quantify  the  extent  of  genome  differences  between 
 copy-number profiles; and 3) compare profiles based on copy-number signatures  16  (Figure 1). 

 Figure  1  -  Overview  of  the  CNpare  method.  This  schematic  provides  a  high-level  overview  of  CNpare’s 
 workflow  and  computation.  The  user  inputs  an  absolute  copy  number  profile  (left)  and  CNpare  compares  this 
 to  a  precomputed  database  of  cell  line  copy  number  from  the  CCLE  and  GDSC  projects,  using  a  series  of 
 different  comparison  metrics  (centre).  Output  is  in  the  form  of  a  list  of  cell  lines  ranked  based  on  the  strength 
 of  match  to  the  input  profile.  Included  in  the  output  is  a  graphical  representation  of  differences  between  the 
 genomes and an estimate on the percent genome difference. 

 Results 

 Assessing performance 
 To  assess  the  performance  of  CNpare,  we  used  separate  cultures  of  the  same  cell  lines  profiled  as 
 part  of  the  CCLE  and  GDSC  projects  (304  pairs).  We  observed  the  ability  of  CNpare  to  identify,  for 
 each  GDSC  line,  the  correctly  matched  line  in  the  CCLE  database  (Figure  2).  In  100%  of  cases  the 
 top  hit  for  each  GDSC  line  was  the  matched  line  in  the  CCLE  database.  87%  (265  cells)  were 
 matched  correctly  across  all  similarity  metrics,  with  the  remaining  13%  being  matched  correctly 
 only  by  Pearson  correlation  and  cosine  similarity  (not  Manhattan  and  Euclidean  distance).  For 
 these  cases,  the  ploidy  estimated  by  ASCAT  differed  between  the  CCLE  and  GDSC  cultures 
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 causing  comparison  based  on  Manhattan  and  Euclidean  distances  to  return  the  wrong  cell  line.  As 
 Pearson  correlation  and  Cosine  similarity  are  normalized  measures,  they  successfully  identified  the 
 correct  profile  independent  of  the  difference  in  ploidy  status  between  the  cultures.  This  difference  in 
 metric  performance  demonstrates  the  choice  of  metric  can  determine  whether  the  comparison  is 
 ploidy  aware  or  agnostic.  As  such,  we  developed  a  guide  on  which  metrics  to  use  for  different 
 circumstances (Table 1). 

 Figure  2.  Summary  of  CNpare  performance  when  used  to  correctly  match  304  GDSC  cell  lines  within  the  CCLE 
 database.  The  copy  number  plot  on  the  left  shows  an  example  of  a  GDSC  culture  cell  line  copy  number  profile  (blue) 
 matched  with  its  CCLE  culture  profile  top  hit  (red)  across  all  similarity  metrics.  In  total,  265  of  the  304  lines  matched 
 across  all  metrics.  The  copy  number  plot  on  the  right  is  an  example  of  one  of  the  39  cell  line  pairs  which  did  not  match  for 
 Manhattan  and  Euclidean  distance  (but  did  match  for  Pearson’s  r  and  Cosine  similarity).  In  this  case,  these  cell  lines 
 have different copy number ploidy fits but similar copy number changes. 

 Comparison against existing approaches 
 CNpare  is  not  designed  to  be  superior  to  existing  approaches  but  rather  provide  an  alternative  for 
 choosing  matched  cell  lines  which  is  based  on  genome-wide  DNA  copy  number.  A  head-to-head 
 comparison  with  existing  approaches  is  difficult  due  to  a  lack  of  a  gold  standard  for  matching 
 similar  cell  lines.  However,  in  an  attempt  to  perform  a  comparison  with  existing  approaches,  we 
 rederived  certain  cell  line  data  that  were  representative  of  those  used  by  existing  approaches 
 including:  gene  based  copy  number,  chromosome  arm  based  copy  number,  ploidy  and  gene 
 expression.  Using  these  data  to  compare  (Pearson’s  r)  the  cell  line  culture  pairs  analysed  above, 
 we  found  that  gene  based  copy  number  matched  100%  of  the  cell  lines  correctly,  arm  based  copy 
 number  81%,  ploidy  82%,  and  gene  expression  38%.  This  suggests  that  higher  resolution  DNA 
 copy number based matching provides a robust method of identifying similar cell line models. 
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 Table 1 - Comparison metrics and recommended use, 

 Similarity metrics  Properties  Recommendations 

 Pearson’s r 

 Normalized-based metric 
 ●  Invariant  to  scaling,  thus  magnitude  is 

 ignored 
 ●  Invariant  to  location  shifts  of  data 

 values 

 Identification  of  similar  profiles 
 regardless  of  their  ploidy  status. 
 Preferable  to  cosine  similarity  for  the 
 case of highly fragmented profiles 

 Cosine similarity 

 Normalized-based metric 
 ●  Invariant  to  scaling,  thus  magnitude  is 

 ignored 
 ●  Used for high-dimensional data 

 Identification  of  similar  profiles 
 regardless of their ploidy status 

 Manhattan distance 
 Magnitude-based metric 

 ●  Affected by the feature units 
 ●  Used for high-dimensional data 

 Identification  of  profiles  with  similar 
 focal  events  and  ploidy  status. 
 Preferable  to  euclidean  distance  for 
 the  case  of  highly  fragmented 
 profiles 

 Euclidean distance 
 Magnitude-based metric 

 ●  Affected by the feature units 
 ●  Used for low-dimensional data 

 Identification  of  profiles  with  similar 
 focal events and ploidy status 

 Case study: matching an ovarian cancer cell line 
 Using  the  high-grade  serous  ovarian  cancer  cell  line  OVKATE,  we  sought  the  next  most 
 representative cell line model in the CNpare database. 

 First,  we  directly  compared  the  OVKATE  copy  number  profile  with  the  database  and  the  cell  line 
 which  had  the  most  similar  copy-number  profile  was  PANC0203  (Pearson’s  r=0.44, 
 Manhattan=0.97,  with  52%  genome  difference,  Figure  3).  Despite  this  line  being  derived  from  a 
 pancreatic  adenocarcinoma,  it  showed  highly  correlated  gene  expression  (r=0.79,  p=0.02)  and 
 DNA methylation status (r=0.79, p=0.03). 

 Second,  we  sought  a  tissue  matched  line  by  comparing  based  on  copy  number  signatures.  In  this 
 instance,  we  performed  clustering  of  the  OVKATE  line  with  all  ovarian  cancer  cell  lines  based  on 
 copy  number  signatures  using  cosine  similarity.  OVKATE  clustered  with  two  other  ovarian  cell  lines 
 KUROMACHI  and  OVISE.  These  lines  both  showed  highly  correlated  gene  expression  (r=0.79, 
 p=0.02;  and  r=0.77,  p=0.11)  suggesting  a  relevant  match  in  terms  of  chromosomal  instability 
 patterns and resulting gene expression changes. 
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 Figure  3.  Results  of  matching  the  OVKATE  cell  line  with  it’s  most  representative  cell  line  in  the  database  using 
 CNpare.  The  top  plot  shows  the  copy  number  profile  of  the  OVKATE  ovarian  cancer  cell  line  used  as  input  to  CNpare. 
 On  the  left  side,  the  copy  number  profile  of  the  top  hit  found  using  Pearson’s  r  and  Manhattan  distance  is  displayed  in 
 blue,  along  with  the  OVKATE  line  in  red.  Underneath  the  percentage  genome  difference  between  the  profiles  is  listed.  On 
 the  right  hand  side,  the  results  of  matching  the  OVKATE  cell  line  based  on  copy  number  signatures  is  displayed.  The  top 
 plot  shows  the  results  of  clustering  all  ovarian  cancer  cell  lines  based  on  7  copy  number  signatures.  For  visualisation 
 purposes,  the  two  signatures  with  the  highest  variation  across  cluster  means  are  shown.  Each  large  dot  represents  the 
 cluster  centroid  and  each  small  dot  represents  a  cell  line.  The  cluster  containing  the  OVKATE  cell  line  is  colour  coded  in 
 turquoise.  The  copy  number  plots  below  show  the  differences  in  copy  number  profiles  between  OVKATE  and  the 
 matching KURAMOCHI and OVISE cell lines. 

 Discussion 
 Here  we  present  CNpare,  a  tool  for  comparing  cell  line  copy  number  profiles  for  the  purpose  of 
 selecting  optimal  cell  line  models.  CNpare  is  the  first  stand-alone  tool  to  facilitate  comparison  of 
 cancer  cell  lines  based  on  high-resolution  genome-wide  copy  number.  This  complements  existing 
 approaches  based  on  low-resolution  copy  number,  gene  expression  and  methylation  3–13  .  In 
 addition,  CNpare  offers  the  option  of  comparing  copy  number  profiles  using  copy-number 
 signatures. 

 Despite  showing  excellent  performance  during  benchmarking,  this  tool  has  two  key  limitations:  1) 
 resolution  -  comparison  is  made  at  500kb  resolution  (default  bin  size).  While  it  is  possible  to 
 increase  the  resolution  up  to  30kb,  resolution  beyond  this  is  limited  as  the  SNP6  technology 
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 underpinning  the  database  does  not  facilitate  higher  resolution.  2)  total  absolute  copy  number  as 
 input.  Total  absolute  copy  number  is  currently  required  input  and  performance  is  dependent  on  the 
 accuracy  of  the  method  used  to  compute  it.  We  recommend  using  ASCAT  17  as  it  matches  the 
 method used across the database. 

 Beyond  matching  cell  line  copy  number  profiles,  CNpare  can  also  be  applied  to  other  settings 
 including:  quality  control  -  ensuring  the  sequenced  copy  number  profile  of  a  cell  line  matches  the 
 reference  profile;  assessing  differences  between  cell  line  cultures  -  by  estimating  the  percentage 
 genome  difference;  and  finding  the  best  cell  line  model  for  a  tumour  profile  -  based  on  copy 
 number  profiles  or  copy  number  signatures.  Our  results  demonstrate  that  CNpare  can  be  used  to 
 select  appropriately  matched  cancer  cell  line  models,  providing  a  valuable  tool  for  improving 
 cancer research in the context of studying chromosomal instability. 

 Methods 

 Data acquisition and curation 
 Precomputed  absolute  total  copy  number  profiles  for  cell  lines  appearing  in  the  Cancer  Cell  Line 
 Encyclopaedia  (CCLE)  18  project  and  the  Genomics  of  Drug  Sensitivity  in  cancer  (GDSC)  project  19 

 were  downloaded  from  https://github.com/VanLoo-lab/ASCAT.sc  17  .  Only  cell  lines  with  sufficient 
 evidence  of  chromosomal  instability  were  included  in  the  CNpare  database.  To  compute  this,  we 
 smoothed  normal  segments  by  collapsing  and  merging  near  diploid  segments,  and  then  removed 
 samples  with  less  than  20  non-diploid  aberrations.  This  reduced  the  number  of  available  cell  line 
 profiles to 1,170. 

 Data preprocessing 
 To  enable  comparison  between  two  copy-number  profiles,  segmented  profiles  were  converted  into 
 evenly  sized  bins  across  the  genome  (default  500  kb).  To  adjust  for  noise  at  copy  number 
 boundaries,  a  window-based  smoothing  procedure  was  used  to  align  boundaries  across  samples. 
 CNpare  also  provides  the  option  to  match  samples  based  on  the  exposure  to  different  types  of 
 chromosomal  instability.  To  do  this,  we  computed  signature  activities  for  the  7  ovarian  signatures 
 from  copy-number  profiles  by  applying  the  computational  approach  outlined  in  Macintyre  et  al.  16  . 
 For  running  this  approach,  copy  number  data  was  initially  formatted  into  a  list  of  segment  tables 
 (one  element  of  the  list  per  sample).  Then,  values  of  six  different  features  from  each  copy-number 
 profile  were  computed,  and  then  the  linear  combination  decomposition  function  from  YAPSA  20  was 
 used for identifying the signature activities in each sample. 

 Comparison of copy-number profiles 
 Similarity  between  bin-level  copy-number  profiles  was  quantified  using  four  different  metrics: 
 Pearson  correlation  coefficient,  Manhattan  distance,  Euclidean  distance  and  Cosine  Similarity.  The 
 Pearson  correlation  test  was  computed  using  the  cor()  function  from  the  stats  R  package  (version 
 3.6.2),  while  the  other  metrics  were  directly  calculated.  As  copy  number  signatures  are 
 compositional, only cosine similarity was used. 
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 Calculating percentage genome difference 
 Percentage  genome  difference  was  calculated  at  a  copy  number  segment  level  and  represents  the 
 fraction  of  the  total  human  genome  length  where  the  segment  value  between  the  input  profile  and 
 the  matched  profile  is  different.  To  compute  this,  copy  number  values  of  the  input  profile  were 
 recorded  for  each  segment  present  in  the  matched  cell  line  copy-number  profile.  If  more  than  one 
 segment  of  the  input  profile  fell  within  a  reference  segment,  these  segments  were  merged  by 
 computing  the  median.  Copy  numbers  were  rounded  to  the  nearest  integer  for  computing 
 differences.  The  total  length  of  different  segments  was  divided  by  the  whole  genome  size,  and  the 
 percentage reported. 

 Comparison using copy-number signatures 
 Comparison  based  on  copy  number  signatures  was  performed  via  clustering.  In  this  case,  CNpare 
 reports  similar  cell  lines  based  on  shared  cluster  membership.  k-means  clustering  was  performed 
 using  the  akmeans()  function  from  the  akmeans  R  package  (version  1.1).  This  method 
 automatically  identifies  the  optimal  number  of  clusters.  Cosine  similarity  between  the  7  copy 
 number signatures was used as a distance metric. 

 Comparing cell lines using other approaches 
 In  order  to  benchmark  CNpare  against  other  approaches  for  choosing  matched  cell  lines,  we 
 computed a number of variables representative of these alternative methods. 

 Gene-level copy number 
 Gene  positions  were  downloaded  from  UCSC  Table  Browser  21  .  We  extracted  the  copy  numbers  in 
 the  transcription  start  of  27,212  protein-coding  genes,  and  then  compared  gene-level  copy 
 numbers across cell lines using Pearson correlation. 

 Chromosome arm copy number 
 We  computed  the  whole  arm  chromosome  copy  number  by  averaging  the  values  of  all  segments 
 aligned  to  each  chromosome  arm.  Then,  we  performed  a  Pearson  correlation  to  compare  CCLE 
 and GDSC cell lines. 

 Ploidy status 
 For  each  cell  line,  we  computed  the  weighted  mean  copy  number  values  of  all  segments  to  infer 
 the  overall  ploidy.  The  relative  weight  of  each  segment  depends  on  their  length.  Mean  values  were 
 then  rounded  to  the  closest  integer  value,  and  the  proportion  of  cell  pairs  matched  by  the  ploidy 
 status was then computed (81.57%, 248 cells). 

 Gene-expression profiles 
 RNAseq  FPKM  gene  expression  data  from  73  cell  lines  included  in  both  CCLE  and  GDSC  were 
 downloaded  from  Cell  Model  Passports  (  https://cellmodelpassports.sanger.ac.uk/downloads  ). 
 Gene  expression  levels  were  compared  across  cell  lines  using  Pearson  correlation  using  cor.test  () 
 from the stats R package (version 3.6.2). 
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 Testing suitability of OVKATE cell line matches 
 To  validate  the  suitability  of  the  cell  lines  matched  with  OVKATE  we  assessed  correlation  of  gene 
 expression and DNA methylation between the lines. 

 For  gene  expression,  we  downloaded  log2  transformed  TPM  gene  expression  data  for  the  protein 
 coding  genes  from  DepMap  Public  21Q3  (  https://depmap.org/portal/download/  ).  We  selected  those 
 genes  which  had  an  absolute  log-fold  change  greater  than  1  for  OVKATE  and  used  these  genes  to 
 perform  a  Pearson  correlation  with  PANC0203,  KURAMOCHI  and  OVISE  cell  lines  using  cor.test() 
 from  the  stats  R  package  (version  3.6.2).  Empirical  p-values  were  calculated  by  dividing  the 
 number  of  cell  lines  with  a  higher  r  value  than  the  observed  r,  by  the  total  number  of  correlations 
 made. 

 For  DNA  methylation,  data  from  1Kb  upstream  of  gene  transcription  start  sites 
 (CCLE_RRBS_TSS1kb_20181022.txt.gz)  was  obtained  from  CCLE  2019  18  .  Methylation  profiles  for 
 cell  lines  EKVX,  UO31,  HOP62,  MOLT3,  OE21,  JHUEM7,  ML1,  CL34,  REC1  and  OPM2  were 
 removed  due  to  insufficient  data.  Pearson  correlation  was  calculated  between  all  cell  line 
 methylation  profiles  using  cor.test()  from  the  stats  R  package  (version  3.6.2).  Empirical  p-values 
 were  calculated  by  dividing  the  number  of  cell  lines  with  a  higher  r  value  than  the  observed  r,  by 
 the total number of correlations made. 

 Availability and implementation 
 CNpare  is  available  as  an  R  package  at  https://github.com/macintyrelab/CNpare  .  All  analysis 
 performed  in  the  manuscript  can  be  reproduced  via  the  code  found  at 
 https://github.com/macintyrelab/CNpare_analyses 
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