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Abstract

Microbial communities associated with plant leaf surfaces (i.e. the phyllosphere) are
increasingly recognized for their role in plant health. While accumulating evidence
suggests a role for host filtering of its microbiota, far less is known about how
community composition is shaped by dispersal, including from neighboring plants.
We experimentally manipulated the local plant neighborhood within which tomato,
pepper, or bean plants were grown in a three-month field trial. Focal plants were
grown in the presence of con- or hetero-specific neighbors (or no neighbors) in a
fully factorial combination. At 30-day intervals, focal plants were harvested and
replaced with a new age- and species-matched cohort while allowing neighborhood
plants to continue growing. 16S community profiling revealed that the strength of
host filtering effects (i.e. interspecific differences in composition) decreased over
time. In contrast, the strength of neighborhood effects increased over time,
suggesting dispersal from neighboring plants becomes more important as
neighboring plant biomass increases. We next implemented a cross-inoculation
study in the greenhouse using inoculum generated from the field plants to directly
test host filtering of microbiomes while controlling for directionality and source of
dispersal. This experiment further demonstrated that focal host species, the host
from which the microbiome came, and in one case the donor hosts’ neighbors,
contribute to variation in phyllosphere bacterial composition. Overall, our results
suggest that local dispersal is a key factor in phyllosphere assembly, and that
demographic factors such as nearby neighbor identity and biomass or age are

important determinants of phyllosphere microbiome diversity.
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Introduction

Plant leaf surfaces, commonly termed the phyllosphere, harbor a wide
diversity of microorganisms 1. These endophytic and epiphytic communities can
influence plant health and fitness through a variety of means, including protection
against pathogens 23, plant growth promotion 4, primary productivity enhancement
>, protection against abiotic conditions including frost ¢, and fixation of atmospheric
nitrogen (N) 7. Plant hosts can exert some control over the abundance and
composition of their microbiome members by virtue of the differing chemical and
physical features of resources provided on their surfaces 8, but also through immune
activity, molecular signaling, and barrier formation 9-15. This filtering effect can give
rise to predictable differences in microbiome composition among hosts 10.16-18 3
phenomenon referred to as species identity (or genotype) effects. Evidence for such
effects comes from phylogenetic clustering of associated microbial taxa 1929,
deviation from null or neutral expectations 2122, changes consequent to host genetic
manipulation 19, or compositional differences explained by species or genotype as a
factor 16-18.20.23 While species identity effects suggest the importance of host control
over microbiota, such effects are often weak or variable when tested in broader
environmental or ecological contexts 2425, This raises the question of whether and
how host effects can be swamped by environmental factors in shaping the
microbiome.

The neighboring plant community constitutes a major component of a plant’s
environmental and ecological context. Neighborhood effects, also known as

associational effects, have been extensively studied for pathogen and herbivore


https://doi.org/10.1101/2021.09.27.462052
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.09.27.462052; this version posted September 29, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

available under aCC-BY-NC-ND 4.0 International license.

transmission 26-28, revealing patterns of transmission that relate to the nearest
conspecific neighbor (i.e. conspecific negative density dependence) 29-32 as well as
species frequency-dependent patterns of host fitness 33-35. Much less effort has
focused on the role of neighborhood effects for non-pathogenic plant-associated
microorganisms 3°, Given the prominent role of aerial transmission in shaping
phyllosphere microbial communities 2337-39, both neighbor identity and proximity
are likely to be important factors shaping epiphytic microbial communities.
Moreover, it has been shown both theoretically 490 and empirically #! that in the
presence of high dispersal rates, community members can persist even in the face of
strong selection against them (e.g. as a result of plant filtering effects), a
phenomenon termed mass effects. As such, differences in microbiota composition
that arise between species could be diminished when inter-host dispersal is high.
Indeed this has been shown in zebrafish, where differences in bacterial community
composition among host variants were dramatically reduced when inter-host
dispersal was allowed #2.

Recent observational research in tree communities has revealed detectable
neighborhood effects on epiphytic communities 38, but many open questions remain.
For instance, it is unclear whether neighborhood effects are general and causative, a
crucial gap in knowledge if such effects are to be incorporated into agricultural
practice. It is also unclear what role neighbor or focal plant identity and
age/biomass play in microbiome assembly. Lastly, although host filtering and
microbial dispersal are intimately intertwined, the relative impacts of each in

shaping microbiome differentiation among species has not been described. We
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address these knowledge gaps using field- and greenhouse-based experiments
involving tomato, pepper, and bean host plants. By manipulating both the focal plant
species identity and the local neighborhood composition in the field, we were able
to directly test the relative importance of plant host filtering versus local dispersal
sources in shaping microbiome composition on leaves. We then performed a
controlled cross-inoculation study in the greenhouse to directly examine the effects
of host filtering and inoculum source on microbiome assembly of the three plant
species involved. We hypothesized that: 1) neighborhood effects would increase as
neighboring plants increase in age and biomass; 2) that neighborhood effects would
depend on both neighbor and focal plant identity due to host filtering effects; 3) that
host species effects would be diminished in the presence of neighboring plants; and
4) that experimental transplantation of microbiomes across hosts would result in
compositional change as a result of host filtering, but that there would remain a

detectable signal of past host.

Methods
Experimental Design: Neighborhood study

To test for the relative influence of host species and neighborhood effects on
foliar microbial communities, we implemented a fully factorial, randomized block
design at the Oxford Tract, a research farm near the University of California,
Berkeley. The study included three plant species: tomato (Solanum lycopersicum var.
Moneymaker), pepper (Capsicum anuum var. Early Cal Wonder), and bean

(Phaseolus vulgaris var. Bush Blue Lake 274). Plant neighborhoods were established
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in which a single 5 week old tomato or pepper plant, or a cluster of 6, 2-week old
beans, was planted as the focal individual in the middle of a circle of eight
neighborhood plants, each planted 0.61 m from the focal plant, with fully reciprocal
combinations of focal and neighborhood plants (Fig. 1A) in a randomized complete
block design with 6 replicates. Neighborhood plots were established in 3 zones (2
blocks per zone) spaced 1.22m apart separated by at least 0.91m from any other
plants at the experimental site to minimize edge effects. Each neighborhood plot
was 1.22 x 1.22 m, and separated by 1.22 m from adjacent plots. No neighbor
control plots, in which focal plants had no neighbors encircling them, were included
for each species. Thus, the experiment contained 9 neighborhood comparisons and
3 no neighbor comparisons. Two weeks prior to planting, soil was tilled for weed
management and drip lines were installed underneath plastic sheeting to provide
irrigation. The plastic sheeting prevented the growth of weeds and minimized
dispersal of soil onto plants. Plants were planted through small holes made through
the plastic sheeting. Individual tomato and pepper plants were propagated in a
greenhouse for 5 weeks, to a height of about 20 cm before transplantation into the
field. Beans, 6 seeds per pot, were grown for 20 days to a height of 20 cm before
transplantation. All greenhouse plants were watered using drip irrigation to
minimize the wetting of the leaves, and thus the development of large epiphytic
bacterial community sizes. All plants, including focal individuals and neighbors,
were transplanted in the field June 1, 2019.

Focal plants were harvested and replaced at 30-day intervals (3 times of

establishment) while the neighborhoods were retained and continued to grow
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throughout the study (Fig. 1B, C). Focal plants were all the same age upon planting
as the original cohorts to allow for direct comparisons across cohorts. Thus,
bacterial community composition of the focal plants was assessed on 3 separate
occasions for each of 72 focal plants in the neighborhoods (totaling 216 focal
samples). Only one focal plant (pepper with no neighbors) died prior to sampling.
Additionally, at each round of planting, bacterial community composition was
assessed on 5 plants of each species at the time of transplantation to identify taxa

that had established on plants in the greenhouse.

Neighborhood Plant Attribute Measurements

Several attributes of neighborhood plants were measured before each
monthly harvest of focal plants in order to determine how neighbors might impact
phyllosphere communities of the focal plant. These attributes included: average
neighbor height, distance of the focal plants to the nearest neighbor, the number of
neighbors touching the focal plant (if any), the total number of flowers on the
neighborhood plants, and whether the neighborhood plants had signs of herbivory,
infestation, or disease (yes or no). Further, the biomass of the neighborhood was
estimated without harvesting the plants by fitting a linear model relating the height
and weight of the focal plants, and extrapolating to that of the neighbor plant

weights based on their height. Separate linear models were fit for each plant species.
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Sample processing

Immediately before harvesting the focal plants, their height was measured.
Focal plants were then excised at their base using ethanol-sterilized scissors,
transferred to 1-gallon (3.79 L) sterile plastic bags, and transported in a chilled
cooler to the laboratory. Plant weight was recorded and then plants were
subsampled, collected, and re-weighed. Subsampling was necessary to reduce
biomass differences among samples and to enable more efficient collection of
epiphytic bacteria by sonication. Foliar bacteria were collected from plant
subsamples (range 3.84 - 621.14 g, median 40.84 g) by adding 180 ml of sterile
10mM MgCl; to the sample bags and sonicating for 10 minutes in a sonicating water
bath (Branson model 5800). Leaf wash was then filtered through an autoclaved
coffee filter and distributed to four 50 ml conical tubes, which were then centrifuged
at 4000 rcfat 10° C for 10 minutes to pellet microbial cells. The supernatant was
then decanted from each tube and the pellets resuspended in 1.8 ml King’s broth
(KB). 600 pl of the resuspended pellet was frozen at -80° C for subsequent DNA
extraction, while the remaining two 600 pl aliquots were each mixed with 400 ul 1:1

KB:Glycerol and frozen at -80° C for subsequent experimentation.

Experimental Design - Follow-up transplant study

To further test the importance of host filtering, inoculum source, and
dispersal history, we conducted a follow-up greenhouse study in which bacterial
communities recovered from field plants at harvest time point 2 were reciprocally

inoculated onto these same species under controlled conditions. Cryopreserved
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phyllosphere communities from a single focal field plant were transferred to either
the same plant species from which they were isolated, or onto the plant species that
previously had surrounded that focal plant when it was in the field. For instance, the
microbiome from a tomato that was surrounded by beans was applied equally to a
tomato and a bean plant. This was done for all combinations. Experimental blocks
from the field trial were treated as experimental blocks in the greenhouse trial,
using blocks 2-6 from the field (5 replicates per treatment). We deliberately did not
equalize inoculum density, as we anticipated that bacterial abundances would vary
according to plant species and thereby constitute an important component of
species identity effects. The biomass of every donor plant, however, was recorded
for downstream statistical analysis. Additionally, for each plant species we included
5 replicate blank inoculum controls in which the same volume of sterile 10 mM
MgCl; that was used to resuspend inoculum was sprayed onto plants. We further
included replicate heat-killed controls, in which field-derived leaf wash was
autoclaved for 40 minutes before being applied to each of three plant hosts, in the
same manner as the experimental inocula.

Inocula were prepared by thawing the freezer stock, centrifuging at 4000 rcf
and 10° C for 10 minutes to pellet cells, decanting the supernatant, and re-
suspending cells in 7 ml 10 mM MgCl. then splitting in half to make two 3.5 mL
inocula. Twenty-two samples were inoculated each day (block) such that each block
contained every comparison, and this was repeated for 5 days. Inocula were sprayed
onto the adaxial (top) and abaxial (bottom) sides of leaves using ethanol- and UV-

sterilized misting caps. After inoculation, the moist, sprayed plants were placed in a
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chamber maintaining ca. 100% relative humidity for 20 hours in order to maintain
leaf moistness, thus encouraging microbial growth, before being transferred to a
greenhouse. After 7 days, the plants were returned to the humid chamber for 20
hours immediately before harvest in order to facilitate further microbial
multiplication on leaves and thus allow for maximal host filtering. Plants were then

harvested and processed as in the field study.

DNA extraction, PCR, Library Preparation, and Sequencing

One sixth of the total leaf surface microbial extraction per plant was used for
DNA extraction with DNeasy Powersoil Kits (Qiagen). Sample order was randomized
to avoid batch effects, and a blank (no sample) control was included in every round
of DNA extraction. DNA concentration of each sample was quantified using the Qubit
dsDNA HS Assay Kit. 10 pl of sample DNA was used as template and PCR amplified
for 35 cycles at the University of California - Davis Host Microbe Systems Biology
Core using the 799F (5’ - AACMGGATTAGATACCCKG - 3) - 1193R (5’ -
ACGTCATCCCCACCTTCC - 3’) primer combination, which targets the V5-V7 region
of the 16S rRNA gene, and was designed to minimize chloroplast amplification 4344,
To further minimize host mitochondrial and chloroplast amplification, peptide
nucleic acid (PNA) clamps were added to each reaction 45. Resulting amplicons were
diluted 8:1 and were further amplified for 9 cycles to add sample-specific barcodes,
then quantified using Qubit, pooled in equal amounts, cleaned with magnetic beads

and size selected via electrophoresis on a Pippin Prep gel (Sage Science, USA). The

10
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resultant library was then sequenced on the [lumina MiSeq (paired-end 300)

platform.

Sequence Processing

Amplicon sequences were processed using the DADAZ2 pipeline 46
implemented in the R statistical environment 47, including the packages ShortRead
48, Biostrings 4%, and Phyloseq °°. Forward and reverse reads were truncated at 260
and 160 bp, respectively, and quality filtered using the function ‘filterAndTrim’ with
default settings (i.e. maxN=0, maxEE=c(2,2), and truncQ=2). Error rates for forward
and reverse reads were determined using the ‘learnErrors’ function, and then
applied to remove sequencing errors from reads and assign them to amplicon
sequence variants (ASVs) using the ‘dada’ function. Filtered paired reads were
merged using the function ‘mergePairs’ and then converted into a sequence table
using the ‘makeSequenceTable’ function. Chimeric sequences were removed from
the sequence table using the function ‘removeBimeraDeNovo’ (method =
consensus). Taxonomy was assigned to the remaining sequences using the
‘assignTaxonomy’ function, which implements the RDP Naive Bayesian Classifier
algorithm with kmer size 8 and 100 bootstrap replicates 51. We used the Silva SSU
taxonomic training dataset (version 138) formatted for DADAZ2 52, Chloroplast and
mitochondrial sequences were filtered from the ASV table by removing any ASVs
with a taxonomic assignment of ‘Chloroplast’ at the Order level or ‘Mitochondria’ at
the Family level, respectively. Lastly, we applied the ‘isContaminant’ function

(method = prevalence) from the package ‘decontam’ 33 to our samples using our

11
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blank (no sample) DNA extractions to identify and remove putative contaminants

introduced during DNA extraction.

Bacterial Quantification using Droplet Digital PCR (ddPCR)

In order to estimate foliar bacterial abundances of each plant sample, droplet
digital PCR (ddPCR) using the Bio-Rad QX200 system on bacterial DNA extracted
from leaf wash. Comprehensive ddPCR methods are described elsewhere >4, but
briefly, we targeted the V5-V7 region of the 16S rRNA gene in sample DNA using the
chloroplast-excluding 799F (5’ - AACMGGATTAGATACCCKG - 3") - 1389R (5’ -
ACGGGCGGTGTGTRC - 3’) primer combination. 5 pl of 1:10 diluted DNA template
were combined with 11 pl of 2X EvaGreen Supermix (Bio-Rad, USA) and 0.22 pl of
each primer, and 5.56 pl of molecular grade water to a total volume of 20 pl.
Reaction mixes were then loaded into the QX200 droplet generator with 70 ul of
droplet generation oil, then transferred to a PCR plate. 39 cycles of PCR were
performed under the following conditions: 95°C for 10 minutes, 95°C for 30
seconds, 55°C for 30 seconds, 72°C for 2 minutes, with steps 2-4 repeated 39 times,
4°C for 5 minutes, and 90°C for 5 minutes. EvaGreen signal was measured on the
QX200 droplet reader, cutoff thresholds were set for each column based on
background fluorescence in no template controls, and concentrations were
determined using the associated QuantaSoft software. Abundances are reported as
16S rRNA copies per g plant material as well as estimates of 16S copies per
individual plant by taking into account the proportion of the total plant sample that

was used for sample processing.

12
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Statistical Analysis

All statistical analyses were performed using R version 4.0.3 47. Community
matrices were rarefied to 6400 counts per sample ten times and averaged in order
to account for differences in sampling extent across samples. Bray Curtis bacterial
community dissimilarities were calculated between samples using the ‘vegdist’
function in the vegan package in R 5. Community structure differences among host
species identity, neighbor species identity, and experimental block were assessed
using a PERMANOVA on Bray-Curtis distances using the ‘adonis’ function (also in
the vegan package), which performs a sequential test of terms and uses the
algorithm presented in 56. To assess the change in the relative strength of these
factors through time, the PERMANOVA was performed for each of the three
harvesting time points separately. Since not all samples successfully sequenced,
generating slight differences in sample numbers among harvests, we adjusted R?
values to take into account sample numbers and degrees of freedom using the
‘RsquareAdj’ function in the vegan package. Indicator taxa analysis was performed
using the ‘multipatt’ function in the indicspecies package 7.

In order to assess the unique contribution of plant species identity for each
neighborhood type, we used variation partitioning on Hellinger-transformed
community matrices to partition out the effects of space. A geographic distance
matrix was calculated for all experimental plots based on plot GPS coordinates using
the program Geographic Distance Matrix Generator %8, and then pairwise distances

were decomposed into principal coordinates using the ‘pcnm’ function in the vegan

13
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299  package. For each combination of plants, significant principal coordinates were
300 selected using forward and backward (direction = “both”) model selection with the
301 ‘ordistep’ function in the vegan package. The unique contribution of host species
302  identity was then calculated after partitioning out the significant spatial PCNMs that
303  were selected using the ‘varpart’ function in vegan. We further assessed the

304 contribution of other host factors including plant height and weight by performing
305 the above-mentioned model selection and variation partitioning. The statistical
306 significance of variation fractions was then tested by performing redundancy

307  analysis ordination (RDA), and declaring the non-focal factors as conditions.

308 Neutral modeling of phyllosphere communities was performed using the
309 ‘fit_sncm’ function in the package reltools >°. This package fits the neutral model
310 from 99, as implemented by 21. In order to assess phylogenetic patterns in the

311 phyllosphere communities, we constructed a phylogenetic tree of all ASVs with
312  greater than 20 counts in the community matrix, which included 7949 ASVs.

313  Sequences were aligned using the ‘AlignSeqs’ function in the DECIPHER package 61
314  using default settings. Next, pairwise distances between sequences were calculated
315 using the ‘distml’ function in the phangorn package version 2.5.5 62, These distances
316  were then used to construct a neighbor-joining tree using the ‘NJ’ function in

317 phangorn. Lastly, the neighbor-joining tree was used as a starting point to create a
318 generalized time-reversible with gamma rate variation (GTR+G+I) maximum

319 likelihood tree using the ‘pml’, ‘update’, and ‘optim.pml’ functions in the phangorn
320 package. Lastly, we calculated the mean pairwise distance (MPD) of taxa in each

321 sample and compared to the MPD of a null model to calculate the standardized effect

14
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322  size (SES) using the ‘ses.mpd’ function in the picante package 3. We used a

323 community randomization null model (null.model = species.pool, iterations=999)
324  whereby a randomized community matrix is constructed by drawing from the total
325  species pool with equal probability. Using such a procedure, a Z-score (the SES of
326  MPD versus the null community) below zero can be interpreted as phylogenetically
327  clustered whereby taxa co-occurring in a sample are more closely related than the
328 same number of taxa drawn at random from the species pool. By contrast, samples
329  above zero are interpreted as phylogenetically overdispersed, i.e. phylogenetic

330 distance among co-occurring taxa is greater than the above-stated null expectation.
331 For univariate data such as ASV-level richness, MPD SES, and ddPCR-based
332  abundance data, a three-way ANOVA was fit to test for significant effects of host,
333  neighbor, and harvest time point, with interactions therein. The appropriateness of
334  this procedure was verified by checking for a normal distribution of residuals on the
335 model.

336

337 Results

338  Experimental manipulation of plant neighborhood in the field

339 We first compared the phyllosphere microbiome of plants that were

340 surrounded by no neighbors, conspecific (same species) neighbors, or heterospecific
341 (different species) neighbors. Because the field trial was conducted over the course
342  of 3 months, with focal plants being replaced with a plant of the same species but at
343  the original age of planting each month, we were also able to compare neighborhood

344  age/biomass effects on microbiome assembly. After processing, 175 of the 216 focal
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plant samples from the field yielded high quality sequencing reads (Tomato n = 63,
Pepper n = 52, Bean n = 60). Of these 175, 64 were from harvest 1, 58 were from
harvest 2, and 53 were from harvest 3. The 41 excluded samples each had less than
24 total reads and thus failed either to amplify or to yield sequences. The
greenhouse control plants that were included to assess the bacterial communities
established prior to transplantation into the field yielded very few reads (28 of the
45 samples had less than 50 reads), indicating that bacterial colonization prior to
transplantation was minimal. Of the 17 greenhouse control samples with detectable
sequences, communities were dominated by Enterobacterales, Corynebacterales,
Burkholderiales, and Pseudomonadales.

The field trial dataset contained 5,414,393 observations of 19,818 ASVs,
13,455 of which had >10 occurrences, and 2,253 of which had >100 occurrences.
Within-host ASV-level richness ranged from 22 to 769 ASVs across all treatments
and hosts. Richness levels varied significantly by harvest time (Fz,174 = 24.21, p <
0.001), declining throughout the season, and varying by host identity (F2,174 = 4.96, p
< 0.01), with beans harboring a greater richness, especially at the first harvest.
Neighborhood did not impact bacterial richness, however the total number of
flowers on the neighborhood plant species at the time of focal plant harvest was
positively correlated with bacterial richness on the focal plants (R2.4 = 0.044, p =
0.01). Similar qualitative trends were observed for Shannon diversity, except that
host plant weight and height were also positively correlated with diversity (R2aqj =

0.022, p = 0.03 and RZ%,4; = 0.044, p < 0.01, respectively).

16
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367 Bacterial abundance per plant varied significantly by host identity (Fz,174 =
368 27.35,p<0.001), neighborhood (F3172 = 7.96, p < 0.001), and harvest time point
369  (Fz174= 3.85, p =0.051, Fig. 2A), with no significant interactions among variables.
370 Tomato and bean plants tended to harbor higher bacterial abundances than pepper
371 plants (p < 0.001). As expected, abundance per plant was positively correlated with
372  plant weight (R2,9 = 0.187, p < 0.001) and plant height (R2.4 = 0.117, p < 0.001). If
373  we normalize bacterial abundances by the plant material weight used for

374  processing, we see weaker effects of host identity (Fz174 = 3.24, p = 0.041) and

375 neighbor (F3174 = 2.17, p = 0.094), but a stronger effect of harvest time point (F2,174 =
376  5.15,p=0.024). Several neighborhood attributes had interesting associations with
377  bacterial abundance on focal hosts. Specifically, estimated neighborhood biomass
378  (RZa=0.146, p < 0.001), average neighbor height (R2.4; = 0.123, p <0.001), and
379  total number of flowers (R2a9; = 0.022, p = 0.038) were all negatively correlated with
380  bacterial abundance on focal plants. Lastly, bacterial abundance per focal plant was
381 negatively associated with community richness (R?%.; = 0.016, p = 0.05) and

382  Shannon diversity (R%.q = 0.03, p <0.01).

383 Overall, phyllosphere communities were dominated by the phyla

384  Proteobacteria, Firmicutes, and Actinobacteriota. The most abundant bacterial

385  orders were the Bacillales, Burkholderiales, Enterobacterales, Lactobacillales,

386  Micrococcales, Rhizobiales, Sphingomonadales, and Xanthomonadales (Fig. 2B).
387  Bray Curtis dissimilarities among samples were driven by harvest time point (R? =
388 0.063, p=0.003), host species (R? = 0.055, p = 0.003), neighbor (R2=0.023, p =

389  0.048), and block (R2 = 0.036, p = 0.06), with a significant interaction between host

17
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390 and harvest (R2=0.034, p =0.033), and a trending interaction between neighbor
391 and harvest (R?=0.041, p = 0.072).

392

393  The effects of host identity on bacterial community composition decrease through time
394  while neighborhood effects increase through time and vary by host identity

395 We next examined the relative influence of host species identity and

396 neighborhood on focal plant microbiome structure at each time point during the
397 field experiment by performing a PERMANOVA on Bray Curtis dissimilarities using
398 host species identity (i.e. tomato, pepper, or bean), neighborhood (i.e. tomato,

399  pepper, bean, or no neighbor), and experimental block (1-6) as independent

400  variables. The effect of host identity was significant, but diminished in size over the
401  three time points (Harvest 1: Adj. R2=0.096, p < 0.001; Harvest 2: Adj. R2=0.068, p
402 <0.001; Harvest 3: Adj. R?=0.027, p < 0.001, Fig. 3A, see Table 1 for pre-adjusted R?
403  values). In contrast, the effect of neighborhood status was initially not statistically
404  significant, but increased in size over the three time points (Harvest 1: Adj. R?= -
405 0.001, p=0.242; Harvest 2: Adj. R?=0.017, p < 0.01; Harvest 3: Adj. R2=0.032, p <
406 0.001, Table 1, Fig 3A). Block effects tended to decrease throughout the experiment
407  (Harvest1: Adj.R2=0.011, p = 0.021, Harvest 2: Adj. R?=0.009, p = 0.028, Harvest 3:
408 Adj.R2=0.009, p=0.07, Fig. 3A). No significant interactions among variables were
409  observed at individual harvests.

410

411

412

18


https://doi.org/10.1101/2021.09.27.462052
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.09.27.462052; this version posted September 29, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

413  Table 1: Results of a PERMANOVA on phyllosphere bacterial community Bray
414  Curtis dissimilarities for harvest time points 1, 2, and 3 in the field trial. Variables
415 tested include: host species identity (tomato, pepper, or bean), neighborhood
416 (tomato, pepper, bean, no neighbor), and experimental block (1 through 6). R?
417  values represent the fit of the model and adjusted R? values have been adjusted
418 based on sample numbers of degrees of freedom to render values comparable

419  across harvest time points.

Harvest 1
df Pseudo-f R2 Adj. R2 P Significance
Host Species 2 4.49 0.125 0.096 0.001 ***
Neighborhood 3 1.11 0.046 -0.001 0.242 NS
Block 5 1.28 0.089 0.011 0.021 *
Harvest 2
df Pseudo-f R2 Adj. R2 P Significance
Host Species 2 3.22 0.1 0.068 0.001 ***
Neighborhood 3 1.46 0.069 0.017 0.001 ***
Block 5 1.23 0.096 0.009 0.028 *
Harvest 3
df Pseudo-f R2 Adj. R2 P Significance
Host Species 2 1.81 0.064 0.027 0.001 ***
Neighborhood 3 1.66 0.088 0.032 0.001 ***
Block 5 1.18 0.104 0.009 0.07
420
421 By excluding the ‘no neighbor’ controls, we then tested for an effect of

422  neighbor identity by treating neighbor type (i.e. tomato, bean, or pepper) as an

423  independent variable. On this subset of plants we see similar trends through time:
424  host identity effects diminish (Harvest 1: Adj. R2=0.114, p < 0.001; Harvest 2: Adj.
425 RZ=0.050, p <0.001; Harvest 3: Adj. RZ= 0.024, p = 0.007) and neighbor identity
426  effects increase (Harvest 1: Adj. R2=-0.003, p = 0.325; Harvest 2: Adj. R2=0.010, p =

427  0.031; Harvest 3: Adj. R2=0.018, p = 0.013). In this case a significant block effect
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428  was only observed at time point 3 (Adj. R2=0.032, p = 0.013), suggesting the block
429  effect trend described above is influenced by the no neighbor controls.

430 We further asked whether a closer approximation of bacterial taxon absolute
431 abundances might impact our conclusions. The relative abundance of each taxon in
432  each sample was multiplied by the total 16S rRNA copies per 10 ul DNA (the same
433  volume used for sequencing library preparation) to yield an estimate of each taxon’s
434  absolute abundance (quasi-absolute abundance). In this new dataset, sample

435  dissimilarities were modeled using the same PERMANOVA procedure as above. This
436  generated the same qualitative findings as the relative abundance data, but with
437  slightly stronger effect sizes for influence of neighborhood plant species (Supp.

438 Table 1). One new result revealed by this approach, however, was a host by

439  neighborhood interaction, which increased from harvest 2 (Adj. R2=0.008 p =

440  0.002) to harvest 3 (Adj. R2=0.024, p = 0.003, see Supp. Table 1 for pre-adjusted R?
441  values). In other words, the effect of neighborhood depended on the host’s species
447  identity, and this effect became stronger over time.

443 To further assess whether the three host plants species differed in their

444  susceptibility to neighborhood effects, we subset the data by plant species and

445  assessed the strength of neighborhood effects separately over the 3 time points.
446  Similar to the combined data, no plant species exhibited a detectable neighborhood
447  effect of microbiome composition at harvest 1. The tomato focal plants only

448  exhibited a detectable neighborhood effect at harvest 3 (R2.4; = 0.086, P = 0.009, Fig.
449  3B), and no block effects at any harvest. For the pepper focal plants, there was only a

450 neighborhood effect at harvest 2 (R%,4; = 0.108, P = 0.013, Fig. 3B). Lastly for the
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bean focal plants, a neighborhood effect was only detected at harvest 3 (R2.q; =
0.069, P =0.012, Fig. 3B). No significant block effects were observed for pepper or

bean at any harvest.

Neighbor status and identity diminish effects of host species identity on phyllosphere
bacterial communities

To test the hypothesis that focal plants with experimental neighbors would
experience higher rates of inter-host dispersal than focal plants without nearby
neighbors, we performed model selection on hosts that were distinguished by their
neighbor status to identify the most explanatory host variables. We repeated this
procedure for spatial variables generated by principle coordinates of neighborhood
matrix analysis and then performed variation partitioning to partition out the
unique contribution of host factors explaining diversity. We find supporting
evidence for our hypothesis in harvests 2 and 3, but not harvest 1 (Fig. 4), indicating
a dependency on the age structure of neighbors. For harvests 2 and 3, the unique
contribution of host identity was stronger for the plants having no neighbors than
the plants having either tomato, pepper, or bean as neighbors. In fact, at harvest 3
focal plants that were surrounded by bean or tomato neighbors had no detectable
effect of host species identity after separating out the effect of space. Interestingly at
harvest 1, focal plants with neighbors had higher effects of host species identity than
the no neighbor controls, and this was especially the case for plants with tomato or
bean neighbors. Interestingly in the focal plants surrounded by peppers, host

species effects followed a hump-shaped relationship (increasing at first, then
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decreasing), rather than the monotonic decrease observed for tomato- or bean-
surrounded plants. It thus appears that host-mediated selection of epiphytic
bacterial communities becomes subservient to the effect of immigrant inoculum
from neighboring plants as the biomass of neighboring plants increases.

Additionally, in certain cases, host identity combined with host height,
weight, or both height and weight in a way that increased explanatory power of host
factors. While in several instances this boosted the explanatory power of host
factors (e.g. at harvest 1), our qualitative conclusions remain the same (Supp. Fig. 1).
In other words, the effects of host identity are weaker for all plants that have

neighbors at both harvests 2 and 3.

Phylogenetic clustering and neutral model fit vary by host and through time

To better understand the predominance of deterministic processes in
shaping phyllosphere community membership and determine whether the three
plant species might be influenced by different assembly processes, we tested for
patterns of phylogenetic clustering. Evidence of phylogenetic clustering within a
host species would suggest that phylogenetically-conserved traits are being selected
for in a host-specific way 1920, We tested this idea using the standardized effect size
(SES) of the mean pairwise distance (MPD) of bacterial ASVs in each sample. MPD
SES was significantly influenced by host species identity (F2,175 = 219.86, p < 0.001),
harvest time point (F2,175 = 12.33, p < 0.001), a host by harvest interaction (F4,175 =

43.84, p < 0.001), and neighborhood (F3 175 = 3.38, p < 0.05, Fig. 5A). Tomato- and
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pepper-associated communities were more phylogenetically clustered than would
be expected by chance (as indicated by negative SES values), and this was the case
for all three time points for both plants. In contrast, bean-associated communities
showed evidence of phylogenetic overdispersion (as indicated by highly positive
SES values). Bean SES values tended to decrease (i.e. tend towards clustering) over
time, but were highly variable. One exception was at harvest 3, where beans with no
neighbors had high variability in MPD SES, beans with conspecific neighbors were
phylogenetically clustered, and beans with tomato neighbors were overdispersed
(Tukey’s HSD conspecific neighbor vs tomato neighbor p = 0.02).

We next asked how well the occupancy-abundance relationships within each
host species could be fit by a neutral model, whereby passive dispersal and
ecological drift are the primary drivers of establishment, and then asked whether
the fit to that model changed over time. Of the three hosts, bean-associated
communities had the highest goodness-of-fit values followed by tomato-associated
communities, suggesting differences among hosts in the role of neutral processes in
shaping community structure (Fig 5B). Both bean and tomato hosts showed a
decline in the fit of a neutral model from harvest 1 to 2 (Bean: harvest 1 R2=0.483,
harvest 2 R?=0.074; Tomato: harvest 1 R2=0.214, harvest 2 R?=0.052), and the
neutral model failed to fit either set of plants for harvest 3 (as indicated by a
negative goodness-of-fit). At all three time points, pepper hosts were never fit by a

neutral model (indicated by negative goodness-of-fit values).
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519  Experimental greenhouse transplantation of field study-derived inocula replicates host
520 filtering and reveals effects of inoculum source

521 The subsequent greenhouse study allowed us to more closely examine the
522  effects of inter-host dispersal of bacterial taxa, as phyllosphere bacterial

523 communities that were recovered from the field were transplanted onto either the
524  same plant species from which they were collected, or onto the plant species that
525  had previously surrounded the source plant. From the 105 total such reciprocal
526  inoculations, 103 samples yielded sufficient high quality sequences for analysis. The
527  resultant dataset contained 2,640,588 observations of 1734 ASVs, 1379 of which
528 had greater than 10 observations, and 621 of which had over 100 observations.

529 We observed a linear relationship between the ASV-level richness of the

530 sample from which the inoculum was derived and the number of inoculum ASVs
531 that were detectable in the greenhouse samples (R?.4; = 0.105, p = 0.004, Supp. Fig
532 3). The number of overlapping ASVs between the inoculum and the experimental
533  plants was significantly related to the host species identity (F28s = 8.503, p < 0.001),
534  the previous host species from which the inoculum was sampled (Fzgs =3.871, p
535 =0.028), and interactions between the host and previous host (Fgs = 2.598,

536  p=0.049) as well as between the host and previous neighbor (Fsgs =2.968 p=0.03).
537  Similar to the field study, phyllosphere communities were dominated by the phyla
538  Proteobacteria and Firmicutes. The most abundant bacterial orders were the

539  Bacillales, Burkholderiales, Enterobacterales, and Pseudomonadales (Supp. Fig. 2).

540  The bacterial community structure on treated plants differed significantly from that
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541  of control plants to which only sterile buffer had been applied (PERMANOVA R? =
542  0.0156, p = 0.048).

543 We used the heat-killed inoculum as a control to gain insights into the level of
544  host selection and subsequent inoculum establishment across our experimental

545 plants. To do so, we asked how strongly phyllosphere microbiomes were

546 differentiated by host species identity. Plants that received a heat-killed inoculum
547  were less differentiable than plants that received a live inoculum (PERMANOVA Adj.
548 R2=0.100, p = 0.04 versus Adj. R2=0.103, p < 0.001, respectively). The plants that
549  received the sterile buffer as a control were even less differentiable by host species
550 identity (Adj. R?2=0.056, p = 0.07). Interestingly, if we subset samples based on

551  whether experimental plants received an inoculum from heterospecific (different
552  species) or conspecific (same species) hosts, we see that heterospecific transplants
553  resulted in more differentiable hosts than conspecific transplants (Adj. R = 0.123, p
554 <0.001vsAdj.R2=0.109, p < 0.001, respectively). It thus appears that the

555 treatment plants receiving live cells more efficiently filtered communities, driving
556 differentiation of host species, and that heterospecific inoculum sources further

557  bolstered host differentiation.

558 Indicator taxon analysis allowed us to examine the taxa enriched on each of
559 the three host species in the field trial (at harvest 2) and the greenhouse trial. Of the
560 34 taxa that distinguished pepper plants in the field, 6 were found in the greenhouse
561 dataset (Supp. Table 2). The collective relative abundance of these taxa was

562  significantly higher on pepper plants in the greenhouse than on tomatoes (Tukey’s

563 HSD p <0.001) or beans (Tukey’s HSD p < 0.001). Of the 65 taxa that distinguished
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tomato hosts in the field, 25 were detected in the greenhouse dataset (Supp. Table
2). The collective relative abundance of these taxa was significantly higher on
tomato and pepper plants relative to beans (Tukey’s HSD p < 0.05 and p < 0.01,
respectively). Of the 300 taxa that distinguished bean, 27 were found in the
greenhouse (Supp. Table 2), but their collective relative abundance was not

significantly different among hosts (p > 0.05).

The effect of donor plant biomass on recipient plant phyllosphere richness in the
greenhouse depends on the origin of field inoculum

Within-host ASV-level richness of treatment plants ranged from 24 to 231
ASVs and varied significantly by host species identity (F272 = 12.41, p < 0.001), an
interaction between host and previous host identities (F474 = 3.50, p < 0.05), and
experimental block (F472 = 2.43, p = 0.058). Of the three plant species, peppers
harbored significantly higher richness than tomatoes or beans (p < 0.001), which
were indistinguishable from each other (p > 0.05). When the inoculation was a
conspecific transfer (i.e. moving between two plants of the same species), a negative
but weak relationship was observed between donor plant biomass and recipient
plant richness (Adj. R? = 0.09, p < 0.05, Fig. 6A). However, when the inoculation was
a heterospecific transfer (i.e. between two different plant species), a positive and
stronger relationship was observed between donor plant biomass and recipient
plant richness (Adj. R? = 0.21, p < 0.01, Fig. 6B). No significant differences in richness
were observed between conspecific transplants and heterospecific transplants (p >

0.05).
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Experimental transplantation of phyllosphere communities reveals an influence of
current and previous host identity, as well as donor plant neighbor

PERMANOVA on Bray Curtis dissimilarities revealed that host species
identity, previous host identity (i.e. the species from which inoculum was derived),
and experimental block all significantly contributed to phyllosphere community
structure differences among experimental greenhouse plants (Host species R? =
0.127, p <0.001, Previous host species R2 = 0.0468, p <0.001, Block R2 = 0.156, p
<0.001, Table 2). We also observed an effect of donor plant biomass on recipient
plant phyllosphere community structure (R = 0.018, p = 0.05, Table 2). Moreover, if
we interrogate the dataset by plant species, we see a “grandparent effect” in the
phyllosphere community structure of greenhouse-grown pepper plants. That is,
pepper phyllosphere communities were most strongly shaped by the previous
host’s neighbor (R? = 0.194, p < 0.001), i.e. the plant species that previously
surrounded the donor plant. The previous host’s species identity was also
significantly associated with pepper plant phyllosphere community structure, albeit
to a lesser extent (R?=0.107, p = 0.061). In contrast to what was observed on
pepper, neither previous neighbor effects nor previous host effects were observed

for tomato or bean subsets.
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Table 2: Results of a PERMANOVA on phyllosphere bacterial community Bray
Curtis dissimilarities for the greenhouse experiment. Variables tested include: host
species identity (tomato, pepper, or bean), previous host species identity (tomato,
pepper, bean), previous neighbor (tomato, pepper, bean), previous host biomass (g),
and experimental block (1 through 5). R? values represent the fit of the model.

Greenhouse Trial

df Pseudo-f R2 P Significance
Host Species 2 6.21 0.127 0.001 ***
Previous Host Species 2 2.28 0.046 0.001 ***
Previous Neighbor Species 2 0.98 0.02 0.478 NS
Previous Host Biomass 1 1.72 0.018 0.05 *
Block 4 3.92 0.156 0.001 ***
Discussion

Plant-microbe associations form in part through host filtering of microbiota
that arrive via dispersal ¢4 Our study experimentally manipulated neighbor
presence, identity, and age in order to understand how these factors influence host
filtering of phyllosphere communities. Over the course of the experiment, we found
that host species identity effects on focal plant microbiomes decreased, while the
effects of neighborhood increased (Fig 3A). This finding builds on past studies
showing that host species- or genotype-level differences in microbiota change over
the growing season (e.g. Wagner et al. 2016; Chaparro, Badri, and Vivanco 2014;
Inceoglu et al. 2011). However, an important distinction is that we experimentally
held host developmental stage constant throughout the experiment, thereby

demonstrating that changes in host species identity effects over time are not simply
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due to host ontogeny, but hinge on characteristics of the neighboring plant
community such as neighbor identity and biomass.

The increasing strength of neighborhood effects throughout the field
experiment suggests that as neighboring plants grow and enrich for host species-
specific microbes, they become larger sources of microbial propagules to their
surrounding neighborhood, and thus alter the outcome of host filtering through
compositional changes to the local species pool. Two other lines of evidence from
our study further underscore the importance of neighbor identity for phyllosphere
community assembly. First, when we directly control the directionality of dispersal
in our greenhouse microbial transplant study, we see that the source of inoculum
(i.e. the species identity of the donor plant) significantly contributed to the
microbiome composition of recipient plants (Table 2). Second, the field experiment
uncovered strong differences in host species identity effects depending on the
identity of neighbors (Fig. 4). For instance at harvests 2 and 3, hosts that were
surrounded by tomato or bean neighbors were substantially less differentiable in
their phyllosphere community structure than plants surrounded by pepper or that
had no neighbors. This suggests firstly that having a neighbor impacts the
differentiation of hosts, but crucially that the outcome of neighborhood effects
depends on neighbor identity. Interestingly, it has also been reported that inter-host
dispersal among zebrafish greatly diminished genotype-level microbiome
differences #2. Our results not only reinforce this concept in plants, but suggest that

this effect depends on neighbor identity.
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One of the key differences among experimental neighborhoods was plant
biomass, which varied by species (Fig. 1C). This is likely an important driver of the
neighborhood effects observed in this study. Larger biomass plants could harbor
higher abundances of microorganisms by virtue of having more microbial habitat,
thereby increasing the load of propagules dispersing onto focal plants. While we
chose not to sample the epiphytic communities of the neighborhood plants in order
to leave them undisturbed for the duration of the experiment, we observed a
positive correlation between focal host biomass and epiphytic bacterial abundance.
Thus, larger biomass neighborhood could have diminished the strength of host
filtering through mass effects, i.e. rescuing via dispersal the taxa that went locally
extinct due to host selection. We see evidence for the importance of neighbor
biomass in several results. First, as the higher-biomass tomato and bean
neighborhoods grew, we see that focal plant species identity effects became weaker,
so much so that by harvest 3 hosts were indistinguishable by their species identity if
they were surrounded by tomato or bean (Fig. 4). Interestingly, at harvest 1, relative
to no neighbor controls, focal hosts surrounded by tomatoes or beans exhibited
higher species identity effects, suggesting that at an early stage, neighbor plants may
bolster host filtering by providing higher abundance and/or diversity of propagules.
Moreover, the effects of the smaller pepper neighborhoods followed a similar but
lagged trend, whereby host differentiation was highest at harvest time point 2,
followed by more diminished host species effects at harvest 3. This could be driven
by the observed slower growth of peppers relative to beans or tomatoes. In the

greenhouse study, we see that the biomass of the donor plants significantly
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contributed to variation in both community composition (Table 2) and diversity
(Fig. 6) of recipient plants. Here, the relationship between recipient plant
phyllosphere richness and donor plant biomass was negative and weak if the
transplant was conspecific (same species) but stronger and positive if it was
heterospecific (between different species). Together these results underscore that
biomass is not only an important component of neighborhood effects, but that such
influences of biomass may depend at least partly on the identity of the neighbors.
Our study also makes clear that differences in the strength of host filtering
across species may impact susceptibility to neighborhood effects. We found that
plant species exhibited neighborhood effects differently through time (Fig. 3B).
Together with the observation of a host-by-neighborhood interaction effect, these
results suggest that the relative impact of local neighborhood differs among focal
host species, perhaps due to differences in the degree to which dispersal versus host
filtering influence phyllosphere assembly. For instance, host-specific carrying
capacities could be driving the observed differences in bacterial abundances across
species (Fig. 2A). This could mean that species with lower abundances of bacteria
(e.g. peppers) are more invasible, and hence taxa that are selected for may more
quickly become outnumbered by immigrating taxa. This may explain why pepper
plants exhibited neighborhood effects at harvest 2, while tomato and beans did not
do so until harvest 3. Several lines of evidence also suggest that the plants may differ
in their selective abilities. For instance, tomato- and pepper-associated communities
consistently exhibited phylogenetic clustering (Fig. 5A), indicating that closely

related taxa were often observed to co-occur on a single plant, perhaps due to host
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selection of shared traits. In contrast, bean microbiomes tended to be
phylogenetically overdispersed, and hence exhibited much less clustering than one
would expect by chance. Overdispersion could indicate that traits under selection
are not phylogenetically conserved, that competition is strong (e.g. between
ecologically similar taxa), or that selection is relatively weak 19. That we also see a
strong fit of bean microbiomes to neutral models at harvests 1 and 2 (Fig. 5B)
suggests that the bean phyllosphere may be less selective relative to the tomato and
pepper phyllosphere, and therefore more susceptible to dispersal effects.
Interestingly in the greenhouse experiment, only pepper plant microbiomes
exhibited a “grandparent effect” of inoculum, i.e. an effect of the donor plants’
previous neighbor. This result demonstrates that for certain species, microbiome
composition not only reflects its contemporary host and its source history, but also
its previous dispersal history. This is analogous to a child inheriting a parent’s
microbiome that carries with it traces of the parent’s former house, pet, or domestic
partner. Results from the field trial may help shed light on why only pepper
microbiomes contained detectable traces of dispersal history. The aforementioned
patterns of phylogenetic clustering in pepper plant communities and the
observation that neutral models failed to fit pepper plants (Fig. 5A,B) together
suggest that the pepper phyllosphere may impose particularly strong selection on
microbial communities. This strong filtering ability may not only select against taxa,
but it could act to amplify taxa that previously dispersed from pepper neighbors,

thus giving rise to effects of previous neighbor. In other words, selective plants such
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as pepper may bolster pepper-associated microorganisms upon arrival, even if they
have become rare through multiple dispersal events.

One major implication of our work is that it highlights the potential
importance of local host frequencies in recruiting microbiota. At harvest 3, bean
phyllosphere communities exhibited phylogenetic clustering only when the plants
were surrounded by conspecific (same species) neighbors. As phylogenetic
clustering could be interpreted as host filtering for phylogenetically-conserved
traits, this result suggests that for beans in particular, the frequency of conspecifics
in the plant metacommunity may be an important determinant of host filtering
efficacy. Interestingly, for pepper- or tomato-associated communities, the con- or
hetero-specific status of neighborhoods had little influence over phylogenetic
clustering, suggesting that this effect may depend on the strength of host filters.
Similar findings have recently been reported for Acer saccharum trees 38, where the
abundance of conspecific trees in the local metacommunity was positively
correlated with the degree of host specialization in the phyllosphere, and
importantly, this was not the case for all tree species surveyed. Moreover in cacao
trees, leaf litter of healthy conspecific hosts was shown to protect against pathogen
damage ¢’. While we did not test the fitness effects of host filtering for specialized
microbial taxa, our results alongside several others may challenge the conspecific
negative density-dependence (i.e. Janzen-Connell) hypothesis that posits that higher
local densities of conspecifics may be disadvantageous due to the possibility of
shared pests or pathogens 2930, While there remain many examples of conspecific

negative density-dependence %8, particularly in the tropics, meta-analyses seeking
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general trends have generated mixed results %70, Qur work emphasizes that
recruitment of specialized taxa from nearby conspecific hosts could outweigh the
negative effects of pest pressure in certain contexts, or for certain host species.
Overall, our work makes clear that local neighborhood identity and biomass
are key components that shape assembly of the phyllosphere microbiome. In both
the field trial and greenhouse experiment, we find that although plants are able to
select upon their microbial communities, the outcome of this selection is shaped by
both neighbor identity and local biomass. Moving forward, this work has opened a
number of critical questions regarding how neighborhood effects on the plant
microbiome might shape plant health, fitness, and - in agricultural settings
especially - yield. The work also raises questions about how invasive plant species
might alter microbial dispersal within their communities, and potentially negatively
feedback on native plant species’ fitness by reducing their ability to filter the
optimal microbiome. In sum, our work demonstrates that host filtering and local
dispersal are intimately intertwined and represent crucial considerations for the

study of host-microbe associations.
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Fig. 1: Experimental design of the field trial. A) Experimental neighborhoods were
constructed by planting a focal plant in the center of a ring of neighbor plants, with
fully factorial combinations of focal and neighbor plant species. Each block
contained 12 comparisons, with focal and neighbor plant abbreviated (T=tomato,
P=pepper, B=bean, and N=no neighbor), respectively. Focal plants were harvested
and replaced each month, while the neighborhoods were left to continue growing,.
Shown are a tomato focal plant with tomato neighbors (top) and a pepper focal
plant with bean neighbors (bottom) at the time of initial planting. B) A pepper
neighborhood surrounding a bean focal plant at the time of harvest number 3. C)
The biomass of neighborhood plants (g) increased to varying degrees with time for

each plant species by harvests 1, 2, and 3.
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987  Fig. 2: Bacterial abundance and composition vary across host species and harvest
988 time. A) The abundance (logio 16S rRNA gene copies measured using ddPCR of leaf
989  washes, y-axis) for individual focal plant species (x-axis) surrounded by different
990 neighbor plant species (box color) and at different successive harvest times (panels
991 1, 2, and 3). B) Relative abundance of the 9 most abundant bacterial orders

992  distinguished by host species and harvest time. All other less abundant or

993 ambiguously assigned orders are grouped under ‘Other’.
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997  Fig. 3: The effects of host identity on bacterial community composition decrease
998 through time while neighborhood effects increase and vary by host plant species. A)
999  Adjusted R? values (y-axis) are the result of PERMANOVA analyses on Bray Curtis
1000 dissimilarities for each harvest, accounting for sample number and degrees of
1001 freedom from slight differences in sample number. See Table 1 for pre-adjusted R?
1002  values. The effect of host identity (solid maroon line), the effect of neighborhood
1003  (blue dot-dash line), and the effect of experimental block (green dotted line) are
1004  shown. Harvest time point is shown on x-axis. Filled circles indicate statistical
1005  significance (p < 0.05), while open circles represent statistically insignificant effects
1006 (p > 0.05). B) Host plant species experience neighborhood effects on phyllosphere
1007  bacterial communities differently through time. Adjusted R? values (y-axis) and
1008 harvest time point (x-axis) are as described for plot A. Tomato hosts (solid red line),
1009  pepper hosts (light green dot-dash line), and bean hosts (light blue dotted line) are
1010  shown. Filled circles indicate statistical significance (p < 0.05), while open circles

1011 represent statistically insignificant effects (p > 0.05).
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Fig. 4: The unique contribution (adjusted R?) of host plant identity to phyllosphere

bacterial structure decreases over time for plants with neighbors. Unique

contribution was calculated by partitioning out spatial principle coordinates using

RDA-based variation partitioning. The order of depiction of the neighbor plant

species is by estimated neighborhood biomass from lowest to highest. Boxes 1, 2,

and 3 represent different harvest time points. In cases where Raq; = 0, host species

identity did not significantly explain variation in phyllosphere bacterial

composition.
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1023  Fig 5: Bacterial leaf surface community assembly processes differ between plant
1024  hosts, suggesting differences in host filtering. A) Standardized effect size (SES) of
1025 mean pairwise distance (MPD) of phyllosphere communities split by host (x-axis),
1026  neighbor (box color), and harvest time point (panels 1, 2, or 3). SES = (MPDgps -
1027  MPDuu)/SD(MPDnun), whereby values below 0 suggest phylogenetic clustering. B)
1028  The fit of a neutral model declines through time, but differs strongly by host

1029  identity. Neutral model goodness-of-fit values (R?, y-axis) at each harvest (x-axis)
1030 for tomato (solid red line), pepper (green dot-dashed line), and bean (blue dotted
1031 line). Filled circles indicate statistical significance, open circles indicate not

1032  significant (negative or 0 goodness-of-fit values).
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1035  Fig 6: The effect of donor plant biomass (g) on phyllosphere community richness
1036  depends on the origin of inoculum. A) Conspecific (within the same species)

1037  transfers, where ASV-level richness (y-axis) is negatively, but weakly, correlated
1038  with the donor plant biomass (g, x-axis). Points are colored according to the

1039 recipient plant species. B) Heterospecific (across different species) transfers, where
1040  ASV-level richness (y-axis) is positively correlated with the donor plant biomass (g,
1041  x-axis). Point colors correspond to host species and point shapes correspond to the

1042  donor plant species. For both plots, Rz and p values are derived from linear models.
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