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Abstract

With the advent of Next Generation Sequencing, RNA-sequencing (RNA-seq) has become the

major method for quantitative gene expression analysis. Reducing library costs by early

barcoding has propelled single-cell RNA-seq, but has not yet caught on for bulk RNA-seq. Here,

we optimized and validated a bulk RNA-seq method we call prime-seq. We show that with

respect to library complexity, measurement accuracy, and statistical power it performs equivalent

to TruSeq, a standard bulk RNA-seq method, but is four-fold more cost-efficient due to almost

50-fold cheaper library costs. We also validate a direct RNA isolation step that further improves

cost and time-efficiency, show that intronic reads are derived from RNA, validate that prime-seq

performs optimal with only 1,000 cells as input, and calculate that prime-seq is the most

cost-efficient bulk RNA-seq method currently available. We discuss why many labs would profit

from a cost-efficient early barcoding RNA-seq protocol and argue that prime-seq is well suited

for setting up such a protocol as it is well validated, well documented, and requires no

specialized equipment.
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Background

RNA-sequencing (RNA-seq) has become a central method in biology and many technological

variants exist that are adapted to different biological questions [1]. Its most frequent application

is the quantification of gene expression levels to identify differentially expressed genes, infer

regulatory networks, or identify cellular states. This is done on populations of cells (bulk

RNA-seq) and increasingly with single-cell or single-nucleus resolution (scRNA-seq). Choosing

a suitable RNA-seq method for a particular biological question depends on many aspects, but

the number of samples that can be analyzed is almost always a crucial factor. Including more

biological replicates increases the power to detect differences and including more sample

conditions increases the generalizability of the study. As the limiting factor for the number of

samples is often the budget, the costs of an RNA-seq method are an essential parameter for the

biological insights that can be gained from a study. Of note, costs need to be viewed in the

context of statistical power, i.e. in light of the true and false positive rate of a method [2,3] and

these “normalized” costs can be seen as cost-efficiency. On top of reagent costs per sample,

aspects like robustness, hands-on time, and setup investments of a method can also be seen as

cost factors. Other important factors less directly related to cost efficiency are the number and

types of genes that can be detected (complexity), the amount of input material that is needed to

detect them (sensitivity), and how well the measured signal reflects the actual transcript

concentration (accuracy).

In recent years, technological developments have focused on scRNA-seq due to its exciting

possibilities and due to the urgent need to improve its cost efficiency and sensitivity [4–6]. A

decisive development for cost efficiency was “early-barcoding”, i.e. the integration of
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sample-specific DNA tags in the primers used during complementary DNA (cDNA) generation

[7,8]. This allows one to pool cDNA for all further library preparation steps, saving time and

reagents. However, the cDNA and the barcode need to be sequenced from the same molecule

and hence cDNA-tags and not full-length cDNA sequences are generated. An improvement in

measurement noise is achieved by integrating a random DNA tag along with the sample

barcode, a Unique Molecular Identifier (UMI), that allows identifying PCR duplicates and is

especially relevant for the small starting amounts in scRNA-seq [2,7,9]. Optimizing reagents and

reaction conditions (e.g. [10,11] and the efficient generation of small reaction chambers such as

microdroplets [12–14], further improved cost efficiency and sensitivity and resulted in the current

standard of scRNA-seq, commercialized by 10X Genomics [5].

Despite these exciting developments, bulk RNA-seq is still widely used and – more importantly –

still widely useful as it allows for more flexibility in the experimental design that can be

advantageous and complementary to scRNA-seq approaches. For example, investigated cell

populations might be homogenous enough to justify averaging, single-cell or single-nuclei

suspensions might be difficult or impossible to generate, or single-cell or single-nucleus

suspension might be biased towards certain cell types. Most trivial, but maybe most crucial, the

number of replicates and conditions is limited due to the high costs of scRNA-seq per sample.

Furthemore, as more knowledge on cellular and spatial heterogeneity is acquired by scRNA-seq

and spatial approaches, bulk RNA-seq profiles can be better interpreted, e.g. by computational

deconvolution of the bulk profile [15]. Hence, bulk RNA-seq will remain a central method in

biology, despite or even because of the impressive developments from scRNA-seq and spatial

transcriptomics. However, bulk RNA-seq libraries are still largely made by isolating and

fragmenting mRNA to generate random primed cDNA sequencing libraries. Commercial variants

of such protocols, such as TruSeq and NEBNext, can be considered the current standard for
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bulk RNA-seq methods. This is partly because improvements of sensitivity and cost efficiency

were less urgent for bulk RNA-seq as input amounts were often high, overall expenses were

dominated by sequencing costs, and n=3 experimental designs have a long tradition in

experimental biology [16]. However, input amounts can be a limiting factor, sequencing costs

have decreased and will further decrease, and low sample size is a central problem of

reproducibility [17,18]. To address these needs, several protocols have been developed,

including targeted approaches [19–21] and genome-wide approaches that leverage the

scRNA-seq developments described above [16,22]. However, given the importance and costs of

bulk RNA-seq, even seemingly small changes, e.g. in the sequencing design of libraries [16],

the number of PCR cycles [9], or enzymatic reactions [22], can have relevant impacts on cost

efficiency, complexity, accuracy, and sensitivity. Furthermore, protocols need to be available to

many labs to be useful and insufficient documentation, limited validation, and/or setup costs can

prevent their implementation. Accordingly, further developments of bulk RNA-seq protocols are

still useful.

Here, we have optimized and validated a bulk RNA-seq method that combines several

methodological developments from scRNA-seq to generate a very sensitive and cost-efficient

bulk RNA-seq method we call prime-seq (Figure 1, Figure S1). In particular, we have integrated

and benchmarked a direct lysis and RNA purification step, validated that intronic reads are

informative as they are not derived from genomic DNA, and show that prime-seq libraries are

similar in complexity and statistical power to TruSeq libraries, but at least four-fold more

cost-efficient due to almost 50-fold cheaper library costs. Prime-seq is also robust, as we have

used variants of it in 22 publications [9,23–43], 132 experiments, and in 17 different organisms

(Table S1, Figure S2). Additionally it has low setup costs as it does not require specialized

equipment and is well validated and documented. Hence, it will be a very useful protocol for
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many labs or core facilities that quantify gene expression levels on a regular basis and have no

cost-efficient protocol available yet.

Results

Development of the prime-seq protocol

The prime-seq protocol is based on the scRNA-seq method SCRB-seq [44] and our optimized

derivative mcSCRB-seq [11]. It uses the principles of poly(A) priming, template switching, early

barcoding, and UMIs to generate 3’ tagged RNA-seq libraries (Figure 1 and Figure S1).

Compared to previous versions as described e.g. in [32], we have optimized the workflow,

switched from a Nextera library preparation protocol to an adjusted version of NEBNext Ultra II

FS, and made the sequencing layout analogous to 10X Chromium v3 gene expression libraries

to facilitate pooling of libraries on Illumina flow cells, which is of great practical importance [16].

A detailed step-by-step protocol of prime-seq, including all materials and expected results, is

available on protocols.io (https://dx.doi.org/10.17504/protocols.io.s9veh66). We have so far used

this and previous versions of the protocol in 22 publications [9,23–43] and have generated just

within the last year over 24 billion reads from >4,800 RNA-seq libraries in 97 projects from

vertebrates (mainly mouse and human), plants, and fungi (Table S1 and Figure 2A). From these

experiences, we find that the protocol works robustly and detects per sample on average

>20,000 genes with 6.7 million reads of which 90.0% map to the genome and 71.6% map to

exons and introns (Table S1). Notably, a large fraction (21%) of all UMIs map to introns with

considerable variation among samples (Figure 2A).
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Figure 1. Graphical overview of prime-seq, highlighting its robustness, sensitivity,

affordability, and the validation experiments performed. Cells are first lysed, mRNA is

then isolated using magnetic beads, and in turn reverse transcribed into cDNA. Following

cDNA synthesis, all samples are pooled, libraries are made, and the samples are sequenced.

The protocol has been validated on 17 organisms, including human, mouse, zebrafish, and

arabidopsis. Additionally, prime-seq is sensitive and works with low inputs, and the

affordability of the method allows one to increase sample size to gain more biological insight.

To verify prime-seq’s performance, we first compared prime-seq to TruSeq using the publicly

available MAQC-III Study data. We then showed robust detection of marker genes in NPC

differentiation and high throughput analysis of AML-PDX patient samples without

compromising the archived samples.

About 8,000 genes are detected only by exonic reads, ~ 8,000 by exonic and intronic reads, and

~ 4,000 by intronic reads only (Figure 2B, Table S1). Intronic reads correlate well with exonic

reads of the same gene in scRNA-seq [45] and bulk RNA-seq data sets [46] and intronic reads
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are also used to infer expression dynamics in scRNA-seq data [47]. Hence, intronic reads can in

principle be informative for quantifying gene expression. However, it is an uncommon practice to

use them. This might be due to concerns that intronic reads could at least partially be derived

from genomic DNA as MMLV-type reverse transcriptases could prime DNA that escaped a

DNase I digest. Therefore, we investigated the origin of the intronic reads in prime-seq.

Intronic reads are derived from RNA

First, we measured the amount of DNA yield generated from genomic DNA (gDNA). We lysed

varying numbers of cultured human embryonic kidney 293T (HEK293T) cells and treated the

samples with DNase I, RNase A, or neither prior to cDNA generation using the prime-seq

protocol (up to and including the pre-amplification step). Per 1,000 HEK cells, this resulted in ~5

ng of “cDNA” generated from gDNA in addition to the 12-32 ng of cDNA generated from RNA.

(Figure S3A). To test the efficiency of DNase I digestion and quantify the actual number of reads

generated from gDNA, we mixed mouse DNA and human RNA in different ratios (Figure 2B).

Prime-seq libraries were generated and sequenced from untreated and DNAse I treated

samples and reads were mapped to the mouse and human genome (Figure 2B). In the sample

that did not contain any mouse DNA, ~0.5% of all exonic and intronic UMIs mapped to the

mouse genome, which represents the background level due to mismapping. Of the human

mapped reads in this sample, ~70% mapped to exons or introns and 10% to intergenic regions.

(Figure S3B). Importantly, the DNAse I treated sample had the same distribution of mapped

UMIs (0.7% mapped to mouse), strongly suggesting that the DNAse I digest is nearly complete

and that essentially all reads in the DNAse I treated sample are derived from RNA.
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Figure 2. Intronic reads account for a variable but substantial fraction of UMIsand

stem from RNA. (A) Fraction of exonic and intronic UMIs from 97 primate and mouse

experiments using various tissues (neural, cardiopulmonary, digestive, urinary, immune,

cancer, induced pluripotent stem cells). Sequencing depth is indicated by shading of the

individual bars. We observe an average of 21% intronic UMIs, with some level of

tissue-specific deviations as e.g. immune cells generally have higher fractions of intronic

reads. (B) To determine if intronic reads stem from genomic DNA or mRNA, we extracted

DNA from mouse embryonic stem cells (mESCs) and RNA from human induced pluripotent

stem cells (hiPSCs) and then pooled the two in various ratios (75, 50, 25, and 0% gDNA) and

counted the percentage of genomic (=mouse-mapped) UMIs. This indicates that DNAse I

treatment in prime-seq is complete and that observed intronic reads are derived from RNA.

As expected, with increasing amounts of mouse DNA the proportion of mouse mapped UMIs

increased (Figure 2B), but even with 75% of the sample being mouse DNA, only 4.5% of the

UMIs map to the mouse genome, suggesting that also for gDNA containing samples the impact

of genomic reads on expression levels is likely small. Notably, with increasing amounts of gDNA,

the fraction of unmapped reads also increased (Figure S3B), suggesting that the presence of
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gDNA does decrease the quality of RNA-seq libraries and does influence which molecules are

generated during cDNA generation. In summary, these results indicate that essentially all reads

in prime-seq libraries are derived from RNA when samples are DNAse I treated and hence that

intronic reads can be used to quantify expression levels.

prime-seq performs as well as TruSeq

Next, we quantitatively compared the performance of prime-seq to a standard bulk RNA-seq

method with respect to library complexity, accuracy, and statistical power. A gold standard

RNA-seq data set was generated in the third phase of the Microarray Quality Control (MAQC-III)

study [48], consisting of deeply sequenced TruSeq RNA-seq libraries generated from five

replicates of Universal Human Reference RNA (UHRR) and External RNA Controls Consortium

(ERCC) spike-ins. As Illumina's TruSeq protocol can be considered a standard bulk RNA-seq

method and as the reference RNAs (UHRR and ERCCs) are commercially available, this is an

ideal data set to benchmark our method. As in the MAQC-III design, we mixed UHRR and

ERCCs (Figure S4A) in the same ratio but at a 1,000-fold lower input and generated eight

prime-seq libraries, which were sequenced to a depth of at least 30 million reads. We processed

and downsampled both data using the zUMIs pipeline [45] and compared the two methods with

respect to their library complexity (number and expression levels of detected genes), accuracy

(correlation of estimated expression level and actual number of spiked-in ERCCs), and

statistical power (true positive and false positive rates in data simulated based on the

mean-variance distribution of technical replicates of each method).
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Figure 3. prime-seq has similar sensitivity and power compared to TruSeq (MAQC-III

data). (A) Mapped reads, UMIs (dashed line, only prime-seq), and (B) detected genes at

varying sequencing depths between TruSeq data from the MAQC-III Study and matched

prime-seq data, shows prime-seq and TruSeq are similarly sensitive (filtering parameters:
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detected UMI ≥ 1, detected gene present in at least 25% of samples and is protein coding).

(C) Accuracy, measured by spike-in molecules, is similarly high in both methods (R2=0.94).

(D) The distribution of genes across mean expression is similar for both methods, as well as

the (E) dispersion, which follows a poisson distribution (dark grey dashed line) for lower

expressed genes and then increases as technical variation increases for highly expressed

genes. The local polynomial regression fit between mean and dispersion estimates per

method is shown in solid lines with 95% variability band per gene shown in dashed lines. (F)

Power analysis at a sequencing depth of 10 million reads shows almost identical power

between prime-seq and TruSeq, and a similar increase at varying sample size for (G) mean

expression and (H) absolute log2 fold change. Data filtering parameters: detected UMI ≥ 1,

detected gene present in at least 25% of samples.

We found that prime-seq has a slightly lower fraction of exonic and intronic reads that can be

used to quantify gene expression (78% vs. 85%; Figure 3A, Figure S5A). But despite the slightly

lower number of reads that can be used, prime-seq does detect at least as many genes as

TruSeq (Figure 3B). Both methods also show a similar distribution of gene expression levels

(Figure 3D), indicating that the complexity of generated libraries is generally very similar.

The accuracy of a method, i.e. how well estimated expression levels reflect actual

concentrations of mRNAs, is relevant when expression levels are compared among genes.

Here, TruSeq and prime-seq show the same correlation (Pearson’s R2 = 0.94) between

observed expression levels and the known concentration of ERCC spike-ins, indicating that their

accuracy is very similar (Figure 3C).

However, for most RNA-seq experiments, a comparison among samples - e.g. to detect

differentially expressed genes - is more relevant. Therefore, it matters how well genes are

measured by a particular method, i.e. how much technical variation a method generates across

genes. As we have 8 and 5 technical replicates of the same RNA for prime-seq and TruSeq,

respectively, we can estimate for each method the mean and variance per gene. Note that UMIs
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are only available for prime-seq and hence only prime-seq can profit from removing technical

variance by removing PCR duplicates (Figure 3A). The empirical distribution shows the

characteristic dependency of RNA-seq data on sampling (Poisson expectation) at low

expression levels and an increasing influence of the additional technical variation at higher

expression levels (Figure 3E). Prime-seq shows a slightly lower variance for medium expression

levels where most genes are expressed and a higher one for a handful of genes with very high

expression levels (Figure 3E). To quantify to what extent these differences in the mean-variance

distribution actually matter, we used power simulations as implemented in powsimR [49]. We

simulated that 10% of genes sampled from the estimated mean-variance relation of each

method are differentially expressed between two groups of samples. The fold changes of these

genes were drawn from a distribution similar to those we observed in actual data between two

cell types (iPSCs and NPCs) or two types of acute myeloid leukemia (AML) (see below and

Figure S5B). The comparison between this ground truth and the identified differentially

expressed genes in a simulation allows us to estimate the true positive rate (TPR) and the false

discovery rate (FDR) for a particular parameter setting. We stratified TPR and FDR across the

number of replicates (Figure 3F), the expression levels (Figure 3G), and the fold changes

(Figure 3H) to illustrate the strong dependence of power on these parameters. At a given FDR

level, a more powerful method reaches a TPR of 80% with fewer replicates, at a lower

expression level, and/or for a lower fold change. We find that the power of the two methods is

almost identical as FDR and TPR are very similar across conditions for both methods. The false

discovery rates (FDR) are - as expected - generally below 5% for 12, 24, or 48 replicates per

condition (Figure S5C) and the (marginal) TPR across all expression levels and fold changes is

80% for both methods at ~12 replicates per condition (Figure 3F). The power increases for both

methods in a similar manner with increasing expression levels (Figure 3G) and increasing fold
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changes (Figure 3H). This is also the case when using only exonic reads for the power analysis

(Figure S5C and S5F-G). In summary, prime-seq and TruSeq perform very similarly in

estimating gene expression levels with respect to library complexity, accuracy, and statistical

power.

Bead-based RNA extraction increases cost efficiency and throughput

As library costs and sequencing costs drop, standard RNA isolation becomes a considerable

factor for the cost efficiency of RNA-seq methods. RNA isolation using magnetic beads is an

attractive alternative [50] and we have used it successfully in combination with our protocol

before [11]. To investigate the effects of RNA extraction more systematically, we compared

prime-seq libraries generated from RNA extracted via silica columns and via magnetic beads.

Libraries from cultured HEK293T cells, human peripheral blood mononuclear cells (PBMC), and

mouse brain tissue showed a similar distribution of mapped reads, albeit with a slightly higher

fraction of intronic reads in magnetic bead libraries (Figure 4A and S6) and considerable

differences in expression levels (Figure 4B and S7).

To further explore these differences, we tested the influence of the Proteinase K digestion and

its associated heat incubation (50°C for 15 minutes and 75°C for 10 minutes), which is part of

the bead based RNA isolation protocol. We prepared prime-seq libraries using HEK293T RNA

extracted via silica-columns (“Column”), magnetic beads with Proteinase K digestion (“Magnetic

Beads”), magnetic beads without Proteinase K digestion (“No Incubation”), and magnetic beads

with the same incubations but without the addition of the enzyme (“Incubation”). Interestingly, the

shift to higher intronic fractions and the expression profile similarity is mainly due to the heat

incubation, rather than the enzymatic digestion by Proteinase K (Figure S6A and B).

14

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 28, 2021. ; https://doi.org/10.1101/2021.09.27.459575doi: bioRxiv preprint 

https://paperpile.com/c/8mIQvv/o6ba2
https://paperpile.com/c/8mIQvv/7tDr5
https://doi.org/10.1101/2021.09.27.459575
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 4. RNA extraction with beads, rather than columns, provides similar

sequencing data while increasing throughput capabilities. (A) Feature distributions of

RNA isolated with a column-based kit and magnetic beads show that both RNA extraction

protocols produce similar amounts of useable reads from cultured human embryonic kidney

293T (HEK293T) cells, peripheral blood mononuclear cells (PBMC), and harvested mouse

brain tissue. (B) Gene expression between both bead and column extraction are also similar

in all three tested inputs (R2 = 0.86 HEK, 0.84 PBMCs, and 0.74 tissue). (C) Detected UMIs

and detected genes for column and magnetic beads in HEK293T, PBMCs, and tissue are

almost identical, with slightly more detected genes in the bead condition (filtering parameters:

detected UMI ≥ 1, detected gene present in at least 25% of samples and is protein coding).

Comparison of costs (D) and time (E) required for different RNA extractions.

Hence, bead-based extraction does create a different expression profile than column based

extraction, especially due to the often necessary Proteinase K incubation step. This confirms the

general influence of RNA extraction protocols on gene expression profiles [51]. Importantly, the

complexity of the two types of libraries is similar, with a slightly higher number of genes detected

15

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 28, 2021. ; https://doi.org/10.1101/2021.09.27.459575doi: bioRxiv preprint 

https://paperpile.com/c/8mIQvv/x3PsI
https://doi.org/10.1101/2021.09.27.459575
http://creativecommons.org/licenses/by-nc-nd/4.0/


in the bead-based isolation (Figure 4C, Figure S6C and S6D), potentially due to a preference for

longer transcripts with lower GC contents (Figure S7C).

So while bead-based RNA isolation and column-based RNA isolation create different but

similarly complex expression profiles, bead-based RNA isolation has the advantage of being

much more cost-efficient. At least four times more RNA samples can be processed for the same

budget (Figure 4D, Table S2). In addition, RNA isolation using magnetic beads is twice as fast

and without robotics more amenable to high throughput experiments (Table S3). Thus, we show

that bead-based RNA isolation can make prime-seq considerably more cost-efficient without

compromising library quality.

prime-seq is sensitive and works well with 1,000 cells

As prime-seq was developed from a scRNA-seq method [44], it is very sensitive, i.e. it generates

complex libraries from one or very few cells. This makes it useful when input material is limited,

e.g. when working with rare cell types isolated by FACS or when working with patient material.

To validate a range of input amounts, we generated RNA-seq libraries from 1,000 (low input,

~10-20 ng total RNA) and 10,000 (high input, ~100-200 ng) HEK293T cells. The complexity of

the two types of libraries was very similar, with only a 2% decrease in the fraction of exonic and

intronic reads and a 7.7% and 1.9% reduction in the number of UMIs and detected genes at the

same sequencing depth (Figure S8A). The expression profiles were almost as similar between

the two input conditions as within the input conditions (median r within = 0.94, median r between

= 0.93; Figure S8B), indicating that expression profiles from 1,000 and 10,000 cells are almost

identical in prime-seq. Using a lower number of input cells is certainly possible and

unproblematic as long as the number of cells is unbiased with respect to the variable of interest.

Using higher amounts than 10,000 cells is certainly also possible, but it is noteworthy that we
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have observed a large fraction of intergenic reads in highly concentrated samples, potentially

due to incomplete DNase I digestion (data not shown). In summary, we validate that an input

amount of at least 1,000 cells does not compromise the complexity of prime-seq libraries and

hence that prime-seq is a very sensitive RNA-seq protocol.

Two exemplary applications of prime-seq

To exemplify the advantages with respect to sensitivity and throughput in an actual setting, we

used prime-seq to profile cryopreserved human acute myeloid leukemia (AML) cells from

patient-derived xenograft (PDX) models [23,52]. These consisted of different donors and AML

subtypes and were stored in freezing medium at -80°C for up to 3.5 years (Figure 5A). Due to

the sensitivity of prime-seq, we could use a minimal fraction of the sample without thawing it by

taking a 1 mm biopsy punch from the vial of cryopreserved cells and putting it directly into the

lysis buffer. This allowed sampling of precious samples without compromising their amount or

quality and resulted in 94 high quality expression profiles that clustered mainly by AML subtype

(Figure 5B) as expected [53].

To further exemplify the performance of prime-seq, we investigated its ability to detect known

differences in a well established differentiation system [54]. We differentiated five human

induced pluripotent stem cell (iPSCs) lines [36] to neural progenitor cells (NPCs) and generated

expression profiles using prime-seq (Figure 5C). In a hierarchical clustering of well known

marker genes [55], the iPSCs and NPCs formed two distinct groups and the expression patterns

were in agreement with their cellular identity. For example the iPSC markers POU5F1, NANOG

and KLF4 showed an increased expression in the iPSCs and NES, SOX1, and FOXG1 in NPCs

(Figure 5D).
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Figure 5. Two exemplary applications of prime-seq. (A) Experimental design for an acute

myeloid leukemia (AML) study, where a biopsy punch was used to collect a small fraction of

a frozen Patient-derived xenograft (PDX)-AML sample. (B) Prime-seq libraries were

generated from 94 PDX samples, derived from 11 different AML-PDX lines (colour-coded)

from 5 different AML subtypes (symbol-coded) and cluster primarily by AML subtype. (C)

Experimental design for studying the differentiation from five human induced pluripotent stem

cell lines (iPSCs) to neural progenitor cells (NPC). (D) Expression levels from 20 a priori

known marker genes cluster iPSCs and NPCs as expected.

prime-seq is cost-efficient

We have shown above that the power, accuracy and library complexity is similar between

prime-seq and TruSeq. The performance and robustness of the prime-seq protocol has been

demonstrated by the two examples above as well as its many applications using this or previous

versions of the protocol [9,23–35,42,43,56,57]. In summary, one could argue that prime-seq

performs as well as TruSeq for quantifying gene expression levels. Other methods that generate

tagged cDNA libraries using early barcoding have also been developed [16,22,58–61]. This
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includes BRB-seq that uses poly(A) priming and DNA-Pol I for second strand synthesis and also

performs similarly to TruSeq [22]. Decode-seq also uses poly(A) priming and template switching

like prime-seq, but adds sample-specific barcodes and UMIs at the 5’ end [16]. In a direct

comparison, Decode-seq performed slightly better than BRB-seq and due to a more flexible

sequencing layout [16]. While slight differences in power, accuracy, and/or library complexity

might exist among these protocols, cross-laboratory benchmarking on exactly the same samples

as recently done e.g. for scRNA-seq methods [5] or small RNA-seq methods [62] are probably

needed to quantify such differences reliably. For now, it is probably fair to say that RNA-seq

methods like BRB-seq, prime-seq, TruSeq, SmartSeq, or Decode-seq all perform fairly equal

with respect to quantifying gene expression levels. Hence, at a fixed budget the cost per sample

will determine to a large extent how many samples can be analyzed and hence how much

biological insight can be gained.

To this end, we calculated the required reagent costs to generate a library from isolated RNA in

a batch of 96 samples for the different commercial methods as well as for prime-seq,

Decode-seq, and BRB-seq (Table S4). With $2.53 per sample prime-seq is the most

cost-efficient method, followed by BRB-seq ($4.05) and Decode-seq ($6.58). Commercial

methods range from $60 (NEBNext) to $164 (SMARTer Stranded). This is illustrated by the

number of libraries that can be generated by a fixed budget of $500 (Figure 6A). Note that these

costs include for all methods $1.39 per sample for two Bioanalyzer (Agilent) Chips (Table S4)

and do not consider the additional cost reduction that is associated with the direct bead-based

RNA extraction of prime-seq (see above). The drastic advantage of prime-seq, Decode-seq, and

BRB-seq also becomes apparent when power is plotted as a function of costs with and without

sequencing (10 million reads per sample) (Figure 6B, Figure S9A). For example, to reach an

80% TPR at a desired FDR of 5%, one needs to spend $715 including sequencing costs for
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prime-seq, $795 when using Decode-seq, $1,625 when using Illumina Stranded, and $3,485

when using TruSeq (Figure S9B).

Figure 6. Prime-seq

is very cost-efficient.

(A) With a set budget

of $500, prime-seq

allows one to process

198 samples, which is

1.6 times more

samples than the next

cost-efficient method.

(B) The compared

methods were grouped

into low, middle, and

high cost methods and

the TruSeq MAQCII data was used as a basis for power analysis for all methods but

prime-seq. The increase in sample size due to cost efficiency directly impacts the power to

detect differentially expressed genes, as evident by the increased performance of prime-seq

and other low cost methods (BRB-seq and Decode-seq), even when sequencing costs are

included in the comparison (sequencing depth of 10 mio. reads at a cost of $3.40 per 1 mio.

reads).

Cost-efficiency with respect to time can also matter and we calculated hands-on and hands-off

time for the different methods (Table S5). Hands-on times vary from 30-35 minutes for the

non-commercial, early barcoding methods to 52-191 minutes for commercial methods. However,

as all methods require essentially a full day of lab work, we consider the differences in required

times not as decisive, at least not in a research lab setting where RNA-seq is not done on a

daily or weekly basis. In summary, we find that prime-seq is the most cost-efficient bulk

RNA-seq method currently available.
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Discussion

In this paper we present and validate prime-seq, a bulk RNA-seq protocol, and show that it is as

powerful and accurate as TruSeq in quantifying gene expression levels, but more sensitive and

much more cost-efficient. We validate the DNAse I treatment and determine that intronic reads

are derived from RNA and can be used in downstream analysis. We also validate input ranges

and the direct lysis and bead-based RNA purification of tissue and cell culture samples. Finally,

we exemplify the use of prime-seq by profiling AML samples and NPC differentiation and show

that prime-seq is currently the most cost-efficient bulk RNA-seq method. In the following, we

focus our discussion on advantages and drawbacks of prime-seq in comparison to other

RNA-seq protocols. To this end, we distinguish protocols like TruSeq, Smart-seq, or NEBNext

that individually process RNA samples and generate full-length cDNA profiles (“full-length

protocols”) from protocols like prime-seq, Decode-seq, or BRB-seq that use early barcoding and

generate 5’ or 3’ tagged cDNA libraries (“tag protocols”).

Complexity, power and accuracy are similar among most bulk RNA-seq protocols

Initially, early barcoding 3’ tagged protocols generated slightly less complex libraries (i.e.

detected fewer genes for the same number of reads), especially due to a considerable fraction

of unmapped reads [22,63]. These reads are probably caused by PCR artifacts during cDNA

generation and amplification. Protocol optimizations as shown for BRB-seq [22], Decode-seq

[16] and here for prime-seq have reduced these artifacts and hence have improved library

complexity to the level of standard full-length protocols. For prime-seq we have shown

quantitatively that its complexity, accuracy, and power is very similar to that of TruSeq. More

comprehensive studies, ideally across laboratories [5,48], would be needed to quantitatively
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compare protocols, also with respect to their robustness across laboratories and conditions and

their biases for individual transcripts. For the context and methods discussed here, we would

argue that there are no decisive differences in power, accuracy, and complexity among tag

protocols and full-length protocols at least when performed under validated and optimized

conditions.

Cost-efficiency makes tag-protocols preferable when quantifying gene expression levels

As shown above (Figure 6) and as argued before [16,22,63], the main advantage of tag

protocols is their cost-efficiency. Their most obvious drawback is that they cannot quantify

expression levels of different isoforms. Smart-seq2 [64] and Smart-seq3 [10] are relatively

cost-efficient full length protocols that were developed for scRNA-seq. However, they have not

been validated and optimized for bulk RNA-seq and would still be considerably more expensive

than most tag protocols. Furthermore, as reconstructing transcripts from short read data is

difficult and requires deep sequencing, isoform detection and quantification is now probably

more efficiently done by using long-read technologies [1]. However, from our experience, most

RNA-seq projects quantify expression at the gene level not at the transcript level. This is

probably because most projects use RNA-seq to identify affected biological processes or

pathways by a factor of interest. As different genes are associated with different biological

processes, but different isoforms are only very rarely associated with different biological

processes, most projects do not profit much from quantifying isoforms. Hence, we would argue

that quantifying expression levels of genes is the better option, as long as isoform quantification

is not of explicit relevance for a project.

Another limitation is that all tag-protocols use poly(A) priming and hence do not capture mRNA

from bacteria, organelles, or other non-polyadenylated transcripts. For full-length protocols like
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TruSeq, cDNA generation by random priming after rRNA depletion can be done. Another

possibility is poly(A) tailing after rRNA depletion [65], but to our knowledge, this has not been

adopted to tag-based protocols yet. How to efficiently combine profiling of polyadenylated,

non-polyadenylated, and small RNA is certainly worth further investigating. However, it is also

true that for eukaryotic cells, quantification of mRNAs contains most of the information. Hence,

similar to the quantification of isoforms, we would argue that quantifying expression levels of

genes by polyadenylated transcript is often sufficient, as long as non-polyadenylated transcripts

are not explicitly relevant.

Finally, while early barcoding and pooling enable the cost-efficiency of tag protocols, this

necessitates calibrating input amounts. Input calibration is easy when starting with extracted

RNA or when it is possible to count cells prior to direct lysis. When counting cells is not possible,

we have also developed a protocol adaptation of prime-seq that allows for RNA quantification

and normalization after bead-based RNA isolation and prior to reverse transcription

(https://dx.doi.org/10.17504/protocols.io.s9veh66). Early barcoding and pooling also entails the

danger of barcode swapping, i.e. the formation of chimeric molecules during PCR, resulting in a

contamination of a cell’s expression profile with transcripts from another cell. This is especially

an issue for scRNA-seq [66] as the number of PCR cycles and on the polymerase likely play a

role [67]. To verify that this is not an issue in prime-seq, we pooled human and mouse samples

at each possible point in the protocol; we detected low rates of cross-contamination when

samples were pooled as RNA (0.59%), cDNA (0.76%), or libraries (0.83%).

In summary, when quantification of isoforms and/or non-polyadenylated RNA is not necessary, a

technically validated tag protocol has no drawbacks. Protocols that use poly(A) priming and

template switching also have the advantage that they are very sensitive and for prime-seq we
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have validated that it still works optimally also with 1,000 cells (~10-20ng total RNA) as input.

However, the decisive advantage of tag protocols is their drastically higher cost-efficiency

(Figure 6), as this leads to drastically higher power and much more flexibility in the experimental

design for a given budget. As repeated by biostatisticians over the decades, a good

experimental design and a sufficient number of replicates is the most decisive factor for

expression profiling. It is sobering how enduring the n=3 tradition is, as is nicely shown in [16],

although it is known that it is better to distribute the same number of reads across more

biological replicates [17]. Cost-efficient tag protocols will hopefully make such experimental

designs more common. While library costs are less notable for sequencing depths of 10M reads

or more (Figure 6B), they may enable RNA-seq experiments that can be done with shallow

sequencing, something which is less obvious and might be overlooked. Replacing qPCR has

been advocated as one example by the authors of BRB-seq[22]. But also other applications, like

characterizing cell type composition [36], quality control of libraries, or optimizing experimental

procedures can profit considerably from low library costs.

In summary, tag protocols allow flexible designs of RNA-seq experiments that should be helpful

for many biological questions and have a vast potential when readily accessible for many labs.

Validation, documentation, and cost-efficiency make prime-seq a good option for setting up a tag

protocol

We have argued above that adding a tag protocol to the standard method repertoire of a

molecular biology lab is advantageous due to its cost-efficiency. As the different tag protocols

discussed here perform fairly similar with respect to complexity, power, accuracy, sensitivity, and

cost-efficiency, essentially any of them would suffice. If one has a validated, robust protocol

running in a lab or core facility, it is probably not worth switching. That said, our results might still
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help to better validate existing protocols, integrate direct lysis, and make use of intronic reads. If

one does not have a tag protocol running, we would argue that our results provide helpful

information to decide on a protocol, and that prime-seq would be a good option for several

reasons as laid out in the following.

A main difference among tag protocols is whether they tag the 5’ end, like Decode-seq, or tag

the 3’ end like BRB-seq or prime-seq. 5’ tagging has some obvious advantages (see also [16]),

including the possibility to read both ends of the cDNA as one cannot read through the poly(A)

tail. Using the sequence information from the 5’ end is also important to distinguish alleles of

B-cell receptors and T-cell receptors [68]. In scRNA-seq, both 5’ and 3’ tag protocols have been

successfully used, but 3’ tagging is currently the standard. The reason for this is not obvious, but

it might be that the incorporation of the barcode and the UMI is more difficult to optimize [10].

Additionally, the higher level of alternative splicing at the 5’ end could make gene-level

quantification more difficult. More dedicated comparisons would be needed to further investigate

these factors. Currently, 3’ tag protocols are more established and when using a suitable

sequencing design, poly(A) priming does not compromise sequencing quality as validated by us

and the widespread use of Chromium 10x v3 chemistry scRNA-seq libraries that have the same

layout as prime-seq.

As shown above, prime-seq is among all protocols the most cost-efficient when starting from

purified RNA. It is also currently the only protocol for which a direct lysis is validated, which

further increases cost-efficiency of library production. This is especially advantageous when

processing many samples, shallow sequencing is sufficient, and/or as sequencing costs

continue to drop.
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Finally, we think that prime-seq is the easiest tag protocol to set up. While many such protocols

have been published and all have argued that their method would be useful, few have actually

become widely implemented. The reasons are in all likelihood complex, but we think that

prime-seq has the lowest barriers to be set up by an individual lab or a core facility for three

reasons: First, to our knowledge it is the most validated non-commercial bulk RNA-seq protocol,

based on the experiments presented here as well as our >5 years of experience in running

various versions of the protocol with over 6,000 samples across 17 species resulting in over 20

publications to date. It is the only protocol for which direct lysis and sensitivity are quantitatively

validated. Also, it is well validated in combination with zUMIs, the computational pipeline that

was developed and is maintained by our group [45]. Second, it is not only cost-efficient per

sample, but it also has low setup costs. It requires no specialized equipment and only the

barcoded primers as an initial investment of ~$2,000 for 96 primers, which will be sufficient for

processing more than 240 thousand samples. Finally, prime-seq is well documented not only by

this manuscript, but also by a step-by-step protocol, including all materials, expected results,

and alternative versions depending on the type and amounts of input material

(https://dx.doi.org/10.17504/protocols.io.s9veh66). Hence, we think that prime-seq is not only a

very useful protocol in principle, but also in practice.

Conclusion

The multi-dimensional phenotype of gene expression is highly informative for many biological

and medical questions. As sequencing costs dropped, RNA-seq became a standard tool in

investigating these questions. We argue that the decisive next step is to use the possibilities of

lowered library costs by tag protocols to leverage even more of this potential. We show that

prime-seq is currently the best option when establishing such a protocol as it performs as well
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as other established RNA-seq protocols with respect to its accuracy, power, and library

complexity. Additionally, it is very sensitive, is well documented, and is the most cost-efficient

bulk RNA-seq protocol currently available to set up and to run.
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Methods

A step-by-step protocol of prime-seq, including all materials and expected results, is available on

protocols.io (https://dx.doi.org/10.17504/protocols.io.s9veh66). Below, we briefly outline the

prime-seq protocol, as well as describe any experiment-specific methods and modifications that

were made to prime-seq during testing and optimization.

prime-seq

Cell lysates, generally containing around 1,000-10,000 cells, were treated with 20 µg of

Proteinase K (Thermo Fisher, #AM2546) and 1µL 25 mM EDTA (Thermo Fisher, EN0525) at

50°C for 15 minutes with a heat inactivation step at 75°C for 10 minutes. The samples were then

cleaned using cleanup beads, a custom made mixture containing SpeedBeads

(GE65152105050250, Sigma-Aldrich), at a 1:2 ratio of lysate to beads. DNA was digested

on-beads using 1 unit of DNase I (Thermo Fisher, EN0525) at 20°C for 10 minutes with a heat

inactivation step at 65°C for 5 minutes.

The samples were then cleaned and the RNA was eluted with the 10 µL reverse transcription

mix, consisting of 30 units Maxima H- enzyme (Thermo Fisher, EP0753), 1x  Maxima H- Buffer

(Thermo Fisher), 1 mM each dNTPs (Thermo Fisher), 1 µM template-switching oligo (IDT), 1 µM

barcoded oligo(dT) primers (IDT). The reaction was incubated at 42°C for 90 minutes.

Following cDNA synthesis, the samples were pooled, cleaned, and concentrated with cleanup

beads at a 1:1 ratio and eluted in 17 µL of ddH2O. Residual primers were digested using

Exonuclease I (Thermo Fisher, EN0581) at 37 ºC for 20 minutes followed by a heat inactivation
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step at 80 ºC for 10 minutes. The samples were cleaned once more using cleanup beads at a

1:1 ratio, and eluted in 20 µL of ddH2O.

Second strand synthesis and pre-amplification were performed in a 50 µL reaction, consisting of

1x KAPA HiFi Ready Mix (Roche, 7958935001) and 0.6 µM SingV6 primer (IDT), with the

following PCR setup: initial denaturation at 98 ºC for 3 minutes, denaturation at 98 ºC for 15

seconds, annealing at 65 ºC for 30 seconds, elongation at 68 ºC for 4 minutes, and a final

elongation at 72 ºC for 10 minutes. Denaturation, annealing, and elongation were repeated for

5-15 cycles depending on the initial input.

The DNA was cleaned using cleanup beads at a ratio of 1:0.8 of DNA to beads and eluted with

10 µL of ddH2O. The quantity was assessed using a Quant-iT PicoGreen dsDNA assay kit

(Thermo Fisher, P11496) and the quality was assessed using an Agilent 2100 Bioanalyzer with a

High Sensitivity DNA analysis kit (Agilent, 5067-4626).

Libraries were prepared with the NEBNext Ultra II FS Library Preparation Kit (NEB, E6177S)

according to manufacturer instructions in most steps, with the exception of adapter sequence

and reaction volumes. Fragmentation was performed on 2.5 µL of cDNA (generally 2 - 20 ng)

using Enzyme Mix and Reaction buffer in a 6 µL reaction. A custom prime-seq adapter (1.5 µM,

IDT) was ligated using the Ligation Master Mix and Ligation Enhancer in a reaction volume of

12.7 µL. The samples were then double-size selected using SPRI-select Beads (Beckman

Coulter, B23317), with a high cutoff of 0.5 and a low cutoff of 0.7. The samples were then

amplified using Q5 Master Mix (NEB, M0544L), 1 µL i7 Index primer (Sigma-Aldrich), and 1 µL

i5 Index primer (IDT) using the following setup: 98°C for 30 seconds; 10-12 cycles of 98°C for 10

seconds, 65°C for 1 minute 15 seconds, 65°C for 5 minutes; and 65°C for 4 minutes.

29

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 28, 2021. ; https://doi.org/10.1101/2021.09.27.459575doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.27.459575
http://creativecommons.org/licenses/by-nc-nd/4.0/


Double-size selection was performed once more as before using SPRI-select Beads. The

quantity and quality of the libraries were assessed as before.

Nextera XT Library Prep

Prior to using the NEBNext Ultra II FS Library Kit, libraries were prepared using the Nextera XT

Kit (Illumina, FC-131-1096). This included the RNA extraction experiments (Figure 4) as well as

the AML experiment (Figure 5B). These libraries were prepared as previously described [11].

Briefly, three replicates of 0.8 ng of DNA were tagmented in 20 µL reactions. Following

tagmentation, the libraries were amplified using 0.1 µM P5NextPT5 primer (IDT) and 0.1 µM i7

index primer (IDT) in a reaction volume of 50 µL. The index PCR was incubated as follows: gap

fill at 72°C for 3 minutes, initial denaturation at 95 ºC for 30 seconds, denaturation at 95 ºC for

10 seconds, annealing at 62 ºC for 30 seconds, elongation at 72 ºC for 1 minute, and a final

elongation at 72 ºC for 5 minutes. Denaturation, annealing, and elongation were repeated for 13

cycles.

Size selection was performed using gel electrophoresis. Libraries were loaded onto a 2%

Agarose E-Gel EX (Invitrogen, G401002) and were excised between 300 bp - 900 bp and

cleaned using the Monarch DNA Gel Extraction Kit (NEB, T1020). The libraries were quantified

and qualified using an Agilent 2100 Bioanalyzer with a High Sensitivity DNA analysis kit (Agilent,

5067-4626).

Barcoded oligo(dT) primer design

In order to enable more robust demultiplexing and to ensure full compatibility of our sequencing

layout with the Chromium 10x v3 chemistry, oligo(dT) primers were designed to include a 12 nt
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cell barcode and 16 nt UMI. Candidate cell barcodes were created in R using the DNABarcodes

package [69] to generate barcodes with a length of 12 nucleotides and a minimum Hamming

distance (HD) of 4, with filtering for self-complementarity, homo-triplets, and GC-balance

enabled. Candidate barcodes were filtered further, resulting in a barcode pool with a minimal HD

of 5 and a minimal Sequence-Levenshtein distance of 4 within the set. In order to balance

nucleotide compositions among cell barcodes at each position BARCOSEL [70] was used to

further reduce the candidate set down to the final 384 barcodes.

Sequencing

Sequencing was performed on an Illumina HiSeq 1500 instrument for all libraries except for the

IPSC/NPC experiment where a NextSeq 550 instrument was used. The following setup was

used: Read 1: 28 bp, Index 1: 8 bp; Read 2: 50-56 bp.

Pre-processing of RNA-seq Data

The raw data was quality checked using fastqc (version 0.11.8 [71]) and then trimmed of poly(A)

tails using Cutadapt (version 1.12, https://doi.org/10.14806/ej.17.1.200). Following trimming, the

zUMIs pipeline (version 2.9.4 ,[45]) was used to filter the data, with a Phred quality score

threshold of 20 for 2 BC bases and 3 UMI bases. The filtered data was mapped to the human

genome (GRCh38) with the Gencode annotation (v35) or the mouse genome (GRCm38) with

the Gencode annotation (vM25) using STAR (version 2.7.3a,[72]) and the reads counted using

RSubread (version 1.32.4,[73]).
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Sensitivity and Differential Gene Expression Analysis of RNA-seq Data

The count matrix generated by zUMIs was loaded into RStudio (version 1.3.1093 [74]) using R

(version 4.0.3 [75]). bioMart (version 2.46.0 [76]), dplyr (version 1.0.2 [77]), and tidyr (version

1.1.2 [78]) were used for data processing and calculating descriptive statistics (i.e. detected

genes, reads, and UMIs). DESeq2 (version 1.30.0 [79]) was used for differential gene

expression analysis. ggplot2 (version 3.3.3 [80]), cowplot (version 1.1.1 [81]), ggbeeswarm

(0.6.0 [82]), ggsignif (version 0.6.0 [83]), ggsci (version 2.9 [84]), ggrepel (version 0.9.0 [85]),

EnhancedVolcano (1.8.0 [86]), ggpointdensity (version 0.1.0 [87]) and pheatmap (version 1.0.12

[88]) were used for data visualization.

Power Analysis of RNA-seq Data

Power Simulations were performed following the workflow of the powsimR package (version

1.2.3 [49]). Briefly, RNAseq data per method was simulated based on parameters extracted from

the UHRR comparison experiment. For each method and sample size setup (6 vs. 6, 12 vs. 12,

24 vs. 24, and 48 vs. 48) 20 simulations were performed with the following settings:

normalization = ‘MR’, RNAseq = ‘bulk’, Protocol = ‘Read/UMI’, Distribution = ‘NB’, ngenes =

30000, nsims = 20, p.DE = 0.10. We verified with the data generated from the AML and NPC

differentiation data that the gamma distribution (shape = 1, scale = 0.5) would be an appropriate

log fold change distribution in this case (Figure S5B).

Cell Preparation

Human embryonic kidney 293T (HEK293T) cells were cultured in DMEM media (TH.Geyer,

L0102) supplemented with 10% FBS (Thermo Fisher, 10500-064) and 100 U/ml Penicillin and
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100 μg/ml Streptomycin (Thermo Fisher). Cells were grown to 80% confluency, and harvested

by trypsinization (Thermo Fisher, 25200072).

Peripheral blood mononuclear cells (PBMCs) were obtained from LGC Standards

(PCS-800-011). Before use, the cells were thawed in a water bath at 37°C and washed twice

with PBS (Sigma-Aldrich, D8537).

Prior to lysis, cells were stained with 1 ug/ml Trypan Blue (Thermo Fisher Scientific, 15-250-061)

and counted using a Neubauer counting chamber. Then, the desired number of cells (1,000 or

10,000) was pelleted for 5 min at 200 rcf, resuspended in 50 µL of lysis buffer (RLT Plus

(Qiagen, 1053393) and 1% ß-mercaptoethanol (Sigma-Aldrich,M3148) and transferred to a

96-well plate. Samples were then stored at -80 ºC until needed.

Tissue Preparation

Striatal tissue from C57BL/6 mice between the ages of 6 and 12 months was harvested by first

placing the mouse in a container with Isoflurane (Abbot, TU 061220) until the mouse was visibly

still and exhibited laboured breathing. The mice were then removed from the container, and a

cervical dislocation was performed. The mice were briefly washed with 80% EtOH, the head

decapitated, and the brain removed. The brain was transferred to a dish with ice-cold PBS and

placed in a 1 mm slicing matrix.

Using steel blades (Wilkinson Sword, 19/03/2016DA), 5 coronal incisions were made. Biopsy

punches (Kai Medical, BPP-20F) were then taken from the striatum and the tissue was

transferred to a 1.5 mL tube with 50 µL of lysis buffer, RLT Plus and 1% ß-mercaptoethanol. The

tubes were snap frozen and stored at -80 ºC until needed.

33

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 28, 2021. ; https://doi.org/10.1101/2021.09.27.459575doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.27.459575
http://creativecommons.org/licenses/by-nc-nd/4.0/


RNA Extraction Experiments

To determine differences due to RNA extraction we isolated RNA using columns from the

Direct-zol RNA MicroPrep Kit (Zymo, R2062) (condition: “Column”) and magnetic beads from

the prime-seq protocol (conditions: “No Incubation”, “Incubation”, and “Magnetic Beads”) (see

above for details on prime-seq). For the “Column” condition, manufacturer instructions were

followed and both the Proteinase K and DNase digestion steps were performed as outlined in

the protocol. For the magnetic bead isolation, the prime-seq protocol was used as outlined in the

“Magnetic Beads” condition. For “No Incubation” condition the Proteinase K digestion was

skipped entirely. For the “Incubation” condition, the Proteinase K digestion was performed but

with no enzyme; that is the heat cycling of 50°C for 15 minutes and 75°C for 10 minutes was

carried out but no enzyme was added to the lysate.

gDNA Priming Experiment

For a graphical overview of the gDNA Priming experiment, see Figure 2B. Frozen vials of mouse

embryonic stem cells (mESC), that have been cultured as previously described (citation Bagnoli)

(clone J1, frozen in Bambanker (NIPPON Genetics, BB01) on 04.2017), and HEK293T cells

(frozen in Bambanker on 30.11.18, passage 25) were thawed. DNA was extracted from 1 million

mESCs using DNeasy Blood & Tissue Kit (Qiagen, 69506) and RNA was extracted from

450,000 HEK293T cells using the Direct-zol RNA MicroPrep Kit (Zymo, R2062), according to

manufacturer instructions in both cases. The optional DNase treatment step during the RNA

extraction was performed in order to remove any residual DNA.

After isolating DNA and RNA, the two were mixed to obtain the following conditions: 10 ng RNA/

7 ng DNA, 7.5 ng RNA/ 1.75 ng DNA, and 10 ng RNA/ 0 ng DNA. The 10 ng RNA/ 7 ng DNA
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condition, which represents the highest contamination of DNA, was performed twice, once

without DNase treatment and once with DNase treatment. Libraries were prepared from three

replicates for each condition using prime-seq and were then sequenced (see above for detailed

information).

MAQC-III Comparison Experiment

For a graphical overview of the experimental design see Figure S7A. As only Mix A from the

original MAQC-III Study was compared, 122.2 µL of ddH2O, 2.8 µL of UHRR (100 ng/µL)

(Thermo Fisher, QS0639), and 2.5 µL of ERCC Mix 1 (1:1000) (Thermo Fisher, 4456740) were

combined to generate a 1:500 dilution of Mix A. Eight RNA-seq libraries were constructed using

prime-seq (see above methods) with 5 µL of the 1:500 Mix A.

The samples were sequenced and the data processed and analyzed as outlined above. Of the

comparison data from the original MAQC-III Study, Experiment SRX302130 to SRX302209 from

Submission SRA090948 were used as this was the sequence data from one site (BGI) and was

sequenced using an Illumina HiSeq 2000 [48]. The TruSeq data was first trimmed to be 50 bp

long and then processed with zUMIs as outlined above, with the exception of using both cDNA

reads and not providing UMIs as there were none. Paired-end data was used to not penalize

TruSeq, as this is a feature of the method.

NPC Differentiation Experiment

To differentiate hiPSCs to NPCs, cells were dissociated and 9x103 cells were plated into each

well of a low attachment U-bottom 96-well-plate in 8GMK medium consisting of GMEM (Thermo

Fisher), 8% KSR (Thermo Fisher), 5.5 ml 100x NEAA (Thermo Fisher), 100mM Sodium

Pyruvate (Thermo Fisher), 50mM 2-Mercaptoethanol (Thermo Fisher) supplemented with
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500nM A-83-01 (Sigma Aldrich), 100nM LDN 193189 (Sigma Aldrich) and 30µM Y27632

(biozol). A half-medium change was performed on day 2 and 4. On day 6 Neurospheres from 3

columns were pooled, dissociated using Accumax (Sigma Aldrich) and seeded on Geltrex

(Thermo Fisher) coated wells. After 2 days, cells were dissociated, counted and 2x104 were

lysed in 100 µL of lysis buffer (RLT Plus (Qiagen, 1053393) and 1% ß-mercaptoethanol

(Sigma-Aldrich,M3148)

AML-PDX Sample Collection

Acute myeloid leukemia (AML) cells were engrafted in NSG mice (The Jackson Laboratory, Bar

Harbour, ME, USA) to establish patient derived xenograft (PDX) cells [52]. AML-PDX cells were

cryopreserved as 10 Mio cells in 1mL of freezing medium (90% FBS, 10% DMSO) and stored at

-80°C for biobanking purposes. To avoid thawing these samples and thus harming or even

destroying them, the frozen cell stocks were first transferred to dry ice under a cell culture hood.

Next a sterile 1 mm biopsy punch was used to punch the frozen cells in the vial and transfer the

extracted cells to one well of a 96 well plate containing 100 µL RLTplus lysis buffer with 1% beta

mercaptoethanol. To ensure complete lysis the lysate was mixed and snap frozen on dry ice.

One biopsy punch is estimated to contain 10 µL of cryopreserved cells corresponding to roughly

1x10^5 cells given an even distribution of cells within the original vial. All 96 samples were

collected in this manner, biopsy punches were washed using RNAse Away (Thermo Fisher

Scientific) and 80 % Ethanol for reuse. These lysates were subjected to prime-seq, including

RNA isolation using SPRI beads. In total, PDX samples from 11 different AML patients were

analyzed in 6 to 16 biological replicates (engrafted mice) per sample.
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Cost Comparisons

Costs were determined by searching for general list prices from various vendors. When step by

step protocols were available, each component was included in the cost calculation, such as for

the SMARTer Stranded Total RNA Kit (Takara, 634862), SMART-Seq RNA Kit (v4) (Takara,

634891), TruSeq Library Prep (Illumina, RS-122-2001/2), TruSeq Stranded Library Prep

(Illumina, 20020595), and Illumina Stranded mRNA Prep (Illumina, 20040534). In the case of

BRB-seq no publicly available step-by-step protocol was found, so the methods section was

used to calculate costs [22]. Decode-seq has a publicly available protocol, however, the level of

detail was insufficient to calculate exact costs; therefore, when specific vendors were not listed,

we used the most affordable option that we have previously validated. In all cases the prices

included sales tax and were listed in euros and were therefore converted to USD using a

conversion rate of 1.23 USD to EUR. The costs for all methods can be found in Table S4.
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Supplementary Figures

Figure S1. Molecular workflow of prime-seq.

Figure S2. prime-seq is a robust protocol and has been confirmed with numerous organisms

Figure S3. Intronic reads are not derived from contaminating gDNA.

Figure S4. Experimental design comparing prime-seq to TruSeq data generated in the MAQC-III

Study.

Figure S5. Power and FDR mostly depend on sample size and are similar between prime-seq

and TruSeq.

Figure S6. Performance of isolation methods is similar independent of prefiltering or usage of

only Intron data.

Figure S7. Most genes are detected independent of the extraction method used.

Figure S8. prime-seq performs equally well with high- and low-input samples.

Figure S9. Power analysis shows prime-seq is able to reach 80% power earlier than less

cost-efficient methods.
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Figure S1. Molecular workflow of prime-seq. (Related to Figure 1) oligo(dT)-primers are

used to enrich mRNA, which is then reverse transcribed using Maxima H-, a M-MLV reverse

transcriptase. Full length first strand synthesis is performed using a template switching oligo.

Second strand synthesis and cDNA pre-amplification is completed during the PCR using

KAPA Hifi Polymerase, and this DNA is then used to generate libraries using the NEBNEXT

Ultra II FS Kit. Finally the libraries are sequenced with the following setup: read 1: 28bp, read

2: 8bp, and read 3: 50-150bp.
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Figure S2. prime-seq is a robust protocol and has been validated with numerous

organisms (Related to Figure 2A) (A) To date, 132 experiments consisting of 6,691 samples

from 17 different organisms, ranging from arabidopsis to zebrafish, have been processed

with prime-seq. (B) Data from experiments with well-annotated genomes suggests a

substantial number of detected genes come from intronic reads.
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Figure S3. Intronic reads are not derived from contaminating gDNA. (A) Samples

containing total nucleic acids were either treated with RNase A or DNase I, or remained

untreated. Untreated samples had the highest concentration, showing that genomic DNA is also

used as a template when not removed, albeit less efficiently than mRNA. cDNA yields were

normalized to the number of input cells. (Related to Figure 2B) (B) Mapped reads from different

gDNA/RNA mixed conditions, showing that the DNase treated condition and the no DNA

contamination condition had the lowest fraction of intergenic and unmapped reads. (C) Fraction

of assigned mapped reads per genomic feature (exon, intron, intergenic) and species, showing

an increase in mouse reads with higher gDNA contamination.
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Figure S4. Experimental design comparing prime-seq to TruSeq data generated in the

MAQC-III Study. (Related to Figure 3) A 1:1000 concentration of Mix A, from the MAQC-III

Study, was generated by mixing UHRR and ERCC Mix 1. From this, eight libraries were

generated using prime-seq and compared to five TruSeq generated libraries.
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Figure S5. Power and FDR mostly depend on sample size and are similar between

prime-seq and TruSeq. (Related to Figure 3) (A) Feature distribution from prime-seq and

TruSeq shows 78% and 85% of reads are exonic, intronic, and ERCCs, respectively. (B) Log2
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fold change distribution from the AML and NPC differentiation experiment (Figure 4) compared

to the log2 fold change distribution used in powsimR for power analysis confirms that simulation

settings match expected distributions. (C) Marginal power of prime-seq and TruSeq at differing

samples per condition shows both methods perform similarly well, crossing the 80% threshold

with roughly 12 samples both for exon plus intron and only exon counts. (D and E) FDR over

different mean expression and log2 fold change strata (Related to 3G and 3H). (F and G)

analogous to Figure 3G and 3H) but including only Exonic counts; prime-seq and TruSeq exhibit

similar TPR and FDR over different mean expression and log2 fold change strata. Filtering

parameters: detected UMI ≥ 1, detected gene present in at least 25%.
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Figure S6. Performance of isolation methods is similar independent of prefiltering or

usage of only Exon data. (Related to Figure 4) (A) HEK293T cell samples were extracted

using columns and magnetic beads, employing the standard prime-seq protocol (“Magnetic

Beads”), as well as variant protocols without proteinase K digestion (“No Incubation”) and a

proteinase K digestion control without enzyme (“Incubation”). All conditions had similar fractions

of usable reads (all but intergenic and ambiguity), with an increase in intronic reads in

“Incubation” and “Magnetic Beads” suggesting this increase is due to heat incubation. (B)

Principal component analysis (PCA) of the 500 most variable genes shows the largest variable

is heat incubation. (C and D) Analysis of detected UMIs and detected genes for unfiltered data

and exonic only data shows that prime-seq using magnetic bead isolation is more sensitive in

HEK cells and similarly sensitive in PBMCs and tissue compared to prime-seq using column

isolation. Filtering parameters: detected UMI ≥ 1, detected gene present in at least 25% of

samples and is protein coding.
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Figure S7. Most genes are detected independent of the extraction method used. (Related

to Figure 4) (A) Upset plots showing a strong overlap of detected genes between columns and

magnetic beads. (B) Up- and down-regulated genes between column and bead-based RNA

extractions (p>0.05, log2 FC > 2). (C) Density plots of the differentially expressed genes relative

to length and GC content. Genes upregulated in columns tend to be longer with lower GC

content.
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Figure S8. prime-seq performs equally well with high- and low-input samples. (Related to

Figure 5) (A) Sensitivity, measured in detected UMIs and genes, is similar between high input

(10,000 HEK293T cells) and low input (1,000 HEK293T cells) conditions at various sequencing

depths (filtering parameters: detected UMI ≥ 1, detected gene present in at least 25% of

samples and is protein coding). (B) Additionally, Pearson's correlations between the high- and

low-input conditions were high (pairwise comparison between: r = 0.93, pairwise comparison

within: r = 0.94, and average normalized mean expression, R2 = 0.97).
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Figure S9. Power analysis shows prime-seq is able to reach 80% power earlier than less

cost-efficient methods. (Related to Figure 6) (A) True positive rate (TPR) and false discovery

rates (FDR) corresponding to Figure 6B, but with more incremental values. (B) prime-seq

crosses an 80% power threshold with $715 when sequencing costs are included compared to

$795, $1,625, and $3,485 for low, middle, and high cost methods respectively (10 million reads

used for analysis at a cost of $3.40 per 1 mio. reads).
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