

1 **Plant neighborhood shapes diversity and reduces interspecific variation of the**
2 **phyllosphere microbiome**

3

4 Kyle M. Meyer^{1,*}, Robert Porch², Isabella E. Muscettola¹, Ana Luisa S. Vasconcelos³,
5 Julia K. Sherman¹, C. Jessica E. Metcalf⁴, Steven E. Lindow⁵, Britt Koskella¹

6

7 ¹ Department of Integrative Biology, University of California, Berkeley, Berkeley,
8 California, 94720, USA

9 ² Institute of Ecology and Evolution, University of Oregon, Eugene, OR, 97403, USA

10 ³ Department of Soil Science, College of Agriculture “Luiz de Queiroz”, Universidade
11 de São Paulo, Piracicaba, 13418-900, Brazil

12 ⁴ Department of Ecology and Evolutionary Biology, Princeton University, Princeton,
13 NJ, 08544, USA

14 ⁵ Department of Plant and Microbial Biology, University of California, Berkeley,
15 Berkeley, California, 94720, USA

16 * To whom correspondences should be addressed: kmeyer@berkeley.edu

17

18

19 Keywords: Tomato, Bean, Pepper, Leaf-associated microbiome, Community
20 assembly, Microbiome dispersal, Neighborhood effects, Phyllosphere

21

22 Competing Interests: the authors declare that they have no competing interests.

23

24 **Abstract**

25 Microbial communities associated with plant leaf surfaces (i.e. the phyllosphere) are
26 increasingly recognized for their role in plant health. While accumulating evidence
27 suggests a role for host filtering of its microbiota, far less is known about how
28 community composition is shaped by dispersal, including from neighboring plants.
29 We experimentally manipulated the local plant neighborhood within which tomato,
30 pepper, or bean plants were grown in a three-month field trial. Focal plants were
31 grown in the presence of con- or hetero-specific neighbors (or no neighbors) in a
32 fully factorial combination. At 30-day intervals, focal plants were harvested and
33 replaced with a new age- and species-matched cohort while allowing neighborhood
34 plants to continue growing. 16S community profiling revealed that the strength of
35 host filtering effects (i.e. interspecific differences in composition) decreased over
36 time. In contrast, the strength of neighborhood effects increased over time,
37 suggesting dispersal from neighboring plants becomes more important as
38 neighboring plant biomass increases. We next implemented a cross-inoculation
39 study in the greenhouse using inoculum generated from the field plants to directly
40 test host filtering of microbiomes while controlling for directionality and source of
41 dispersal. This experiment further demonstrated that focal host species, the host
42 from which the microbiome came, and in one case the donor hosts' neighbors,
43 contribute to variation in phyllosphere bacterial composition. Overall, our results
44 suggest that local dispersal is a key factor in phyllosphere assembly, and that
45 demographic factors such as nearby neighbor identity and biomass or age are
46 important determinants of phyllosphere microbiome diversity.

47 **Introduction**

48 Plant leaf surfaces, commonly termed the phyllosphere, harbor a wide
49 diversity of microorganisms ¹. These endophytic and epiphytic communities can
50 influence plant health and fitness through a variety of means, including protection
51 against pathogens ^{2,3}, plant growth promotion ⁴, primary productivity enhancement
52 ⁵, protection against abiotic conditions including frost ⁶, and fixation of atmospheric
53 nitrogen (N) ⁷. Plant hosts can exert some control over the abundance and
54 composition of their microbiome members by virtue of the differing chemical and
55 physical features of resources provided on their surfaces ⁸, but also through immune
56 activity, molecular signaling, and barrier formation ⁹⁻¹⁵. This filtering effect can give
57 rise to predictable differences in microbiome composition among hosts ^{10,16-18}, a
58 phenomenon referred to as species identity (or genotype) effects. Evidence for such
59 effects comes from phylogenetic clustering of associated microbial taxa ^{19,20},
60 deviation from null or neutral expectations ^{21,22}, changes consequent to host genetic
61 manipulation ¹⁰, or compositional differences explained by species or genotype as a
62 factor ^{16-18,20,23}. While species identity effects suggest the importance of host control
63 over microbiota, such effects are often weak or variable when tested in broader
64 environmental or ecological contexts ^{24,25}. This raises the question of whether and
65 how host effects can be swamped by environmental factors in shaping the
66 microbiome.

67 The neighboring plant community constitutes a major component of a plant's
68 environmental and ecological context. Neighborhood effects, also known as
69 associational effects, have been extensively studied for pathogen and herbivore

70 transmission²⁶⁻²⁸, revealing patterns of transmission that relate to the nearest
71 conspecific neighbor (i.e. conspecific negative density dependence)²⁹⁻³² as well as
72 species frequency-dependent patterns of host fitness³³⁻³⁵. Much less effort has
73 focused on the role of neighborhood effects for non-pathogenic plant-associated
74 microorganisms³⁶. Given the prominent role of aerial transmission in shaping
75 phyllosphere microbial communities^{23,37-39}, both neighbor identity and proximity
76 are likely to be important factors shaping epiphytic microbial communities.
77 Moreover, it has been shown both theoretically⁴⁰ and empirically⁴¹ that in the
78 presence of high dispersal rates, community members can persist even in the face of
79 strong selection against them (e.g. as a result of plant filtering effects), a
80 phenomenon termed mass effects. As such, differences in microbiota composition
81 that arise between species could be diminished when inter-host dispersal is high.
82 Indeed this has been shown in zebrafish, where differences in bacterial community
83 composition among host variants were dramatically reduced when inter-host
84 dispersal was allowed⁴².

85 Recent observational research in tree communities has revealed detectable
86 neighborhood effects on epiphytic communities³⁸, but many open questions remain.
87 For instance, it is unclear whether neighborhood effects are general and causative, a
88 crucial gap in knowledge if such effects are to be incorporated into agricultural
89 practice. It is also unclear what role neighbor or focal plant identity and
90 age/biomass play in microbiome assembly. Lastly, although host filtering and
91 microbial dispersal are intimately intertwined, the relative impacts of each in
92 shaping microbiome differentiation among species has not been described. We

93 address these knowledge gaps using field- and greenhouse-based experiments
94 involving tomato, pepper, and bean host plants. By manipulating both the focal plant
95 species identity and the local neighborhood composition in the field, we were able
96 to directly test the relative importance of plant host filtering versus local dispersal
97 sources in shaping microbiome composition on leaves. We then performed a
98 controlled cross-inoculation study in the greenhouse to directly examine the effects
99 of host filtering and inoculum source on microbiome assembly of the three plant
100 species involved. We hypothesized that: 1) neighborhood effects would increase as
101 neighboring plants increase in age and biomass; 2) that neighborhood effects would
102 depend on both neighbor and focal plant identity due to host filtering effects; 3) that
103 host species effects would be diminished in the presence of neighboring plants; and
104 4) that experimental transplantation of microbiomes across hosts would result in
105 compositional change as a result of host filtering, but that there would remain a
106 detectable signal of past host.

107

108 **Methods**

109 *Experimental Design: Neighborhood study*

110 To test for the relative influence of host species and neighborhood effects on
111 foliar microbial communities, we implemented a fully factorial, randomized block
112 design at the Oxford Tract, a research farm near the University of California,
113 Berkeley. The study included three plant species: tomato (*Solanum lycopersicum* var.
114 Moneymaker), pepper (*Capsicum annuum* var. Early Cal Wonder), and bean
115 (*Phaseolus vulgaris* var. Bush Blue Lake 274). Plant neighborhoods were established

116 in which a single 5 week old tomato or pepper plant, or a cluster of 6, 2-week old
117 beans, was planted as the focal individual in the middle of a circle of eight
118 neighborhood plants, each planted 0.61 m from the focal plant, with fully reciprocal
119 combinations of focal and neighborhood plants (Fig. 1A) in a randomized complete
120 block design with 6 replicates. Neighborhood plots were established in 3 zones (2
121 blocks per zone) spaced 1.22m apart separated by at least 0.91m from any other
122 plants at the experimental site to minimize edge effects. Each neighborhood plot
123 was 1.22 x 1.22 m, and separated by 1.22 m from adjacent plots. No neighbor
124 control plots, in which focal plants had no neighbors encircling them, were included
125 for each species. Thus, the experiment contained 9 neighborhood comparisons and
126 3 no neighbor comparisons. Two weeks prior to planting, soil was tilled for weed
127 management and drip lines were installed underneath plastic sheeting to provide
128 irrigation. The plastic sheeting prevented the growth of weeds and minimized
129 dispersal of soil onto plants. Plants were planted through small holes made through
130 the plastic sheeting. Individual tomato and pepper plants were propagated in a
131 greenhouse for 5 weeks, to a height of about 20 cm before transplantation into the
132 field. Beans, 6 seeds per pot, were grown for 20 days to a height of 20 cm before
133 transplantation. All greenhouse plants were watered using drip irrigation to
134 minimize the wetting of the leaves, and thus the development of large epiphytic
135 bacterial community sizes. All plants, including focal individuals and neighbors,
136 were transplanted in the field June 1, 2019.

137 Focal plants were harvested and replaced at 30-day intervals (3 times of
138 establishment) while the neighborhoods were retained and continued to grow

139 throughout the study (Fig. 1B, C). Focal plants were all the same age upon planting
140 as the original cohorts to allow for direct comparisons across cohorts. Thus,
141 bacterial community composition of the focal plants was assessed on 3 separate
142 occasions for each of 72 focal plants in the neighborhoods (totaling 216 focal
143 samples). Only one focal plant (pepper with no neighbors) died prior to sampling.
144 Additionally, at each round of planting, bacterial community composition was
145 assessed on 5 plants of each species at the time of transplantation to identify taxa
146 that had established on plants in the greenhouse.

147

148 *Neighborhood Plant Attribute Measurements*

149 Several attributes of neighborhood plants were measured before each
150 monthly harvest of focal plants in order to determine how neighbors might impact
151 phyllosphere communities of the focal plant. These attributes included: average
152 neighbor height, distance of the focal plants to the nearest neighbor, the number of
153 neighbors touching the focal plant (if any), the total number of flowers on the
154 neighborhood plants, and whether the neighborhood plants had signs of herbivory,
155 infestation, or disease (yes or no). Further, the biomass of the neighborhood was
156 estimated without harvesting the plants by fitting a linear model relating the height
157 and weight of the focal plants, and extrapolating to that of the neighbor plant
158 weights based on their height. Separate linear models were fit for each plant species.

159

160

161

162 *Sample processing*

163 Immediately before harvesting the focal plants, their height was measured.

164 Focal plants were then excised at their base using ethanol-sterilized scissors,

165 transferred to 1-gallon (3.79 L) sterile plastic bags, and transported in a chilled

166 cooler to the laboratory. Plant weight was recorded and then plants were

167 subsampled, collected, and re-weighed. Subsampling was necessary to reduce

168 biomass differences among samples and to enable more efficient collection of

169 epiphytic bacteria by sonication. Foliar bacteria were collected from plant

170 subsamples (range 3.84 – 621.14 g, median 40.84 g) by adding 180 ml of sterile

171 10mM MgCl₂ to the sample bags and sonicating for 10 minutes in a sonicating water

172 bath (Branson model 5800). Leaf wash was then filtered through an autoclaved

173 coffee filter and distributed to four 50 ml conical tubes, which were then centrifuged

174 at 4000 rcf at 10° C for 10 minutes to pellet microbial cells. The supernatant was

175 then decanted from each tube and the pellets resuspended in 1.8 ml King's broth

176 (KB). 600 µl of the resuspended pellet was frozen at -80° C for subsequent DNA

177 extraction, while the remaining two 600 µl aliquots were each mixed with 400 µl 1:1

178 KB:Glycerol and frozen at -80° C for subsequent experimentation.

179

180 *Experimental Design – Follow-up transplant study*

181 To further test the importance of host filtering, inoculum source, and

182 dispersal history, we conducted a follow-up greenhouse study in which bacterial

183 communities recovered from field plants at harvest time point 2 were reciprocally

184 inoculated onto these same species under controlled conditions. Cryopreserved

185 phyllosphere communities from a single focal field plant were transferred to either
186 the same plant species from which they were isolated, or onto the plant species that
187 previously had surrounded that focal plant when it was in the field. For instance, the
188 microbiome from a tomato that was surrounded by beans was applied equally to a
189 tomato and a bean plant. This was done for all combinations. Experimental blocks
190 from the field trial were treated as experimental blocks in the greenhouse trial,
191 using blocks 2-6 from the field (5 replicates per treatment). We deliberately did not
192 equalize inoculum density, as we anticipated that bacterial abundances would vary
193 according to plant species and thereby constitute an important component of
194 species identity effects. The biomass of every donor plant, however, was recorded
195 for downstream statistical analysis. Additionally, for each plant species we included
196 5 replicate blank inoculum controls in which the same volume of sterile 10 mM
197 MgCl₂ that was used to resuspend inoculum was sprayed onto plants. We further
198 included replicate heat-killed controls, in which field-derived leaf wash was
199 autoclaved for 40 minutes before being applied to each of three plant hosts, in the
200 same manner as the experimental inocula.

201 Inocula were prepared by thawing the freezer stock, centrifuging at 4000 rcf
202 and 10° C for 10 minutes to pellet cells, decanting the supernatant, and re-
203 suspending cells in 7 ml 10 mM MgCl₂ then splitting in half to make two 3.5 mL
204 inocula. Twenty-two samples were inoculated each day (block) such that each block
205 contained every comparison, and this was repeated for 5 days. Inocula were sprayed
206 onto the adaxial (top) and abaxial (bottom) sides of leaves using ethanol- and UV-
207 sterilized misting caps. After inoculation, the moist, sprayed plants were placed in a

208 chamber maintaining ca. 100% relative humidity for 20 hours in order to maintain
209 leaf moistness, thus encouraging microbial growth, before being transferred to a
210 greenhouse. After 7 days, the plants were returned to the humid chamber for 20
211 hours immediately before harvest in order to facilitate further microbial
212 multiplication on leaves and thus allow for maximal host filtering. Plants were then
213 harvested and processed as in the field study.

214

215 *DNA extraction, PCR, Library Preparation, and Sequencing*

216 One sixth of the total leaf surface microbial extraction per plant was used for
217 DNA extraction with DNeasy Powersoil Kits (Qiagen). Sample order was randomized
218 to avoid batch effects, and a blank (no sample) control was included in every round
219 of DNA extraction. DNA concentration of each sample was quantified using the Qubit
220 dsDNA HS Assay Kit. 10 μ l of sample DNA was used as template and PCR amplified
221 for 35 cycles at the University of California - Davis Host Microbe Systems Biology
222 Core using the 799F (5' – AACMGGATTAGATAACCKG – 3') - 1193R (5' –
223 ACGTCATCCCCACCTTCC – 3') primer combination, which targets the V5-V7 region
224 of the 16S rRNA gene, and was designed to minimize chloroplast amplification ^{43,44}.
225 To further minimize host mitochondrial and chloroplast amplification, peptide
226 nucleic acid (PNA) clamps were added to each reaction ⁴⁵. Resulting amplicons were
227 diluted 8:1 and were further amplified for 9 cycles to add sample-specific barcodes,
228 then quantified using Qubit, pooled in equal amounts, cleaned with magnetic beads
229 and size selected via electrophoresis on a Pippin Prep gel (Sage Science, USA). The

230 resultant library was then sequenced on the Illumina MiSeq (paired-end 300)
231 platform.

232

233 *Sequence Processing*

234 Amplicon sequences were processed using the DADA2 pipeline ⁴⁶
235 implemented in the R statistical environment ⁴⁷, including the packages ShortRead
236 ⁴⁸, Biostrings ⁴⁹, and Phyloseq ⁵⁰. Forward and reverse reads were truncated at 260
237 and 160 bp, respectively, and quality filtered using the function 'filterAndTrim' with
238 default settings (i.e. maxN=0, maxEE=c(2,2), and truncQ=2). Error rates for forward
239 and reverse reads were determined using the 'learnErrors' function, and then
240 applied to remove sequencing errors from reads and assign them to amplicon
241 sequence variants (ASVs) using the 'dada' function. Filtered paired reads were
242 merged using the function 'mergePairs' and then converted into a sequence table
243 using the 'makeSequenceTable' function. Chimeric sequences were removed from
244 the sequence table using the function 'removeBimeraDeNovo' (method =
245 consensus). Taxonomy was assigned to the remaining sequences using the
246 'assignTaxonomy' function, which implements the RDP Naïve Bayesian Classifier
247 algorithm with kmer size 8 and 100 bootstrap replicates ⁵¹. We used the Silva SSU
248 taxonomic training dataset (version 138) formatted for DADA2 ⁵². Chloroplast and
249 mitochondrial sequences were filtered from the ASV table by removing any ASVs
250 with a taxonomic assignment of 'Chloroplast' at the Order level or 'Mitochondria' at
251 the Family level, respectively. Lastly, we applied the 'isContaminant' function
252 (method = prevalence) from the package 'decontam' ⁵³ to our samples using our

253 blank (no sample) DNA extractions to identify and remove putative contaminants
254 introduced during DNA extraction.

255

256 *Bacterial Quantification using Droplet Digital PCR (ddPCR)*

257 In order to estimate foliar bacterial abundances of each plant sample, droplet
258 digital PCR (ddPCR) using the Bio-Rad QX200 system on bacterial DNA extracted
259 from leaf wash. Comprehensive ddPCR methods are described elsewhere ⁵⁴, but
260 briefly, we targeted the V5-V7 region of the 16S rRNA gene in sample DNA using the
261 chloroplast-excluding 799F (5' – AACMGGATTAGATACCCKG – 3') – 1389R (5' –
262 ACGGGCGGTGTGTRC – 3') primer combination. 5 μ l of 1:10 diluted DNA template
263 were combined with 11 μ l of 2X EvaGreen Supermix (Bio-Rad, USA) and 0.22 μ l of
264 each primer, and 5.56 μ l of molecular grade water to a total volume of 20 μ l.
265 Reaction mixes were then loaded into the QX200 droplet generator with 70 μ l of
266 droplet generation oil, then transferred to a PCR plate. 39 cycles of PCR were
267 performed under the following conditions: 95°C for 10 minutes, 95°C for 30
268 seconds, 55°C for 30 seconds, 72°C for 2 minutes, with steps 2-4 repeated 39 times,
269 4°C for 5 minutes, and 90°C for 5 minutes. EvaGreen signal was measured on the
270 QX200 droplet reader, cutoff thresholds were set for each column based on
271 background fluorescence in no template controls, and concentrations were
272 determined using the associated QuantaSoft software. Abundances are reported as
273 16S rRNA copies per g plant material as well as estimates of 16S copies per
274 individual plant by taking into account the proportion of the total plant sample that
275 was used for sample processing.

276

277 *Statistical Analysis*

278 All statistical analyses were performed using R version 4.0.3⁴⁷. Community
279 matrices were rarefied to 6400 counts per sample ten times and averaged in order
280 to account for differences in sampling extent across samples. Bray Curtis bacterial
281 community dissimilarities were calculated between samples using the 'vegdist'
282 function in the vegan package in R⁵⁵. Community structure differences among host
283 species identity, neighbor species identity, and experimental block were assessed
284 using a PERMANOVA on Bray-Curtis distances using the 'adonis' function (also in
285 the vegan package), which performs a sequential test of terms and uses the
286 algorithm presented in⁵⁶. To assess the change in the relative strength of these
287 factors through time, the PERMANOVA was performed for each of the three
288 harvesting time points separately. Since not all samples successfully sequenced,
289 generating slight differences in sample numbers among harvests, we adjusted R²
290 values to take into account sample numbers and degrees of freedom using the
291 'RsquareAdj' function in the vegan package. Indicator taxa analysis was performed
292 using the 'multipatt' function in the indicspecies package⁵⁷.

293 In order to assess the unique contribution of plant species identity for each
294 neighborhood type, we used variation partitioning on Hellinger-transformed
295 community matrices to partition out the effects of space. A geographic distance
296 matrix was calculated for all experimental plots based on plot GPS coordinates using
297 the program Geographic Distance Matrix Generator⁵⁸, and then pairwise distances
298 were decomposed into principal coordinates using the 'pcnm' function in the vegan

299 package. For each combination of plants, significant principal coordinates were
300 selected using forward and backward (direction = "both") model selection with the
301 'ordistep' function in the vegan package. The unique contribution of host species
302 identity was then calculated after partitioning out the significant spatial PCNMs that
303 were selected using the 'varpart' function in vegan. We further assessed the
304 contribution of other host factors including plant height and weight by performing
305 the above-mentioned model selection and variation partitioning. The statistical
306 significance of variation fractions was then tested by performing redundancy
307 analysis ordination (RDA), and declaring the non-focal factors as conditions.

308 Neutral modeling of phyllosphere communities was performed using the
309 'fit_sncm' function in the package *reltools*⁵⁹. This package fits the neutral model
310 from⁶⁰, as implemented by²¹. In order to assess phylogenetic patterns in the
311 phyllosphere communities, we constructed a phylogenetic tree of all ASVs with
312 greater than 20 counts in the community matrix, which included 7949 ASVs.
313 Sequences were aligned using the 'AlignSeqs' function in the *DECIPHER* package⁶¹
314 using default settings. Next, pairwise distances between sequences were calculated
315 using the 'dist.ml' function in the *phangorn* package version 2.5.5⁶². These distances
316 were then used to construct a neighbor-joining tree using the 'NJ' function in
317 *phangorn*. Lastly, the neighbor-joining tree was used as a starting point to create a
318 generalized time-reversible with gamma rate variation (GTR+G+I) maximum
319 likelihood tree using the 'pml', 'update', and 'optim.pml' functions in the *phangorn*
320 package. Lastly, we calculated the mean pairwise distance (MPD) of taxa in each
321 sample and compared to the MPD of a null model to calculate the standardized effect

322 size (SES) using the 'ses.mpd' function in the picante package⁶³. We used a
323 community randomization null model (null.model = species.pool, iterations=999)
324 whereby a randomized community matrix is constructed by drawing from the total
325 species pool with equal probability. Using such a procedure, a Z-score (the SES of
326 MPD versus the null community) below zero can be interpreted as phylogenetically
327 clustered whereby taxa co-occurring in a sample are more closely related than the
328 same number of taxa drawn at random from the species pool. By contrast, samples
329 above zero are interpreted as phylogenetically overdispersed, i.e. phylogenetic
330 distance among co-occurring taxa is greater than the above-stated null expectation.

331 For univariate data such as ASV-level richness, MPD SES, and ddPCR-based
332 abundance data, a three-way ANOVA was fit to test for significant effects of host,
333 neighbor, and harvest time point, with interactions therein. The appropriateness of
334 this procedure was verified by checking for a normal distribution of residuals on the
335 model.

336

337 **Results**

338 *Experimental manipulation of plant neighborhood in the field*

339 We first compared the phyllosphere microbiome of plants that were
340 surrounded by no neighbors, conspecific (same species) neighbors, or heterospecific
341 (different species) neighbors. Because the field trial was conducted over the course
342 of 3 months, with focal plants being replaced with a plant of the same species but at
343 the original age of planting each month, we were also able to compare neighborhood
344 age/biomass effects on microbiome assembly. After processing, 175 of the 216 focal

345 plant samples from the field yielded high quality sequencing reads (Tomato n = 63,
346 Pepper n = 52, Bean n = 60). Of these 175, 64 were from harvest 1, 58 were from
347 harvest 2, and 53 were from harvest 3. The 41 excluded samples each had less than
348 24 total reads and thus failed either to amplify or to yield sequences. The
349 greenhouse control plants that were included to assess the bacterial communities
350 established prior to transplantation into the field yielded very few reads (28 of the
351 45 samples had less than 50 reads), indicating that bacterial colonization prior to
352 transplantation was minimal. Of the 17 greenhouse control samples with detectable
353 sequences, communities were dominated by Enterobacteriales, Corynebacteriales,
354 Burkholderiales, and Pseudomonadales.

355 The field trial dataset contained 5,414,393 observations of 19,818 ASVs,
356 13,455 of which had >10 occurrences, and 2,253 of which had >100 occurrences.
357 Within-host ASV-level richness ranged from 22 to 769 ASVs across all treatments
358 and hosts. Richness levels varied significantly by harvest time ($F_{2,174} = 24.21, p <$
359 0.001), declining throughout the season, and varying by host identity ($F_{2,174} = 4.96, p$
360 < 0.01), with beans harboring a greater richness, especially at the first harvest.
361 Neighborhood did not impact bacterial richness, however the total number of
362 flowers on the neighborhood plant species at the time of focal plant harvest was
363 positively correlated with bacterial richness on the focal plants ($R^2_{adj} = 0.044, p =$
364 0.01). Similar qualitative trends were observed for Shannon diversity, except that
365 host plant weight and height were also positively correlated with diversity ($R^2_{adj} =$
366 0.022, $p = 0.03$ and $R^2_{adj} = 0.044, p < 0.01$, respectively).

367 Bacterial abundance per plant varied significantly by host identity ($F_{2,174} =$
368 $27.35, p < 0.001$), neighborhood ($F_{3,174} = 7.96, p < 0.001$), and harvest time point
369 ($F_{2,174} = 3.85, p = 0.051$, Fig. 2A), with no significant interactions among variables.
370 Tomato and bean plants tended to harbor higher bacterial abundances than pepper
371 plants ($p < 0.001$). As expected, abundance per plant was positively correlated with
372 plant weight ($R^2_{adj} = 0.187, p < 0.001$) and plant height ($R^2_{adj} = 0.117, p < 0.001$). If
373 we normalize bacterial abundances by the plant material weight used for
374 processing, we see weaker effects of host identity ($F_{2,174} = 3.24, p = 0.041$) and
375 neighbor ($F_{3,174} = 2.17, p = 0.094$), but a stronger effect of harvest time point ($F_{2,174} =$
376 $5.15, p = 0.024$). Several neighborhood attributes had interesting associations with
377 bacterial abundance on focal hosts. Specifically, estimated neighborhood biomass
378 ($R^2_{adj} = 0.146, p < 0.001$), average neighbor height ($R^2_{adj} = 0.123, p < 0.001$), and
379 total number of flowers ($R^2_{adj} = 0.022, p = 0.038$) were all negatively correlated with
380 bacterial abundance on focal plants. Lastly, bacterial abundance per focal plant was
381 negatively associated with community richness ($R^2_{adj} = 0.016, p = 0.05$) and
382 Shannon diversity ($R^2_{adj} = 0.03, p < 0.01$).

383 Overall, phyllosphere communities were dominated by the phyla
384 Proteobacteria, Firmicutes, and Actinobacteriota. The most abundant bacterial
385 orders were the Bacillales, Burkholderiales, Enterobacterales, Lactobacillales,
386 Micrococcales, Rhizobiales, Sphingomonadales, and Xanthomonadales (Fig. 2B).
387 Bray Curtis dissimilarities among samples were driven by harvest time point ($R^2 =$
388 $0.063, p = 0.003$), host species ($R^2 = 0.055, p = 0.003$), neighbor ($R^2 = 0.023, p =$
389 0.048), and block ($R^2 = 0.036, p = 0.06$), with a significant interaction between host

390 and harvest ($R^2 = 0.034, p = 0.033$), and a trending interaction between neighbor
391 and harvest ($R^2 = 0.041, p = 0.072$).

392

393 *The effects of host identity on bacterial community composition decrease through time*
394 *while neighborhood effects increase through time and vary by host identity*

395 We next examined the relative influence of host species identity and
396 neighborhood on focal plant microbiome structure at each time point during the
397 field experiment by performing a PERMANOVA on Bray Curtis dissimilarities using
398 host species identity (i.e. tomato, pepper, or bean), neighborhood (i.e. tomato,
399 pepper, bean, or no neighbor), and experimental block (1-6) as independent
400 variables. The effect of host identity was significant, but diminished in size over the
401 three time points (Harvest 1: Adj. $R^2 = 0.096, p < 0.001$; Harvest 2: Adj. $R^2 = 0.068, p$
402 < 0.001 ; Harvest 3: Adj. $R^2 = 0.027, p < 0.001$, Fig. 3A, see Table 1 for pre-adjusted R^2
403 values). In contrast, the effect of neighborhood status was initially not statistically
404 significant, but increased in size over the three time points (Harvest 1: Adj. $R^2 = -$
405 $0.001, p = 0.242$; Harvest 2: Adj. $R^2 = 0.017, p < 0.01$; Harvest 3: Adj. $R^2 = 0.032, p <$
406 0.001 , Table 1, Fig 3A). Block effects tended to decrease throughout the experiment
407 (Harvest 1: Adj. $R^2 = 0.011, p = 0.021$, Harvest 2: Adj. $R^2 = 0.009, p = 0.028$, Harvest 3:
408 Adj. $R^2 = 0.009, p = 0.07$, Fig. 3A). No significant interactions among variables were
409 observed at individual harvests.

410

411

412

413 **Table 1:** Results of a PERMANOVA on phyllosphere bacterial community Bray
414 Curtis dissimilarities for harvest time points 1, 2, and 3 in the field trial. Variables
415 tested include: host species identity (tomato, pepper, or bean), neighborhood
416 (tomato, pepper, bean, no neighbor), and experimental block (1 through 6). R²
417 values represent the fit of the model and adjusted R² values have been adjusted
418 based on sample numbers of degrees of freedom to render values comparable
419 across harvest time points.

Harvest 1						
	df	Pseudo-f	R2	Adj. R2	P	Significance
Host Species	2	4.49	0.125	0.096	0.001	***
Neighborhood	3	1.11	0.046	-0.001	0.242	NS
Block	5	1.28	0.089	0.011	0.021	*

Harvest 2						
	df	Pseudo-f	R2	Adj. R2	P	Significance
Host Species	2	3.22	0.1	0.068	0.001	***
Neighborhood	3	1.46	0.069	0.017	0.001	***
Block	5	1.23	0.096	0.009	0.028	*

Harvest 3						
	df	Pseudo-f	R2	Adj. R2	P	Significance
Host Species	2	1.81	0.064	0.027	0.001	***
Neighborhood	3	1.66	0.088	0.032	0.001	***
Block	5	1.18	0.104	0.009	0.07	.

420
421 By excluding the 'no neighbor' controls, we then tested for an effect of
422 neighbor identity by treating neighbor type (i.e. tomato, bean, or pepper) as an
423 independent variable. On this subset of plants we see similar trends through time:
424 host identity effects diminish (Harvest 1: Adj. R² = 0.114, p < 0.001; Harvest 2: Adj.
425 R² = 0.050, p < 0.001; Harvest 3: Adj. R² = 0.024, p = 0.007) and neighbor identity
426 effects increase (Harvest 1: Adj. R² = -0.003, p = 0.325; Harvest 2: Adj. R² = 0.010, p =
427 0.031; Harvest 3: Adj. R² = 0.018, p = 0.013). In this case a significant block effect

428 was only observed at time point 3 (Adj. $R^2 = 0.032$, $p = 0.013$), suggesting the block
429 effect trend described above is influenced by the no neighbor controls.

430 We further asked whether a closer approximation of bacterial taxon absolute
431 abundances might impact our conclusions. The relative abundance of each taxon in
432 each sample was multiplied by the total 16S rRNA copies per 10 μ l DNA (the same
433 volume used for sequencing library preparation) to yield an estimate of each taxon's
434 absolute abundance (quasi-absolute abundance). In this new dataset, sample
435 dissimilarities were modeled using the same PERMANOVA procedure as above. This
436 generated the same qualitative findings as the relative abundance data, but with
437 slightly stronger effect sizes for influence of neighborhood plant species (Supp.
438 Table 1). One new result revealed by this approach, however, was a host by
439 neighborhood interaction, which increased from harvest 2 (Adj. $R^2 = 0.008$ $p =$
440 0.002) to harvest 3 (Adj. $R^2 = 0.024$, $p = 0.003$, see Supp. Table 1 for pre-adjusted R^2
441 values). In other words, the effect of neighborhood depended on the host's species
442 identity, and this effect became stronger over time.

443 To further assess whether the three host plants species differed in their
444 susceptibility to neighborhood effects, we subset the data by plant species and
445 assessed the strength of neighborhood effects separately over the 3 time points.
446 Similar to the combined data, no plant species exhibited a detectable neighborhood
447 effect of microbiome composition at harvest 1. The tomato focal plants only
448 exhibited a detectable neighborhood effect at harvest 3 ($R^2_{adj} = 0.086$, $P = 0.009$, Fig.
449 3B), and no block effects at any harvest. For the pepper focal plants, there was only a
450 neighborhood effect at harvest 2 ($R^2_{adj} = 0.108$, $P = 0.013$, Fig. 3B). Lastly for the

451 bean focal plants, a neighborhood effect was only detected at harvest 3 ($R^2_{adj} =$
452 0.069, $P = 0.012$, Fig. 3B). No significant block effects were observed for pepper or
453 bean at any harvest.

454

455 *Neighbor status and identity diminish effects of host species identity on phyllosphere*
456 *bacterial communities*

457 To test the hypothesis that focal plants with experimental neighbors would
458 experience higher rates of inter-host dispersal than focal plants without nearby
459 neighbors, we performed model selection on hosts that were distinguished by their
460 neighbor status to identify the most explanatory host variables. We repeated this
461 procedure for spatial variables generated by principle coordinates of neighborhood
462 matrix analysis and then performed variation partitioning to partition out the
463 unique contribution of host factors explaining diversity. We find supporting
464 evidence for our hypothesis in harvests 2 and 3, but not harvest 1 (Fig. 4), indicating
465 a dependency on the age structure of neighbors. For harvests 2 and 3, the unique
466 contribution of host identity was stronger for the plants having no neighbors than
467 the plants having either tomato, pepper, or bean as neighbors. In fact, at harvest 3
468 focal plants that were surrounded by bean or tomato neighbors had no detectable
469 effect of host species identity after separating out the effect of space. Interestingly at
470 harvest 1, focal plants with neighbors had higher effects of host species identity than
471 the no neighbor controls, and this was especially the case for plants with tomato or
472 bean neighbors. Interestingly in the focal plants surrounded by peppers, host
473 species effects followed a hump-shaped relationship (increasing at first, then

474 decreasing), rather than the monotonic decrease observed for tomato- or bean-
475 surrounded plants. It thus appears that host-mediated selection of epiphytic
476 bacterial communities becomes subservient to the effect of immigrant inoculum
477 from neighboring plants as the biomass of neighboring plants increases.

478 Additionally, in certain cases, host identity combined with host height,
479 weight, or both height and weight in a way that increased explanatory power of host
480 factors. While in several instances this boosted the explanatory power of host
481 factors (e.g. at harvest 1), our qualitative conclusions remain the same (Supp. Fig. 1).
482 In other words, the effects of host identity are weaker for all plants that have
483 neighbors at both harvests 2 and 3.

484

485

486 *Phylogenetic clustering and neutral model fit vary by host and through time*

487 To better understand the predominance of deterministic processes in
488 shaping phyllosphere community membership and determine whether the three
489 plant species might be influenced by different assembly processes, we tested for
490 patterns of phylogenetic clustering. Evidence of phylogenetic clustering within a
491 host species would suggest that phylogenetically-conserved traits are being selected
492 for in a host-specific way^{19,20}. We tested this idea using the standardized effect size
493 (SES) of the mean pairwise distance (MPD) of bacterial ASVs in each sample. MPD
494 SES was significantly influenced by host species identity ($F_{2,175} = 219.86, p < 0.001$),
495 harvest time point ($F_{2,175} = 12.33, p < 0.001$), a host by harvest interaction ($F_{4,175} =$
496 $43.84, p < 0.001$), and neighborhood ($F_{3,175} = 3.38, p < 0.05$, Fig. 5A). Tomato- and

497 pepper-associated communities were more phylogenetically clustered than would
498 be expected by chance (as indicated by negative SES values), and this was the case
499 for all three time points for both plants. In contrast, bean-associated communities
500 showed evidence of phylogenetic overdispersion (as indicated by highly positive
501 SES values). Bean SES values tended to decrease (i.e. tend towards clustering) over
502 time, but were highly variable. One exception was at harvest 3, where beans with no
503 neighbors had high variability in MPD SES, beans with conspecific neighbors were
504 phylogenetically clustered, and beans with tomato neighbors were overdispersed
505 (Tukey's HSD conspecific neighbor vs tomato neighbor $p = 0.02$).

506 We next asked how well the occupancy-abundance relationships within each
507 host species could be fit by a neutral model, whereby passive dispersal and
508 ecological drift are the primary drivers of establishment, and then asked whether
509 the fit to that model changed over time. Of the three hosts, bean-associated
510 communities had the highest goodness-of-fit values followed by tomato-associated
511 communities, suggesting differences among hosts in the role of neutral processes in
512 shaping community structure (Fig 5B). Both bean and tomato hosts showed a
513 decline in the fit of a neutral model from harvest 1 to 2 (Bean: harvest 1 $R^2=0.483$,
514 harvest 2 $R^2=0.074$; Tomato: harvest 1 $R^2=0.214$, harvest 2 $R^2=0.052$), and the
515 neutral model failed to fit either set of plants for harvest 3 (as indicated by a
516 negative goodness-of-fit). At all three time points, pepper hosts were never fit by a
517 neutral model (indicated by negative goodness-of-fit values).

518

519 *Experimental greenhouse transplantation of field study-derived inocula replicates host*
520 *filtering and reveals effects of inoculum source*

521 The subsequent greenhouse study allowed us to more closely examine the
522 effects of inter-host dispersal of bacterial taxa, as phyllosphere bacterial
523 communities that were recovered from the field were transplanted onto either the
524 same plant species from which they were collected, or onto the plant species that
525 had previously surrounded the source plant. From the 105 total such reciprocal
526 inoculations, 103 samples yielded sufficient high quality sequences for analysis. The
527 resultant dataset contained 2,640,588 observations of 1734 ASVs, 1379 of which
528 had greater than 10 observations, and 621 of which had over 100 observations.

529 We observed a linear relationship between the ASV-level richness of the
530 sample from which the inoculum was derived and the number of inoculum ASVs
531 that were detectable in the greenhouse samples ($R^2_{adj} = 0.105$, $p = 0.004$, Supp. Fig
532 3). The number of overlapping ASVs between the inoculum and the experimental
533 plants was significantly related to the host species identity ($F_{2,88} = 8.503$, $p < 0.001$),
534 the previous host species from which the inoculum was sampled ($F_{2,88} = 3.871$, p
535 = 0.028), and interactions between the host and previous host ($F_{4,88} = 2.598$,
536 $p=0.049$) as well as between the host and previous neighbor ($F_{4,88} = 2.968$ $p=0.03$).
537 Similar to the field study, phyllosphere communities were dominated by the phyla
538 Proteobacteria and Firmicutes. The most abundant bacterial orders were the
539 Bacillales, Burkholderiales, Enterobacterales, and Pseudomonadales (Supp. Fig. 2).
540 The bacterial community structure on treated plants differed significantly from that

541 of control plants to which only sterile buffer had been applied (PERMANOVA $R^2 =$
542 $0.0156, p = 0.048$).

543 We used the heat-killed inoculum as a control to gain insights into the level of
544 host selection and subsequent inoculum establishment across our experimental
545 plants. To do so, we asked how strongly phyllosphere microbiomes were
546 differentiated by host species identity. Plants that received a heat-killed inoculum
547 were less differentiable than plants that received a live inoculum (PERMANOVA Adj.
548 $R^2 = 0.100, p = 0.04$ versus Adj. $R^2 = 0.103, p < 0.001$, respectively). The plants that
549 received the sterile buffer as a control were even less differentiable by host species
550 identity (Adj. $R^2 = 0.056, p = 0.07$). Interestingly, if we subset samples based on
551 whether experimental plants received an inoculum from heterospecific (different
552 species) or conspecific (same species) hosts, we see that heterospecific transplants
553 resulted in more differentiable hosts than conspecific transplants (Adj. $R^2 = 0.123, p$
554 < 0.001 vs Adj. $R^2 = 0.109, p < 0.001$, respectively). It thus appears that the
555 treatment plants receiving live cells more efficiently filtered communities, driving
556 differentiation of host species, and that heterospecific inoculum sources further
557 bolstered host differentiation.

558 Indicator taxon analysis allowed us to examine the taxa enriched on each of
559 the three host species in the field trial (at harvest 2) and the greenhouse trial. Of the
560 34 taxa that distinguished pepper plants in the field, 6 were found in the greenhouse
561 dataset (Supp. Table 2). The collective relative abundance of these taxa was
562 significantly higher on pepper plants in the greenhouse than on tomatoes (Tukey's
563 HSD $p < 0.001$) or beans (Tukey's HSD $p < 0.001$). Of the 65 taxa that distinguished

564 tomato hosts in the field, 25 were detected in the greenhouse dataset (Supp. Table
565 2). The collective relative abundance of these taxa was significantly higher on
566 tomato and pepper plants relative to beans (Tukey's HSD $p < 0.05$ and $p < 0.01$,
567 respectively). Of the 300 taxa that distinguished bean, 27 were found in the
568 greenhouse (Supp. Table 2), but their collective relative abundance was not
569 significantly different among hosts ($p > 0.05$).

570

571 *The effect of donor plant biomass on recipient plant phyllosphere richness in the*
572 *greenhouse depends on the origin of field inoculum*

573 Within-host ASV-level richness of treatment plants ranged from 24 to 231
574 ASVs and varied significantly by host species identity ($F_{2,74} = 12.41, p < 0.001$), an
575 interaction between host and previous host identities ($F_{4,74} = 3.50, p < 0.05$), and
576 experimental block ($F_{4,74} = 2.43, p = 0.058$). Of the three plant species, peppers
577 harbored significantly higher richness than tomatoes or beans ($p < 0.001$), which
578 were indistinguishable from each other ($p > 0.05$). When the inoculation was a
579 conspecific transfer (i.e. moving between two plants of the same species), a negative
580 but weak relationship was observed between donor plant biomass and recipient
581 plant richness (Adj. $R^2 = 0.09, p < 0.05$, Fig. 6A). However, when the inoculation was
582 a heterospecific transfer (i.e. between two different plant species), a positive and
583 stronger relationship was observed between donor plant biomass and recipient
584 plant richness (Adj. $R^2 = 0.21, p < 0.01$, Fig. 6B). No significant differences in richness
585 were observed between conspecific transplants and heterospecific transplants ($p >$
586 0.05).

587

588 *Experimental transplantation of phyllosphere communities reveals an influence of*

589 *current and previous host identity, as well as donor plant neighbor*

590 PERMANOVA on Bray Curtis dissimilarities revealed that host species

591 identity, previous host identity (i.e. the species from which inoculum was derived),

592 and experimental block all significantly contributed to phyllosphere community

593 structure differences among experimental greenhouse plants (Host species $R^2 =$

594 0.127 , $p < 0.001$, Previous host species $R^2 = 0.0468$, $p < 0.001$, Block $R^2 = 0.156$, p

595 < 0.001 , Table 2). We also observed an effect of donor plant biomass on recipient

596 plant phyllosphere community structure ($R^2 = 0.018$, $p = 0.05$, Table 2). Moreover, if

597 we interrogate the dataset by plant species, we see a “grandparent effect” in the

598 phyllosphere community structure of greenhouse-grown pepper plants. That is,

599 pepper phyllosphere communities were most strongly shaped by the previous

600 host’s neighbor ($R^2 = 0.194$, $p < 0.001$), i.e. the plant species that previously

601 surrounded the donor plant. The previous host’s species identity was also

602 significantly associated with pepper plant phyllosphere community structure, albeit

603 to a lesser extent ($R^2 = 0.107$, $p = 0.061$). In contrast to what was observed on

604 pepper, neither previous neighbor effects nor previous host effects were observed

605 for tomato or bean subsets.

606

607

608

609 **Table 2:** Results of a PERMANOVA on phyllosphere bacterial community Bray
610 Curtis dissimilarities for the greenhouse experiment. Variables tested include: host
611 species identity (tomato, pepper, or bean), previous host species identity (tomato,
612 pepper, bean), previous neighbor (tomato, pepper, bean), previous host biomass (g),
613 and experimental block (1 through 5). R² values represent the fit of the model.

Greenhouse Trial					
	df	Pseudo-f	R2	P	Significance
Host Species	2	6.21	0.127	0.001	***
Previous Host Species	2	2.28	0.046	0.001	***
Previous Neighbor Species	2	0.98	0.02	0.478	NS
Previous Host Biomass	1	1.72	0.018	0.05	*
Block	4	3.92	0.156	0.001	***

614

615

616 **Discussion**

617 Plant-microbe associations form in part through host filtering of microbiota
618 that arrive via dispersal ⁶⁴. Our study experimentally manipulated neighbor
619 presence, identity, and age in order to understand how these factors influence host
620 filtering of phyllosphere communities. Over the course of the experiment, we found
621 that host species identity effects on focal plant microbiomes decreased, while the
622 effects of neighborhood increased (Fig 3A). This finding builds on past studies
623 showing that host species- or genotype-level differences in microbiota change over
624 the growing season (e.g. Wagner et al. 2016; Chaparro, Badri, and Vivanco 2014;
625 İnceoğlu et al. 2011). However, an important distinction is that we experimentally
626 held host developmental stage constant throughout the experiment, thereby
627 demonstrating that changes in host species identity effects over time are not simply

628 due to host ontogeny, but hinge on characteristics of the neighboring plant
629 community such as neighbor identity and biomass.

630 The increasing strength of neighborhood effects throughout the field
631 experiment suggests that as neighboring plants grow and enrich for host species-
632 specific microbes, they become larger sources of microbial propagules to their
633 surrounding neighborhood, and thus alter the outcome of host filtering through
634 compositional changes to the local species pool. Two other lines of evidence from
635 our study further underscore the importance of neighbor identity for phyllosphere
636 community assembly. First, when we directly control the directionality of dispersal
637 in our greenhouse microbial transplant study, we see that the source of inoculum
638 (i.e. the species identity of the donor plant) significantly contributed to the
639 microbiome composition of recipient plants (Table 2). Second, the field experiment
640 uncovered strong differences in host species identity effects depending on the
641 identity of neighbors (Fig. 4). For instance at harvests 2 and 3, hosts that were
642 surrounded by tomato or bean neighbors were substantially less differentiable in
643 their phyllosphere community structure than plants surrounded by pepper or that
644 had no neighbors. This suggests firstly that having a neighbor impacts the
645 differentiation of hosts, but crucially that the outcome of neighborhood effects
646 depends on neighbor identity. Interestingly, it has also been reported that inter-host
647 dispersal among zebrafish greatly diminished genotype-level microbiome
648 differences ⁴². Our results not only reinforce this concept in plants, but suggest that
649 this effect depends on neighbor identity.

650 One of the key differences among experimental neighborhoods was plant
651 biomass, which varied by species (Fig. 1C). This is likely an important driver of the
652 neighborhood effects observed in this study. Larger biomass plants could harbor
653 higher abundances of microorganisms by virtue of having more microbial habitat,
654 thereby increasing the load of propagules dispersing onto focal plants. While we
655 chose not to sample the epiphytic communities of the neighborhood plants in order
656 to leave them undisturbed for the duration of the experiment, we observed a
657 positive correlation between focal host biomass and epiphytic bacterial abundance.
658 Thus, larger biomass neighborhood could have diminished the strength of host
659 filtering through mass effects, i.e. rescuing via dispersal the taxa that went locally
660 extinct due to host selection. We see evidence for the importance of neighbor
661 biomass in several results. First, as the higher-biomass tomato and bean
662 neighborhoods grew, we see that focal plant species identity effects became weaker,
663 so much so that by harvest 3 hosts were indistinguishable by their species identity if
664 they were surrounded by tomato or bean (Fig. 4). Interestingly, at harvest 1, relative
665 to no neighbor controls, focal hosts surrounded by tomatoes or beans exhibited
666 higher species identity effects, suggesting that at an early stage, neighbor plants may
667 bolster host filtering by providing higher abundance and/or diversity of propagules.
668 Moreover, the effects of the smaller pepper neighborhoods followed a similar but
669 lagged trend, whereby host differentiation was highest at harvest time point 2,
670 followed by more diminished host species effects at harvest 3. This could be driven
671 by the observed slower growth of peppers relative to beans or tomatoes. In the
672 greenhouse study, we see that the biomass of the donor plants significantly

673 contributed to variation in both community composition (Table 2) and diversity
674 (Fig. 6) of recipient plants. Here, the relationship between recipient plant
675 phyllosphere richness and donor plant biomass was negative and weak if the
676 transplant was conspecific (same species) but stronger and positive if it was
677 heterospecific (between different species). Together these results underscore that
678 biomass is not only an important component of neighborhood effects, but that such
679 influences of biomass may depend at least partly on the identity of the neighbors.

680 Our study also makes clear that differences in the strength of host filtering
681 across species may impact susceptibility to neighborhood effects. We found that
682 plant species exhibited neighborhood effects differently through time (Fig. 3B).
683 Together with the observation of a host-by-neighborhood interaction effect, these
684 results suggest that the relative impact of local neighborhood differs among focal
685 host species, perhaps due to differences in the degree to which dispersal versus host
686 filtering influence phyllosphere assembly. For instance, host-specific carrying
687 capacities could be driving the observed differences in bacterial abundances across
688 species (Fig. 2A). This could mean that species with lower abundances of bacteria
689 (e.g. peppers) are more invasible, and hence taxa that are selected for may more
690 quickly become outnumbered by immigrating taxa. This may explain why pepper
691 plants exhibited neighborhood effects at harvest 2, while tomato and beans did not
692 do so until harvest 3. Several lines of evidence also suggest that the plants may differ
693 in their selective abilities. For instance, tomato- and pepper-associated communities
694 consistently exhibited phylogenetic clustering (Fig. 5A), indicating that closely
695 related taxa were often observed to co-occur on a single plant, perhaps due to host

696 selection of shared traits. In contrast, bean microbiomes tended to be
697 phylogenetically overdispersed, and hence exhibited much less clustering than one
698 would expect by chance. Overdispersion could indicate that traits under selection
699 are not phylogenetically conserved, that competition is strong (e.g. between
700 ecologically similar taxa), or that selection is relatively weak¹⁹. That we also see a
701 strong fit of bean microbiomes to neutral models at harvests 1 and 2 (Fig. 5B)
702 suggests that the bean phyllosphere may be less selective relative to the tomato and
703 pepper phyllosphere, and therefore more susceptible to dispersal effects.

704 Interestingly in the greenhouse experiment, only pepper plant microbiomes
705 exhibited a “grandparent effect” of inoculum, i.e. an effect of the donor plants’
706 previous neighbor. This result demonstrates that for certain species, microbiome
707 composition not only reflects its contemporary host and its source history, but also
708 its previous dispersal history. This is analogous to a child inheriting a parent’s
709 microbiome that carries with it traces of the parent’s former house, pet, or domestic
710 partner. Results from the field trial may help shed light on why only pepper
711 microbiomes contained detectable traces of dispersal history. The aforementioned
712 patterns of phylogenetic clustering in pepper plant communities and the
713 observation that neutral models failed to fit pepper plants (Fig. 5A,B) together
714 suggest that the pepper phyllosphere may impose particularly strong selection on
715 microbial communities. This strong filtering ability may not only select against taxa,
716 but it could act to amplify taxa that previously dispersed from pepper neighbors,
717 thus giving rise to effects of previous neighbor. In other words, selective plants such

718 as pepper may bolster pepper-associated microorganisms upon arrival, even if they
719 have become rare through multiple dispersal events.

720 One major implication of our work is that it highlights the potential
721 importance of local host frequencies in recruiting microbiota. At harvest 3, bean
722 phyllosphere communities exhibited phylogenetic clustering only when the plants
723 were surrounded by conspecific (same species) neighbors. As phylogenetic
724 clustering could be interpreted as host filtering for phylogenetically-conserved
725 traits, this result suggests that for beans in particular, the frequency of conspecifics
726 in the plant metacommunity may be an important determinant of host filtering
727 efficacy. Interestingly, for pepper- or tomato-associated communities, the con- or
728 hetero-specific status of neighborhoods had little influence over phylogenetic
729 clustering, suggesting that this effect may depend on the strength of host filters.

730 Similar findings have recently been reported for *Acer saccharum* trees ³⁸, where the
731 abundance of conspecific trees in the local metacommunity was positively
732 correlated with the degree of host specialization in the phyllosphere, and
733 importantly, this was not the case for all tree species surveyed. Moreover in cacao
734 trees, leaf litter of healthy conspecific hosts was shown to protect against pathogen
735 damage ⁶⁷. While we did not test the fitness effects of host filtering for specialized
736 microbial taxa, our results alongside several others may challenge the conspecific
737 negative density-dependence (i.e. Janzen-Connell) hypothesis that posits that higher
738 local densities of conspecifics may be disadvantageous due to the possibility of
739 shared pests or pathogens ^{29,30}. While there remain many examples of conspecific
740 negative density-dependence ⁶⁸, particularly in the tropics, meta-analyses seeking

741 general trends have generated mixed results^{69,70}. Our work emphasizes that
742 recruitment of specialized taxa from nearby conspecific hosts could outweigh the
743 negative effects of pest pressure in certain contexts, or for certain host species.

744 Overall, our work makes clear that local neighborhood identity and biomass
745 are key components that shape assembly of the phyllosphere microbiome. In both
746 the field trial and greenhouse experiment, we find that although plants are able to
747 select upon their microbial communities, the outcome of this selection is shaped by
748 both neighbor identity and local biomass. Moving forward, this work has opened a
749 number of critical questions regarding how neighborhood effects on the plant
750 microbiome might shape plant health, fitness, and – in agricultural settings
751 especially – yield. The work also raises questions about how invasive plant species
752 might alter microbial dispersal within their communities, and potentially negatively
753 feedback on native plant species' fitness by reducing their ability to filter the
754 optimal microbiome. In sum, our work demonstrates that host filtering and local
755 dispersal are intimately intertwined and represent crucial considerations for the
756 study of host-microbe associations.

757

758 ***Acknowledgements***

759 We acknowledge that this work was conducted on the territory of xučyun
760 (Huichin), the ancestral and unceded land of the Chochenyo speaking Ohlone
761 people; therefore this work would not have been possible were it not for their past
762 land stewardship. We thank the staff of UC-Berkeley's Oxford Tract Greenhouse for
763 their assistance in maintaining the experiment. Thank you to R. Koutsoukis, T. Caro,

764 X. Zhang, R. Debray, C. Hernandez, and E. Mehlferber for assistance with initial
765 planting, and to the Koskella lab for invaluable feedback throughout.

766

767

768

769

770 **References**

771 1 Lindow SE, Brandl MT. Microbiology of the Phyllosphere. *Appl Environ
772 Microbiol* 2003; **69**: 1875 LP-1883.

773 2 Morella NM, Zhang X, Koskella B. Tomato Seed-Associated Bacteria Confer
774 Protection of Seedlings Against Foliar Disease Caused by *Pseudomonas
775 syringae*. *Phytobiomes J* 2019; **3**: 177–190.

776 3 Innerebner G, Knief C, Vorholt JA. Protection of *Arabidopsis thaliana* against
777 leaf-pathogenic *Pseudomonas syringae* by *Sphingomonas* strains in a
778 controlled model system. *Appl Environ Microbiol* 2011; **77**: 3202–3210.

779 4 Fu S-F, Sun P-F, Lu H-Y, Wei J-Y, Xiao H-S, Fang W-T *et al*. Plant growth-
780 promoting traits of yeasts isolated from the phyllosphere and rhizosphere of
781 *Drosera spatulata* Lab. *Fungal Biol* 2016; **120**: 433–448.

782 5 Laforest-Lapointe I, Paquette A, Messier C, Kembel SW. Leaf bacterial
783 diversity mediates plant diversity and ecosystem function relationships.
784 *Nature* 2017; **546**: 145–147.

785 6 Lindow SE, Leveau JHJ. Phyllosphere microbiology. *Curr Opin Biotechnol* 2002;
786 **13**: 238–243.

787 7 Fürnkranz M, Wanek W, Richter A, Abell G, Rasche F, Sessitsch A. Nitrogen
788 fixation by phyllosphere bacteria associated with higher plants and their
789 colonizing epiphytes of a tropical lowland rainforest of Costa Rica. *ISME J*
790 2008; **2**: 561–570.

791 8 Ottesen AR, Gorham S, Reed E, Newell MJ, Ramachandran P, Canida T *et al.*
792 Using a Control to Better Understand Phyllosphere Microbiota. *PLoS One*
793 2016; **11**: e0163482.

794 9 Jones JDG, Dangl JL. The plant immune system. *Nature* 2006; **444**: 323–329.

795 10 Bodenhausen N, Bortfeld-miller M, Ackermann M, Vorholt JA. A Synthetic
796 Community Approach Reveals Plant Genotypes Affecting the Phyllosphere
797 Microbiota. *PLOS Biol* 2014; **10**. doi:10.1371/journal.pgen.1004283.

798 11 Horton MW, Bodenhausen N, Beilsmith K, Meng D, Muegge BD, Subramanian S
799 *et al.* Genome-wide association study of *Arabidopsis thaliana* leaf microbial
800 community. *Nat Commun* 2014; **5**: 5320.

801 12 Hacquard S, Spaepen S, Garrido-Oter R, Schulze-Lefert P. Interplay Between
802 Innate Immunity and the Plant Microbiota. *Annu Rev Phytopathol* 2017; **55**:
803 565–589.

804 13 Zhalnina K, Louie KB, Hao Z, Mansoori N, Nunes U, Shi S *et al.* Dynamic root
805 exudate chemistry and substrate preferences drive patterns in rhizosphere
806 microbial community assembly. *Nat Microbiol* 2018. doi:10.1038/s41564-
807 018-0129-3.

808 14 Humphrey PT, Whiteman NK. Insect herbivory reshapes a native leaf
809 microbiome. *Nat Ecol Evol* 2020; **4**: 221–229.

810 15 Yadav RKP, Karamanolis K, Vokou D. Bacterial Colonization of the Phyllosphere
811 of Mediterranean Perennial Species as Influenced by Leaf Structural and
812 Chemical Features. *Microb Ecol* 2005; **50**: 185–196.

813 16 Morello NM, Weng FCH, Joubert PM, Metcalf CJ, Lindow S, Koskella B.
814 Successive passaging of a plant-associated microbiome reveals robust habitat
815 and host genotype-dependent selection. *Proc Natl Acad Sci U S A* 2020; **117**:
816 1148–1159.

817 17 Wagner MR, Busby PE, Balint-Kurti P. Analysis of leaf microbiome
818 composition of near-isogenic maize lines differing in broad-spectrum disease
819 resistance. *New Phytol* 2019; **225**: 2152–2165.

820 18 Wagner MR, Lundberg DS, Del Rio TG, Tringe SG, Dangl JL, Mitchell-Olds T.
821 Host genotype and age shape the leaf and root microbiomes of a wild
822 perennial plant. *Nat Commun* 2016; **7**: 1–15.

823 19 Horner-Devine MC, Bohannan BJM. Phylogenetic clustering and
824 overdispersion in bacterial communities. *Ecology* 2006; **87**: S100-8.

825 20 Kembel SW, O'Connor TK, Arnold HK, Hubbell SP, Wright SJ, Green JL.
826 Relationships between phyllosphere bacterial communities and plant
827 functional traits in a neotropical forest. *Proc Natl Acad Sci* 2014; : 1–6.

828 21 Burns AR, Stephens WZ, Stagaman K, Wong S, Rawls JF, Guillemin K *et al.*
829 Contribution of neutral processes to the assembly of gut microbial
830 communities in the zebrafish over host development. *ISME J* 2016; **10**: 655–
831 664.

832 22 Sloan WT, Woodcock S, Lunn M, Head IM, Curtis TP. Modeling Taxa-

833 Abundance Distributions in Microbial Communities using Environmental
834 Sequence Data. *Microb Ecol* 2007; **53**: 443–455.

835 23 Laforest-Lapointe I, Messier C, Kembel SW. Host species identity, site and time
836 drive temperate tree phyllosphere bacterial community structure. *Microbiome*
837 2016; : 1–10.

838 24 Schlaeppi K, Dombrowski N, Oter RG, Ver Loren van Themaat E, Schulze-
839 Lefert P. Quantitative divergence of the bacterial root microbiota in
840 *Arabidopsis thaliana* relatives. *Proc Natl Acad Sci* 2014; **111**: 585 LP-592.

841 25 Gallart M, Adair KL, Love J, Meason DF, Clinton PW, Xue J *et al.* Host Genotype
842 and Nitrogen Form Shape the Root Microbiome of *Pinus radiata*. *Microb Ecol*
843 2018; **75**: 419–433.

844 26 Hambäck PA, Inouye BD, Andersson P, Underwood N. Effects of plant
845 neighborhoods on plant–herbivore interactions: resource dilution and
846 associational effects. *Ecology* 2014; **95**: 1370–1383.

847 27 Underwood N, Inouye BD, Hambäck PA. A Conceptual Framework for
848 Associational Effects: When Do Neighbors Matter and How Would We Know?
849 *Q Rev Biol* 2014; **89**: 1–19.

850 28 Barbosa P, Hines J, Kaplan I, Martinson H, Szczepaniec A, Szendrei Z.
851 Associational Resistance and Associational Susceptibility: Having Right or
852 Wrong Neighbors. *Annu Rev Ecol Evol Syst* 2009; **40**: 1–20.

853 29 Janzen DH. Herbivores and the Number of Tree Species in Tropical Forests.
854 *Am Nat* 1970; **104**: 501–528.

855 30 Connell JH. On the role of natural enemies in preventing competitive exclusion

856 in some marine animals and in rain forest trees. In: Den Boer PJ, Gradwell G
857 (eds). *Dynamics of populations*. PUDOC, 1971, pp 298–312.

858 31 Mangan SA, Schnitzer SA, Herre EA, Mack KML, Valencia MC, Sanchez EI *et al.*
859 Negative plant–soil feedback predicts tree-species relative abundance in a
860 tropical forest. *Nature* 2010; **466**: 752–755.

861 32 Miller EC, Perron GG, Collins CD. Plant-driven changes in soil microbial
862 communities influence seed germination through negative feedbacks. *Ecol*
863 *Evol* 2019; **0**: 1–14.

864 33 Antonovics J, Ellstrand NC. Experimental studies of the evolutionary
865 significance of sexual reproduction. I. A test of the frequency-dependent
866 selection hypothesis. *Evolution (N Y)* 1984; **38**: 103–115.

867 34 Ellstrand NC, Antonovics J. Experimental studies of the evolutionary
868 significance of sexual reproduction II. A test of the density-dependent
869 selection hypothesis. *Evolution (N Y)* 1985; **39**: 657–666.

870 35 Naeem S, Tjossem SF, Byers D, Bristow C, Li S. Plant neighborhood diversity
871 and production. *Ecoscience* 1999; **6**: 355–365.

872 36 Worrich A, Musat N. Associational effects in the microbial neighborhood. *ISME*
873 *J* 2019; : 2143–2149.

874 37 Copeland JK, Yuan L, Layeghifard M, Wang PW, Guttman DS. Seasonal
875 Community Succession of the Phyllosphere Microbiome. *Mol Plant-Microbe*
876 *Interact* 2015; **28**: 274–285.

877 38 Lajoie G, Kembel SW. Host neighborhood shapes bacterial community
878 assembly and specialization on tree species across a latitudinal gradient. *Ecol*

879 39 *Monogr 2021; 0: 1–18.*

880 39 Lymeropoulou D, Adams R, Lindow SE, Löffler F. Contribution of Vegetation
881 to the Microbial Composition of Nearby Outdoor Air. *Appl Environ Microbiol*
882 2016; **82**: 3822–3833.

883 40 Leibold MA, Holyoak M, Mouquet N, Amarasekare P, Chase JM, Hoopes MF *et al.* The metacommunity concept: a framework for multi-scale community
884 ecology. *Ecol Lett* 2004; **7**: 601–613.

885 41 Fodelianakis S, Lorz A, Valenzuela-cuevas A, Barozzi A, Booth JM, Daffonchio
886 D. Dispersal homogenizes communities via immigration even at low rates in a
887 simplified synthetic bacterial metacommunity. *Nat Commun* 2019; **10**: 1–12.

888 42 Burns AR, Miller E, Agarwal M, Rolig AS, Milligan-Myhre K, Seredick S *et al.*
889 Interhost dispersal alters microbiome assembly and can overwhelm host
890 innate immunity in an experimental zebrafish model. *Proc Natl Acad Sci* 2017;
891 **114**. doi:10.1073/pnas.1702511114.

892 43 Chelius MK, Triplett EW. The Diversity of Archaea and Bacteria in Association
893 with the Roots of Zea mays L. *Microb Ecol* 2001; **41**: 252–263.

894 44 Bodenhausen N, Horton MW, Bergelson J. Bacterial Communities Associated
895 with the Leaves and the Roots of Arabidopsis thaliana. *PLoS One* 2013; **8**:
896 e56329.

897 45 Lundberg DS, Yourstone S, Mieczkowski P, Jones CD, Dangl JL. Practical
898 innovations for high-throughput amplicon sequencing. *Nat Methods* 2013; **10**:
899 999–1002.

900 46 Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP.

902 46 DADA2: High-resolution sample inference from Illumina amplicon data. *Nat Methods* 2016; **13**: 581.

903 47 R Core Team. R: A language and environment for statistical computing. 2020.<http://cran.r-project.org>.

904 48 Morgan M, Anders S, Lawrence M, Aboyoun P, Pagès H, Gentleman R. ShortRead: a bioconductor package for input, quality assessment and exploration of high-throughput sequence data. *Bioinformatics* 2009; **25**: 2607–2608.

905 49 Pagès H, Aboyoun P, Gentleman R, DebRoy S. Biostrings: Efficient manipulation of biological strings. 2020.

906 50 McMurdie P, Holmes S. phyloseq: An R Package for Reproducible Interactive Analysis and Graphics of Microbiome Census Data. *PLoS One* 2013; **8(4)**.<https://doi.org/10.1371/journal.pone.0061217> tle.

907 51 Wang Q, Garrity GM, Tiedje JM, Cole JR. Naive Bayesian Classifier for Rapid Assignment of rRNA Sequences into the New Bacterial Taxonomy. *Appl Environ Microbiol* 2007; **73**: 5261–5267.

908 52 Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P *et al.* The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. *Nucleic Acids Res* 2013; **41**: D590–D596.

909 53 Davis NM, Proctor DM, Holmes SP, Relman DA, Callahan BJ. Simple statistical identification and removal of contaminant sequences in marker-gene and metagenomics data. *Microbiome* 2018; **6**: 226.

910 54 Morella NM, Gomez AL, Wang G, Leung MS, Koskella B. The impact of

925 bacteriophages on phyllosphere bacterial abundance and composition. *Mol*
926 *Ecol* 2018; **27**: 2025–2038.

927 55 Oksanen J, Blanchet FG, Roeland K, Legendre P, Minchin P, O'Hara RB *et al.*
928 vegan: Community ecology package. 2015. <http://cran.r-project.org>.

929 56 Anderson MJ. A new method for non-parametric multivariate analysis of
930 variance. *Austral Ecol* 2001; **26**: 32–46.

931 57 Cáceres M De, Legendre P. Associations between species and groups of sites:
932 indices and statistical inference. *Ecology* 2009; **90**: 3566–3574.

933 58 Ersts PJ. Geographic Distance Matrix Generator.
934 http://biodiversityinformatics.amnh.org/open_source/gdmg.

935 59 Sprockett D. reltools: Microbiome Amplicon Analysis and Visualization. 2021.

936 60 Sloan WT, Lunn M, Woodcock S, Head IM, Nee S, Curtis TP. Quantifying the
937 roles of immigration and chance in shaping prokaryote community structure.
938 *Environ Microbiol* 2006; **8**: 732–740.

939 61 Wright ES. Using DECIPHER v2.0 to Analyze Big Biological Sequence Data in R.
940 *R J* 2016; **8**: 352–359.

941 62 Schliep KP. phangorn: phylogenetic analysis in R. *Bioinformatics* 2011; **27**:
942 592–593.

943 63 Kembel SW, Cowan PD, Helmus MR, Cornwell WK, Morlon H, Ackerly DD *et al.*
944 Picante: R tools for integrating phylogenies and ecology. *Bioinformatics* 2010;
945 **26**: 1463–1464.

946 64 Koskella B. The phyllosphere. *Curr Biol* 2020; **30**: R1143–R1146.

947 65 Chaparro JM, Badri D V, Vivanco JM. Rhizosphere microbiome assemblage is

948 affected by plant development. *ISME J* 2014; **8**: 790–803.

949 66 İnceoğlu Ö, Al-Soud WA, Salles JF, Semenov A V, van Elsas JD. Comparative
950 Analysis of Bacterial Communities in a Potato Field as Determined by
951 Pyrosequencing. *PLoS One* 2011; **6**: e23321.

952 67 Christian N, Herre EA, Mejia LC, Clay K. Exposure to the leaf litter microbiome
953 of healthy adults protects seedlings from pathogen damage. *Proc R Soc B Biol
954 Sci* 2017; **284**: 20170641.

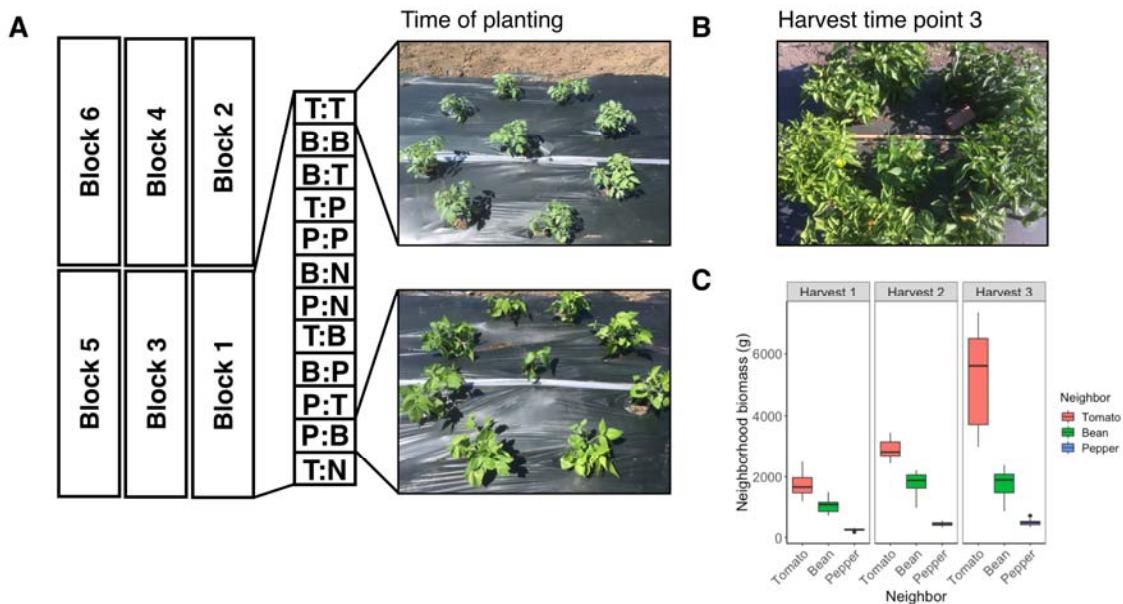
955 68 Leigh EG, Davidar P, Dick CW, Terborgh J, Puyravaud J-P, ter Steege H *et al.*
956 Why Do Some Tropical Forests Have So Many Species of Trees? *Biotropica*
957 2004; **36**: 447–473.

958 69 Hyatt LA, Rosenberg MS, Howard TG, Bole G, Fang W, Anastasia J *et al.* The
959 distance dependence prediction of the Janzen-Connell hypothesis: a meta-
960 analysis. *Oikos* 2003; **103**: 590–602.

961 70 Carson W, Anderson J, Leigh E, Schnitzer S. Challenges Associated With
962 Testing And Falsifying The Janzen_Connell Hypothesis: A Review and Critique.
963 In: Carson W, Schnitzer SA (eds). *Tropical Forest Community Ecology*. Wiley
964 Blackwell, 2008, pp 210–241.

965

966

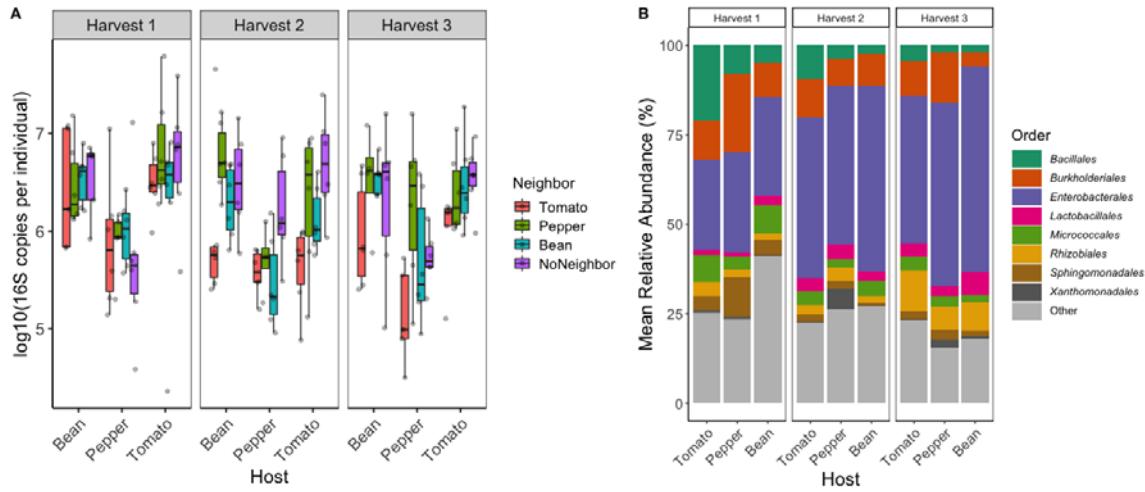

967

968

969

970

971 **Figure legends**



972

973 **Fig. 1:** Experimental design of the field trial. A) Experimental neighborhoods were
974 constructed by planting a focal plant in the center of a ring of neighbor plants, with
975 fully factorial combinations of focal and neighbor plant species. Each block
976 contained 12 comparisons, with focal and neighbor plant abbreviated (T=tomato,
977 P=pepper, B=bean, and N=no neighbor), respectively. Focal plants were harvested
978 and replaced each month, while the neighborhoods were left to continue growing.
979 Shown are a tomato focal plant with tomato neighbors (top) and a pepper focal
980 plant with bean neighbors (bottom) at the time of initial planting. B) A pepper
981 neighborhood surrounding a bean focal plant at the time of harvest number 3. C)
982 The biomass of neighborhood plants (g) increased to varying degrees with time for
983 each plant species by harvests 1, 2, and 3.

984

985

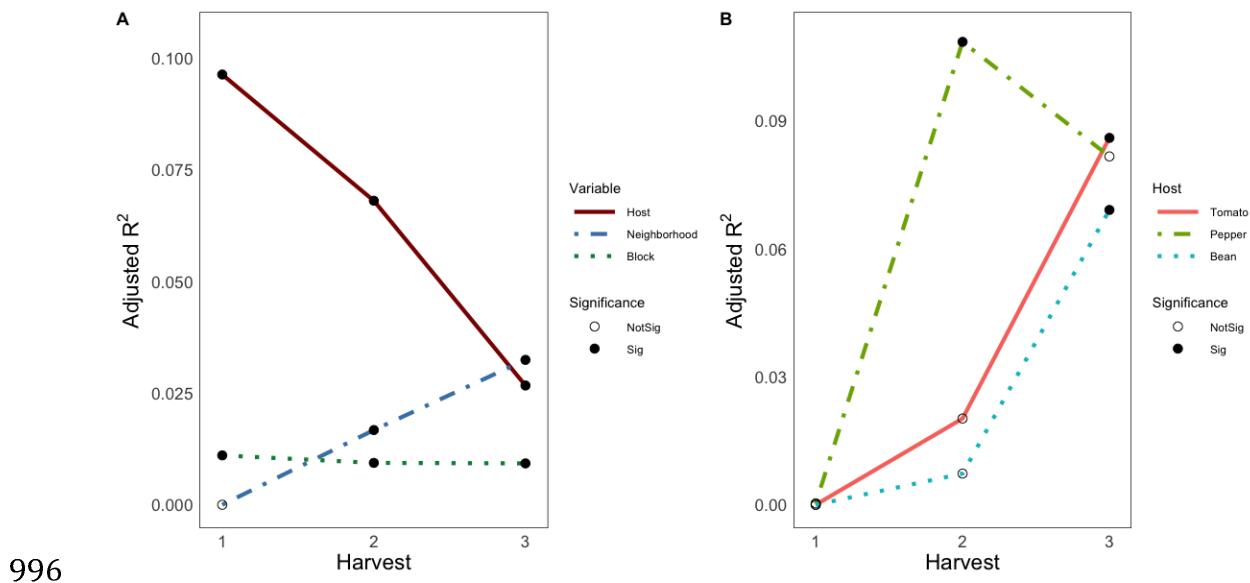
986

987 **Fig. 2:** Bacterial abundance and composition vary across host species and harvest

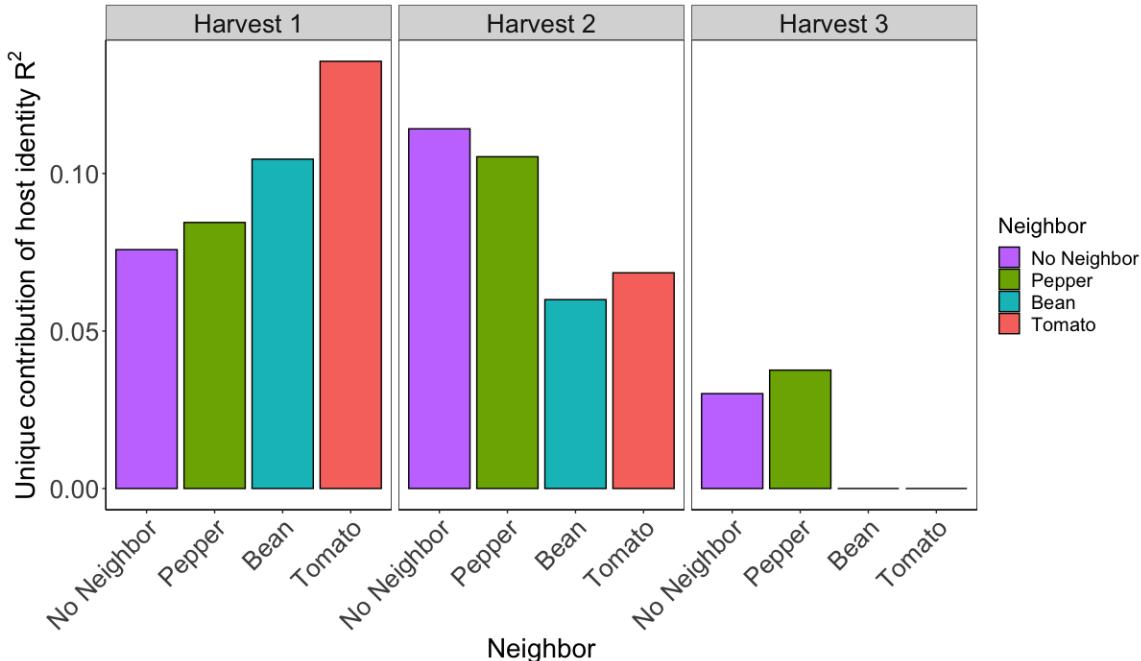
988 time. A) The abundance (log₁₀ 16S rRNA gene copies measured using ddPCR of leaf

989 washes, y-axis) for individual focal plant species (x-axis) surrounded by different

990 neighbor plant species (box color) and at different successive harvest times (panels


991 1, 2, and 3). B) Relative abundance of the 9 most abundant bacterial orders

992 distinguished by host species and harvest time. All other less abundant or


993 ambiguously assigned orders are grouped under 'Other'.

994

995

996 **Fig. 3:** The effects of host identity on bacterial community composition decrease
997 through time while neighborhood effects increase and vary by host plant species. A)
998 Adjusted R² values (y-axis) are the result of PERMANOVA analyses on Bray Curtis
999 dissimilarities for each harvest, accounting for sample number and degrees of
1000 freedom from slight differences in sample number. See Table 1 for pre-adjusted R²
1001 values. The effect of host identity (solid maroon line), the effect of neighborhood
1002 (blue dot-dash line), and the effect of experimental block (green dotted line) are
1003 shown. Harvest time point is shown on x-axis. Filled circles indicate statistical
1004 significance ($p < 0.05$), while open circles represent statistically insignificant effects
1005 ($p > 0.05$). B) Host plant species experience neighborhood effects on phyllosphere
1006 bacterial communities differently through time. Adjusted R² values (y-axis) and
1007 harvest time point (x-axis) are as described for plot A. Tomato hosts (solid red line),
1008 pepper hosts (light green dot-dash line), and bean hosts (light blue dotted line) are
1009 shown. Filled circles indicate statistical significance ($p < 0.05$), while open circles
1010 represent statistically insignificant effects ($p > 0.05$).
1011

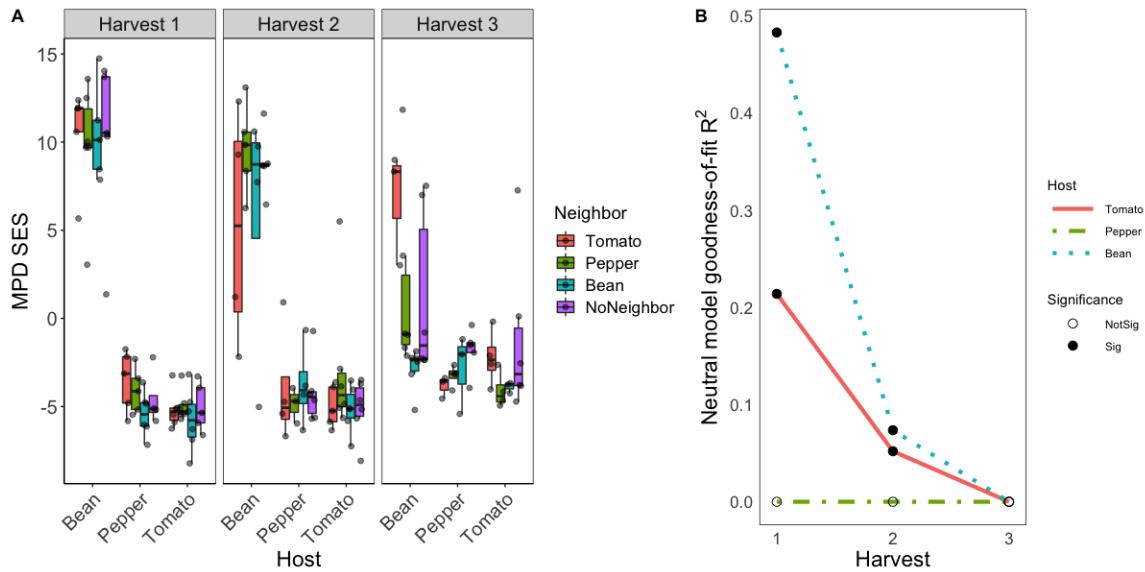
1012

1013 **Fig. 4:** The unique contribution (adjusted R^2) of host plant identity to phyllosphere

1014 bacterial structure decreases over time for plants with neighbors. Unique

1015 contribution was calculated by partitioning out spatial principle coordinates using

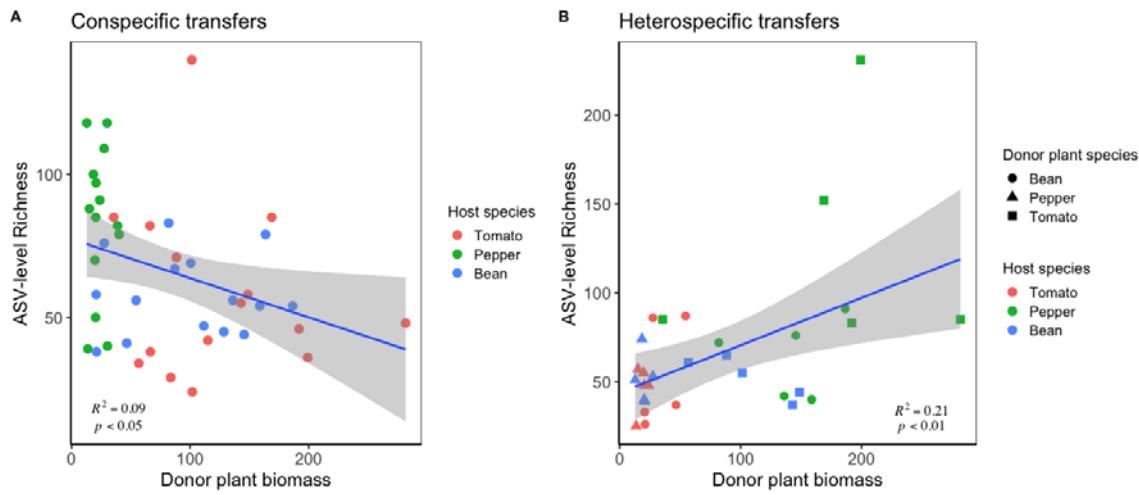
1016 RDA-based variation partitioning. The order of depiction of the neighbor plant


1017 species is by estimated neighborhood biomass from lowest to highest. Boxes 1, 2,

1018 and 3 represent different harvest time points. In cases where $R_{adj} = 0$, host species

1019 identity did not significantly explain variation in phyllosphere bacterial

1020 composition.


1021

1022

1023 **Fig 5:** Bacterial leaf surface community assembly processes differ between plant
1024 hosts, suggesting differences in host filtering. A) Standardized effect size (SES) of
1025 mean pairwise distance (MPD) of phyllosphere communities split by host (x-axis),
1026 neighbor (box color), and harvest time point (panels 1, 2, or 3). SES = (MPD_{obs} –
1027 MPD_{null})/SD(MPD_{null}), whereby values below 0 suggest phylogenetic clustering. B)
1028 The fit of a neutral model declines through time, but differs strongly by host
1029 identity. Neutral model goodness-of-fit values (R^2 , y-axis) at each harvest (x-axis)
1030 for tomato (solid red line), pepper (green dot-dashed line), and bean (blue dotted
1031 line). Filled circles indicate statistical significance, open circles indicate not
1032 significant (negative or 0 goodness-of-fit values).

1033

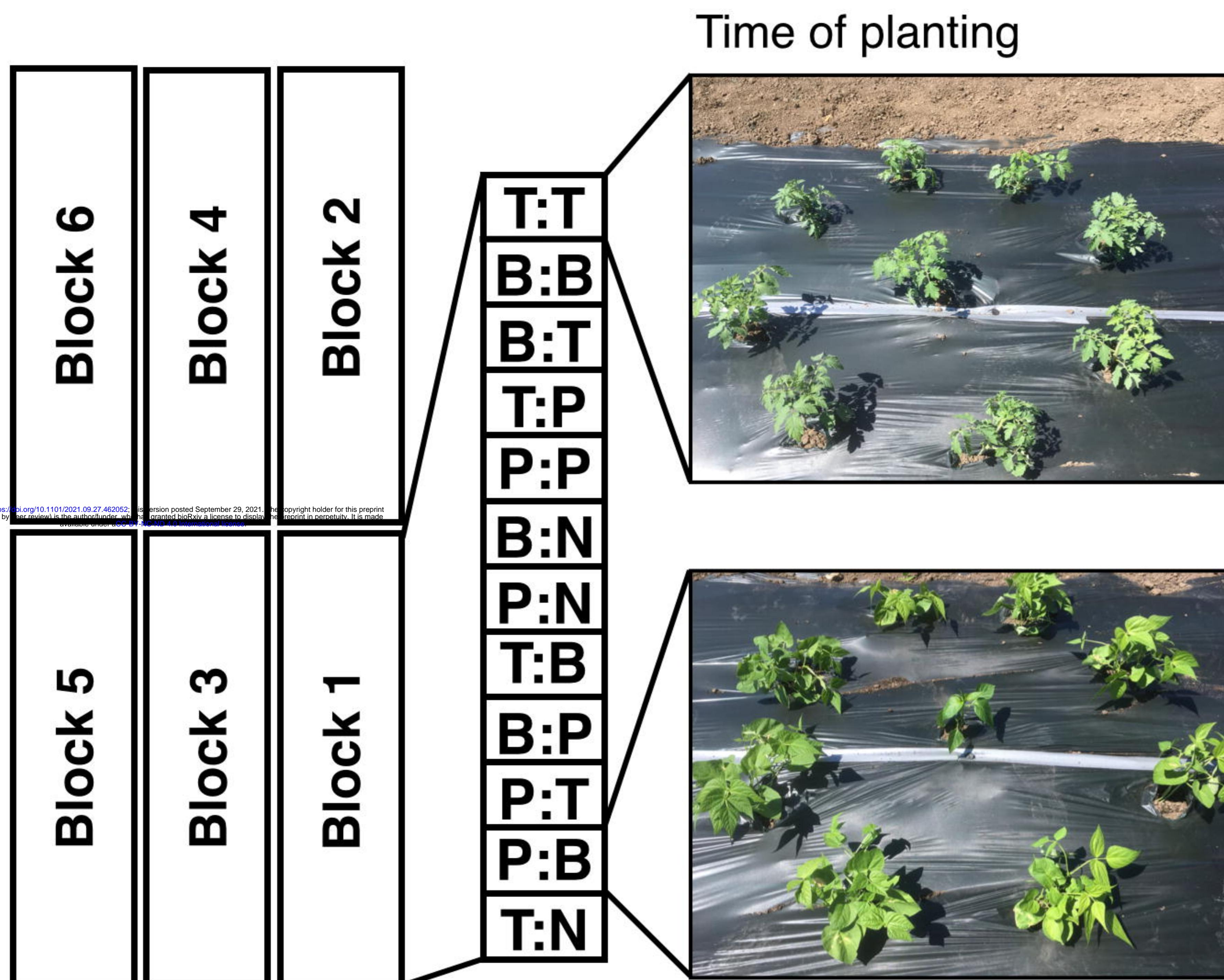
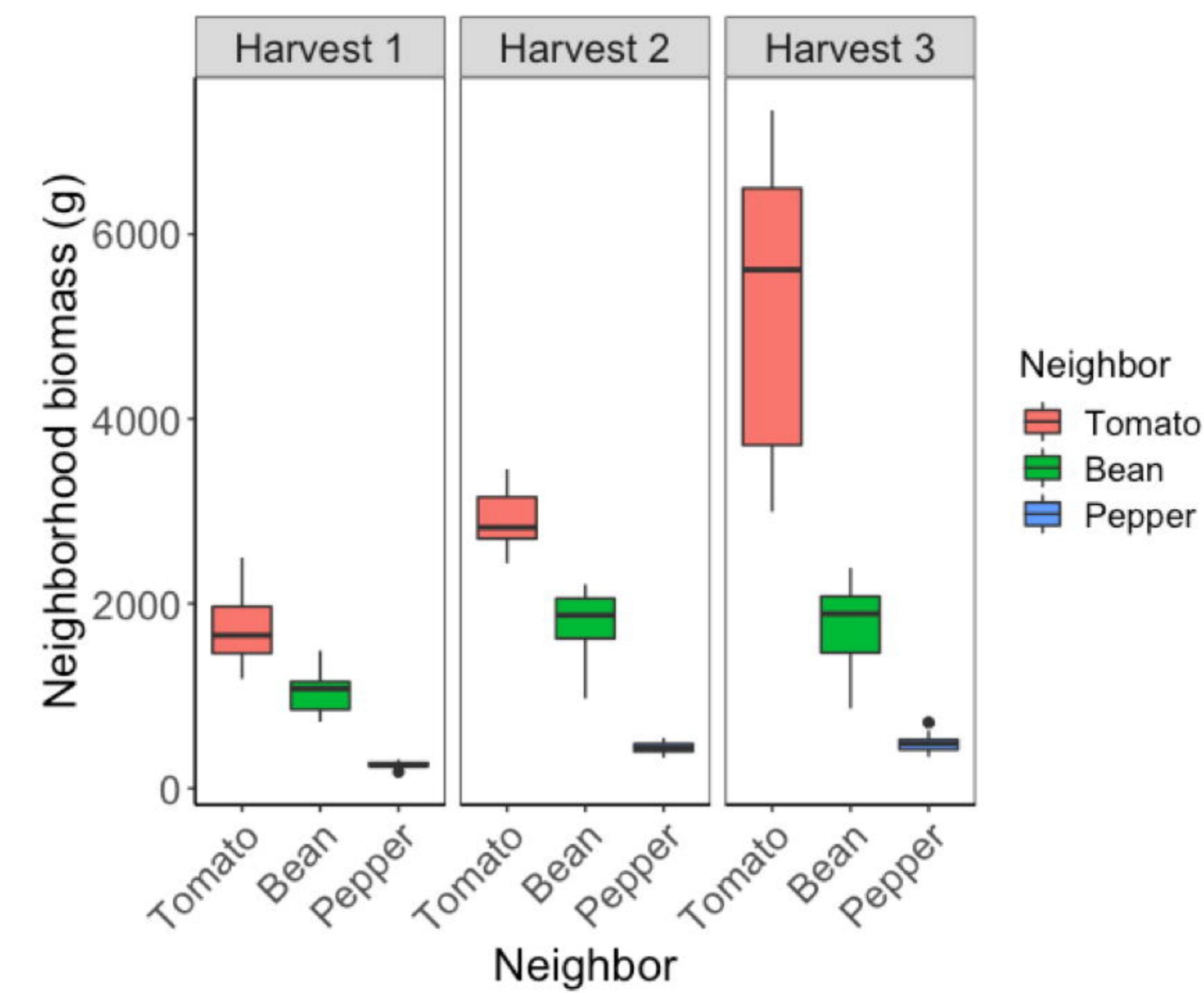
1034

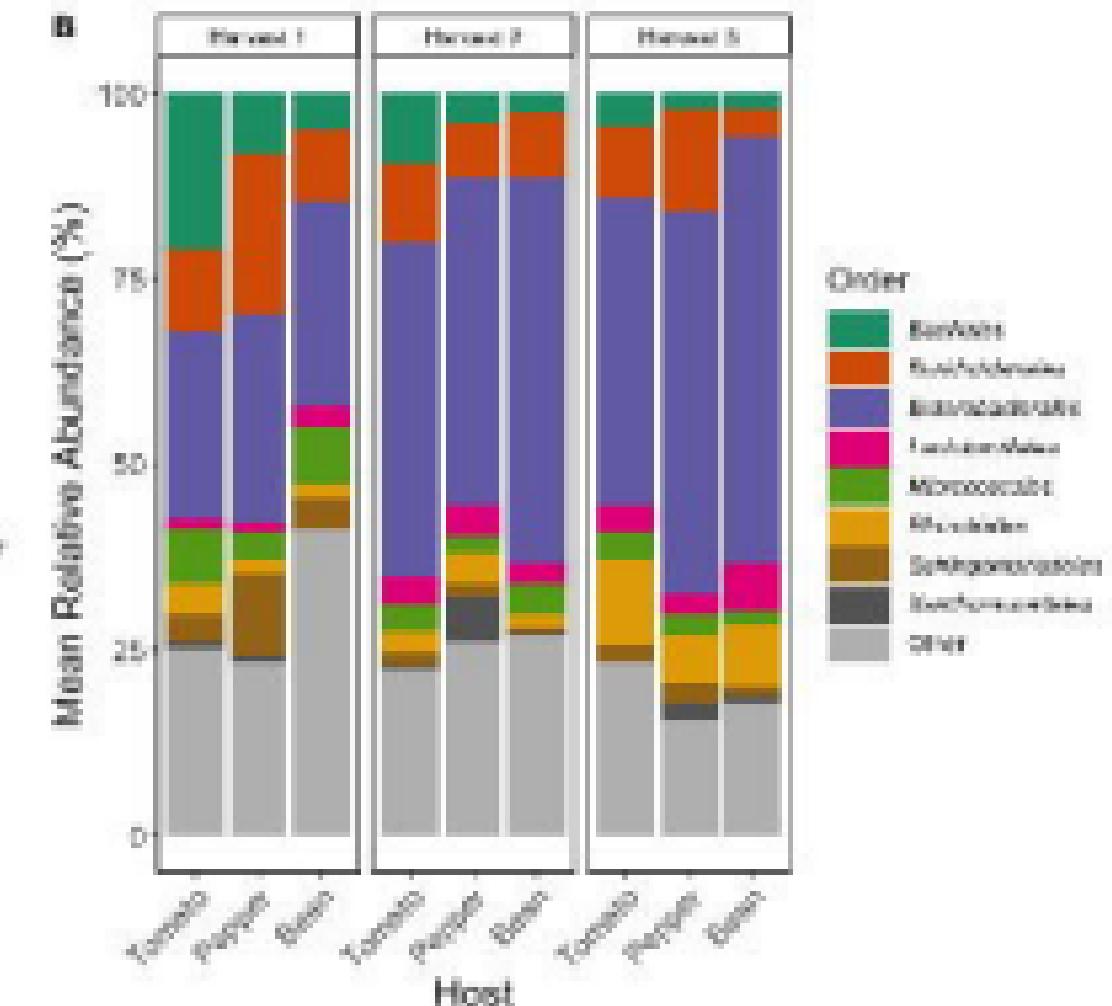
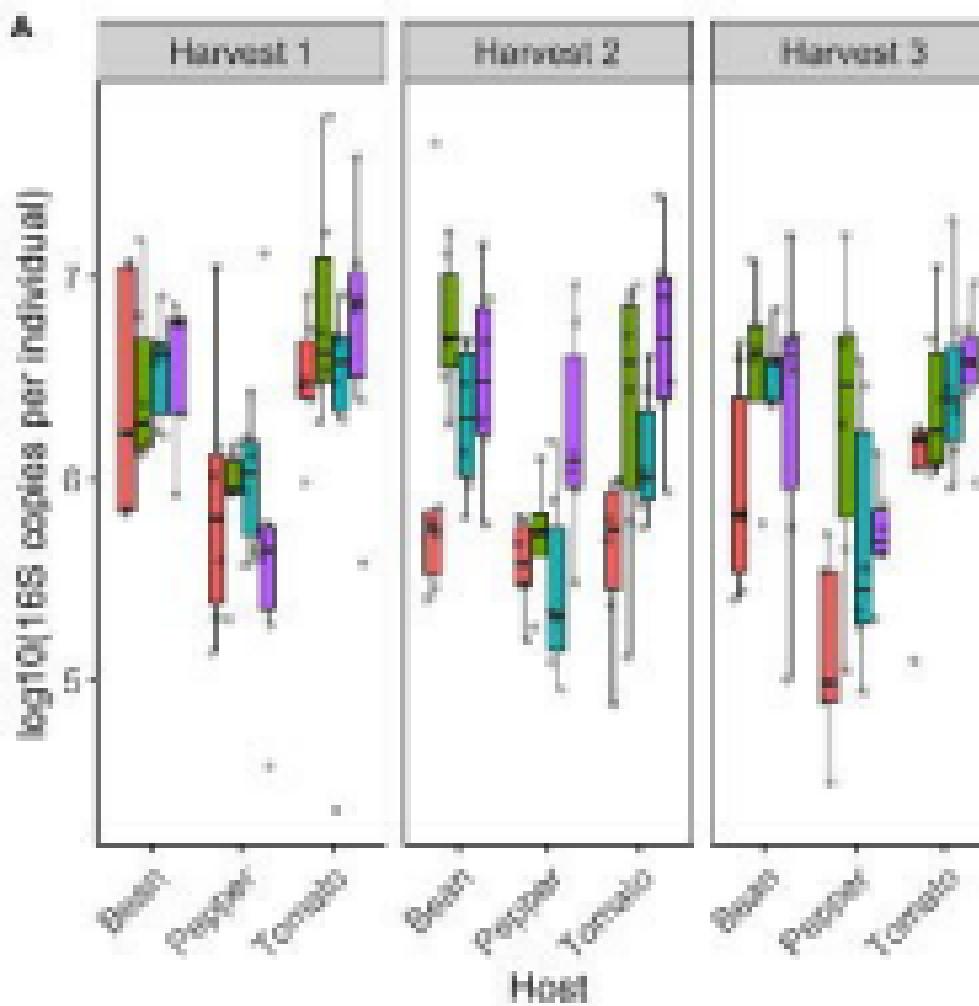
1035 **Fig 6:** The effect of donor plant biomass (g) on phyllosphere community richness

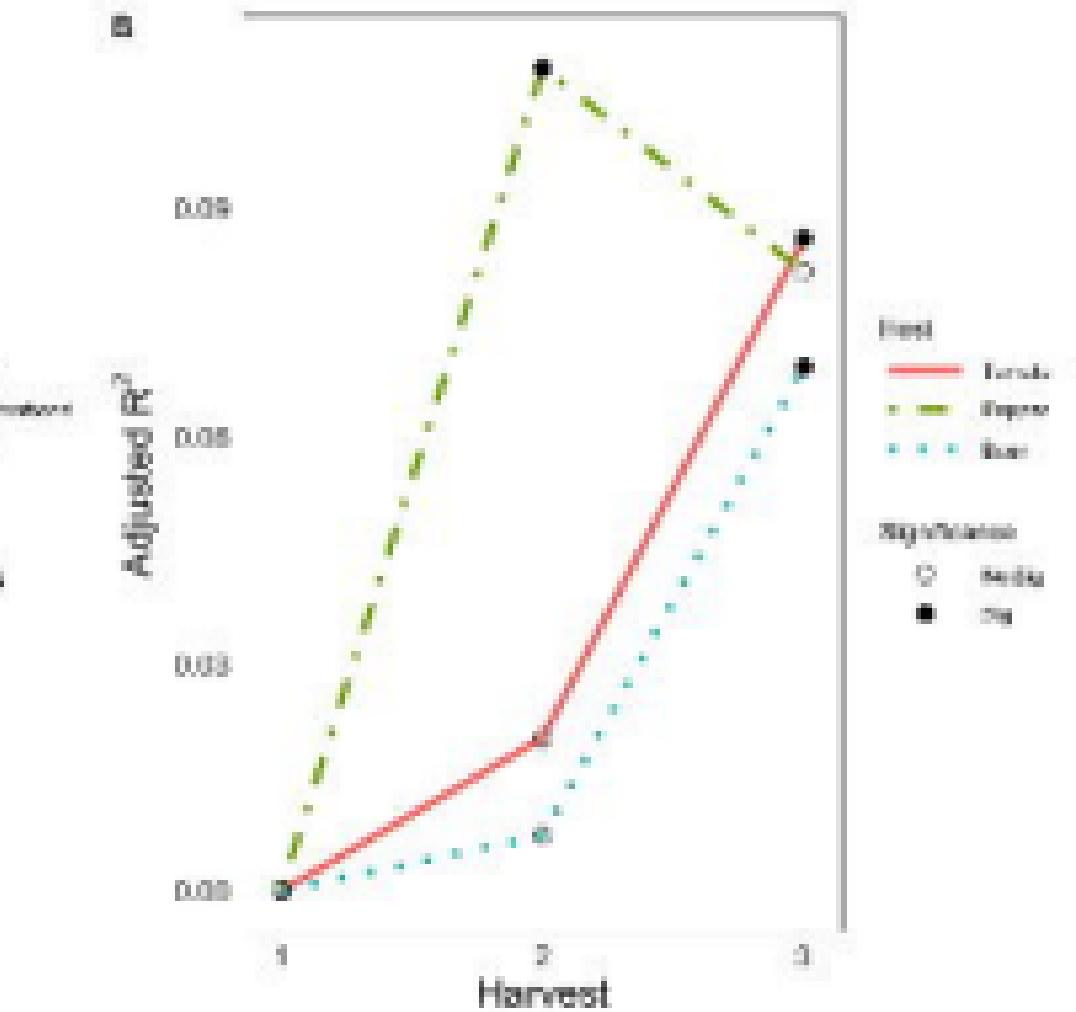
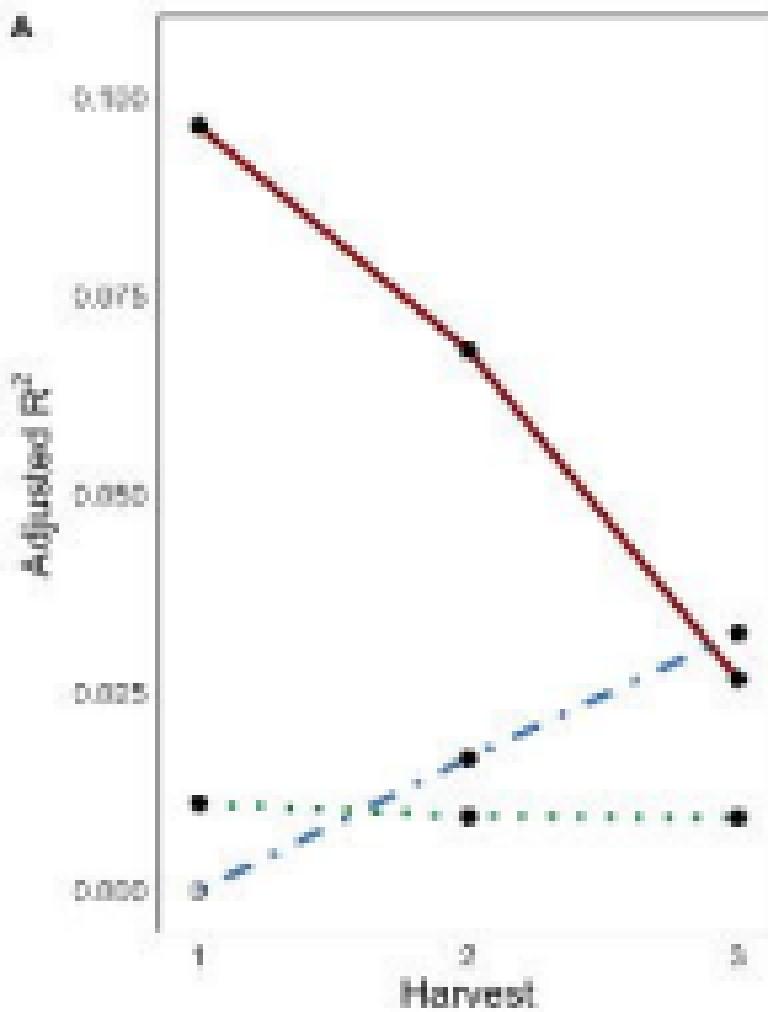
1036 depends on the origin of inoculum. A) Conspecific (within the same species)

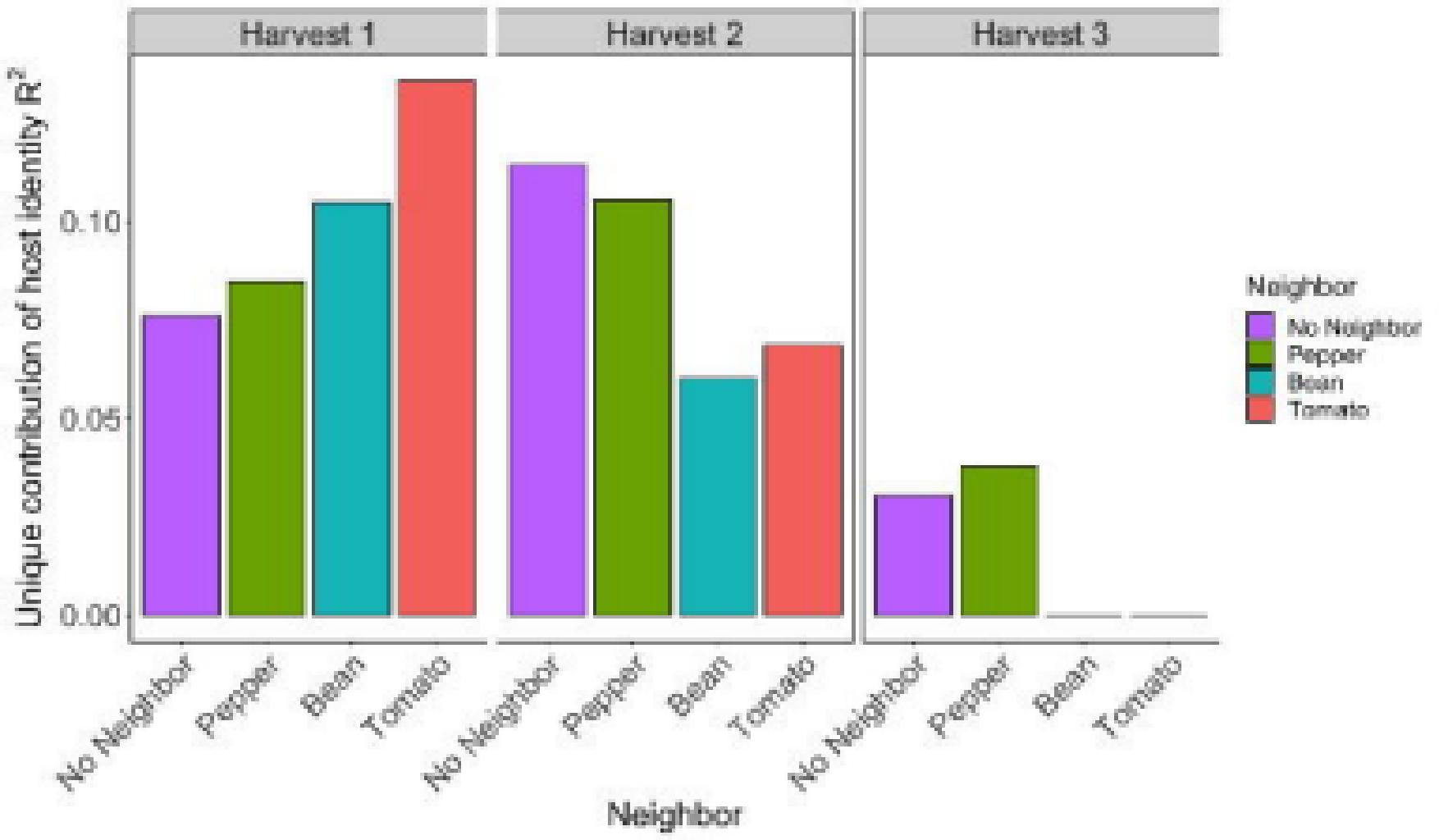
1037 transfers, where ASV-level richness (y-axis) is negatively, but weakly, correlated

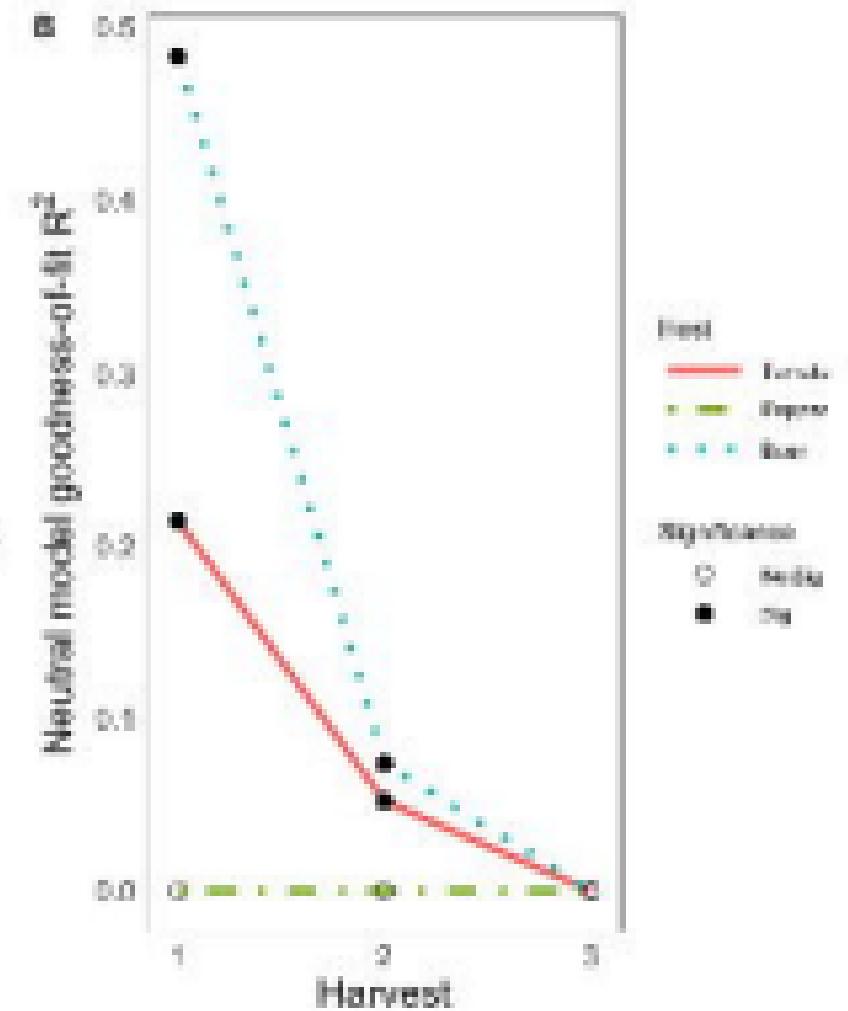
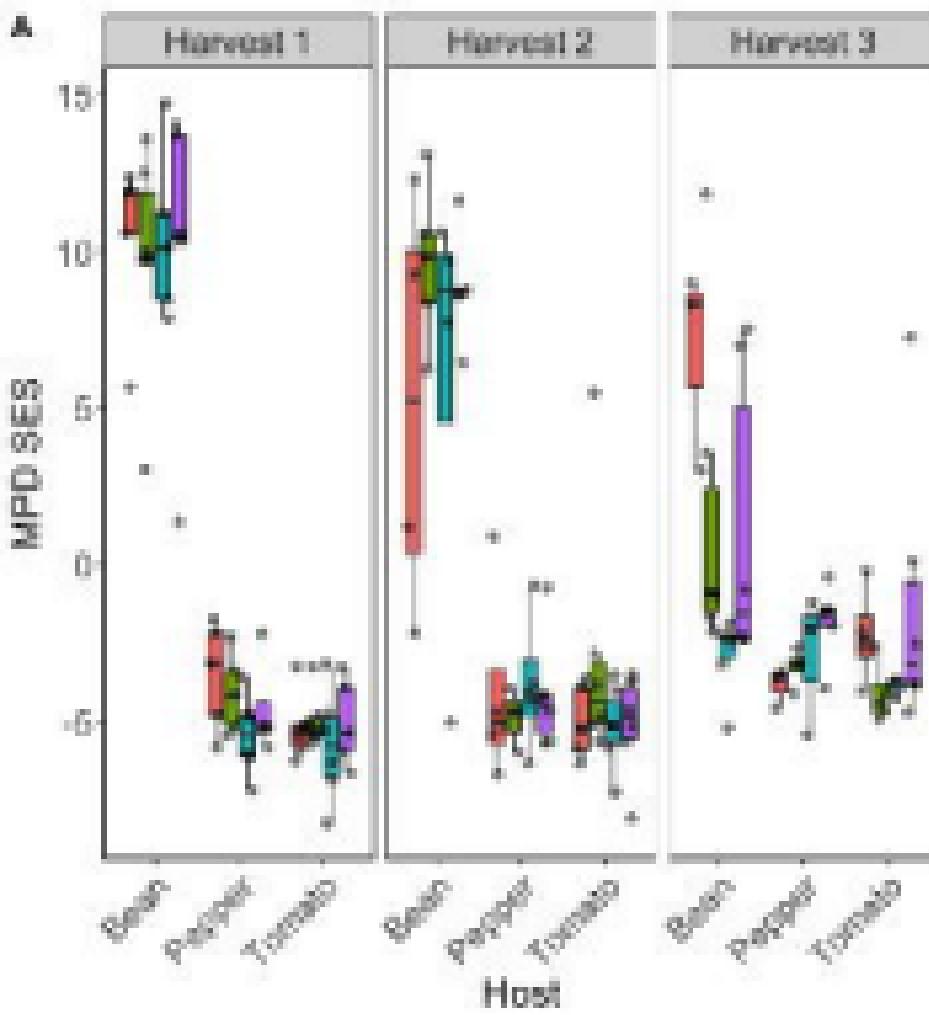
1038 with the donor plant biomass (g, x-axis). Points are colored according to the



1039 recipient plant species. B) Heterospecific (across different species) transfers, where

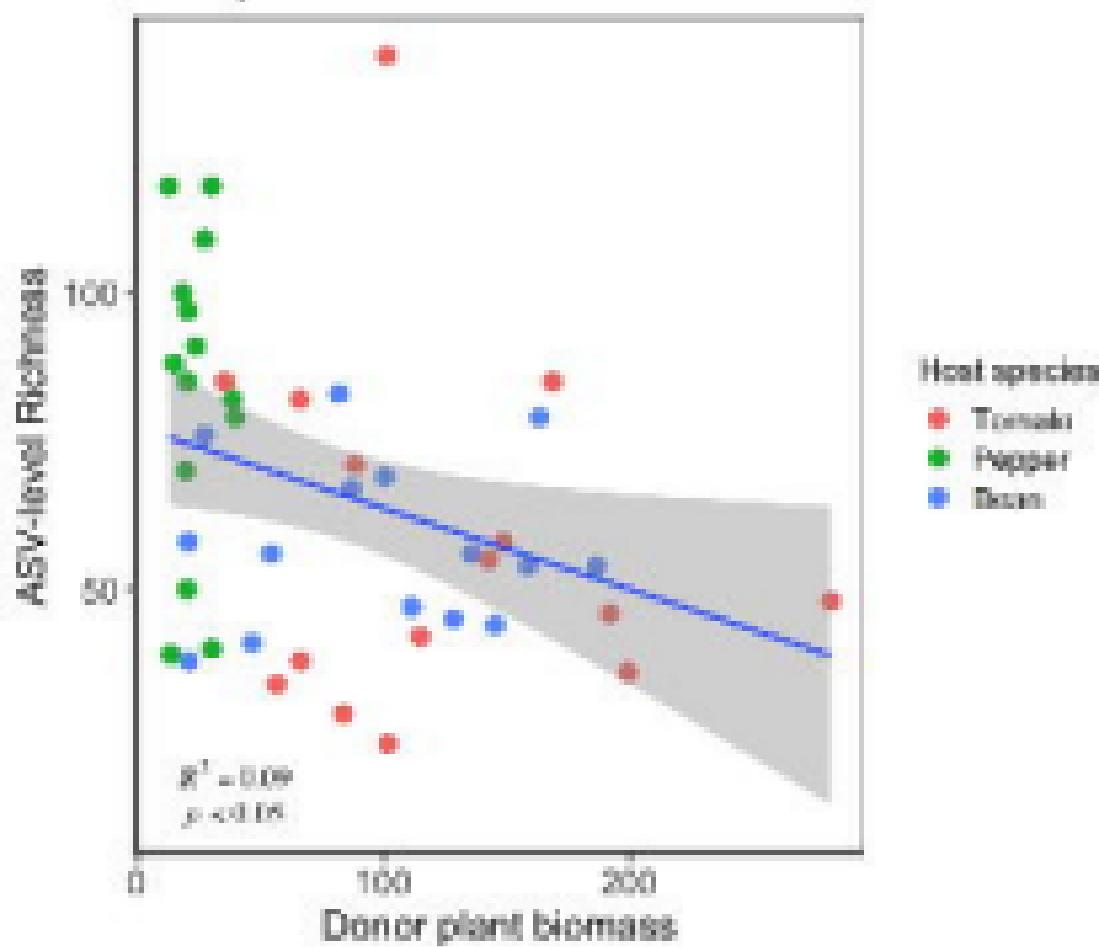


1040 ASV-level richness (y-axis) is positively correlated with the donor plant biomass (g,

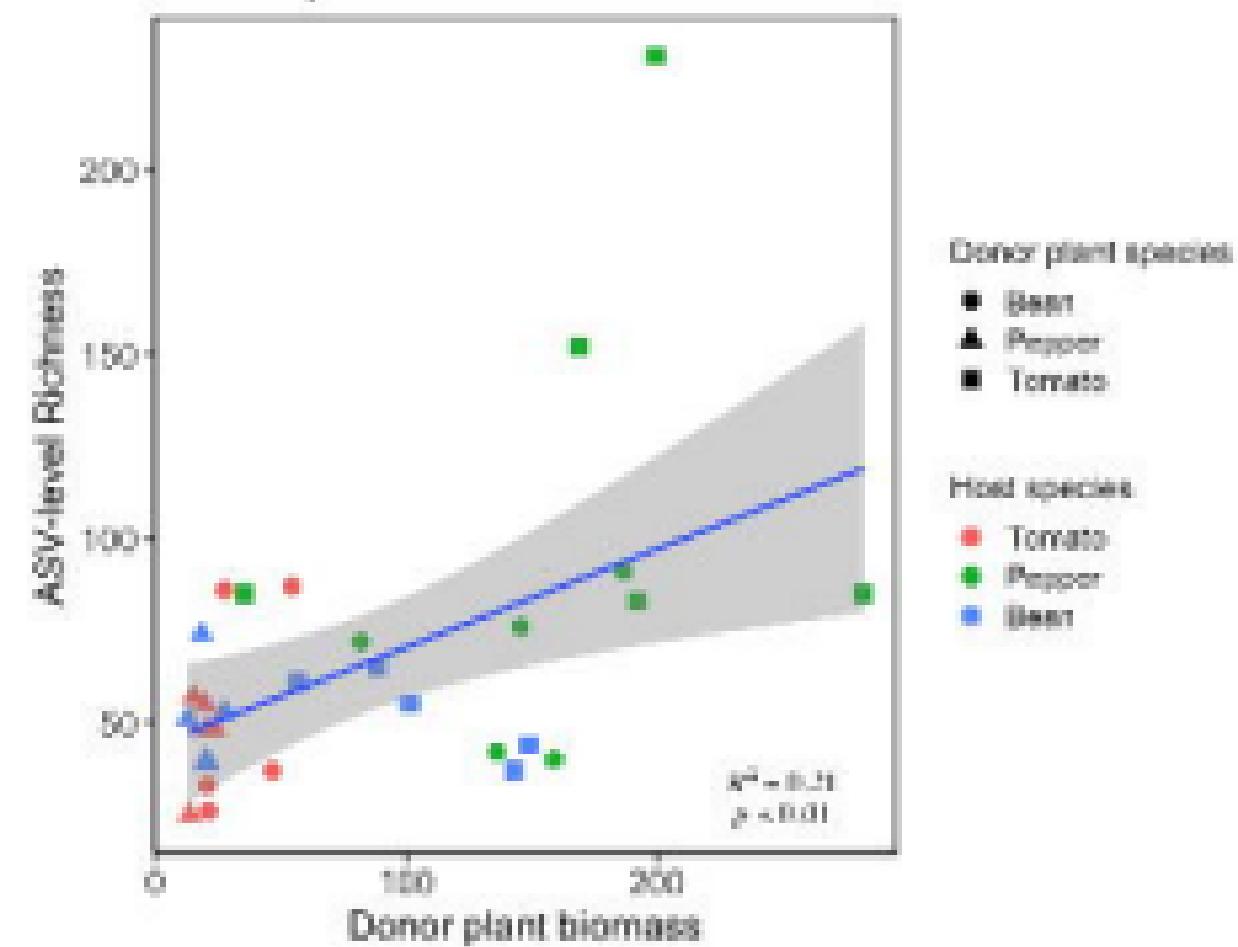


1041 x-axis). Point colors correspond to host species and point shapes correspond to the


1042 donor plant species. For both plots, R^2 and p values are derived from linear models.



1043

A**B****Harvest time point 3****C**




1

Conspecific transfers

1

Heterospecific transfers

