

1 **Clonal hematopoiesis is associated with increased toxicity in large B-cell**

2 **lymphoma patients treated with chimeric antigen receptor T cell therapy.**

3 Neeraj Y. Saini^{1,2*}, David M. Swoboda^{3*}, Uri Greenbaum^{1*}, Jungsheng Ma⁴, Romil Patel¹,
4 Kartik Devashish², Kaberi Das², Mark R. Tanner¹, Paolo Strati², Ranjit Nair², Luis E. Fayad²,
5 Sairah Ahmed², Hun Ju Lee², Swaminathan Iyer², Raphael Steiner², Nitin Jain⁵, Loretta
6 Nastoupil², Sanam Loghavi⁶, Guilin Tang⁶, Preetesh Jain², Michael Wang², Jason Westin²,
7 Michael R. Green², David Sallman³, Eric Padron³, Marco Davila⁷, Frederick L. Locke⁷, Richard
8 Champlin¹, Elizabeth Shpall¹, Partow Kebriaei¹, Christopher R. Flowers², Michael Jain⁷, Feng
9 Wang⁸, Andrew Futreal⁸, Nancy Gillis^{3,9}, Sattva S. Neelapu^{2#}, Koichi Takahashi^{5,8#}

10

11 *have contributed equally to the manuscript

12 # co-corresponding authors

13 **Affiliations**

14 ¹Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas M.D.
15 Anderson Cancer Center, Houston, TX, USA.

16 ²Department of Lymphoma and Myeloma, The University of Texas M.D. Anderson Cancer
17 Center, Houston, TX, USA.

18 ³Department of Malignant Hematology, Moffitt Cancer Center, Tampa, FL, USA.

19 ⁴Department of Biostatistics, The University of Texas M.D. Anderson Cancer Center, Houston,
20 TX, USA.

21 ⁵Department of Leukemia, The University of Texas M.D. Anderson Cancer Center, Houston,
22 TX, USA.

23 ⁶Department of Hematopathology, The University of Texas M.D. Anderson Cancer Center,
24 Houston, TX, USA.

25 ⁷Department of Blood and Marrow Transplant and Cellular Immunotherapy, Moffitt Cancer
26 Center, Tampa, FL, USA.

27 ⁸Department of Genomic Medicine, The University of Texas M.D. Anderson Cancer Center,
28 Houston, TX, USA.

29 ⁹Department of Cancer Epidemiology, Moffitt Cancer Center, Tampa, FL, USA.

30

31

32

33

34

35

36

37

38

39

40

41

42 **Abstract**

43 To explore the role of clonal hematopoiesis (CH) on chimeric antigen receptor (CAR) T-
44 cell therapy outcomes, we performed targeted deep-sequencing on 114 large B-cell
45 lymphoma patients treated with anti-CD19 CAR T-cells. We detected CH in 42 (36.8%)
46 pre-treatment patient samples, most frequently in *PPM1D* (19/114) and *TP53* (13/114)
47 genes. The incidence of grade ≥ 3 immune-effector cell-associated neurotoxicity
48 syndrome (ICANS) was higher in CH-positive patients compared to CH-negative patients
49 (45.2% vs. 25.0%, $p=0.038$). Higher toxicities with CH were primarily driven by three CH
50 genes, *DNMT3A*, *TET2* and *ASXL1* (DTA mutations). The incidence of grade ≥ 3 ICANS
51 [58.9% vs. 25%, $p=0.02$] and grade ≥ 3 cytokine release syndrome [17.7% vs. 4.2%,
52 $p=0.08$] were higher in patients with DTA mutations than those without CH. The estimated
53 24-month cumulative incidence of therapy-related myeloid neoplasms after CAR-T
54 therapy was higher in patients with CH than those without CH (19% [95%CI: 5.5-38.7] vs.
55 4.2% [95%CI: 0.3-18.4], $p=0.028$).
56

57 **Statement of Significance**

58 Our study reveals that clonal hematopoiesis mutations, especially those associated with
59 inflammation (*DNMT3A*, *TET2*, *ASXL1*), are associated with severe grade toxicities in
60 lymphoma patients receiving anti-CD19 chimeric antigen receptor therapy. Further
61 studies to investigate the mechanisms and interventions to improve toxicities in the
62 context of CH are warranted.

63

64 **Introduction**

65 Adoptive T cell transfer therapy with chimeric antigen receptor (CAR)-T cells represents
66 the latest breakthrough in the treatment of hematologic malignancies¹⁻³. Three CD19-
67 CAR-T cell products have received approval by regulatory medical agencies and were
68 introduced into clinical practice for relapsed and refractory large B cell malignancies (r/r
69 LBCL) (tisagenlecleucel, axicabtagene, and lisocabtagene)¹⁻³. Although durable
70 responses have been observed in 30-40% of r/r LBCL patients treated with CAR-T
71 therapy¹⁻³, it is associated with significant systemic inflammatory toxicities such as
72 cytokine release syndrome (CRS) and immune effector-cell associated neurotoxicity
73 syndrome (ICANS) that are occasionally fatal⁴. Treatment-related toxicities with severe
74 grade ≥ 3 CRS and/or ICANS occur in 10-31% of patients receiving CAR-T products¹⁻³.
75 Although there has been remarkable progress in the understanding and clinical
76 management of CAR-T-related toxicities⁵, a significant knowledge gap exists in the
77 mechanisms and host factors impacting these toxicities.

78

79 Clonal hematopoiesis (CH) is a clonally expanded population of hematopoietic stem cells
80 bearing somatic gene mutations⁶. CH has been recognized as a driver of systemic
81 inflammation⁷ and is associated with an increased risk of therapy-related myeloid
82 neoplasms (t-MN) after chemotherapy^{8,9}. Murine studies suggest that knockout of CH
83 genes (*Dnmt3a* or *Tet2*) can contribute to a dysregulated inflammatory microenvironment
84 by altering T-cell function^{10,11}. Furthermore, recent clinical evidence indicates an
85 emerging role of CH in accelerating graft versus host disease (GvHD) after allogeneic
86 stem cell transplantation¹². Since anti-CD19 CAR-T cell therapy, a highly effective therapy

87 for LBCL and other lymphoid malignancies¹³, is associated with systemic inflammatory
88 toxicities and given CH's role in driving systemic inflammation, we hypothesized that CH
89 influences the incidence and severity of CAR-T therapy toxicities. This study aimed to
90 identify the clinical impact of CH in r/r LBCL patients undergoing CAR-T cell therapy.

91

92 **Results**

93 ***Patient characteristics and incidence of CH mutations***

94 A total of 114 r/r LBCL patients at two different institutions, MD Anderson Cancer Center
95 (MDACC, USA, n=99) and Moffitt Cancer Center (USA, n=15), whose peripheral blood
96 (PB) buffy coat samples were available for CH analysis, were studied. The patient
97 characteristics of the study cohort are listed in **Table 1**. Of the 114 patients with r/r LBCL,
98 105 were treated with axicabtagene cilolecleucel and 9 received tisagenlecleucel. The
99 median age for the entire cohort was 63.0 years (range: 29.0 – 87.0 years) and patients
100 received a median of 3 lines of systemic therapy prior to CAR-T therapy. The histological
101 diagnosis was subclassified into DLBCL/high-grade B-cell lymphoma (n=91), transformed
102 follicular lymphoma (n=21), and primary mediastinal lymphoma (n=2).

103

104 CH was detected in the pre-treatment samples of 42 of the 114 (36.8%) patients. The
105 complete list of genes and variants is provided in **Table S1**. The lab parameters on day -
106 5 prior to induction chemotherapy, including serum inflammatory markers, such as ferritin
107 and C-reactive protein, were not significantly different between patients with and without
108 CH (**Table 1, Figure S1**). The most frequently mutated genes were *PPM1D* (19/114,
109 16.7%), followed by *TP53* (13/114, 11.4%), *DNMT3A* (7/114, 6.1%), *TET2* (6/114, 5.2%)

110 and ASXL1 (4/114, 3.5%) (**Figures 1 and S2**). A total of 72 CH variants were detected in
111 42 patients with the median variant allele frequency (VAF) of CH of 5.8% (range: 2.1% -
112 49.5%) (**Figure S3**) and 19 variants in 15 patients were present at a VAF greater than
113 10%. In 30 (71.4%) patients, a single gene mutation was detected as CH, while 12
114 (28.6%) patients carried two or more gene mutations. The high proportion of patients
115 having CH mutations in DNA damage pathway genes (*PPM1D* and *TP53*) was notable in
116 this cohort (**Table S1**) and is likely associated with prior exposure to chemotherapies¹⁴⁻
117 ¹⁷. Among the 12 patients with more than one mutation, the most frequent combination
118 was *TP53* and *PPM1D* (n=8, 44.4%) mutations.

119

120 **CH does not affect treatment response and survival outcomes with CAR-T therapy**
121 The median duration of follow-up among survivors in our cohort was 14.9 (range: 1.2-
122 30.5) months. The best overall response rate (ORR) and complete response (CR) for the
123 whole cohort was 78.5% (84/107) and 56.1% (60/107), respectively. The rates of CR and
124 ORR were not significantly different between patients with CH and without CH (CR: 55.0%
125 vs. 56.7%, p=1.00, ORR: 85.0% vs. 74.6%, p=0.23, **Figure 2A**). The median progression-
126 free survival (PFS) and overall survival (OS) for the whole cohort were 4.8 and 15.7
127 months, respectively (**Figure S4**). We did not observe any significant differences in PFS
128 and OS between patients with CH and those without CH (**Figure 2B and S5**).

129

130 **CH increases the risk of severe CAR-T related toxicities - CRS/ICANS**
131 We also analyzed the impact of CH on CAR-T-associated toxicities. A total of 39 (92.9%)
132 and 65 (90.3%) patients developed CRS with all grades in the CH and no-CH cohorts,

133 respectively ($p=0.743$). A total of 24 (57.1%) and 37 (51.4%) developed ICANS with all
134 grades in CH and no-CH cohorts, respectively ($p=0.566$). As we observed no differences
135 in the incidence of all grades CRS or ICANs between the two cohorts, we next analyzed
136 the incidence of severe toxicities (grades ≥ 3). There were 7 (6.1%) and 37 (32.5%)
137 patients who had grade ≥ 3 CRS and grade ≥ 3 ICANS, respectively, in the entire
138 population. While the overall incidence of grade ≥ 3 CRS was low in our cohort (6.1%),
139 the incidence was numerically higher, but not statistically significant, in patients with CH
140 (9.5%, 4/42) compared to the patients without CH (4.2%, 3/72) ($p=0.42$, **Figure 2C**). The
141 rate of grade ≥ 3 ICANS was significantly higher in patients with CH, at 45.2% (19/42),
142 compared to 25.0% (18/72 patients) in patients without CH ($p=0.038$, **Figure 2C**). On a
143 multivariate analysis, the presence of CH was the only covariate significantly associated
144 with an increased risk of grade ≥ 3 ICANS (odds ratio=2.47, 95% CI: 1.02-6.02, $p=0.046$,
145 **Supplementary Table S4 and S5**). The percentage of patients requiring tocilizumab and
146 corticosteroids for management of CRS and ICANS was comparatively higher, although
147 not statistically significant, in patients with CH at 64.3% (27/42) and 52.4% (22/42),
148 respectively, compared to 55.6% (40/72, $p=0.43$) and 43.1% (31/72, $p=0.43$) of patients
149 with no-CH, respectively (**Figure S4**).
150

151 ***Individual CH mutations have differential impact on CAR-T toxicity***

152 We further analyzed the survival and toxicity outcomes associated with CH mutations that
153 have been associated with inflammation in the literature, namely *DNMT3A*, *TET2*, and
154 *ASXL1* (DTA mutations). In patients harboring DTA CH mutations, the incidence of grade
155 ≥ 2 [70.5% (12/17) vs. 41.7% (30/72), $p=0.06$] or ≥ 3 [58.9% (10/17) vs. 25% (18/72),

156 p=0.02] ICANS was significantly higher compared to in patients with no CH mutations
157 (**Table 2**). Similarly, we saw a trend of increased grade ≥ 3 CRS in patients with DTA
158 compared to patients with no CH mutations [17.7% (3/17) vs. 4.2% (3/72), p=0.08].
159 However, we did not find any difference in response rates between patients with DTA CH
160 mutations or without CH mutations, as shown in **Table 2**.

161

162 ***Plasma cytokine evaluations post-CAR-T infusion between CH and no-CH cohort***

163 In patients with available samples, we also analyzed inflammatory cytokine levels in
164 plasma at serial timepoints from day 0 until 2 weeks post-CAR-T infusion (n=43). There
165 was a trend of higher median plasma levels of IL-6 at day 0 in CH patients (1.12 pg/ml)
166 compared to no-CH patients (0.62 pg/ml) (p=0.058, **Table S6**), however, no differences
167 were seen in other inflammatory cytokines. Also, we did not observe statistically
168 significant differences in peak plasma levels of any inflammatory cytokines between CH
169 and no-CH patients (**Table S7**).

170

171 ***CH leads to increased therapy-related myeloid neoplasms***

172 We assessed for cytopenia at leukapheresis and at day 90 post-CAR-T infusion in both
173 the CH and no-CH cohorts. There were no differences in hemoglobin levels, platelet
174 counts, and absolute lymphocyte and neutrophil counts at the time of leukapheresis or at
175 day 90 post-CAR-T infusion (**Table S8**). We also compared the incidence of therapy-
176 related myeloid neoplasms (t-MN) after CAR-T therapies. Seven patients developed t-MN
177 following CAR-T therapy; 5 (5/42, 11.9%) had baseline CH and 2 (2/72, 2.8%) did not. At
178 24 months, the estimated cumulative incidence rates of t-MN after CAR-T therapy were

179 19% (95% CI: 5.5 - 38.7%) and 4.2% (95% CI: 0.3 - 18.4%) for patients with and without
180 CH, respectively (p=0.028, **Figure 2D**). The clinical history and mutation analysis of the
181 5 patients with CH who subsequently developed t-MN are presented in **Table S9**.
182 Mutational analyses were available in only 3 patients and among these, mutations were
183 shared between CH and t-MN in two patients. The VAF levels of CH mutations on the
184 diagnostic bone marrow samples corresponded to the blasts burden in these two patients.
185 Information about these mutations are presented in **Table S9**.

186

187 ***Discussion***

188 In this cohort of heavily pretreated LBCL patients, we found that CH is associated with
189 increased severe immune-mediated toxicities, particularly ICANS, following CAR-T cell
190 therapy. Also, we found that CH did not impact survival outcomes or responses following
191 CAR-T therapy. These findings add to the growing body of evidence linking CH with
192 systemic inflammation in multiple clinical contexts such as atherosclerosis¹⁸, graft-versus-
193 host-disease^{12,19}, and infection²⁰.

194

195 The incidence of CH in our cohort was approximately 40% and was similar to the recently
196 reported incidence of CH (48%) in a mixed population of patients with lymphoma and
197 myeloma undergoing CAR-T therapy at Dana-Farber Cancer institute (DFCI)¹⁵. These
198 incidences are higher compared to that observed in LBCL patients undergoing autologous
199 stem cell transplant (ASCT, CH incidence 25-30%)^{14,17}. As a majority of the patients
200 undergoing CAR-T were previously treated with ASCT, it is likely that there is a stepwise
201 increase in the incidence of therapy-related CH with iterative exposures to

202 chemotherapies. What was also notable in this cohort, as well as in the other heavily-
203 treated cohorts, is the preponderance of CH with DNA damaging pathway genes, such
204 as *PPM1D* and *TP53* mutations, which often co-occurred in the same patient. While it is
205 difficult to dissect the clonal relationship of these two co-occurring mutations, our previous
206 study using single-cell analysis indicated the mutually exclusive relationship of the two
207 mutations at the cellular level²¹.

208

209 In their study, the DFCI group reported an increase in CAR-T associated toxicities in the
210 CH cohort, as well as higher CR rates¹⁵. There was a statistically significant increase in
211 grade ≥ 2 CRS (77.8% CH vs. 45.9% no CH, $p=0.042$), albeit only in patients with age < 60
212 years. Moreover, the incidence of grade ≥ 2 ICANS was comparatively much higher in CH
213 patients (60% vs. 43%, $p=0.06$), although not statistically significant. These findings
214 contrast with our results where we did not see a significant correlation between CH and
215 CRS. One of the reasons could be the differences in the mutational pattern and
216 frequencies in the two cohorts. Each CH mutation is biologically different and CH-
217 harboring myeloid cells might spread in the tumor microenvironment differently²², leading
218 to unique interactions with CAR-T cells and result in disparate toxicity outcomes. The
219 DFCI cohort had a much higher number of *DNMT3A* and *TET2* mutations compared to
220 our cohort and these mutations are well known in the literature to be associated with
221 inflammation²³. In fact, most of the high-grade toxicities in our cohort were driven by
222 *DNMT3A/TET2/ASXL1* mutations; grade ≥ 3 CRS and grade ≥ 3 ICANS rates with these
223 three mutations were 17.6% (3/17) and ~60% (10/17), respectively. These subtle
224 differences in the mutation spectrum might drive the discordant results seen in the DFCI

225 study, both from toxicities as well as response perspectives. However, similar to our
226 study, they did not observe any differences in PFS and OS between the two cohorts.

227

228 In contrast to CRS, where anti-IL-6 therapy has been shown to mitigate the development
229 of severe CRS, there are currently no interventions available to prevent the development
230 of severe ICANS. Consistent with this practice and the notion that CH is associated with
231 systemic inflammation, we observed a statistically significant association between CH
232 and severe ICANS. CH has a potential to influence outcomes and toxicity in CAR-T
233 therapy through multiple mechanisms. In the tumor microenvironment, the severity of
234 toxicities could be influenced by crosstalk between CH mutant myeloid cells, tumor cells,
235 and CAR-T cells. This crosstalk could also influence the activation of bystander immune
236 cells and lymphocytes in the tumor milieu, potentially leading to more inflammation and
237 toxicities. Moreover, these CH mutants are associated with differential metabolism
238 requirements and can produce micro changes in the metabolic signatures associated with
239 tumor stroma²⁴. In our cohort, we did not see a difference in inflammatory cytokines, either
240 at baseline or at peak post CAR-T infusion, between the CH and no-CH cohorts. However,
241 the cytokine repertoire we examined did not include IL-1, which has been shown to be
242 well-associated with CH, especially the *TET2* mutation²³. Moreover, IL-1 is strongly
243 associated with ICANS pathophysiology⁵ and therefore, it will be important to explore the
244 contribution of IL-1 in CH associated CAR-T toxicities.

245

246 In agreement with prior reports,^{8,9,14} we observed an increased rate of t-MNs in patients
247 with CH receiving induction chemotherapy prior to CAR-T cell infusion, which portends

248 poor outcomes. It is quite possible that through a longer follow-up and with a larger cohort,
249 we might see poor outcomes in the CH cohort that is driven by a higher incidence of t-
250 MNs, as seen in transplant settings¹⁴. Taken together, our results suggest that further
251 studies are needed to elucidate the biological mechanisms by which CH influences
252 immune-mediated toxicities associated with CAR-T cell therapy. Understanding the
253 mechanisms by which CH influences toxicities may lead to novel intervention strategies
254 to prevent high-grade CRS and ICANS after CAR-T therapy.

255

256 **Methods**

257 *Patients and samples*

258 Cryopreserved peripheral blood buffy coat samples from patients with r/r LBCL receiving
259 standard of care axicabtagene ciloleucel (axi-cel) or tisagenlecleucel CAR-T therapy
260 collected from the time of apheresis to any timepoints prior to induction chemotherapy
261 were analyzed for CH detection. The MDACC cohort (n=99) consisted of consecutive
262 LBCL patients who underwent anti-CD19 standard of care CAR-T therapy between
263 10/2018 to 6/2020 and whose frozen buffy coats were available in the Lymphoma Tissue
264 Bank. Similarly, the Moffitt cohort included standard of care consecutive CAR-T patients
265 whose peripheral blood was available for analysis. All patients provided written consent
266 through an institutional review board-approved protocol at either The University of Texas
267 MD Anderson Cancer Center (N = 99) or at the Moffitt Cancer Center (N = 15).

268

269 *DNA sequencing and bioinformatics pipelines to detect CH*

270 The complete descriptions of sequencing and bioinformatics pipelines identifying high-
271 confidence somatic single-nucleotide variants and indels from targeted capture DNA
272 sequencing is provided in the supplement. In brief, for the MDACC cohort, the pre-
273 treatment buffy coat samples were sequenced using a SureSelect custom panel of 300
274 genes (Agilent Technologies, Santa Clara, CA) that covers genes recurrently mutated in
275 CH and hematologic malignancies. For the Moffitt cohort, DNA was extracted from
276 peripheral blood for library preparation using a custom 76-gene hybrid-capture panel with
277 unique molecular barcodes. We used a minimum variant allele frequency (VAF) cut-off
278 of 2% for CH mutations, in accordance with a prior report⁶.

279

280 *Cytokine measurements*

281 Available frozen plasma samples from the patients were obtained at different time-points
282 from day 0 to day 14 and cytokines were measured using multiplex assays on a Meso-
283 Scale Discovery platform²⁵. The cytokines that were measured included IL-2, IL-4, IL-5,
284 IL-16, IL-10, IL-13, IL-17A, granulocyte-macrophage colony-stimulating factor (GM-CSF),
285 tumor necrosis factor-alpha (TNF- α) and interferon-gamma (IFN- γ).

286

287 *Statistical analysis*

288 Categorical covariates were summarized by frequencies and percentages and
289 continuous covariates were summarized by means, standard deviations, medians, and
290 ranges. Box-and-whisker plots were also used to summarize continuous variables.
291 Comparisons between cohorts were performed using Fisher's exact tests for categorical
292 variables and Wilcoxon rank sum tests for continuous variables. A multivariable logistic

293 regression model was fitted to evaluate associations between CH and ICANS adjusting
294 covariates of interest. Unadjusted survival distributions were estimated by the Kaplan-
295 Meier method and comparisons were made with the log rank test. Univariate Cox
296 proportional hazards regression models were used to evaluate the associations between
297 survival outcomes and the covariate of interest. The outcome variable of t-MNs was
298 analyzed using competing risk models, where the competing risk was death. Gray's test
299 was used for comparisons of t-MNs between cohorts. PFS was defined as the time from
300 the date of CAR-T infusion to the progression of disease or death or last follow-up
301 (whichever occurred earlier). OS was defined as the time from the date of CAR-T cell
302 infusion to death or last follow-up (whichever occurred earlier). A p-value of <0.05 (two-
303 tailed) was considered statistically significant. Statistical analyses were conducted using
304 R 3.6.1 and graph-pad PRISM 9 software.

305

306

307 **Acknowledgments**

308 This work was supported in part by the University of Texas MD Anderson Cancer Center
309 B-cell Lymphoma Moonshot (SSN), AML and MDS Moonshot (KT), Sabin Family Fellow
310 Award (KT), American Society of Hematology Scholar Award (KT), Lyda Hill Foundation
311 (AF), Physician Scientist Program at MD Anderson (KT), NIH/NCI R01 CA237291 (KT),
312 and NCI Cancer Center Support Grant to the University of Texas MD Anderson Cancer
313 Center (P30 CA016672) and by the Molecular Genomics Core Facility and the
314 Bioinformatics and Biostatistics Shared Resource at the H. Lee Moffitt Cancer Center &
315 Research Institute, an NCI designated Comprehensive Cancer Center (P30-CA076292).

316
317
318
319

320 **Disclosure of Conflicts of Interest**

321 **NSS:** Has intellectual property rights in the field of cellular immunotherapy and
322 microbiome. **SSN:** Received personal fees from Kite, a Gilead Company, Merck, Bristol
323 Myers Squibb, Novartis, Celgene, Pfizer, Allogene Therapeutics, Cell Medica/Kuur,
324 Incyte, Precision Biosciences, Legend Biotech, Adicet Bio, Calibr, Bluebird Bio, and
325 Unum Therapeutics; research support from Kite, a Gilead Company, Bristol Myers
326 Squibb, Merck, Poseida, Cellectis, Celgene, Karus Therapeutics, Unum Therapeutics,
327 Allogene Therapeutics, Precision Biosciences, and Acerta; royalties from Takeda
328 Pharmaceuticals; and has intellectual property rights related to cell therapy. **DAS:**
329 Received research funding from Aprea and Jazz, done consulting for AbbVie, Agios,
330 Aprea, BMS, Incyte, Intellia, Kite, Magenta, Novartis, Shattuck Labs and Takeda and part
331 of a speaker's bureau for BMS, Incyte. **EP:** Obtains research funding from Incyte, Kura
332 Oncology and BMS and has received Honoraria from Taiho. **FLL:** Scientific Advisory
333 Role: Allogene, Amgen, Bluebird Bio, BMS/Celgene, Calibr, Cellular Biomedicine Group,
334 GammaDelta Therapeutics, Iovance, Kite Pharma, Janssen, Legend Biotech, Novartis,
335 Takeda, Wugen, Umoja; Research Funding: Kite Pharma (Institutional), Allogene
336 (Institutional), Novartis (Institutional), BlueBird Bio (Institutional); Patents, Royalties,
337 Other Intellectual Property: Several patents held by the institution in my name
338 (unlicensed) in the field of cellular immunotherapy. **MRG** reports research funding from
339 Sanofi, Kite/Gilead, Abbvie and Allogene, honoraria from Tessa Therapeutics and Daiichi
340 Sankyo, and stock ownership of KDAc Therapeutics. **PS:** research support from
341 AstraZeneca-Acerta and from ALX Oncology and consultant for Roche-Genentech and
342 Hutchinson MediPharma. **KT:** consulting for Symbio Pharmaceuticals, Novartis, GSK,
343 and Celgene/BMS.

344 **Table Legends**

345

346 **Table 1. Baseline (day-5) characteristics of combined LBCL patients with anti-CD19**
347 **CAR-T therapy in LBCL patients.**

348

349 **Table 2. Survival and toxicity outcomes between patients with and without clonal**
350 **hematopoiesis.**

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390 **Table 1. Baseline (day -5) characteristics of LBCL patients treated with axi-cel.**

Clinical Variables	Total cohort (n=114)	CH cohort (n=42)	No CH cohort (n=72)	p-value
Age (years), median (range)	63 (29-87)	64 (29-84)	62 (29-87)	0.26
Male, N (%) Female, N(%)	80 (70.2) 34 (29.8)	32 (76.2) 10 (23.8)	48 (66.7) 24 (33.3)	0.39
DLBCL/HGBCL, N (%) TFL/PMBCL, N (%)	91 (79.8) 23 (20.2)	36 (85.7) 6 (14.3)	55 (71.9) 17 (28.1)	0.33
ECOG PS >0, N (%)	79 (69.9)	31 (73.8)	48 (68.4)	0.53
Stage III-IV, N (%)	94 (82.5)	31 (73.8)	63 (87.5)	0.07
IPI score 3-5, N (%)	70 (61.4)	25 (59.5)	45 (62.5)	0.84
Ferritin, median (min-max) (mg/L)	768 (13-38964)	718 (13-12316)	791 (36-38964)	0.72
Lactate dehydrogenase, median (min-max) (U/L)	276.5 (128.0-3750.0)	291.0 (147.0-1072.0)	262.0 (128.0-3750.0)	0.51
C-reactive protein, median (min-max) (mg/L)	13.7 (0.2-274.5)	23.6 (0.2-249.1)	11.5 (0.8-274.5)	0.17
Creatinine clearance (mL/min) >60	84 (80.0)	31 (75.6)	53 (82.8)	0.45
Prior lines of therapies, median (range)	3.0 (2.0-11.0)	3.0 (2.0-9.0)	3.0 (2.0-11.0)	0.47
Refractory disease, N (%)	87 (76.3)	35 (83.3)	52 (72.2)	0.25
Previous autologous SCT, N (%)	25 (21.9)	11 (26.2)	14 (19.4)	0.48

391 Abbreviations: CH – clonal hematopoiesis; DLBCL – diffuse large B-cell lymphoma; ECOG – eastern cooperative
 392 oncology group; HGBCL – high grade B-cell lymphoma; IPI – International Prognostic Index; TFL – transformed
 393 follicular lymphoma; PMBCL – primary mediastinal B-cell lymphoma; PS – performance status

394

395

396

397

398

399

400

401 **Table 2. Survival and toxicity outcomes between patients with and without clonal
402 hematopoiesis.**

403

Variables	No CH mutations	CH mutations	DTA CH mutations	p-value	
				CH vs. No CH	DTA CH vs. No CH
ICANS \geq 2	30/72 (41.66%)	22/42 (52.3%)	12/17 (70.5%)	0.33	0.056
ICANS \geq 3	18/72 (25%)	19/42 (45.2%)	10/17 (58.9%)	0.04	0.02
CRS \geq 2	33/72 (45.8)	20/42 (47.6%)	9/17 (52.9%)	1.0	0.79
CRS \geq 3	3/72 (4.2%)	4/42 (9.5%)	3/17 (17.7%)	0.42	0.08
CR	38/67 (56.7%)	22/40 (55%)	10/15 (66.7%)	1.0	0.57

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434 **Figure Legends**

435

436 **Figure 1. Oncoplot of clonal hematopoiesis (CH) mutations at baseline in LBCL**
437 **patients treated with anti-CD19 CAR-T therapy and their association with**
438 **response and toxicity outcomes.**

439

440 **Figure 2. Associations between clinical outcomes and clonal hematopoiesis (CH)**
441 **status in LBCL patients treated with anti-CD19 CAR-T therapy.** A) Bar graph showing
442 best response rates in CH versus no CH patients. B) Kaplan-Meier curve of progression-
443 free survival in patients with CH and no CH. C) Bar graph showing incidence of grade 3/4
444 severe CRS and grade 3/4 severe ICANS in the CH and no CH patients. D) Cumulative
445 incidence of therapy-related myeloid neoplasms in patients with CH compared to no CH.
446 *p= 0.028.

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

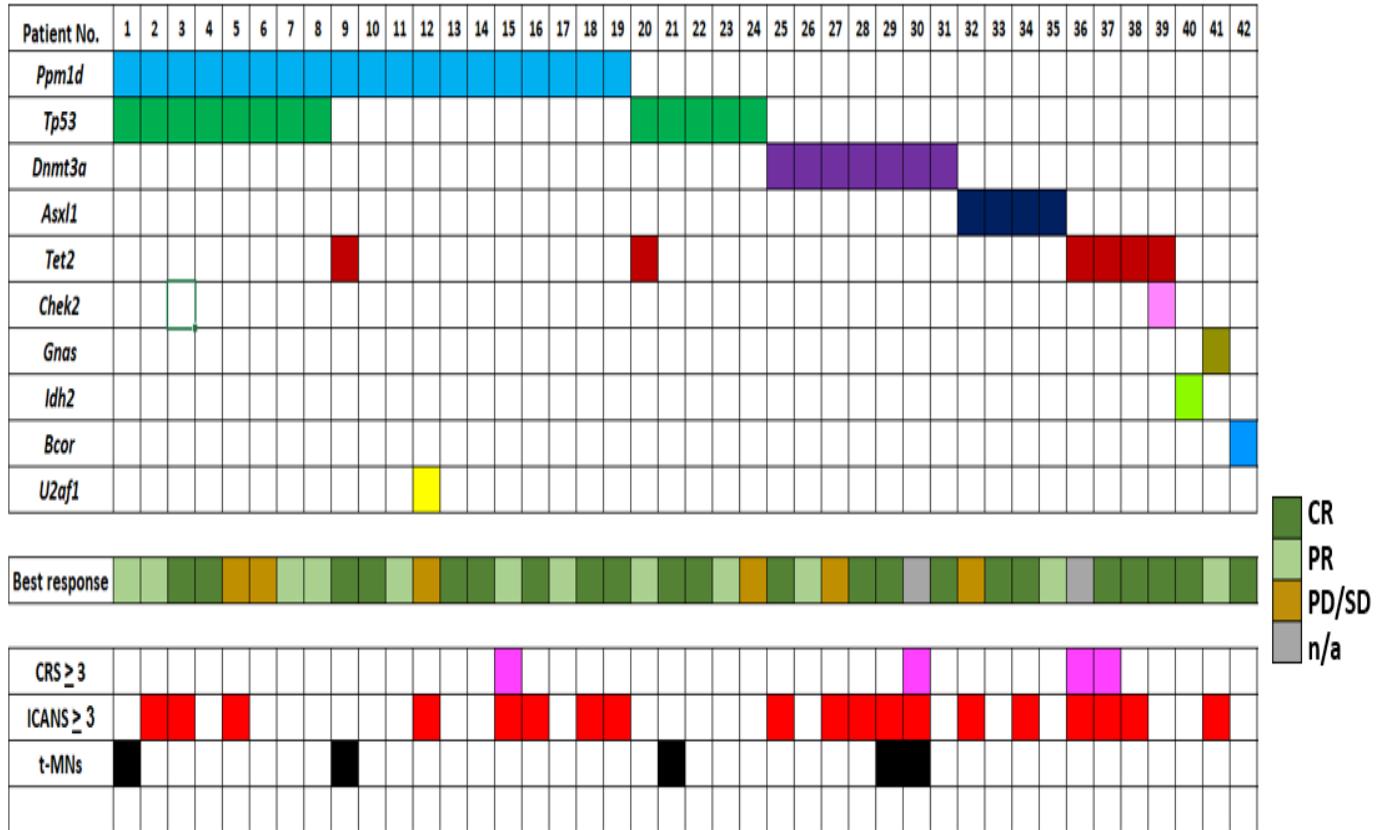
471

472

473

474

475


476

477

478

479

480 **Figure 1. Oncoplot of clonal hematopoiesis (CH) mutations at baseline in LBCL**
481 **patients treated with anti-CD19 CAR-T therapy and their association with**
482 **response and toxicity outcomes.**

483
484

485 Abbreviations: CR – complete response; CRS – cytokine release syndrome; ICANS – immune cell
486 associated neurotoxicity syndrome; n/a – not evaluable; t-MNs – treatment related myeloid neoplasms; PR
487 – partial response; PD/SD – progressive disease/ stable disease.

488

489

490

491

492

493

494

495

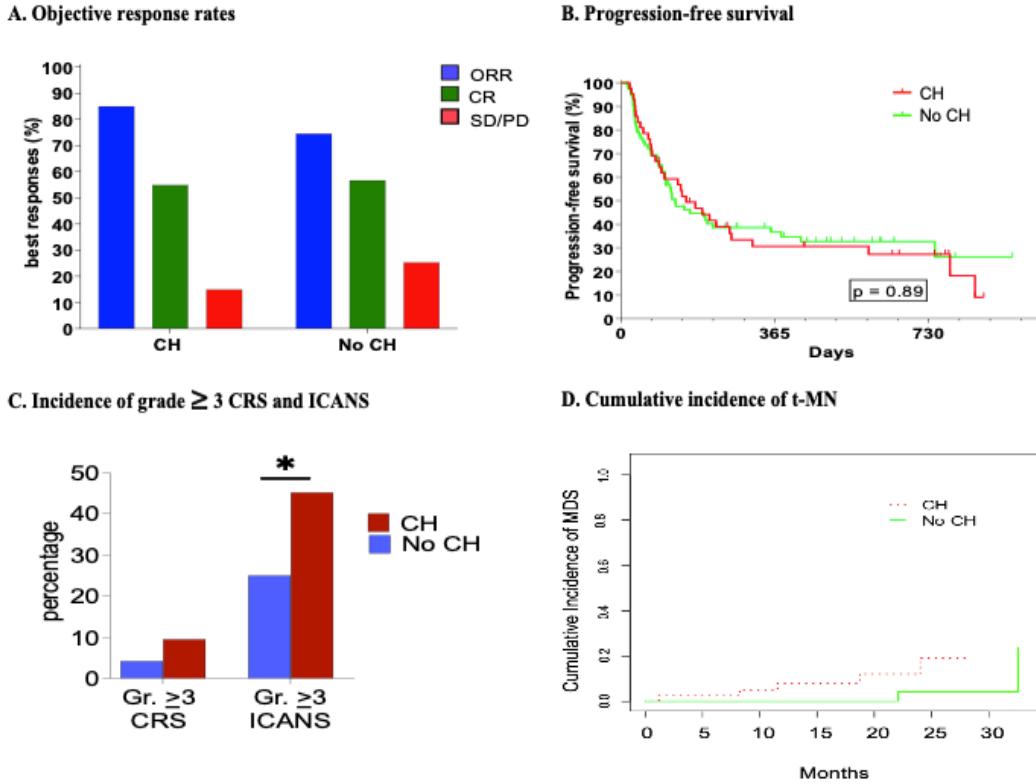
496

497

498

499

500


501

502

503

504

505 **Figure 2. Associations between clinical outcomes and clonal hematopoiesis (CH)**
506 **status in LBCL patients treated with anti-CD19 CAR-T therapy.** A) Bar graph showing
507 best response rates in CH versus no CH patients. B) Kaplan-Meier curve of progression-
508 free survival in patients with CH and no CH. C) Bar graph showing incidence of grade 3/4
509 severe CRS and grade 3/4 severe ICANS in the CH and no CH patients. D) Cumulative
510 incidence of therapy-related myeloid neoplasms in patients with CH compared to no CH.
511 *p= 0.028.

512
513
514 Abbreviations: CR – complete response; CRS – cytokine release syndrome; ICANS – immune cell
515 associated neurotoxicity syndrome; ORR – overall response rates; t-MNs – treatment-related myeloid
516 neoplasms; PR – partial response; PD – progressive disease; SD - stable disease.
517

518 **REFERENCES**

- 519 1. Neelapu SS, Locke FL, Bartlett NL, et al. Axicabtagene Ciloleucel CAR T-Cell Therapy in
520 Refractory Large B-Cell Lymphoma. *N Engl J Med.* 2017;377(26):2531-2544.
- 521 2. Schuster SJ, Bishop MR, Tam CS, et al. Tisagenlecleucel in Adult Relapsed or Refractory
522 Diffuse Large B-Cell Lymphoma. *New England Journal of Medicine.* 2018;380(1):45-56.
- 523 3. Abramson JS, Palomba ML, Gordon LI, et al. Lisocabtagene maraleucel for patients with
524 relapsed or refractory large B-cell lymphomas (TRANSCEND NHL 001): a multicentre seamless
525 design study. *Lancet.* 2020;396(10254):839-852.
- 526 4. June CH, Sadelain M. Chimeric Antigen Receptor Therapy. *N Engl J Med.* 2018;379(1):64-
527 73.
- 528 5. Morris EC, Neelapu SS, Giavridis T, Sadelain M. Cytokine release syndrome and
529 associated neurotoxicity in cancer immunotherapy. *Nature Reviews Immunology.* 2021.
- 530 6. Steensma DP, Bejar R, Jaiswal S, et al. Clonal hematopoiesis of indeterminate potential
531 and its distinction from myelodysplastic syndromes. *Blood.* 2015;126(1):9-16.
- 532 7. Fuster JJ, MacLauchlan S, Zuriaga MA, et al. Clonal hematopoiesis associated with TET2
533 deficiency accelerates atherosclerosis development in mice. *Science.* 2017;355(6327):842-847.
- 534 8. Takahashi K, Wang F, Kantarjian H, et al. Preleukaemic clonal haemopoiesis and risk of
535 therapy-related myeloid neoplasms: a case-control study. *Lancet Oncol.* 2017;18(1):100-111.
- 536 9. Gillis NK, Ball M, Zhang Q, et al. Clonal haemopoiesis and therapy-related myeloid
537 malignancies in elderly patients: a proof-of-concept, case-control study. *The Lancet Oncology.*
538 2017;18(1):112-121.
- 539 10. Gamper CJ, Agoston AT, Nelson WG, Powell JD. Identification of DNA methyltransferase
540 3a as a T cell receptor-induced regulator of Th1 and Th2 differentiation. *J Immunol.*
541 2009;183(4):2267-2276.
- 542 11. Yue X, Lio CJ, Samaniego-Castruita D, Li X, Rao A. Loss of TET2 and TET3 in regulatory T
543 cells unleashes effector function. *Nat Commun.* 2019;10(1):2011.
- 544 12. Oran B, Champlin RE, Wang F, et al. Donor clonal hematopoiesis increases risk of acute
545 graft versus host disease after matched sibling transplantation. *Leukemia.* 2021.
- 546 13. Maude SL, Laetsch TW, Buechner J, et al. Tisagenlecleucel in Children and Young Adults
547 with B-Cell Lymphoblastic Leukemia. *N Engl J Med.* 2018;378(5):439-448.
- 548 14. Gibson CJ, Lindsley RC, Tchekmedyan V, et al. Clonal Hematopoiesis Associated With
549 Adverse Outcomes After Autologous Stem-Cell Transplantation for Lymphoma. *J Clin Oncol.*
550 2017;35(14):1598-1605.
- 551 15. Miller PG, Sperling AS, Brea EJ, et al. Clonal hematopoiesis in patients receiving chimeric
552 antigen receptor T-cell therapy. *Blood Advances.* 2021;5(15):2982-2986.
- 553 16. Bolton KL, Ptashkin RN, Gao T, et al. Cancer therapy shapes the fitness landscape of
554 clonal hematopoiesis. *Nature Genetics.* 2020;52(11):1219-1226.
- 555 17. Husby S, Favero F, Nielsen C, et al. Clinical impact of clonal hematopoiesis in patients
556 with lymphoma undergoing ASCT: a national population-based cohort study. *Leukemia.*
557 2020;34(12):3256-3268.
- 558 18. Jaiswal S, Libby P. Clonal haematopoiesis: connecting ageing and inflammation in
559 cardiovascular disease. *Nature Reviews Cardiology.* 2020;17(3):137-144.
- 560 19. Frick M, Chan W, Arends CM, et al. Role of Donor Clonal Hematopoiesis in Allogeneic
561 Hematopoietic Stem-Cell Transplantation. *Journal of Clinical Oncology.* 2019;37(5):375-385.

562 20. Dharan NJ, Yeh P, Bloch M, et al. HIV is associated with an increased risk of age-related
563 clonal hematopoiesis among older adults. *Nature Medicine*. 2021;27(6):1006-1011.

564 21. Morita K, Wang F, Jahn K, et al. Clonal evolution of acute myeloid leukemia revealed by
565 high-throughput single-cell genomics. *Nature Communications*. 2020;11(1):5327.

566 22. Venanzi A, Marra A, Schiavoni G, et al. Dissecting Clonal Hematopoiesis in Tissues of
567 Patients with Classic Hodgkin Lymphoma. *Blood Cancer Discovery*. 2021;2(3):216-225.

568 23. Sano S, Oshima K, Wang Y, et al. Tet2-Mediated Clonal Hematopoiesis Accelerates Heart
569 Failure Through a Mechanism Involving the IL-1 β /NLRP3 Inflammasome. *Journal of the*
570 *American College of Cardiology*. 2018;71(8):875-886.

571 24. Lee MKS, Dragoljevic D, Bertuzzo Veiga C, Wang N, Yvan-Charvet L, Murphy AJ. Interplay
572 between Clonal Hematopoiesis of Indeterminate Potential and Metabolism. *Trends Endocrinol
573 Metab*. 2020;31(7):525-535.

574 25. Hermanson D, Barnett BE, Rengarajan S, et al. Abstract 3759: PiggyBac-manufactured
575 anti-BCMA Centyrin-based CAR-T therapeutic exhibits improved potency and durability. *Cancer
576 Research*. 2017;77(13 Supplement):3759.

577

578