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Imaging Mass Cytometry (IMC) has become a useful tool in biomedical research due to its ca-15

pability to measure over 100 markers simultaneously. Unfortunately, some protein channels16

in IMC images can be very noisy, which may significantly affect the phenotyping results with-17

out proper data processing. We developed IMCellXMBD1, a highly effective and generalizable18

cell identification and quantification method for IMC images. IMCell performs denoising19

1XMBD: Xiamen Big Data, a biomedical open software initiative in the National Institute for Data Science in

Health and Medicine, Xiamen University, China.
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by subtracting an estimated background noise value from pixel values for each individual20

protein channel, identifies positive cells from negative cells by comparing the distribution21

between segmented cells and decoy cells, and normalize the protein expression levels of the22

identified positive cells for downstream data analysis. Experimental results demonstrate that23

our method significantly improves the reliability of cell phenotyping which is essential for24

using IMC in biomedical studies.25

1 Introduction26

Analysis of the heterogeneity of cells is critical to discover the complexity and factuality of the life27

system. Recently, single-cell sequencing technologies have been increasingly used in the research28

of developmental physiology and disease 1–4, but the spatial context of individual cells in the tissue29

is lost due to tissue dissociation in these technologies. On the other hand, traditional immunohisto-30

chemistry (IHC) and immunofluorescence (IF) preserve spatial context but the number of markers31

is limited. The development of multiplex IHC/IF (mIHC/mIF) technologies, such as cyclic IHC/IF32

and metal-based multiplex imaging technologies 5–8, has enabled the detection of multiple mark-33

ers simultaneously while preserving their spatial information. Imaging mass cytometry (IMC) 6, 9,34

one of the metal-based mIHC technologies, uses a high-resolution laser with a mass cytometer35

and enables simultaneous measurement of up to 100 markers. Due to its high resolution and large36

number of concurrent marker channels available, IMC has been proven to be highly effective in37

identifying complex cell phenotypes and cell-cell interactions coupled with spatial locations, and38

has been utilized in many biomedical and clinical studies on tumor or immune diseases 6, 10–21.39
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A number of methodological challenges must be overcome when applying IMC to clinical40

applications in order to derive reliable cell quantification and phenotyping results from IMC. Im-41

ages generated by a mass cytometry system are subject to noise and other acquisition artifacts42

resulting from, e.g., sample protein degradation or signal spill-over between heavy metals 22. In-43

strument performance can vary within a single sample, not to mention the technical variance among44

different instruments. Besides, the antibody performance and antigen retrieval condition can dif-45

fer between samples due to their storage time and environment, which result in protein variations46

between and within samples. Therefore, specific data processing steps are needed to ensure mea-47

surement of cellular markers with high resolution, quality, and reproducibility. Quality control and48

data normalization have been incorporated into the standard operation procedures in the software49

of the mass cytometers to convert raw signals to images 23. Most IMC image quality control and50

preprocessing steps are performed semi-automatically and tuned for individual datasets. Some51

generic signal processing techniques have been applied to different datasets, including background52

removal, hot pixels removal, and denoising by low pass filtering, etc. 11, 24. Data normalization has53

also been discussed to eliminate the variation between samples 25, 26. Despite the progress in IMC54

data processing tools, in practice it is still possible to obtain IMC images with very poor signal-55

to-noise ratios (SNR) that exceed the processing capabilities of existing tools. In such cases, it56

remains as an intricate issue to identify true positive cells from strong background noise and har-57

monize their protein expression levels across slides from different samples or different regions of58

interest (ROIs) from the same slide for downstream analysis.59

In this paper, we present IMCell, a method for protein expression quantification for single60
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cells from IMC images. IMCell is able to reliably identify positive cells from highly noisy channels61

of an IMC image, and perform expression quantification for these cells. To this end, IMCell uses62

a Monte Carlo method to create decoy cells randomly on the potential noise regions of the image,63

and computes the distribution of the protein expression of the decoy cells to derive the background64

noise level of the image. The positive cells are then identified with false discovery rate (FDR)65

control by comparing the protein expression distribution of decoy cell with that of the segmented66

true cells. To reduce the effect of background noise on the quantification results, IMCell further67

performs noise reduction on the IMC images with the identified background noise level. Finally,68

the protein expression values of the positive cells are normalized to mitigate the variations of pixel69

values across different IMC images. Our evaluation results show that IMCell can retain real signals70

with a user-defined confidence level and eliminate sample variations, improves IMC image quality,71

and benefits the downstream analysis.72

2 Results73

IMCell identifies true positive cells from noise IMCell identifies positive cells on each protein74

channel based on FDR control with the distribution of permuted decoy cells. First, IMCell ran-75

domly generates a large number of decoy cells on potential noise regions of each protein channel76

(Methods, Figure 1). With the generated decoy cells, IMCell identifies positive cells by comparing77

the distributions of cell protein expressions, calculated as the mean of pixel values of the cell, of all78

segmented cells and decoy cells, from which the detection threshold can be set based on the target79

FDR (Methods, Figure 1). Once the positive cells are identified on each protein channel, IMCell80
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further estimates the background noise level (Methods), which is then removed from the respective81

IMC channel to generate a clean image for each channel.82

We compared the performance for background noise removal of IMCell with two commonly83

used methods, the percentile method and the median filter. The percentile method defines a lower84

threshold Tl and an upper threshold Th. It then removes outliers by setting pixel value to zero85

for those lower than Tl, and setting pixel values to Th for those higher than Th. Here we used86

the 1st percetile (Q1) as Tl and the 99th percentile (Q99) as Th. Results show that the percentile87

method removes outliers but cannot deal with noise of similar intensity values as the signal, such88

as salt-and-pepper noise. On the other hand, the median filter is only effective in removing salt-89

and-pepper noise but does not remove other types of noise. In addition, it tends to remove true90

expression signals wrongly at cell boundaries, or if the true expression signals have a salt-and-91

pepper noise-like spatial patterns. In contrast, by estimating the background noise level from92

decoy cells randomly drawn from the potential noise regions of the image, IMCell successfully93

removed background noise while preserving the true protein expression values from positive cells,94

resulting in a cleaner image with significantly improved the SNR (Figure 2a, 2b).95

We further compared the co-expression patterns of CD45, CD3 and CD4 from different96

methods and observed that IMCell can retain true CD3 signal since most CD4 T cells expressed97

both CD3 and CD4, while the median filter over-removed CD3 signal and the percentile method98

failed to remove noise in the CD3 channel (Figure 2c, 2d)).99
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IMCell reduces variations in pixel intensity and cell protein expression across IMC images.100

Analysis of the raw images and segmented cells show that the range of pixel intensity values and101

the level of SNR vary significantly among samples (Figure 3a). The difference is conspicuous102

even after performing the variance stabilizing transform, e.g., the inverse sinh transform 27, on the103

IMC images to reduce the overall range of the pixel intensities (Figure 3b). The distribution plots104

demonstrate that the variation across samples exists not only at pixel level but also at cell level,105

if the cell protein expressions were calculated directly from the raw images. Large inter-sample106

distribution variation could be misleading in downstream data analysis, as the cells may cluster by107

samples but not by cell types. In IMCell, protein expression levels are normalized across the entire108

dataset based on the identified positive cells (Methods). Figure 3c shows the variation of intensity109

across three samples at both pixel and cell levels after intensity normalization by IMCell.110

IMCell enables clustering with biological significance To investigate the effects of different111

IMC image preprocessing methods on downstream analysis, we applied unsupervised clustering112

on cells generated from raw IMC images, images processed with the median filter, the percentile113

method, and IMCell, respectively, using a same subset of proteins as features. After clustering,114

the cell type of each cluster can be identified based on its marker expression pattern compared to115

that of known immune and tumor cell types (Figure 4). The cell types of the cell clusters obtained116

from raw IMC images or images processed using the percentile method can hardly be identified.117

As the heatmap shows, some clusters have more than one relatively high cell-type-specific protein118

expressions (Figure 4a). For example, Cluster 1 from the raw IMC images contains similar protein119

expression level for both lymphoid (CD4) and myeloid cells (CD14, CD68), causing confusion in120
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cell type identification. The percentile method also leads to a confusing heatmap where the cell121

types cannot be ascertained (Figure 4b). Alternatively, by applying the median filter or IMCell on122

the raw images, the cell clustering results are more biologically significant (Figure 4c, 4d). For123

the clustering results obtained from cells of IMC images preprocessed by the median filter, we can124

annotate Cluster 12 as B cell, but still have difficulty to determine other two clusters (Cluster 1125

and 10) because they contain T cell markers (e.g., CD4, CD8) and a certain amount of myeloid126

cell markers such as CD68 and CD14. On the other hand, we are able to obtain highly specific127

cell clusters from clustering results obtained from cells quantified with IMCell, e.g., CD4 T cell128

(Cluster 4), CD8 T cell (Cluster 1), B cell (Cluster 3) and myeloid cell (Cluster 12, 13, 15).129

3 Discussion130

In this work, we developed IMCell which enables efficient and accurate cell quantification from131

IMC images. Our work is based on statistical testing on the distributions of both segmented cells,132

which are regarded as true cells identified by image segmentation software, and decoy cells. As133

decoy cells are drawn from potential noise-only regions of IMC image with random shapes and134

locations, it can be anticipated that its distributions will highly resemble those of negative cells (i.e.,135

cells that don’t express target proteins). Therefore, the positive cells can be reliably identified with136

proper FDR control base on the distributions of both cells. Note that the successful application of137

IMCell depends on the availability of information on true cell segmentation. In this work we used138

Dice-XMBD 28, a deep neural network based IMC cell segmentation tool that is able to perform139

automatic cell segmentation from IMC images without manual annotation. It is also possible to140
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use other cell segmentation tools, e.g., Ilastik 29 and CellProfiler 30, to perform such a task.141

Normalization across different images is critical to align the protein expressions to the same142

sea-level such that they can be compared in downstream data analysis. However, such normaliza-143

tion can only be performed if the positive cells (i.e., cells expressing certain target proteins) can be144

reliably identified. Otherwise, the normalization can falsely amplify negative cells located at noise145

regions of the image, resulting in severe false positive issues that plague the downstream biological146

analysis. For this reason, expression normalization is seldom performed in existing IMC process-147

ing pipelines although significant inter-slide variations of marker protein expressions are common148

in IMC studies. In IMCell, by rigorous FDR control, expression normalization is only performed149

on high-confidence positive cells, thus minimizing the risk of amplification of false-positive cells.150

As validated by visual inspection and clustering analysis, cell quantification by IMCell leads to151

much more consistent connections between cell phenotypes and marker protein expressions. We152

anticipate that IMCell could help to promote better usage of the IMC technologies both in research153

labs and in clinical settings.154

4 Methods155

Patients and IMC data acquisition Melanoma cancer formalin-fixed paraffin-embedded (FFPE)156

tissues were stained with a customized panel (35 antibodies) to generate the IMC images used in157

this study. We excluded images containing large areas with nonspecific background staining that158

could be caused by nonspecific antibody binding 31 by manual inspection using the MCD viewer159
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(V1.0.560.6). The remaining 158 images were further analyzed in the following procedures.160

Overview of the IMCell workflow. IMCell consists of two main modules, denoising and normal-161

ization (Figure 5). Firstly, raw IMC images are preprocessed and segmented by any cell segmen-162

tation method. Then we randomly generate a number of decoy cells on the potential noise region163

of each protein channel image. The protein expressions of the decoy cells are used to estimate164

the background noise of the protein image. After that the protein expression distributions of all165

segmented cells and decoy cells are compared to identify positive cells with FDR control. Next,166

in the normalization module, to fairly compare positive cells across images, we scale the mean ex-167

pression of positive cells from each image to the same level. More details are described as follows168

step by step.169

Cell segmentation using Dice-XMBD Single cells were identified by Dice-XMBD 28 using a170

pretrained deep neural network model, and referred to as segmented cells in this paper. Note that171

other cell segmentation methods can also be used in the IMCell workflow. For quality control,172

the segmented cells that cover less than 5 pixels are discarded. The cell protein expressions are173

extracted as the mean of the pixel intensity values in each cell mask region.174

Preprocessing and hot pixel removal We first applied the hyperbolic inverse sine function (arc-175

sinh) on all the pixel intensities for each channel. The raw marker intensities output from cytome-176

ters tend to have strongly skewed distributions with varying ranges of expression values. It is thus177

a common practice to transform the raw marker intensities using arcsinh to make the distributions178

more symmetric and to map them to a comparable range of expressions 27, 32.179
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Hot pixels were removed by filtering with a 5 × 5 pixel2 window. If the center pixel of the180

window was in the top 2% of all pixel intensity values in the channel and was at least 4× above181

the median value of all pixels in the window, it will be identified as a hot pixel and its value will182

be replaced by the median value in the window. This step reduces the scattered hot pixels’ noise183

on quantification of protein expression values for the cells.184

Generating decoy cells We established the distribution of noise for each channel by generating185

a large number (N ) of decoy cells using a Monte Carlo method. To this end, we first identified186

regions on the image that potentially contain noise-only signals without real protein expression187

by excluding pixels with values above 0.05 × Q99, where Q99 is the 99th percentile (Q99) of the188

pixel intensity values. After that, we set the value of remaining pixels to zero and smooth the noise189

regions by applying a 5× 5 median filter on the image.190

We then fit each segmented cell as an ellipse. For each image, the mean and variance of the191

major axis, the minor axis, and the orientation angle of all the segmented cells were calculated, and192

these three parameters were fit using individual Gaussian models. Random parameters are drawn193

from the distributions of the major axis, the minor axis, and the orientation, respectively, to form194

an ellipse as a decoy cell. The decoy cell was randomly placed in the noise region of the channel195

image, such that the center of the decoy cell was at least 5 pixels away from image boundaries.196

The decoy cell should only lie in noise regions, i.e., all of its pixels lie in noise regions as in the197

noise region mask. When the decoy cell lies on the border of the image, it must cover more than 5198

pixels in the image, otherwise it will be discarded. We further filter out the decoy cell if the area199
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it covered exceeded the size range of all segmented cells. Then, the protein expression value for200

each decoy cell was calculated as the mean of its pixel intensities in the preprocessed IMC image.201

Background noise removal To eliminate the effect of different background noise profiles and202

levels between different proteins in an IMC dataset, we removed background noise using the decoy203

cells generated from the noise regions. For each protein channel, the mean of protein expressions204

of all generated decoy cells was calculated, which was further subtracted from each pixel intensity205

to remove channel-specific background noise.206

Positive cells identification by FDR control Note that the segmented cells may include both

positive cells and negative cells. We used a permutation test to compare the protein expression

distributions between segmented cells and randomly drawn decoy cells from the noise regions, and

use FDR control to identify positive cells. The FDR value can be adjusted to obtain positive cells

with acceptable error-tolerant rate. The FDR of true cell identification is calculated by

FDR =
FP

FP + TP
, (1)

where TP and FP refer to true positive and false positive, respectively. More specifically, TP refers207

to the number of segmented cells with protein expression values larger than the threshold, while208

FP refers to the number of decoy cells with protein expression values larger than the threshold.209

The default value of FDR was set to 0.01, and the threshold for positive cell identification can be210

then determined to satisfy the FDR level.211
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Normalization of cell protein expressions The data processing steps above are all performed on212

individual protein channel images. As the antibody performance and the SNR can differ consid-213

erably between FFPE tissues due to variations in tissue processing, we further normalized the cell214

protein expression values across different samples within one IMC dataset for each protein sep-215

arately. Denote the channel image of protein p for sample i as I
(p)
i and the mean of the protein216

expression values for all identified positive cells as µ
(p)
i . Let m(p) denote the maximum protein217

expression value among all identified positive cells for protein p in all samples. The cell protein218

expression values for sample i were then scaled by factor m(p)

µ
(p)
i

.219

Single cell clustering and phenotyping High-dimensional single cell protein expression data220

were clipped at the 99th percentile followed by min-max normalization. We selected 20 mark-221

ers to perform cell clustering: CD45, CD3, CD4, CD8a, FoxP3, CD20, CD68, CD14, CD16,222

CD11c, CD11b, IDO, Vimentin, α-SMA, E-cadherin, EpCAM, CA9, VEGF, PDGFRb and Colla-223

gen. The clustering analysis consists of two consecutive steps, first, a self-organizing map (50×50224

nodes) implemented in FlowSOM (R package, v1.18.0) was used to generate several groups, then225

a community detection algorithm by Phenograph (R package, v0.99.1) was used on the mean ex-226

pression values of each group from FlowSOM clustering results. Cell phenotyping was determined227

by calculating the mean of protein expressions for each cluster and compare the protein expression228

patterns of each cluster with that of known cell types.229
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Figure 1: Positive cells identified by IMCell with different FDR control (sample: 76 ROI18, pro-

tein: CD74).
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Figure 2: Performance evaluation of different methods. (a) Comparisons of cell identification

results from raw IMC images, with 1st-99th percentile method to remove outliers, with median

filter to remove salt-and-pepper noise, and with IMCell (sample: 76 ROI18). The red box marks

the zoomed in areas on the below side (b) depicting the CD11c marker. Expression pattern of

multi-markers (CD45, CD3, and CD4) in the whole images (c) and zoom-in areas (d).
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Figure 3: Variation of pixel intensity and cell protein expression across three samples (sample

A: 65 ROI13, sample B: 65 ROI18, sample C: 33 ROI11). The left column shows (a) the pixel

intensity (first row) and cell protein expression (second row) from the raw images, (b) the pixel

intensity (first row) and cell protein expression (second row) from arcsinh-transformed images, and

(c) the pixel intensity (first row) and cell protein expression (second row) from images processed

by IMCell. The right column plots the distribution of the corresponding value (i.e., pixel intensity

and cell protein expression).
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Figure 4: Clustering result from different methods. Heatmap showing mean value of normalized

protein expression in each cluster. The high-dimensional single cell expression data were generated

from (a) raw IMC images, (b) with 1st-99th percentile method to remove outliers, (c) with median

filter to remove salt-and-pepper noise, and (d) with IMCell.

21

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 27, 2021. ; https://doi.org/10.1101/2021.09.27.461899doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.27.461899
http://creativecommons.org/licenses/by-nc-nd/4.0/


(a) Denoise

Protein expression

threshold real cell
decoy cell

real cell
decoy cell

(2) Pre-process

Protein 1 …… Protein m

Cell 1

……

Cell n

Protein 1 …… Protein m

Cell 1

……

Cell n

(4) Quantification

(1) Single cell segmentation

(5) FDR control

(3) Permutation Denoised IMC image 

Original IMC image 

(6) Normalization
...

Protein Expression

(b) Normalization

Denoised IMC images Protein m distribution (7) Median filter

Sample A

Sample B

Sample Z

...
...

Figure 5: The workflow of IMCell consists of (a) denoising and (b) normalization. The workflow

includes the following procedures, (1) single cell segmentation by Dice-XMBD, (2) image pre-

processing and hot pixel removal, (3) random generation of decoy cells in potential noise regions,

(4) protein quantification for segmented cells and decoy cells, (5) identifying positive cells with

FDR control, (6) normalization by scaling using the mean of protein expression of positive cells,

and (7) apply the median filter on the denoised and normalized images.
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