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Abstract

With the advent of Next Generation Sequencing, RNA-sequencing (RNA-seq) has become the
major method for quantitative gene expression analysis. Reducing library costs by early
barcoding has propelled single-cell RNA-seq, but has not yet caught on for bulk RNA-seq. Here,
we optimized and validated a bulk RNA-seq method we call prime-seq. We show that with
respect to library complexity, measurement accuracy, and statistical power it performs equivalent
to TruSeq, a standard bulk RNA-seq method, but is four-fold more cost-efficient due to almost
50-fold cheaper library costs. We also validate a direct RNA isolation step that further improves
cost and time-efficiency, show that intronic reads are derived from RNA, validate that prime-seq
performs optimal with only 1,000 cells as input, and calculate that prime-seq is the most
cost-efficient bulk RNA-seq method currently available. We discuss why many labs would profit
from a cost-efficient early barcoding RNA-seq protocol and argue that prime-seq is well suited
for setting up such a protocol as it is well validated, well documented, and requires no

specialized equipment.
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Background

RNA-sequencing (RNA-seq) has become a central method in biology and many technological
variants exist that are adapted to different biological questions [1]. Its most frequent application
is the quantification of gene expression levels to identify differentially expressed genes, infer
regulatory networks, or identify cellular states. This is done on populations of cells (bulk
RNA-seq) and increasingly with single-cell or single-nucleus resolution (scRNA-seq). Choosing
a suitable RNA-seq method for a particular biological question depends on many aspects, but
the number of samples that can be analyzed is almost always a crucial factor. Including more
biological replicates increases the power to detect differences and including more sample
conditions increases the generalizability of the study. As the limiting factor for the number of
samples is often the budget, the costs of an RNA-seq method are an essential parameter for the
biological insights that can be gained from a study. Of note, costs need to be viewed in the
context of statistical power, i.e. in light of the true and false positive rate of a method [2,3] and
these “normalized” costs can be seen as cost-efficiency. On top of reagent costs per sample,
aspects like robustness, hands-on time, and setup investments of a method can also be seen as
cost factors. Other important factors less directly related to cost efficiency are the number and
types of genes that can be detected (complexity), the amount of input material that is needed to
detect them (sensitivity), and how well the measured signal reflects the actual transcript

concentration (accuracy).

In recent years, technological developments have focused on scRNA-seq due to its exciting
possibilities and due to the urgent need to improve its cost efficiency and sensitivity [4—6]. A

decisive development for cost efficiency was “early-barcoding”, i.e. the integration of
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sample-specific DNA tags in the primers used during complementary DNA (cDNA) generation
[7,8]. This allows one to pool cDNA for all further library preparation steps, saving time and
reagents. However, the cDNA and the barcode need to be sequenced from the same molecule
and hence cDNA-tags and not full-length cDNA sequences are generated. An improvement in
measurement noise is achieved by integrating a random DNA tag along with the sample
barcode, a Unique Molecular Identifier (UMI), that allows identifying PCR duplicates and is
especially relevant for the small starting amounts in scRNA-seq [2,7,9]. Optimizing reagents and
reaction conditions (e.g. [10,11] and the efficient generation of small reaction chambers such as
microdroplets [12—14], further improved cost efficiency and sensitivity and resulted in the current

standard of scRNA-seq, commercialized by 10X Genomics [5].

Despite these exciting developments, bulk RNA-seq is still widely used and — more importantly —
still widely useful as it allows for more flexibility in the experimental design that can be
advantageous and complementary to scRNA-seq approaches. For example, investigated cell
populations might be homogenous enough to justify averaging, single-cell or single-nuclei
suspensions might be difficult or impossible to generate, or single-cell or single-nucleus
suspension might be biased towards certain cell types. Most trivial, but maybe most crucial, the
number of replicates and conditions is limited due to the high costs of scRNA-seq per sample.
Furthemore, as more knowledge on cellular and spatial heterogeneity is acquired by scRNA-seq
and spatial approaches, bulk RNA-seq profiles can be better interpreted, e.g. by computational
deconvolution of the bulk profile [15]. Hence, bulk RNA-seq will remain a central method in
biology, despite or even because of the impressive developments from scRNA-seq and spatial
transcriptomics. However, bulk RNA-seq libraries are still largely made by isolating and
fragmenting mMRNA to generate random primed cDNA sequencing libraries. Commercial variants

of such protocols, such as TruSeq and NEBNext, can be considered the current standard for
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bulk RNA-seq methods. This is partly because improvements of sensitivity and cost efficiency
were less urgent for bulk RNA-seq as input amounts were often high, overall expenses were
dominated by sequencing costs, and n=3 experimental designs have a long tradition in
experimental biology [16]. However, input amounts can be a limiting factor, sequencing costs
have decreased and will further decrease, and low sample size is a central problem of
reproducibility [17,18]. To address these needs, several protocols have been developed,
including targeted approaches [19-21] and genome-wide approaches that leverage the
scRNA-seq developments described above [16,22]. However, given the importance and costs of
bulk RNA-seq, even seemingly small changes, e.g. in the sequencing design of libraries [16],
the number of PCR cycles [9], or enzymatic reactions [22], can have relevant impacts on cost
efficiency, complexity, accuracy, and sensitivity. Furthermore, protocols need to be available to
many labs to be useful and insufficient documentation, limited validation, and/or setup costs can
prevent their implementation. Accordingly, further developments of bulk RNA-seq protocols are

still useful.

Here, we have optimized and validated a bulk RNA-seq method that combines several
methodological developments from scRNA-seq to generate a very sensitive and cost-efficient
bulk RNA-seq method we call prime-seq (Figure 1, Figure S1). In particular, we have integrated
and benchmarked a direct lysis and RNA purification step, validated that intronic reads are
informative as they are not derived from genomic DNA, and show that prime-seq libraries are
similar in complexity and statistical power to TruSeq libraries, but at least four-fold more
cost-efficient due to almost 50-fold cheaper library costs. Prime-seq is also robust, as we have
used variants of it in 22 publications [9,23—43], 132 experiments, and in 17 different organisms
(Table S1, Figure S2). Additionally it has low setup costs as it does not require specialized

equipment and is well validated and documented. Hence, it will be a very useful protocol for
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many labs or core facilities that quantify gene expression levels on a regular basis and have no

cost-efficient protocol available yet.

Results

Development of the prime-seq protocol

The prime-seq protocol is based on the scRNA-seq method SCRB-seq [44] and our optimized
derivative mcSCRB-seq [11]. It uses the principles of poly(A) priming, template switching, early
barcoding, and UMIs to generate 3’ tagged RNA-seq libraries (Figure 1 and Figure S1).
Compared to previous versions as described e.g. in [32], we have optimized the workflow,
switched from a Nextera library preparation protocol to an adjusted version of NEBNext Ultra Il
FS, and made the sequencing layout analogous to 10X Chromium v3 gene expression libraries
to facilitate pooling of libraries on lllumina flow cells, which is of great practical importance [16].
A detailed step-by-step protocol of prime-seq, including all materials and expected results, is
available on protocols.io (https://dx.doi.org/10.17504/protocols.io.s9veh66). We have so far used
this and previous versions of the protocol in 22 publications [9,23-43] and have generated just
within the last year over 24 billion reads from >4,800 RNA-seq libraries in 97 projects from
vertebrates (mainly mouse and human), plants, and fungi (Table S1 and Figure 2A). From these
experiences, we find that the protocol works robustly and detects per sample on average
>20,000 genes with 6.7 million reads of which 90.0% map to the genome and 71.6% map to
exons and introns (Table S1). Notably, a large fraction (21%) of all UMIs map to introns with

considerable variation among samples (Figure 2A).
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Figure 1. Graphical overview of prime-seq, highlighting its robustness, sensitivity,
affordability, and the validation experiments performed. Cells are first lysed, mRNA is
then isolated using magnetic beads, and in turn reverse transcribed into cDNA. Following
cDNA synthesis, all samples are pooled, libraries are made, and the samples are sequenced.
The protocol has been validated on 17 organisms, including human, mouse, zebrafish, and
arabidopsis. Additionally, prime-seq is sensitive and works with low inputs, and the
affordability of the method allows one to increase sample size to gain more biological insight.
To verify prime-seq’s performance, we first compared prime-seq to TruSeq using the publicly
available MAQC-IIl Study data. We then showed robust detection of marker genes in NPC

differentiation and high throughput analysis of AML-PDX patient samples without
compromising the archived samples.

About 8,000 genes are detected only by exonic reads, ~ 8,000 by exonic and intronic reads, and
~ 4,000 by intronic reads only (Figure 2B, Table S1). Intronic reads correlate well with exonic

reads of the same gene in scRNA-seq [45] and bulk RNA-seq data sets [46] and intronic reads
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are also used to infer expression dynamics in scRNA-seq data [47]. Hence, intronic reads can in
principle be informative for quantifying gene expression. However, it is an uncommon practice to
use them. This might be due to concerns that intronic reads could at least partially be derived
from genomic DNA as MMLV-type reverse transcriptases could prime DNA that escaped a

DNase | digest. Therefore, we investigated the origin of the intronic reads in prime-seq.

Intronic reads are derived from RNA

First, we measured the amount of DNA yield generated from genomic DNA (gDNA). We lysed
varying numbers of cultured human embryonic kidney 293T (HEK293T) cells and treated the
samples with DNase |, RNase A, or neither prior to cDNA generation using the prime-seq
protocol (up to and including the pre-amplification step). Per 1,000 HEK cells, this resulted in ~5
ng of “cDNA” generated from gDNA in addition to the 12-32 ng of cDNA generated from RNA.
(Figure S3A). To test the efficiency of DNase | digestion and quantify the actual number of reads
generated from gDNA, we mixed mouse DNA and human RNA in different ratios (Figure 2B).
Prime-seq libraries were generated and sequenced from untreated and DNAse | treated
samples and reads were mapped to the mouse and human genome (Figure 2B). In the sample
that did not contain any mouse DNA, ~0.5% of all exonic and intronic UMIs mapped to the
mouse genome, which represents the background level due to mismapping. Of the human
mapped reads in this sample, ~70% mapped to exons or introns and 10% to intergenic regions.
(Figure S3B). Importantly, the DNAse | treated sample had the same distribution of mapped
UMIs (0.7% mapped to mouse), strongly suggesting that the DNAse | digest is nearly complete

and that essentially all reads in the DNAse | treated sample are derived from RNA.
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Figure 2. Intronic reads account for a variable but substantial fraction of UMIsand
stem from RNA. (A) Fraction of exonic and intronic UMIs from 97 primate and mouse
experiments using various tissues (neural, cardiopulmonary, digestive, urinary, immune,
cancer, induced pluripotent stem cells). Sequencing depth is indicated by shading of the
individual bars. We observe an average of 21% intronic UMlIs, with some level of
tissue-specific deviations as e.g. immune cells generally have higher fractions of intronic
reads. (B) To determine if intronic reads stem from genomic DNA or mRNA, we extracted
DNA from mouse embryonic stem cells (mMESCs) and RNA from human induced pluripotent
stem cells (hiPSCs) and then pooled the two in various ratios (75, 50, 25, and 0% gDNA) and
counted the percentage of genomic (=mouse-mapped) UMIs. This indicates that DNAse |

treatment in prime-seq is complete and that observed intronic reads are derived from RNA.

As expected, with increasing amounts of mouse DNA the proportion of mouse mapped UMIs
increased (Figure 2B), but even with 75% of the sample being mouse DNA, only 4.5% of the
UMIs map to the mouse genome, suggesting that also for gDNA containing samples the impact
of genomic reads on expression levels is likely small. Notably, with increasing amounts of gDNA,

the fraction of unmapped reads also increased (Figure S3B), suggesting that the presence of
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gDNA does decrease the quality of RNA-seq libraries and does influence which molecules are
generated during cDNA generation. In summary, these results indicate that essentially all reads
in prime-seq libraries are derived from RNA when samples are DNAse | treated and hence that

intronic reads can be used to quantify expression levels.

prime-seq performs as well as TruSeq

Next, we quantitatively compared the performance of prime-seq to a standard bulk RNA-seq
method with respect to library complexity, accuracy, and statistical power. A gold standard
RNA-seq data set was generated in the third phase of the Microarray Quality Control (MAQC-III)
study [48], consisting of deeply sequenced TruSeq RNA-seq libraries generated from five
replicates of Universal Human Reference RNA (UHRR) and External RNA Controls Consortium
(ERCC) spike-ins. As lllumina's TruSeq protocol can be considered a standard bulk RNA-seq
method and as the reference RNAs (UHRR and ERCCs) are commercially available, this is an
ideal data set to benchmark our method. As in the MAQC-III design, we mixed UHRR and
ERCCs (Figure S4A) in the same ratio but at a 1,000-fold lower input and generated eight
prime-seq libraries, which were sequenced to a depth of at least 30 million reads. We processed
and downsampled both data using the zUMIs pipeline [45] and compared the two methods with
respect to their library complexity (number and expression levels of detected genes), accuracy
(correlation of estimated expression level and actual number of spiked-in ERCCs), and
statistical power (true positive and false positive rates in data simulated based on the

mean-variance distribution of technical replicates of each method).

10


https://paperpile.com/c/8mIQvv/ZghCr
https://paperpile.com/c/8mIQvv/w337e
https://doi.org/10.1101/2021.09.27.459575
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.09.27.459575; this version posted September 28, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

A B C
- = 5 F e f
£ g ] v
w20 g iy J-
= 20000 g £ .
=] X |t
= g § 3 E f
o q L
g 10 & | E c m
o 100004 4 = E s
| 1] I
H 1 w *aes
| o £
g 3 =4 -y
= 3 E
10 20 30 10 20 30 2
Sequencing Reads (mil.) Sequencing Reads (mil.) 0 2 4 6 4 6 8
Log,, Spike=In Molecules
Count — reads -- UMIs  Method * prime—seq TruSeq
1000
2 method
750 = e
3 e + prime—
n & p seq
E 500 z E I=.90.0%{ + TruSeq
G 20 s & 5
5 0 8 3
5 1000 a8 a
£ 750 4 N E80.0% -l |
2 500 @ 5 2
0
0 5 10 15 0 5 10 15 6 12 24 48
Log2 Mean Expression Log2 Mean Expression Samples per group
G 0% H 100%
75% s 75%
— 12
24
2 =
® 50% 48 T 50% o
-4 1]
meathod
— prime-seq
25%1 =% Tiien 25%
0% 0%

0.1 0.3 0.5 0.7 0.9
Percentile Log2 Mean Expression

Figure 3. prime-seq has similar sensitivity and power compared to TruSeq (MAQC-III
data). (A) Mapped reads, UMIs (dashed line, only prime-seq), and (B) detected genes at
varying sequencing depths between TruSeq data from the MAQC-III Study and matched

prime-seq data, shows prime-seq and TruSeq are similarly sensitive (filtering parameters:
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detected UMI = 1, detected gene present in at least 256% of samples and is protein coding).
(C) Accuracy, measured by spike-in molecules, is similarly high in both methods (R?*=0.94).
(D) The distribution of genes across mean expression is similar for both methods, as well as
the (E) dispersion, which follows a poisson distribution (dark grey dashed line) for lower
expressed genes and then increases as technical variation increases for highly expressed
genes. The local polynomial regression fit between mean and dispersion estimates per
method is shown in solid lines with 95% variability band per gene shown in dashed lines. (F)
Power analysis at a sequencing depth of 10 million reads shows almost identical power
between prime-seq and TruSeq, and a similar increase at varying sample size for (G) mean
expression and (H) absolute log2 fold change. Data filtering parameters: detected UMI = 1,

detected gene present in at least 25% of samples.

We found that prime-seq has a slightly lower fraction of exonic and intronic reads that can be
used to quantify gene expression (78% vs. 85%; Figure 3A, Figure S5A). But despite the slightly
lower number of reads that can be used, prime-seq does detect at least as many genes as
TruSeq (Figure 3B). Both methods also show a similar distribution of gene expression levels

(Figure 3D), indicating that the complexity of generated libraries is generally very similar.

The accuracy of a method, i.e. how well estimated expression levels reflect actual
concentrations of mRNAs, is relevant when expression levels are compared among genes.
Here, TruSeq and prime-seq show the same correlation (Pearson’s R? = 0.94) between
observed expression levels and the known concentration of ERCC spike-ins, indicating that their

accuracy is very similar (Figure 3C).

However, for most RNA-seq experiments, a comparison among samples - e.g. to detect
differentially expressed genes - is more relevant. Therefore, it matters how well genes are
measured by a particular method, i.e. how much technical variation a method generates across
genes. As we have 8 and 5 technical replicates of the same RNA for prime-seq and TruSeq,

respectively, we can estimate for each method the mean and variance per gene. Note that UMIs
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are only available for prime-seq and hence only prime-seq can profit from removing technical
variance by removing PCR duplicates (Figure 3A). The empirical distribution shows the
characteristic dependency of RNA-seq data on sampling (Poisson expectation) at low
expression levels and an increasing influence of the additional technical variation at higher
expression levels (Figure 3E). Prime-seq shows a slightly lower variance for medium expression
levels where most genes are expressed and a higher one for a handful of genes with very high
expression levels (Figure 3E). To quantify to what extent these differences in the mean-variance
distribution actually matter, we used power simulations as implemented in powsimR [49]. We
simulated that 10% of genes sampled from the estimated mean-variance relation of each
method are differentially expressed between two groups of samples. The fold changes of these
genes were drawn from a distribution similar to those we observed in actual data between two
cell types (iPSCs and NPCs) or two types of acute myeloid leukemia (AML) (see below and
Figure S5B). The comparison between this ground truth and the identified differentially
expressed genes in a simulation allows us to estimate the true positive rate (TPR) and the false
discovery rate (FDR) for a particular parameter setting. We stratified TPR and FDR across the
number of replicates (Figure 3F), the expression levels (Figure 3G), and the fold changes
(Figure 3H) to illustrate the strong dependence of power on these parameters. At a given FDR
level, a more powerful method reaches a TPR of 80% with fewer replicates, at a lower
expression level, and/or for a lower fold change. We find that the power of the two methods is
almost identical as FDR and TPR are very similar across conditions for both methods. The false
discovery rates (FDR) are - as expected - generally below 5% for 12, 24, or 48 replicates per
condition (Figure S5C) and the (marginal) TPR across all expression levels and fold changes is
80% for both methods at ~12 replicates per condition (Figure 3F). The power increases for both

methods in a similar manner with increasing expression levels (Figure 3G) and increasing fold
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changes (Figure 3H). This is also the case when using only exonic reads for the power analysis
(Figure S5C and S5F-G). In summary, prime-seq and TruSeq perform very similarly in
estimating gene expression levels with respect to library complexity, accuracy, and statistical

power.

Bead-based RNA extraction increases cost efficiency and throughput

As library costs and sequencing costs drop, standard RNA isolation becomes a considerable
factor for the cost efficiency of RNA-seq methods. RNA isolation using magnetic beads is an
attractive alternative [50] and we have used it successfully in combination with our protocol
before [11]. To investigate the effects of RNA extraction more systematically, we compared
prime-seq libraries generated from RNA extracted via silica columns and via magnetic beads.
Libraries from cultured HEK293T cells, human peripheral blood mononuclear cells (PBMC), and
mouse brain tissue showed a similar distribution of mapped reads, albeit with a slightly higher
fraction of intronic reads in magnetic bead libraries (Figure 4A and S6) and considerable

differences in expression levels (Figure 4B and S7).

To further explore these differences, we tested the influence of the Proteinase K digestion and
its associated heat incubation (50°C for 15 minutes and 75°C for 10 minutes), which is part of
the bead based RNA isolation protocol. We prepared prime-seq libraries using HEK293T RNA
extracted via silica-columns (“Column”), magnetic beads with Proteinase K digestion (“Magnetic
Beads”), magnetic beads without Proteinase K digestion (“No Incubation”), and magnetic beads
with the same incubations but without the addition of the enzyme (“Incubation”). Interestingly, the
shift to higher intronic fractions and the expression profile similarity is mainly due to the heat

incubation, rather than the enzymatic digestion by Proteinase K (Figure S6A and B).
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Figure 4. RNA extraction with beads, rather than columns, provides similar
sequencing data while increasing throughput capabilities. (A) Feature distributions of
RNA isolated with a column-based kit and magnetic beads show that both RNA extraction
protocols produce similar amounts of useable reads from cultured human embryonic kidney
293T (HEK293T) cells, peripheral blood mononuclear cells (PBMC), and harvested mouse
brain tissue. (B) Gene expression between both bead and column extraction are also similar
in all three tested inputs (R? = 0.86 HEK, 0.84 PBMCs, and 0.74 tissue). (C) Detected UMIs
and detected genes for column and magnetic beads in HEK293T, PBMCs, and tissue are
almost identical, with slightly more detected genes in the bead condition (filtering parameters:
detected UMI = 1, detected gene present in at least 256% of samples and is protein coding).

Comparison of costs (D) and time (E) required for different RNA extractions.

Hence, bead-based extraction does create a different expression profile than column based
extraction, especially due to the often necessary Proteinase K incubation step. This confirms the
general influence of RNA extraction protocols on gene expression profiles [51]. Importantly, the

complexity of the two types of libraries is similar, with a slightly higher number of genes detected
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in the bead-based isolation (Figure 4C, Figure S6C and S6D), potentially due to a preference for

longer transcripts with lower GC contents (Figure S7C).

So while bead-based RNA isolation and column-based RNA isolation create different but
similarly complex expression profiles, bead-based RNA isolation has the advantage of being
much more cost-efficient. At least four times more RNA samples can be processed for the same
budget (Figure 4D, Table S2). In addition, RNA isolation using magnetic beads is twice as fast
and without robotics more amenable to high throughput experiments (Table S3). Thus, we show
that bead-based RNA isolation can make prime-seq considerably more cost-efficient without

compromising library quality.

prime-seq is sensitive and works well with 1,000 cells

As prime-seq was developed from a scRNA-seq method [44], it is very sensitive, i.e. it generates
complex libraries from one or very few cells. This makes it useful when input material is limited,
e.g. when working with rare cell types isolated by FACS or when working with patient material.
To validate a range of input amounts, we generated RNA-seq libraries from 1,000 (low input,
~10-20 ng total RNA) and 10,000 (high input, ~100-200 ng) HEK293T cells. The complexity of
the two types of libraries was very similar, with only a 2% decrease in the fraction of exonic and
intronic reads and a 7.7% and 1.9% reduction in the number of UMIs and detected genes at the
same sequencing depth (Figure S8A). The expression profiles were almost as similar between
the two input conditions as within the input conditions (median r within = 0.94, median r between
= 0.93; Figure S8B), indicating that expression profiles from 1,000 and 10,000 cells are almost
identical in prime-seq. Using a lower number of input cells is certainly possible and
unproblematic as long as the number of cells is unbiased with respect to the variable of interest.

Using higher amounts than 10,000 cells is certainly also possible, but it is noteworthy that we
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have observed a large fraction of intergenic reads in highly concentrated samples, potentially
due to incomplete DNase | digestion (data not shown). In summary, we validate that an input
amount of at least 1,000 cells does not compromise the complexity of prime-seq libraries and

hence that prime-seq is a very sensitive RNA-seq protocol.

Two exemplary applications of prime-seq

To exemplify the advantages with respect to sensitivity and throughput in an actual setting, we
used prime-seq to profile cryopreserved human acute myeloid leukemia (AML) cells from
patient-derived xenograft (PDX) models [23,52]. These consisted of different donors and AML
subtypes and were stored in freezing medium at -80°C for up to 3.5 years (Figure 5A). Due to
the sensitivity of prime-seq, we could use a minimal fraction of the sample without thawing it by
taking a 1 mm biopsy punch from the vial of cryopreserved cells and putting it directly into the
lysis buffer. This allowed sampling of precious samples without compromising their amount or
quality and resulted in 94 high quality expression profiles that clustered mainly by AML subtype

(Figure 5B) as expected [53].

To further exemplify the performance of prime-seq, we investigated its ability to detect known
differences in a well established differentiation system [54]. We differentiated five human
induced pluripotent stem cell (iPSCs) lines [36] to neural progenitor cells (NPCs) and generated
expression profiles using prime-seq (Figure 5C). In a hierarchical clustering of well known
marker genes [55], the iPSCs and NPCs formed two distinct groups and the expression patterns
were in agreement with their cellular identity. For example the iPSC markers POUSF1, NANOG
and KLF4 showed an increased expression in the iPSCs and NES, SOX1, and FOXG1 in NPCs

(Figure 5D).
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Figure 5. Two exemplary applications of prime-seq. (A) Experimental design for an acute
myeloid leukemia (AML) study, where a biopsy punch was used to collect a small fraction of
a frozen Patient-derived xenograft (PDX)-AML sample. (B) Prime-seq libraries were
generated from 94 PDX samples, derived from 11 different AML-PDX lines (colour-coded)
from 5 different AML subtypes (symbol-coded) and cluster primarily by AML subtype. (C)
Experimental design for studying the differentiation from five human induced pluripotent stem
cell lines (iPSCs) to neural progenitor cells (NPC). (D) Expression levels from 20 a priori

known marker genes cluster iPSCs and NPCs as expected.

prime-seq is cost-efficient

We have shown above that the power, accuracy and library complexity is similar between
prime-seq and TruSeq. The performance and robustness of the prime-seq protocol has been
demonstrated by the two examples above as well as its many applications using this or previous
versions of the protocol [9,23-35,42,43,56,57]. In summary, one could argue that prime-seq
performs as well as TruSeq for quantifying gene expression levels. Other methods that generate

tagged cDNA libraries using early barcoding have also been developed [16,22,58—-61]. This
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includes BRB-seq that uses poly(A) priming and DNA-Pol | for second strand synthesis and also
performs similarly to TruSeq [22]. Decode-seq also uses poly(A) priming and template switching
like prime-seq, but adds sample-specific barcodes and UMIs at the 5 end [16]. In a direct
comparison, Decode-seq performed slightly better than BRB-seq and due to a more flexible
sequencing layout [16]. While slight differences in power, accuracy, and/or library complexity
might exist among these protocols, cross-laboratory benchmarking on exactly the same samples
as recently done e.g. for scRNA-seq methods [5] or small RNA-seq methods [62] are probably
needed to quantify such differences reliably. For now, it is probably fair to say that RNA-seq
methods like BRB-seq, prime-seq, TruSeq, SmartSeq, or Decode-seq all perform fairly equal
with respect to quantifying gene expression levels. Hence, at a fixed budget the cost per sample
will determine to a large extent how many samples can be analyzed and hence how much

biological insight can be gained.

To this end, we calculated the required reagent costs to generate a library from isolated RNA in
a batch of 96 samples for the different commercial methods as well as for prime-seq,
Decode-seq, and BRB-seq (Table S4). With $2.53 per sample prime-seq is the most
cost-efficient method, followed by BRB-seq ($4.05) and Decode-seq ($6.58). Commercial
methods range from $60 (NEBNext) to $164 (SMARTer Stranded). This is illustrated by the
number of libraries that can be generated by a fixed budget of $500 (Figure 6A). Note that these
costs include for all methods $1.39 per sample for two Bioanalyzer (Agilent) Chips (Table S4)
and do not consider the additional cost reduction that is associated with the direct bead-based
RNA extraction of prime-seq (see above). The drastic advantage of prime-seq, Decode-seq, and
BRB-seq also becomes apparent when power is plotted as a function of costs with and without
sequencing (10 million reads per sample) (Figure 6B, Figure S9A). For example, to reach an

80% TPR at a desired FDR of 5%, one needs to spend $715 including sequencing costs for
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prime-seq, $795 when using Decode-seq, $1,625 when using lllumina Stranded, and $3,485

when using TruSeq (Figure S9B).
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the TruSeq MAQCII data was used as a basis for power analysis for all methods but
prime-seq. The increase in sample size due to cost efficiency directly impacts the power to
detect differentially expressed genes, as evident by the increased performance of prime-seq
and other low cost methods (BRB-seq and Decode-seq), even when sequencing costs are
included in the comparison (sequencing depth of 10 mio. reads at a cost of $3.40 per 1 mio.

reads).

Cost-efficiency with respect to time can also matter and we calculated hands-on and hands-off
time for the different methods (Table S5). Hands-on times vary from 30-35 minutes for the
non-commercial, early barcoding methods to 52-191 minutes for commercial methods. However,
as all methods require essentially a full day of lab work, we consider the differences in required
times not as decisive, at least not in a research lab setting where RNA-seq is not done on a
daily or weekly basis. In summary, we find that prime-seq is the most cost-efficient bulk

RNA-seq method currently available.
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Discussion

In this paper we present and validate prime-seq, a bulk RNA-seq protocol, and show that it is as
powerful and accurate as TruSeq in quantifying gene expression levels, but more sensitive and
much more cost-efficient. We validate the DNAse | treatment and determine that intronic reads
are derived from RNA and can be used in downstream analysis. We also validate input ranges
and the direct lysis and bead-based RNA purification of tissue and cell culture samples. Finally,
we exemplify the use of prime-seq by profiling AML samples and NPC differentiation and show
that prime-seq is currently the most cost-efficient bulk RNA-seq method. In the following, we
focus our discussion on advantages and drawbacks of prime-seq in comparison to other
RNA-seq protocols. To this end, we distinguish protocols like TruSeq, Smart-seq, or NEBNext
that individually process RNA samples and generate full-length cDNA profiles (“full-length
protocols”) from protocols like prime-seq, Decode-seq, or BRB-seq that use early barcoding and

generate 5’ or 3’ tagged cDNA libraries (“tag protocols”).
Complexity, power and accuracy are similar among most bulk RNA-seq protocols

Initially, early barcoding 3’ tagged protocols generated slightly less complex libraries (i.e.
detected fewer genes for the same number of reads), especially due to a considerable fraction
of unmapped reads [22,63]. These reads are probably caused by PCR artifacts during cDNA
generation and amplification. Protocol optimizations as shown for BRB-seq [22], Decode-seq
[16] and here for prime-seq have reduced these artifacts and hence have improved library
complexity to the level of standard full-length protocols. For prime-seq we have shown
quantitatively that its complexity, accuracy, and power is very similar to that of TruSeq. More

comprehensive studies, ideally across laboratories [5,48], would be needed to quantitatively
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compare protocols, also with respect to their robustness across laboratories and conditions and
their biases for individual transcripts. For the context and methods discussed here, we would
argue that there are no decisive differences in power, accuracy, and complexity among tag
protocols and full-length protocols at least when performed under validated and optimized

conditions.

Cost-efficiency makes tag-protocols preferable when quantifying gene expression levels

As shown above (Figure 6) and as argued before [16,22,63], the main advantage of tag
protocols is their cost-efficiency. Their most obvious drawback is that they cannot quantify
expression levels of different isoforms. Smart-seq2 [64] and Smart-seq3 [10] are relatively
cost-efficient full length protocols that were developed for scRNA-seq. However, they have not
been validated and optimized for bulk RNA-seq and would still be considerably more expensive
than most tag protocols. Furthermore, as reconstructing transcripts from short read data is
difficult and requires deep sequencing, isoform detection and quantification is now probably
more efficiently done by using long-read technologies [1]. However, from our experience, most
RNA-seq projects quantify expression at the gene level not at the transcript level. This is
probably because most projects use RNA-seq to identify affected biological processes or
pathways by a factor of interest. As different genes are associated with different biological
processes, but different isoforms are only very rarely associated with different biological
processes, most projects do not profit much from quantifying isoforms. Hence, we would argue
that quantifying expression levels of genes is the better option, as long as isoform quantification

is not of explicit relevance for a project.

Another limitation is that all tag-protocols use poly(A) priming and hence do not capture mRNA

from bacteria, organelles, or other non-polyadenylated transcripts. For full-length protocols like
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TruSeq, cDNA generation by random priming after rRNA depletion can be done. Another
possibility is poly(A) tailing after rRNA depletion [65], but to our knowledge, this has not been
adopted to tag-based protocols yet. How to efficiently combine profiling of polyadenylated,
non-polyadenylated, and small RNA is certainly worth further investigating. However, it is also
true that for eukaryotic cells, quantification of mMRNAs contains most of the information. Hence,
similar to the quantification of isoforms, we would argue that quantifying expression levels of
genes by polyadenylated transcript is often sufficient, as long as non-polyadenylated transcripts

are not explicitly relevant.

Finally, while early barcoding and pooling enable the cost-efficiency of tag protocols, this
necessitates calibrating input amounts. Input calibration is easy when starting with extracted
RNA or when it is possible to count cells prior to direct lysis. When counting cells is not possible,
we have also developed a protocol adaptation of prime-seq that allows for RNA quantification
and normalization after bead-based RNA isolation and prior to reverse transcription

(https://dx.doi.org/10.17504/protocols.io.s9veh66). Early barcoding and pooling also entails the

danger of barcode swapping, i.e. the formation of chimeric molecules during PCR, resulting in a
contamination of a cell’'s expression profile with transcripts from another cell. This is especially
an issue for scRNA-seq [66] as the number of PCR cycles and on the polymerase likely play a
role [67]. To verify that this is not an issue in prime-seq, we pooled human and mouse samples
at each possible point in the protocol; we detected low rates of cross-contamination when

samples were pooled as RNA (0.59%), cDNA (0.76%), or libraries (0.83%).

In summary, when quantification of isoforms and/or non-polyadenylated RNA is not necessary, a
technically validated tag protocol has no drawbacks. Protocols that use poly(A) priming and

template switching also have the advantage that they are very sensitive and for prime-seq we
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have validated that it still works optimally also with 1,000 cells (~10-20ng total RNA) as input.
However, the decisive advantage of tag protocols is their drastically higher cost-efficiency
(Figure 6), as this leads to drastically higher power and much more flexibility in the experimental
design for a given budget. As repeated by biostatisticians over the decades, a good
experimental design and a sufficient number of replicates is the most decisive factor for
expression profiling. It is sobering how enduring the n=3 tradition is, as is nicely shown in [16],
although it is known that it is better to distribute the same number of reads across more
biological replicates [17]. Cost-efficient tag protocols will hopefully make such experimental
designs more common. While library costs are less notable for sequencing depths of 10M reads
or more (Figure 6B), they may enable RNA-seq experiments that can be done with shallow
sequencing, something which is less obvious and might be overlooked. Replacing gqPCR has
been advocated as one example by the authors of BRB-seq[22]. But also other applications, like
characterizing cell type composition [36], quality control of libraries, or optimizing experimental

procedures can profit considerably from low library costs.

In summary, tag protocols allow flexible designs of RNA-seq experiments that should be helpful

for many biological questions and have a vast potential when readily accessible for many labs.

Validation, documentation, and cost-efficiency make prime-seq a good option for setting up a tag

protocol

We have argued above that adding a tag protocol to the standard method repertoire of a
molecular biology lab is advantageous due to its cost-efficiency. As the different tag protocols
discussed here perform fairly similar with respect to complexity, power, accuracy, sensitivity, and
cost-efficiency, essentially any of them would suffice. If one has a validated, robust protocol

running in a lab or core facility, it is probably not worth switching. That said, our results might still
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help to better validate existing protocols, integrate direct lysis, and make use of intronic reads. If
one does not have a tag protocol running, we would argue that our results provide helpful
information to decide on a protocol, and that prime-seq would be a good option for several

reasons as laid out in the following.

A main difference among tag protocols is whether they tag the 5’ end, like Decode-seq, or tag
the 3’ end like BRB-seq or prime-seq. 5’ tagging has some obvious advantages (see also [16]),
including the possibility to read both ends of the cDNA as one cannot read through the poly(A)
tail. Using the sequence information from the 5’ end is also important to distinguish alleles of
B-cell receptors and T-cell receptors [68]. In scRNA-seq, both 5’ and 3’ tag protocols have been
successfully used, but 3’ tagging is currently the standard. The reason for this is not obvious, but
it might be that the incorporation of the barcode and the UMI is more difficult to optimize [10].
Additionally, the higher level of alternative splicing at the 5 end could make gene-level
quantification more difficult. More dedicated comparisons would be needed to further investigate
these factors. Currently, 3’ tag protocols are more established and when using a suitable
sequencing design, poly(A) priming does not compromise sequencing quality as validated by us
and the widespread use of Chromium 10x v3 chemistry scRNA-seq libraries that have the same

layout as prime-seq.

As shown above, prime-seq is among all protocols the most cost-efficient when starting from
purified RNA. It is also currently the only protocol for which a direct lysis is validated, which
further increases cost-efficiency of library production. This is especially advantageous when
processing many samples, shallow sequencing is sufficient, and/or as sequencing costs

continue to drop.
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Finally, we think that prime-seq is the easiest tag protocol to set up. While many such protocols
have been published and all have argued that their method would be useful, few have actually
become widely implemented. The reasons are in all likelihood complex, but we think that
prime-seq has the lowest barriers to be set up by an individual lab or a core facility for three
reasons: First, to our knowledge it is the most validated non-commercial bulk RNA-seq protocol,
based on the experiments presented here as well as our >5 years of experience in running
various versions of the protocol with over 6,000 samples across 17 species resulting in over 20
publications to date. It is the only protocol for which direct lysis and sensitivity are quantitatively
validated. Also, it is well validated in combination with zUMIs, the computational pipeline that
was developed and is maintained by our group [45]. Second, it is not only cost-efficient per
sample, but it also has low setup costs. It requires no specialized equipment and only the
barcoded primers as an initial investment of ~$2,000 for 96 primers, which will be sufficient for
processing more than 240 thousand samples. Finally, prime-seq is well documented not only by
this manuscript, but also by a step-by-step protocol, including all materials, expected results,
and alternative versions depending on the type and amounts of input material

(https://dx.doi.org/10.17504/protocols.io.s9veh66). Hence, we think that prime-seq is not only a

very useful protocol in principle, but also in practice.

Conclusion

The multi-dimensional phenotype of gene expression is highly informative for many biological
and medical questions. As sequencing costs dropped, RNA-seq became a standard tool in
investigating these questions. We argue that the decisive next step is to use the possibilities of
lowered library costs by tag protocols to leverage even more of this potential. We show that

prime-seq is currently the best option when establishing such a protocol as it performs as well
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as other established RNA-seq protocols with respect to its accuracy, power, and library

complexity. Additionally, it is very sensitive, is well documented, and is the most cost-efficient

bulk RNA-seq protocol currently available to set up and to run.
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Methods

A step-by-step protocol of prime-seq, including all materials and expected results, is available on

protocols.io (https://dx.doi. .17504/prot 0. )- Below, we briefly outline the

prime-seq protocol, as well as describe any experiment-specific methods and modifications that

were made to prime-seq during testing and optimization.

prime-seq

Cell lysates, generally containing around 1,000-10,000 cells, were treated with 20 pg of
Proteinase K (Thermo Fisher, #AM2546) and 1uL 25 mM EDTA (Thermo Fisher, EN0525) at
50°C for 15 minutes with a heat inactivation step at 75°C for 10 minutes. The samples were then
cleaned wusing cleanup beads, a custom made mixture containing SpeedBeads
(GE65152105050250, Sigma-Aldrich), at a 1:2 ratio of lysate to beads. DNA was digested
on-beads using 1 unit of DNase | (Thermo Fisher, EN0525) at 20°C for 10 minutes with a heat

inactivation step at 65°C for 5 minutes.

The samples were then cleaned and the RNA was eluted with the 10 uL reverse transcription
mix, consisting of 30 units Maxima H- enzyme (Thermo Fisher, EP0753), 1x Maxima H- Buffer
(Thermo Fisher), 1 mM each dNTPs (Thermo Fisher), 1 uM template-switching oligo (IDT), 1 uyM

barcoded oligo(dT) primers (IDT). The reaction was incubated at 42°C for 90 minutes.

Following cDNA synthesis, the samples were pooled, cleaned, and concentrated with cleanup
beads at a 1:1 ratio and eluted in 17 pL of ddH20O. Residual primers were digested using

Exonuclease | (Thermo Fisher, EN0581) at 37 °C for 20 minutes followed by a heat inactivation
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step at 80 °C for 10 minutes. The samples were cleaned once more using cleanup beads at a

1:1 ratio, and eluted in 20 uL of ddH20.

Second strand synthesis and pre-amplification were performed in a 50 L reaction, consisting of
1x KAPA HiFi Ready Mix (Roche, 7958935001) and 0.6 yM SingV6 primer (IDT), with the
following PCR setup: initial denaturation at 98 °C for 3 minutes, denaturation at 98 °C for 15
seconds, annealing at 65 °C for 30 seconds, elongation at 68 °C for 4 minutes, and a final
elongation at 72 °C for 10 minutes. Denaturation, annealing, and elongation were repeated for

5-15 cycles depending on the initial input.

The DNA was cleaned using cleanup beads at a ratio of 1:0.8 of DNA to beads and eluted with
10 pyL of ddH20. The quantity was assessed using a Quant-iT PicoGreen dsDNA assay kit
(Thermo Fisher, P11496) and the quality was assessed using an Agilent 2100 Bioanalyzer with a

High Sensitivity DNA analysis kit (Agilent, 5067-4626).

Libraries were prepared with the NEBNext Ultra Il FS Library Preparation Kit (NEB, E6177S)
according to manufacturer instructions in most steps, with the exception of adapter sequence
and reaction volumes. Fragmentation was performed on 2.5 uL of cDNA (generally 2 - 20 ng)
using Enzyme Mix and Reaction buffer in a 6 pL reaction. A custom prime-seq adapter (1.5 pM,
IDT) was ligated using the Ligation Master Mix and Ligation Enhancer in a reaction volume of
12.7 uL. The samples were then double-size selected using SPRI-select Beads (Beckman
Coulter, B23317), with a high cutoff of 0.5 and a low cutoff of 0.7. The samples were then
amplified using Q5 Master Mix (NEB, M0544L), 1 uL i7 Index primer (Sigma-Aldrich), and 1 pL
i5 Index primer (IDT) using the following setup: 98°C for 30 seconds; 10-12 cycles of 98°C for 10

seconds, 65°C for 1 minute 15 seconds, 65°C for 5minutes; and 65°C for 4 minutes.
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Double-size selection was performed once more as before using SPRI-select Beads. The

quantity and quality of the libraries were assessed as before.

Nextera XT Library Prep

Prior to using the NEBNext Ultra Il FS Library Kit, libraries were prepared using the Nextera XT
Kit (Illumina, FC-131-1096). This included the RNA extraction experiments (Figure 4) as well as

the AML experiment (Figure 5B). These libraries were prepared as previously described [11].

Briefly, three replicates of 0.8 ng of DNA were tagmented in 20 pL reactions. Following
tagmentation, the libraries were amplified using 0.1 yM P5NextPT5 primer (IDT) and 0.1 uM i7
index primer (IDT) in a reaction volume of 50 pL. The index PCR was incubated as follows: gap
fill at 72°C for 3 minutes, initial denaturation at 95 °C for 30 seconds, denaturation at 95 °C for
10 seconds, annealing at 62 °C for 30 seconds, elongation at 72 °C for 1 minute, and a final
elongation at 72 °C for 5 minutes. Denaturation, annealing, and elongation were repeated for 13

cycles.

Size selection was performed using gel electrophoresis. Libraries were loaded onto a 2%
Agarose E-Gel EX (Invitrogen, G401002) and were excised between 300 bp - 900 bp and
cleaned using the Monarch DNA Gel Extraction Kit (NEB, T1020). The libraries were quantified
and qualified using an Agilent 2100 Bioanalyzer with a High Sensitivity DNA analysis kit (Agilent,

5067-4626).

Barcoded oligo(dT) primer design

In order to enable more robust demultiplexing and to ensure full compatibility of our sequencing

layout with the Chromium 10x v3 chemistry, oligo(dT) primers were designed to include a 12 nt
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cell barcode and 16 nt UMI. Candidate cell barcodes were created in R using the DNABarcodes
package [69] to generate barcodes with a length of 12 nucleotides and a minimum Hamming
distance (HD) of 4, with filtering for self-complementarity, homo-triplets, and GC-balance
enabled. Candidate barcodes were filtered further, resulting in a barcode pool with a minimal HD
of 5 and a minimal Sequence-Levenshtein distance of 4 within the set. In order to balance
nucleotide compositions among cell barcodes at each position BARCOSEL [70] was used to

further reduce the candidate set down to the final 384 barcodes.

Sequencing

Sequencing was performed on an lllumina HiSeq 1500 instrument for all libraries except for the
IPSC/NPC experiment where a NextSeq 550 instrument was used. The following setup was

used: Read 1: 28 bp, Index 1: 8 bp; Read 2: 50-56 bp.

Pre-processing of RNA-seq Data

The raw data was quality checked using fastqc (version 0.11.8 [71]) and then trimmed of poly(A)
tails using Cutadapt (version 1.12, https://doi.org/10.14806/ej.17.1.200). Following trimming, the
zUMIs pipeline (version 2.9.4 ,[45]) was used to filter the data, with a Phred quality score
threshold of 20 for 2 BC bases and 3 UMI bases. The filtered data was mapped to the human
genome (GRCh38) with the Gencode annotation (v35) or the mouse genome (GRCm38) with
the Gencode annotation (vM25) using STAR (version 2.7.3a,[72]) and the reads counted using

RSubread (version 1.32.4,[73]).
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Sensitivity and Differential Gene Expression Analysis of RNA-seq Data

The count matrix generated by zUMIs was loaded into RStudio (version 1.3.1093 [74]) using R
(version 4.0.3 [75]). bioMart (version 2.46.0 [76]), dplyr (version 1.0.2 [77]), and tidyr (version
1.1.2 [78]) were used for data processing and calculating descriptive statistics (i.e. detected
genes, reads, and UMIs). DESeq2 (version 1.30.0 [79]) was used for differential gene
expression analysis. ggplot2 (version 3.3.3 [80]), cowplot (version 1.1.1 [81]), ggbeeswarm
(0.6.0 [82]), ggsignif (version 0.6.0 [83]), ggsci (version 2.9 [84]), ggrepel (version 0.9.0 [85]),
EnhancedVolcano (1.8.0 [86]), ggpointdensity (version 0.1.0 [87]) and pheatmap (version 1.0.12

[88]) were used for data visualization.

Power Analysis of RNA-seq Data

Power Simulations were performed following the workflow of the powsimR package (version
1.2.3 [49]). Briefly, RNAseq data per method was simulated based on parameters extracted from
the UHRR comparison experiment. For each method and sample size setup (6 vs. 6, 12 vs. 12,

24 vs. 24, and 48 vs. 48) 20 simulations were performed with the following settings:

normalization = ‘MR’, RNAseq = ‘bulk’, Protocol = ‘Read/UMI’, Distribution = ‘NB’, ngenes =

30000, nsims

20, p.DE = 0.10. We verified with the data generated from the AML and NPC
differentiation data that the gamma distribution (shape = 1, scale = 0.5) would be an appropriate

log fold change distribution in this case (Figure S5B).

Cell Preparation

Human embryonic kidney 293T (HEK293T) cells were cultured in DMEM media (TH.Geyer,

L0102) supplemented with 10% FBS (Thermo Fisher, 10500-064) and 100 U/ml Penicillin and

32


https://paperpile.com/c/8mIQvv/B5OP
https://paperpile.com/c/8mIQvv/4zNs
https://paperpile.com/c/8mIQvv/NSVs
https://paperpile.com/c/8mIQvv/7Nnf
https://paperpile.com/c/8mIQvv/5fDz
https://paperpile.com/c/8mIQvv/ZNmk
https://paperpile.com/c/8mIQvv/BVij
https://paperpile.com/c/8mIQvv/hkXb
https://paperpile.com/c/8mIQvv/kprn
https://paperpile.com/c/8mIQvv/Yyvv
https://paperpile.com/c/8mIQvv/keeN
https://paperpile.com/c/8mIQvv/qb0P
https://paperpile.com/c/8mIQvv/3fnV
https://paperpile.com/c/8mIQvv/rooB
https://paperpile.com/c/8mIQvv/TsGj
https://paperpile.com/c/8mIQvv/5Al4W
https://doi.org/10.1101/2021.09.27.459575
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.09.27.459575; this version posted September 28, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

100 pg/ml Streptomycin (Thermo Fisher). Cells were grown to 80% confluency, and harvested

by trypsinization (Thermo Fisher, 25200072).

Peripheral blood mononuclear cells (PBMCs) were obtained from LGC Standards
(PCS-800-011). Before use, the cells were thawed in a water bath at 37°C and washed twice

with PBS (Sigma-Aldrich, D8537).

Prior to lysis, cells were stained with 1 ug/ml Trypan Blue (Thermo Fisher Scientific, 15-250-061)
and counted using a Neubauer counting chamber. Then, the desired number of cells (1,000 or
10,000) was pelleted for 5 min at 200 rcf, resuspended in 50 pL of lysis buffer (RLT Plus
(Qiagen, 1053393) and 1% R-mercaptoethanol (Sigma-Aldrich,M3148) and transferred to a

96-well plate. Samples were then stored at -80 °C until needed.

Tissue Preparation

Striatal tissue from C57BL/6 mice between the ages of 6 and 12 months was harvested by first
placing the mouse in a container with Isoflurane (Abbot, TU 061220) until the mouse was visibly
still and exhibited laboured breathing. The mice were then removed from the container, and a
cervical dislocation was performed. The mice were briefly washed with 80% EtOH, the head
decapitated, and the brain removed. The brain was transferred to a dish with ice-cold PBS and

placed in a 1 mm slicing matrix.

Using steel blades (Wilkinson Sword, 19/03/2016DA), 5 coronal incisions were made. Biopsy
punches (Kai Medical, BPP-20F) were then taken from the striatum and the tissue was
transferred to a 1.5 mL tube with 50 pL of lysis buffer, RLT Plus and 1% R-mercaptoethanol. The

tubes were snap frozen and stored at -80 °C until needed.
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RNA Extraction Experiments

To determine differences due to RNA extraction we isolated RNA using columns from the
Direct-zol RNA MicroPrep Kit (Zymo, R2062) (condition: “Column”) and magnetic beads from

the prime-seq protocol (conditions: “No Incubation”, “Incubation”, and “Magnetic Beads”) (see
above for details on prime-seq). For the “Column” condition, manufacturer instructions were
followed and both the Proteinase K and DNase digestion steps were performed as outlined in
the protocol. For the magnetic bead isolation, the prime-seq protocol was used as outlined in the
“‘Magnetic Beads” condition. For “No Incubation” condition the Proteinase K digestion was
skipped entirely. For the “Incubation” condition, the Proteinase K digestion was performed but

with no enzyme; that is the heat cycling of 50°C for 15 minutes and 75°C for 10 minutes was

carried out but no enzyme was added to the lysate.

gDNA Priming Experiment

For a graphical overview of the gDNA Priming experiment, see Figure 2B. Frozen vials of mouse
embryonic stem cells (MESC), that have been cultured as previously described (citation Bagnoli)
(clone J1, frozen in Bambanker (NIPPON Genetics, BB01) on 04.2017), and HEK293T cells
(frozen in Bambanker on 30.11.18, passage 25) were thawed. DNA was extracted from 1 million
mESCs using DNeasy Blood & Tissue Kit (Qiagen, 69506) and RNA was extracted from
450,000 HEK293T cells using the Direct-zol RNA MicroPrep Kit (Zymo, R2062), according to
manufacturer instructions in both cases. The optional DNase treatment step during the RNA

extraction was performed in order to remove any residual DNA.

After isolating DNA and RNA, the two were mixed to obtain the following conditions: 10 ng RNA/

7 ng DNA, 7.5 ng RNA/ 1.75 ng DNA, and 10 ng RNA/ 0 ng DNA. The 10 ng RNA/ 7 ng DNA
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condition, which represents the highest contamination of DNA, was performed twice, once
without DNase treatment and once with DNase treatment. Libraries were prepared from three
replicates for each condition using prime-seq and were then sequenced (see above for detailed

information).

MAQC-III Comparison Experiment

For a graphical overview of the experimental design see Figure S7A. As only Mix A from the
original MAQC-IIl Study was compared, 122.2 pL of ddH20, 2.8 pL of UHRR (100 ng/uL)
(Thermo Fisher, QS0639), and 2.5 pL of ERCC Mix 1 (1:1000) (Thermo Fisher, 4456740) were
combined to generate a 1:500 dilution of Mix A. Eight RNA-seq libraries were constructed using

prime-seq (see above methods) with 5 pL of the 1:500 Mix A.

The samples were sequenced and the data processed and analyzed as outlined above. Of the
comparison data from the original MAQC-IIl Study, Experiment SRX302130 to SRX302209 from
Submission SRA090948 were used as this was the sequence data from one site (BGI) and was
sequenced using an lllumina HiSeq 2000 [48]. The TruSeq data was first trimmed to be 50 bp
long and then processed with zUMIs as outlined above, with the exception of using both cDNA
reads and not providing UMIs as there were none. Paired-end data was used to not penalize

TruSeq, as this is a feature of the method.

NPC Differentiation Experiment

To differentiate hiPSCs to NPCs, cells were dissociated and 9x10° cells were plated into each
well of a low attachment U-bottom 96-well-plate in 8GMK medium consisting of GMEM (Thermo
Fisher), 8% KSR (Thermo Fisher), 5.5 ml 100x NEAA (Thermo Fisher), 100mM Sodium

Pyruvate (Thermo Fisher), 50mM 2-Mercaptoethanol (Thermo Fisher) supplemented with
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500nM A-83-01 (Sigma Aldrich), 100nM LDN 193189 (Sigma Aldrich) and 30uM Y27632
(biozol). A half-medium change was performed on day 2 and 4. On day 6 Neurospheres from 3
columns were pooled, dissociated using Accumax (Sigma Aldrich) and seeded on Geltrex
(Thermo Fisher) coated wells. After 2 days, cells were dissociated, counted and 2x10* were
lysed in 100 pL of lysis buffer (RLT Plus (Qiagen, 1053393) and 1% R-mercaptoethanol

(Sigma-Aldrich,M3148)

AML-PDX Sample Collection

Acute myeloid leukemia (AML) cells were engrafted in NSG mice (The Jackson Laboratory, Bar
Harbour, ME, USA) to establish patient derived xenograft (PDX) cells [52]. AML-PDX cells were
cryopreserved as 10 Mio cells in 1mL of freezing medium (90% FBS, 10% DMSO) and stored at
-80°C for biobanking purposes. To avoid thawing these samples and thus harming or even
destroying them, the frozen cell stocks were first transferred to dry ice under a cell culture hood.
Next a sterile 1 mm biopsy punch was used to punch the frozen cells in the vial and transfer the
extracted cells to one well of a 96 well plate containing 100 uL RLTplus lysis buffer with 1% beta
mercaptoethanol. To ensure complete lysis the lysate was mixed and snap frozen on dry ice.
One biopsy punch is estimated to contain 10 uL of cryopreserved cells corresponding to roughly
1x1075 cells given an even distribution of cells within the original vial. All 96 samples were
collected in this manner, biopsy punches were washed using RNAse Away (Thermo Fisher
Scientific) and 80 % Ethanol for reuse. These lysates were subjected to prime-seq, including
RNA isolation using SPRI beads. In total, PDX samples from 11 different AML patients were

analyzed in 6 to 16 biological replicates (engrafted mice) per sample.
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Cost Comparisons

Costs were determined by searching for general list prices from various vendors. When step by
step protocols were available, each component was included in the cost calculation, such as for
the SMARTer Stranded Total RNA Kit (Takara, 634862), SMART-Seq RNA Kit (v4) (Takara,
634891), TruSeq Library Prep (lllumina, RS-122-2001/2), TruSeq Stranded Library Prep
(lumina, 20020595), and lllumina Stranded mRNA Prep (lllumina, 20040534). In the case of
BRB-seq no publicly available step-by-step protocol was found, so the methods section was
used to calculate costs [22]. Decode-seq has a publicly available protocol, however, the level of
detail was insufficient to calculate exact costs; therefore, when specific vendors were not listed,
we used the most affordable option that we have previously validated. In all cases the prices
included sales tax and were listed in euros and were therefore converted to USD using a

conversion rate of 1.23 USD to EUR. The costs for all methods can be found in Table S4.

Declarations

Ethics approval and consent to participate

The human iPSC samples, which were differentiated into the NPCs, were ethically approved by
the responsible committee on human experimentation (20-122, Ethikkommission LMU

Minchen) as previously published [57].

Bone marrow (BM) and peripheral blood (PB) samples from AML patients were obtained from
the Department of Internal Medicine lll, Ludwig-Maximilians-Universitat, Munich, Germany.
Specimens were collected for diagnostic purposes. Written informed consent was obtained from

the patients. The study was performed in accordance with the ethical standards of the
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responsible committee on human experimentation (written approval by the Research Ethics
Boards of the medical faculty of Ludwig-Maximilians-Universitat, Munich, number 068-08 and
222-10) and with the Helsinki Declaration of 1975, as revised in 2013. All animal trials were
performed in accordance with the current ethical standards of the official committee on animal
experimentation (written approval by Regierung von Oberbayern,
tierversuche@reg-ob.bayern.de; ROB-55.2Vet-2532.Vet_02-16-7 and

ROB-55.2Vet-2532.Vet_03-16-56).

The mouse brain tissues were collected from mice that were bred and housed at the Biology
Faculty Animal Facility at Ludwig Maximilian University in accordance with institutional ethical
standards. The animal tissue was harvested according to the German Animal Welfare Act

Paragraph 4 (organ removal for scientific reasons).
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Supplementary Figures

Figure S1. Molecular workflow of prime-seq.
Figure S2. prime-seq is a robust protocol and has been confirmed with numerous organisms
Figure S3. Intronic reads are not derived from contaminating gDNA.

Figure S4. Experimental design comparing prime-seq to TruSeq data generated in the MAQC-III
Study.

Figure S5. Power and FDR mostly depend on sample size and are similar between prime-seq

and TruSeq.

Figure S6. Performance of isolation methods is similar independent of prefiltering or usage of

only Intron data.
Figure S7. Most genes are detected independent of the extraction method used.
Figure S8. prime-seq performs equally well with high- and low-input samples.

Figure S9. Power analysis shows prime-seq is able to reach 80% power earlier than less

cost-efficient methods.
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Figure S1. Molecular workflow of prime-seq. (Related to Figure 1) oligo(dT)-primers are
used to enrich mRNA, which is then reverse transcribed using Maxima H-, a M-MLV reverse
transcriptase. Full length first strand synthesis is performed using a template switching oligo.
Second strand synthesis and cDNA pre-amplification is completed during the PCR using
KAPA Hifi Polymerase, and this DNA is then used to generate libraries using the NEBNEXT
Ultra Il FS Kit. Finally the libraries are sequenced with the following setup: read 1: 28bp, read
2: 8bp, and read 3: 50-150bp.
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Figure S2. prime-seq is a robust protocol and has been validated with numerous

organisms (Related to Figure 2A) (A) To date, 132 experiments consisting of 6,691 samples

from 17 different organisms, ranging from arabidopsis to zebrafish, have been processed

with prime-seq. (B) Data from experiments with well-annotated genomes suggests a

substantial number of detected genes come from intronic reads.
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Figure S3. Intronic reads are not derived from contaminating gDNA. (A) Samples
containing total nucleic acids were either treated with RNase A or DNase |, or remained
untreated. Untreated samples had the highest concentration, showing that genomic DNA is also
used as a template when not removed, albeit less efficiently than mRNA. cDNA yields were
normalized to the number of input cells. (Related to Figure 2B) (B) Mapped reads from different
gDNA/RNA mixed conditions, showing that the DNase treated condition and the no DNA
contamination condition had the lowest fraction of intergenic and unmapped reads. (C) Fraction
of assigned mapped reads per genomic feature (exon, intron, intergenic) and species, showing

an increase in mouse reads with higher gDNA contamination.
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Figure S4. Experimental design comparing prime-seq to TruSeq data generated in the
MAQC-III Study. (Related to Figure 3) A 1:1000 concentration of Mix A, from the MAQC-III
Study, was generated by mixing UHRR and ERCC Mix 1. From this, eight libraries were

generated using prime-seq and compared to five TruSeq generated libraries.
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Figure S5. Power and FDR mostly depend on sample size and are similar between
prime-seq and TruSeq. (Related to Figure 3) (A) Feature distribution from prime-seq and

TruSeq shows 78% and 85% of reads are exonic, intronic, and ERCCs, respectively. (B) Log2

45


https://doi.org/10.1101/2021.09.27.459575
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.09.27.459575; this version posted September 28, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

fold change distribution from the AML and NPC differentiation experiment (Figure 4) compared
to the log2 fold change distribution used in powsimR for power analysis confirms that simulation
settings match expected distributions. (C) Marginal power of prime-seq and TruSeq at differing
samples per condition shows both methods perform similarly well, crossing the 80% threshold
with roughly 12 samples both for exon plus intron and only exon counts. (D and E) FDR over
different mean expression and log2 fold change strata (Related to 3G and 3H). (F and G)
analogous to Figure 3G and 3H) but including only Exonic counts; prime-seq and TruSeq exhibit
similar TPR and FDR over different mean expression and log2 fold change strata. Filtering

parameters: detected UMI = 1, detected gene present in at least 25%.
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Figure S6. Performance of isolation methods is similar independent of prefiltering or
usage of only Exon data. (Related to Figure 4) (A) HEK293T cell samples were extracted
using columns and magnetic beads, employing the standard prime-seq protocol (“Magnetic
Beads”), as well as variant protocols without proteinase K digestion (“No Incubation”) and a
proteinase K digestion control without enzyme (“Incubation”). All conditions had similar fractions
of usable reads (all but intergenic and ambiguity), with an increase in intronic reads in
“Incubation” and “Magnetic Beads” suggesting this increase is due to heat incubation. (B)
Principal component analysis (PCA) of the 500 most variable genes shows the largest variable
is heat incubation. (C and D) Analysis of detected UMIs and detected genes for unfiltered data
and exonic only data shows that prime-seq using magnetic bead isolation is more sensitive in
HEK cells and similarly sensitive in PBMCs and tissue compared to prime-seq using column
isolation. Filtering parameters: detected UMI = 1, detected gene present in at least 25% of

samples and is protein coding.
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Figure S7. Most genes are detected independent of the extraction method used. (Related
to Figure 4) (A) Upset plots showing a strong overlap of detected genes between columns and
magnetic beads. (B) Up- and down-regulated genes between column and bead-based RNA
extractions (p>0.05, log, FC > 2). (C) Density plots of the differentially expressed genes relative
to length and GC content. Genes upregulated in columns tend to be longer with lower GC

content.

49


https://doi.org/10.1101/2021.09.27.459575
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.09.27.459575; this version posted September 28, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

800000 | 1.000]
0000 % B mm D @
] .
= 400000 H
: S ——
2000001 E ias
i 0,900
batwaen high input low input
15000 § 15
‘ BF
+
@ 10000 88 10]
] fEE
(5] 5
5000 EEs
3
" 5
e [ 3 0 15
ﬁ éﬁﬁ ﬁ @ﬁ mean normalized expression
A 8 high input (10000 Cells)

Sequencing Depth

= low input - high input

Figure S8. prime-seq performs equally well with high- and low-input samples. (Related to
Figure 5) (A) Sensitivity, measured in detected UMIs and genes, is similar between high input
(10,000 HEK293T cells) and low input (1,000 HEK293T cells) conditions at various sequencing
depths (filtering parameters: detected UMI = 1, detected gene present in at least 256% of
samples and is protein coding). (B) Additionally, Pearson's correlations between the high- and
low-input conditions were high (pairwise comparison between: r = 0.93, pairwise comparison

within: r = 0.94, and average normalized mean expression, R? = 0.97).
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Figure S9. Power analysis shows prime-seq is able to reach 80% power earlier than less
cost-efficient methods. (Related to Figure 6) (A) True positive rate (TPR) and false discovery
rates (FDR) corresponding to Figure 6B, but with more incremental values. (B) prime-seq
crosses an 80% power threshold with $715 when sequencing costs are included compared to
$795, $1,625, and $3,485 for low, middle, and high cost methods respectively (10 million reads

used for analysis at a cost of $3.40 per 1 mio. reads).

51


https://doi.org/10.1101/2021.09.27.459575
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.09.27.459575; this version posted September 28, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

References

1. Stark R, Grzelak M, Hadfield J. RNA sequencing: the teenage years. Nat Rev Genet.
2019;20:631-56.

2. Ziegenhain C, Vieth B, Parekh S, Reinius B, Guillaumet-Adkins A, Smets M, et al.
Comparative Analysis of Single-Cell RNA Sequencing Methods. Mol Cell. 2017;65:631-43.e4.

3. Vieth B, Parekh S, Ziegenhain C, Enard W, Hellmann I. A systematic evaluation of single cell
RNA-seq analysis pipelines. Nat Commun. 2019;10:4667.

4. Svensson V, Vento-Tormo R, Teichmann SA. Exponential scaling of single-cell RNA-seq in the
past decade. Nat Protoc. 2018;13:599-604.

5. Mereu E, Lafzi A, Moutinho C, Ziegenhain C, McCarthy DJ, Alvarez-Varela A, et al.
Benchmarking single-cell RNA-sequencing protocols for cell atlas projects. Nat Biotechnol.
2020;38:747-55.

6. Ziegenhain C, Vieth B, Parekh S, Hellmann I, Enard W. Quantitative single-cell
transcriptomics. Brief Funct Genomics. 2018;17:220-32.

7. Kivioja T, Vaharautio A, Karlsson K, Bonke M, Enge M, Linnarsson S, et al. Counting absolute
numbers of molecules using unique molecular identifiers. Nat Methods. nature.com;
2011;9:72-4.

8. Hashimshony T, Wagner F, Sher N, Yanai |. CEL-Seq: single-cell RNA-Seq by multiplexed
linear amplification. Cell Rep. 2012;2:666—73.

9. Parekh S, Ziegenhain C, Vieth B, Enard W, Hellmann I. The impact of amplification on
differential expression analyses by RNA-seq. Sci Rep. 2016;6:25533.

10. Hagemann-Jensen M, Ziegenhain C, Chen P, Ramskdéld D, Hendriks G-J, Larsson AJM, et
al. Single-cell RNA counting at allele and isoform resolution using Smart-seq3. Nat Biotechnol.
2020;38:708-14.

11. Bagnoli JW, Ziegenhain C, Janjic A, Wange LE, Vieth B, Parekh S, et al. Sensitive and
powerful single-cell RNA sequencing using mcSCRB-seq. Nat Commun. 2018;9:2937.

12. Zheng GXY, Terry JM, Belgrader P, Ryvkin P, Bent ZW, Wilson R, et al. Massively parallel
digital transcriptional profiling of single cells. Nat Commun. 2017;8:14049.

13. Macosko EZ, Basu A, Satija R, Nemesh J, Shekhar K, Goldman M, et al. Highly Parallel
Genome-wide Expression Profiling of Individual Cells Using Nanoliter Droplets. Cell.
2015;161:1202—-14.

14. Klein AM, Mazutis L, Akartuna I, Tallapragada N, Veres A, Li V, et al. Droplet barcoding for
single-cell transcriptomics applied to embryonic stem cells. Cell. 2015;161:1187-201.

15. Avila Cobos F, Alquicira-Hernandez J, Powell JE, Mestdagh P, De Preter K. Benchmarking

52


http://paperpile.com/b/8mIQvv/afuZo
http://paperpile.com/b/8mIQvv/afuZo
http://paperpile.com/b/8mIQvv/qKBMP
http://paperpile.com/b/8mIQvv/qKBMP
http://paperpile.com/b/8mIQvv/ullOM
http://paperpile.com/b/8mIQvv/ullOM
http://paperpile.com/b/8mIQvv/aUD8m
http://paperpile.com/b/8mIQvv/aUD8m
http://paperpile.com/b/8mIQvv/mS1R9
http://paperpile.com/b/8mIQvv/mS1R9
http://paperpile.com/b/8mIQvv/mS1R9
http://paperpile.com/b/8mIQvv/TABNL
http://paperpile.com/b/8mIQvv/TABNL
http://paperpile.com/b/8mIQvv/boxZi
http://paperpile.com/b/8mIQvv/boxZi
http://paperpile.com/b/8mIQvv/boxZi
http://paperpile.com/b/8mIQvv/V5Sgc
http://paperpile.com/b/8mIQvv/V5Sgc
http://paperpile.com/b/8mIQvv/qdJ8n
http://paperpile.com/b/8mIQvv/qdJ8n
http://paperpile.com/b/8mIQvv/rfv9I
http://paperpile.com/b/8mIQvv/rfv9I
http://paperpile.com/b/8mIQvv/rfv9I
http://paperpile.com/b/8mIQvv/7tDr5
http://paperpile.com/b/8mIQvv/7tDr5
http://paperpile.com/b/8mIQvv/Mttvz
http://paperpile.com/b/8mIQvv/Mttvz
http://paperpile.com/b/8mIQvv/k7oH1
http://paperpile.com/b/8mIQvv/k7oH1
http://paperpile.com/b/8mIQvv/k7oH1
http://paperpile.com/b/8mIQvv/YrF8m
http://paperpile.com/b/8mIQvv/YrF8m
http://paperpile.com/b/8mIQvv/8nS3K
https://doi.org/10.1101/2021.09.27.459575
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.09.27.459575; this version posted September 28, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

of cell type deconvolution pipelines for transcriptomics data. Nat Commun. 2020;11:5650.

16. Li Y, Yang H, Zhang H, Liu Y, Shang H, Zhao H, et al. Decode-seq: a practical approach to
improve differential gene expression analysis. Genome Biol. 2020;21:66.

17. Liu Y, Zhou J, White KP. RNA-seq differential expression studies: more sequence or more
replication? Bioinformatics. 2014;30:301-4.

18. Lazic SE, Clarke-Williams CJ, Munafo MR. What exactly is “N” in cell culture and animal
experiments? PLoS Biol. 2018;16:€2005282.

19. Subramanian A, Narayan R, Corsello SM, Peck DD, Natoli TE, Lu X, et al. A Next
Generation Connectivity Map: L1000 Platform and the First 1,000,000 Profiles. Cell.
2017;171:1437-52.e17.

20. Uzbas F, Opperer F, Sénmezer C, Shaposhnikov D, Sass S, Krendl C, et al. BART-Seq:
cost-effective massively parallelized targeted sequencing for genomics, transcriptomics, and
single-cell analysis. Genome Biol. 2019;20:155.

21. Replogle JM, Norman TM, Xu A, Hussmann JA, Chen J, Zachery Cogan J, et al.
Combinatorial single-cell CRISPR screens by direct guide RNA capture and targeted
sequencing. Nat Biotechnol. Nature Publishing Group; 2020;38:954—61.

22. Alpern D, Gardeux V, Russeil J, Mangeat B, Meireles-Filho ACA, Breysse R, et al. BRB-seq:
ultra-affordable high-throughput transcriptomics enabled by bulk RNA barcoding and
sequencing. Genome Biol. 2019;20:71.

23. Ebinger S, Ozdemir EZ, Ziegenhain C, Tiedt S, Castro Alves C, Grunert M, et al.
Characterization of Rare, Dormant, and Therapy-Resistant Cells in Acute Lymphoblastic
Leukemia. Cancer Cell. 2016;30:849-62.

24. Schreck C, Istvanffy R, Ziegenhain C, Sippenauer T, Ruf F, Henkel L, et al. Niche WNT5A
regulates the actin cytoskeleton during regeneration of hematopoietic stem cells. J Exp Med.
2017;214:165-81.

25. Gegenfurtner FA, Zisis T, Al Danaf N, Schrimpf W, Kliesmete Z, Ziegenhain C, et al.
Transcriptional effects of actin-binding compounds: the cytoplasm sets the tone. Cell Mol Life
Sci. 2018;75:4539-55.

26. Gegenfurtner FA, Jahn B, Wagner H, Ziegenhain C, Enard W, Geistlinger L, et al.
Micropatterning as a tool to identify regulatory triggers and kinetics of actin-mediated endothelial
mechanosensing. J Cell Sci [Internet]. 2018;131. Available from:
http://dx.doi.org/10.1242/jcs.212886

27. Mueller S, Engleitner T, Maresch R, Zukowska M, Lange S, Kaltenbacher T, et al.
Evolutionary routes and KRAS dosage define pancreatic cancer phenotypes. Nature.
2018;554:62-8.

28. Wang S, Crevenna AH, Ugur I, Marion A, Antes |, Kazmaier U, et al. Actin stabilizing
compounds show specific biological effects due to their binding mode. Sci Rep. 2019;9:9731.

53


http://paperpile.com/b/8mIQvv/8nS3K
http://paperpile.com/b/8mIQvv/fF52P
http://paperpile.com/b/8mIQvv/fF52P
http://paperpile.com/b/8mIQvv/8eAkW
http://paperpile.com/b/8mIQvv/8eAkW
http://paperpile.com/b/8mIQvv/T4Fys
http://paperpile.com/b/8mIQvv/T4Fys
http://paperpile.com/b/8mIQvv/EtzZA
http://paperpile.com/b/8mIQvv/EtzZA
http://paperpile.com/b/8mIQvv/EtzZA
http://paperpile.com/b/8mIQvv/2mCXq
http://paperpile.com/b/8mIQvv/2mCXq
http://paperpile.com/b/8mIQvv/2mCXq
http://paperpile.com/b/8mIQvv/a6wyD
http://paperpile.com/b/8mIQvv/a6wyD
http://paperpile.com/b/8mIQvv/a6wyD
http://paperpile.com/b/8mIQvv/zzMOV
http://paperpile.com/b/8mIQvv/zzMOV
http://paperpile.com/b/8mIQvv/zzMOV
http://paperpile.com/b/8mIQvv/zFz7m
http://paperpile.com/b/8mIQvv/zFz7m
http://paperpile.com/b/8mIQvv/zFz7m
http://paperpile.com/b/8mIQvv/m8r8i
http://paperpile.com/b/8mIQvv/m8r8i
http://paperpile.com/b/8mIQvv/m8r8i
http://paperpile.com/b/8mIQvv/k33Gc
http://paperpile.com/b/8mIQvv/k33Gc
http://paperpile.com/b/8mIQvv/k33Gc
http://paperpile.com/b/8mIQvv/nsFz2
http://paperpile.com/b/8mIQvv/nsFz2
http://paperpile.com/b/8mIQvv/nsFz2
http://dx.doi.org/10.1242/jcs.212886
http://paperpile.com/b/8mIQvv/PZWFD
http://paperpile.com/b/8mIQvv/PZWFD
http://paperpile.com/b/8mIQvv/PZWFD
http://paperpile.com/b/8mIQvv/oHNjV
http://paperpile.com/b/8mIQvv/oHNjV
https://doi.org/10.1101/2021.09.27.459575
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.09.27.459575; this version posted September 28, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

29. Wang S, Gegenfurtner FA, Crevenna AH, Ziegenhain C, Kliesmete Z, Enard W, et al.
Chivosazole A Modulates Protein-Protein Interactions of Actin. J Nat Prod. 2019;82:1961-70.

30. Ebinger S, Zeller C, Carlet M, Senft D, Bagnoli JW, Liu W-H, et al. Plasticity in growth
behavior of patients’ acute myeloid leukemia stem cells growing in mice. Haematologica.
2020;105:2855-60.

31. Garz A-K, Wolf S, Grath S, Gaidzik V, Habringer S, Vick B, et al. Azacitidine combined with
the selective FLT3 kinase inhibitor crenolanib disrupts stromal protection and inhibits expansion
of residual leukemia-initiating cells in FLT3-ITD AML with concurrent epigenetic mutations.
Oncotarget. 2017;8:108738-59.

32. Mulholland CB, Nishiyama A, Ryan J, Nakamura R, Yigit M, Glick IM, et al. Recent
evolution of a TET-controlled and DPPA3/STELLA-driven pathway of passive DNA
demethylation in mammals. Nat Commun. 2020;11:5972.

33. Redondo Monte E, Wilding A, Leubolt G, Kerbs P, Bagnoli JW, Hartmann L, et al. ZBTB7A
prevents RUNX1-RUNX1T1-dependent clonal expansion of human hematopoietic stem and
progenitor cells. Oncogene. 2020;39:3195-205.

34. Shami A, Atzler D, Bosmans LA, Winkels H, Meiler S, Lacy M, et al. Glucocorticoid-induced
tumour necrosis factor receptor family-related protein (GITR) drives atherosclerosis in mice and

is associated with an unstable plaque phenotype and cerebrovascular events in humans. Eur
Heart J. 2020;41:2938-48.

35. LaClair KD, Zhou Q, Michaelsen M, Wefers B, Brill MS, Janijic A, et al. Congenic expression
of poly-GA but not poly-PR in mice triggers selective neuron loss and interferon responses
found in C9orf72 ALS. Acta Neuropathol. 2020;140:121-42.

36. Geuder J, Ohnuki M, Wange LE, Janjic A, Bagnoli JW, Miiller S, et al. A non-invasive
method to generate induced pluripotent stem cells from primate urine [Internet]. Cold Spring
Harbor Laboratory. 2020 [cited 2021 Jan 21]. p. 2020.08.12.247619. Available from:
https://www.biorxiv.org/content/10.1101/2020.08.12.247619v1

37. Alterauge D, Bagnoli JW, Dahlstréom F, Bradford BM, Mabbott NA, Buch T, et al. Continued
Bcl6 Expression Prevents the Transdifferentiation of Established Tth Cells into Th1 Cells during
Acute Viral Infection. Cell Rep. 2020;33:108232.

38. Kempf J, Knelles K, Hersbach BA, Petrik D, Riedemann T, Bednarova V, et al. Heterogeneity
of neurons reprogrammed from spinal cord astrocytes by the proneural factors Ascl1 and
Neurogenin2. Cell Rep. 2021;36:109409.

39. Porquier A, Tisserant C, Salinas F, Glassl C, Wange L, Enard W, et al. Retrotransposons as
pathogenicity factors of the plant pathogenic fungus Botrytis cinerea. Genome Biol. BioMed
Central; 2021;22:1-19.

40. Carlet M, Vélse K, Vergalli J, Becker M, Herold T, Arner A, et al. In vivo inducible reverse
genetics in patients’ tumors to identify individual therapeutic targets [Internet]. bioRxiv. 2020
[cited 2021 Sep 3]. p. 2020.05.02.073577. Available from:

54


http://paperpile.com/b/8mIQvv/kzetI
http://paperpile.com/b/8mIQvv/kzetI
http://paperpile.com/b/8mIQvv/v508o
http://paperpile.com/b/8mIQvv/v508o
http://paperpile.com/b/8mIQvv/v508o
http://paperpile.com/b/8mIQvv/kczLZ
http://paperpile.com/b/8mIQvv/kczLZ
http://paperpile.com/b/8mIQvv/kczLZ
http://paperpile.com/b/8mIQvv/kczLZ
http://paperpile.com/b/8mIQvv/mo98P
http://paperpile.com/b/8mIQvv/mo98P
http://paperpile.com/b/8mIQvv/mo98P
http://paperpile.com/b/8mIQvv/DPkfs
http://paperpile.com/b/8mIQvv/DPkfs
http://paperpile.com/b/8mIQvv/DPkfs
http://paperpile.com/b/8mIQvv/lw7JV
http://paperpile.com/b/8mIQvv/lw7JV
http://paperpile.com/b/8mIQvv/lw7JV
http://paperpile.com/b/8mIQvv/lw7JV
http://paperpile.com/b/8mIQvv/PCatY
http://paperpile.com/b/8mIQvv/PCatY
http://paperpile.com/b/8mIQvv/PCatY
http://paperpile.com/b/8mIQvv/TBLfj
http://paperpile.com/b/8mIQvv/TBLfj
http://paperpile.com/b/8mIQvv/TBLfj
https://www.biorxiv.org/content/10.1101/2020.08.12.247619v1
http://paperpile.com/b/8mIQvv/K4BVk
http://paperpile.com/b/8mIQvv/K4BVk
http://paperpile.com/b/8mIQvv/K4BVk
http://paperpile.com/b/8mIQvv/7wgDS
http://paperpile.com/b/8mIQvv/7wgDS
http://paperpile.com/b/8mIQvv/7wgDS
http://paperpile.com/b/8mIQvv/kznBn
http://paperpile.com/b/8mIQvv/kznBn
http://paperpile.com/b/8mIQvv/kznBn
http://paperpile.com/b/8mIQvv/iiF1b
http://paperpile.com/b/8mIQvv/iiF1b
http://paperpile.com/b/8mIQvv/iiF1b
https://doi.org/10.1101/2021.09.27.459575
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.09.27.459575; this version posted September 28, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

https://www.biorxiv.org/content/10.1101/2020.05.02.073577v1

41. Kempf JM, Weser S, Bartoschek MD, Metzeler KH, Vick B, Herold T, et al. Loss-of-function
mutations in the histone methyltransferase EZH2 promote chemotherapy resistance in AML. Sci
Rep. 2021;11:5838.

42. Pekayvaz K, Leunig A, Kaiser R, Brambs S, Joppich M, Janjic A, et al. Protective immune
trajectories in early viral containment of non-pneumonic SARS-CoV-2 infection [Internet]. Cold
Spring Harbor Laboratory. 2021 [cited 2021 Feb 19]. p. 2021.02.03.429351. Available from:
https://www.biorxiv.org/content/10.1101/2021.02.03.429351v1

43. Kliesmete Z, Wange LE, Vieth B, Esgleas M, Radmer J, Hlilsmann M, et al. TRNP1
sequence, function and regulation co-evolve with cortical folding in mammals [Internet]. Cold
Spring Harbor Laboratory. 2021 [cited 2021 Feb 19]. p. 2021.02.05.429919. Available from:
https://www.biorxiv.org/content/10.1101/2021.02.05.429919v2

44. Soumillon M, Cacchiarelli D, Semrau S, van Oudenaarden A, Mikkelsen TS.
Characterization of directed differentiation by high-throughput single-cell RNA-Seq [Internet].
Cold Spring Harbor Laboratory. 2014 [cited 2021 Jan 21]. p. 003236. Available from:
http://biorxiv.org/content/early/2014/03/05/003236.abstract

45. Parekh S, Ziegenhain C, Vieth B, Enard W, Hellmann |. zUMIs - A fast and flexible pipeline
to process RNA sequencing data with UMIs. Gigascience [Internet]. 2018;7. Available from:
http://dx.doi.org/10.1093/gigascience/giy059

46. Lee S, Zhang AY, Su S, Ng AP, Holik AZ, Asselin-Labat M-L, et al. Covering all your bases:
incorporating intron signal from RNA-seq data. NAR Genom Bioinform [Internet]. Oxford
Academic; 2020 [cited 2021 Jan 21];2. Available from:
https://academic.oup.com/nargab/article-pdf/2/3/lqaa073/34054975/Iqaa073.pdf

47. La Manno G, Soldatov R, Zeisel A, Braun E, Hochgerner H, Petukhov V, et al. RNA velocity
of single cells. Nature. 2018;560:494-8.

48. Xu J, Su Z, Hong H, Thierry-Mieg J, Thierry-Mieg D, Kreil DP, et al. Cross-platform ultradeep
transcriptomic profiling of human reference RNA samples by RNA-Seq. Sci Data.
2014;1:140020.

49. Vieth B, Ziegenhain C, Parekh S, Enard W, Hellmann |. powsimR: power analysis for bulk
and single cell RNA-seq experiments. Bioinformatics. 2017;33:3486-8.

50. Oberacker P, Stepper P, Bond DM, Héhn S, Focken J, Meyer V, et al.
Bio-On-Magnetic-Beads (BOMB): Open platform for high-throughput nucleic acid extraction and
manipulation. PLoS Biol. 2019;17:€3000107.

51. Scholes AN, Lewis JA. Comparison of RNA isolation methods on RNA-Seq: implications for
differential expression and meta-analyses. BMC Genomics. 2020;21:249.

52. Vick B, Rothenberg M, Sandhoéfer N, Carlet M, Finkenzeller C, Krupka C, et al. An advanced
preclinical mouse model for acute myeloid leukemia using patients’ cells of various genetic

55


https://www.biorxiv.org/content/10.1101/2020.05.02.073577v1
http://paperpile.com/b/8mIQvv/HEfVw
http://paperpile.com/b/8mIQvv/HEfVw
http://paperpile.com/b/8mIQvv/HEfVw
http://paperpile.com/b/8mIQvv/t1JW9
http://paperpile.com/b/8mIQvv/t1JW9
http://paperpile.com/b/8mIQvv/t1JW9
https://www.biorxiv.org/content/10.1101/2021.02.03.429351v1
http://paperpile.com/b/8mIQvv/vFWFz
http://paperpile.com/b/8mIQvv/vFWFz
http://paperpile.com/b/8mIQvv/vFWFz
https://www.biorxiv.org/content/10.1101/2021.02.05.429919v2
http://paperpile.com/b/8mIQvv/n3WLv
http://paperpile.com/b/8mIQvv/n3WLv
http://paperpile.com/b/8mIQvv/n3WLv
http://biorxiv.org/content/early/2014/03/05/003236.abstract
http://paperpile.com/b/8mIQvv/w337e
http://paperpile.com/b/8mIQvv/w337e
http://dx.doi.org/10.1093/gigascience/giy059
http://paperpile.com/b/8mIQvv/TKEei
http://paperpile.com/b/8mIQvv/TKEei
http://paperpile.com/b/8mIQvv/TKEei
https://academic.oup.com/nargab/article-pdf/2/3/lqaa073/34054975/lqaa073.pdf
http://paperpile.com/b/8mIQvv/DSmA3
http://paperpile.com/b/8mIQvv/DSmA3
http://paperpile.com/b/8mIQvv/ZghCr
http://paperpile.com/b/8mIQvv/ZghCr
http://paperpile.com/b/8mIQvv/ZghCr
http://paperpile.com/b/8mIQvv/5Al4W
http://paperpile.com/b/8mIQvv/5Al4W
http://paperpile.com/b/8mIQvv/o6ba2
http://paperpile.com/b/8mIQvv/o6ba2
http://paperpile.com/b/8mIQvv/o6ba2
http://paperpile.com/b/8mIQvv/x3PsI
http://paperpile.com/b/8mIQvv/x3PsI
http://paperpile.com/b/8mIQvv/A2sEh
http://paperpile.com/b/8mIQvv/A2sEh
https://doi.org/10.1101/2021.09.27.459575
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.09.27.459575; this version posted September 28, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

subgroups and in vivo bioluminescence imaging. PLoS One. 2015;10:e0120925.

53. Herold T, Jurinovic V, Batcha AMN, Bamopoulos SA, Rothenberg-Thurley M, Ksienzyk B, et
al. A 29-gene and cytogenetic score for the prediction of resistance to induction treatment in
acute myeloid leukemia. Haematologica. 2018;103:456-65.

54. Chambers SM, Fasano CA, Papapetrou EP, Tomishima M, Sadelain M, Studer L. Highly
efficient neural conversion of human ES and iPS cells by dual inhibition of SMAD signaling. Nat
Biotechnol. 2009;27:275-80.

55. Liu Y, Yu C, Daley TP, Wang F, Cao WS, Bhate S, et al. CRISPR Activation Screens
Systematically Identify Factors that Drive Neuronal Fate and Reprogramming. Cell Stem Cell.
2018;23:758-71.€e8.

56. Ozdemir EZ, Ebinger S, Ziegenhain C, Enard W, Gires O, Schepers A, et al. Drug resistance
and dormancy represent reversible characteristics in patients’ ALL cells growing in mice. Blood.
American Society of Hematology; 2016;128:602—602.

57. Geuder J, Wange LE, Janjic A, Radmer J, Janssen P, Bagnoli JW, et al. A non-invasive
method to generate induced pluripotent stem cells from primate urine. Sci Rep. 2021;11:3516.

58. Sholder G, Lanz TA, Moccia R, Quan J, Aparicio-Prat E, Stanton R, et al. 3’'Pool-seq: an
optimized cost-efficient and scalable method of whole-transcriptome gene expression profiling.
BMC Genomics. 2020;21:64.

59. Ye C, Ho DJ, Neri M, Yang C, Kulkarni T, Randhawa R, et al. DRUG-seq for miniaturized
high-throughput transcriptome profiling in drug discovery. Nat Commun. 2018;9:4307.

60. Pandey S, Takahama M, Gruenbaum A, Zewde M, Cheronis K, Chevrier N. A whole-tissue
RNA-seq toolkit for organism-wide studies of gene expression with PME-seq. Nat Protoc.
2020;15:1459-83.

61. Kamitani M, Kashima M, Tezuka A, Nagano AJ. Lasy-Seq: a high-throughput library
preparation method for RNA-Seq and its application in the analysis of plant responses to
fluctuating temperatures. Sci Rep. 2019;9:7091.

62. Giraldez MD, Spengler RM, Etheridge A, Godoy PM, Barczak AJ, Srinivasan S, et al.
Comprehensive multi-center assessment of small RNA-seq methods for quantitative miRNA
profiling. Nat Biotechnol. 2018;36:746-57.

63. Xiong Y, Soumillon M, Wu J, Hansen J, Hu B, van Hasselt JGC, et al. A Comparison of
mRNA Sequencing with Random Primed and 3’-Directed Libraries. Sci Rep. 2017;7:14626.

64. Picelli S, Bjérklund AK, Faridani OR, Sagasser S, Winberg G, Sandberg R. Smart-seq2 for
sensitive full-length transcriptome profiling in single cells. Nat Methods. 2013;10:1096-8.

65. Westermann AJ, Vogel J. Cross-species RNA-seq for deciphering host-microbe interactions.
Nat Rev Genet. 2021;22:361-78.

66. Dixit A. Correcting Chimeric Crosstalk in Single Cell RNA-seq Experiments [Internet].
bioRxiv. 2021 [cited 2021 Aug 26]. p. 093237. Available from:

56


http://paperpile.com/b/8mIQvv/A2sEh
http://paperpile.com/b/8mIQvv/SKCs4
http://paperpile.com/b/8mIQvv/SKCs4
http://paperpile.com/b/8mIQvv/SKCs4
http://paperpile.com/b/8mIQvv/8CUW2
http://paperpile.com/b/8mIQvv/8CUW2
http://paperpile.com/b/8mIQvv/8CUW2
http://paperpile.com/b/8mIQvv/qAgXE
http://paperpile.com/b/8mIQvv/qAgXE
http://paperpile.com/b/8mIQvv/qAgXE
http://paperpile.com/b/8mIQvv/mgyci
http://paperpile.com/b/8mIQvv/mgyci
http://paperpile.com/b/8mIQvv/mgyci
http://paperpile.com/b/8mIQvv/czxc9
http://paperpile.com/b/8mIQvv/czxc9
http://paperpile.com/b/8mIQvv/G9FbU
http://paperpile.com/b/8mIQvv/G9FbU
http://paperpile.com/b/8mIQvv/G9FbU
http://paperpile.com/b/8mIQvv/6aE8H
http://paperpile.com/b/8mIQvv/6aE8H
http://paperpile.com/b/8mIQvv/zJqAQ
http://paperpile.com/b/8mIQvv/zJqAQ
http://paperpile.com/b/8mIQvv/zJqAQ
http://paperpile.com/b/8mIQvv/5Ek37
http://paperpile.com/b/8mIQvv/5Ek37
http://paperpile.com/b/8mIQvv/5Ek37
http://paperpile.com/b/8mIQvv/Lq2iS
http://paperpile.com/b/8mIQvv/Lq2iS
http://paperpile.com/b/8mIQvv/Lq2iS
http://paperpile.com/b/8mIQvv/Bc31D
http://paperpile.com/b/8mIQvv/Bc31D
http://paperpile.com/b/8mIQvv/XJzT1
http://paperpile.com/b/8mIQvv/XJzT1
http://paperpile.com/b/8mIQvv/miMLE
http://paperpile.com/b/8mIQvv/miMLE
http://paperpile.com/b/8mIQvv/hv4bF
http://paperpile.com/b/8mIQvv/hv4bF
https://doi.org/10.1101/2021.09.27.459575
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.09.27.459575; this version posted September 28, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

https://www.biorxiv.org/content/10.1101/093237v2

67. Gohl DM, Vangay P, Garbe J, MacLean A, Hauge A, Becker A, et al. Systematic
improvement of amplicon marker gene methods for increased accuracy in microbiome studies.
Nat Biotechnol. 2016;34:942-9.

68. Truck J, Eugster A, Barennes P, Tipton CM, Luning Prak ET, Bagnara D, et al. Biological
controls for standardization and interpretation of adaptive immune receptor repertoire profiling.
Elife [Internet]. 2021;10. Available from: http://dx.doi.org/10.7554/eL ife.66274

69. Buschmann T, Bystrykh LV. Levenshtein error-correcting barcodes for multiplexed DNA
sequencing. BMC Bioinformatics. 2013;14:272.

70. Somervuo P, Koskinen P, Mei P, Holm L, Auvinen P, Paulin L. BARCOSEL: a tool for
selecting an optimal barcode set for high-throughput sequencing. BMC Bioinformatics.
2018;19:257.

71. Andrews S. FastQC: A quality control analysis tool for high throughput sequencing data
[Internet]. Github; [cited 2021 Sep 14]. Available from: https://github.com/s-andrews/FastQC

72. Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, et al. STAR: ultrafast
universal RNA-seq aligner. Bioinformatics. 2013;29:15-21.

73. Liao Y, Smyth GK, Shi W. The R package Rsubread is easier, faster, cheaper and better for
alignment and quantification of RNA sequencing reads. Nucleic Acids Res. 2019;47:e47.

74. Team R. RStudio: Integrated Development for R. RStudio, PBC, Boston, MA, 2020. 2020.

75. R Core Team. R: A Language and Environment for Statistical Computing [Internet]. Vienna,
Austria: R Foundation for Statistical Computing; 2016. Available from: https://www.r-project.org/

76. Steffen Durinck, Wolfgang Huber. biomaRt [Internet]. Bioconductor; 2017. Available from:
https://bioconductor.org/packages/biomaRt

77. Wickham H, Francois R, Henry L, Mdller K. dplyr: A grammar of data manipulation [Internet].
2021. Available from: https://github.com/tidyverse/dplyr

78. Wickham H, Henry L. Tidyr: Tidy messy data. R package version. 2020;1:397.

79. Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for
RNA-seq data with DESeq2. Genome Biol. 2014;15:550.

80. Wickham H. ggplot2: Elegant Graphics for Data Analysis. Springer New York; 2010.
81. Wilke CO. cowplot: streamlined plot theme and plot annotations for “ggplot2.” 2019.

82. Clarke E, Sherrill-Mix S. ggbeeswarm: Categorical Scatter (Violin Point) Plots [Internet].
2017. Available from: https://CRAN.R-project.org/package=ggbeeswarm

83. Constantin A-E, Patil I. ggsignif: R Package for Displaying Significance Brackets for
“ggplot2” [Internet]. PsyArxiv. 2021. Available from: https://psyarxiv.com/7awm6

57


https://www.biorxiv.org/content/10.1101/093237v2
http://paperpile.com/b/8mIQvv/ZFUXy
http://paperpile.com/b/8mIQvv/ZFUXy
http://paperpile.com/b/8mIQvv/ZFUXy
http://paperpile.com/b/8mIQvv/GHh4V
http://paperpile.com/b/8mIQvv/GHh4V
http://paperpile.com/b/8mIQvv/GHh4V
http://dx.doi.org/10.7554/eLife.66274
http://paperpile.com/b/8mIQvv/1UDlD
http://paperpile.com/b/8mIQvv/1UDlD
http://paperpile.com/b/8mIQvv/75GLl
http://paperpile.com/b/8mIQvv/75GLl
http://paperpile.com/b/8mIQvv/75GLl
http://paperpile.com/b/8mIQvv/N7cG
http://paperpile.com/b/8mIQvv/N7cG
https://github.com/s-andrews/FastQC
http://paperpile.com/b/8mIQvv/tc6RL
http://paperpile.com/b/8mIQvv/tc6RL
http://paperpile.com/b/8mIQvv/ut7ru
http://paperpile.com/b/8mIQvv/ut7ru
http://paperpile.com/b/8mIQvv/B5OP
http://paperpile.com/b/8mIQvv/4zNs
http://paperpile.com/b/8mIQvv/4zNs
https://www.r-project.org/
http://paperpile.com/b/8mIQvv/NSVs
https://bioconductor.org/packages/biomaRt
http://paperpile.com/b/8mIQvv/7Nnf
http://paperpile.com/b/8mIQvv/7Nnf
https://github.com/tidyverse/dplyr
http://paperpile.com/b/8mIQvv/5fDz
http://paperpile.com/b/8mIQvv/ZNmk
http://paperpile.com/b/8mIQvv/ZNmk
http://paperpile.com/b/8mIQvv/BVij
http://paperpile.com/b/8mIQvv/hkXb
http://paperpile.com/b/8mIQvv/kprn
http://paperpile.com/b/8mIQvv/kprn
https://cran.r-project.org/package=ggbeeswarm
http://paperpile.com/b/8mIQvv/Yyvv
http://paperpile.com/b/8mIQvv/Yyvv
https://psyarxiv.com/7awm6
https://doi.org/10.1101/2021.09.27.459575
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.09.27.459575; this version posted September 28, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

84. Xiao N. ggsci: Scientific Journal and Sci-Fi Themed Color Palettes for “ggplot2” [Internet].
2018. Available from: https://CRAN.R-project.org/package=ggsci

85. Slowikowski K. ggrepel: Automatically position non-overlapping text labels with “ggplot2.”
2018.

86. Blighe K, Rana S, Lewis M. EnhancedVolcano: Publication-ready volcano plots with
enhanced colouring and labeling. R package version. 2019;

87. Kremer LPM. ggpointdensity: A Cross Between a 2D Density Plot and a Scatter Plot
[Internet]. 2019. Available from: https://CRAN.R-project.org/package=ggpointdensity

88. Kolde R. Pheatmap: pretty heatmaps [Internet]. 2012. Available from:
https://cran.r-project.org/web/packages/pheatmap/index.html

58


http://paperpile.com/b/8mIQvv/keeN
http://paperpile.com/b/8mIQvv/keeN
https://cran.r-project.org/package=ggsci
http://paperpile.com/b/8mIQvv/qb0P
http://paperpile.com/b/8mIQvv/qb0P
http://paperpile.com/b/8mIQvv/3fnV
http://paperpile.com/b/8mIQvv/3fnV
http://paperpile.com/b/8mIQvv/rooB
http://paperpile.com/b/8mIQvv/rooB
https://cran.r-project.org/package=ggpointdensity
http://paperpile.com/b/8mIQvv/TsGj
https://cran.r-project.org/web/packages/pheatmap/index.html
https://doi.org/10.1101/2021.09.27.459575
http://creativecommons.org/licenses/by-nc-nd/4.0/

Protocol

bioRy#preprint doi: https://doi.dsg(10.1101/2021.09.27.459575; this version pospef September 28, 2021. opyright holder for this preprint
pHich was not certified by peer reww) is the author/funder, who has grantegMioRxiv a license to display the PIRQrint in perpetuity. It is made
available under aCC-BY-NC-ND 0 International license.

EEEE5333323232
oooooooooooo
/88888888888%
OOOOOOOOOOOOD

\VAVAVAVAVAVAVAVAVAVAV/

Direct Cell Lysis Bead Cleanup cDNA Synthesis cDNA Pooling

Library Preparation &
Sequencing

Features Validation

Validated on 17 Sensitive with Increased
organisms low inputs sample size

0‘.
*
*
*
*
*
*
*
U ..0
‘0
4
TP |
““
*
“
’0
*
R
A
L4
L]
L]
L]

ERCC Mix 1

|
S
%

———
—————
_%—_._

MAQC-III

Robust Sensitive Affordable .
Comparison

o, ®
@@©§
®

NPC Differentiation

Cryopreserved
AML Samples


https://doi.org/10.1101/2021.09.27.459575
http://creativecommons.org/licenses/by-nc-nd/4.0/

>

—
o
o

o
~
ol

Fraction of UMIs
o o
N (é)]
(@)} o

o
o
S

Feature

. Exon
. Intron

Seq. Depth

2.3 - 18 mio.

human

Cell Culture

\

/ \A
2\ A
(N4
\ {4
\ —
\\}4\//

|—I P

b §

o ¢ )¢

s &7
=

--»

DNA

--»

AAAAANY
AAAAANS
-=P AAAAANS
AAAANNS

RNA

Extraction

50% DNA (DNasel Treated) ()

75% DNA
50% DNA
25% DNA

0% DNA

RNA:DNA Mixture

©O00O0

7 '—'“_F ™ ii &

P

[F

0

2 4 6

% Contaminating UMIs


https://doi.org/10.1101/2021.09.27.459575
http://creativecommons.org/licenses/by-nc-nd/4.0/

>

N
o

—_
o

Mapped Reads / UMIs (mil.)

Seq

200001
7]
Q -
: f
Q v
© |
100001 ¢
[ |
\
|
{
o
10 20 30
uencing Reads gmll) c!
bioRxiv preprint doi: https://doi.org710.1101/2021.09.27.459575; this version posted September 28, 2

10
uencin

20
Reads (mil.)

21. The copyright holder for this prepnnt

30

(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY-NC-ND 4.0 International license.

Count =— reads == UMIs

E

Method ® prime-seq

1000+
750+
500+
250+

bas-awld

.

1000+
750+
500+
250+

Number of Genes
o

Log2 Dispersion

bagnu|

0

5 10 15

Log2 Mean Expression

75% 1

Rate

25%:1

0%+

100%:-

50% 1

0.1 0.3 0.5 0.7 0.9
Percentile Log2 Mean Expression

0

5 10

15

Log2 Mean Expression

ddl

6
— 12

24

48

method
— prime-seq
- TruSeq

O

Marginal Power (TPR)

Log,, Estimated Expression

TruSeq

F

90.0% 1

80.0% 1

2 4 6 4 6 8
Logi, Spike-In Molecules

method

-+~ prime-seq
TruSeq

6 12 24 48
Samples per group

H 100%:

75% 1

50% 1

Rate

25% 1

0%+

ddl



https://doi.org/10.1101/2021.09.27.459575
http://creativecommons.org/licenses/by-nc-nd/4.0/

t()\I,SRé(;]V p;gpr:i(;]ttc;it'ifli:tpc'lldni 0rg/10.1101/2021.09.27 459575; this version posted September 28 2021 The r‘:"\e'tjyrzingthirnhn;r:pgtilr\ir th::igrrc:]parc'et HEK PBMCS Tissue
S -
Magnetic Beads | | 23
O ® : 10+ o 10+
g 2 10 4
Colurnn | | Sq :
PBMCs x o SR
e——y o "
'U wpd
o2 51 5
NE 9
e o 2
©
Magnetic Beads | | ES .,
T - - T - - - - Y Y Y - P+
00 01 02 03 04 05 06 07 08 09 10 S oy | | | o | 0y | |
Fraction of Assigned Reads 0 5 10 15 0 5 10 0 5 10
B Ribosomal  Intergenic || Ambiguity
HEK PBMCs Tissue Possible Extractions with Set Budget ($500)
600 585
600000+ 2

2] 2 8
L 9 400
= 4000001 ‘ =
D A g
200000- ﬂ/ ? 2001
014

| —

HEK PBMCs Tissue Qiagen Qiagen Zymo Zymo prime-seq
Microprep Miniprep Miniprep Microprep Extraction

15000- —t E
// Time for RNA Extractions Using Magentic Beads and Columns
10000-

4
2
5000 ) ) g 200
Q 0 O O O O O O O O O O O Q Q = ]
S & & S S & & S S & & = 100
I~ SR S R~ SR S R~ R NI
DR SR RN DI RN @ LS -
o] e——— I -

Genes

Sequencing Depth
Beads (24) Beads (48) Beads (96) Column (24) Column (48) Column (96)

Column -+~ Magnetic Beads Hands Off ] Hands On


https://doi.org/10.1101/2021.09.27.459575
http://creativecommons.org/licenses/by-nc-nd/4.0/

AML
Samples

PC2: 6.1% variance

40+

201

3

-=p -=p -=p
o @
&
Store at Sample with ime-
-80 °C Biopsy Punch prime-seq
PC1: 11.7% variance
-50 25 0 25
[
n [ [} ... ®
, : L Karyotype
:-"'_ e Complex Karyotype
& n 4 Copynumber Neutral
? = MLL Rearranged
o + Normal
T 2 NPM1/FLT3-ITD
-
xRz X
%:
>

Thaw and
Culture iPSCs

D

Dissociate to

F-------s

Differentiate

1 7

Single Cells to NPCs prime-seq
[ N N N celltype Celltype
Y I Individual iPSC
B oot livee
1 T ] gLF4 ’ Individual

AMKV
N I I I POUSSF Bl Humant
I O I R B BEND4 Bl Human2
A [ [ N N NANOG B Human3
I N N DPPA4 Low || Human4
A O N N L1 D Human5
BT triv7
N [ [ N N vRTN
JUN
L] NR2F1
PPP1R16B
RB1
NES
SOX1
PTPRZzA
MECOM
FOXG1

ZEBA1


https://doi.org/10.1101/2021.09.27.459575
http://creativecommons.org/licenses/by-nc-nd/4.0/

A

prime—seq | | 98]
brb—seq |
brb—-seq |
- (Nextera) -
_§ DECODE-seq{
)
= lllumina
g Stranded I
@ NEBNext{ |
< TruSe
q)
E Stranded I
SMART-Seq |
TruSeq |
SMARTer
Stranded |
Total RNA L,

S & \QQ \(00 (’90 0330

1S00 MO

1S00 wnipaw

1500 ybiy

Number of Samples

power to detect DE

100.0%

80.0%

60.0% 1

100.0%

80.0% 1

60.0% 1

library prep.

— < - -

500 1000 1500 2000
Budget (USD)



https://doi.org/10.1101/2021.09.27.459575
http://creativecommons.org/licenses/by-nc-nd/4.0/

AAAAAA
TTTTTTT [EoviTecRise] rer]

Maxima H- RT l Oligo(dT) primer

Reverse Transcription

SO

VAVAVAVAVAVAV G
CCC

Cytosine Overhang cDNA

Second-strand Synthesis and Pre-amplification l

Kapa DNA Pol

Fragmentation, Ligation, Index PCR

NEB DNA Fragmentation
Reagent

End repair, 5° Phosphorylation, dA tailing

P[PR —A P
AL —P A

bioRxiv preprint doi: https://doi.org/10.1101/2021.09.27.459575; this version posted September 28, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Adapter Ligation, Index PCR

P

T H e —

———m [ o (s [ A
A—————

l <« —{B5]

o7 {7 H 7 e ] o [ [P ]

28 bp l 8 bp
3 [PsHRmisp[ec] umi [ Poy@®  ————————————————— R2sP H{ 7 P

<4+ Read 3
50 - 150 bp



https://doi.org/10.1101/2021.09.27.459575
http://creativecommons.org/licenses/by-nc-nd/4.0/

A

bioRxiv preprint doi tps://doi.org/lO.1101/2021.09.“453573,m§\£?§)n posted September 28, 2021. The copyright holder for this preprint
d by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

(which was not certi

B

Humans

Nervous

Cardiopulmonary

Non-human primates (gorilla,

Orang'utan, Cyn0m0|gUS Digestive

macaque)

N = 55 Urinary
Reproductive

Musculoskeletal

Mouse
N = 1,943

Zebrafish
N =20

Plant (A. thaliana,
M. truncatula, L. japonicus)
N = 270 Immune

Fungus (B. cinerea,
H. arabidopsidis)
N =198

Lichen (L. pulmonaria, P.
leucophlebia, P.
membranacea, P. britannica)
N = 336

Trypanosoma brucei
N =21

0

Seq. Depth

[ e
Pluripotent Cell
Plant
Plant/Fungus
Fungus

20000 30000
Number of Genes

¥ 3.2-18 mio.

o

Feature

10000 20000
Number of Genes

Seq. Depth

30000 40000

W 2.3-14 mio.

10000 20000 30000

Number of Genes

Seq. Depth

¥ 0.8-7.2 mio.

Exon Both Intron


https://doi.org/10.1101/2021.09.27.459575
http://creativecommons.org/licenses/by-nc-nd/4.0/

Normalized yield
(ng cDNA per 1000 cells)

Very High DNA ContaminationH
High DNA Contamination -
Low DNA Contamination+

No DNA Contamination

o)
o

N
o

w
o

N
o

—
o

gDNA (RNAse treated)
RNA (DNAse treated)
RNA + gDNA (untreated)

. :
s e -
1000 5000 10000
Number of Cells
C
DNAse Treated

0.00 025 050 0.75
Mapped Reads

. Unmapped
. Ambiguity

. Exon
. Intron

Intergenic

1.00

Intergenic:Human

0.00 0.25 0.50 0.75 1.00
Assigned Reads

Intergenic:Mouse


https://doi.org/10.1101/2021.09.27.459575
http://creativecommons.org/licenses/by-nc-nd/4.0/

MAQC-IIl Experimental : prime-seq Comparison
Design E Experimental Design

ddH-20

°
°
°
°
°
°
°
°
bioRxiv preprint doi: https://doi.org/10.1101/2021.09.27.459575; this version posted September 28, 2021. The copyright holder for this preprint N
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made b
available under aCC-BY-NC-ND 4.0 International license. °
°
°

14 UHRR Tubes Washed and Diluted In : UHRR Tube
(200 pg RNA in EtOH) ddH20 (1.12 pg/pL) (100 ng/puL)

AL e
AT

|
|
|
|
2,500 pL . v 2.8 L

---

yvvevy ----» -

. 1:1000 ERCC Mix 1
6 ERCC Mix 1 Tubes ouL o : v 5L Tube

5 Libraries Constructed 8 Libraries Constructed
with TruSeq with prime-seq


https://doi.org/10.1101/2021.09.27.459575
http://creativecommons.org/licenses/by-nc-nd/4.0/

prime
tru
00 01 02 03 04 05 06 07 08 09 10
Fraction of Assigned Reads
B ERCCs [ Exonic [ Intronic  Intergenic | Ambiguous [l Unmapped
B C Exon Exon + Intron

6.0%

0.6' 5.50/0'
5.0%T—T——T—"

bioRxiv preprint doi: https://doi.org/10.1101(2021.09.27.459575; this version posted September 28, 2021. The copyright holder for this pr
(which was not certified by peer review)|is the author/funder, who has granted bioRxiv a license to display the prepr‘ifté'g /pe rpetuity. It is made
. (ol

2'0.4 ailable under aCC-BY-NC-ND 4.0 International license.
B AML types %
S || cell types o
T || powsimR input

0.2] 90.0%

80.0%1
0.01 . . . 70.0% ¢ ; ; ; ! ; ; :
-5 0 5 6 12 24 48 6 12 24 48
log2FoldChange Samples per group

D %] E

75% 1 — 6 40% 1
— 12
- 24 @
O 50% o 48 =
TH my) o
method 20%+
25% 1 — prime-seq
’ - TruSeq
0% e ——— m—t 0%
0.1 0.3 0.5 0.7 0.9

Percentile Log2 Mean Expression

100%
75%
-n
50% )
I —6
— 12
24
48
method
— — prime-seq
g --- TruSeq
Oo/o'

0.1 0.3 0.5 0.7 0.9
Percentile Log2 Mean Expression

ddl

a4

4a4d

Hdl

method

- prime-seq
TruSeq


https://doi.org/10.1101/2021.09.27.459575
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.09.27.459575; this version posted September 28, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
o 100/
Column o n
. 8 501 . ™
No Incubation =
HEK >
o +
L) L) L) L) L) L) L) L) L) L) L) 8 _|_
o0 01 02 03 04 05 06 07 08 09 1.0 —100+

Fraction of Assigned Reads -100 0 100
PC1: 30% variance

B Exon [ IncRNA B Ribosomal || Ambiguity
. Intron Mitochondrial |ntergenic o Magnetic Beads Incubation ™ No Incubation —l_ Column
Unfiltered D Exonic
HEK PBMCs Tissue HEK PBMCs Tissue
600000 & 600000
A
(/2] (/2]
= 400000+ = 400000 A
) \ D 2
200000+ 200000+ ~
0_ l&‘ . . . . : . . . . 45 . . . . O' .. ) ) ) ) ' ) ) ) ) :‘A. - ) )
HEK PBMCs Tissue HEK PBMCs Tissue
16000
150001
0 o 12000-
e e
d / ] f h
5000- 40001 A |
0 © & & 9 © & & £HO O L O © 0 © & © OO © £ & HO O L O ©
S & & & S & & & S & & & S & & & S & & & S & & &
D N R S RN DI RN IR DI RN SN S S S R S 2N S IR
Sequencing Depth Sequencing Depth

Column -+~ Magnetic Beads


https://doi.org/10.1101/2021.09.27.459575
http://creativecommons.org/licenses/by-nc-nd/4.0/

—-Logqg adjusted P

20000 HEK Cells
15000 -
2]
C
fe)
©
6]
()]
o 10000 -
IS
)
C
)
O]
5000 -
0 [
Column

Magnetic_Beads

HEK

Log, fold change

Total = 17705 variables

® Neither

100

—-Logqg adjusted P

Gene Intersections

20000 -

15000

10000 -

5000 4

Column

Magnetic_Beads

a1
o
1

PBMCs

PBMCs

L A A e

0.0

Log, fold change

Total = 15576 variables

1

—-Logig adjusted P

50000 Tissue
15000 -
n
C
iel
©
D
n
o) 10000 -
S
()
C
(]
(O]
5000 -
0
Column I o
Magnetic_Beads [
Tissue
[ ]
50
[ )
[ )
[ J

Log, fold change

Total = 13969 variables

® Upregulated with Bead Extraction @ Upregulated with Column Extraction

bioRxiv preprint doi: https://doi.org/10.1101/2021.09.27.459575; this version posted September 28, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY-NC-ND 4.0 International license.

HEK

1.5

1.0-

density

0.5;

0.0

10.01

7.51

density

2.5

0.0

100 1000 10000

Log4g length

5.0

30 40 50
Percent GC Content

0.0

PBMCs
1.51
1.0
>
o
(/)]
c
Q
©
0.5
0.0
100 1000 100(
Logqg length
10.0-
7.5
Py
2 5.0
Q
O
25-
30 50 7

[[] Beads [ ] Column

Percent GC Content

C

1.5

1.0-

density

0.5;

0.0

10.01

7.51

density

2.5

0.0

5.0

Tissue

300 1000 3000

Logqg length

40 50
Percent GC Content


https://doi.org/10.1101/2021.09.27.459575
http://creativecommons.org/licenses/by-nc-nd/4.0/

A

8000001

600000

UMis

2000001

150001

50001

4000001

Sequencing Depth

= low input =~ high input

o

1.000

o
©
\l
o

Pearson correlation
o o
© (e}
N (4]
(&)} o

0.900

—_ 'y
o o

low input (1000 Cells)
[6)]

mean normalized expression

o

(0.94] 0.94

X A -

-*- oy L 4
between high input low input

0 5 10
mean normalized expression
high input (10000 Cells)

15


https://doi.org/10.1101/2021.09.27.459575
http://creativecommons.org/licenses/by-nc-nd/4.0/

library prep. library prep. + sequencing

12.5%-
10.0%-
el L éﬂh””ﬁj
o | [ ] L Bl | BT e oy By o °
, 5% w?ﬁﬁg LA b gﬁﬂﬁﬁﬂﬁ#‘#’ﬂ. . ”wa WA ﬁﬁﬁﬁﬁﬁﬁ
§10(2):8°2" ......... . .0.0.0.0-'-'--9--'- sede s
¢ " . ® ¥ L
80.0%+F -------- *--;-.r-qk-*—-’--*—-'—-'——"--*--*--:--‘--‘ ----------- arr’-?-f-;-:-;-;-.r-*-*—-*—-‘--’--
" T T t"lﬁaﬁ" I I TR
60.0%1 =« .o - ) R |
i Fidcce LT I I A I T
500 1000 1500 2000 500 1000 1500 2000
Budget (USD)
library prep. library prep. + sequencing
prime—seq-
low cost
medium costH
high costH

0 1000 2000 3000 0 1000 2000 3000
Budget to reach 80% power

ta [GE

—
.
§y)


https://doi.org/10.1101/2021.09.27.459575
http://creativecommons.org/licenses/by-nc-nd/4.0/

