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ABSTRACT 34 

Binding to the receptor, CD4, drives the pretriggered, “closed” (State-1) conformation of 35 

the human immunodeficiency virus (HIV-1) envelope glycoprotein (Env) trimer into more 36 

“open” conformations (States 2 and 3).  Broadly neutralizing antibodies, which are 37 

elicited inefficiently, mostly recognize the State-1 Env conformation, whereas the more 38 

commonly elicited poorly neutralizing antibodies recognize States 2/3.  HIV-1 Env 39 

metastability has created challenges for defining the State-1 structure and developing 40 

immunogens mimicking this labile conformation.  The availability of functional State-1 41 

Envs that can be efficiently crosslinked at lysine and/or acidic amino acid residues might 42 

assist these endeavors.  To that end, we modified HIV-1AD8 Env, which exhibits an 43 

intermediate level of triggerability by CD4.  We introduced lysine/acidic residues at 44 

positions that exhibit such polymorphisms in natural HIV-1 strains.  Env changes that 45 

were tolerated with respect to gp120-gp41 processing, subunit association and virus 46 

entry were further combined.  Two common polymorphisms, Q114E and Q567K, as well 47 

as a known variant, A582T, additively rendered pseudoviruses resistant to cold, soluble 48 

CD4 and a CD4-mimetic compound, phenotypes indicative of stabilization of the 49 

pretriggered State-1 Env conformation.  Combining these changes resulted in two 50 

lysine-rich HIV-1AD8 Env variants (E.2 and AE.2) with neutralization- and cold-resistant 51 

phenotypes comparable to those of natural, less triggerable Tier 2/3 HIV-1 isolates.  52 

Compared with these and the parental Envs, the E.2 and AE.2 Envs were cleaved more 53 

efficiently and exhibited stronger gp120-trimer association in detergent lysates.  These 54 

highly crosslinkable Envs enriched in a pretriggered conformation should assist 55 

characterization of the structure and immunogenicity of this labile state.  56 
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IMPORTANCE 57 

The development of an efficient vaccine is critical for combating HIV-1 infection 58 

worldwide.  However, the instability of the pretriggered shape (State 1) of the viral 59 

envelope glycoprotein (Env) makes it difficult to raise neutralizing antibodies against 60 

HIV-1.  Here, by introducing multiple changes in Env, we derived two HIV-1 Env 61 

variants that are enriched in State 1 and can be efficiently crosslinked to maintain this 62 

shape.  These Env complexes are more stable in detergent, assisting their purification. 63 

Thus, our study provides a path to a better characterization of the native pretriggered 64 

Env, which should assist vaccine development.   65 

 66 

KEYWORDS:  human immunodeficiency virus, envelope, polymorphism, native 67 

conformation, state 1, stabilizing mutation, chemical crosslink  68 

 69 
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INTRODUCTION 71 

Human immunodeficiency virus type 1 (HIV-1) entry into target cells is mediated by the 72 

viral envelope glycoprotein (Env) trimer (1,2).  The Env trimer is composed of three 73 

gp120 exterior subunits and three gp41 transmembrane subunits (2).  In infected cells, 74 

Env is first synthesized as an uncleaved precursor in the rough endoplasmic reticulum 75 

(ER), where signal peptide cleavage, folding, trimerization, and the addition of high-76 

mannose glycans take place (3-6).  Exiting the ER, the trimeric gp160 Env precursor 77 

follows two pathways to the cell surface (7).  In the conventional secretory pathway, the 78 

Env precursor transits through the Golgi compartment, where it is cleaved into gp120 79 

and gp41 subunits and is further modified by the addition of complex sugars.  These 80 

mature Envs are transported to the cell surface and are incorporated into virions (8-11).  81 

In the second pathway, the gp160 precursor bypasses processing in the Golgi and 82 

traffics directly to the cell surface; these Golgi-bypassed gp160 Envs are excluded from 83 

virions (7).  84 

  85 

 Single-molecule fluorescence resonance energy transfer (smFRET) experiments 86 

indicate that, on virus particles, the mature (cleaved) Env trimer exists in three 87 

conformational states (States 1-3) (12).  From its pretriggered conformation (State 1), 88 

the metastable Env trimer interacts with the receptors, CD4 and CCR5 or CXCR4, and 89 

undergoes transitions to lower-energy states (2, 12-23).  Initially, the engagement with 90 

CD4 induces an asymmetric intermediate Env conformation (State 2) (24, 25).  Binding 91 

of additional CD4 molecules to the Env trimer then induces the full CD4-bound, 92 

prehairpin intermediate conformation (State 3) (24–31).  An extended coiled coil 93 

consisting of the heptad repeat (HR1) region of gp41 is exposed in the prehairpin 94 
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intermediate (23, 25, 29-31).  State 3 Env subsequently interacts with the CCR5 or 95 

CXCR4 coreceptor to trigger the formation of a gp41 six-helix bundle, a process that 96 

results in fusion of the viral and target cell membranes (32-36).  97 

  98 

 Env strain variability, heavy glycosylation and conformational flexibility contribute 99 

to HIV-1 persistence by avoiding the binding of potentially neutralizing antibodies.  100 

Mature Envs from primary HIV-1 strains largely reside in a State-1 conformation, which 101 

resists the binding of most antibodies elicited during natural infection (12, 23, 37-39); 102 

these high-titer, poorly neutralizing antibodies often recognize State-2/3 Env 103 

conformations (40-44).  After years of infection, a small percentage of HIV-1-infected 104 

individuals generate broadly neutralizing antibodies (bNAbs), most of which recognize 105 

the State-1 Env conformation (12, 37, 38, 45-54).  Passively administered monoclonal 106 

bNAbs have been shown to be protective in animal models of HIV-1 infection, 107 

suggesting that the elicitation of bNAbs is an important goal for vaccines (55-60).  108 

Unfortunately, bNAbs have not been efficiently and consistently elicited in animals 109 

immunized with current HIV-1 vaccine candidates, including stabilized soluble gp140 110 

(sgp140) SOSIP.664 trimers (61-69).  Compared with functional membrane Envs, 111 

differences in the antigenicity, glycosylation and conformation of sgp140 SOSIP.664 112 

trimers have been observed (70-77), potentially contributing to the inefficiency of bNAb 113 

elicitation.  Single-molecule FRET (smFRET) analysis indicates that the sgp140 114 

SOSIP.664 trimers assume a State-2-like conformation (78).  These studies imply that 115 

the available structures of sgp140 SOSIP.664 and other detergent-solubilized Env 116 

trimer preparations (27, 28, 77, 79-91) differ from that of State-1 Env.  The extent of the 117 

structural differences between the State-1 and State-2 Env conformations and their 118 
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potential impact on Env immunogenicity are unknown.  However, the importance of the 119 

State-1 Env as a likely target of vaccine-induced bNAbs provides a rationale for better 120 

characterization of this conformation. 121 

 122 

 HIV-1 is a polymorphic virus with a high mutation rate, allowing escape from host 123 

immune responses and antiretroviral drugs (92-99).  Env polymorphisms that arise 124 

naturally or as a result of tissue-culture adaptation can result in altered virus infectivity, 125 

receptor binding or neutralization sensitivity (23, 40, 44-46, 100-119).  Specifically, 126 

changes in “restraining residues” in gp120 have been shown to destabilize State 1, 127 

disrupt the closed pretriggered Env conformation, and lead to increased sampling of 128 

downstream conformations (45, 118, 119).  These more “triggerable” Env mutants 129 

exhibit increased sensitivity to cold, soluble CD4 (sCD4), CD4-mimetic compounds and 130 

poorly neutralizing antibodies (23, 37, 45, 118, 119).  Less common Env alterations 131 

apparently decrease Env triggerability and stabilize a State-1 conformation (120-125). 132 

 133 

 Crosslinking of HIV-1 Env amino acid residues, in some cases combined with 134 

mass spectrometry, has been used to study Env conformations (37, 73, 126-131).  135 

Crosslinking protocols that target lysine or acidic amino acid residues on native proteins 136 

have been integrated with mass spectrometry to provide low-resolution structural 137 

information (132-135).  Here, we introduced lysine and acidic amino acid residues into a 138 

primary HIV-1 Env, using natural polymorphisms as a guide.  Env changes that were 139 

functionally tolerated were combined to create Envs that are potentially able to be 140 

conformationally fixed by treatment with specific crosslinking agents.  In the process of 141 

generating these Env variants, we identified two common polymorphisms that increased 142 
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virus resistance to cold, sCD4 and a CD4-mimetic compound, phenotypes associated 143 

with stabilization of a pretriggered (State-1) Env conformation (120-125).  Two lysine-144 

rich variants with cold- and sCD4-resistant phenotypes were cleaved more efficiently 145 

and exhibited stronger gp120-trimer association in detergent lysates compared with the 146 

parental HIV-1 Env.  Such highly crosslinkable Envs enriched in a pretriggered 147 

conformation should assist characterization of State 1. 148 

 149 

RESULTS 150 

Env variants with common lysine and acidic residue polymorphisms 151 

We sought to create functional primary HIV-1 Env variants with an increased number of 152 

lysine/acidic residues that could be used to introduce stabilizing crosslinks.  To identify 153 

Env residues that might potentially tolerate such substitutions, we compared Env 154 

sequences from 193 Group M, N, O and P HIV-1 and SIVcpz strains (136).  We identified 155 

Env residues where lysine or acidic substitutions occurred in at least 5% of these 156 

natural virus strains from more than one phylogenetic clade.  The lysine polymorphisms 157 

were grouped by location in Env regions (gp41 and gp120 C-terminus, gp120 trimer 158 

association domain and gp120 inner domain) and by the number of substitutions in a 159 

set (Sets 4-7 contain additional lysine substitutions compared with those in Sets 1-3) 160 

(Fig. 1A).  The ED2 set contains seven of the most common aspartic acid and glutamic 161 

acid polymorphisms in natural HIV-1/SIVcpz variants (Fig. 1A). 162 

 163 

 We selected the primary Clade B HIV-1AD8 as the source of the parental “wild-164 

type” Env in this study.  Primary HIV-1 Envs differ in triggerability by CD4, a property 165 

that influences virus resistance to sCD4, CD4-mimetic compounds and some antibodies 166 
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(23).  The HIV-1AD8 Env is efficiently expressed and processed, is well characterized 167 

with respect to antibody binding and neutralization sensitivity (Tier 2) and, among 168 

primary HIV-1 Envs, exhibits an intermediate level of triggerability by CD4 (7, 23, 73).  169 

Single, double and triple sets of lysine substitutions were introduced into the wild-type 170 

HIV-1AD8 Env. For example, double sets included Sets 1 + 2, 1 + 3, 2 + 3, 2 + 4, 3 + 5, 171 

etc.; triple sets included Sets 1 + 2 + 3, 2 + 3 + 4, 2 + 3 + 6, 3 + 6 + 7, etc. (Fig. 1A).  In 172 

a preliminary study, a total of 24 Env variants were analyzed for protein expression and 173 

processing, ability to support entry of a pseudotyped virus, and the sensitivity of the viral 174 

pseudotype to neutralization by the 19b antibody.  The 19b antibody is a poorly 175 

neutralizing antibody that recognizes the gp120 V3 loop and serves as a sensitive 176 

indicator of HIV-1 Env transitions to State-2/3 conformations (45, 71-74, 137).  With a 177 

few exceptions, most of the lysine substitutions were well tolerated with respect to HIV-178 

1AD8 Env processing, virus infectivity and sensitivity to 19b neutralization (data not 179 

shown).  However, Envs with Set 3 + 7 and Set 3 + 6 +7 changes were poorly 180 

processed and inefficiently supported pseudovirus infection.  Viruses with Set 3 + 5 181 

changes were more sensitive than the wild-type HIV-1AD8 to neutralization by the 19b 182 

antibody (data not shown).  Thus, while most of the introduced lysine substitutions were 183 

well tolerated, some specific combinations apparently exert undesirable effects on HIV-184 

1AD8 Env conformation and function. 185 

 186 

Lysine-rich 2-4 R and 2-4 RED2 Envs  187 

Based on the results of our preliminary analysis, we selected the 2-4 R Env, which 188 

contains Set 2 + 4 and R315K changes, for more detailed characterization.  The ED2 189 

set of acidic substitutions was also added to the 2-4 R Env to create the 2-4 RED2 Env 190 
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(Fig. 1B).  Both 2-4 R and 2-4 RED2 Envs mediated pseudovirus infection as efficiently 191 

as the wild-type HIV-1AD8 Env (data not shown).  To evaluate Env expression, 192 

proteolytic processing and gp120-trimer association, HOS cells were transfected with 193 

plasmids expressing the wild-type HIV-1AD8 Env and the 2-4 R and 2-4 RED2 Envs 194 

tagged at the C-terminus with His6.  Cell lysates were Western blotted directly (Input) or 195 

were precipitated with nickel-nitrilotriacetic (Ni-NTA) beads in the presence of BMS-806, 196 

sCD4 or the DMSO control.  BMS-806 is a small-molecule HIV-1 entry inhibitor that 197 

binds gp120 and stabilizes a State-1-like Env conformation (12, 78, 138-140).  The 198 

uncleaved gp160 Env precursor and mature gp120 and gp41 glycoproteins were 199 

detected in lysates of cells expressing the wild-type HIV-1AD8, 2-4 R and 2-4 RED2 Envs 200 

(Fig. 2A).  Comparison of the gp120:gp160 ratio in the cell lysates indicates that the 2-4 201 

R and 2-4 RED2 Envs are processed more efficiently than the wild-type HIV-1AD8 Env 202 

(Fig. 2A, Input lanes).  In the DMSO control sample, although wild-type HIV-1AD8 gp41 203 

and gp160 were precipitated by the Ni-NTA beads, little gp120 was coprecipitated (Fig. 204 

2A, Ni-NTA lanes).  Apparently, under these conditions, gp120 dissociates from the 205 

wild-type HIV-1AD8 Env complex.  BMS-806 increased the association of the wild-type 206 

HIV-1AD8 gp120 with the precipitated Env complex, as previously seen (138).  In the 207 

presence of sCD4, no coprecipitated gp120 was detected, presumably as a result of 208 

CD4-induced gp120 shedding (141, 142).  Compared with the wild-type HIV-1AD8 Env, 209 

the 2-4 R gp120 was precipitated more efficiently by the Ni-NTA beads in the DMSO 210 

control lysates.  The coprecipitation of the 2-4 RED2 gp120 from the DMSO-treated cell 211 

lysates by the Ni-NTA beads was even more efficient.  For both 2-4 R and 2-4 RED2 212 

Envs, the association of gp120 with the Env complex was enhanced by BMS-806 and 213 

decreased by sCD4.  Thus, the Env changes in 2-4 R and 2-4 RED2 can enhance Env 214 
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processing and, in detergent lysates, strengthen the association of gp120 with 215 

solubilized Env trimers.  Both phenotypes were more pronounced for the 2-4 RED2 Env 216 

than for the 2-4 R Env. 217 

 218 

 The sensitivity of viruses with the wild-type HIV-1AD8, 2-4 R and 2-4 RED2 Envs 219 

to neutralization by broadly and poorly neutralizing antibodies was examined.  The 220 

broadly neutralizing antibodies (bNAbs) in our panel included VRC01 and VRC03 221 

against the CD4-binding site of gp120 (143, 144), PG16 against a quaternary V2 222 

epitope (145), PGT121 against a V3-glycan epitope on gp120 (146), and 35O22 against 223 

the gp120-gp41 interface (147).  The poorly neutralizing antibodies included 17b against 224 

a CD4-induced epitope (148), 19b against the gp120 V3 loop (137), 902090 against a 225 

V2 gp120 epitope (149) and F105 against the CD4-binding site of gp120 (150).  The 2-4 226 

R and 2-4 RED2 viruses were neutralized by bNAbs comparably to the wild-type HIV-227 

1AD8; like the wild-type HIV-1AD8, the 2-4 R and 2-4 RED2 viruses were resistant to 228 

poorly neutralizing antibodies (Fig. 2B). 229 

 230 

 The sensitivity of HIV-1 to inactivation by exposure to cold, sCD4 or CD4-mimetic 231 

compounds can provide an indication of Env “triggerability,” the tendency to make 232 

transitions from State 1 (23, 37, 45, 118, 120-125).  Compared with the wild-type  233 

HIV-1AD8, the 2-4 R virus displayed slight but reproducible resistance to cold, sCD4 and 234 

BNM-III-170, a CD4-mimetic compound (151) (Fig. 2C).  The 2-4 RED2 virus exhibited 235 

an even higher level of resistance to cold, sCD4 and BNM-III-170 than either the wild-236 

type or the 2-4 R virus.  These phenotypes are consistent with the stability of the State-237 
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1 Env conformation exhibiting the following rank order in these variants: 2-4 RED2 > 2-4 238 

R > wild-type HIV-1AD8. 239 

 240 

Q114E and Q576K changes determine State 1-stabilizing phenotypes 241 

We wished to identify the changes in 2-4 RED2 and 2-4 R responsible for the above 242 

phenotypes.  Because differences among the wild-type HIV-1AD8, 2-4 R and 2-4 RED2 243 

Envs were most apparent in the Ni-NTA coprecipitation and virus sensitivity 244 

experiments, we used these assays to characterize HIV-1AD8 Env mutants with single-245 

residue changes corresponding to those in the 2-4 R and 2-4 RED2 Envs.  Among the 246 

acidic residue substitutions found in the ED2 set, a single change, Q114E, was 247 

sufficient to recapitulate the 2-4 RED2 Env phenotypes (Fig. 3A).  Similarly, a single 248 

lysine substitution originally found in Set 4, Q576K, was responsible for most of the 2-4 249 

R Env phenotypes (Fig. 3B).  Thus, Q114E or Q567K alone can enhance HIV-1AD8 Env 250 

processing, gp120-trimer association and virus resistance to cold, sCD4 and a CD4-251 

mimetic compound. 252 

 253 

 Gln 114 is located in the gp120 α1 helix, part of the gp120 inner domain that 254 

faces the trimer axis and interacts with gp41 (79-82, 152-155).  Gln 567 resides in the 255 

N-terminal segment of the gp41 heptad repeat 1 (HR1N) region, which participates in 256 

the formation of the gp41 coiled coil after CD4 binding (32-34).  In the available Env 257 

trimer structures, which have been suggested to represent a State-2-like conformation 258 

(78), the HR1N region is disordered or structurally heterogeneous (79-89).  Although 259 

structural information on Gln 114 and Gln 567 in the context of a State-1 Env is 260 

currently unavailable, based on their approximate location near the trimer axis and the 261 
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charge complementarity of the substitutions yielding similar phenotypes, we tested their 262 

functional dependence.  The phenotypes of a panel of 18 single and double Q114/Q567 263 

Env variants were characterized (Table 1).  Only acidic residue substitutions at position 264 

114 resulted in an improvement of the constellation of State-1-associated phenotypes.  265 

At position 567, lysine substitution yielded the strongest State-1-associated phenotypes, 266 

while arginine substitution exerted a more modest effect.  Analysis of the double 267 

mutants yielded two insights.  First, the phenotypes of the Q114E mutant were not 268 

significantly affected by changing Gln 567 to an alanine residue.  Likewise, the 269 

phenotypes of the Q567K mutant were similar to those of the Q567K/Q114A double 270 

mutant.  Therefore, the State-1-associated phenotypes of the Q114E and Q567K 271 

mutants are not dependent on the formation of hydrogen bonds between the side 272 

chains of residues 114 and 567.  Second, the phenotypic effects of the changes in 273 

residues 114 and 567 were additive.  Combination of the strongest individual changes 274 

yielded the variant, Q114E/Q567K, with the most pronounced phenotype.  Both 275 

changes are found in the 2-4 RED2 Env.  In summary, the Q114E and Q567K changes 276 

independently impart their individual effects on Env function and these effects are 277 

additive. 278 

 279 

 We extended our mutagenesis approach to evaluate the potential of other Env 280 

residues to influence the Q114E and Q567K phenotypes.  A State-1 Env structure 281 

would be most relevant to the search for interacting partners, but is currently not 282 

available.  Therefore, we used the available structural models, many of which represent 283 

State-2-like Env conformations (78), to suggest candidate amino acid residues.  In 284 

sgp140 SOSIP.664 trimers, the highly conserved His 72 is located ~8 Å from Gln 114 285 
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(79-81).  Replacing His 72 with lysine or glutamine residues resulted in increased 286 

sensitivity to sCD4 and BNM-III-170; these phenotypes were partially relieved when 287 

these His 72 changes were combined with Q114E (Table 2).  Replacing His 72 with an 288 

alanine residue resulted in a virus with neutralization sensitivity similar to that of the 289 

wild-type virus.  Compared with the Q114E virus, the H72A/Q114E virus was less 290 

resistant to cold and sCD4.  Thus, some changes in His 72 result in an apparent 291 

increase in Env triggerability and can influence the Q114E phenotypes. 292 

 293 

 In HIV-1/SIVcpz Envs, Thr/Lys polymorphism in residue 202 often exhibits 294 

covariance with Gln/Glu polymorphism in residue 114 (136).  Compared with the wild-295 

type HIV-1AD8, viruses with Thr 202 replaced by alanine, lysine, arginine or glutamine 296 

residues were more sensitive to cold, BNM-III-170 and the 19b anti-V3 antibody (Table 297 

2 and data not shown).  These phenotypes, which are indicative of increased Env 298 

triggerability and State 1 destabilization, were minimally compensated by the addition of 299 

the Q114E change.  Replacing the conserved Gln 203 residue with an alanine residue 300 

(Q203A in Table 2) also resulted in a State-1-destabilized phenotype, but in this case, 301 

the Q114E/Q203A mutant exhibited phenotypes close to that of the wild-type HIV-1AD8.  302 

Thus, the Q114E change can compensate for some but not all State 1-destabilizing 303 

changes. 304 

 305 

 In the unliganded sgp140 SOSIP.664 and PGT151-bound EnvΔCT structures 306 

(PDB: 4ZMJ and 5 FUU, respectively) (82,86), the side chains of Gln 114, Lys 117 and 307 

Lys 121 from each Env protomer point towards the trimer axis, stacking in three layers.  308 

Interprotomer Lys 117-Lys 117 and Lys 121-Lys 121 crosslinks were formed in a 309 
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crosslinking/mass spectrometry study of the sgp140 SOSIP.664 trimer, confirming the 310 

location of these residues in the trimer core in these Env structures (73).  Substitution of 311 

Lys 117 or Lys 121 with an alanine or glutamine residue resulted in viruses that were 312 

more resistant to cold and BNM-III-170 than the wild-type virus (Table 2).  No additive or 313 

synergistic effect was observed when the Q114E change was combined with the K117A 314 

or K121A changes.  In fact, the double mutants exhibited less stable association of 315 

gp120 with solubilized Env trimers (Table 2).  Thus, the effects of the Gln 114, Lys 117 316 

and Lys 121 changes on the viral phenotypes are redundant, whereas in the detergent-317 

solubilized Envs, the K117A and K121A changes nullify the trimer-stabilizing effects of 318 

the Q114E change.  Similar phenotypic effects of the K117A and K121A changes were 319 

observed in the context of the E.2 and AE.2 HIV-1AD8 constructs discussed below (Table 320 

3). 321 

 322 

 As Gln 567 is disordered in most Env trimer structures, we used a low-resolution 323 

model of the uncleaved HIV-1JR-FL Env (156) to suggest potential interaction partners.  324 

However, alanine substitutions in these potentially interacting HIV-1AD8 residues (Glu 325 

47, Glu 83, Glu 87, Glu 91, Asp 230, Glu 492 and Glu 560) did not affect the 326 

phenotypes of the Q567K mutant virus (data not shown). 327 

 328 

Q114E and Q567K synergize with other State 1-stabilizing Env changes 329 

Previous studies suggested that changes in His 66, Ala 582 and Leu 587 could enrich 330 

the State-1 HIV-1YU2 Env conformation through different proposed mechanisms: H66N 331 

destabilizes the CD4-bound conformation, A582T directly stabilizes the pretriggered 332 

conformation and L587A destabilizes the gp41 3-helix bundle (121, 122, 125).  We 333 
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confirmed that individually these changes increased HIV-1AD8 resistance to cold, sCD4 334 

and BNM-III-170 (Table 2).  Of the three changes, only A582T enhanced gp120-trimer 335 

association in cell lysates.  Both the H66N and A582T changes synergized with the 336 

Q114E and Q567K changes in producing viral phenotypes associated with State-1 337 

stabilization (Table 2).  A combination of three changes in the Q114E/Q567K/A582T 338 

Env resulted in the most robust phenotypes. 339 

 340 

Crosslinkable E.2 and AE.2 Envs with enhanced State-1 stability 341 

To generate HIV-1 Envs enriched in a pretriggered conformation and containing multiple 342 

lysine residues for crosslinking, we added two benign changes (R252K, A667K) and 343 

Q114E to the lysine-rich 2-4 R Env to create the E.2 Env construct (Fig. 1).  The AE.2 344 

Env contains, in addition, the A582T change.  The A582T change was chosen because 345 

it not only resulted in viral phenotypes additive with those of Q114E and Q567K, but 346 

also increased gp120 association with the detergent-solubilized Env, a property that 347 

K117A, K121A, H66N and L587A lacked (Table 2).  Both E.2 and AE.2 Env were 348 

cleaved more efficiently than the wild-type HIV-1AD8 Env and resisted gp120 dissociation 349 

from the solubilized Env trimer (Fig. 4A).  By comparison, the wild-type Env from 350 

another primary strain, HIV-1JR-FL, was poorly processed and highly unstable in 351 

detergent. 352 

 353 

 To evaluate the functional E.2 and AE.2 Envs in more detail, we tested virus 354 

sensitivity to a panel of broadly and poorly neutralizing antibodies.  In addition to the 355 

antibodies used in Figure 2, we included two bNAbs, PGT151 against the gp120-gp41 356 

interface (157) and PGT145 against a quaternary V2 epitope (158), and the poorly 357 
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neutralizing F240 antibody against gp41 (159).  Envs from the Clade B HIV-1JR-FL and 358 

Clade A HIV-1BG505 Tier 2/3 strains were included for comparison.  All Env variants 359 

resisted neutralization by poorly neutralizing antibodies, as expected (Fig. 4B).  360 

Compared to the wild-type HIV-1AD8, HIV-1JR-FL and HIV-1BG505, the E.2 and AE.2 361 

viruses were just as sensitive, and even more sensitive in some cases, to neutralization 362 

by broadly neutralizing antibodies. 363 

 364 

 The sensitivity of the viruses to cold inactivation, sCD4 and the CD4-mimetic 365 

compound, BNM-III-170, is shown in Fig. 4C.  Compared with the wild-type HIV-1AD8, 366 

the E.2 virus exhibited increased resistance to cold, sCD4 and BNM-III-170.  Alteration 367 

of Glu 114 in the E.2 Env to glutamine largely reverted these phenotypes, suggesting 368 

that the Q114E change is a critical determinant of the stabilized pretriggered 369 

conformation in the E.2 Env (data not shown).  The inclusion of the A582T change in 370 

the AE.2 Env further increased cold, sCD4 and BNM-III-170 resistance to the levels of 371 

the Tier 2/3 HIV-1JR-FL and HIV-1BG505 strains.  In addition, the E.2 and AE.2 viruses 372 

were more sensitive than the wild-type HIV-1AD8 to the State 1-preferring entry 373 

inhibitors, BMS-806 and 484 (45, 118); the AE.2 virus was more sensitive to these 374 

small-molecule inhibitors than the E.2 virus (data not shown). 375 

 376 

 In an attempt to improve the E.2 and AE.2 Envs further, we added the K59A 377 

and/or V255I changes.  Lysine 59 is a highly conserved residue in the gp120 inner 378 

domain, within the disulfide loop (Layer 1) that includes His 66, discussed above.  379 

Valine 255 packs against the critical Trp 112 and Trp 427 residues in the CD4-binding 380 

Phe 43 cavity of gp120 (152); the V255I change was associated with resistance to AAR 381 
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029b, a cyclic peptide triazole inhibitor of CD4 binding (160).  The K59A and V255I 382 

changes alone rendered HIV-1AD8 more cold-resistant, and the K59A virus was also 383 

relatively resistant to sCD4 and BNM-III-170 (Table 3).  However, the K59A and V255I 384 

changes had only modest effects in the E.2 and AE.2 background on State 1-associated 385 

phenotypes, but led to significant reductions in infectivity (Table 3).  These observations 386 

hint that further stabilization of State 1-associated phenotypes in the AE.2 context may 387 

be accompanied by decreases in Env function. 388 

 389 

Effects of State 1-destabilizing changes in different Env contexts 390 

In the above studies, the Q114E change could revert the viral phenotypes associated 391 

with State 1 destabilization by the Q203A change but not by changes in the adjacent 392 

Thr 202 residue (Table 2).  We evaluated whether an Env with multiple State 1-393 

stabilizing changes, 2-4 RM6 AE, would better tolerate State 1 destabilization.  The 2-4 394 

RM6 AE and AE.2 Envs are identical except for the benign R252K change in the latter 395 

(Fig. 1).  The 2-4 RM6 AE virus is resistant to cold, sCD4 and BNM-III-170 and exhibits 396 

a strong gp120-trimer association in detergent (Table 3).  We individually introduced the 397 

R542V, I595F and L602H changes into the wild-type HIV-1AD8 Env or the 2-4 RM6 AE 398 

Env.  These gp41 changes rendered HIV-1 more sensitive to the nonpeptidic inhibitory 399 

compound RPR103611, which suggested that they might destabilize the pretriggered 400 

(State-1) Env conformation (161).  In agreement with this hypothesis, the R542V and 401 

L602H viruses exhibited increased sensitivity to cold, sCD4 and BNM-III-170 relative to 402 

HIV-1AD8 (Table 3).  The I595F virus was sensitive to sCD4 and BNM-III-170 as well as 403 

to the 19b anti-V3 antibody, but was slightly more resistant to cold inactivation than HIV-404 

1AD8.  Interestingly, the increased sensitivity to cold, sCD4, BNM-III-170 and 19b 405 
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associated with these gp41 changes was not evident in the 2-4 RM6 AE background.  406 

Thus, the State 1- stabilizing changes in 2-4 RM6 AE apparently resist the State 1- 407 

destabilizing effects of the R542V, I595F and L602H changes in the gp41 ectodomain. 408 

 409 

Correlations among key Env phenotypes 410 

To understand the relationships among key Env phenotypes and to visualize the effects 411 

of specific amino acid changes on the progression of successive generations of Env 412 

mutants, we plotted the relative levels of resistance to cold, BNM-III-170 and gp120-413 

trimer dissociation for all characterized Env variants (Fig. 5).  Virus resistance to cold 414 

inactivation reflects the stability of the functional Env trimer on virions and is 415 

independent of the binding of an Env ligand.  Virus resistance to the CD4-mimetic 416 

compound generally correlates with resistance to sCD4 (122,154, 162).  Of interest, 417 

there exists a strong correlation between virus resistance to the CD4-mimetic 418 

compound and to cold (Fig. 5).  Beginning with the wild-type HIV-1AD8 Env, Envs 419 

incorporating additive State 1- stabilizing changes displayed upward shifts towards 420 

highly resistant phenotypes, comparable to those of the HIV-1JR-FL and HIV-1BG505 Envs.  421 

Envs with State 1-destabilizing changes grouped together in the lower left quadrant. 422 

 423 

 Env variants that exhibited a higher level of gp120-trimer association in 424 

detergent, relative to that of the wild-type HIV-1AD8 Env, are colored green in Figure 5.  425 

The skewed distribution of these Env variants in the upper right quadrant indicates that 426 

a tighter association of gp120 with the solubilized Env trimer is related to virus 427 

resistance to cold and BNM-III-170, phenotypes associated with State 1 stabilization.  428 

Note that several Env variants, including the natural HIV-1JR-FL and HIV-1BG505 Envs, 429 
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achieve virus resistance to cold and BNM-III-170 without increasing gp120-trimer 430 

association in detergent-solubilized Envs.  Therefore, increasing gp120-trimer 431 

association is not the only means of achieving a more stable pretriggered (State-1) Env 432 

conformation. 433 

 434 

Crosslinking efficiency of the wild-type AD8, E.2 and AE.2 Envs 435 

The lysine-rich E.2 and AE.2 Envs are expected to crosslink more efficiently than the 436 

wild-type HIV-1AD8 Env with lysine-reactive crosslinkers like DTSSP and glutaraldehyde.  437 

DTSSP has a spacer arm of 12 Å, whereas, because of its tendency to polymerize, 438 

glutaraldehyde forms crosslinks of more variable lengths (163).  Both DTSSP and 439 

glutaraldehyde crosslinked the E.2 and AE.2 Envs more efficiently than the wild-type 440 

AD8 Env (Fig. 6A).  For example, after treatment with 5 mM glutaraldehyde, the E.2 and 441 

AE.2 Envs crosslinked into gel-stable trimers, whereas the wild-type HIV-1AD8 Env 442 

mostly formed monomers and dimers.  Apparently, a greater number of lysine residues 443 

accessible to the crosslinkers exist on the surface of the E.2 and AE.2 Env trimers 444 

compared with the wild-type HIV-1AD8 Env. 445 

 446 

 We also examined the relative sensitivity of the functional wild-type HIV-1AD8, E.2 447 

and AE.2 Envs to BS3, another lysine-specific crosslinker with spacer arms of 12 Å.  448 

The infectivity of viruses pseudotyped with the E.2 and AE.2 Envs was inhibited by BS3 449 

at three- to four-fold lower concentrations than those required for inhibition of viruses 450 

with the wild-type HIV-1AD8 Env (Fig. 6B).  These results suggest that BS3 crosslinks 451 

occur more efficiently on the E.2 and AE.2 Envs than on the wild-type HIV-1AD8 Env, 452 

leading to a loss of infectivity at lower BS3 concentrations.  453 
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DISCUSSION  454 

Despite more than three decades of intense research, an effective HIV-1 vaccine 455 

remains elusive.  The metastability and multiple conformational states of the HIV-1 Env 456 

create challenges for the generation of broadly neutralizing antibodies, either following 457 

vaccination or during natural HIV-1 infection.  In Env-expressing cells, both uncleaved 458 

and cleaved (mature) Envs are present on the cell surface.  A significant fraction of the 459 

uncleaved Env bypasses the conventional Golgi secretory pathway to traffic to the cell 460 

surface; these Envs differ from mature Envs in glycan processing, conformation and 461 

recognition by antibodies (7).  Uncleaved Envs may function as a decoy to the host 462 

immune system and divert antibody responses away from the mature Envs.  The 463 

pretriggered (State-1) conformation of the mature virion Env of primary HIV-1 strains is 464 

the target for most broadly neutralizing antibodies (12, 37, 38, 45).  This native 465 

conformation, however, is unstable and can transition into more open State 2/3 466 

conformations that are able to be recognized by poorly neutralizing antibodies.  467 

Therefore, it is of significant interest to devise methods to lock Env in its native State-1 468 

conformation by means that resist perturbation during Env purification, characterization 469 

and immunization. 470 

 471 

 Here, we tackled the challenges posed by HIV-1 Env conformational flexibility in 472 

two ways.  First, we used polymorphisms in naturally occurring HIV-1 strains to guide 473 

the introduction of extra lysine and acidic amino acid residues in the HIV-1AD8 Env.  474 

Chemical crosslinkers that couple lysine or acidic residues on proteins under 475 

physiological conditions are available (132-135).  During the iterative process employed 476 

to identify HIV-1AD8 Envs that are potentially more susceptible to crosslinking, we 477 
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required that the Env variants exhibit efficient processing, subunit association, and the 478 

ability to support virus entry.  Some of the functional HIV-1AD8 Env variants developed 479 

by this approach contain up to 11 extra lysine residues (33 per Env trimer) and up to 7 480 

extra acidic residues (21 per Env trimer).  Using DTSSP or glutaraldehyde as 481 

crosslinking agents, two Env variants, E.2 and AE.2, were shown to form interprotomer 482 

crosslinks more efficiently than the wild-type HIV-1AD8 Env.  The infectivity of viruses 483 

with these Envs was inactivated more efficiently than that of viruses with the wild-type 484 

HIV-1AD8 Env by another lysine-specific crosslinker, BS3.  These assays document the 485 

accessibility of some of the additional lysine residues introduced into the E.2 and AE.2 486 

Envs.  Chemical crosslinking can enrich the representation of labile native 487 

conformations in Env preparations for structural analysis or immunogenicity studies.  488 

Crosslinking/mass spectrometry can provide distance constraints between Env residues 489 

that can be used to validate available structural models or to derive new models (132-490 

135).  A previous study utilized crosslinking/mass spectrometry to detect differences 491 

between soluble and membrane-bound Envs (73).  The inclusion of the 2-4 RED2, E.2 492 

and AE.2 Envs in future crosslinking/mass spectrometry studies should increase the 493 

number of distance constraints and thereby improve our ability to discriminate among 494 

alternative structural models. 495 

 496 

 The second strategy employed in our approach was to screen the Env variants 497 

for function and viral phenotypes associated with stabilization of a State-1 Env 498 

conformation.  For this purpose, we evaluated viral resistance to cold, sCD4 and the 499 

CD4-mimetic compound BNM-III-170.  Cold inactivation reflects the resistance of the 500 

functional HIV-1 Env trimer to the detrimental effects of ice formation at near-freezing 501 
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temperatures (164-166).  The sensitivity of HIV-1 variants to cold inactivation is related 502 

to the intrinsic reactivity or triggerability of Env; Envs that more readily make the 503 

transition from State 1 to downstream conformations are invariably cold-sensitive (23, 504 

121, 122).  HIV-1 sensitivity to sCD4 and BNM-III-170 inhibition is a function of Env 505 

triggerability (23, 45, 118, 119, 125); because we generally avoided changes to the 506 

highly conserved and well-defined BNM-III-170 binding site on gp120 (151, 162), most 507 

of the observed differences in virus sensitivity to this CD4-mimetic compound reflect 508 

changes in the ability of Env to negotiate transitions from a State-1 conformation.  Our 509 

study documents the strong correlation between HIV-1 resistance to cold and resistance 510 

to BNM-III-170.  This screening strategy identified two changes, Q114E in gp120 and 511 

Q567K in gp41, that individually increased the resistance of the HIV-1AD8 Env to 512 

inactivation by cold, sCD4 and BNM-III-170.  These viral phenotypes were additively 513 

enhanced by combining the Q114E and Q567K changes in Env variants, such as the 514 

lysine-rich E.2 and AE.2 Envs.  Cold, sCD4 and BNM-III-170 resistance were further 515 

increased by the inclusion in the AE.2 Env of the A582T gp41 change, which previously 516 

was shown to stabilize a pretriggered Env conformation (123, 125).  The functional E.2 517 

and AE.2 Envs exhibit an antigenic profile consistent with a State-1 conformation, 518 

conferring virus sensitivity to broadly neutralizing antibodies that target quaternary 519 

epitopes (PG16, PGT145, PGT151, 35O22) and resistance to poorly neutralizing 520 

antibodies (17b, 19b, 902090, F105, F240).  Viruses with the E.2 and AE.2 Envs were 521 

inhibited efficiently by BMS-806, a small molecule that exhibits some preference for a 522 

State-1 Env conformation (12, 78, 138-140).  Two unanticipated beneficial phenotypes 523 

associated with the E.2 and AE.2 Envs are more efficient Env processing and greater 524 

stability of solubilized Env trimers.  HIV-1 Env cleavage has been suggested to 525 
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contribute to the stability of the State-1 conformation (138, 139, 167-173).  As 526 

uncleaved HIV-1 Envs sample multiple conformations, including those reactive with 527 

poorly neutralizing antibodies, achieving a high level of gp120-gp41 processing may be 528 

important for an effective vaccine immunogen.  The E.2 and AE.2 Envs achieve levels 529 

of State 1- associated phenotypes comparable to those of the Tier 2/3 HIV-1JR-FL and 530 

HIV-1BG505, but notably, are processed much more efficiently.  In addition, relative to 531 

these Envs and the wild-type HIV-1AD8 Env, the E.2 and AE.2 Envs solubilized in 532 

detergent exhibit much greater gp120 association with the Env trimer.  The Q114E, 533 

Q567K and A582T changes individually strengthen the non-covalent association of 534 

gp120 with the solubilized Env trimers, a property that will assist purification and 535 

characterization.  Of interest, the Q567K change was included in a combination of Env 536 

changes that were reported to stabilize HIV-1 Env trimers in different contexts (174-537 

176).  In our panel of HIV-1 Env variants, enhancement of Env trimer stability in 538 

detergent was strongly correlated with virus resistance to cold and BNM-III-170, State 1-539 

associated phenotypes.  We note that the binding of the State 1-preferring compound, 540 

BMS-806, also stabilizes gp120-trimer association (138).  In future studies, the ability of 541 

Q114E, Q567K and A582T changes to enhance Env cleavage efficiency, gp120-trimer 542 

association and State-1 stabilization in other HIV-1 strains will be explored. 543 

 544 

 We identified other changes (K59A, K117A, K121A) that individually yielded Env 545 

phenotypes consistent with State-1 stabilization.  These and previously identified State 546 

1-stabilizing changes (H66N, L587A) (121, 122, 125) were tested in combination with 547 

the Q114E and/or Q567K changes in various Env backgrounds.  In no case did we 548 

observe an additive improvement in viral phenotypes associated with State 1 549 
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stabilization, and several of these combinations resulted in attenuated virus replication 550 

or gp120-trimer dissociation in detergent.  It is not surprising that, as State 1 stability is 551 

increased, virus replication diminishes as the activation barriers governing State 1-to-552 

State 2 transitions increase.  However, the validation of State 1 stabilization would be 553 

less straightforward for replication-incompetent Envs, given current uncertainties about 554 

a State-1 Env structure.  Therefore, we deferred investigation of these potentially State-555 

1-stabilizing changes until better assays to characterize the conformations of 556 

nonfunctional Envs are established. 557 

 558 

Changes in gp41 (I559P, L555P) that are intended to prevent the formation of the 559 

HR1 coiled coil have been used to stabilize soluble gp140 trimers (70, 88, 177).  560 

However, introduction of these changes in combination with the major State 1- 561 

stabilizing changes (Q114E/I559P, Q114E/Q567K/I559P and Q114E/Q567K/L555P) 562 

resulted in Envs that were not processed (data not shown).   563 

 564 

 We also considered another gp41 change, Q658E, that has been shown to 565 

stabilize sgp140 SOSIP.664 trimers (178).  Introduction of the Q658E change into the 566 

wild-type HIV-1AD8 Env resulted in increased virus sensitivity to cold, sCD4, BNM-III-170 567 

and the 19b antibody (data not shown).  These phenotypes are consistent with those 568 

reported in other HIV-1 strains (178) and, as they suggest a lower occupancy of State 1, 569 

we did not evaluate the Q658E change in combination with the Q114E and Q567K 570 

changes. 571 

 572 
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Although a State-1 Env structure is currently unknown, mapping the Env residues 573 

identified in this study on available Env trimer models can provide some insights.  574 

Figure 7 shows the locations of Env residues in which changes resulted in increases or 575 

decreases in State 1-associated phenotypes on a PGT151-bound HIV-1JR-FL EnvΔCT 576 

trimer (PDB: 5FUU) (82).  The binding of the PGT151 antibody induces a State-2 577 

conformation that is asymmetric, with two antibody Fabs bound to the Env trimer (78, 578 

82).  We chose this structure because, unlike most HIV-1 trimer structures, the HR1N 579 

region containing Gln 567 is resolved; however, in keeping with the asymmetry of the 580 

PGT151-bound Env trimer, the positions of the Gln 567 residues differ among the three 581 

Env protomers.  Gln 567, Gln 114, and Ala 582 are close to the trimer axis in the 582 

EnvΔCT structure (Fig. 7A).  The Cα-Cα distances between Gln 114 and Gln 567 583 

residues vary from 11.6 to 15.2 Å and the side chains of these residues do not 584 

apparently interact in this Env conformation.  Gln 114 is stacked above Lys 117 and Lys 585 

121, the side chains of which project towards the Env trimer axis (Fig. 7B, right panel).  586 

Although a precise structural explanation for the observed State 1-stabilizing 587 

phenotypes will require more data, the implicated residues are positioned near 588 

intersubunit or interprotomer junctions and therefore could potentially modulate trimer 589 

opening.  For example, electrostatic repulsion among Lys 117 residues that destabilizes 590 

the Env trimer could be mitigated by their conversion to alanine residues or by replacing 591 

Gln114 with acidic residues.   592 

 593 

The State 1-destabilizing changes identified in this study (red residues in Fig. 7B, 594 

left panel) are less localized than the State 1-stabilizing changes (green and yellow 595 

residues in Fig. 7B, left panel).  This is consistent with the expectation that a metastable 596 
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structure can be disrupted by a diverse set of changes, whereas a more limited and 597 

strategically placed set of changes is required to strengthen the structure.  In this study, 598 

we provide an example of how State 1-stabilizing changes in Env can counter the 599 

phenotypic effects of State 1-destabilizing alterations, even when these changes involve 600 

amino acid residues very distant on current Env trimer structures. 601 

 602 

In a related paper, we report the ability of the State 1-stabilizing changes 603 

identified herein to counter the phenotypic consequences of disruption of the gp41 604 

MPER.  Although further work will be required to understand fully the mechanisms 605 

underlying these observations, the ability of the Q114E, Q567K and A582T changes to 606 

counteract the disruptive effects of distant changes suggests that they may have 607 

significant utility in preserving pretriggered Env conformations in multiple circumstances. 608 

 609 

MATERIALS AND METHODS 610 

Env glycoprotein constructs.  The HIV-1AD8 and HIV-1JR-FL Envs were coexpressed with 611 

the Rev protein in the pSVIIIenv expression vector, using the natural HIV-1 env and rev 612 

sequences (23).  The Asp 718 (Kpn I)-BamHI fragment of HIV-1AD8 env was cloned into 613 

the corresponding sites of the pSVIIIenv plasmid expressing the HIV-1HxBc2 Env and 614 

Rev.  The initial single, double and triple sets of lysine substitutions shown in Fig. 1A 615 

were introduced into the HIV-1AD8 Env lacking an epitope tag.   A carboxy-terminal 616 

GGHHHHHH (His6) epitope tag was added to the Env variants shown in Fig. 1B and 617 

derivatives thereof.  The mutations were introduced by site-directed PCR mutagenesis 618 

using Pfu Ultra II polymerase (Agilent Technologies), according to the manufacturer’s 619 

protocol.  The plasmid expressing the HIV-1BG505 Env (BG505.W6M.ENV.C2) was 620 
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obtained through the NIH HIV Reagent Program and was contributed by Dr. Julie 621 

Overbaugh.    622 

  623 

Cell lines.  293T cells (ATCC) and HOS cells (ATCC) were grown in Dulbecco’s 624 

Modified Eagle’s Medium/Nutrient Mixture F12 (DMEM-F12) supplemented with 10% 625 

fetal bovine serum (FBS) and 100 μg/ml of penicillin-streptomycin.  A549 cells 626 

expressing HIV-1 Envs with Gag-mCherry fusion proteins were grown in DMEM-F12 627 

medium supplemented with 10% FBS, 1X Pen-Strep, 1X L-glutamine and 0.2% 628 

Amphotericin B.  Cf2Th cells stably expressing the human CD4 and CCR5 coreceptors 629 

for HIV-1 were grown in the same medium supplemented with 0.4 mg/ml of G418 and 630 

0.2 mg/ml of hygromycin.  All cell culture reagents are from Life Technologies. 631 

 632 

Env processing and gp120-trimer association in Ni-NTA precipitation assay.  HOS cells 633 

were cotransfected with a Rev/Env-encoding pSVIIIenv plasmid and a Tat-encoding 634 

plasmid at a 1:0.125 ratio using the Effectene transfection reagent (Qiagen).  At 48 h 635 

after transfection, HOS cells were washed with 1X PBS and lysed in 100 mM 636 

(NH4)2SO4, 20 mM Tris-HCl, pH 8, 300 mM NaCl and 1.5% Cymal-5 (Anatrace) 637 

containing DMSO, 10 μM BMS-806 or 10 μg/mL soluble CD4-Ig.  Lysates were clarified 638 

and aliquots were saved as the input samples.  The remaining lysates were incubated 639 

with nickel-nitriloacetic acid (Ni-NTA) beads (Qiagen) for 1.5 h at 4°C. The beads were 640 

gently pelleted and washed 3 times with room temperature washing buffer (100 mM 641 

(NH4)2SO4, 20 mM Tris-HCl, pH 8, 1 M NaCl and 0.5% Cymal-5).  The beads were then 642 

boiled in LDS sample buffer, and the proteins analyzed by Western blotting using 643 

1:2,000 goat anti-gp120 polyclonal antibody (Thermo Fisher Scientific) and 1:2,000 644 
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HRP-conjugated rabbit anti-goat IgG (Thermo Fisher Scientific) or 4E10 anti-gp41 645 

antibody (Polymun) and 1:2,000 HRP-conjugated goat anti-human IgG (Santa Cruz). 646 

 647 

Virus infectivity, neutralization and cold sensitivity.  Single-round virus infection assays 648 

were used to measure the ability of the Env variants to support virus entry, as described 649 

previously (23).  Briefly, 293T cells were cotransfected with the Rev/Env-encoding  650 

pSVIIIenv plasmid; a Tat-encoding plasmid; the pCMV HIV-1 Gag-Pol packaging 651 

construct; and a plasmid containing the luciferase-expressing HIV-1 vector at a weight 652 

ratio of 1:0.125:1:3 using a standard calcium phosphate transfection protocol.  At 48 h 653 

after transfection, virus-containing supernatants were collected, filtered through a 0.45-654 

μm membrane, and incubated with soluble CD4, BNM-III-170 or antibody for 1 h at 655 

37°C.  The mixture was then added to Cf2Th-CD4/CCR5 cells, which were cultured at 656 

37°C/5% CO2.  To enhance infection by recombinant viruses with the HIV-1BG505 Env, 657 

virus-antibody mixtures were spinoculated with target cells at 1800 rpm for one hour at 658 

room temperature and then incubated for one more hour before additional medium was 659 

added. Luciferase activity in the Cf2Th-CD4/CCR5 target cells was measured 48 h later.  660 

To measure cold sensitivity, the viruses were incubated on ice for various lengths of 661 

time prior to measuring their infectivity.  To measure the sensitivity of virus infectivity to 662 

crosslinking, the viruses were incubated with BS3 (Thermo Fisher Scientific) for 15 663 

minutes at room temperature; the reaction was quenched with 15 mM Tris-HCl, pH 8.0 664 

for 10 minutes, and the mixture was then added to the target cells. 665 

 666 

Crosslinking of Envs on virus-like particles (VLPs).  A549 cells inducibly expressing 667 

virus-like particles (VLPs) consisting of the HIV-1 Gag-mCherry fusion protein and the 668 
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wild-type HIV-1AD8 Env have been previously described (7, 138).  The D1253 A549-669 

Gag/Env cell line expressing VLPs with wild-type HIV-1AD8 Env was selected by FACS 670 

sorting for Gag-positive and PGT145-positive cells.  The D1555.042321.sort A549-671 

Gag/E.2 Env cells and the D1553.042321.sort A549-Gag/AE.2 Env cells inducibly 672 

expressing VLPs with the E.2 and AE.2 Envs, respectively, were established similarly.  673 

After FACS sorting, these cells were >90% dual-positive for Gag expression (KC567 674 

antibody-positive) and Env expression (PGT145 antibody-positive). 675 

 676 

 An equivalent number of cells from the three cell lines described above were 677 

seeded and the expression of Gag-mCherry/Env VLPs was induced with 2 µg/ml 678 

doxycycline.  Forty-eight to seventy-two hours later, supernatants containing VLPs were 679 

centrifuged at low speed to remove cell debris and then filtered (0.45 µm).  Clarified 680 

supernatants were centrifuged at 100,000 x g for one hour at 4°C.  VLP pellets were 681 

resuspended in 1X PBS, aliquoted and incubated with different concentrations of either 682 

DTSSP (Thermo Fisher Scientific) or glutaraldehyde crosslinkers.  The crosslinking 683 

reaction with DTSSP was carried out for 30 minutes at room temperature, after which 684 

the reaction was quenched with 100 mM Tris-HCl, pH 8.0 for 10 minutes at room 685 

temperature.  Glutaraldehyde crosslinking was carried out for 5 minutes at room 686 

temperature, after which the reaction was quenched with 50 mM glycine for 10 minutes 687 

at room temperature.  VLPs were then pelleted at 20,000 x g for 30 minutes at 4°C.  688 

VLP pellets were resuspended in 1X PBS/LDS, boiled and Western blotted with a goat 689 

anti-gp120 antibody, as described above.  The intensity of the gp120, gp160, dimer and 690 

trimer bands was quantified using the BioRad Image Lab program. 691 

 692 
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TABLE LEGENDS 1594 

Table 1.  Phenotypes of HIV-1AD8 Env variants with changes in Gln 114 and Gln 1595 

567.   1596 

The phenotypes of the wild-type HIV-1AD8 Env and the indicated Gln 114 and Gln 567 1597 

variants were determined as in Figure 2.  The values for Env processing efficiency, virus 1598 

infectivity and gp120-trimer association, relative to those observed for the wild-type HIV-1599 

1AD8 Env, are shown.  The sensitivity or resistance of viruses with the Env variants to 1600 

cold, sCD4 and BNM-III-170 is reported relative to that of the wild-type HIV-1AD8 virus.  1601 

To ensure accurate comparison of the Env variant phenotypes across multiple assays, 1602 

the wild-type HIV-1AD8 and key Env mutants (e.g., Q114E or Q567K) were included in all 1603 

assays.  Phenotypes are labelled as follows: , wild-type level; +, increase; -, decrease; 1604 

R, resistant; S, sensitive; ND, not determined; NA, not applicable.  For virus infectivity: 1605 

0-25 % of wild-type, - - -; 25-50 %, - -; 50-75 %, -; 75-125 %, ; >125 %, +.  The data 1606 

shown are representative of results obtained in at least two independent experiments. 1607 

 1608 

Table 2.  Effects of Env amino acid changes on the phenotypes of the Q114E and 1609 

Q567K Env variants. 1610 

The phenotypes of the wild-type and mutant HIV-1AD8 Envs were determined as in 1611 

Figure 2.  The values, relative to those of the wild-type HIV-1AD8 Env, are reported as 1612 

described in the legend to Table 1.  The data shown are representative of results 1613 

obtained in at least two independent experiments. 1614 

 1615 

Table 3.  Effects of Env amino acid changes on the phenotypes of the E.2, AE.2 1616 

and 2-4 RM6 AE Env variants. 1617 
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The indicated amino acid changes were introduced into the HIV-1AD8 Env or into the 1618 

E.2, AE.2 or 2-4 RM6 AE Envs.  The phenotypes of these Env variants were determined 1619 

as in Figure 2.  The values, relative to those of the wild-type HIV-1AD8 Env, are reported 1620 

as described in the Table 1 legend.  The data shown are representative of results 1621 

obtained in at least two independent experiments. 1622 

*Val 255 is near the binding site for sCD4 and the CD4-mimetic compounds; therefore, 1623 

the V255I change may directly decrease the binding of these Env ligands. 1624 

 1625 

  1626 
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FIGURE LEGENDS 1627 

Figure 1.  HIV-1AD8 Env modification guided by natural polymorphisms.  (A)  1628 

Natural polymorphisms in HIV-1 Env were used to suggest amino acid residues that 1629 

might tolerate replacement with a lysine residue or with acidic amino acid residues.  The 1630 

lysine substitutions are grouped according to the Env region in which the residues are 1631 

located.  Compared with Sets 1-3, Sets 4-7 contain an increased number of 1632 

substitutions.  (B)  A schematic representation of the HIV-1AD8 Env glycoprotein is 1633 

shown, with the gp120-gp41 cleavage site depicted as a black triangle.  S, signal 1634 

peptide; V1-V5, gp120 major hypervariable regions; FP, fusion peptide; HR, heptad 1635 

repeat region; TM, transmembrane region; CT, cytoplasmic tail.  The amino acid 1636 

changes associated with some of the key Env variants studied here are shown.  Red 1637 

vertical tick marks indicate changes in addition to those found in the 2-4 R Env.  1638 

 1639 

Figure 2.  Phenotypes of the 2-4 R and 2-4 RED2 Envs.  (A)  HOS cells were 1640 

transfected transiently with plasmids expressing His6-tagged wild-type HIV-1AD8 Env or 1641 

the 2-4 R or 2-4 RED2 Env variants.  Forty-eight hours later, cells were lysed; the cell 1642 

lysates were incubated with Ni-NTA beads for 1.5 hr at 4°C in the presence of the 1643 

DMSO control, 10 μM BMS-806 or 10 μg/mL sCD4.  Total cell lysates (Input) and 1644 

proteins bound to the Ni-NTA beads were Western blotted with a goat anti-gp120 1645 

antibody (upper panels) or the 4E10 anti-gp41 antibody (lower panels).  (B)  293T cells 1646 

were transfected with plasmids encoding the indicated Envs, HIV-1 packaging proteins 1647 

and Tat, and a luciferase-expressing HIV-1 vector.  Forty-eight hours later, cell 1648 

supernatants were filtered (0.45 μm) and incubated with different antibodies for 1 hr at 1649 

37°C before the mixture was added to Cf2Th target cells expressing CD4 and CCR5.  1650 
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Forty-eight hours after infection, the target cells were lysed, and the luciferase activity 1651 

was measured.  The concentration of antibody required to inhibit 50% of virus infection 1652 

(IC50) was calculated using the GraphPad Prism program.  (C)  Filtered cell 1653 

supernatants containing recombinant viruses were incubated with sCD4 or the CD4-1654 

mimetic compound BNM-III-170 for 1 hr at 37°C.  Then the mixture was added to target 1655 

cells as described above.  In the cold sensitivity assay, viruses were incubated on ice 1656 

for the indicated times, after which the virus infectivity was measured.  The results 1657 

shown in A and C are representative of those obtained in at least two independent 1658 

experiments.  The means and standard deviations derived from two independent 1659 

experiments or triplicate measurements are shown in B and C, respectively. 1660 

         1661 

Figure 3.  Major contributions of the Q114E and Q567K changes to the respective 1662 

2-4 RED2 and 2-4 R phenotypes.  (A) The effects of the Q114E change on gp120-1663 

trimer association (left panel) and virus sensitivity to cold, sCD4 and BNM-III-170 (right 1664 

panels) were measured as described in the legend to Figure 2.  The sensitivities of 1665 

viruses with the wild-type HIV-1AD8 Env and the 2-4 RED2 Env are shown for 1666 

comparison.  (B) The effects of the Q567K change on gp120-trimer association (left 1667 

panel) and virus sensitivity to cold, sCD4 and BNM-III-170 (right panels) were 1668 

measured.  The sensitivities of viruses with the wild-type HIV-1AD8 Env and 2-4 R Env 1669 

are shown for comparison.  The results shown are typical of those obtained in at least 1670 

two independent experiments.  The right panels report the means and standard 1671 

deviations derived from triplicate measurements. 1672 

   1673 
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Figure 4.   Phenotypes of the E.2 and AE.2 Envs.  (A)  HOS cells transiently 1674 

expressing His6-tagged Envs (wild-type HIV-1AD8 Env, the E.2 Env, the AE.2 Env or the 1675 

HIV-1JR-FL Env) were lysed.  Cell lysates were incubated with Ni-NTA beads for 1.5 hr at 1676 

4°C in the presence of the DMSO control or 10 μM BMS-806.  Total cell lysates (Input) 1677 

and Ni-NTA-bound proteins were Western blotted with a goat anti-gp120 antibody 1678 

(upper panels) and the 4E10 anti-gp41 antibody (lower panels).  (B) Recombinant 1679 

luciferase-expressing viruses with the indicated Envs were incubated with antibodies for 1680 

1 hr at 37°C, after which the mixture was added to Cf2Th-CD4/CCR5 target cells.  1681 

Forty-eight hours later, the target cells were lysed and the luciferase activity was 1682 

measured.  The IC50 values were calculated using the GraphPad Prism program.  (C) 1683 

Recombinant luciferase-expressing viruses with the indicated Envs were incubated with 1684 

sCD4 or BNM-III-170 for 1 hr at 37°C before the mixture was added to Cf2Th-1685 

CD4/CCR5 target cells.  Cold sensitivity was assessed by incubation of the viruses on 1686 

ice for the indicated times, after which virus infectivity was measured on Cf2Th-1687 

CD4/CCR5 cells as described above.  The results are representative of those obtained 1688 

in at least two independent experiments.  The values reported in B and C represent the 1689 

means and standard deviations from at least two independent experiments or triplicate 1690 

measurements, respectively. 1691 

         1692 

Figure 5.  Correlations among key Env phenotypes.   The plot shows the relative 1693 

level of resistance to the CD4-mimetic compound BNM-III-170 versus the relative level 1694 

of cold resistance for the HIV-1 Env variants tested in this study.  The levels of 1695 

resistance are scored as described in the legends to Tables 1-3: , wild-type level; R, 1696 

resistant; S, sensitive. Key Env variants are designated with stars.  Envs are colored 1697 
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according to their relative gp120-trimer association level, as measured by Ni-NTA 1698 

coprecipitation of gp120 with the His6-tagged gp41 glycoprotein: black, wild-type level; 1699 

gray, not determined or not applicable; light green, +; green, ++; red, -.  The V255I 1700 

change is located near the binding site for CD4-mimetic compounds and may directly 1701 

affect Env interaction with BNM-III-170.  Note that the E.2 and AE.2 Envs exhibit 1702 

resistance to cold and BNM-III-170 comparable to those of the HIV-1JR-FL and HIV-1BG505 1703 

Envs, but also display better gp160 processing and a tighter association of gp120 with 1704 

the Env trimer solubilized in detergent. 1705 

 1706 

Figure 6.  Crosslinking of the wild-type HIV-1AD8, E.2 and AE.2 Envs.  (A) VLPs 1707 

consisting of the HIV-1 Gag-mCherry fusion protein and the wild-type HIV-1AD8 Env, the 1708 

E.2 Env or the AE.2 Env were incubated with different concentrations of the DTSSP or 1709 

glutaraldehyde crosslinkers.  After quenching the reactions, VLPs were pelleted and 1710 

lysed.  The VLP proteins were analyzed by reducing or non-reducing PAGE, 1711 

respectively, followed by Western blotting.  The ratio of gel-stable (dimers + 1712 

trimers):(gp120 + gp160) provides an indication of interprotomer crosslinking by 1713 

DTSSP.  (B) Luciferase-expressing viruses pseudotyped with the wild-type HIV-1AD8, 1714 

E.2 or AE.2 Envs were incubated with the BS3 crosslinker.  After quenching the 1715 

reaction, the viruses were added to Cf2Th-CD4/CCR5 cells.  Luciferase activity in the 1716 

target cells was measured 48 hours later.  The results shown in A and B are 1717 

representative of those obtained in at least two independent experiments.  The values 1718 

reported in B represent the means and standard deviations derived from triplicate 1719 

measurements.     1720 

 1721 
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Figure 7.  Location of Env residues in a structural model of an HIV-1 Env trimer.  1722 

Env residues studied herein are depicted as CPK spheres in a PGT151-bound 1723 

HIV-1JR-FL Env ΔCT trimer (PDB: 5FUU) (82).  The binding of two PGT151 Fabs 1724 

introduces asymmetry into the Env trimer.  In this depiction, the PGT151 Fabs have 1725 

been removed from the structure.  The individual Env protomers are colored pink, light 1726 

blue and gray.  In this orientation, the gp120 subunits are at the bottom and gp41 1727 

subunits at the top of the figures.  (A) Env residues (Gln 114 (magenta), Gln 567 1728 

(orange) and Ala 582 (blue)) associated with State 1-stabilizing changes are shown.  1729 

The distances between the Cα atoms of Gln 114 and Gln 567 residues in this 1730 

asymmetric trimer structure are 11.6, 13.1 and 15.2 Å.  The HR1N regions of the three 1731 

Env protomers differ in conformation.   (B) Env residues (Lys 59, His 66, Gln 114, Gln 1732 

567 and Ala 582) associated with State 1-stabilizing changes are colored green.  Env 1733 

residues (His 72, Thr 202, Gln 203, Arg 542, Ile 595, Leu 602 and Gln 658) associated 1734 

with State 1-destabilizing changes are colored red.  Changes in the residues (Lys 117, 1735 

Lys 121 and Leu 587) colored yellow resulted in Envs that were resistant to cold and a 1736 

CD4-mimetic compound, but were subject to gp120 dissociation from the Env trimer 1737 

solubilized in detergent.  The right panel shows the side-chain stacking of residues Gln 1738 

114, Lys 117 and Lys 121 near the Env trimer axis. 1739 
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Table 1

Env
Env 

Processing
Infectivity 

(%)

Resistance / Sensitivity compared to wild-type gp120-trimer
associationCold sCD4 BNM-III-170

Wild-type ● ● ● ● ● ●
Q114A ● ● ● ● ● +

Q114D + ● RR RR RR ++

Q114E + + RR RR RR ++

Q114K No ND ND ND ND NA

Q114N ● ND ND ND ND ●
Q114S ● ND ND ND ND ●
Q567A ● + ● ● ● ●
Q567E ● - - - ● ● ● ●
Q567K + ● R R R ++

Q567R + - Slight R ● ● +

Q114A Q567K ● ● Slight R R R ++

Q114A Q567R ● ● ● ● ● +

Q114D Q567R + ● R RR RR ++

Q114E Q567A + + RR RR RR ++

Q114E Q567K + ● RRR RRR RRR ++

Q114E Q567E + - R ● R ++

Q114E Q567R + ● RR RR RR ++

Q114K Q567E No ND ND ND ND NA
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Table 2

Env
Env 

Processing
Infectivity 

(%)

Resistance / Sensitivity compared to wild-type gp120-trimer
associationCold sCD4 BNM-III-170

Wild-type ● ● ● ● ● ●
Q114E + + RR RR RR ++

Q567K ● ● R R R ++

Q114E Q567K + ● RRR RRR RRR ++

H72A - - - - - R ● ● NA

H72K - - - - - ● SS SS NA

H72Q - - - - - ● ND SS NA

H72A Q114E - - - R ● RR -

H72K Q114E - - - - ● S SS -

H72Q Q114E - - R S ● -

T202K ● - SS S SS ●
T202R ● - SS S SS ●
T202A ● - SSS SSS SSS -

T202Q ● ● SSS SSS SSS -

Q114E T202K + + SS S SS +

Q114E T202R + + SS S SS +

Q114E T202A ● ● SSS SS SSS ●
Q114E T202Q ● + SSS SS SSS ●

Q203A ● ● SS ND SSS -

Q114E Q203A + ● ● ND ● ●
K117A ● ● RR ND RR ●
K117Q ND - R ND RR ND

K121A ● - - ● ND RR -

K121Q ND - R ND RR ND

Q114E K117A ● ● RR ND RR ●
Q114E K121A + - Slight R ND RR +

H66N ● - R RRR RRR ●
A582T ● ● RRR RR RR +

L587A - ● RR R RR -

Q114E H66N + ● RR RRR RRR ++

Q114E A582T + ● RRR RR RRR ++

Q567K A582T ● ● RRR RR RRR +

Q114E L587A + ● RR RR RR ●
Q114E Q567K 

A582T
+ + RRRR RRRR RRRR ++

Q114E Q567K 
L587A

+ - RR RR RRR +
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Table 3

Env
Env

Processing
Infectivity 

(%)

Resistance / Sensitivity compared to wild-type gp120-trimer
associationCold sCD4 BNM-III-170

Wild-type ● ● ● ● ● ●
E.2 + + RRR RRR RRR ++

AE.2 + - RRRR RRRR RRRR ++

E.2 K117A + ● RRR RRR RRR -

AE.2 K117A + - - RRRR RRRR RRRR +

K59A ● ● R R RR ●
V255I ● ● RR NA* NA* ●

E.2 K59A + - RRR RRR RRR ++

AE.2 K59A + - - RRRR RRRR RRRR ++

E.2 K59A V255I + - - - RRRR NA* NA* ++

E.2 V255I + - RRRR NA* NA* ++

AE.2 V255I + - - - RRRR NA* NA* ++

AE.2 K59A 
V255I

+ - - - RRRR NA* NA* ++

K59A Q114E 
V255I

+ - - RRRR NA* NA* ++

R542V - - - - S SSS SSS -

I595F - - R SSS SSS -

L602H - - S SSS SSS -

2-4 RM6 AE + - RRR RRR RRR ++

2-4 RM6 AE 
R542V

+ - - - RR RRR RR ++

2-4 RM6 AE 
I595F

+ - - - R ● ● ++

2-4 RM6 AE 
L602H

+ - - RRR RRR RR ++
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Figure 2
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