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Imaging Mass Cytometry (IMC) has become a useful tool in biomedical research due to its ca-
pability to measure over 100 markers simultaneously. Unfortunately, some protein channels
in IMC images can be very noisy, which may significantly affect the phenotyping results with-
out proper data processing. We developed IMCellXMBDﬂ a highly effective and generalizable

cell identification and quantification method for IMC images. IMCell performs denoising

IXMBD: Xiamen Big Data, a biomedical open software initiative in the National Institute for Data Science in

Health and Medicine, Xiamen University, China.
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20 by subtracting an estimated background noise value from pixel values for each individual
21 protein channel, identifies positive cells from negative cells by comparing the distribution
22 between segmented cells and decoy cells, and normalize the protein expression levels of the
23 identified positive cells for downstream data analysis. Experimental results demonstrate that
2« our method significantly improves the reliability of cell phenotyping which is essential for

25 using IMC in biomedical studies.

26 1 Introduction

27 Analysis of the heterogeneity of cells is critical to discover the complexity and factuality of the life
28 system. Recently, single-cell sequencing technologies have been increasingly used in the research
20 of developmental physiology and disease "™, but the spatial context of individual cells in the tissue
30 1s lost due to tissue dissociation in these technologies. On the other hand, traditional immunohisto-
31 chemistry (IHC) and immunofluorescence (IF) preserve spatial context but the number of markers
a2 1s limited. The development of multiplex IHC/IF (mIHC/mIF) technologies, such as cyclic IHC/IF
s and metal-based multiplex imaging technologies °%, has enabled the detection of multiple mark-
s+ ers simultaneously while preserving their spatial information. Imaging mass cytometry (IMC) 2,
35 one of the metal-based mIHC technologies, uses a high-resolution laser with a mass cytometer
s and enables simultaneous measurement of up to 100 markers. Due to its high resolution and large
a7 number of concurrent marker channels available, IMC has been proven to be highly effective in
;s identifying complex cell phenotypes and cell-cell interactions coupled with spatial locations, and

s has been utilized in many biomedical and clinical studies on tumor or immune diseases 1021,
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40 A number of methodological challenges must be overcome when applying IMC to clinical
41 applications in order to derive reliable cell quantification and phenotyping results from IMC. Im-
42 ages generated by a mass cytometry system are subject to noise and other acquisition artifacts
s tesulting from, e.g., sample protein degradation or signal spill-over between heavy metals “*. In-
44 strument performance can vary within a single sample, not to mention the technical variance among
s different instruments. Besides, the antibody performance and antigen retrieval condition can dif-
s fer between samples due to their storage time and environment, which result in protein variations
47 between and within samples. Therefore, specific data processing steps are needed to ensure mea-
45 surement of cellular markers with high resolution, quality, and reproducibility. Quality control and
49 data normalization have been incorporated into the standard operation procedures in the software
so of the mass cytometers to convert raw signals to images %¥. Most IMC image quality control and
st preprocessing steps are performed semi-automatically and tuned for individual datasets. Some
s2  generic signal processing techniques have been applied to different datasets, including background
s removal, hot pixels removal, and denoising by low pass filtering, etc. 1124, Data normalization has
s+ also been discussed to eliminate the variation between samples 22, Despite the progress in IMC
55 data processing tools, in practice it is still possible to obtain IMC images with very poor signal-
ss to-noise ratios (SNR) that exceed the processing capabilities of existing tools. In such cases, it
s7 remains as an intricate issue to identify true positive cells from strong background noise and har-
ss monize their protein expression levels across slides from different samples or different regions of

so interest (ROIs) from the same slide for downstream analysis.

60 In this paper, we present IMCell, a method for protein expression quantification for single
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e1 cells from IMC images. IMCell is able to reliably identify positive cells from highly noisy channels
2 of an IMC image, and perform expression quantification for these cells. To this end, IMCell uses
ss a Monte Carlo method to create decoy cells randomly on the potential noise regions of the image,
s« and computes the distribution of the protein expression of the decoy cells to derive the background
es noise level of the image. The positive cells are then identified with false discovery rate (FDR)
es control by comparing the protein expression distribution of decoy cell with that of the segmented
7 true cells. To reduce the effect of background noise on the quantification results, IMCell further
es performs noise reduction on the IMC images with the identified background noise level. Finally,
o the protein expression values of the positive cells are normalized to mitigate the variations of pixel
70 values across different IMC images. Our evaluation results show that IMCell can retain real signals
71 with a user-defined confidence level and eliminate sample variations, improves IMC image quality,

72 and benefits the downstream analysis.

7z 2 Results

72 IMCell identifies true positive cells from noise IMCell identifies positive cells on each protein
75 channel based on FDR control with the distribution of permuted decoy cells. First, IMCell ran-
76 domly generates a large number of decoy cells on potential noise regions of each protein channel
77 (Methods, Figure[I)). With the generated decoy cells, IMCell identifies positive cells by comparing
78 the distributions of cell protein expressions, calculated as the mean of pixel values of the cell, of all
79 segmented cells and decoy cells, from which the detection threshold can be set based on the target

so FDR (Methods, Figure |[1). Once the positive cells are identified on each protein channel, IMCell


https://doi.org/10.1101/2021.09.27.461899
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.09.27.461899; this version posted September 27, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

s1 further estimates the background noise level (Methods), which is then removed from the respective

s2 IMC channel to generate a clean image for each channel.

83 We compared the performance for background noise removal of IMCell with two commonly
s« used methods, the percentile method and the median filter. The percentile method defines a lower
s threshold 7; and an upper threshold 7j. It then removes outliers by setting pixel value to zero
ss for those lower than 7;, and setting pixel values to 7}, for those higher than 7}. Here we used
7 the 1st percetile (1) as T; and the 99th percentile ((Q99) as T}. Results show that the percentile
ss method removes outliers but cannot deal with noise of similar intensity values as the signal, such
ss as salt-and-pepper noise. On the other hand, the median filter is only effective in removing salt-
% and-pepper noise but does not remove other types of noise. In addition, it tends to remove true
o1 expression signals wrongly at cell boundaries, or if the true expression signals have a salt-and-
o2 pepper noise-like spatial patterns. In contrast, by estimating the background noise level from
o3 decoy cells randomly drawn from the potential noise regions of the image, IMCell successfully
s« removed background noise while preserving the true protein expression values from positive cells,

es resulting in a cleaner image with significantly improved the SNR (Figure [2j, [2b).

% We further compared the co-expression patterns of CD45, CD3 and CD4 from different
o7 methods and observed that IMCell can retain true CD3 signal since most CD4 T cells expressed
s both CD3 and CD4, while the median filter over-removed CD3 signal and the percentile method

s failed to remove noise in the CD3 channel (Figure 2, [2[d)).
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10 IMCell reduces variations in pixel intensity and cell protein expression across IMC images.
101 Analysis of the raw images and segmented cells show that the range of pixel intensity values and
102 the level of SNR vary significantly among samples (Figure 3h). The difference is conspicuous
1s even after performing the variance stabilizing transform, e.g., the inverse sinh transform “%, on the
104 IMC images to reduce the overall range of the pixel intensities (Figure [3p). The distribution plots
105 demonstrate that the variation across samples exists not only at pixel level but also at cell level,
1e 1f the cell protein expressions were calculated directly from the raw images. Large inter-sample
17 distribution variation could be misleading in downstream data analysis, as the cells may cluster by
10e samples but not by cell types. In IMCell, protein expression levels are normalized across the entire
100 dataset based on the identified positive cells (Methods). Figure 3k shows the variation of intensity

1o across three samples at both pixel and cell levels after intensity normalization by IMCell.

111 IMCell enables clustering with biological significance To investigate the effects of different
12 IMC image preprocessing methods on downstream analysis, we applied unsupervised clustering
113 on cells generated from raw IMC images, images processed with the median filter, the percentile
14 method, and IMCell, respectively, using a same subset of proteins as features. After clustering,
ns  the cell type of each cluster can be identified based on its marker expression pattern compared to
116 that of known immune and tumor cell types (Figure d)). The cell types of the cell clusters obtained
17 from raw IMC images or images processed using the percentile method can hardly be identified.
11s  As the heatmap shows, some clusters have more than one relatively high cell-type-specific protein
110 expressions (Figure ). For example, Cluster 1 from the raw IMC images contains similar protein

120 expression level for both lymphoid (CD4) and myeloid cells (CD14, CD68), causing confusion in
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121 cell type identification. The percentile method also leads to a confusing heatmap where the cell
122 types cannot be ascertained (Figure db). Alternatively, by applying the median filter or IMCell on
122 the raw images, the cell clustering results are more biologically significant (Figure fc, d). For
12+ the clustering results obtained from cells of IMC images preprocessed by the median filter, we can
125 annotate Cluster 12 as B cell, but still have difficulty to determine other two clusters (Cluster 1
126 and 10) because they contain T cell markers (e.g., CD4, CD8) and a certain amount of myeloid
127 cell markers such as CD68 and CD14. On the other hand, we are able to obtain highly specific
128 cell clusters from clustering results obtained from cells quantified with IMCell, e.g., CD4 T cell

129 (Cluster 4), CD8 T cell (Cluster 1), B cell (Cluster 3) and myeloid cell (Cluster 12, 13, 15).

130 3 Discussion

131 In this work, we developed IMCell which enables efficient and accurate cell quantification from
122 IMC images. Our work is based on statistical testing on the distributions of both segmented cells,
133 which are regarded as true cells identified by image segmentation software, and decoy cells. As
13 decoy cells are drawn from potential noise-only regions of IMC image with random shapes and
135 locations, it can be anticipated that its distributions will highly resemble those of negative cells (i.e.,
136 cells that don’t express target proteins). Therefore, the positive cells can be reliably identified with
137 proper FDR control base on the distributions of both cells. Note that the successful application of
13e  IMCell depends on the availability of information on true cell segmentation. In this work we used
130 Dice-XMBD 4, a deep neural network based IMC cell segmentation tool that is able to perform

120 automatic cell segmentation from IMC images without manual annotation. It is also possible to
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11 use other cell segmentation tools, e.g., Ilastik ** and CellProfiler *°, to perform such a task.

142 Normalization across different images is critical to align the protein expressions to the same
143 sea-level such that they can be compared in downstream data analysis. However, such normaliza-
14 tion can only be performed if the positive cells (i.e., cells expressing certain target proteins) can be
15 reliably identified. Otherwise, the normalization can falsely amplify negative cells located at noise
146 regions of the image, resulting in severe false positive issues that plague the downstream biological
147 analysis. For this reason, expression normalization is seldom performed in existing IMC process-
1s 1ing pipelines although significant inter-slide variations of marker protein expressions are common
19 1n IMC studies. In IMCell, by rigorous FDR control, expression normalization is only performed
150 on high-confidence positive cells, thus minimizing the risk of amplification of false-positive cells.
151 As validated by visual inspection and clustering analysis, cell quantification by IMCell leads to
152 much more consistent connections between cell phenotypes and marker protein expressions. We
153 anticipate that IMCell could help to promote better usage of the IMC technologies both in research

15« labs and in clinical settings.

155 4 Methods

156 Patients and IMC data acquisition Melanoma cancer formalin-fixed paraffin-embedded (FFPE)
157 tissues were stained with a customized panel (35 antibodies) to generate the IMC images used in
18 this study. We excluded images containing large areas with nonspecific background staining that

150 could be caused by nonspecific antibody binding *! by manual inspection using the MCD viewer
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10 (V1.0.560.6). The remaining 158 images were further analyzed in the following procedures.

161 Overview of the IMCell workflow. IMCell consists of two main modules, denoising and normal-
162 ization (Figure [5). Firstly, raw IMC images are preprocessed and segmented by any cell segmen-
s tation method. Then we randomly generate a number of decoy cells on the potential noise region
1sa of each protein channel image. The protein expressions of the decoy cells are used to estimate
15 the background noise of the protein image. After that the protein expression distributions of all
166 segmented cells and decoy cells are compared to identify positive cells with FDR control. Next,
167 in the normalization module, to fairly compare positive cells across images, we scale the mean ex-
1ss  pression of positive cells from each image to the same level. More details are described as follows

160 step by step.

70 Cell segmentation using Dice-XMBD Single cells were identified by Dice-XMBD ¥ using a
171 pretrained deep neural network model, and referred to as segmented cells in this paper. Note that
172 other cell segmentation methods can also be used in the IMCell workflow. For quality control,
173 the segmented cells that cover less than 5 pixels are discarded. The cell protein expressions are

174 extracted as the mean of the pixel intensity values in each cell mask region.

175 Preprocessing and hot pixel removal We first applied the hyperbolic inverse sine function (arc-
176 sinh) on all the pixel intensities for each channel. The raw marker intensities output from cytome-
177 ters tend to have strongly skewed distributions with varying ranges of expression values. It is thus
178 a common practice to transform the raw marker intensities using arcsinh to make the distributions

7o more symmetric and to map them to a comparable range of expressions 2232,
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180 Hot pixels were removed by filtering with a 5 x 5 pixel® window. If the center pixel of the
181 window was in the top 2% of all pixel intensity values in the channel and was at least 4x above
1s2 the median value of all pixels in the window, it will be identified as a hot pixel and its value will
1ea  be replaced by the median value in the window. This step reduces the scattered hot pixels’ noise

184 on quantification of protein expression values for the cells.

1ss  Generating decoy cells We established the distribution of noise for each channel by generating
18s a large number (V) of decoy cells using a Monte Carlo method. To this end, we first identified
157 regions on the image that potentially contain noise-only signals without real protein expression
18s by excluding pixels with values above 0.05 x (QQg9, Where (QQgg is the 99th percentile (QQg9) of the
180 pixel intensity values. After that, we set the value of remaining pixels to zero and smooth the noise

190 regions by applying a 5 x 5 median filter on the image.

191 We then fit each segmented cell as an ellipse. For each image, the mean and variance of the
192 major axis, the minor axis, and the orientation angle of all the segmented cells were calculated, and
19s  these three parameters were fit using individual Gaussian models. Random parameters are drawn
194 from the distributions of the major axis, the minor axis, and the orientation, respectively, to form
1es an ellipse as a decoy cell. The decoy cell was randomly placed in the noise region of the channel
196 1mage, such that the center of the decoy cell was at least 5 pixels away from image boundaries.
1e7 The decoy cell should only lie in noise regions, i.e., all of its pixels lie in noise regions as in the
198 noise region mask. When the decoy cell lies on the border of the image, it must cover more than 5

199 pixels in the image, otherwise it will be discarded. We further filter out the decoy cell if the area

10
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200 1t covered exceeded the size range of all segmented cells. Then, the protein expression value for

201 each decoy cell was calculated as the mean of its pixel intensities in the preprocessed IMC image.

202 Background noise removal To eliminate the effect of different background noise profiles and
203 levels between different proteins in an IMC dataset, we removed background noise using the decoy
204 cells generated from the noise regions. For each protein channel, the mean of protein expressions
20s of all generated decoy cells was calculated, which was further subtracted from each pixel intensity

206 to remove channel-specific background noise.

Positive cells identification by FDR control Note that the segmented cells may include both
positive cells and negative cells. We used a permutation test to compare the protein expression
distributions between segmented cells and randomly drawn decoy cells from the noise regions, and
use FDR control to identify positive cells. The FDR value can be adjusted to obtain positive cells

with acceptable error-tolerant rate. The FDR of true cell identification is calculated by

FP

FDR=——
R=wpr7p

ey)

207 where TP and FP refer to true positive and false positive, respectively. More specifically, TP refers
208 to the number of segmented cells with protein expression values larger than the threshold, while
200 FP refers to the number of decoy cells with protein expression values larger than the threshold.
210 The default value of FDR was set to 0.01, and the threshold for positive cell identification can be

211 then determined to satisfy the FDR level.

11
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212 Normalization of cell protein expressions The data processing steps above are all performed on
213 individual protein channel images. As the antibody performance and the SNR can differ consid-
214 erably between FFPE tissues due to variations in tissue processing, we further normalized the cell
215 protein expression values across different samples within one IMC dataset for each protein sep-
216 arately. Denote the channel image of protein p for sample ¢ as Ii(p ) and the mean of the protein
217 expression values for all identified positive cells as ME” ). Let m® denote the maximum protein
218 expression value among all identified positive cells for protein p in all samples. The cell protein

. . (p)
219 expression values for sample ¢ were then scaled by factor m<—;
lj/.

K3

220 Single cell clustering and phenotyping High-dimensional single cell protein expression data
221 were clipped at the 99th percentile followed by min-max normalization. We selected 20 mark-
222 ers to perform cell clustering: CD45, CD3, CD4, CD8a, FoxP3, CD20, CD68, CD14, CD16,
223 CDll1c, CDI11b, IDO, Vimentin, a-SMA, E-cadherin, EpCAM, CA9, VEGF, PDGFRb and Colla-
224 gen. The clustering analysis consists of two consecutive steps, first, a self-organizing map (50 x 50
225 nodes) implemented in FlowSOM (R package, v1.18.0) was used to generate several groups, then
226 a community detection algorithm by Phenograph (R package, v0.99.1) was used on the mean ex-
227 pression values of each group from FlowSOM clustering results. Cell phenotyping was determined
228 by calculating the mean of protein expressions for each cluster and compare the protein expression

229 patterns of each cluster with that of known cell types.

12
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Figure 1: Positive cells identified by IMCell with different FDR control (sample: 76 ROI18, pro-

tein: CD74).
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Figure 2: Performance evaluation of different methods. (a) Comparisons of cell identification

results from raw IMC images, with 15t-99th percentile method to remove outliers, with median

filter to remove salt-and-pepper noise, and with IMCell (sample: 76 ROI18). The red box marks
19

the zoomed in areas on the below side (b) depicting the CD11c marker. Expression pattern of

multi-markers (CD45, CD3, and CD4) in the whole images (c) and zoom-in areas (d).
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Figure 3: Variation of pixel intensity and cell protein expression across three samples (sample
A: 65 ROI13, sample B: 65 ROI18, sample C: 33 ROI11). The left column shows (a) the pixel
intensity (first row) and cell protein expression (second row) from the raw images, (b) the pixel
intensity (first row) and cell protein expression (second row) from arcsinh-transformed images, and
(c) the pixel intensity (first row) and cell proteiggxpression (second row) from images processed
by IMCell. The right column plots the distribution of the corresponding value (i.e., pixel intensity

and cell protein expression).
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Figure 4: Clustering result from different methods. Heatmap showing mean value of normalized
protein expression in each cluster. The high-dimensional single cell expression data were generated
from (a) raw IMC images, (b) with 15¢-99"" percentile method to remove outliers, (c) with median

filter to remove salt-and-pepper noise, and (d) with IMCell.
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Figure 5: The workflow of IMCell consists of (a) denoising and (b) normalization. The workflow
includes the following procedures, (1) single cell segmentation by Dice-XMBD, (2) image pre-
processing and hot pixel removal, (3) random generation of decoy cells in potential noise regions,
(4) protein quantification for segmented cells ailg decoy cells, (5) identifying positive cells with
FDR control, (6) normalization by scaling using the mean of protein expression of positive cells,

and (7) apply the median filter on the denoised and normalized images.
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