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ABSTRACT

Binding to the receptor, CD4, drives the pretriggered, “closed” (State-1) conformation of
the human immunodeficiency virus (HIV-1) envelope glycoprotein (Env) trimer into more
“open” conformations (States 2 and 3). Broadly neutralizing antibodies, which are
elicited inefficiently, mostly recognize the State-1 Env conformation, whereas the more
commonly elicited poorly neutralizing antibodies recognize States 2/3. HIV-1 Env
metastability has created challenges for defining the State-1 structure and developing
immunogens mimicking this labile conformation. The availability of functional State-1
Envs that can be efficiently crosslinked at lysine and/or acidic amino acid residues might
assist these endeavors. To that end, we modified HIV-1apg Env, which exhibits an
intermediate level of triggerability by CD4. We introduced lysine/acidic residues at
positions that exhibit such polymorphisms in natural HIV-1 strains. Env changes that
were tolerated with respect to gp120-gp41 processing, subunit association and virus
entry were further combined. Two common polymorphisms, Q114E and Q567K, as well
as a known variant, A582T, additively rendered pseudoviruses resistant to cold, soluble
CD4 and a CD4-mimetic compound, phenotypes indicative of stabilization of the
pretriggered State-1 Env conformation. Combining these changes resulted in two
lysine-rich HIV-14pg Env variants (E.2 and AE.2) with neutralization- and cold-resistant
phenotypes comparable to those of natural, less triggerable Tier 2/3 HIV-1 isolates.
Compared with these and the parental Envs, the E.2 and AE.2 Envs were cleaved more
efficiently and exhibited stronger gp120-trimer association in detergent lysates. These
highly crosslinkable Envs enriched in a pretriggered conformation should assist

characterization of the structure and immunogenicity of this labile state.
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IMPORTANCE

The development of an efficient vaccine is critical for combating HIV-1 infection
worldwide. However, the instability of the pretriggered shape (State 1) of the viral
envelope glycoprotein (Env) makes it difficult to raise neutralizing antibodies against
HIV-1. Here, by introducing multiple changes in Env, we derived two HIV-1 Env
variants that are enriched in State 1 and can be efficiently crosslinked to maintain this
shape. These Env complexes are more stable in detergent, assisting their purification.
Thus, our study provides a path to a better characterization of the native pretriggered

Env, which should assist vaccine development.

KEYWORDS: human immunodeficiency virus, envelope, polymorphism, native

conformation, state 1, stabilizing mutation, chemical crosslink
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INTRODUCTION

Human immunodeficiency virus type 1 (HIV-1) entry into target cells is mediated by the
viral envelope glycoprotein (Env) trimer (1,2). The Env trimer is composed of three
gp120 exterior subunits and three gp41 transmembrane subunits (2). In infected cells,
Env is first synthesized as an uncleaved precursor in the rough endoplasmic reticulum
(ER), where signal peptide cleavage, folding, trimerization, and the addition of high-
mannose glycans take place (3-6). Exiting the ER, the trimeric gp160 Env precursor
follows two pathways to the cell surface (7). In the conventional secretory pathway, the
Env precursor transits through the Golgi compartment, where it is cleaved into gp120
and gp41 subunits and is further modified by the addition of complex sugars. These
mature Envs are transported to the cell surface and are incorporated into virions (8-11).
In the second pathway, the gp160 precursor bypasses processing in the Golgi and
traffics directly to the cell surface; these Golgi-bypassed gpl160 Envs are excluded from

virions (7).

Single-molecule fluorescence resonance energy transfer (SmFRET) experiments
indicate that, on virus particles, the mature (cleaved) Env trimer exists in three
conformational states (States 1-3) (12). From its pretriggered conformation (State 1),
the metastable Env trimer interacts with the receptors, CD4 and CCR5 or CXCR4, and
undergoes transitions to lower-energy states (2, 12-23). Initially, the engagement with
CD4 induces an asymmetric intermediate Env conformation (State 2) (24, 25). Binding
of additional CD4 molecules to the Env trimer then induces the full CD4-bound,
prehairpin intermediate conformation (State 3) (24—31). An extended coiled coll

consisting of the heptad repeat (HR1) region of gp41 is exposed in the prehairpin
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intermediate (23, 25, 29-31). State 3 Env subsequently interacts with the CCR5 or
CXCR4 coreceptor to trigger the formation of a gp41 six-helix bundle, a process that

results in fusion of the viral and target cell membranes (32-36).

Env strain variability, heavy glycosylation and conformational flexibility contribute
to HIV-1 persistence by avoiding the binding of potentially neutralizing antibodies.
Mature Envs from primary HIV-1 strains largely reside in a State-1 conformation, which
resists the binding of most antibodies elicited during natural infection (12, 23, 37-39);
these high-titer, poorly neutralizing antibodies often recognize State-2/3 Env
conformations (40-44). After years of infection, a small percentage of HIV-1-infected
individuals generate broadly neutralizing antibodies (bNAbs), most of which recognize
the State-1 Env conformation (12, 37, 38, 45-54). Passively administered monoclonal
bNAbs have been shown to be protective in animal models of HIV-1 infection,
suggesting that the elicitation of bNADbs is an important goal for vaccines (55-60).
Unfortunately, bNAbs have not been efficiently and consistently elicited in animals
immunized with current HIV-1 vaccine candidates, including stabilized soluble gp140
(sgp140) SOSIP.664 trimers (61-69). Compared with functional membrane Envs,
differences in the antigenicity, glycosylation and conformation of sgp140 SOSIP.664
trimers have been observed (70-77), potentially contributing to the inefficiency of bNAb
elicitation. Single-molecule FRET (smFRET) analysis indicates that the sgp140
SOSIP.664 trimers assume a State-2-like conformation (78). These studies imply that
the available structures of sgp140 SOSIP.664 and other detergent-solubilized Env
trimer preparations (27, 28, 77, 79-91) differ from that of State-1 Env. The extent of the

structural differences between the State-1 and State-2 Env conformations and their
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potential impact on Env immunogenicity are unknown. However, the importance of the
State-1 Env as a likely target of vaccine-induced bNAbs provides a rationale for better

characterization of this conformation.

HIV-1 is a polymorphic virus with a high mutation rate, allowing escape from host
immune responses and antiretroviral drugs (92-99). Env polymorphisms that arise
naturally or as a result of tissue-culture adaptation can result in altered virus infectivity,
receptor binding or neutralization sensitivity (23, 40, 44-46, 100-119). Specifically,
changes in “restraining residues” in gp120 have been shown to destabilize State 1,
disrupt the closed pretriggered Env conformation, and lead to increased sampling of
downstream conformations (45, 118, 119). These more “triggerable” Env mutants
exhibit increased sensitivity to cold, soluble CD4 (sCD4), CD4-mimetic compounds and
poorly neutralizing antibodies (23, 37, 45, 118, 119). Less common Env alterations

apparently decrease Env triggerability and stabilize a State-1 conformation (120-125).

Crosslinking of HIV-1 Env amino acid residues, in some cases combined with
mass spectrometry, has been used to study Env conformations (37, 73, 126-131).
Crosslinking protocols that target lysine or acidic amino acid residues on native proteins
have been integrated with mass spectrometry to provide low-resolution structural
information (132-135). Here, we introduced lysine and acidic amino acid residues into a
primary HIV-1 Env, using natural polymorphisms as a guide. Env changes that were
functionally tolerated were combined to create Envs that are potentially able to be
conformationally fixed by treatment with specific crosslinking agents. In the process of

generating these Env variants, we identified two common polymorphisms that increased
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virus resistance to cold, sCD4 and a CD4-mimetic compound, phenotypes associated
with stabilization of a pretriggered (State-1) Env conformation (120-125). Two lysine-
rich variants with cold- and sCD4-resistant phenotypes were cleaved more efficiently
and exhibited stronger gp120-trimer association in detergent lysates compared with the
parental HIV-1 Env. Such highly crosslinkable Envs enriched in a pretriggered

conformation should assist characterization of State 1.

RESULTS

Env variants with common lysine and acidic residue polymorphisms

We sought to create functional primary HIV-1 Env variants with an increased number of
lysine/acidic residues that could be used to introduce stabilizing crosslinks. To identify
Env residues that might potentially tolerate such substitutions, we compared Env
sequences from 193 Group M, N, O and P HIV-1 and SIV¢, strains (136). We identified
Env residues where lysine or acidic substitutions occurred in at least 5% of these
natural virus strains from more than one phylogenetic clade. The lysine polymorphisms
were grouped by location in Env regions (gp41 and gp120 C-terminus, gp120 trimer
association domain and gp120 inner domain) and by the number of substitutions in a
set (Sets 4-7 contain additional lysine substitutions compared with those in Sets 1-3)
(Fig. 1A). The ED2 set contains seven of the most common aspartic acid and glutamic

acid polymorphisms in natural HIV-1/SIV¢,, variants (Fig. 1A).

We selected the primary Clade B HIV-1apg as the source of the parental “wild-
type” Env in this study. Primary HIV-1 Envs differ in triggerability by CD4, a property

that influences virus resistance to sCD4, CD4-mimetic compounds and some antibodies
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(23). The HIV-1ps Env is efficiently expressed and processed, is well characterized
with respect to antibody binding and neutralization sensitivity (Tier 2) and, among
primary HIV-1 Envs, exhibits an intermediate level of triggerability by CD4 (7, 23, 73).
Single, double and triple sets of lysine substitutions were introduced into the wild-type
HIV-1aps Env. For example, double sets included Sets 1 +2,1+3,2+3,2+4,3+5,
etc.; triple sets included Sets1+2+3,2+3+4,2+3+6,3+6+7, etc. (Fig. 1A). In
a preliminary study, a total of 24 Env variants were analyzed for protein expression and
processing, ability to support entry of a pseudotyped virus, and the sensitivity of the viral
pseudotype to neutralization by the 19b antibody. The 19b antibody is a poorly
neutralizing antibody that recognizes the gp120 V3 loop and serves as a sensitive
indicator of HIV-1 Env transitions to State-2/3 conformations (45, 71-74, 137). With a
few exceptions, most of the lysine substitutions were well tolerated with respect to HIV-
1aps ENnv processing, virus infectivity and sensitivity to 19b neutralization (data not
shown). However, Envs with Set 3 + 7 and Set 3 + 6 +7 changes were poorly
processed and inefficiently supported pseudovirus infection. Viruses with Set 3 + 5
changes were more sensitive than the wild-type HIV-1apg to neutralization by the 19b
antibody (data not shown). Thus, while most of the introduced lysine substitutions were
well tolerated, some specific combinations apparently exert undesirable effects on HIV-

1,08 Env conformation and function.

Lysine-rich 2-4 R and 2-4 RED2 Envs
Based on the results of our preliminary analysis, we selected the 2-4 R Env, which
contains Set 2 + 4 and R315K changes, for more detailed characterization. The ED2

set of acidic substitutions was also added to the 2-4 R Env to create the 2-4 RED2 Env
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(Fig. 1B). Both 2-4 R and 2-4 RED2 Envs mediated pseudovirus infection as efficiently
as the wild-type HIV-1aps Env (data not shown). To evaluate Env expression,
proteolytic processing and gp120-trimer association, HOS cells were transfected with
plasmids expressing the wild-type HIV-1apg Env and the 2-4 R and 2-4 RED2 Envs
tagged at the C-terminus with Hisg. Cell lysates were Western blotted directly (Input) or
were precipitated with nickel-nitrilotriacetic (Ni-NTA) beads in the presence of BMS-806,
sCD4 or the DMSO control. BMS-806 is a small-molecule HIV-1 entry inhibitor that
binds gp120 and stabilizes a State-1-like Env conformation (12, 78, 138-140). The
uncleaved gp160 Env precursor and mature gp120 and gp41 glycoproteins were
detected in lysates of cells expressing the wild-type HIV-1aps, 2-4 R and 2-4 RED2 Envs
(Fig. 2A). Comparison of the gp120:gp160 ratio in the cell lysates indicates that the 2-4
R and 2-4 RED2 Envs are processed more efficiently than the wild-type HIV-1apg Env
(Fig. 2A, Input lanes). In the DMSO control sample, although wild-type HIV-1aps gp41
and gp160 were precipitated by the Ni-NTA beads, little gp120 was coprecipitated (Fig.
2A, Ni-NTA lanes). Apparently, under these conditions, gp120 dissociates from the
wild-type HIV-1aps Env complex. BMS-806 increased the association of the wild-type
HIV-1aps gp120 with the precipitated Env complex, as previously seen (138). In the
presence of sCD4, no coprecipitated gp120 was detected, presumably as a result of
CD4-induced gp120 shedding (141, 142). Compared with the wild-type HIV-1apg Env,
the 2-4 R gp120 was precipitated more efficiently by the Ni-NTA beads in the DMSO
control lysates. The coprecipitation of the 2-4 RED2 gp120 from the DMSO-treated cell
lysates by the Ni-NTA beads was even more efficient. For both 2-4 R and 2-4 RED2
Envs, the association of gp120 with the Env complex was enhanced by BMS-806 and

decreased by sCD4. Thus, the Env changes in 2-4 R and 2-4 RED2 can enhance Env

10
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processing and, in detergent lysates, strengthen the association of gp120 with
solubilized Env trimers. Both phenotypes were more pronounced for the 2-4 RED2 Env

than for the 2-4 R Env.

The sensitivity of viruses with the wild-type HIV-14ps, 2-4 R and 2-4 RED2 Envs
to neutralization by broadly and poorly neutralizing antibodies was examined. The
broadly neutralizing antibodies (bNAbs) in our panel included VRCO01 and VRCO03
against the CD4-binding site of gp120 (143, 144), PG16 against a quaternary V2
epitope (145), PGT121 against a V3-glycan epitope on gp120 (146), and 35022 against
the gp120-gp41 interface (147). The poorly neutralizing antibodies included 17b against
a CD4-induced epitope (148), 19b against the gp120 V3 loop (137), 902090 against a
V2 gp120 epitope (149) and F105 against the CD4-binding site of gp120 (150). The 2-4
R and 2-4 RED2 viruses were neutralized by bNAbs comparably to the wild-type HIV-
1aps; like the wild-type HIV-1aps, the 2-4 R and 2-4 RED2 viruses were resistant to

poorly neutralizing antibodies (Fig. 2B).

The sensitivity of HIV-1 to inactivation by exposure to cold, sCD4 or CD4-mimetic
compounds can provide an indication of Env “triggerability,” the tendency to make
transitions from State 1 (23, 37, 45, 118, 120-125). Compared with the wild-type
HIV-14ps, the 2-4 R virus displayed slight but reproducible resistance to cold, sCD4 and
BNM-111-170, a CD4-mimetic compound (151) (Fig. 2C). The 2-4 RED?2 virus exhibited
an even higher level of resistance to cold, sCD4 and BNM-I1I-170 than either the wild-

type or the 2-4 R virus. These phenotypes are consistent with the stability of the State-

11
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1 Env conformation exhibiting the following rank order in these variants: 2-4 RED2 > 2-4

R > W||d-type HIV-1aps.

Q114E and Q576K changes determine State 1-stabilizing phenotypes

We wished to identify the changes in 2-4 RED2 and 2-4 R responsible for the above
phenotypes. Because differences among the wild-type HIV-1aps, 2-4 R and 2-4 RED2
Envs were most apparent in the Ni-NTA coprecipitation and virus sensitivity
experiments, we used these assays to characterize HIV-1apg Env mutants with single-
residue changes corresponding to those in the 2-4 R and 2-4 RED2 Envs. Among the
acidic residue substitutions found in the ED2 set, a single change, Q114E, was
sufficient to recapitulate the 2-4 RED2 Env phenotypes (Fig. 3A). Similarly, a single
lysine substitution originally found in Set 4, Q576K, was responsible for most of the 2-4
R Env phenotypes (Fig. 3B). Thus, Q114E or Q567K alone can enhance HIV-1apg Env
processing, gpl20-trimer association and virus resistance to cold, sCD4 and a CD4-

mimetic compound.

GIn 114 is located in the gp120 a1 helix, part of the gp120 inner domain that
faces the trimer axis and interacts with gp41 (79-82, 152-155). GIn 567 resides in the
N-terminal segment of the gp41 heptad repeat 1 (HR1y) region, which participates in
the formation of the gp41 coiled coil after CD4 binding (32-34). In the available Env
trimer structures, which have been suggested to represent a State-2-like conformation
(78), the HR1y region is disordered or structurally heterogeneous (79-89). Although
structural information on GIn 114 and GIn 567 in the context of a State-1 Env is

currently unavailable, based on their approximate location near the trimer axis and the

12
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charge complementarity of the substitutions yielding similar phenotypes, we tested their
functional dependence. The phenotypes of a panel of 18 single and double Q114/Q567
Env variants were characterized (Table 1). Only acidic residue substitutions at position
114 resulted in an improvement of the constellation of State-1-associated phenotypes.
At position 567, lysine substitution yielded the strongest State-1-associated phenotypes,
while arginine substitution exerted a more modest effect. Analysis of the double
mutants yielded two insights. First, the phenotypes of the Q114E mutant were not
significantly affected by changing GIn 567 to an alanine residue. Likewise, the
phenotypes of the Q567K mutant were similar to those of the Q567K/Q114A double
mutant. Therefore, the State-1-associated phenotypes of the Q114E and Q567K
mutants are not dependent on the formation of hydrogen bonds between the side
chains of residues 114 and 567. Second, the phenotypic effects of the changes in
residues 114 and 567 were additive. Combination of the strongest individual changes
yielded the variant, Q114E/Q567K, with the most pronounced phenotype. Both
changes are found in the 2-4 RED2 Env. In summary, the Q114E and Q567K changes
independently impart their individual effects on Env function and these effects are

additive.

We extended our mutagenesis approach to evaluate the potential of other Env
residues to influence the Q114E and Q567K phenotypes. A State-1 Env structure
would be most relevant to the search for interacting partners, but is currently not
available. Therefore, we used the available structural models, many of which represent
State-2-like Env conformations (78), to suggest candidate amino acid residues. In

sgp140 SOSIP.664 trimers, the highly conserved His 72 is located ~8 A from GIn 114

13
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(79-81). Replacing His 72 with lysine or glutamine residues resulted in increased
sensitivity to sSCD4 and BNM-I1I-170; these phenotypes were partially relieved when
these His 72 changes were combined with Q114E (Table 2). Replacing His 72 with an
alanine residue resulted in a virus with neutralization sensitivity similar to that of the
wild-type virus. Compared with the Q114E virus, the H72A/Q114E virus was less
resistant to cold and sCD4. Thus, some changes in His 72 result in an apparent

increase in Env triggerability and can influence the Q114E phenotypes.

In HIV-1/SIV¢p, Envs, Thr/Lys polymorphism in residue 202 often exhibits
covariance with GIn/Glu polymorphism in residue 114 (136). Compared with the wild-
type HIV-1aps, viruses with Thr 202 replaced by alanine, lysine, arginine or glutamine
residues were more sensitive to cold, BNM-111-170 and the 19b anti-V3 antibody (Table
2 and data not shown). These phenotypes, which are indicative of increased Env
triggerability and State 1 destabilization, were minimally compensated by the addition of
the Q114E change. Replacing the conserved GIn 203 residue with an alanine residue
(Q203A in Table 2) also resulted in a State-1-destabilized phenotype, but in this case,
the Q114E/Q203A mutant exhibited phenotypes close to that of the wild-type HIV-1aps.
Thus, the Q114E change can compensate for some but not all State 1-destabilizing

changes.

In the unliganded sgp140 SOSIP.664 and PGT151-bound EnvACT structures
(PDB: 4ZzMJ and 5 FUU, respectively) (82,86), the side chains of GIn 114, Lys 117 and
Lys 121 from each Env protomer point towards the trimer axis, stacking in three layers.

Interprotomer Lys 117-Lys 117 and Lys 121-Lys 121 crosslinks were formed in a

14


https://doi.org/10.1101/2021.09.27.462085
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.09.27.462085; this version posted September 30, 2021. The copyright holder for this preprint

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY-NC-ND 4.0 International license.

crosslinking/mass spectrometry study of the sgp140 SOSIP.664 trimer, confirming the
location of these residues in the trimer core in these Env structures (73). Substitution of
Lys 117 or Lys 121 with an alanine or glutamine residue resulted in viruses that were
more resistant to cold and BNM-I11-170 than the wild-type virus (Table 2). No additive or
synergistic effect was observed when the Q114E change was combined with the K117A
or K121A changes. In fact, the double mutants exhibited less stable association of
gp120 with solubilized Env trimers (Table 2). Thus, the effects of the GIn 114, Lys 117
and Lys 121 changes on the viral phenotypes are redundant, whereas in the detergent-
solubilized Envs, the K117A and K121A changes nullify the trimer-stabilizing effects of
the Q114E change. Similar phenotypic effects of the K117A and K121A changes were
observed in the context of the E.2 and AE.2 HIV-14pg constructs discussed below (Table

3).

As GIn 567 is disordered in most Env trimer structures, we used a low-resolution
model of the uncleaved HIV-1,r.r. Env (156) to suggest potential interaction partners.
However, alanine substitutions in these potentially interacting HIV-1aps residues (Glu
47, Glu 83, Glu 87, Glu 91, Asp 230, Glu 492 and Glu 560) did not affect the

phenotypes of the Q567K mutant virus (data not shown).

Q114E and Q567K synergize with other State 1-stabilizing Env changes

Previous studies suggested that changes in His 66, Ala 582 and Leu 587 could enrich
the State-1 HIV-1yy, Env conformation through different proposed mechanisms: H66N
destabilizes the CD4-bound conformation, A582T directly stabilizes the pretriggered

conformation and L587A destabilizes the gp41 3-helix bundle (121, 122, 125). We
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334  confirmed that individually these changes increased HIV-1apg resistance to cold, sCD4
335 and BNM-I1I-170 (Table 2). Of the three changes, only A582T enhanced gp120-trimer
336 association in cell lysates. Both the H66N and A582T changes synergized with the

337 Q114E and Q567K changes in producing viral phenotypes associated with State-1

338  stabilization (Table 2). A combination of three changes in the Q114E/Q567K/A582T
339  Env resulted in the most robust phenotypes.

340

341 Crosslinkable E.2 and AE.2 Envs with enhanced State-1 stability

342  To generate HIV-1 Envs enriched in a pretriggered conformation and containing multiple
343  lysine residues for crosslinking, we added two benign changes (R252K, A667K) and
344  Q114E to the lysine-rich 2-4 R Env to create the E.2 Env construct (Fig. 1). The AE.2
345  Env contains, in addition, the A582T change. The A582T change was chosen because
346 it not only resulted in viral phenotypes additive with those of Q114E and Q567K, but
347 also increased gp120 association with the detergent-solubilized Env, a property that
348 KI117A, K121A, H66N and L587A lacked (Table 2). Both E.2 and AE.2 Env were

349  cleaved more efficiently than the wild-type HIV-1aps Env and resisted gp120 dissociation
350 from the solubilized Env trimer (Fig. 4A). By comparison, the wild-type Env from

351 another primary strain, HIV-1;r.r, Was poorly processed and highly unstable in

352 detergent.

353

354 To evaluate the functional E.2 and AE.2 Envs in more detail, we tested virus

355  sensitivity to a panel of broadly and poorly neutralizing antibodies. In addition to the
356  antibodies used in Figure 2, we included two bNAbs, PGT151 against the gp120-gp41

357 interface (157) and PGT145 against a quaternary V2 epitope (158), and the poorly
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neutralizing F240 antibody against gp41 (159). Envs from the Clade B HIV-1,r.r. and
Clade A HIV-1ggsos Tier 2/3 strains were included for comparison. All Env variants
resisted neutralization by poorly neutralizing antibodies, as expected (Fig. 4B).
Compared to the wild-type HIV-1aps, HIV-1;r.r. and HIV-1ggs0s, the E.2 and AE.2
viruses were just as sensitive, and even more sensitive in some cases, to neutralization

by broadly neutralizing antibodies.

The sensitivity of the viruses to cold inactivation, sSCD4 and the CD4-mimetic
compound, BNM-111-170, is shown in Fig. 4C. Compared with the wild-type HIV-1aps,
the E.2 virus exhibited increased resistance to cold, sCD4 and BNM-III-170. Alteration
of Glu 114 in the E.2 Env to glutamine largely reverted these phenotypes, suggesting
that the Q114E change is a critical determinant of the stabilized pretriggered
conformation in the E.2 Env (data not shown). The inclusion of the A582T change in
the AE.2 Env further increased cold, sCD4 and BNM-I11-170 resistance to the levels of
the Tier 2/3 HIV-1,r.r. and HIV-1ggs0s Strains. In addition, the E.2 and AE.2 viruses
were more sensitive than the wild-type HIV-1,pg to the State 1-preferring entry
inhibitors, BMS-806 and 484 (45, 118); the AE.2 virus was more sensitive to these

small-molecule inhibitors than the E.2 virus (data not shown).

In an attempt to improve the E.2 and AE.2 Envs further, we added the K59A
and/or V255I changes. Lysine 59 is a highly conserved residue in the gp120 inner
domain, within the disulfide loop (Layer 1) that includes His 66, discussed above.
Valine 255 packs against the critical Trp 112 and Trp 427 residues in the CD4-binding

Phe 43 cavity of gp120 (152); the V255I change was associated with resistance to AAR
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029Db, a cyclic peptide triazole inhibitor of CD4 binding (160). The K59A and V255I
changes alone rendered HIV-1,pg more cold-resistant, and the K59A virus was also
relatively resistant to sCD4 and BNM-I11-170 (Table 3). However, the K59A and V255I
changes had only modest effects in the E.2 and AE.2 background on State 1-associated
phenotypes, but led to significant reductions in infectivity (Table 3). These observations
hint that further stabilization of State 1-associated phenotypes in the AE.2 context may

be accompanied by decreases in Env function.

Effects of State 1-destabilizing changes in different Env contexts

In the above studies, the Q114E change could revert the viral phenotypes associated
with State 1 destabilization by the Q203A change but not by changes in the adjacent
Thr 202 residue (Table 2). We evaluated whether an Env with multiple State 1-
stabilizing changes, 2-4 RM6 AE, would better tolerate State 1 destabilization. The 2-4
RM6 AE and AE.2 Envs are identical except for the benign R252K change in the latter
(Fig. 1). The 2-4 RM6 AE virus is resistant to cold, sCD4 and BNM-III-170 and exhibits
a strong gpl120-trimer association in detergent (Table 3). We individually introduced the
R542V, 1595F and L602H changes into the wild-type HIV-14pg Env or the 2-4 RM6 AE
Env. These gp41 changes rendered HIV-1 more sensitive to the nonpeptidic inhibitory
compound RPR103611, which suggested that they might destabilize the pretriggered
(State-1) Env conformation (161). In agreement with this hypothesis, the R542V and
L602H viruses exhibited increased sensitivity to cold, sCD4 and BNM-III-170 relative to
HIV-1aps (Table 3). The I1595F virus was sensitive to sSCD4 and BNM-I1I-170 as well as
to the 19b anti-V3 antibody, but was slightly more resistant to cold inactivation than HIV-

1aps. Interestingly, the increased sensitivity to cold, sCD4, BNM-III-170 and 19b
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associated with these gp41 changes was not evident in the 2-4 RM6 AE background.
Thus, the State 1- stabilizing changes in 2-4 RM6 AE apparently resist the State 1-

destabilizing effects of the R542V, 1595F and L602H changes in the gp41 ectodomain.

Correlations among key Env phenotypes

To understand the relationships among key Env phenotypes and to visualize the effects
of specific amino acid changes on the progression of successive generations of Env
mutants, we plotted the relative levels of resistance to cold, BNM-111-170 and gp120-
trimer dissociation for all characterized Env variants (Fig. 5). Virus resistance to cold
inactivation reflects the stability of the functional Env trimer on virions and is
independent of the binding of an Env ligand. Virus resistance to the CD4-mimetic
compound generally correlates with resistance to sCD4 (122,154, 162). Of interest,
there exists a strong correlation between virus resistance to the CD4-mimetic
compound and to cold (Fig. 5). Beginning with the wild-type HIV-1aps Env, Envs
incorporating additive State 1- stabilizing changes displayed upward shifts towards
highly resistant phenotypes, comparable to those of the HIV-1;gr.r. and HIV-1ggs05 ENvs.

Envs with State 1-destabilizing changes grouped together in the lower left quadrant.

Env variants that exhibited a higher level of gp120-trimer association in
detergent, relative to that of the wild-type HIV-1ps Env, are colored green in Figure 5.
The skewed distribution of these Env variants in the upper right quadrant indicates that
a tighter association of gp120 with the solubilized Env trimer is related to virus
resistance to cold and BNM-I111-170, phenotypes associated with State 1 stabilization.

Note that several Env variants, including the natural HIV-1;r.;. and HIV-1ggs0s ENvs,
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achieve virus resistance to cold and BNM-111-170 without increasing gp120-trimer
association in detergent-solubilized Envs. Therefore, increasing gp120-trimer
association is not the only means of achieving a more stable pretriggered (State-1) Env

conformation.

Crosslinking efficiency of the wild-type ADS8, E.2 and AE.2 Envs

The lysine-rich E.2 and AE.2 Envs are expected to crosslink more efficiently than the
wild-type HIV-1aps Env with lysine-reactive crosslinkers like DTSSP and glutaraldehyde.
DTSSP has a spacer arm of 12 A, whereas, because of its tendency to polymerize,
glutaraldehyde forms crosslinks of more variable lengths (163). Both DTSSP and
glutaraldehyde crosslinked the E.2 and AE.2 Envs more efficiently than the wild-type
ADS8 Env (Fig. 6A). For example, after treatment with 5 mM glutaraldehyde, the E.2 and
AE.2 Envs crosslinked into gel-stable trimers, whereas the wild-type HIV-1aps Env
mostly formed monomers and dimers. Apparently, a greater number of lysine residues
accessible to the crosslinkers exist on the surface of the E.2 and AE.2 Env trimers

compared with the wild-type HIV-1apg Env.

We also examined the relative sensitivity of the functional wild-type HIV-1aps, E.2
and AE.2 Envs to BS3, another lysine-specific crosslinker with spacer arms of 12 A,
The infectivity of viruses pseudotyped with the E.2 and AE.2 Envs was inhibited by BS3
at three- to four-fold lower concentrations than those required for inhibition of viruses
with the wild-type HIV-1aps Env (Fig. 6B). These results suggest that BS3 crosslinks
occur more efficiently on the E.2 and AE.2 Envs than on the wild-type HIV-1apg Env,

leading to a loss of infectivity at lower BS3 concentrations.
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DISCUSSION

Despite more than three decades of intense research, an effective HIV-1 vaccine
remains elusive. The metastability and multiple conformational states of the HIV-1 Env
create challenges for the generation of broadly neutralizing antibodies, either following
vaccination or during natural HIV-1 infection. In Env-expressing cells, both uncleaved
and cleaved (mature) Envs are present on the cell surface. A significant fraction of the
uncleaved Env bypasses the conventional Golgi secretory pathway to traffic to the cell
surface; these Envs differ from mature Envs in glycan processing, conformation and
recognition by antibodies (7). Uncleaved Envs may function as a decoy to the host
immune system and divert antibody responses away from the mature Envs. The
pretriggered (State-1) conformation of the mature virion Env of primary HIV-1 strains is
the target for most broadly neutralizing antibodies (12, 37, 38, 45). This native
conformation, however, is unstable and can transition into more open State 2/3
conformations that are able to be recognized by poorly neutralizing antibodies.
Therefore, it is of significant interest to devise methods to lock Env in its native State-1
conformation by means that resist perturbation during Env purification, characterization

and immunization.

Here, we tackled the challenges posed by HIV-1 Env conformational flexibility in
two ways. First, we used polymorphisms in naturally occurring HIV-1 strains to guide
the introduction of extra lysine and acidic amino acid residues in the HIV-1apg Env.
Chemical crosslinkers that couple lysine or acidic residues on proteins under
physiological conditions are available (132-135). During the iterative process employed

to identify HIV-1ps Envs that are potentially more susceptible to crosslinking, we
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required that the Env variants exhibit efficient processing, subunit association, and the
ability to support virus entry. Some of the functional HIV-14pg Env variants developed
by this approach contain up to 11 extra lysine residues (33 per Env trimer) and up to 7
extra acidic residues (21 per Env trimer). Using DTSSP or glutaraldehyde as
crosslinking agents, two Env variants, E.2 and AE.2, were shown to form interprotomer
crosslinks more efficiently than the wild-type HIV-1apg Env. The infectivity of viruses
with these Envs was inactivated more efficiently than that of viruses with the wild-type
HIV-1ps Env by another lysine-specific crosslinker, BS3. These assays document the
accessibility of some of the additional lysine residues introduced into the E.2 and AE.2
Envs. Chemical crosslinking can enrich the representation of labile native
conformations in Env preparations for structural analysis or immunogenicity studies.
Crosslinking/mass spectrometry can provide distance constraints between Env residues
that can be used to validate available structural models or to derive new models (132-
135). A previous study utilized crosslinking/mass spectrometry to detect differences
between soluble and membrane-bound Envs (73). The inclusion of the 2-4 RED2, E.2
and AE.2 Envs in future crosslinking/mass spectrometry studies should increase the
number of distance constraints and thereby improve our ability to discriminate among

alternative structural models.

The second strategy employed in our approach was to screen the Env variants
for function and viral phenotypes associated with stabilization of a State-1 Env
conformation. For this purpose, we evaluated viral resistance to cold, sCD4 and the
CD4-mimetic compound BNM-111-170. Cold inactivation reflects the resistance of the

functional HIV-1 Env trimer to the detrimental effects of ice formation at near-freezing
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temperatures (164-166). The sensitivity of HIV-1 variants to cold inactivation is related
to the intrinsic reactivity or triggerability of Env; Envs that more readily make the
transition from State 1 to downstream conformations are invariably cold-sensitive (23,
121, 122). HIV-1 sensitivity to SCD4 and BNM-III-170 inhibition is a function of Env
triggerability (23, 45, 118, 119, 125); because we generally avoided changes to the
highly conserved and well-defined BNM-I11-170 binding site on gp120 (151, 162), most
of the observed differences in virus sensitivity to this CD4-mimetic compound reflect
changes in the ability of Env to negotiate transitions from a State-1 conformation. Our
study documents the strong correlation between HIV-1 resistance to cold and resistance
to BNM-III-170. This screening strategy identified two changes, Q114E in gp120 and
Q567K in gp41, that individually increased the resistance of the HIV-1pg Env to
inactivation by cold, sCD4 and BNM-III-170. These viral phenotypes were additively
enhanced by combining the Q114E and Q567K changes in Env variants, such as the
lysine-rich E.2 and AE.2 Envs. Cold, sCD4 and BNM-111-170 resistance were further
increased by the inclusion in the AE.2 Env of the A582T gp41 change, which previously
was shown to stabilize a pretriggered Env conformation (123, 125). The functional E.2
and AE.2 Envs exhibit an antigenic profile consistent with a State-1 conformation,
conferring virus sensitivity to broadly neutralizing antibodies that target quaternary
epitopes (PG16, PGT145, PGT151, 35022) and resistance to poorly neutralizing
antibodies (17b, 19b, 902090, F105, F240). Viruses with the E.2 and AE.2 Envs were
inhibited efficiently by BMS-806, a small molecule that exhibits some preference for a
State-1 Env conformation (12, 78, 138-140). Two unanticipated beneficial phenotypes
associated with the E.2 and AE.2 Envs are more efficient Env processing and greater

stability of solubilized Env trimers. HIV-1 Env cleavage has been suggested to
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contribute to the stability of the State-1 conformation (138, 139, 167-173). As
uncleaved HIV-1 Envs sample multiple conformations, including those reactive with
poorly neutralizing antibodies, achieving a high level of gp120-gp41 processing may be
important for an effective vaccine immunogen. The E.2 and AE.2 Envs achieve levels
of State 1- associated phenotypes comparable to those of the Tier 2/3 HIV-1;r.F and
HIV-1gcs05, but notably, are processed much more efficiently. In addition, relative to
these Envs and the wild-type HIV-1aps Env, the E.2 and AE.2 Envs solubilized in
detergent exhibit much greater gp120 association with the Env trimer. The Q114E,
Q567K and A582T changes individually strengthen the non-covalent association of
gp120 with the solubilized Env trimers, a property that will assist purification and
characterization. Of interest, the Q567K change was included in a combination of Env
changes that were reported to stabilize HIV-1 Env trimers in different contexts (174-
176). In our panel of HIV-1 Env variants, enhancement of Env trimer stability in
detergent was strongly correlated with virus resistance to cold and BNM-111-170, State 1-
associated phenotypes. We note that the binding of the State 1-preferring compound,
BMS-806, also stabilizes gp120-trimer association (138). In future studies, the ability of
Q114E, Q567K and A582T changes to enhance Env cleavage efficiency, gp120-trimer

association and State-1 stabilization in other HIV-1 strains will be explored.

We identified other changes (K59A, K117A, K121A) that individually yielded Env
phenotypes consistent with State-1 stabilization. These and previously identified State
1-stabilizing changes (H66N, L587A) (121, 122, 125) were tested in combination with
the Q114E and/or Q567K changes in various Env backgrounds. In no case did we

observe an additive improvement in viral phenotypes associated with State 1
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stabilization, and several of these combinations resulted in attenuated virus replication
or gpl20-trimer dissociation in detergent. It is not surprising that, as State 1 stability is
increased, virus replication diminishes as the activation barriers governing State 1-to-
State 2 transitions increase. However, the validation of State 1 stabilization would be
less straightforward for replication-incompetent Envs, given current uncertainties about
a State-1 Env structure. Therefore, we deferred investigation of these potentially State-
1-stabilizing changes until better assays to characterize the conformations of

nonfunctional Envs are established.

Changes in gp41 (1559P, L555P) that are intended to prevent the formation of the
HR1 coiled coil have been used to stabilize soluble gp140 trimers (70, 88, 177).
However, introduction of these changes in combination with the major State 1-
stabilizing changes (Q114E/I1559P, Q114E/Q567K/I559P and Q114E/Q567K/L555P)

resulted in Envs that were not processed (data not shown).

We also considered another gp41 change, Q658E, that has been shown to
stabilize sgp140 SOSIP.664 trimers (178). Introduction of the Q658E change into the
wild-type HIV-14pg Env resulted in increased virus sensitivity to cold, sCD4, BNM-I111-170
and the 19b antibody (data not shown). These phenotypes are consistent with those
reported in other HIV-1 strains (178) and, as they suggest a lower occupancy of State 1,
we did not evaluate the Q658E change in combination with the Q114E and Q567K

changes.
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Although a State-1 Env structure is currently unknown, mapping the Env residues
identified in this study on available Env trimer models can provide some insights.
Figure 7 shows the locations of Env residues in which changes resulted in increases or
decreases in State 1-associated phenotypes on a PGT151-bound HIV-1;r.r. ENVACT
trimer (PDB: 5FUU) (82). The binding of the PGT151 antibody induces a State-2
conformation that is asymmetric, with two antibody Fabs bound to the Env trimer (78,
82). We chose this structure because, unlike most HIV-1 trimer structures, the HR1y
region containing GIn 567 is resolved; however, in keeping with the asymmetry of the
PGT151-bound Env trimer, the positions of the GIn 567 residues differ among the three
Env protomers. GIn 567, GIn 114, and Ala 582 are close to the trimer axis in the
EnvACT structure (Fig. 7A). The C4-C, distances between GIn 114 and GIn 567
residues vary from 11.6 to 15.2 A and the side chains of these residues do not
apparently interact in this Env conformation. GIn 114 is stacked above Lys 117 and Lys
121, the side chains of which project towards the Env trimer axis (Fig. 7B, right panel).
Although a precise structural explanation for the observed State 1-stabilizing
phenotypes will require more data, the implicated residues are positioned near
intersubunit or interprotomer junctions and therefore could potentially modulate trimer
opening. For example, electrostatic repulsion among Lys 117 residues that destabilizes
the Env trimer could be mitigated by their conversion to alanine residues or by replacing

GIn114 with acidic residues.

The State 1-destabilizing changes identified in this study (red residues in Fig. 7B,
left panel) are less localized than the State 1-stabilizing changes (green and yellow

residues in Fig. 7B, left panel). This is consistent with the expectation that a metastable

26


https://doi.org/10.1101/2021.09.27.462085
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.09.27.462085; this version posted September 30, 2021. The copyright holder for this preprint

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY-NC-ND 4.0 International license.

structure can be disrupted by a diverse set of changes, whereas a more limited and
strategically placed set of changes is required to strengthen the structure. In this study,
we provide an example of how State 1-stabilizing changes in Env can counter the
phenotypic effects of State 1-destabilizing alterations, even when these changes involve

amino acid residues very distant on current Env trimer structures.

In a related paper, we report the ability of the State 1-stabilizing changes
identified herein to counter the phenotypic consequences of disruption of the gp41
MPER. Although further work will be required to understand fully the mechanisms
underlying these observations, the ability of the Q114E, Q567K and A582T changes to
counteract the disruptive effects of distant changes suggests that they may have

significant utility in preserving pretriggered Env conformations in multiple circumstances.

MATERIALS AND METHODS

Env glycoprotein constructs. The HIV-1aps and HIV-1;rr Envs were coexpressed with

the Rev protein in the pSVlllenv expression vector, using the natural HIV-1 env and rev
sequences (23). The Asp 718 (Kpn I)-BamHI fragment of HIV-1pg €nv was cloned into
the corresponding sites of the pSVlllenv plasmid expressing the HIV-1yxs:2 Env and
Rev. The initial single, double and triple sets of lysine substitutions shown in Fig. 1A
were introduced into the HIV-1apg Env lacking an epitope tag. A carboxy-terminal
GGHHHHHH (Hisg) epitope tag was added to the Env variants shown in Fig. 1B and
derivatives thereof. The mutations were introduced by site-directed PCR mutagenesis
using Pfu Ultra Il polymerase (Agilent Technologies), according to the manufacturer’'s

protocol. The plasmid expressing the HIV-1ggs05 Env (BG505.W6M.ENV.C2) was
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621  obtained through the NIH HIV Reagent Program and was contributed by Dr. Julie

622  Overbaugh.

623

624  Celllines. 293T cells (ATCC) and HOS cells (ATCC) were grown in Dulbecco’s

625 Modified Eagle’s Medium/Nutrient Mixture F12 (DMEM-F12) supplemented with 10%
626 fetal bovine serum (FBS) and 100 pg/ml of penicillin-streptomycin. A549 cells

627  expressing HIV-1 Envs with Gag-mCherry fusion proteins were grown in DMEM-F12
628 medium supplemented with 10% FBS, 1X Pen-Strep, 1X L-glutamine and 0.2%

629  Amphotericin B. Cf2Th cells stably expressing the human CD4 and CCR5 coreceptors
630  for HIV-1 were grown in the same medium supplemented with 0.4 mg/ml of G418 and
631 0.2 mg/ml of hygromycin. All cell culture reagents are from Life Technologies.

632

633 Env processing and gpl120-trimer association in Ni-NTA precipitation assay. HOS cells

634  were cotransfected with a Rev/Env-encoding pSVlllenv plasmid and a Tat-encoding

635 plasmid at a 1:0.125 ratio using the Effectene transfection reagent (Qiagen). At48 h
636  after transfection, HOS cells were washed with 1X PBS and lysed in 100 mM

637  (NH4)2SO4, 20 mM Tris-HCI, pH 8, 300 mM NaCl and 1.5% Cymal-5 (Anatrace)

638  containing DMSO, 10 yM BMS-806 or 10 pg/mL soluble CD4-Ig. Lysates were clarified
639 and aliquots were saved as the input samples. The remaining lysates were incubated
640  with nickel-nitriloacetic acid (Ni-NTA) beads (Qiagen) for 1.5 h at 4°C. The beads were
641 gently pelleted and washed 3 times with room temperature washing buffer (100 mM

642  (NH4)2SOy4, 20 mM Tris-HCI, pH 8, 1 M NaCl and 0.5% Cymal-5). The beads were then
643  boiled in LDS sample buffer, and the proteins analyzed by Western blotting using

644  1:2,000 goat anti-gp120 polyclonal antibody (Thermo Fisher Scientific) and 1:2,000
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HRP-conjugated rabbit anti-goat IgG (Thermo Fisher Scientific) or 4E10 anti-gp41

antibody (Polymun) and 1:2,000 HRP-conjugated goat anti-human IgG (Santa Cruz).

Virus infectivity, neutralization and cold sensitivity. Single-round virus infection assays

were used to measure the ability of the Env variants to support virus entry, as described
previously (23). Briefly, 293T cells were cotransfected with the Rev/Env-encoding
pSVlllenv plasmid; a Tat-encoding plasmid; the pCMV HIV-1 Gag-Pol packaging
construct; and a plasmid containing the luciferase-expressing HIV-1 vector at a weight
ratio of 1:0.125:1:3 using a standard calcium phosphate transfection protocol. At 48 h
after transfection, virus-containing supernatants were collected, filtered through a 0.45-
MM membrane, and incubated with soluble CD4, BNM-I111-170 or antibody for 1 h at
37°C. The mixture was then added to Cf2Th-CD4/CCRS5 cells, which were cultured at
37°C/5% CO,. To enhance infection by recombinant viruses with the HIV-1ggs05 Env,
virus-antibody mixtures were spinoculated with target cells at 1800 rpm for one hour at
room temperature and then incubated for one more hour before additional medium was
added. Luciferase activity in the Cf2Th-CD4/CCR5 target cells was measured 48 h later.
To measure cold sensitivity, the viruses were incubated on ice for various lengths of
time prior to measuring their infectivity. To measure the sensitivity of virus infectivity to
crosslinking, the viruses were incubated with BS3 (Thermo Fisher Scientific) for 15
minutes at room temperature; the reaction was quenched with 15 mM Tris-HCI, pH 8.0

for 10 minutes, and the mixture was then added to the target cells.

Crosslinking of Envs on virus-like particles (VLPs). A549 cells inducibly expressing

virus-like particles (VLPs) consisting of the HIV-1 Gag-mCherry fusion protein and the
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wild-type HIV-14ps Env have been previously described (7, 138). The D1253 A549-
Gag/Env cell line expressing VLPs with wild-type HIV-14ps Env was selected by FACS
sorting for Gag-positive and PGT145-positive cells. The D1555.042321.sort A549-
Gag/E.2 Env cells and the D1553.042321.sort A549-Gag/AE.2 Env cells inducibly
expressing VLPs with the E.2 and AE.2 Envs, respectively, were established similarly.
After FACS sorting, these cells were >90% dual-positive for Gag expression (KC567

antibody-positive) and Env expression (PGT145 antibody-positive).

An equivalent number of cells from the three cell lines described above were
seeded and the expression of Gag-mCherry/Env VLPs was induced with 2 pg/mi
doxycycline. Forty-eight to seventy-two hours later, supernatants containing VLPs were
centrifuged at low speed to remove cell debris and then filtered (0.45 um). Clarified
supernatants were centrifuged at 100,000 x g for one hour at 4°C. VLP pellets were
resuspended in 1X PBS, aliquoted and incubated with different concentrations of either
DTSSP (Thermo Fisher Scientific) or glutaraldehyde crosslinkers. The crosslinking
reaction with DTSSP was carried out for 30 minutes at room temperature, after which
the reaction was quenched with 100 mM Tris-HCI, pH 8.0 for 10 minutes at room
temperature. Glutaraldehyde crosslinking was carried out for 5 minutes at room
temperature, after which the reaction was quenched with 50 mM glycine for 10 minutes
at room temperature. VLPs were then pelleted at 20,000 x g for 30 minutes at 4°C.
VLP pellets were resuspended in 1X PBS/LDS, boiled and Western blotted with a goat
anti-gp120 antibody, as described above. The intensity of the gp120, gp160, dimer and

trimer bands was quantified using the BioRad Image Lab program.
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1594 TABLE LEGENDS

1595 Table 1. Phenotypes of HIV-1apg Env variants with changes in GIn 114 and GlIn
1596  567.

1597  The phenotypes of the wild-type HIV-1ps Env and the indicated GIn 114 and GIn 567
1598  variants were determined as in Figure 2. The values for Env processing efficiency, virus
1599 infectivity and gp120-trimer association, relative to those observed for the wild-type HIV-
1600  1apg Env, are shown. The sensitivity or resistance of viruses with the Env variants to
1601  cold, sCD4 and BNM-I11-170 is reported relative to that of the wild-type HIV-1aps Virus.
1602  To ensure accurate comparison of the Env variant phenotypes across multiple assays,
1603  the wild-type HIV-1apg and key Env mutants (e.g., Q114E or Q567K) were included in all
1604 assays. Phenotypes are labelled as follows: e, wild-type level; +, increase; -, decrease;
1605 R, resistant; S, sensitive; ND, not determined; NA, not applicable. For virus infectivity:
1606  0-25 % of wild-type, - - -; 25-50 %, - -; 50-75 %, -; 75-125 %, ¢; >125 %, +. The data
1607  shown are representative of results obtained in at least two independent experiments.
1608

1609 Table 2. Effects of Env amino acid changes on the phenotypes of the Q114E and
1610 Q567K Env variants.

1611  The phenotypes of the wild-type and mutant HIV-1aps Envs were determined as in

1612  Figure 2. The values, relative to those of the wild-type HIV-1aps Env, are reported as
1613  described in the legend to Table 1. The data shown are representative of results

1614  obtained in at least two independent experiments.

1615

1616 Table 3. Effects of Env amino acid changes on the phenotypes of the E.2, AE.2

1617 and 2-4 RM6 AE Env variants.
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1618  The indicated amino acid changes were introduced into the HIV-1apg Env or into the
1619 E.2, AE.2 or 2-4 RM6 AE Envs. The phenotypes of these Env variants were determined
1620 as in Figure 2. The values, relative to those of the wild-type HIV-1aps Env, are reported
1621  as described in the Table 1 legend. The data shown are representative of results

1622  obtained in at least two independent experiments.

1623  *Val 255 is near the binding site for sCD4 and the CD4-mimetic compounds; therefore,
1624  the V255l change may directly decrease the binding of these Env ligands.

1625

1626
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FIGURE LEGENDS

Figure 1. HIV-1aps Env modification guided by natural polymorphisms. (A)
Natural polymorphisms in HIV-1 Env were used to suggest amino acid residues that
might tolerate replacement with a lysine residue or with acidic amino acid residues. The
lysine substitutions are grouped according to the Env region in which the residues are
located. Compared with Sets 1-3, Sets 4-7 contain an increased number of
substitutions. (B) A schematic representation of the HIV-1pg Env glycoprotein is
shown, with the gp120-gp41 cleavage site depicted as a black triangle. S, signal
peptide; V1-V5, gp120 major hypervariable regions; FP, fusion peptide; HR, heptad
repeat region; TM, transmembrane region; CT, cytoplasmic tail. The amino acid
changes associated with some of the key Env variants studied here are shown. Red

vertical tick marks indicate changes in addition to those found in the 2-4 R Env.

Figure 2. Phenotypes of the 2-4 R and 2-4 RED2 Envs. (A) HOS cells were
transfected transiently with plasmids expressing Hisg-tagged wild-type HIV-14pg Env or
the 2-4 R or 2-4 RED2 Env variants. Forty-eight hours later, cells were lysed; the cell
lysates were incubated with Ni-NTA beads for 1.5 hr at 4°C in the presence of the
DMSO control, 10 uM BMS-806 or 10 ug/mL sCD4. Total cell lysates (Input) and
proteins bound to the Ni-NTA beads were Western blotted with a goat anti-gp120
antibody (upper panels) or the 4E10 anti-gp41 antibody (lower panels). (B) 293T cells
were transfected with plasmids encoding the indicated Envs, HIV-1 packaging proteins
and Tat, and a luciferase-expressing HIV-1 vector. Forty-eight hours later, cell
supernatants were filtered (0.45 um) and incubated with different antibodies for 1 hr at

37°C before the mixture was added to Cf2Th target cells expressing CD4 and CCR5.
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Forty-eight hours after infection, the target cells were lysed, and the luciferase activity
was measured. The concentration of antibody required to inhibit 50% of virus infection
(ICs0) was calculated using the GraphPad Prism program. (C) Filtered cell
supernatants containing recombinant viruses were incubated with sCD4 or the CD4-
mimetic compound BNM-111-170 for 1 hr at 37°C. Then the mixture was added to target
cells as described above. In the cold sensitivity assay, viruses were incubated on ice
for the indicated times, after which the virus infectivity was measured. The results
shown in A and C are representative of those obtained in at least two independent
experiments. The means and standard deviations derived from two independent

experiments or triplicate measurements are shown in B and C, respectively.

Figure 3. Major contributions of the Q114E and Q567K changes to the respective
2-4 RED2 and 2-4 R phenotypes. (A) The effects of the Q114E change on gp120-
trimer association (left panel) and virus sensitivity to cold, sSCD4 and BNM-III-170 (right
panels) were measured as described in the legend to Figure 2. The sensitivities of
viruses with the wild-type HIV-1ps Env and the 2-4 RED2 Env are shown for
comparison. (B) The effects of the Q567K change on gp120-trimer association (left
panel) and virus sensitivity to cold, sSCD4 and BNM-111-170 (right panels) were
measured. The sensitivities of viruses with the wild-type HIV-1apg Env and 2-4 R Env
are shown for comparison. The results shown are typical of those obtained in at least
two independent experiments. The right panels report the means and standard

deviations derived from triplicate measurements.
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Figure 4. Phenotypes of the E.2 and AE.2 Envs. (A) HOS cells transiently
expressing Hisg-tagged Envs (wild-type HIV-14ps Env, the E.2 Env, the AE.2 Env or the
HIV-1;rr Env) were lysed. Cell lysates were incubated with Ni-NTA beads for 1.5 hr at
4°C in the presence of the DMSO control or 10 uM BMS-806. Total cell lysates (Input)
and Ni-NTA-bound proteins were Western blotted with a goat anti-gp120 antibody
(upper panels) and the 4E10 anti-gp41 antibody (lower panels). (B) Recombinant
luciferase-expressing viruses with the indicated Envs were incubated with antibodies for
1 hr at 37°C, after which the mixture was added to Cf2Th-CD4/CCR5 target cells.
Forty-eight hours later, the target cells were lysed and the luciferase activity was
measured. The ICso values were calculated using the GraphPad Prism program. (C)
Recombinant luciferase-expressing viruses with the indicated Envs were incubated with
sCD4 or BNM-III-170 for 1 hr at 37°C before the mixture was added to Cf2Th-
CD4/CCRS target cells. Cold sensitivity was assessed by incubation of the viruses on
ice for the indicated times, after which virus infectivity was measured on Cf2Th-
CD4/CCRS cells as described above. The results are representative of those obtained
in at least two independent experiments. The values reported in B and C represent the
means and standard deviations from at least two independent experiments or triplicate

measurements, respectively.

Figure 5. Correlations among key Env phenotypes. The plot shows the relative
level of resistance to the CD4-mimetic compound BNM-III-170 versus the relative level
of cold resistance for the HIV-1 Env variants tested in this study. The levels of
resistance are scored as described in the legends to Tables 1-3: e, wild-type level; R,

resistant; S, sensitive. Key Env variants are designated with stars. Envs are colored
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according to their relative gp120-trimer association level, as measured by Ni-NTA
coprecipitation of gp120 with the Hisg-tagged gp41 glycoprotein: black, wild-type level;
gray, not determined or not applicable; light green, +; green, ++; red, -. The V255I
change is located near the binding site for CD4-mimetic compounds and may directly
affect Env interaction with BNM-111-170. Note that the E.2 and AE.2 Envs exhibit
resistance to cold and BNM-I111-170 comparable to those of the HIV-1;rr and HIV-1ggs0s
Envs, but also display better gp160 processing and a tighter association of gp120 with

the Env trimer solubilized in detergent.

Figure 6. Crosslinking of the wild-type HIV-1aps, E.2 and AE.2 Envs. (A) VLPs
consisting of the HIV-1 Gag-mCherry fusion protein and the wild-type HIV-1aps Env, the
E.2 Env or the AE.2 Env were incubated with different concentrations of the DTSSP or
glutaraldehyde crosslinkers. After quenching the reactions, VLPs were pelleted and
lysed. The VLP proteins were analyzed by reducing or non-reducing PAGE,
respectively, followed by Western blotting. The ratio of gel-stable (dimers +
trimers):(gp120 + gp160) provides an indication of interprotomer crosslinking by
DTSSP. (B) Luciferase-expressing viruses pseudotyped with the wild-type HIV-1aps,
E.2 or AE.2 Envs were incubated with the BS3 crosslinker. After quenching the
reaction, the viruses were added to Cf2Th-CD4/CCRS5 cells. Luciferase activity in the
target cells was measured 48 hours later. The results shown in A and B are
representative of those obtained in at least two independent experiments. The values
reported in B represent the means and standard deviations derived from triplicate

measurements.
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Figure 7. Location of Env residues in a structural model of an HIV-1 Env trimer.
Env residues studied herein are depicted as CPK spheres in a PGT151-bound
HIV-1,rr Env ACT trimer (PDB: 5FUU) (82). The binding of two PGT151 Fabs
introduces asymmetry into the Env trimer. In this depiction, the PGT151 Fabs have
been removed from the structure. The individual Env protomers are colored pink, light
blue and gray. In this orientation, the gp120 subunits are at the bottom and gp41
subunits at the top of the figures. (A) Env residues (GIn 114 (magenta), GIn 567
(orange) and Ala 582 (blue)) associated with State 1-stabilizing changes are shown.
The distances between the C, atoms of GIn 114 and GIn 567 residues in this
asymmetric trimer structure are 11.6, 13.1 and 15.2 A. The HR1y regions of the three
Env protomers differ in conformation. (B) Env residues (Lys 59, His 66, GIn 114, Gin
567 and Ala 582) associated with State 1-stabilizing changes are colored green. Env
residues (His 72, Thr 202, GIn 203, Arg 542, lle 595, Leu 602 and GIn 658) associated
with State 1-destabilizing changes are colored red. Changes in the residues (Lys 117,
Lys 121 and Leu 587) colored yellow resulted in Envs that were resistant to cold and a
CD4-mimetic compound, but were subject to gp120 dissociation from the Env trimer
solubilized in detergent. The right panel shows the side-chain stacking of residues Gin

114, Lys 117 and Lys 121 near the Env trimer axis.
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Env Env Infectivity| Resistance / Sensitivity compared to wild-type | gp120-trimer
Processing| (%) Cold sCD4 BNM-IlIl-170 | association
Wild-type ° ° ° ° ° °

Qi114A ° ° ° ° °

Q114D + ° RR RR RR ++

Q114E + + RR RR RR ++

Q114K No ND ND ND ND NA

Q114N ° ND ND ND ND

Q114S ° ND ND ND ND

Q567A ° + ° ° °

Q567E ° --- ° ° °

Q567K + ° R R R ++

Q567R + - Slight R ° ° +
Q114A Q567K ° ° Slight R R R ++
Q114A Q567R ° ° ° ° ° +
Q114D Q567R + ° R RR RR ++
Q114E Q567A + + RR RR RR ++
Q114E Q567K + ° RRR RRR RRR ++
Q114E Q567E + - R [ ] R ++
Q114E Q567R + ° RR RR RR ++
Q114K Q567E No ND ND ND ND NA
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Table 2
Env Env Infectivity| Resistance / Sensitivity compared to wild-type |gp120-trimer
Processing| (%) Cold sCD4 BNM-II-170 | @ssociation
Wild-type ° ° ° ° ° °
Q114E + + RR RR RR ++
Q567K ° ° R R R -+
Q114E Q567K + ° RRR RRR RRR ++
H72A -- --- R ° ° NA
H72K - - --- ° SS SS NA
H72Q -- --- ° ND SS NA
H72A Q114E - -- R ° RR -
H72K Q114E - --- ° S SS -
H72Q Q114E - - R S ° -
T202K ° - SS S SS °
T202R . - SS S SS °
T202A ° - SSS SSS SSS -
T202Q ° . SSS SSS SSS -
Q114E T202K + + SS S SS +
Q114E T202R + + SS S SS +
Q114E T202A ° . SSS SS SSS °
Q114E T202Q o + SSS SS SSS °
Q203A ° ° SS ND SSS -
Q114E Q203A + ° ° ND ° °
K117A ° ° RR ND RR °
K117Q ND - R ND RR ND
K121A ° -- ° ND RR -
K121Q ND - R ND RR ND
Q114E K117A ° ° RR ND RR °
Q114E K121A + - Slight R ND RR +
H66N ° - R RRR RRR °
A582T ° . RRR RR RR +
L587A - . RR R RR -
Q114E H66N + ° RR RRR RRR ++
Q114E A582T + ° RRR RR RRR ++
Q567K A582T ° ° RRR RR RRR +
Q114E L587A + ° RR RR RR °
Q114E Q567K + + RRRR RRRR RRRR ++
A582T
Q114E Q567K + - RR RR RRR +
L587A
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Env Env Infectivity| Resistance / Sensitivity compared to wild-type [gp120-trimer
Processing (%) Cold sCD4 BNM-III-170 | association
Wild-type ° ° ° ° ° °
E.2 + + RRR RRR RRR ++
AE.2 + - RRRR RRRR RRRR ++
E.2 K117A + ° RRR RRR RRR -
AE.2 K117A + - - RRRR RRRR RRRR +
K59A ° R R RR °
V255I ° RR NA* NA* °
E.2 K59A + - RRR RRR RRR ++
AE.2 K59A + -- RRRR RRRR RRRR ++
E.2 K59A V255I + --- RRRR NA* NA* ++
E.2 V255I + - RRRR NA* NA* ++
AE.2 V255I + --- RRRR NA* NA* ++
AE.2 K59A + --- RRRR NA* NA* ++
V255I
K59A Q114E + -- RRRR NA* NA* ++
V255I
R542V - --- S SSS SSS -
I595F - - R SSS SSS -
L602H - - S SSS SSS -
2-4 RM6 AE + - RRR RRR RRR ++
2-4 RM6 AE + --- RR RRR RR ++
R542V
2-4 RM6 AE + --- R ° ° ++
I595F
2-4 RM6 AE + -- RRR RRR RR ++

L602H
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Figure 1
A Lysine Polymorphisms Acidic Polymorphisms
Set 1 Set 4 Set 6 ED2
gp41 R557K R557K R557K N92E
and gp120 | R633K R633K R633K Q114E
C-terminus | Q658K Q658K Q658K S164E
N677K N677K N677K S275E
Q567K Q567K Q507E
E492K M621E
Set 2 Set 5 Set7 R G640D
gp120 R166K R166K R166K R315K
trimer- R178K R178K R178K
association | R419K R419K R419K
domain T202K T202K
Q328K
Set 3
gp120 inner T49K
domain T63K
V65K
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Figure 6
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