

1 **Reduced antibody activity against SARS-CoV-2 B.1.617.2 Delta virus in**

2 **serum of mRNA-vaccinated patients receiving TNF- α inhibitors**

3

4 Rita E. Chen^{1,2}, Matthew J. Gorman³, Daniel Y. Zhu⁴, Juan Manuel Carreño⁵, Dansu Yuan³,
5 Laura A. VanBlargan¹, Samantha Burdess¹, Douglas A. Lauffenburger⁴, Wooseob Kim², Jackson
6 S. Turner², Lindsay Droit², Scott A. Handley², Salim Chahin⁶, Parakkal Deepak¹, Jane A.
7 O'Halloran¹, Michael Paley¹, Rachel M. Presti¹, Gregory F. Wu⁶, Florian Krammer⁵, Galit
8 Alter³, Ali H. Ellebedy^{2,7,8}, Alfred H. J. Kim^{1,8}, and Michael S. Diamond^{1,2,7,8,9,†}

9

10

11 ¹Department of Medicine, Washington University School of Medicine, St. Louis, MO.

12 ²Department of Pathology & Immunology, Washington University School of Medicine, St.
13 Louis, MO.

14 ³Ragon Institute of MGH, MIT and Harvard, Cambridge, MA.

15 ⁴Massachusetts Institute of Technology, Cambridge, MA, USA.

16 ⁵Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY.

17 ⁶Department of Neurology, Washington University School of Medicine, St. Louis, MO.

18 ⁷Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs,
19 Washington University School of Medicine, Saint Louis, MO.

20 ⁸Center for Vaccines and Immunity to Microbial Pathogens, Washington University School of
21 Medicine, Saint Louis, MO.

22 ⁹Department of Molecular Microbiology, Washington University School of Medicine, St. Louis,
23 MO.

24

25 [†] **Corresponding author:** Michael S. Diamond, M.D., Ph.D., diamond@wusm.wustl.edu

26 SUMMARY

27 Although vaccines effectively prevent COVID-19 in healthy individuals, they appear less
28 immunogenic in individuals with chronic inflammatory diseases (CID) and/or under chronic
29 immunosuppression, and there is uncertainty of their activity against emerging variants of
30 concern in this population. Here, we assessed a cohort of 74 CID patients treated as monotherapy
31 with chronic immunosuppressive drugs for functional antibody responses in serum against
32 historical and variant SARS-CoV-2 viruses after immunization with Pfizer mRNA BNT162b2
33 vaccine. Longitudinal analysis showed the greatest reductions in neutralizing antibodies and Fc
34 effector function capacity in individuals treated with TNF- α inhibitors, and this pattern appeared
35 worse against the B.1.617.2 Delta virus. Within five months of vaccination, serum neutralizing
36 titers of the majority of CID patients fell below the presumed threshold correlate for antibody-
37 mediated protection. Thus, further vaccine boosting or administration of long-acting prophylaxis
38 (e.g., monoclonal antibodies) likely will be required to prevent SARS-CoV-2 infection in this
39 susceptible population.

40 INTRODUCTION

41 In December 2019, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)
42 emerged and the global COVID-19 pandemic began. Since then, many antibody-based
43 therapeutics and vaccines have been developed (Case et al., 2021; Sempowski et al., 2020) with
44 some given Emergency Use Authorization (EUA) or Food and Drug Administration approval
45 (e.g., BNT162b2 mRNA vaccine) in hopes of preventing infection and severe disease. While
46 several of these countermeasures show efficacy against historical (2019-early 2020) SARS-CoV-
47 2 strains, the emergence of variants of concern (VOC) has prompted questions as to whether they
48 will retain efficacy.

49 SARS-CoV-2 spike protein engages cell-surface receptor angiotensin-converting enzyme
50 2 (ACE2) for attachment and entry into human cells (Letko et al., 2020). The S1 component of
51 the spike protein contains the N-terminal (NTD) and receptor binding (RBD) domains, the latter
52 being the primary target of neutralizing antibodies (Cao et al., 2020; Pinto et al., 2020; Shi et al.,
53 2020; Zost et al., 2020). However, recent studies have shown that therapeutic monoclonal and
54 vaccine-elicited polyclonal antibodies have reduced neutralizing activity against VOC, likely
55 because these strains contain mutations within the RBD and the receptor binding motif (RBM)
56 (Chen et al., 2021a; Chen et al., 2021b; Liu et al., 2021b; Liu et al., 2021c; Wang et al., 2021b).
57 This observation is concerning since serum neutralizing antibody titers are believed to be an *in*
58 *vitro* correlate of *in vivo* protection (Corbett et al., 2021a; Corbett et al., 2021b; Francica et al.,
59 2021).

60 Most studies on the immunogenicity and efficacy of SARS-CoV-2 vaccines have focused
61 on immunocompetent animals and humans. As SARS-CoV-2 has been documented to mutate
62 and evolve in immunocompromised hosts (Choi et al., 2020; Clark et al., 2021), it is important to

63 understand whether vaccine-elicited responses are protective and durable in this population. Just
64 recently, the Centers for Disease Control and Prevention recommended an additional BNT162b2
65 mRNA dose for the immunocompromised notwithstanding the relatively limited study of effects
66 of immunosuppression on the immunogenicity and protection following SARS-CoV-2
67 vaccination. Here, we examine a cohort of chronic inflammatory disease (CID) patients from the
68 COVID-19 Vaccine Responses in Patients with Autoimmune Disease (COVaRiPAD) study
69 (Deepak et al., 2021) receiving different treatment regimens for functional antibody responses
70 against SARS-CoV-2 at three- and five-months after completion of a two-dose BNT162b2
71 mRNA vaccination regimen.

72

73 RESULTS

74 Although the potency of neutralization by monoclonal antibodies (mAbs) can be affected
75 greatly by small numbers of mutations in emerging SARS-CoV-2 strains (Chen et al., 2021a;
76 Chen et al., 2021b; Planas et al., 2021; Wang et al., 2021a; Wang et al., 2021b), it remains less
77 clear how polyclonal antibodies derived after vaccination that target multiple epitopes perform.
78 Whereas the efficacy of mRNA vaccine protection in immunocompetent volunteers has been
79 high (>90%) against historical and some emerging SARS-CoV-2 strains (*e.g.*, B.1.1.7 [Alpha])
80 (Abu-Raddad et al., 2021; Chemaitelly et al., 2021), there are concerns for breakthrough
81 infections in immunosuppressed individuals or those receiving immunomodulatory drugs
82 because of blunted immune responses, waning immunity, or evasion by emerging variants
83 including B.1.351 (Beta) and B.1.617.2 (Delta). We assessed the neutralizing activity of serum
84 from individuals immunized with the BNT162b2 mRNA vaccine against fully infectious SARS-
85 CoV-2 strains including recombinant WA1/2020 viruses encoding D614G (WA1/2020 D614G)
86 or the B.1.351 (Beta) spike (Wash-B.1.351) and a clinical isolate of B.1.617.2 (Delta). All
87 viruses were passaged in Vero-TMPRSS2 cells to minimize adventitious generation of furin
88 cleavage site mutations (Klimstra et al., 2020) and confirmed by deep sequencing (**Table S1**).

89 We obtained sera from a cohort of CID patients 3 months after BNT162b2 mRNA
90 vaccination. This group included patients with Crohn's disease, ulcerative colitis, asthma,
91 multiple sclerosis, ankylosing spondylitis, systemic lupus erythematosus, Sjögren's syndrome,
92 Hashimoto's disease, psoriasis, rheumatoid arthritis and undifferentiated inflammatory arthritis,
93 type 1 diabetes, combined variable immune deficiency, alopecia areata, uveitis, vasculitis,
94 scleroderma, psoriatic arthritis, anti-neutrophil cytoplasmic antibody (ANCA)-associated
95 vasculitis, and microscopic colitis (**Table 1**). Because of their disease severity, some patients

96 received multiple drug interventions. For our analysis, we focused on subjects (n = 74) treated
97 with a single immunomodulatory agent so we could correlate treatment interventions with
98 immunological outcomes. This included patients receiving chronic treatment with
99 antimetabolites (n = 12), TNF- α inhibitors (TNFi) (n = 11), antimalarial agents (n = 10), anti-
100 integrin inhibitors (n = 10), non-steroidal anti-inflammatory drugs (NSAIDs) (n = 9), anti-IL-23
101 inhibitor (n = 9), B cell depletion therapy (BCDT) (n = 5), Bruton's tyrosine kinase inhibitor
102 (BTKi) (n = 1), nuclear factor-erythroid factor 2-related factor 2 (Nrf2) activator (n = 1),
103 sulfasalazine (SSZ) (n = 1), systemic steroids (n = 2), anti-B lymphocyte stimulator (anti-BLyS)
104 (n=1), or sphingosine 1-phosphate receptor modulator (S1PR mod) (n = 1).

105 We first used an ELISA to assess serum IgG binding to spike proteins of Wuhan-1
106 (historical) or three dominant circulating variants: B.1.1.7, B.1.351, and B.1.617.2. When
107 analyzed for relative binding to the different spike proteins, sera from individual
108 immunocompetent, healthy volunteers (n = 25) (Turner et al., 2021), CID patients (n = 45), or
109 CID patients treated with antimalarial monotherapy showed slightly reduced (1.5-fold) binding
110 to B.1.1.7, B.1.351, and B.1.617.2 than to Wuhan-1 spike protein (**Fig 1A-B and E**). Serum IgG
111 titers from CID patients as a group trended lower against the historical and variant spike proteins
112 than immunocompetent volunteers, although the differences did not attain statistical significance
113 (WT: $p = 0.6$; B.1.1.7: $p = 0.29$; B.1.351: $p = 0.14$; B.1.617.2: $p = 0.23$) (**Fig 1A-B**). Anti-spike
114 IgG binding titers of subjects receiving TNFi trended lower (2 to 3-fold) than immunocompetent
115 controls (WT: $p = 0.6$; B.1.1.7: $p = 0.48$; B.1.351: $p = 0.3$; B.1.617.2: $p = 0.4$) (**Fig 1A and C**).
116 Most other drug treatment groups with enough patients enrolled (n ≥ 3) did not show differences
117 in anti-spike IgG binding titers compared to the controls (**Fig 1D-G**). Other treatment groups had

118 too few patients enrolled to interpret trends, but as expected, patients receiving BCDT had low
119 levels of IgG against the spike proteins (**Fig S1**).

120 To begin to determine the functional capacity of the antibody response, we interrogated
121 sera obtained from immunocompetent volunteers (n = 25) and CID patients (n = 74) three
122 months after their second dose of BNT162b2 mRNA vaccine. As a group, sera from CID
123 patients trended towards lower neutralizing activity, although comparisons did not attain
124 statistical significance (WA1/2020 D614G (Geometric mean titer [GMT]: 239
125 [immunocompetent] versus 177 [CID patients], $p = 0.98$); Wash-B.1.351 (GMT: 117
126 [immunocompetent] versus 80 [CID patients], $p = 0.67$); and B.1.617.2 (GMT: 109
127 [immunocompetent] versus 84 [CID patients], $p = 0.98$) (**Fig 2A-B**). In both control and CID
128 patient groups, the B.1.351 and B.1.617.2 variants were neutralized less efficiently than the
129 historical WA1/2020 D614G strain, as reported previously (Chen et al., 2021b; Liu et al., 2021a;
130 Liu et al., 2021b; Planas et al., 2021; Wang et al., 2021a). Among the treatment subgroups,
131 patients receiving TNFi had lower neutralizing titers (GMT: 239 (immunocompetent) versus 104
132 (TNFi) [WA1/2020 D614G], $p = 0.26$; 117 versus 46 [Wash-B.1.351] $p = 0.04$; 109 versus 50
133 [B.1.617.2], $p = 0.15$) (**Fig 2A and D**). Other treatment groups (n > 5) including antimalarial,
134 anti-integrin, NSAIDs, and anti-IL-23 inhibitors had similar neutralization titers to
135 immunocompetent volunteers (**Fig 2A and E-H**). In addition, all subgroups with n > 5
136 neutralized Wash-B.1.351 and B.1.617.2 less efficiently than WA1/2020 (**Fig 2A-H**). These
137 trends in neutralization titers also were seen in groups receiving other immunosuppressive agents
138 with smaller number of individuals (**Fig S2**).

139 A recent study analyzing the relationship between *in vitro* neutralization titers and
140 protection against SARS-CoV-2 infection by vaccines estimated a protective serum titer of 1/54

141 (range 1/10 to 1/200 depending on the assay used) (Khoury et al., 2021). Given this result, we
142 determined the fraction of individuals in the different groups of our cohort that fell below this
143 cut-off. Three months after the completion of the initial series of BNT162b2 mRNA vaccine,
144 only 2 of 25 (8%) immunocompetent volunteers had neutralizing titers (NT_{50}) below 1/50 against
145 B.1.617.2, whereas 30 of 74 (35%) of CID patients had titers below this level (**Table 2**). Many of
146 the drug treatment groups also had a higher percentage of individuals below the 1/50 cut-off than
147 immunocompetent volunteers including antimetabolites (33%), TNFi (64%), antimalarial agents
148 (30%), NSAIDs (11%), and anti-IL-23 inhibitor (22%) (**Table 2**).

149 We separately grouped the individuals by disease and re-analyzed neutralization titers at
150 three months after second vaccination. Some patient groups with certain diseases (*e.g.*, ulcerative
151 colitis, systemic lupus erythematosus, Sjogren's syndrome, rheumatoid arthritis, and asthma) had
152 neutralization titers that were similar to immunocompetent volunteers (**Fig 2A and S3**). In
153 comparison, subjects with Crohn's disease trended towards lower neutralization titers than
154 healthy individuals (GMT: 239 (healthy) versus 159 (Crohn's disease) [WA1/2020 D614G], $p =$
155 0.67; 117 versus 68 [Wash-B.1.351] $p = 0.34$; 109 versus 73 [B.1.617.2], $p = 0.50$) (**Fig 2A and**
156 **S3**). Since TNFi is an important therapeutic target in Crohn's disease, we stratified this group by
157 treatment class. Crohn's disease patients administered TNFi trended towards lower neutralizing
158 titers than ones receiving other treatments (GMT: 107 (Crohn's with TNFi) versus 198 (Crohn's
159 disease without TNFi) [WA1/2020 D614G], $p = 0.27$; 46 versus 85 [Wash-B.1.351] $p = 0.30$; 49
160 versus 93 [B.1.617.2], $p = 0.26$) (**Fig S3**). Compared to 34% of all CID patients at 3 months after
161 second vaccination that had a neutralization titer of less than 1/50 against B.1.617.2, 50% of
162 Crohn's disease patients fell below this threshold (**Fig S3**). Moreover, 63% of Crohn's disease
163 patients receiving TNFi had neutralization titers against B.1.617.2 below the 1/50 cut-off

164 compared to 43% of those on other treatment regimens (**Fig S3**). Thus, while Crohn's disease
165 patients had lower neutralizing titers after BNT162b2 mRNA vaccination than other CID
166 patients, this effect appears confounded by TNFi use. Indeed, multivariable regression analysis
167 indicated that the lower neutralization titers against B.1.617.2 were associated TNFi treatment
168 and not Crohn's disease (**Table 3**).

169 Recent studies have shown that the Fc effector functions of antibodies can contribute to
170 protection against SARS-CoV-2 infection and disease (Chan et al., 2021; Schäfer et al., 2021;
171 Shiakolas et al., 2021; Winkler et al., 2021; Yamin et al., 2021; Zohar et al., 2020). To address
172 whether our immunized CID patients had distinct Fc effector function profiles, we analyzed their
173 SARS-CoV-2 specific antibodies in sera for IgG subclass distribution and C1q and Fc γ receptor
174 (Fc γ R) binding. We focused our analyses on groups with at least n = 5: anti-integrin inhibitors,
175 antimetabolites, TNFi, antimalarial agents, and immunocompetent volunteers, and measured
176 responses against Wuhan-1 D614G, B.1.617.2, and B.1.351 spike proteins (**Fig 3** and **S4**). There
177 were no differences in levels of IgG1, IgG3, and IgM against SARS-CoV-2 spike proteins, and
178 C1q or Fc γ R (Fc γ R2A, Fc γ R2B, or Fc γ R3A) binding (**Fig 3** and **S4**). However, compared to
179 immunocompetent volunteers, patients treated with TNFi had decreased anti-SARS-CoV-2 IgG,
180 IgG2, and IgG4 levels against Wuhan-1 D614G (**Fig 3A**), B.1.617.2 (**Fig 3B**), and B.1.351 (**Fig**
181 **S4**) whereas all other groups had no significant difference. We also assessed for antibody-
182 mediated innate immune effector functions. While all groups showed similar antibody-dependent
183 neutrophil phagocytosis (ADNP) (**Fig 3C-D** and **S4**), patients receiving TNFi had decreased
184 antibody-dependent cellular phagocytosis (ADCP) against B.1.617.2 (**Fig 3D**) and B.1.351 (**Fig**
185 **S3**). For unexplained reasons, patients receiving anti-integrin inhibitors had enhanced ADCP
186 against Wuhan-1 D614G (**Fig 3C**) and antibody-dependent complement fixation (ADCD)

187 against B.1.617.2 (**Fig 3D**) and B.1.351 (**Fig S4**). When we combined the data, only patients
188 receiving TNFi showed substantive decreases in antibody effector functions at three months after
189 second vaccination (**Fig 3E**).

190 As serum antibody titers generated by the Pfizer BNT162b2 vaccine wane over
191 time (Israel et al., 2021; Thomas et al., 2021), we also assessed neutralizing activity at five
192 months after immunization in CID patients (n = 39); for comparison, we used the later, six-
193 month time point from our immunocompetent cohort (n = 24) since a five-month time point was
194 not sampled. Sera from CID patients trended toward lower neutralizing activity against all three
195 viruses than immunocompetent volunteers (GMT: 178 (immunocompetent) versus 117 (CID
196 patients) [WA1/2020 D614G], $P = 0.77$; 80 versus 61 [Wash-B.1.351], $P = 0.53$; 102 versus 59
197 [B.1.617.2], $P = 0.18$). Sera from both patient and immunocompetent subject groups also were
198 less efficient at neutralizing Wash-B.1.351 and B.1.617.2 than WA1/2020 D614G (**Fig 4**). While
199 there were limited numbers of patients in each drug group at this time point, the trend of
200 decreased inhibitory activity against Wash-B.1.351 and B.1.617.2 was seen in patients receiving
201 TNFi, anti-integrin inhibitors, NSAIDs, anti-IL-23 inhibitor, antimetabolites, antimalarial agents,
202 BCDT, Nrf2 activator, SSZ, and anti-BLys) (**Fig 4 and S5**). Whereas only 4 of 24 (17%)
203 immunocompetent volunteers had neutralization titers below 1/50 at the six-month time point
204 against B.1.617.2, 25 of 39 (54%) of CID patients fell below this postulated protective threshold
205 at the five-month time point (**Table 2**). Patients treated with antimetabolites (40%), TNFi
206 (100%), antimalarial agents (43%), anti-integrin inhibitors (33%), NSAIDs (33%), and anti-IL-
207 23 inhibitors (33%) had higher percentages of individuals than healthy volunteers below the 1/50
208 cut-off against B.1.617.2 (**Table 2**).

209

210 **DISCUSSION**

211 In this study, we evaluated the functional antibody responses after immunization with the
212 Pfizer BNT162b2 mRNA vaccine against historical and emerging SARS-CoV-2 strains in a
213 cohort of adult CID patients with a range of diagnoses and treatment interventions. These results
214 were compared to a separate cohort of similarly vaccinated immunocompetent adults (Turner et
215 al., 2021) and showed consistently lower serum antibody neutralizing titers in most CID patients,
216 with a substantial fraction falling below an estimated 1/50 cutoff against B.1.617.2 (Delta) that
217 has been proposed as a correlate of protection (Khoury et al., 2021). Subgroup analysis
218 suggested that individuals on TNFi had lower inhibitory titers than other therapeutic groups.
219 Thus, these patients might be at greatest risk for breakthrough infections, especially with VOC.
220 Similarly, in studies that evaluated Fc effector function of serum antibodies, those receiving
221 TNFi showed greater decreases in antibody effector functions, providing a second possible
222 mechanism for risk of vaccine failure in these populations.

223 Our findings corroborate studies that report an association between patients with CID,
224 including those on TNFi, and reduced antibody responses after vaccination (Alexander et al.,
225 2021; Deepak et al., 2021; Fiorino et al., 2012). Poor seroconversion in these patients has been
226 described after vaccination against hepatitis A (Park et al., 2014), hepatitis B (Haykir Solay and
227 Eser, 2019; Pratt et al., 2018), and influenza (Cullen et al., 2012; Hua et al., 2014; Shirai et al.,
228 2018) viruses which may be potentiated by TNFi and other immunosuppressants (Andrisani et
229 al., 2013). Furthermore, a specific effect of TNFi on dampening antibody responses in IBD
230 patients has been observed in those who recovered from SARS-CoV-2 infection (Dailey et al.,
231 2021; Kennedy et al., 2021) or after vaccination (Edelman-Klapper et al., 2021). While we did
232 observe that patients with Crohn's disease had reduced neutralization titers against B.1.617.2,

233 this was likely due to the use of TNFi rather than disease state itself. As TNF- α contributes to
234 secondary lymphoid organ (B cell follicles or lymph nodes) development and signaling (Fu and
235 Chaplin, 1999; Murphy and Weaver, 2016), TNFi may interfere with germinal center reactions
236 and induction of optimal humoral immune responses.

237 The importance of Fc effector functions for antibody efficacy *in vivo* against SARS-CoV-2
238 has been illustrated with several NTD and RBD mAbs in animal models of infection (Schäfer et
239 al., 2021; Suryadevara et al., 2021; Ullah et al., 2021; Winkler et al., 2021; Yamin et al., 2021).
240 Consistent with these results, differences in antibody effector functions in serum also are
241 associated with distinct levels of protection in the upper and lower respiratory tract of non-
242 human primates immunized with a recombinant SARS-CoV-2 spike glycoprotein (NVX-
243 CoV2373) (Gorman et al., 2021). Moreover, the BNT162b2 and mRNA1273 mRNA vaccines
244 appear to induce different functional profiles in humans with higher RBD- and NTD-specific
245 IgA, as well as functional antibodies (ADNP and ADNK) seen in mRNA-1273 vaccine
246 recipients (Kaplonek et al., 2021). Thus, and independent of the lower neutralizing antibody
247 levels observed in the sera of CID patients treated with TNFi, diminished Fc effector function
248 profiles also could contribute to a higher frequency of breakthrough infections in this and other
249 immunosuppressed vaccinated populations (Hall et al., 2021; Kamar et al., 2021; Qin et al.,
250 2021).

251 The lower serological responses to the BNT162b2 vaccine seen in many of the CID patients
252 in our cohort appears worse against the two viruses with spike genes of B.1.351 and B.1.617.2.
253 This was not unexpected given that the evolution of more transmissible SARS-CoV-2 VOC with
254 substitutions in the spike protein impacts antibody binding. Indeed, neutralization by vaccine-
255 induced sera is diminished against variants expressing mutations in the spike gene at positions

256 L452, E484, and elsewhere (Chen et al., 2021b; McCallum et al., 2021; Tada et al., 2021; Wang
257 et al., 2021a; Wang et al., 2021b; Wibmer et al., 2021). Moreover, several vaccines have shown
258 reduced ability to prevent symptomatic infection caused by the B.1.351 and B.1.617.2 variants in
259 humans (Lopez Bernal et al., 2021; Madhi et al., 2021; Sadoff et al., 2021; Shinde et al., 2021).
260 The lower functional (neutralizing and Fc effector functions) antibody responses seen in
261 immunized immunosuppressed CID patients combined with inherently less inhibitory activity
262 against emerging variants is consistent with the recent recommendation to administer an
263 additional dose of vaccine to these at-risk populations. In addition, our data suggest that those
264 receiving TNFi in particular should be further prioritized for an added vaccine dose and may
265 require additional considerations such as temporary holding of immunosuppressive medication to
266 optimize induction of protective immune responses.

267 **Limitations of study.** We note several limitations in our study. (1) Due to the diversity
268 of immunosuppressants used, the number in each treatment subgroup is relatively small, limiting
269 the power of the statistical analysis; (2) The cohort we used was a subset of a larger CID cohort
270 (Deepak et al., 2021) that included vaccinated patients receiving multiple immunosuppressive
271 treatment modalities. Only those on monotherapy regimens were evaluated in our study to
272 eliminate confounding by use of concomitant immunosuppressive agents; (3) We grouped
273 subjects by treatment intervention but due to the small numbers did not account for underlying
274 disease severity nor diagnosis, which independently could impact immune responses; (4) Our
275 study focused on subjects immunized with the Pfizer BNT162b2 mRNA vaccine. Separate
276 studies are needed with other vaccine platforms; (5) Our studies focused on the impact of
277 immunosuppression on serum antibody responses after vaccination and did not account for T cell

278 and anamnestic responses, which also may confer protection; and (6) The small sample size
279 precluded assessment of comorbidities, age, and sex on humoral responses.

280 From a cohort of 74 patients with chronic inflammatory diseases on different
281 immunosuppressive therapy, we observed a clear trend towards lower antibody neutralizing and
282 Fc effector function responses after two doses of Pfizer BNT162b2 mRNA vaccination in those
283 receiving TNFi. As these responses are even lower against emerging VOC, boosting and
284 functional monitoring of immunity will be important in these individuals. Future studies are
285 warranted to understand and improve SARS-CoV-2 immunity in this and other immunologically
286 vulnerable populations.

287 **ACKNOWLEDGEMENTS**

288 This study was supported by grants and contracts from NIH (R01 AI157155,
289 R01AI151178, HHSN75N93019C00074, NIAID Centers of Excellence for Influenza Research
290 and Response (CEIRR) contracts HHSN272201400008C and 75N93021C00014, and the
291 Collaborative Influenza Vaccine Innovation Centers (CIVIC) contract 75N93019C00051). The
292 Alter laboratory was supported by the Ragon Institute, the Massachusetts Consortium on
293 Pathogen Readiness (MassCPR), the NIH (3R37AI080289-11S1, R01AI146785, U19AI42790,
294 U19AI135995, U19AI42790, 1U01CA260476, CIVIC75N93019C00052), the Gates foundation
295 Global Health Vaccine Accelerator Platform funding (OPP1146996 and INV-001650), and the
296 Musk Foundation. M.P. was supported by the Scientist Development Award from the
297 Rheumatology Research Foundation. P.D. is supported by a Junior Faculty Development Award
298 from the American College of Gastroenterology and IBD Plexus of the Crohn's & Colitis
299 Foundation. A.H.J.K. is supported by the Rheumatology Research Foundation, NIH/NIAMS P30
300 AR073752, and PCORI SDM2017C28224. G.F.W. was supported by grant funding from the
301 NIH (R01 NS106289) and the NMSS (RG-1802-30253). The COVaRiPAD study was supported
302 by The Leona M. and Harry B. Helmsley Charitable Trust, Washington University Digestive
303 Disease Research Core Center (NIDDK P30DK052574), Washington University Rheumatic
304 Diseases Research Resource-Based Center (NIAMS P30AR073752), the Judy Miniace Research
305 Fund for the Washington University Lupus Clinic, the Siteman Cancer Center grant
306 P30CA091842 from the NIH/NCI, and the Washington University Institute of Clinical and
307 Translational Sciences grant UL1TR002345 from the NIH/NCATS. We thank Richard Webby
308 and Pei-Yong Shi for some of the viruses used in this study and Kimberly E. Taylor at University
309 of California, San Francisco for statistical support.

310

311 **AUTHOR CONTRIBUTIONS**

312 R.E.C. performed and analyzed neutralization assays. M.J.G., D.Y., and D.Y.Z. performed
313 and analyzed effector function analyses. J.M.C. performed and analyzed ELISA data. L.D. and
314 S.A.H. performed and analyzed next generation sequencing of viral stocks. P.D., M.P., R.M.P.,
315 J.A.O'H., S.C., G.F.W., A.H.E., and A.H.J.K. designed the clinical studies and provided human
316 samples. S.B., W.K., and J.S.T. processed clinical samples. P.D., D.A.L., F.K., G.A., A.H.E.,
317 A.H.J.K., and M.S.D. obtained funding. G.A. and M.S.D. supervised the research. R.E.C. and
318 M.S.D. wrote the initial draft, with the other authors providing editorial comments.

319

320 **COMPETING FINANCIAL INTERESTS**

321 M.S.D. is a consultant for Inbios, Vir Biotechnology, and Carnival Corporation, and on
322 the Scientific Advisory Boards of Moderna and Immunome. The Diamond laboratory has
323 received unrelated funding support in sponsored research agreements from Vir Biotechnology,
324 Moderna, and Emergent BioSolutions. F.K. is a coinventor on a patent application for serological
325 assays and SARS-CoV-2 vaccines (international application numbers PCT/US2021/31110 and
326 62/994,252). A.H.J.K. participated in consulting, advisory board, or speaker's bureau for Alexion
327 Pharmaceuticals, Aurinia Pharmaceuticals, Exagen Diagnostics, Inc., and GlaxoSmithKline, and
328 received unrelated funding support under a sponsored research agreement from
329 GlaxoSmithKline. The Ellebedy laboratory received funding under sponsored research
330 agreements that are unrelated to current study from Emergent BioSolutions and from AbbVie.
331 A.H.E. is a consultant for Mubadala Investment Company and the founder of ImmuneBio
332 Consulting LLC. A.H.E., M.S.D., and J.S.T. are recipients of a licensing agreement with Abbvie

333 Inc., for commercial development of a SARS-CoV-2 mAb not described in this study. J.S.T. is a
334 consultant for Gerson Lehrman Group. S.C. received research funding from Biogen and received
335 speaking and/or consulting fees from Biogen, Novartis, Sanofi Genzyme, Genentech and Bristol
336 Myers Squibb. P.D. has participated in consulting, advisory board, or speaker's bureau for
337 Janssen, Pfizer, Prometheus Biosciences, Boehringer Ingelheim, AbbVie, and Arena
338 Pharmaceuticals and received funding under an unrelated sponsored research agreement from
339 Takeda Pharmaceutical, Arena Pharmaceuticals, Bristol Myers Squibb-Celgene, and Boehringer
340 Ingelheim. G.F.W. has received honoraria for consulting from Novartis and Genentech, Inc., and
341 research funding from Biogen, EMD Serono and Roche. F. K. has consulted for Merck, Curevac
342 and Pfizer in the past and is currently consulting for Pfizer, Seqirus and Avimex. The Krammer
343 laboratory is collaborating with Pfizer on animal models of SARS-CoV-2. G.A. is the founder of
344 SeromYx Systems Inc., and an equity holder of Leyden Labs.

345 **FIGURE LEGENDS**

346 **Figure 1. Serum IgG titers against SARS-CoV-2 variant spike proteins at three**
347 **months after second vaccination. (A-G)** Paired analyses of spike-specific endpoint IgG serum
348 titers measured by ELISA from humans at three months after second vaccination with
349 BNT162b2 mRNA vaccine. Individuals were grouped as **(A)** immunocompetent volunteers (n =
350 25) and **(B)** CID patients (n = 45) or subdivided by immunosuppressive drug class **(C)** TNFi (n =
351 8), **(D)** antimetabolites (n = 7), **(E)** antimalarials (n = 6), **(F)** anti-integrin inhibitors (n = 5), or
352 **(G)** non-steroidal anti-inflammatory drugs (NSAIDs) (n = 4). Geometric mean titer (GMT)
353 values are shown on graph. Dotted line represents limit of detection of the assay. One-way
354 ANOVA with Dunnett's post-test; * $p < 0.05$; **** $p < 0.0001$. **(H)** Heat map of GMT values
355 relative to healthy volunteer GMT values for each SARS-CoV-2 spike protein. Blue, reduction;
356 red, increase.

357 **Figure 2. Serum neutralization titers against SARS-CoV-2 variant viruses at three**
358 **months after second vaccination. (A-H)** Paired analyses of neutralization (NT₅₀) titers in serum
359 measured by focus reduction neutralization test (FRNT) against fully infectious SARS-CoV-2
360 strains at three months after second vaccination with BNT162b2 mRNA vaccine. Individuals
361 were grouped as **(A)** immunocompetent volunteers (n = 25) and **(B)** CID patients (n = 74) or
362 subdivided by immunosuppressive drug class **(C)** antimetabolites (n = 12), **(D)** TNFi (n = 11),
363 **(E)** antimalarials (n = 8), **(F)** anti-integrin inhibitors (n = 9), **(G)** NSAIDs (n = 9), or **(H)** anti-IL-
364 23 inhibitors (n = 9). GMT values are shown on graph. Dotted line represents limit of detection
365 of the assay. One way ANOVA with Dunn's post-test; * $p < 0.05$; ** $p < 0.01$; *** $p < 0.001$;
366 **** $p < 0.0001$. **(I)** Heat map of GMT values relative to healthy volunteer GMT values for each
367 SARS-CoV-2 spike protein. Blue, reduction; red, increase.

368 **Figure 3. Effector functions against SARS-CoV-2 variant viruses at three months**

369 **after second vaccination.** Serum from humans at three months after second vaccination with
370 BNT162b2 mRNA vaccine were assayed for **(A-B)** Total IgG, IgG subclasses (IgG1, IgG2,
371 IgG3, IgG4, IgM), and C1q binding or **(C-D)** antibody-dependent cellular phagocytosis (ADCP),
372 antibody-dependent neutrophil phagocytosis (ADNP), antibody-dependent complement
373 deposition (ADCD), or Fc γ R (Fc γ R2A, Fc γ R2B, or Fc γ R3A) binding as measured by Luminex.
374 Reponses were measured against **(A, C)** Wuhan-1 D614G or **(B, D)** B.1.617.2. Individuals were
375 grouped as immunocompetent volunteers (n = 25) or subdivided by immunosuppressive drug
376 class: TNFi (n = 8), antimetabolites (n = 7), antimalarials (n = 6), or anti-integrin inhibitors (n =
377 5). One-way ANOVA with Dunnett's post-test; * p < 0.05; ** p < 0.01; *** p < 0.001. **(E)**
378 Composite polar plots depicting shifted z-score only median of antibody titer, Fc γ R binding, and
379 antibody function against Wuhan-1 D614G, B.1.351, and B.1.617.2 for each group.

380 **Figure 4. Serum neutralization titers of CID patients against SARS-CoV-2 variant**

381 **viruses at five months after second vaccination. (A-H)** Paired analyses of neutralization
382 (NT₅₀) titers in serum measured by FRNT against fully infectious SARS-CoV-2 strains from
383 humans at five (CID patients) or six (immunocompetent volunteers) months after second
384 vaccination with BNT162b2 mRNA vaccine; different time points were used based on variability
385 of the separate study designs and availability of samples. Individuals were grouped as **(A)**
386 immunocompetent volunteers (n = 24) **(B)** CID patients (n = 39) or subdivided by
387 immunosuppressive drug class **(C)** antimetabolites (n = 5), **(D)** TNFi (n = 3), **(E)** antimalarials (n
388 = 7), **(F)** anti-integrin inhibitors (n = 3), **(G)** NSAIDs (n = 5), **(H)** anti-IL-23 inhibitors (n = 3) or
389 **(I)** B cell depletion therapy (BCDT) (n = 3). GMT values are shown on graph. Dotted line
390 represents limit of detection of the assay. One way ANOVA with Dunn's post-test; * p < 0.05;

391 ** $p < 0.01$; *** $p < 0.001$; **** $p < 0.0001$. (J) Heat map of GMT values relative to healthy

392 volunteer GMT values for each SARS-CoV-2 spike protein. Blue, reduction; red, increase.

393

394 **SUPPLEMENTAL FIGURE LEGENDS**

395 **Figure S1. Serum IgG titers against SARS-CoV-2 variant spike proteins at three**
396 **months after second vaccination, small n.** Paired analyses of spike-specific endpoint IgG
397 serum titers measured by ELISA from humans at three months after second vaccination with
398 BNT162b2 mRNA vaccine. Individuals were grouped by immunosuppressive drug class: anti-
399 IL-23 inhibitors, B cell depletion therapy (BCDT), Bruton's tyrosine kinase inhibitor (BTKi),
400 nuclear factor erythroid-2-related factor 2 (Nrf2) activator, sulfasalazine (SSZ), systemic steroid,
401 anti-B lymphocyte stimulator (anti-BLyS), and sphingosine 1-phosphate receptor modulator
402 (S1PR mod). GMT values are shown on graph. Dotted line represents limit of detection of the
403 assay.

404 **Figure S2. Serum neutralization titers against SARS-CoV-2 variant viruses at three**
405 **months after second vaccination, small n.** Paired analyses of neutralization (NT₅₀) titers in
406 serum measured by FRNT from humans at three months after second vaccination with
407 BNT162b2 mRNA vaccine. Individuals were grouped by immunosuppressive drug class: B cell
408 depletion therapy (BCDT), Bruton's tyrosine kinase inhibitor (BTKi), nuclear factor erythroid-2-
409 related factor 2 (Nrf2) activator, sulfasalazine (SSZ), systemic steroid, anti-B lymphocyte
410 stimulator (anti-BLyS), and sphingosine 1-phosphate receptor modulator (S1PR mod). GMT
411 values are shown on graph. Dotted line represents limit of detection of the assay.

412 **Figure S3. Serum neutralization titers against SARS-CoV-2 variant viruses at three**
413 **months after second vaccination by CID classification. (Left)** Paired analyses of neutralization
414 (NT₅₀) titers in serum measured by FRNT from humans at three months after second vaccination
415 with BNT162b2 mRNA vaccine. Individuals were grouped by CID diagnosis: Crohn's disease,
416 ulcerative colitis, systemic lupus erythematosus, Sjogren's syndrome, rheumatoid arthritis,

417 asthma, and multiple sclerosis. Crohn's disease patients were further divided by treatment with
418 or without anti-TNF- α inhibitors. GMT values are shown on graph. Dotted line represents limit
419 of detection of the assay. One way ANOVA with Dunn's post-test; * $p < 0.05$; ** $p < 0.01$; *** p
420 < 0.001 ; **** $p < 0.0001$. (**Right**) Table with number (or percentage) of patients with NT_{50}
421 values below 1/50 for each group against WA1/2020 D614G, Wash-B.1.351, and B.1.617.2.

422 **Figure S4. Effector functions against SARS-CoV-2 variant viruses at three months**
423 **after second vaccination against B.1.351.** Serum from humans at three months after second
424 vaccination with BNT162b2 mRNA vaccine were assayed for Total IgG, IgG subclasses (IgG1,
425 IgG2, IgG3, IgG4, IgM), C1q binding, antibody-dependent cellular phagocytosis (ADCP),
426 antibody-dependent neutrophil phagocytosis (ADNP), antibody-dependent complement
427 deposition (ADCD), or Fc γ R (Fc γ R2A, Fc γ R2B, or Fc γ R3A) binding as measured by Luminex.
428 Responses were measured against B.1.351. Individuals were grouped as immunocompetent
429 volunteers (n = 25) or subdivided by immunosuppressive drug class: TNFi (n = 8),
430 antimetabolites (n = 7), antimalarials (n = 6), or anti-integrin inhibitors (n = 5). One-way
431 ANOVA with Dunnett's post- test; * $p < 0.05$; ** $p < 0.01$.

432 **Figure S5. Serum neutralization titers of CID patients against SARS-CoV-2 variant**
433 **viruses at five months after second vaccination, small n.** Paired analyses of neutralization
434 (NT_{50}) titers in serum measured by FRNT from humans at five months after second vaccination
435 with BNT162b2 mRNA vaccine. Individuals were grouped by immunosuppressive drug class:
436 nuclear factor erythroid-2-related factor 2 (Nrf2) activator, sulfasalazine (SSZ), anti-B
437 lymphocyte stimulator (anti-BLyS), Bruton's tyrosine kinase inhibitor (BTKi), systemic steroid,
438 and sphingosine 1-phosphate receptor modulator (S1PR mod). GMT values are shown on graph.
439 Dotted line represents limit of detection of the assay.

440 **STAR METHODS**

441 **RESOURCE AVAILABILITY**

442 **Lead Contact.** Further information and requests for resources and reagents should be
443 directed to the Lead Contact, Michael S. Diamond (diamond@wusm.wustl.edu).

444 **Materials Availability.** All requests for resources and reagents should be directed to the
445 Lead Contact author. This includes mice and viruses. All reagents will be made available on
446 request after completion of a Materials Transfer Agreement.

447 **Data and code availability.** All data supporting the findings of this study are available
448 within the paper and are available from the corresponding author upon request.

449

450 **EXPERIMENTAL MODEL AND SUBJECT DETAILS**

451 **Patient samples.** CID patient samples were obtained from the COVaRiPAD longitudinal
452 observational study as previously described (Deepak et al., 2021). Immunocompetent volunteer
453 samples were obtained as previously described (Turner et al., 2021). All individuals were
454 enrolled at Washington University School of Medicine in studies that had received Institutional
455 Review Board approval (202012081 (WU368) and 202012084 (COVaRiPAD)).

456 **Cells.** Vero-TMPRSS2 cells (Zang et al., 2020) were cultured at 37°C in Dulbecco's
457 Modified Eagle medium (DMEM) supplemented with 10% fetal bovine serum (FBS), 100U/ml
458 HEPES pH 7.3, 1mM sodium pyruvate, 1× non-essential amino acids, and 100U/ml of
459 penicillin–streptomycin, and 5 µg/mL of blasticidin.

460 **Viruses.** The WA1/2020 D614G recombinant strain was obtained from an infectious
461 cDNA clone of the 2019n-CoV/USA_WA1/2020 strain as described previously (Plante et al.,
462 2021). The Beta (B.1.351) variant spike gene was introduced into the WA1/2020 backbone as

463 described previously (Chen et al., 2021b). The B.1.617.2 isolate was obtained a gift from R.
464 Webby (Memphis, TN). All viruses were passaged once in Vero-TMPRSS2 cells and subjected
465 to next-generation sequencing after RNA extraction to confirm the introduction and stability of
466 substitutions (**Table S1**). All virus experiments were performed in an approved Biosafety level 3
467 (BSL-3) facility.

468

469 **METHOD DETAILS**

470 **Enzyme-linked immunosorbent assay (ELISA).** Serum antibodies against SARS-CoV-
471 2 spike (S) were measured as previously described (Amanat et al., 2020; Stadlbauer et al., 2020).
472 Briefly, polystyrene 96-well plates (Immulon 4HBX; Thermo Fisher Scientific) were coated with
473 50 μ L/well of PBS (pH 7.4) (Gibco) containing recombinant spike proteins (2 μ g/mL) and
474 incubated at 4°C overnight. On the next day, plates were washed with PBS-0.1% Tween 20
475 (PBS-T) using an automated plate washer (AquaMax 2000; Molecular Devices). Plates were
476 blocked with 220 μ L/well of PBS-T, 3% nonfat dry milk (AmericanBio) for 1 h. For serum and
477 secondary antibody dilutions, a solution of PBS-T, 1% nonfat dry milk (AmericanBio) was used.
478 Sera were serially diluted (3-fold) starting at a 1:100 dilution. Dilutions were added to the plates
479 (100 μ L/well) for 2 h at room temperature (RT). Plates were washed, and the secondary
480 antibody IgG (whole molecule)-peroxidase antibody was added for 1 h at room temperature.
481 Plates were washed, and the substrate *o*-phenylenediamine dihydrochloride (SigmaFast OPD;
482 Sigma-Aldrich) was added (100 μ L/well) and incubated for 10 min. The reaction was stopped
483 by addition of 50 μ L/well of a 3 M HCl solution (Thermo Fisher Scientific). Optical density
484 (OD) was measured (490 nm) using a microplate reader (Synergy H1; BioTek). Analysis was

485 performed using Prism 7 software (GraphPad), and values were reported as area under the curve
486 (AUC).

487 **Focus reduction neutralization test.** Serial dilutions of mAbs or sera were incubated
488 with 10^2 focus-forming units (FFU) of different strains or variants of SARS-CoV-2 for 1 h at
489 37°C. Antibody-virus complexes were added to Vero-TMPRSS2 cell monolayers in 96-well
490 plates and incubated at 37°C for 1 h. Subsequently, cells were overlaid with 1% (w/v)
491 methylcellulose in MEM supplemented with 2% FBS. Plates were harvested 24 h later by
492 removing overlays and fixed with 4% PFA in PBS for 20 min at room temperature. Plates were
493 washed and sequentially incubated with an oligoclonal pool of SARS2-2, SARS2-11, SARS2-16,
494 SARS2-31, SARS2-38, SARS2-57, and SARS2-71 (Liu et al., 2021d; VanBlargan et al.) anti-
495 spike antibodies and HRP-conjugated goat anti-mouse IgG (Sigma, 12-349) in PBS
496 supplemented with 0.1% saponin and 0.1% bovine serum albumin. SARS-CoV-2-infected cell
497 foci were visualized using TrueBlue peroxidase substrate (KPL) and quantitated on an
498 ImmunoSpot microanalyzer (Cellular Technologies).

499 **Effector function antigens.** Antigens used for Luminex based assays: SARS-CoV-2
500 D614G, Beta B.1.351, and Delta B.1.617.2 spike antigens all were kindly provided by Erica
501 Ollmann Saphire (La Jolla Institute for Immunology).

502 **Luminex profiling.** Serum samples were analyzed by customized Luminex assay to
503 quantify the relative concentration of antigen-specific antibody isotypes, subclasses, and Fcγ-
504 receptor (FcγR) binding profiles, as previously described (Brown et al., 2017; Brown et al.,
505 2012). Briefly, SARS-CoV-2 antigens were used to profile specific humoral immune responses.
506 Antigens were coupled to magnetic Luminex beads (Luminex Corp) by carbodiimide-NHS ester-
507 coupling (Thermo Fisher). Antigen-coupled microspheres were washed and incubated with

508 plasma or serum samples at an appropriate sample dilution (1:5000 for IgG1 and all low affinity
509 Fc γ R, and 1:200 for all other readouts) for 2 h at 37°C in 384-well plates (Greiner Bio-One).
510 Unbound antibodies were washed away, and antigen-bound antibodies were detected by using a
511 PE-coupled detection antibody for each subclass and isotype (IgG1, IgG3, IgA1, and IgM;
512 Southern Biotech), and Fc γ R were fluorescently labeled with PE before addition to immune
513 complexes (Fc γ R2a, Fc γ R3a; Duke Protein Production facility). After one hour of incubation,
514 plates were washed, and flow cytometry was performed with an iQue (Intellicyt) and analyzed
515 using IntelliCyt ForeCyt (v8.1). PE median fluorescent intensity (MFI) is reported as a readout
516 for antigen-specific antibody titers.

517 **Antibody-dependent complement deposition (ADCD)** Antibody-dependent
518 complement deposition (ADCD) was conducted as previously described (Fischinger et al., 2019).
519 Briefly, SARS-CoV-2 antigens were coupled to magnetic Luminex beads (Luminex Corp) by
520 carbodiimide-NHS ester-coupling (Thermo Fisher). Coupled beads were incubated for 2 h at
521 37°C with serum samples (1:10 dilution) to form immune complexes and then washed to remove
522 unbound immunoglobulins. To measure antibody-dependent deposition of C3, lyophilized
523 guinea pig complement (Cedarlane) was diluted in gelatin veronal buffer with calcium and
524 magnesium (GBV++) (Boston BioProducts) and added to immune complexes. Subsequently, C3
525 was detected with an anti-C3 fluorescein-conjugated goat IgG fraction detection antibody
526 (Mpbio). Flow cytometry was performed 5 Laser LSR Fortessa Flow Cytometer and analyzed
527 using FlowJo V10.7.1. ADCC was reported as the median of C3 deposition.

528 **Antibody-dependent cellular (ADCP) and neutrophil (ADNP) phagocytosis.**
529 Antibody-dependent cellular phagocytosis (ADCP) and antibody-dependent neutrophil
530 phagocytosis (ADNP) were conducted according to the previously described protocols (Butler et

531 al., 2019; Karsten et al., 2019). In detail, SARS-CoV-2 antigens were biotinylated using EDC
532 (Thermo Fisher) and Sulfo-NHS-LCLC biotin (Thermo Fisher) and coupled to yellow-green
533 (505/515) fluorescent Neutravidinconjugated beads (Thermo Fisher), respectively. To form
534 immune complexes, antigen-coupled beads were incubated for 2 h at 37°C with 1:100 diluted
535 serum samples and then washed to remove unbound immunoglobulins. For ADCP, the immune
536 complexes were incubated for 16–18 hours with THP-1 cells (1.25×10^5 THP-1 cells/mL) and for
537 ADNP for 1 hour with RBC-lyzed whole blood. Following the incubation, cells were fixed with
538 4% PFA. For ADNP, RBC-lyzed whole blood was washed, stained for CD66b⁺ (Biolegend) to
539 identify neutrophils, and then fixed in 4% PFA. Flow cytometry was performed to identify the
540 percentage of cells that had phagocytosed beads as well as the number of beads that had been
541 phagocytosis (phagocytosis score = % positive cells \times Median Fluorescent Intensity of positive
542 cells/10000). Flow cytometry was performed with 5 Laser LSR Fortessa Flow Cytometer and
543 analyzed using FlowJo V10.7.1.

544

545 QUANTIFICATION AND STATISTICAL ANALYSIS

546 Statistical significance was assigned when *P* values were < 0.05 using Prism Version 8
547 (GraphPad). Specific tests (one-way ANOVA with Dunn's or Dunnett's post-test for multiple
548 comparisons), number of subjects (n), geometric mean values, and comparison groups are
549 indicated in the Figure legends. All data were graphed and analyzed in GraphPad Prism v8.4.3.
550 The data used to generate **Fig 3e** was graphed and analyzed using Python version 3.8.5 and the
551 'plotly' package (Sievert, 2020). For each feature, data was first standardized by computing the
552 Z-score, scaling values to zero mean and unit variance. The median resulting values are
553 represented on each polar plot. All other data were graphed and analyzed in GraphPad Prism

554 v8.4.3. Tobit linear regression was performed using Stata/MP 13.1, and the effects were refined
555 to account for left-censoring of data below the limit of detection (LoD).

556 **Table 1. Patient characteristics**

		Total N=74
		N (%)
556	Age (median [range])	48 (22-82)
557	Sex	
558	Female	52 (70)
559	Male	21 (28)
560	Other	1 (1)
561	Race	
562	White	66 (89)
563	Black	5 (7)
564	Multiple Race	2 (3)
565	Asian	1 (1)
566	Chronic inflammatory disease^a	
567	Alopecia Areata	1 (1)
568	ANCA Associated Vasculitis	1 (1)
569	Ankylosing Spondylitis	2 (3)
570	Asthma	6 (8)
571	Combined Variable Immune Deficiency	2 (3)
572	Crohn's Disease	31 (42)
573	Hashimoto's Disease	5 (7)
574	IBD Associated Arthritis	1 (1)
575	Inflammatory Arthritis	1 (1)
576	Multiple Sclerosis	10 (14)
577	Psoriasis	4 (5)
578	Psoriatic Arthritis	1 (1)
579	Rheumatoid Arthritis	8 (11)
580	Scleroderma	1 (1)
581	Sjogren's Syndrome	5 (7)
582	Systemic Lupus Erythematosus	5 (7)
583	Type 1 Diabetes	4 (5)
584	Ulcerative Colitis	5 (7)
585	Uveitis	1 (1)
586	Other	2 (3)

597 ^aPatients may have more than one disease diagnosis.

601
602
603
604

Table 2. Number (and percentage) of individuals with neutralization titers (NT₅₀) values below 1/50.

Class	# (%) 3 months after 2nd vaccination below NT ₅₀ of 1/50				# (%) 5 ^a or 6 ^b months after 2nd vaccination NT ₅₀ of 1/50			
	Total	WA1/2020 D614G	Wash-B.1.351	B.1.617.2	Total	WA1/2020 D614G	Wash-B.1.351	B.1.617.2
Immunocompetent volunteers	25	0 (0)	4 (16)	2 (8)	24	0 (0)	5 (22)	4 (17)
CID patients	74	16 (19)	29 (34)	30 (35)	39	13 (28)	22 (51)	25 (54)
Antimetabolites	12	2 (17)	5 (42)	4 (33)	5	2 (40)	2 (40)	2 (40)
Anti-TNF- α	11	3 (27)	7 (64)	7 (64)	3	2 (67)	2 (67)	3 (100)
Antimalarials	10	0 (0)	1 (10)	3 (30)	7	1 (14)	4 (57)	3 (43)
Anti-integrin	10	0 (0)	1 (10)	0 (0)	3	0 (0)	0 (0)	1 (33)
NSAIDs	9	1 (11)	1 (11)	1 (11)	5	1 (20)	2 (40)	2 (40)
Anti-IL-23	9	1 (11)	2 (22)	2 (22)	3	0 (0)	1 (33)	1 (33)

605
606
607
608
609
610

^a CID patient samples were collected at 5 months post completion of vaccination.

^b Immunocompetent volunteer samples were collected at 6 months post completion of vaccination.

611 **Table 3. Regression analysis of effects on serum neutralization titers against B.1.617.2**
612 **infection**

613

	Log₁₀ titer	95% CI	p-value
TNFi	-0.3318	-0.6231 to -0.0406	0.026
Crohn's disease	-0.0592	-0.3229 to 0.2046	0.657

614

615 Multivariate tobit linear regression modeling was performed to examine the strength and
616 independence of the association of TNFi and Crohn's disease with neutralization titers to
617 B.1.617.2.

618

619 **REFERENCES**

620

621 Abu-Raddad, L.J., Chemaitley, H., and Butt, A.A. (2021). Effectiveness of the BNT162b2
622 Covid-19 Vaccine against the B.1.1.7 and B.1.351 Variants. *N Engl J Med* 385, 187-189.

623

624 Alexander, J.L., Moran, G.W., Gaya, D.R., Raine, T., Hart, A., Kennedy, N.A., Lindsay, J.O.,
625 MacDonald, J., Segal, J.P., Sebastian, S., *et al.* (2021). SARS-CoV-2 vaccination for patients
626 with inflammatory bowel disease: a British Society of Gastroenterology Inflammatory Bowel
627 Disease section and IBD Clinical Research Group position statement. *Lancet Gastroenterol
628 Hepatol* 6, 218-224.

629

630 Amanat, F., Stadlbauer, D., Strohmeier, S., Nguyen, T.H.O., Chromikova, V., McMahon, M.,
631 Jiang, K., Arunkumar, G.A., Jurczyszak, D., Polanco, J., *et al.* (2020). A serological assay to
632 detect SARS-CoV-2 seroconversion in humans. *Nature Medicine* 26, 1033-1036.

633

634 Andrisani, G., Frasca, D., Romero, M., Armuzzi, A., Felice, C., Marzo, M., Pugliese, D., Papa,
635 A., Mocci, G., De Vitis, I., *et al.* (2013). Immune response to influenza A/H1N1 vaccine in
636 inflammatory bowel disease patients treated with anti TNF- α agents: Effects of combined
637 therapy with immunosuppressants. *Journal of Crohn's and Colitis* 7, 301-307.

638

639 Brown, E.P., Dowell, K.G., Boesch, A.W., Normandin, E., Mahan, A.E., Chu, T., Barouch,
640 D.H., Bailey-Kellogg, C., Alter, G., and Ackerman, M.E. (2017). Multiplexed Fc array for
641 evaluation of antigen-specific antibody effector profiles. *J Immunol Methods* 443, 33-44.

642

643 Brown, E.P., Licht, A.F., Dugast, A.-S., Choi, I., Bailey-Kellogg, C., Alter, G., and Ackerman,
644 M.E. (2012). High-throughput, multiplexed IgG subclassing of antigen-specific antibodies from
645 clinical samples. *J Immunol Methods* 386, 117-123.

646

647 Butler, A.L., Fallon, J.K., and Alter, G. (2019). A Sample-Sparing Multiplexed ADCP Assay.
648 *Frontiers in immunology* 10, 1851-1851.

649

650 Cao, Y., Su, B., Guo, X., Sun, W., Deng, Y., Bao, L., Zhu, Q., Zhang, X., Zheng, Y., Geng, C.,
651 *et al.* (2020). Potent neutralizing antibodies against SARS-CoV-2 identified by high-throughput
652 single-cell sequencing of convalescent patients' B cells. *Cell* 182, 73-84.

653

654 Case, J.B., Winkler, E.S., Errico, J.M., and Diamond, M.S. (2021). On the road to ending the
655 COVID-19 pandemic: Are we there yet? *Virology* 557, 70-85.

656

657 Chan, C.E.Z., Seah, S.G.K., Chye, H., Massey, S., Torres, M., Lim, A.P.C., Wong, S.K.K., Neo,
658 J.J.Y., Wong, P.S., Lim, J.H., *et al.* (2021). The Fc-mediated effector functions of a potent
659 SARS-CoV-2 neutralizing antibody, SC31, isolated from an early convalescent COVID-19
660 patient, are essential for the optimal therapeutic efficacy of the antibody. *PLoS One* 16,
661 e0253487.

662

663 Chemaitelly, H., Yassine, H.M., Benslimane, F.M., Al Khatib, H.A., Tang, P., Hasan, M.R.,
664 Malek, J.A., Coyle, P., Ayoub, H.H., Al Kanaani, Z., *et al.* (2021). mRNA-1273 COVID-19

665 vaccine effectiveness against the B.1.1.7 and B.1.351 variants and severe COVID-19 disease in
666 Qatar. *Nature Medicine*.

667

668 Chen, R.E., Winkler, E.S., Case, J.B., Aziati, I.D., Bricker, T.L., Joshi, A., Darling, T.L., Ying,
669 B., Errico, J.M., Shrihari, S., *et al.* (2021a). In vivo monoclonal antibody efficacy against SARS-
670 CoV-2 variant strains. *Nature* 596, 103-108.

671

672 Chen, R.E., Zhang, X., Case, J.B., Winkler, E.S., Liu, Y., VanBlargan, L.A., Liu, J., Errico, J.M.,
673 Xie, X., Suryadevara, N., *et al.* (2021b). Resistance of SARS-CoV-2 variants to neutralization by
674 monoclonal and serum-derived polyclonal antibodies. *Nat Med* 27, 717-726.

675

676 Choi, B., Choudhary, M.C., Regan, J., Sparks, J.A., Padera, R.F., Qiu, X., Solomon, I.H., Kuo,
677 H.H., Boucau, J., Bowman, K., *et al.* (2020). Persistence and Evolution of SARS-CoV-2 in an
678 Immunocompromised Host. *N Engl J Med* 383, 2291-2293.

679

680 Clark, S.A., Clark, L.E., Pan, J., Coscia, A., McKay, L.G.A., Shankar, S., Johnson, R.I., Brusic,
681 V., Choudhary, M.C., Regan, J., *et al.* (2021). SARS-CoV-2 evolution in an
682 immunocompromised host reveals shared neutralization escape mechanisms. *Cell* 184, 2605-
683 2617.e2618.

684

685 Corbett, K.S., Nason, M.C., Flach, B., Gagne, M., O'Connell, S., Johnston, T.S., Shah, S.N.,
686 Edara, V.V., Floyd, K., Lai, L., *et al.* (2021a). Immune correlates of protection by mRNA-1273
687 vaccine against SARS-CoV-2 in nonhuman primates. *Science*, eabj0299.

688

689 Corbett, K.S., Werner, A.P., Connell, S.O., Gagne, M., Lai, L., Moliva, J.I., Flynn, B., Choi, A.,
690 Koch, M., Foulds, K.E., *et al.* (2021b). mRNA-1273 protects against SARS-CoV-2 beta
691 infection in nonhuman primates. *Nature Immunology*.

692

693 Cullen, G., Bader, C., Korzenik, J.R., and Sands, B.E. (2012). Serological response to the 2009
694 H1N1 influenza vaccination in patients with inflammatory bowel disease. *Gut* 61, 385-391.

695 Dailey, J., Kozhaya, L., Dogan, M., Hopkins, D., Lapin, B., Herbst, K., Brimacombe, M.,
696 Grandonicco, K., Karabacak, F., Schreiber, J., *et al.* (2021). Antibody Responses to SARS-CoV-2
697 after Infection or Vaccination in Children and Young Adults with Inflammatory Bowel Disease.
698 medRxiv, 2021.2006.2012.21258810.

699

700 Deepak, P., Kim, W., Paley, M.A., Yang, M., Carvidi, A.B., Demissie, E.G., El-Qunni, A.A.,
701 Haile, A., Huang, K., Kinnett, B., *et al.* (2021). Effect of Immunosuppression on the
702 Immunogenicity of mRNA Vaccines to SARS-CoV-2 : A Prospective Cohort Study. *Ann Intern
703 Med*.

704

705 Edelman-Klapper, H., Zittan, E., Shitrit, A.B.-G., Rabinowitz, K.M., Goren, I., Avni-Biron, I.,
706 Ollech, J.E., Lichtenstein, L., Banai-Eran, H., Yanai, H., *et al.* (2021). Decreased Immune
707 Response to COVID-19 mRNA Vaccine in Patients with Inflammatory Bowel Diseases Treated
708 with Anti TNF α . medRxiv, 2021.2008.2022.21262263.

709

710 Fiorino, G., Peyrin-Biroulet, L., Naccarato, P., Szabò, H., Sociale, O.R., Vetrano, S., Fries, W.,
711 Montanelli, A., Repici, A., Malesci, A., *et al.* (2012). Effects of immunosuppression on immune
712 response to pneumococcal vaccine in inflammatory bowel disease: a prospective study. *Inflamm*
713 *Bowel Dis* 18, 1042-1047.

714

715 Fischinger, S., Fallon, J.K., Michell, A.R., Broge, T., Suscovich, T.J., Streeck, H., and Alter, G.
716 (2019). A high-throughput, bead-based, antigen-specific assay to assess the ability of antibodies
717 to induce complement activation. *J Immunol Methods* 473, 112630-112630.

718

719 Francica, J.R., Flynn, B.J., Foulds, K.E., Noe, A.T., Werner, A.P., Moore, I.N., Gagne, M.,
720 Johnston, T.S., Tucker, C., Davis, R.L., *et al.* (2021). Protective antibodies elicited by SARS-
721 CoV-2 spike protein vaccination are boosted in the lung after challenge in nonhuman primates.
722 *Science Translational Medicine* 13, eabi4547.

723

724 Fu, Y.X., and Chaplin, D.D. (1999). Development and maturation of secondary lymphoid
725 tissues. *Annu Rev Immunol* 17, 399-433.

726

727 Gorman, M.J., Patel, N., Guebre-Xabier, M., Zhu, A.L., Atyeo, C., Pullen, K.M., Loos, C., Goez-
728 Gazi, Y., Carrion, R., Jr., Tian, J.-H., *et al.* (2021). Fab and Fc contribute to maximal protection
729 against SARS-CoV-2 following NVX-CoV2373 subunit vaccine with Matrix-M vaccination.
730 *Cell reports Medicine* 2, 100405-100405.

731

732 Hall, V.G., Ferreira, V.H., Ierullo, M., Ku, T., Marinelli, T., Majchrzak-Kita, B., Yousuf, A.,
733 Kulasingam, V., Humar, A., and Kumar, D. (2021). Humoral and cellular immune response and
734 safety of two-dose SARS-CoV-2 mRNA-1273 vaccine in solid organ transplant recipients. *Am J*
735 *Transplant*.

736

737 Haykir Solay, A., and Eser, F. (2019). High dose hepatitis B vaccine is not effective in patients
738 using immunomodulatory drugs: a pilot study. *Hum Vaccin Immunother* 15, 1177-1182.

739 Hua, C., Barnetche, T., Combe, B., and Morel, J. (2014). Effect of methotrexate, anti-tumor
740 necrosis factor α , and rituximab on the immune response to influenza and pneumococcal
741 vaccines in patients with rheumatoid arthritis: a systematic review and meta-analysis. *Arthritis*
742 *Care Res (Hoboken)* 66, 1016-1026.

743

744 Israel, A., Shenhar, Y., Green, I., Merzon, E., Golan-Cohen, A., Schäffer, A.A., Ruppin, E.,
745 Vinker, S., and Magen, E. (2021). Large-scale study of antibody titer decay following
746 BNT162b2 mRNA vaccine or SARS-CoV-2 infection. *medRxiv*.

747

748 Kamar, N., Abravanel, F., Marion, O., Couat, C., Izopet, J., and Del Bello, A. (2021). Three
749 Doses of an mRNA Covid-19 Vaccine in Solid-Organ Transplant Recipients. *N Engl J Med* 385,
750 661-662.

751

752 Kaplonek, P., Cizmeci, D., Fischinger, S., Collier, A.R., Suscovich, T., Linde, C., Broge, T.,
753 Mann, C., Amanat, F., Dayal, D., *et al.* (2021). Subtle immunological differences in mRNA-
754 1273 and BNT162b2 COVID-19 vaccine induced Fc-functional profiles. *bioRxiv*.

755 Karsten, C.B., Mehta, N., Shin, S.A., Diefenbach, T.J., Slein, M.D., Karpinski, W., Irvine, E.B.,
756 Broge, T., Suscovich, T.J., and Alter, G. (2019). A versatile high-throughput assay to
757 characterize antibody-mediated neutrophil phagocytosis. *J Immunol Methods* 471, 46-56.
758

759 Kennedy, N.A., Goodhand, J.R., Bewshea, C., Nice, R., Chee, D., Lin, S., Chanchlani, N.,
760 Butterworth, J., Cooney, R., Croft, N.M., *et al.* (2021). Anti-SARS-CoV-2 antibody responses
761 are attenuated in patients with IBD treated with infliximab. *Gut* 70, 865-875.
762

763 Khoury, D.S., Cromer, D., Reynaldi, A., Schlub, T.E., Wheatley, A.K., Juno, J.A., Subbarao, K.,
764 Kent, S.J., Triccas, J.A., and Davenport, M.P. (2021). Neutralizing antibody levels are highly
765 predictive of immune protection from symptomatic SARS-CoV-2 infection. *Nature Medicine* 27,
766 1205-1211.
767

768 Klimstra, W.B., Tilston-Lunel, N.L., Nambulli, S., Boslett, J., McMillen, C.M., Gilliland, T.,
769 Dunn, M.D., Sun, C., Wheeler, S.E., Wells, A., *et al.* (2020). SARS-CoV-2 growth, furin-
770 cleavage-site adaptation and neutralization using serum from acutely infected hospitalized
771 COVID-19 patients. *The Journal of general virology* 101, 1156-1169.
772

773 Letko, M., Marzi, A., and Munster, V. (2020). Functional assessment of cell entry and receptor
774 usage for SARS-CoV-2 and other lineage B betacoronaviruses. *Nat Microbiol* 5, 562-569.
775

776 Liu, C., Ginn, H.M., Dejnirattisai, W., Supasa, P., Wang, B., Tuekprakhon, A., Nutalai, R.,
777 Zhou, D., Mentzer, A.J., Zhao, Y., *et al.* (2021a). Reduced neutralization of SARS-CoV-2
778 B.1.617 by vaccine and convalescent serum. *Cell* 184, 4220-4236.e4213.
779

780 Liu, J., Liu, Y., Xia, H., Zou, J., Weaver, S.C., Swanson, K.A., Cai, H., Cutler, M., Cooper, D.,
781 Muik, A., *et al.* (2021b). BNT162b2-elicited neutralization of B.1.617 and other SARS-CoV-2
782 variants. *Nature* 596, 273-275.
783

784 Liu, Y., Liu, J., Xia, H., Zhang, X., Fontes-Garfias, C.R., Swanson, K.A., Cai, H., Sarkar, R.,
785 Chen, W., Cutler, M., *et al.* (2021c). Neutralizing Activity of BNT162b2-Elicited Serum. *N Engl
786 J Med* 384, 1466-1468.
787

788 Liu, Z., VanBlargan, L.A., Bloyet, L.M., Rothlauf, P.W., Chen, R.E., Stumpf, S., Zhao, H.,
789 Erico, J.M., Theel, E.S., Liebeskind, M.J., *et al.* (2021d). Identification of SARS-CoV-2 spike
790 mutations that attenuate monoclonal and serum antibody neutralization. *Cell Host Microbe* 29,
791 477-488.e474.
792

793 Lopez Bernal, J., Andrews, N., Gower, C., Gallagher, E., Simmons, R., Thelwall, S., Stowe, J.,
794 Tessier, E., Groves, N., Dabrera, G., *et al.* (2021). Effectiveness of Covid-19 Vaccines against
795 the B.1.617.2 (Delta) Variant. *N Engl J Med* 385, 585-594.
796

797 Madhi, S.A., Baillie, V., Cutland, C.L., Voysey, M., Koen, A.L., Fairlie, L., Padayachee, S.D.,
798 Dheda, K., Barnabas, S.L., Bhorat, Q.E., *et al.* (2021). Efficacy of the ChAdOx1 nCoV-19
799 Covid-19 Vaccine against the B.1.351 Variant. *N Engl J Med* 384, 1885-1898.
800

801 McCallum, M., Bassi, J., Marco, A., Chen, A., Walls, A.C., Iulio, J.D., Tortorici, M.A., Navarro,
802 M.J., Silacci-Fregni, C., Saliba, C., *et al.* (2021). SARS-CoV-2 immune evasion by variant
803 B.1.427/B.1.429. *bioRxiv*.

804

805 Murphy, K., and Weaver, C. (2016). *Janeway's immunobiology* (Garland science).

806

807 Park, S.H., Yang, S.K., Park, S.K., Kim, J.W., Yang, D.H., Jung, K.W., Kim, K.J., Ye, B.D.,
808 Byeon, J.S., Myung, S.J., *et al.* (2014). Efficacy of hepatitis A vaccination and factors impacting
809 on seroconversion in patients with inflammatory bowel disease. *Inflamm Bowel Dis* 20, 69-74.

810

811 Pinto, D., Park, Y.-J., Beltramello, M., Walls, A.C., Tortorici, M.A., Bianchi, S., Jaconi, S.,
812 Culap, K., Zatta, F., De Marco, A., *et al.* (2020). Cross-neutralization of SARS-CoV-2 by a
813 human monoclonal SARS-CoV antibody. *Nature* 583, 290-295.

814

815 Planas, D., Veyer, D., Baidaliuk, A., Staropoli, I., Guivel-Benhassine, F., Rajah, M.M.,
816 Planchais, C., Porrot, F., Robillard, N., Puech, J., *et al.* (2021). Reduced sensitivity of SARS-
817 CoV-2 variant Delta to antibody neutralization. *Nature* 596, 276-280.

818

819 Plante, J.A., Liu, Y., Liu, J., Xia, H., Johnson, B.A., Lokugamage, K.G., Zhang, X., Muruato,
820 A.E., Zou, J., Fontes-Garfias, C.R., *et al.* (2021). Spike mutation D614G alters SARS-CoV-2
821 fitness. *Nature* 592, 116-121.

822

823 Pratt, P.K., Jr., David, N., Weber, H.C., Little, F.F., Kourkoumpetis, T., Patts, G.J., Weinberg, J.,
824 and Farrye, F.A. (2018). Antibody Response to Hepatitis B Virus Vaccine is Impaired in
825 Patients With Inflammatory Bowel Disease on Infliximab Therapy. *Inflamm Bowel Dis* 24, 380-
826 386.

827

828 Qin, C.X., Moore, L.W., Anjan, S., Rahamimov, R., Sifri, C.D., Ali, N.M., Morales, M.K.,
829 Tsapepas, D.S., Basic-Jukic, N., Miller, R.A., *et al.* (2021). Risk of Breakthrough SARS-CoV-2
830 Infections in Adult Transplant Recipients. *Transplantation*.

831

832 Sadoff, J., Gray, G., Vandebosch, A., Cárdenas, V., Shukarev, G., Grinsztejn, B., Goepfert, P.A.,
833 Truyers, C., Fennema, H., Spiessens, B., *et al.* (2021). Safety and Efficacy of Single-Dose
834 Ad26.COV2.S Vaccine against Covid-19. *N Engl J Med* 384, 2187-2201.

835

836 Schäfer, A., Muecksch, F., Lorenzi, J.C.C., Leist, S.R., Cipolla, M., Bournazos, S., Schmidt, F.,
837 Maison, R.M., Gazumyan, A., Martinez, D.R., *et al.* (2021). Antibody potency, effector function,
838 and combinations in protection and therapy for SARS-CoV-2 infection in vivo. *J Exp Med* 218.

839 Sempowski, G.D., Saunders, K.O., Acharya, P., Wiehe, K.J., and Haynes, B.F. (2020). Pandemic
840 Preparedness: Developing Vaccines and Therapeutic Antibodies For COVID-19. *Cell* 181, 1458-
841 1463.

842

843 Shi, R., Shan, C., Duan, X., Chen, Z., Liu, P., Song, J., Song, T., Bi, X., Han, C., Wu, L., *et al.*
844 (2020). A human neutralizing antibody targets the receptor-binding site of SARS-CoV-2. *Nature*
845 584, 120-124.

846

847 Shiakolas, A.R., Kramer, K.J., Wrapp, D., Richardson, S.I., Schäfer, A., Wall, S., Wang, N.,
848 Janowska, K., Pilewski, K.A., Venkat, R., *et al.* (2021). Cross-reactive coronavirus antibodies
849 with diverse epitope specificities and Fc effector functions. *Cell Rep Med* 2, 100313.

850

851 Shinde, V., Bhikha, S., Hoosain, Z., Archary, M., Bhorat, Q., Fairlie, L., Laloo, U., Masilela,
852 M.S.L., Moodley, D., Hanley, S., *et al.* (2021). Efficacy of NVX-CoV2373 Covid-19 Vaccine
853 against the B.1.351 Variant. *N Engl J Med* 384, 1899-1909.

854

855 Shirai, S., Hara, M., Sakata, Y., Tsuruoka, N., Yamamoto, K., Shimoda, R., Gomi, Y., Yoshii,
856 H., Fujimoto, K., and Iwakiri, R. (2018). Immunogenicity of Quadrivalent Influenza Vaccine for
857 Patients with Inflammatory Bowel Disease Undergoing Immunosuppressive Therapy.
858 *Inflammatory bowel diseases* 24, 1082-1091.

859

860 Sievert, C. (2020). Interactive Web-Based Data Visualization with R, *plotly*, and *shiny*.

861 Stadlbauer, D., Amanat, F., Chromikova, V., Jiang, K., Strohmeier, S., Arunkumar, G.A., Tan,
862 J., Bhavsar, D., Capuano, C., Kirkpatrick, E., *et al.* (2020). SARS-CoV-2 Seroconversion in
863 Humans: A Detailed Protocol for a Serological Assay, Antigen Production, and Test Setup.
864 *Current Protocols in Microbiology* 57, e100.

865

866 Suryadevara, N., Shrihari, S., Gilchuk, P., VanBlargan, L.A., Binshtain, E., Zost, S.J., Nargi,
867 R.S., Sutton, R.E., Winkler, E.S., Chen, E.C., *et al.* (2021). Neutralizing and protective human
868 monoclonal antibodies recognizing the N-terminal domain of the SARS-CoV-2 spike protein.
869 *Cell* 184, 2316-2331.e2315.

870

871 Tada, T., Dcosta, B.M., Samanovic-Golden, M., Herati, R.S., Cornelius, A., Mulligan, M.J., and
872 Landau, N.R. (2021). Neutralization of viruses with European, South African, and United States
873 SARS-CoV-2 variant spike proteins by convalescent sera and BNT162b2 mRNA vaccine-
874 elicited antibodies. *bioRxiv*.

875

876 Thomas, S.J., Moreira, E.D., Jr., Kitchin, N., Absalon, J., Gurtman, A., Lockhart, S., Perez, J.L.,
877 Pérez Marc, G., Polack, F.P., Zerbini, C., *et al.* (2021). Safety and Efficacy of the BNT162b2
878 mRNA Covid-19 Vaccine through 6 Months. *N Engl J Med*.

879

880 Turner, J.S., O'Halloran, J.A., Kalaidina, E., Kim, W., Schmitz, A.J., Zhou, J.Q., Lei, T., Thapa,
881 M., Chen, R.E., Case, J.B., *et al.* (2021). SARS-CoV-2 mRNA vaccines induce persistent human
882 germinal centre responses. *Nature* 596, 109-113.

883

884 Ullah, I., Prévost, J., Ladinsky, M.S., Stone, H., Lu, M., Anand, S.P., Beaudoin-Bussières, G.,
885 Symmes, K., Benlarbi, M., Ding, S., *et al.* (2021). Live imaging of SARS-CoV-2 infection in
886 mice reveals that neutralizing antibodies require Fc function for optimal efficacy. *Immunity* 54,
887 2143-2158.e2115.

888

889 VanBlargan, L.A., Adams, L.J., Liu, Z., Chen, R.E., Gilchuk, P., Raju, S., Smith, B.K., Zhao, H.,
890 Case, J.B., Winkler, E.S., *et al.* A potently neutralizing SARS-CoV-2 antibody inhibits variants
891 of concern by utilizing unique binding residues in a highly conserved epitope. *Immunity*.

892

893 Wang, P., Casner, R.G., Nair, M.S., Wang, M., Yu, J., Cerutti, G., Liu, L., Kwong, P.D., Huang,
894 Y., Shapiro, L., *et al.* (2021a). Increased resistance of SARS-CoV-2 variant P.1 to antibody
895 neutralization. *Cell Host Microbe* 29, 747-751.e744.

896

897 Wang, P., Nair, M.S., Liu, L., Iketani, S., Luo, Y., Guo, Y., Wang, M., Yu, J., Zhang, B.,
898 Kwong, P.D., *et al.* (2021b). Antibody resistance of SARS-CoV-2 variants B.1.351 and B.1.1.7.
899 *Nature* 593, 130-135.

900

901 Wibmer, C.K., Ayres, F., Hermanus, T., Madzivhandila, M., Kgagudi, P., Lambson, B.E.,
902 Vermeulen, M., van den Berg, K., Rossouw, T., Boswell, M., *et al.* (2021). SARS-CoV-2
903 501Y.V2 escapes neutralization by South African COVID-19 donor plasma. *bioRxiv*.

904

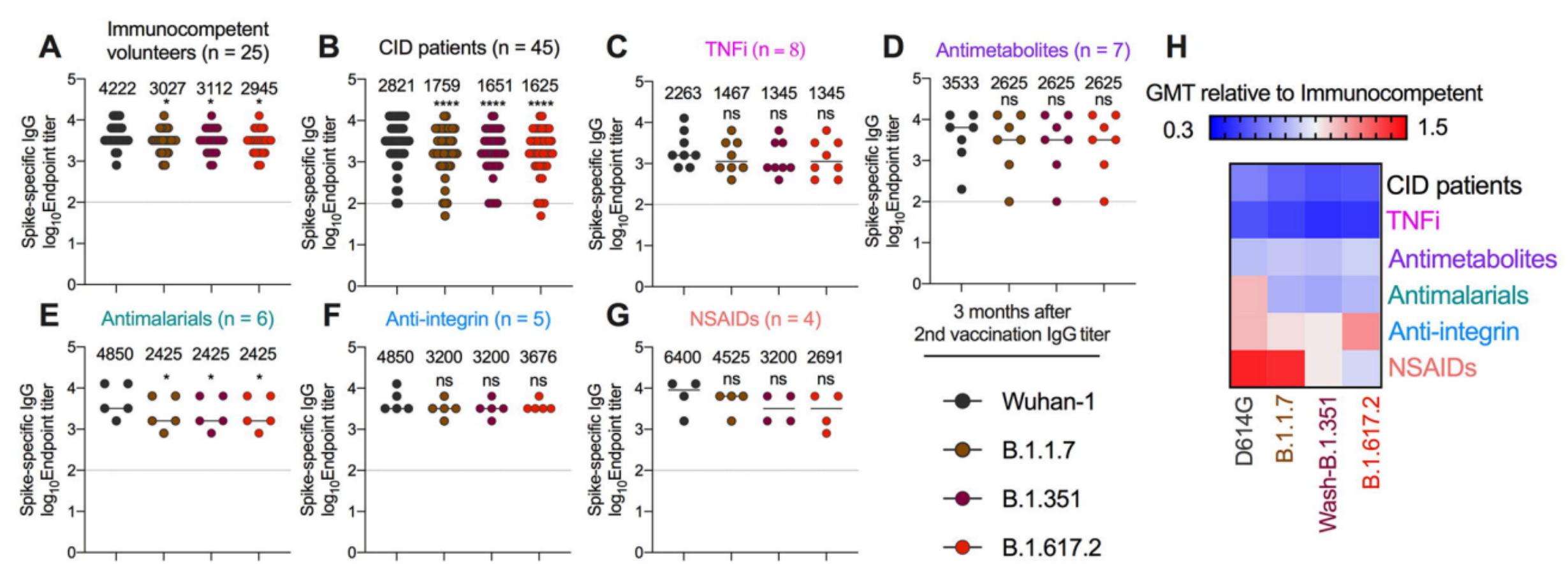
905 Winkler, E.S., Gilchuk, P., Yu, J., Bailey, A.L., Chen, R.E., Chong, Z., Zost, S.J., Jang, H.,
906 Huang, Y., Allen, J.D., *et al.* (2021). Human neutralizing antibodies against SARS-CoV-2
907 require intact Fc effector functions for optimal therapeutic protection. *Cell* 184, 1804-
908 1820.e1816.

909

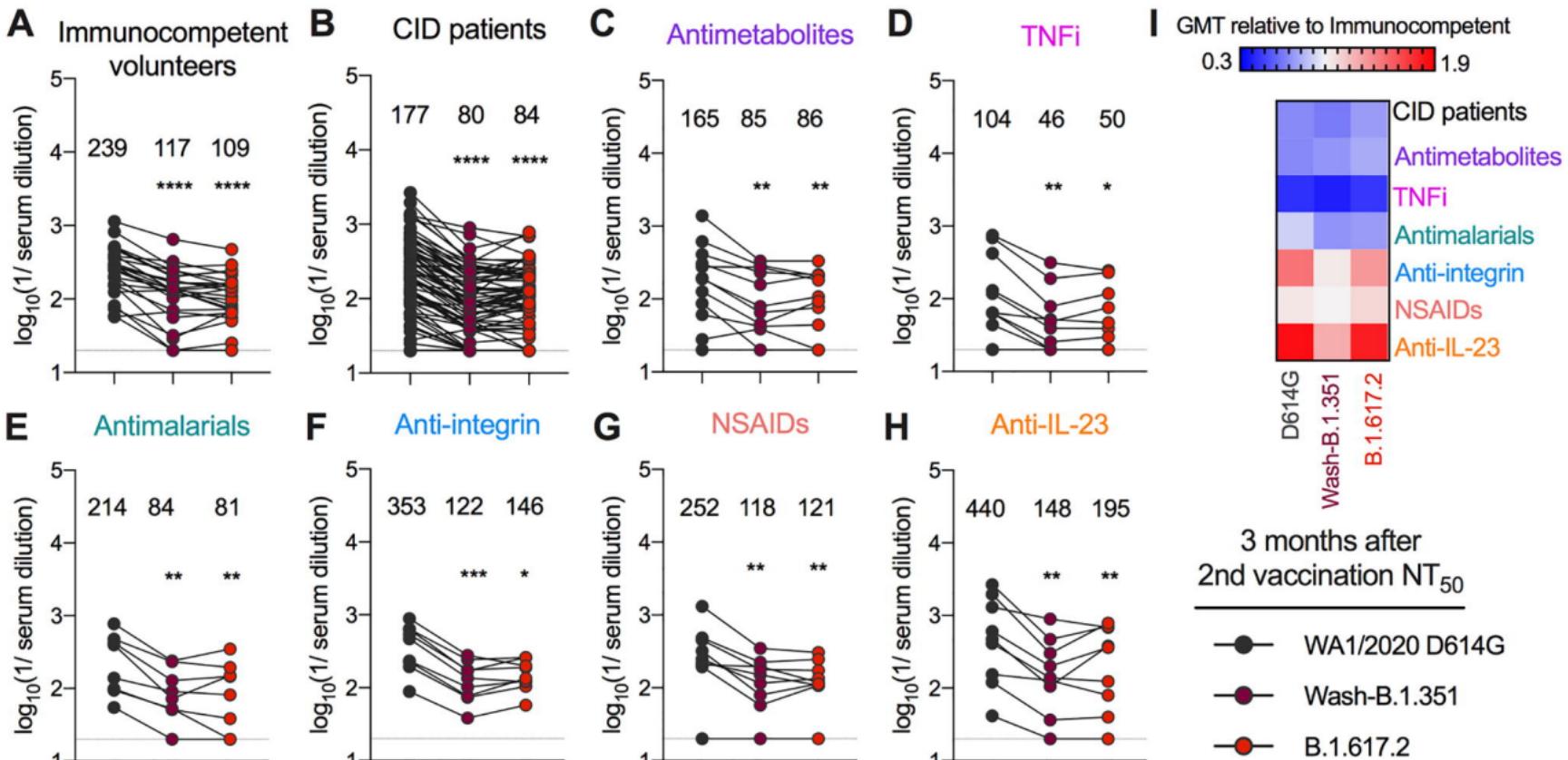
910 Yamin, R., Jones, A.T., Hoffmann, H.H., Schäfer, A., Kao, K.S., Francis, R.L., Sheahan, T.P.,
911 Baric, R.S., Rice, C.M., Ravetch, J.V., *et al.* (2021). Fc-engineered antibody therapeutics with
912 improved anti-SARS-CoV-2 efficacy. *Nature*.

913

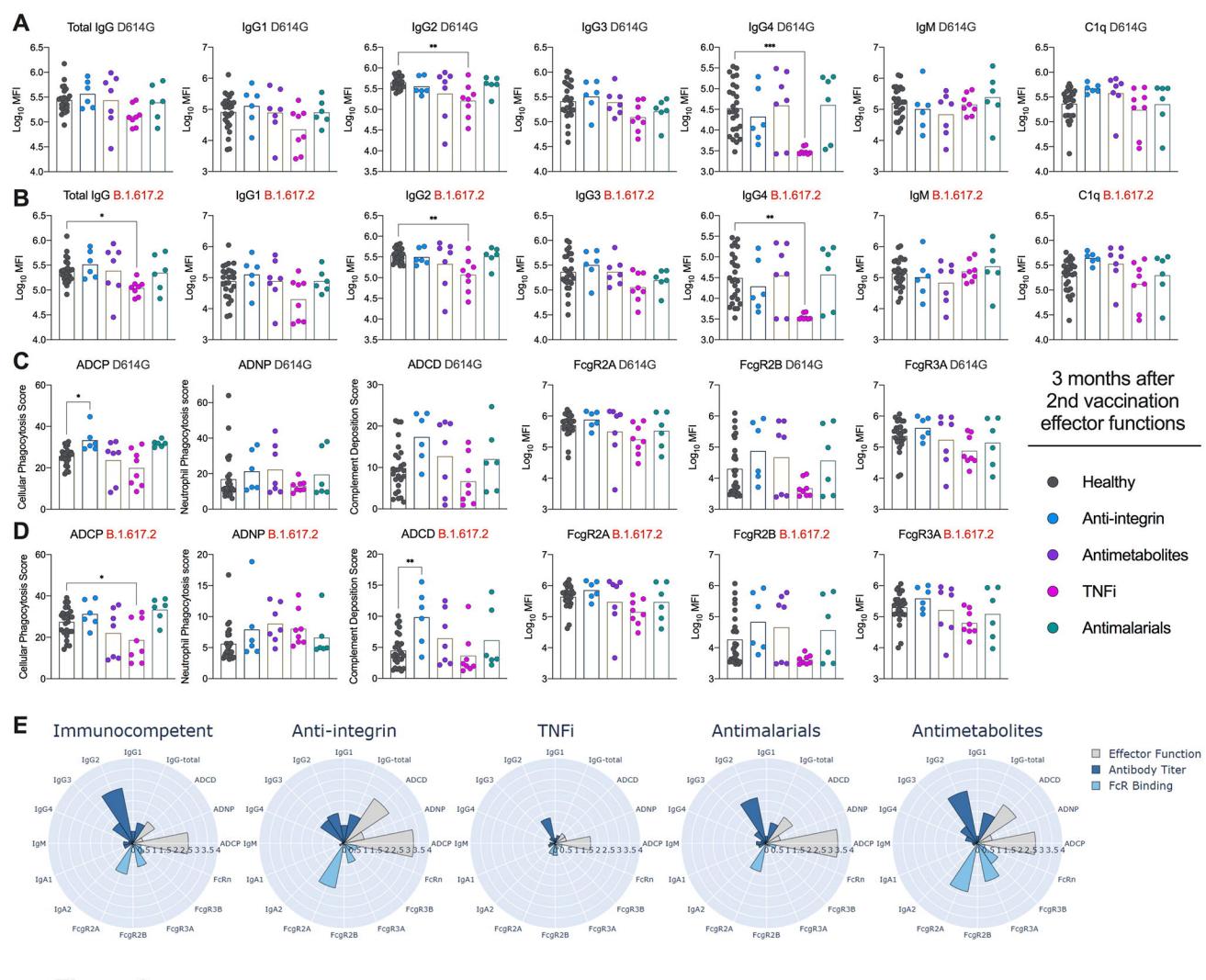
914 Zang, R., Gomez Castro, M.F., McCune, B.T., Zeng, Q., Rothlauf, P.W., Sonnek, N.M., Liu, Z.,
915 Brulois, K.F., Wang, X., Greenberg, H.B., *et al.* (2020). TMPRSS2 and TMPRSS4 promote
916 SARS-CoV-2 infection of human small intestinal enterocytes. *Sci Immunol* 5.


917

918 Zohar, T., Loos, C., Fischinger, S., Atyeo, C., Wang, C., Slein, M.D., Burke, J., Yu, J., Feldman,
919 J., Hauser, B.M., *et al.* (2020). Compromised Humoral Functional Evolution Tracks with SARS-
920 CoV-2 Mortality. *Cell* 183, 1508-1519.e1512.


921

922 Zost, S.J., Gilchuk, P., Chen, R.E., Case, J.B., Reidy, J.X., Trivette, A., Nargi, R.S., Sutton, R.E.,
923 Suryadevara, N., Chen, E.C., *et al.* (2020). Rapid isolation and profiling of a diverse panel of
924 human monoclonal antibodies targeting the SARS-CoV-2 spike protein. *Nature Medicine* 26,
925 1422-1427.


926

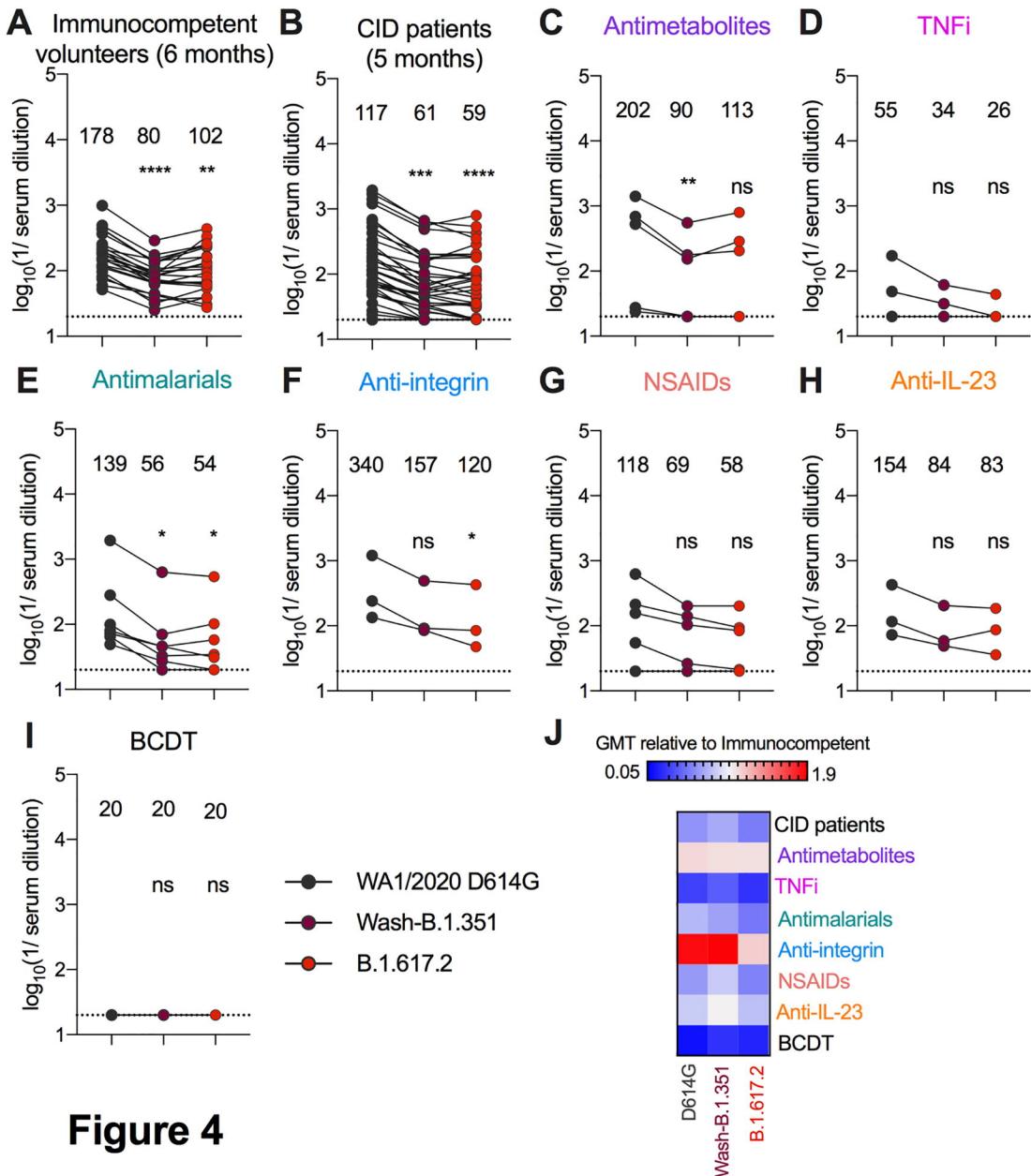

Figure 1

Figure 2

Figure 3

Figure 4