

1 Use of eVLP-based vaccine candidates to broaden immunity against SARS-CoV-2 variants

2 Jasminka Bozic^{a1}, Tanvir Ahmed^{a1}, Barthelemy Ontsouka^a, Anne-Catherine Fluckiger^{b*}, Abebaw
3 Diress^a, Tamara Berthoud^a, Xiaoyang Yuan^a, Lanjian Yang^a, Francisco Diaz-Mitoma^c, David E.
4 Anderson^c, Catalina Soare^{a1}

5 ^aVBI Vaccines, 201-310 Hunt Club Road, Ottawa ON K1V 1C1, Canada; ^bBionaria, 11Bis Rue
6 de la Garenne, 69290 Saint-Genis-les-Ollières, France; ^cVBI Vaccines, Cambridge, 222
7 Third Street, Cambridge, 02142 Massachusetts, USA.

8 *Corresponding author:

9 Email: afluckiger@vbivaccines.com (A.-C. Fluckiger)

10 1: These authors contributed equally to this work.

11 Abstract

12 Rapid emergence of SARS-CoV-2 variants is a constant threat and a major hurdle to reach herd
13 immunity. We produced VBI-2905a, an enveloped virus-like particle (eVLP)-based vaccine
14 candidate expressing prefusion spike protein from the Beta variant that contains several escape
15 mutations. VBI-2905a protected hamsters against infection with a Beta variant virus and induced
16 high levels of neutralizing antibodies against Beta RBD. In a heterologous vaccination regimen, a
17 single injection of VBI-2905a in animals previously immunized with VBI-2902, a vaccine candidate
18 expressing S from ancestral SARS-CoV-2, hamsters were equally protected against Beta variant
19 infection. As an alternate strategy to broaden immunity, we produced a trivalent vaccine expressing
20 the prefusion spike protein from SARS-CoV-2 together with unmodified S from SARS-CoV-1 and
21 MERS-CoV. Relative to immunity induced against the ancestral strain, the trivalent vaccine VBI-
22 2901a induced higher and more consistent antibody binding and neutralizing responses against a
23 panel of variants including Beta, Delta, Kappa, and Lambda, with evidence for broadening of
24 immunity rather than just boosting cross-reactive antibodies.

25 **Keywords**

26 SARS-COV-2 variants; Vaccine; Virus-like-particles; Immunogenicity; cross-neutralizing antibodies

27 **Abbreviations**

28 eVLP, enveloped virus-like particules; CoV, coronavirus; VOC, Variant of concern; VOI, varaint of
29 interest; RBD, receptor binding domain; NTD, N-terminal domain; Ab, antibody; nAb, neutralizing
30 antibody; MLV, murine leukemia virus; ELISA, enzyme-linked-immuno-sorbent-assay; PRNT,
31 plaque reduction neutralization test; EPT, end-point titer; Alum, aluminum phosphate; IP,
32 IntraPeritoneal; IM, IntraMuscular; NRC, National Research Council Canada; VIDO,
33 Vaccine and Infectious Disease Organization

34 **Introduction**

35 The outbreak of a severe respiratory disease in Wuhan, China in December 2019 led to the
36 identification of a new betacoronavirus related to the severe acute respiratory syndrome (SARS)
37 coronavirus that was named SARS-CoV-2 (Wu et al., 2020). SARS-CoV-2 rapidly spread
38 worldwide in a global pandemic in 2019 (COVID-19) and was declared a public health emergency
39 of international concern (World Health Organization, 2020). Unprecedented effort and innovation in
40 vaccine development resulted in vaccines, deployed under emergency use authorization, against
41 SARS-CoV-2 in less than a year (FDA, 2020).

42 Coronaviruses are large single-strand RNA viruses with replication that is error-prone
43 despite some proofreading mechanisms (Smith and Denison, 2012). Resulting mutational changes
44 can either be detrimental and lead to viral extinction or confer advantage to the virus and result in
45 better adaptation to the host. Massive replication of SARS-CoV-2 on a global scale contributes to
46 increasing numbers of mutations and emergence of variants. Variants of concern (VOC) are
47 defined by clear evidence indicating a significant impact on transmissibility, severity, and/or
48 immunity that is likely to have an impact on the disease epidemiology (EDCC, 2021). In July 2021,
49 four VOC that first emerged as locally dominant variants before spreading globally were discovered
50 in the U.K. (B.1.1.7 – “Alpha”), South Africa (B.1.351 – “Beta”), Brazil (P1 – “Gamma”), and more

51 recently in India (B.1.617 – “Delta”). In late August the Mu variant first emerged in Columbia,
52 joining this list of Variants of Interest (VOI) together with Lambda while the incidence of Alpha was
53 decreasing.

54 The CoV spike (S) protein contains a receptor binding domain (RBD) critical for binding to
55 and infection of host cells, and is a major target for mutational changes which enhance adaptation
56 to the host (Berrio et al., 2020; Boni et al., 2020). Each of the VOC are characterized by a number
57 of shared mutations expressed on S, primarily located in the RBD and N-terminal domain (NTD),
58 that serve to increase inter-individual transmission, escape neutralizing antibodies acquired by
59 vaccination or prior natural SARS-CoV-2 infection, or both (Harvey et al., 2021; Zhang et al.,
60 2020). For instance, the first identified VOC, Alpha, is characterized by a D614G mutation, among
61 other mutations, that is now fixed in all globally circulating variants of the virus. D614G is
62 associated with increased transmissibility (Plante et al., 2021; Zhang et al., 2020) but does not
63 have a major impact on neutralization by serum from either vaccinated or COVID-19 convalescent
64 individuals. The following VOC that emerged in South Africa was rapidly identified as a vaccine-
65 escape mutant. This Beta variant bears several mutations in its RBD, including E484K and N501Y,
66 which significantly inhibit neutralizing activity elicited against the Ancestral Wu-1 strain of virus
67 whether acquired by vaccination or infection (Tegally et al., 2020; Cele et al., 2021). Emergence of
68 escape mutants is a major concern because most of the licensed vaccines are based on
69 expression of various forms of S using the Ancestral sequence of the S protein (Hoffmann et al.,
70 2021 ; Kyriakidis et al., 2021; Lamb, 2021). More recently, the Delta variant spread from India to
71 many countries with great speed in spite of significant proportions of fully vaccinated individuals in
72 many countries. Delta shows the RBD mutation L452R which appeared independently in several
73 areas of the globe, including in variants Lambda, Kappa, Epsilon, Iota, and contributes to escape
74 neutralization from Abs induced by previously acquired immunity (Deng et al. 2021). Additionally,
75 mutation P681R in the furin cleavage site of Delta could increase the rate of S1-S2 cleavage,
76 resulting in better transmissibility (Cherian et al., 2021).

77 Recently, we developed a SARS-CoV-2 candidate vaccine, VBI-2902a, comprised of
78 enveloped virus-like particles (eVLPs) expressing a modified prefusion form of the ancestral S
79 sequence, adjuvanted with aluminum phosphate (Alum). We recently demonstrated that VBI-2902a

80 induced strong neutralizing activity in mouse immunogenicity studies, and protected hamsters from
81 SARS-CoV-2 challenge using a virus related to the ancestral isolate (Fluckiger et al. 2021). Interim
82 results from a Phase I clinical study in healthy, seronegative individuals (ClinicalTrials.gov
83 Identifier: NCT04773665) demonstrated robust (4.3-fold greater) neutralizing activity 28 days after
84 a second, 5 μ g dose of VBI-2902a, relative to a panel of COVID-19 convalescent sera.

85 Employing the same strategy, we produced a new vaccine candidate, VBI-2905a, that
86 expresses a modified prefusion S based on the Beta variant sequence. Consistent with previous
87 studies, VBI-2905a elicited neutralizing antibody responses against the Beta variant which were
88 significantly greater than those induced by VBI-2902a, and responses against the ancestral strain
89 which were comparable to VBI-2902a. Consistent with the role of neutralizing antibody responses
90 as a presumed correlate of protection, greater efficacy was observed in hamsters vaccinated with
91 VBI-2905a relative to VBI-2902a when challenged with the Beta variant. Noteworthy was the
92 observation in an alternative vaccination regimen that priming with VBI-2902a followed by a single
93 booster dose of VBI-2905a induced strong neutralizing antibody responses against the ancestral
94 strain as well as both Beta and Delta VOC.

95 We also evaluated immunity elicited with a distinct eVLP-based candidate, VBI-2901a,
96 which expresses a modified prefusion S based on the ancestral sequence in addition to the related
97 S proteins from SARS CoV-1 and MERS. Immunization with VBI-2901a induced neutralizing
98 antibody titers against the Beta variant significantly greater than VBI-2902a and comparable to
99 those induced with VBI-2905a, effectively broadening immunity to VOC not contained within the
100 vaccine. Antibody binding and neutralizing titers against an extended panel of variants
101 demonstrated responses typically 3-fold greater than that observed with VBI-2902a. Collectively,
102 these results demonstrate multiple ways to broaden immunity to SARS-CoV-2 VOC.

103 **Material and Methods**

104 *Plasmids, eVLP production, and adjuvant formulation*

105 Expression plasmid for the production of eVLPs expressing SARS-CoV-2 S proteins have been
106 described previously (Fluckiger et al. 2021). Briefly, the prefusion modified form of S was obtained
107 by introducing a mutation at the furin cleavage site (RRAR → GSAS) and two Proline at position
108 K986-V987 of the Wuhan reference and swapping the transmembrane cytoplasmic domain with
109 that of the VSV-G protein. VBI-2902a was produced using the Wuhan-Hu-1 spike sequence
110 (Genbank accession number MN908947), and VBI-2905a was produced using the same strategy
111 with S sequence from Beta variant B.1.351 isolate EPI_ISL_911433 (GISAID). Production and
112 purification of eVLPs were conducted as described elsewhere (Fluckiger et al. 2021). The
113 preparation of eVLPs expressing either Wuhan reference Spike or Beta variant Spike were
114 formulated in Aluminum phosphate (Alum, Adjuvaphos®, Invitrogen) to obtain vaccine candidate
115 VBI-2902a and VBI-2905a, respectively. To produce VBI-2901, Two additionnal plasmids were
116 produced that expressed the optimized sequences for full-length unmodified S protein from SARS-
117 CoV-1 and MERS-CoV. To produce trivalent eVLPs, HEK-293SF-3F6 were cotransfected with
118 these 2 plasmids together with the plasmid coding for prefusion ancestral SARS-CoV-2 S used for
119 VBI-2902a production, and the MLVGAG plasmid as described. Expression of SARS-CoV-2 S,
120 SARS-CoV-1 S, MERS-CoV S and GAG were determined by Western blot analysis
121 (Supplementary material Fig.S1).

122 *Mouse immunization study*

123 Six- to 8-week-old female C57BL/6 mice were purchased from Charles River (St Constant,
124 Quebec Canada). The animals were acclimatized for a period of at least 7 days before any
125 procedures were performed. The animal studies were conducted under ethics protocols approved
126 by the NRC Animal Care Committee. Mice were maintained in a controlled environment in
127 accordance with the “Guide for the Care and Use of Laboratory Animals” at the Animal Research
128 facility of the NRC’s Human Health Therapeutics Research Centre (Montreal). Mice were randomly
129 assigned to experimental groups of 10 to 15 mice and received intraperitoneal (IP) injections with
130 0.5 mL of adjuvanted SARS-CoV-2 eVLPs as described elsewhere (Fluckiger, 2021). Blood was

131 collected on day -1 before injection and day 14 after each injection for humoral immunity
132 assessment at time of euthanasia.

133 *Hamster challenge study*

134

135 Syrian golden hamsters (males, 5-6 weeks old) were purchased from Charles River Laboratories
136 (Saint-Constant, Quebec, Canada). The study was conducted under approval of the CCAC
137 committee at the Vaccine and Infectious Disease Organization (VIDO) International Vaccine Centre
138 (Saskatchewan, Canada). Animals were randomly assigned to each experimental group (A, B)
139 (n=10/group). Animals received 2 intramuscular (IM) injection of either 0.9%-saline buffer (saline
140 control group) or VBI-2902a (VBI-2902a group), or VBI-2905a (VBI-2905a group), or a first dose of
141 VBI-2902a followed by a second injection of VBI-2905a (Heterologous boost group). Each dose of
142 eVLP-based vaccine contained 1 μ g of Spike protein formulated with 125 μ g of Alum. Injection was
143 performed by intramuscular (IM) route at one side of the thighs in a 100 μ L volume. The schedule
144 for immunization, challenge and sample collection is depicted on Fig. 2a. All animals were
145 challenged intranasally via both nares with 50 μ L/nare containing 1 \times 10⁵ TCID50 of hCoV-19/South
146 Africa/KRISP-EC-K005321/2020 (Seq. available at GISAID: EPI_ISL_678470) strain per animal.
147 Body weights and body temperature were measured at immunization for 3 days and daily from the
148 challenge day. General health conditions were observed daily through the entire study period.
149 Blood samples were collected as indicated on Fig. 2a.

150 *Antibody binding titers*

151 Anti-SARS-CoV-2 specific IgG binding titers in sera were measured by standard ELISA procedure
152 described elsewhere (Kirchmeier et al., 2014), using recombinant SARS-CoV-2 S RBD proteins
153 (Sinobiological). For total IgG binding titers, detection was performed using a goat anti-mouse IgG-
154 Fc HRP (Bethyl), or Goat anti-Hamster IgG HRP (ThermoFisher), or goat anti-human IgG heavy
155 and light chain HRP-conjugated (Bethyl). HRP-conjugated Goat anti-mouse IgG1 and HRP-
156 conjugated goat anti-mouse IgG2b HRP (Bethyl) were used for the detection of isotype subtype.

157 Determination of Ab binding titers to Spike RBDs was performed using SARS-CoV-2 RDB
158 recombinant protein for the specificity of choice as described in Suppl. Table 1. The detection was
159 completed by adding 3,3',5,5'-tetramethylbenzidine (TMB) substrate solution, and the reaction
160 stopped by adding liquid stop solution for TMB substrate. Absorbance was read at 450 nm in an
161 ELISA microwell plate reader. Data fitting and analysis were performed with SoftMaxPro 5, using a
162 four-parameter fitting algorithm.

163 *Virus neutralization assays*

164 Neutralizing activity in mouse serum samples was measured by standard plaque reduction
165 neutralization test (PRNT) on Vero cells at the NRC using 100 PFU of
166 SARS-CoV-2/Canada/ON/VIDO-01/2020 (Wu-1 virus) or hCoV-19/South Africa/KRISP-EC-
167 K005321/2020 (Beta virus). Results were represented as PRNT90 end point titer (EPT),
168 corresponding to the lowest dilution inhibiting respectively 90% of plaque formation in Vero cell
169 culture.

170

171 *Neutralization assay with pseudoparticles*

172 Production of pseudoparticles (pp) pseudotyped with various spike proteins and neutralization
173 assay was adapted from Dreux et al, 2009. Expression plasmid were designed using full length S
174 protein sequences as described previously. Accession number and mutations are listed in Suppl.
175 Material Table 1. We produced infectious SARS-CoV-2pp carrying a GFP-firefly luciferase double
176 reporter gene (plasmid pjm155, Garrone et al., 2011) instead of green fluorescent protein (GFP).
177 Luciferase activity in infected hACE2-HEK293 cells was measured with a Bright-Glo Luciferase
178 assay system (Promega) and a Beckman Coulter DTX880 plate reader. Data were expressed in
179 relative luminescence units (RLUs). The percentage of neutralization was calculated by comparing
180 the luciferase activity in cells infected with SARS-CoV-2pp in the presence of serum from
181 immunized animals with luciferase activity in cells infected with SARS-CoV-2pp in the absence of
182 serum.

183 **Statistics**

184 All statistical analyses were performed using GraphPad Prism 9 software (La Jolla, CA). Unless
185 indicated, multiple comparison was done with Dunn's corrected Kruskall-Wallis test on unpaired
186 samples and Friedman test on paired samples. The data were considered significant if $p < 0.05$.
187 Geometric mean titers (GMT) with standard deviation are represented on graphs. No samples or
188 animals were excluded from the analysis. Randomization was performed for the animal studies.

189 **Results**

190

191 **Heterologous boosting with eVLPs bearing S protein from the Beta variant broadens**
192 **immunity**

193 VBI-2902a is an eVLP-based vaccine candidate that expresses a modified prefusion SARS-CoV-2
194 S protein from the ancestral Wu-1 strain, adjuvanted with Alum (Fluckiger et al., 2021). VBI-2905a
195 expresses a modified prefusion SARS-CoV-2 S protein from the Beta variant and is also
196 adjuvanted with Alum. We immunized mice with 2 injections of VBI-2902a, 2 injections of VBI-
197 2905a, or a first injection of VBI-2902a followed by a second injection of VBI-2905a (heterologous
198 boost). As previously described (Fluckiger et al., 2021), 2 doses of VBI-2902a induced high levels
199 of neutralizing Ab response against the ancestral Wu-1 strain (GMT = 2,458) which were
200 significantly reduced against the Beta variant (GMT = 94) (Fig.1a-b). By contrast, VBI-2905a
201 induced Abs that neutralized Beta and ancestral viruses at similar levels in mice, yielding only a
202 2.2-fold difference with non significant $p = 0.1484$ (Fig. 1a-b). Sera from mice in the heterologous
203 boost group cross-neutralized both the Beta variant and the ancestral strain with similar potencies
204 (1,4 fold difference with $p = 0.3828$). Heterologous boosting with VBI-2905a significantly increased
205 the PRNT90 against the ancestral strain compared to 2 doses of VBI-2905a alone (from GMT of
206 371 to 820, $p = 0.0267$) to levels that were closer to those reached after two doses of VBI-2902a

207 ($p = 0.0131$), while PRNT90 GMTs against the Beta variant were comparable to 2 doses of VBI-
208 2905a (respectively GMT = 564 vs GMT = 619, $p = 0.8785$).

209 Analysis of Ab binding titers to S protein RBDs was consistent with the neutralization data
210 (Fig.1c). VBI-2902a induced high levels (most of the sera $>10^6$ EPT with GMT 974×10^3) of Ab
211 binding titers against the ancestral S RBD with significantly reduced cross-reactivity against the
212 Beta variant RBD (GMT 74×10^3), though there was good cross-reactivity against the Delta variant
213 RBD (GMT 616×10^3). Antisera from immunization with VBI-2905a showed similar crossreactivity
214 against Ancestral, Delta and Beta RBD (respectively GMT 322×10^3 , 192×10^3 and 217×10^3). Animals
215 receiving the heterologous prime boost regimen had similar reactivity to ancestral and Delta RBD
216 as compared with the VBI-2902a group, and similar reactivity to Beta RBD compared to the VBI-
217 2905a group.

218 **Heterologous boosting with VBI-2905a protects hamsters against SARS-COV-2 Beta variant**

219 Golden Syrian hamsters were intramuscularly vaccinated 3 weeks apart with two doses of
220 eVLP vaccine candidates, comprised of: two doses of VBI-2902a (group VBI-2902a), two doses of
221 VBI-2905a (group VBI-2905a), or a priming dose of VBI-2902a followed by a second, booster dose
222 of VBI-2905a (group heterologous boost) (Fig. 2a).

223 Neutralizing activities titers against the ancestral virus were comparable across all groups,
224 including hamsters immunized with 2 doses of the Beta S candidate (VBI-2905a) (Fig.2b).
225 Neutralization of the Beta variant was lower after immunization with VBI-2902a, with a significant
226 9.6-fold decrease of Beta nAb compared to homotypic immunization with VBI-2905a (GMT 99 in
227 VBI-2902a and 1083 in VBI-2905a, $p = 0.0033$). In contrast, nAb titers against Beta RBD were
228 similar in groups that received either two doses of VBI-2905a or heterologous boosting.

229 Three weeks after the second immunization, hamsters were exposed to 1×10^5 TCID50 of
230 the Beta variant virus in each nare. In the placebo group, hamsters began losing weight the day
231 after infection which continued until day 6-8. Vaccination with 2 doses of VBI-2902a based on the
232 ancestral S protein induced limited protection against challenge with moderate weight loss
233 recorded until day 4, and only a fraction (3/5) of the animals fully regained their initial body weight
234 after day 7. By contrast, hamsters vaccinated with 2 doses of VBI-2905a exhibited transient weight

235 loss up to day 2-3 and then rapidly regained weight. A similar pattern was observed in hamsters
236 that received VBI-2905a as a boost. As we have observed in previous hamster challenge studies of
237 VBI-2902a, there was a correlation between neutralizing antibody titers against the Beta variant
238 and protection from disease (weight loss) after challenge (data not shown).

239 **Immunization with a pan-coronavirus candidate may protect against VOC not contained
240 within the vaccine**

241 We hypothesized that exposing the immune system to multiple spike proteins at the same
242 time might help broaden humoral immunity that could recognize emerging variants or new
243 coronaviruses more phylogenetically distant to the vaccine candidate. To test this hypothesis we
244 produced VBI-2901a, a trivalent eVLP vaccine formulated with Alum, that expresses a prefusion
245 form of the ancestral SARS-CoV-2 S (identical to VBI-2902) with unmodified full length S from
246 SARS-CoV-1 and MERS-CoV (Suppl. Fig. S1). Mice that received 2 doses of trivalent VBI-2901a
247 had increased nAb titers (GMT 2915) against the ancestral virus relative to mice that received 2
248 doses of monovalent VBI-2902a (GMT 831) or VBI-2905a (GMT 448) (Fig. 3a). Moreover, trivalent
249 VBI-2901a induced neutralization activity against the Beta virus that was equivalent to what was
250 observed in response to homotypic VBI-2905a, and significantly higher than that observed after
251 VBI-2902a vaccination (Fig. 3a). Neutralization of both Delta and Kappa variant pseudotyped
252 particles confirmed broadened neutralizing immunity elicited by VBI-2901a, with titers
253 approximately 3-fold greater than those induced by VBI-2902a (Fig. 3b). Consistent with the
254 neutralization activity, VBI-2901a induced higher and/or more consistent levels of Ab binding to the
255 RBD among all variants evaluated, including Beta, Delta, and Lambda (Fig. 3c).

256 **Discussion**

257 Less than a year after identification of the new SARS-CoV-2 virus, variants emerged with
258 impact on transmissibility, severity and immunity (EDCC, 2021) that challenge the development
259 and durability of vaccine strategies designed to reach herd immunity. Indeed, all approved
260 vaccines have been designed against the ancestral SARS-CoV-2 virus that is no longer circulating

261 but has been replaced by variants containing mutations which are enabling escape from nAbs
262 induced against the ancestral strain (Berio et al. 2020; Boni et al, 2020). In the present study, we
263 compared several strategies to broaden antibody-based immunity which is presumed to be a
264 correlate of protection against SARS-CoV-2.

265 In addition to our eVLP vaccine expressing the prefusion S from the ancestral SARS-CoV-2
266 virus, we produced an eVLP-based vaccine expressing the prefusion S from Beta variant. Beta
267 was chosen for its deleterious mutations E484K and K417N, which enable escape neutralization
268 from ancestral virus mAbs (Hoffman et al, 2021). We have previously demonstrated that 2 doses
269 of VBI-2902a protected hamsters against infection by the ancestral Wuhan SARS-CoV-2 virus and
270 we confirmed here that VBI-2905a also protected hamsters from infection with the SARS-CoV-2
271 Beta variant. We have also demonstrated that a heterologous boost with Beta variant vaccine VBI-
272 2905a given to animals that had received a single priming dose of ancestral strain vaccine VBI-
273 2902a protected against the new Beta variant while also maintaining cross-reactivity against the
274 ancestral strain. Moreover, heterologous eVLP boosting with VBI-2905a also induced high levels of
275 antibody reactivity against the globally dominant Delta VOC. Additional challenge studies are in
276 progress to evaluate if a heterologous boosting strategy can confer protection in Syrian golden
277 hamsters against infection with the Delta variant.

278 Building upon the flexibility of the eVLP vaccine technology, we produced VBI-2901a, a
279 multivalent coronavirus candidate containing S proteins from SARS-CoV-2, SARS-CoV, and
280 MERS-CoV with the intent to broaden immunity to emerging VOC as well as novel, related
281 betacoronaviruses that may infect humans in the future. Vaccines currently in use or in clinical
282 evaluation that are based on the ancestral strain induce neutralizing antibody responses that are
283 less reactive against the Beta VOC, with titers typically 5-10 lower than against the ancestral strain
284 (Wibmer et al., 2021; Wang et al., 2021). In marked contrast, VBI-2901a elicited robust nAb
285 responses not only against the ancestral SARS-CoV-2 strain, but also against the Beta variant,
286 providing evidence of the vaccine candidate's ability to broaden immunity and "anticipate" an
287 emerging variant not contained within the vaccine. High levels of cross-neutralizing activity elicited
288 by VBI-2901a were also observed against the Delta and Kappa variants. Other studies have shown
289 that plasma from individuals previously infected with SARS-CoV-1 who received the BNT162b2

290 mRNA vaccine, which is based on the ancestral SARS-CoV-2 virus, contained a broad spectrum of
291 neutralizing antibodies against 10 sarbecoviruses tested, including SARS-CoV-2 variants, several
292 strains of SARS-CoV-1, and Bat and Pangolin CoV (Tan et al., 2021). Further studies are
293 underway to better understand how VBI-2901a, which similarly exposes the B cell repertoire to
294 spike proteins from both SARS-CoV-1 and SARS-CoV-2, broadens neutralizing activity against
295 SARS-CoV-2 variants as well as to assess neutralizing responses to phylogenetically more distant
296 coronaviruses.

297 Broadening of the neutralizing antibody response has also been shown using nanoparticles
298 of mosaic RBD from various betacoronavirus species (Cohen et al., 2021; Walls et al., 2021).
299 However, the N terminal domain of the S protein is another important target for neutralizing
300 antibodies and the site of many mutations that could potentially contribute to antibody
301 neutralization escape (Andreoni et al. 2021). Given that VBI-2901a expresses the full-length
302 ectodomain of the Coronaviruses spike, it will be critical to determine the respective roles and
303 importance of the RBD, NTD, and the highly conserved S2 domains in broadening immunity.

304 Whereas vaccines based on the ancestral strain of SARS-CoV-2 protect against severe
305 disease caused by variants of concern, variants such as Beta are less sensitive to vaccine-induced
306 immunity and efficacy rates are accordingly lower. This is likely to become more apparent as
307 vaccine-induced immunity wanes and as variants continue to emerge with even greater numbers of
308 mutations. One strategy to address these concerns is to administer booster doses to increase
309 neutralizing antibody titers against the ancestral strain, a subset of which may cross-neutralize
310 variants of concern. We have described three alternate strategies that have the potential to
311 broaden immunity to a greater extent. An eVLP-based candidate based on the Beta variant S
312 protein, VBI-2905a, induces potent immunity against not just the Beta virus, but also against the
313 ancestral strain, though it is less potent against the Delta variant. However, building upon immunity
314 induced against the ancestral strain with a priming dose of VBI-2902a, a single booster dose of
315 VBI-2905a resulted in potent and more balanced neutralizing antibody responses against the
316 ancestral virus, and Beta and Delta variants. Finally, we have described a novel trivalent eVLP
317 candidate, VBI-2901a, which elicited potent and broad immunity against all variants tested,

318 including Beta, Delta, Lambda, and Kappa, with the testing for the potential to neutralize more
319 distantly related viruses currently underway.

320 **Acknowledgment**

321 The authors want to thank Adam Asselin, Matthew Yorke, Teresa Daoud, Rebecca Wang, Gillian
322 Lampkin (VBI vaccines) for outstanding technical support; NRC Animal Resources Group and the
323 VIDO Saskatchewan team for remarkable care with animal experiments.

324 **Funding**

325 The work performed in this manuscript was supported by the Coalition for Epidemic Preparedness
326 Innovations (CEPI)

327 **References**

- 328 1. Andreano E, Piccini G, Licastro D, Casalino L, Johnson NV, Paciello I, Dal Monego S, Pantano E, Manganaro N, Manenti A, Manna R, Casa E, Hyseni I, Benincasa L, Montomoli E, Amaro RE, McLellan JS, Rappuoli R. SARS-CoV-2 escape from a highly neutralizing COVID-19 convalescent plasma. *Proc Natl Acad Sci U S A*. 2021 Sep 7;118(36):e2103154118. doi: 10.1073/pnas.2103154118. PMID: 34417349.
- 329 2. Berrio A, Gartner V, Wray GA. Positive selection within the genomes of SARS-CoV-2 and other Coronaviruses independent of impact on protein function. *PeerJ*. 2020 Oct 16;8:e10234. doi: 10.7717/peerj.10234. PMID: 33088633; PMCID: PMC7571416.
- 330 3. Boni MF, Lemey P, Jiang X, Lam TT, Perry BW, Castoe TA, Rambaut A, Robertson DL. Evolutionary origins of the SARS-CoV-2 sarbecovirus lineage responsible for the COVID-19 pandemic. *Nat Microbiol*. 2020 Nov;5(11):1408-1417. doi: 10.1038/s41564-020-0771-4. Epub 2020 Jul 28. PMID: 32724171.
- 331 4. Cele S, Gazy I, Jackson L, Hwa SH, Tegally H, Lustig G, Giandhari J, Pillay S, Wilkinson E, Naidoo Y, Karim F, Ganga Y, Khan K, Bernstein M, Balazs AB, Gosnell BI, Hanekom W, Moosa MS; Network for Genomic Surveillance in South Africa; COMMIT-KZN Team,

343 Lessells RJ, de Oliveira T, Sigal A. Escape of SARS-CoV-2 501Y.V2 from neutralization by
344 convalescent plasma. *Nature*. 2021 May;593(7857):142-146. doi: 10.1038/s41586-021-
345 03471-w. Epub 2021 Mar 29. PMID: 33780970.

346 5. Cherian S, Potdar V, Jadhav S, Yadav P, Gupta N, Das M, Rakshit P, Singh S, Abraham P,
347 Panda S, Team N. SARS-CoV-2 Spike Mutations, L452R, T478K, E484Q and P681R, in
348 the Second Wave of COVID-19 in Maharashtra, India. *Microorganisms*. 2021 Jul
349 20;9(7):1542. doi: 10.3390/microorganisms9071542. PMID: 34361977; PMCID:
350 PMC8307577.

351 6. Cohen AA, Gnanapragasam PNP, Lee YE, Hoffman PR, Ou S, Kakutani LM, Keeffe JR, Wu
352 HJ, Howarth M, West AP, Barnes CO, Nussenzweig MC, Bjorkman PJ. Mosaic
353 nanoparticles elicit cross-reactive immune responses to zoonotic coronaviruses in mice.
354 *Science*. 2021 Feb 12;371(6530):735-741. doi: 10.1126/science.abf6840. Epub 2021 Jan
355 12. PMID: 33436524; PMCID: PMC7928838.

356 7. Deng X, Garcia-Knight MA, Khalid MM, Servellita V, Wang C, Morris MK, Sotomayor-
357 González A, Glasner DR, Reyes KR, Gliwa AS, Reddy NP, Sanchez San Martin C,
358 Federman S, Cheng J, Balceruk J, Taylor J, Streithorst JA, Miller S, Sreekumar B, Chen PY,
359 Schulze-Gahmen U, Taha TY, Hayashi JM, Simoneau CR, Kumar GR, McMahon S, Lidsky
360 PV, Xiao Y, Hemarajata P, Green NM, Espinosa A, Kath C, Haw M, Bell J, Hacker JK,
361 Hanson C, Wadford DA, Anaya C, Ferguson D, Frankino PA, Shivram H, Lareau LF,
362 Wyman SK, Ott M, Andino R, Chiu CY. Transmission, infectivity, and neutralization of a
363 spike L452R SARS-CoV-2 variant. *Cell*. 2021 Jun 24;184(13):3426-3437.e8. doi:
364 10.1016/j.cell.2021.04.025. Epub 2021 Apr 20. PMID: 33991487; PMCID: PMC8057738.

365 8. Dreux M, Cosset FL. Detection of neutralizing antibodies with HCV pseudoparticles
366 (HCVpp). *Methods Mol Biol*. 2009;510:427-38. doi: 10.1007/978-1-59745-394-3_32. PMID:
367 19009280.

368 9. Fluckiger AC, Ontsouka B, Bozic J, Diress A, Ahmed T, Berthoud T, Tran A, Duque D, Liao
369 M, McCluskie M, Diaz-Mitoma F, Anderson DE, Soare C. An enveloped virus-like particle
370 vaccine expressing a stabilized prefusion form of the SARS-CoV-2 spike protein elicits
371 highly potent immunity. *Vaccine*. 2021 Aug 16;39(35):4988-5001. doi:

372 10.1016/j.vaccine.2021.07.034. Epub 2021 Jul 16. PMID: 34304928; PMCID:
373 PMC8282453.

374 10. Garrone P, Fluckiger AC, Mangeot PE, Gauthier E, Dupeyrot-Lacas P, Mancip J, Cangialosi
375 A, Du Chéné I, LeGrand R, Mangeot I, Lavillette D, Bellier B, Cosset FL, Tangy F,
376 Klatzmann D, Dalba C. A prime-boost strategy using virus-like particles pseudotyped for
377 HCV proteins triggers broadly neutralizing antibodies in macaques. *Sci Transl Med.* 2011
378 Aug 3;3(94):94ra71. doi: 10.1126/scitranslmed.3002330. PMID: 21813755.

379 11. Harvey WT, Carabelli AM, Jackson B, Gupta RK, Thomson EC, Harrison EM, Ludden C,
380 Reeve R, Rambaut A; COVID-19 Genomics UK (COG-UK) Consortium, Peacock SJ,
381 Robertson DL. SARS-CoV-2 variants, spike mutations and immune escape. *Nat Rev
382 Microbiol.* 2021 Jul;19(7):409-424. doi: 10.1038/s41579-021-00573-0. Epub 2021 Jun 1.
383 PMID: 34075212; PMCID: PMC8167834.

384 12. Hoffmann M, Arora P, Groß R, Seidel A, Hörnich BF, Hahn AS, Krüger N, Graichen L,
385 Hofmann-Winkler H, Kempf A, Winkler MS, Schulz S, Jäck HM, Jahrasdörfer B,
386 Schrezenmeier H, Müller M, Kleger A, Münch J, Pöhlmann S. SARS-CoV-2 variants
387 B.1.351 and P.1 escape from neutralizing antibodies. *Cell.* 2021 Apr 29;184(9):2384-
388 2393.e12. doi: 10.1016/j.cell.2021.03.036. Epub 2021 Mar 20. PMID: 33794143; PMCID:
389 PMC7980144.

390 13. European Centre for Disease Prevention and Control, SARS-CoV-2 variants of concern as
391 of 23 september 2021; <https://www.ecdc.europa.eu/en/covid-19/variants-concern>

392 14. U. S. Food & Drug Administration, Decelber 11, 2020 press release
393 <https://www.fda.gov/news-events/press-announcements/fda-takes-key-action-fight-against-covid-19-issuing-emergency-use-authorization-first-covid-19>

395 15. World Health Organization, Statement on the second meeting of the International Health
396 Regulations (2005) Emergency Committee regarding the outbreak of novel coronavirus
397 (2019-nCoV); [https://www.who.int/news-room/detail/30-01-2020-statement-on-the-second-meeting-of-the-international-health-regulations-\(2005\)-emergency-committee-regarding-the-outbreak-of-novel-coronavirus-\(2019-ncov\)](https://www.who.int/news-room/detail/30-01-2020-statement-on-the-second-meeting-of-the-international-health-regulations-(2005)-emergency-committee-regarding-the-outbreak-of-novel-coronavirus-(2019-ncov))

400 16. Kirchmeier M, Fluckiger AC, Soare C, Bozic J, Ontsouka B, Ahmed T, Diress A, Pereira L,
401 Schödel F, Plotkin S, Dalba C, Klatzmann D, Anderson DE. Enveloped virus-like particle
402 expression of human cytomegalovirus glycoprotein B antigen induces antibodies with
403 potent and broad neutralizing activity. *Clin Vaccine Immunol.* 2014 Feb;21(2):174-80. doi:
404 10.1128/CVI.00662-13. Epub 2013 Dec 11. PMID: 24334684; PMCID: PMC3910943.

405 17. Kyriakidis NC, López-Cortés A, González EV, Grimaldos AB, Prado EO. SARS-CoV-2
406 vaccines strategies: a comprehensive review of phase 3 candidates. *NPJ Vaccines.* 2021
407 Feb 22;6(1):28. doi: 10.1038/s41541-021-00292-w. PMID: 33619260; PMCID:
408 PMC7900244.

409 18. Lamb YN. BNT162b2 mRNA COVID-19 Vaccine: First Approval. *Drugs.* 2021
410 Mar;81(4):495-501. doi: 10.1007/s40265-021-01480-7. PMID: 33683637; PMCID:
411 PMC7938284.

412 19. Plante JA, Liu Y, Liu J, Xia H, Johnson BA, Lokugamage KG, Zhang X, Muruato AE, Zou J,
413 Fontes-Garfias CR, Mirchandani D, Scharton D, Bilello JP, Ku Z, An Z, Kalveram B,
414 Freiberg AN, Menachery VD, Xie X, Plante KS, Weaver SC, Shi PY. Spike mutation D614G
415 alters SARS-CoV-2 fitness. *Nature.* 2021 Apr;592(7852):116-121. doi: 10.1038/s41586-020-
416 2895-3. Epub 2020 Oct 26. Erratum in: *Nature.* 2021 Jul;595(7865):E1. PMID: 33106671;
417 PMCID: PMC8158177.

418 20. Smith EC, Denison MR. Implications of altered replication fidelity on the evolution and
419 pathogenesis of coronaviruses. *Curr Opin Virol.* 2012 Oct;2(5):519-24. doi:
420 10.1016/j.coviro.2012.07.005. Epub 2012 Aug 1. PMID: 22857992; PMCID: PMC7102773.

421 21. Tegally H, Wilkinson E, Giovanetti M, Iranzadeh A, Fonseca V, Giandhari J, Doolabh D,
422 Pillay S, San EJ, Msomi N, Mlisana K, von Gottberg A, Walaza S, Allam M, Ismail A,
423 Mohale T, Glass AJ, Engelbrecht S, Van Zyl G, Preiser W, Petruccione F, Sigal A, Hardie D,
424 Marais G, Hsiao NY, Korsman S, Davies MA, Tyers L, Mudau I, York D, Maslo C, Goedhals
425 D, Abrahams S, Laguda-Akingba O, Alisoltani-Dehkordi A, Godzik A, Wibmer CK, Sewell
426 BT, Lourenço J, Alcantara LCJ, Kosakovsky Pond SL, Weaver S, Martin D, Lessells RJ,
427 Bhiman JN, Williamson C, de Oliveira T. Detection of a SARS-CoV-2 variant of concern in

428 South Africa. *Nature*. 2021 Apr;592(7854):438-443. doi: 10.1038/s41586-021-03402-9.
429 Epub 2021 Mar 9. PMID: 33690265.

430 22. Wang R, Chen J, Gao K, Wei GW. Vaccine-escape and fast-growing mutations in the
431 United Kingdom, the United States, Singapore, Spain, India, and other COVID-19-
432 devastated countries. *Genomics*. 2021 Jul;113(4):2158-2170. doi:
433 10.1016/j.ygeno.2021.05.006. Epub 2021 May 15. PMID: 34004284; PMCID:
434 PMC8123493.

435 23. Wibmer CK, Ayres F, Hermanus T, Madzivhandila M, Kgagudi P, Oosthuysen B, Lambson
436 BE, de Oliveira T, Vermeulen M, van der Berg K, Rossouw T, Boswell M, Ueckermann V,
437 Meiring S, von Gottberg A, Cohen C, Morris L, Bhiman JN, Moore PL. SARS-CoV-2
438 501Y.V2 escapes neutralization by South African COVID-19 donor plasma. *Nat Med*. 2021
439 Apr;27(4):622-625. doi: 10.1038/s41591-021-01285-x. Epub 2021 Mar 2. PMID: 33654292.

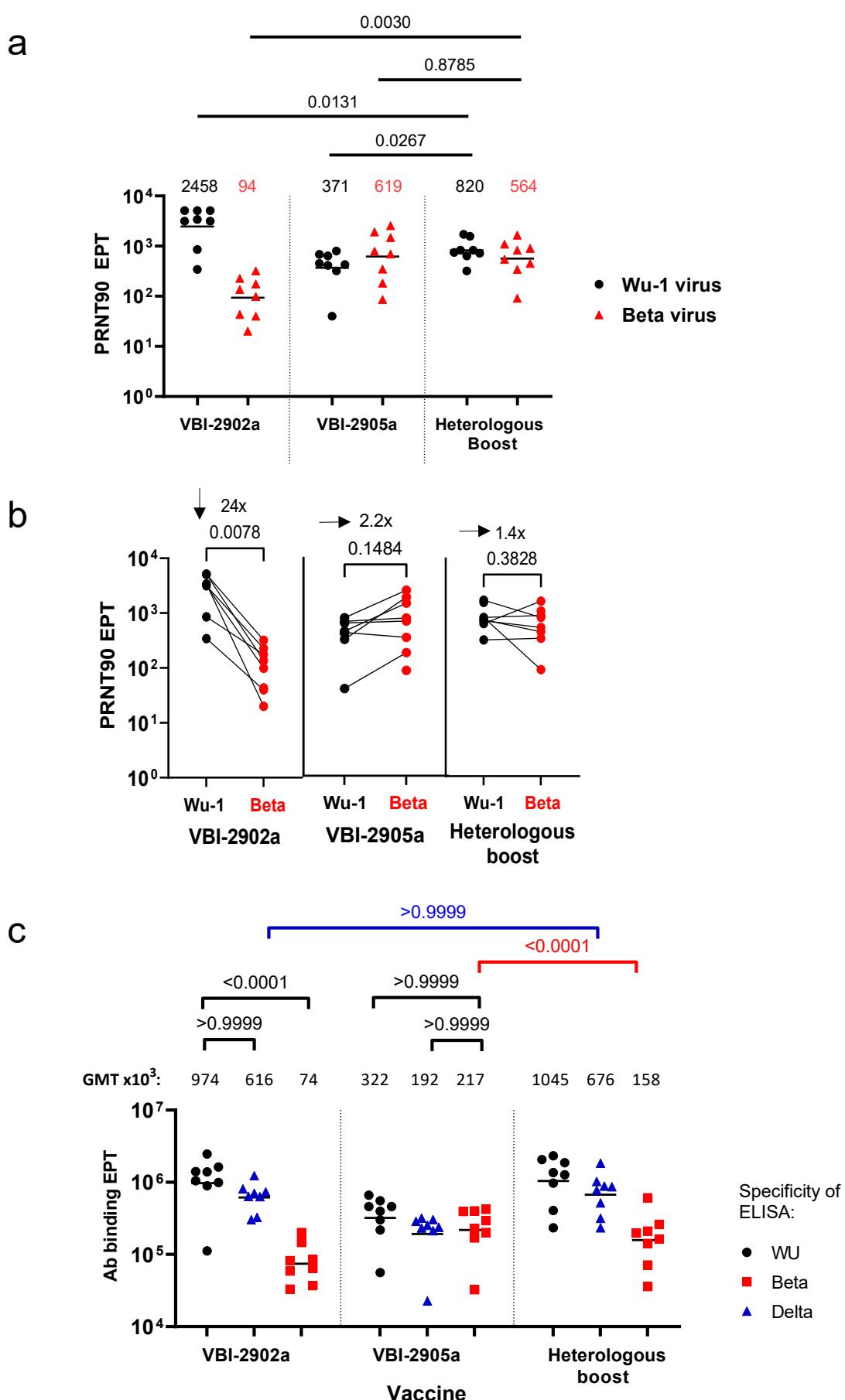
440 24. Wu F, Zhao S, Yu B, Chen YM, Wang W, Song ZG, Hu Y, Tao ZW, Tian JH, Pei YY, Yuan
441 ML, Zhang YL, Dai FH, Liu Y, Wang QM, Zheng JJ, Xu L, Holmes EC, Zhang YZ. A new
442 coronavirus associated with human respiratory disease in China. *Nature*. 2020
443 Mar;579(7798):265-269. doi: 10.1038/s41586-020-2008-3. Epub 2020 Feb 3. Erratum in:
444 *Nature*. 2020 Apr;580(7803):E7. PMID: 32015508; PMCID: PMC7094943.

445 25. Zhang L, Jackson CB, Mou H, Ojha A, Peng H, Quinlan BD, Rangarajan ES, Pan A,
446 Vanderheiden A, Suthar MS, Li W, Izard T, Rader C, Farzan M, Choe H. SARS-CoV-2
447 spike-protein D614G mutation increases virion spike density and infectivity. *Nat Commun*.
448 2020 Nov 26;11(1):6013. doi: 10.1038/s41467-020-19808-4. PMID: 33243994; PMCID:
449 PMC7693302.

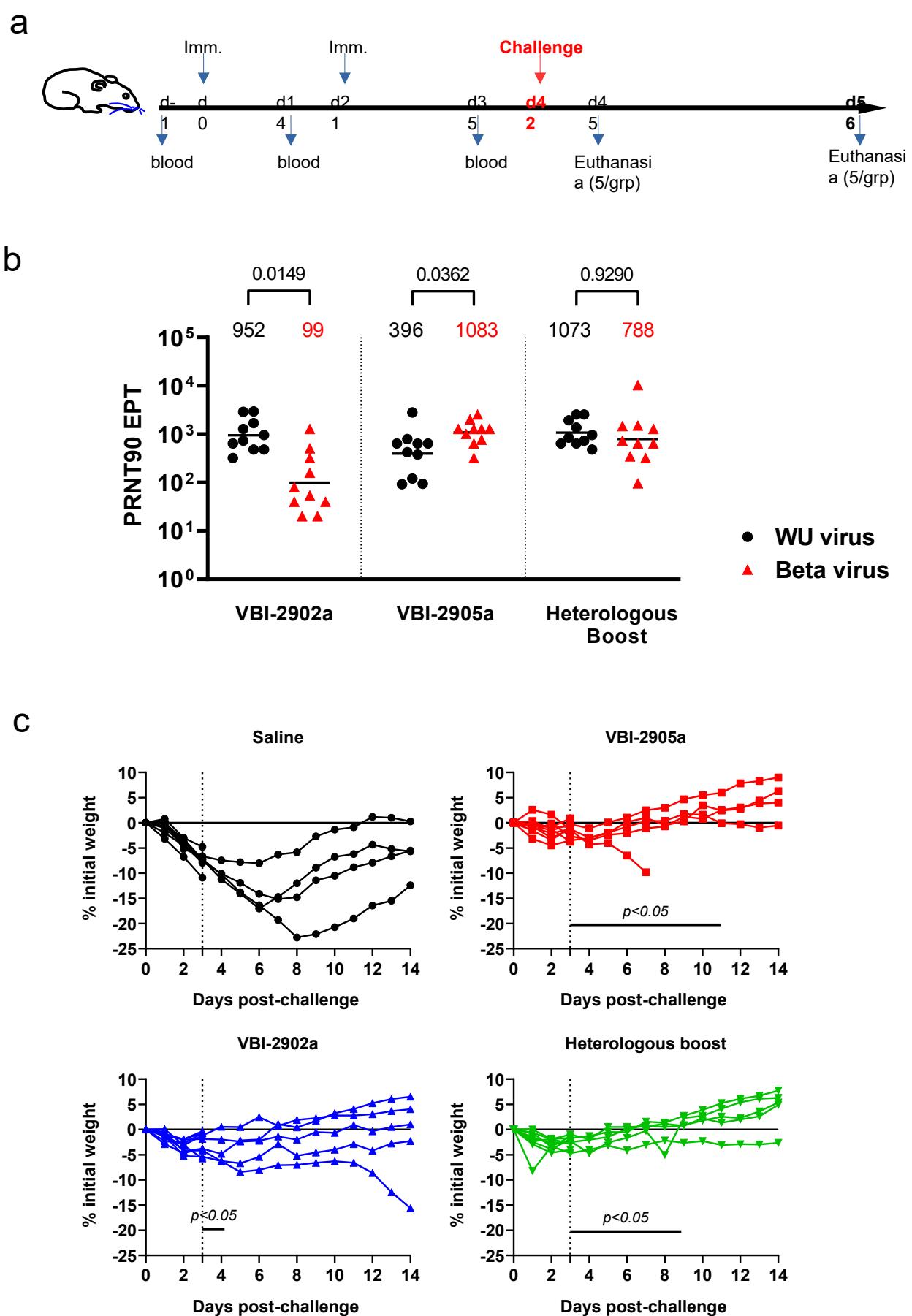
450 **Legend to figures**

451 **Figure 1: Immunogenicity of VBI-2902a and VBI-2905a in mice.** C57BL/6 mice, 8 per group,
452 received 2 IP injections 3 weeks apart, of VBI-2902a or VBI-2905a or a first injection of VBI-2902a
453 followed by a second injection of VBI-2905a (Heterologous boost), each containing 0.1 µg of S.
454 Blood was collected at day 14 after the second injection for monitoring of the humoral response.

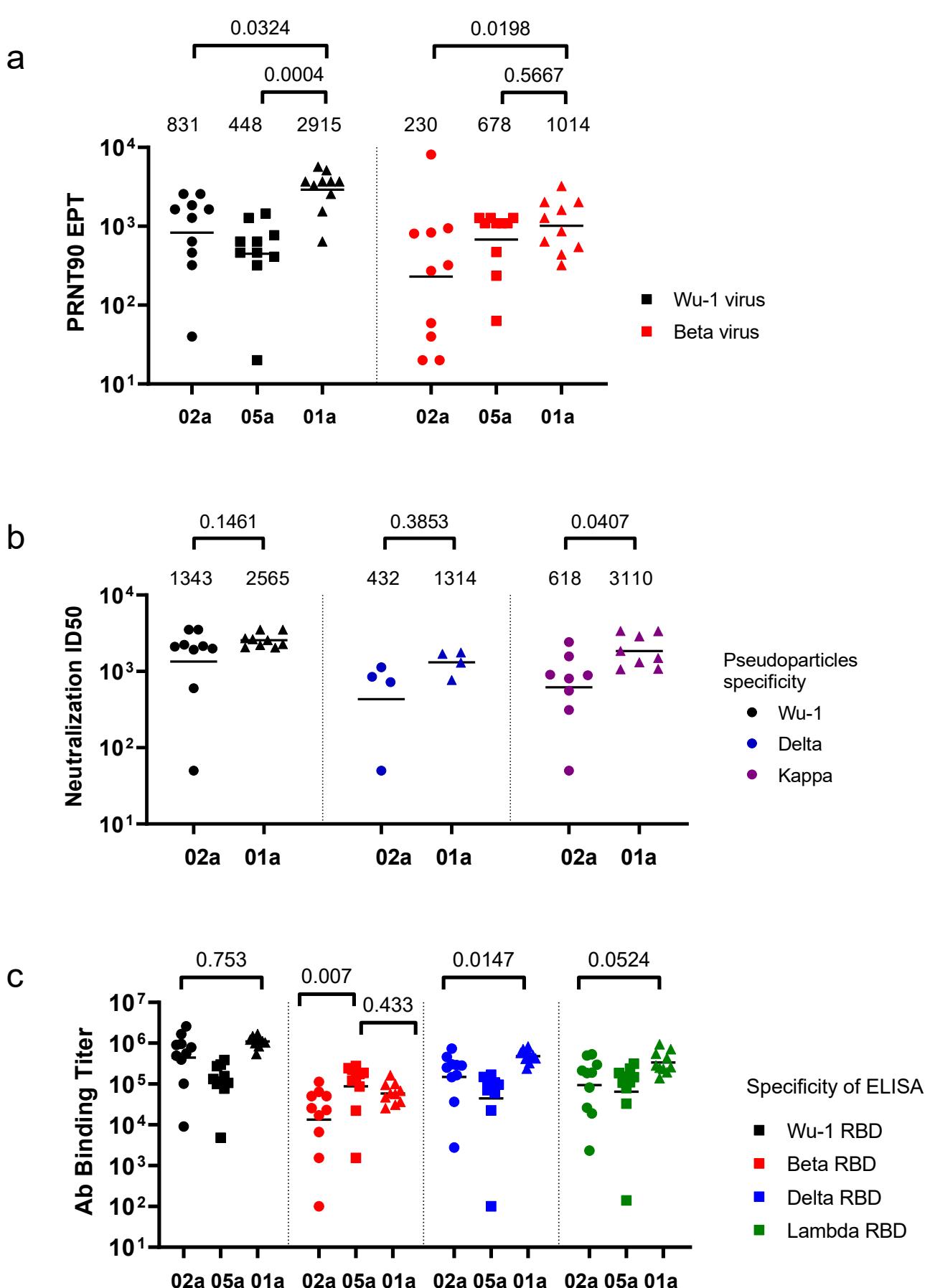
455 (a) Sera from each group were analyzed in PRNT assay with a 90% threshold (PRNT90) using
456 Wu-1 virus and Beta virus as described in Material and Methods. GMT and results from two-tailed
457 Mann-Whitney U-test are indicated. (b) Change in neutralization between Wu-1 and Beta viruses.
458 Fold change was calculated for each serum as the ratio between reactivity to Ancestral and Beta
459 RBD, Fold change in each group is indicated as the geometric mean preceded by an arrow.
460 Statistical analysis was determined using two tailed Wilcoxon test. (c) Ab binding titers were
461 evaluated by ELISA using recombinant Delta RBD as described in Material and Methods.
462 Statistical significance was determined by Kruskall-Wallis test.


463 **Figure 2: Beta variant challenge in Syrian golden hamsters after immunization with VBI-
464 2902a and VBI-2905a.** (a) Schematic representation of the challenge experiments. Four groups of
465 10 Syrian gold hamsters received 2 IM injections 3 weeks apart , of placebo saline buffer or VBI-
466 2902a or VBI-2905a or a first injection of VBI-2902a followed by a second injection of VBI-2905a,
467 with 1 μ g of S per dose. Animals in Placebo groups received Saline buffer. Blood was collected 2
468 weeks after each injection. Three weeks after the last injection (day 42) hamsters were exposed to
469 SARS-CoV-2 Beta virus at 1x10⁵ TCID50 per animal via both nares. At 3 days post infection (dpi),
470 5 animals per groups were sacrificed for viral load analysis. The remaining animals were clinically
471 evaluated daily until end of study at 14dpi. (b) Neutralization activity was measured by PRNT90 in
472 immunized groups; results are represented as PRNT90 EPT. GMT and statistical significance from
473 two tailed Friedman test are indicated (c) Hamsters were monitored daily for weight change.
474 Results are represented for each animal in each groups as kinetic of weight change from day 0 to
475 day 14 after infection. One animal from VBI-2905a group was sacrificed at day 7 because of
476 worsening of clinical presentation after a fight in the cage. Significant days of weight loss relative to
477 Saline group (p<0.005) are indicated. Statistical analysis was performed with unpaired non
478 parametric multiple t test using Holm-Šidák method.

479 **Figure 3: Immunogenicity of trivalent VBI-2901a.** Three groups of 10 mice were immunized with
480 2 doses of VBI-2901a (01a) or VBI-2902a (02a) or VBI-2905a (05a) 3 weeks apart. Blood was
481 collected at day 14 after the last injection for monitoring of the humoral response. (a) Neutralization


482 EPT measured by PRNT90 against Wu-1 virus and Beta variant. GMT are indicated above each
483 group. **(b)** Neutralization of pseudoparticles expressing S from Wu-1 virus, or Delta or Kappa
484 variants are represented as half-maximum inhibitory dilutions (Neutralization ID50). Geometric
485 means are indicated above each panel. Due to technical limitations, only 8 sera per groups were
486 tested against Wu-1 and Kappa pseudoparticles and 4 sera against Delta pseudoparticles. Sera
487 were randomly picked. **(c)** Ab binding titers measured in ELISA against recombinant RBD from Wu-
488 1 ancestral virus, or Beta, Delta, and Kappa variants.

|


489 | FIGURE 1

490 FIGURE 2

491 | FIGURE 3

