

1 Title: Comparative genomics reveals electron transfer and syntrophic mechanisms differentiating
2 methanotrophic and methanogenic archaea

3 Short Title: Evolution of anaerobic methanotrophic archaea

4
5 Grayson L Chadwick^{a,&*#}, Connor T Skennerton^{a*}, Rafael Laso-Pérez^{b,c}, Andy O Leu^d, Daan R
6 Speth^a, Hang Yu^a, Connor Morgan-Lang^e, Roland Hatzenpichler^{a,\$}, Danielle Goudeau^f, Rex
7 Malmstrom^f, William J Brazelton^g, Tanja Woyke^f, Steven J Hallam^{e,h,i,j}, Gene W Tyson^d, Gunter
8 Wegener^{b,c}, Antje Boetius^{b,c,k}, Victoria J Orphan^{a,#}

9
10 ^aDivision of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA,
11 USA 91125

12 ^bMax-Planck Institute for Marine Microbiology, 28359 Bremen, Germany

13 ^cMARUM, Center for Marine Environmental Science, 28359 and Department of Geosciences,
14 University of Bremen, Bremen, Germany

15 ^dAustralian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, University
16 of Queensland, Brisbane, Queensland, Australia

17 ^eGraduate Program in Bioinformatics, University of British Columbia, Genome Sciences Centre,
18 100-570 West 7th Avenue, Vancouver, British Columbia V5Z 4S6, Canada

19 ^fUS Department of Energy Joint Genome Institute, Berkeley, CA, USA 94720

20 ^gSchool of Biological Sciences, University of Utah, Salt Lake City, Utah, USA

21 ^hDepartment of Microbiology & Immunology, University of British Columbia, 2552-2350 Health
22 Sciences Mall, Vancouver, British Columbia V6T 1Z3, Canada

23 ⁱGenome Science and Technology Program, University of British Columbia, 2329 West Mall,
24 Vancouver, BC V6T 1Z4, Canada

25 ^jECOSCOPE Training Program, University of British Columbia, Vancouver, British Columbia,
26 Canada V6T 1Z3

27 ^kAlfred Wegener Institute, Helmholtz Center for Polar and Marine Research, Bremerhaven

28
29 Running Head:

30
31 #Address correspondence to Grayson L Chadwick, chadwick@berkeley.edu; Victoria J Orphan,
32 vorphan@gps.caltech.edu

33 * These authors contributed equally to this work

34 \$ Current affiliation: Department of Chemistry and Biochemistry, Thermal Biology Institute, and
35 Center for Biofilm Engineering, Montana State University, Bozeman, MT, USA 59717

36 & Current affiliation: Department of Molecular and Cell Biology, University of California
37 Berkeley, Berkeley, CA, USA 94720-3220

40 **Abstract**

41 The anaerobic oxidation of methane coupled to sulfate reduction is a microbially mediated process
42 requiring a syntrophic partnership between anaerobic methanotrophic (ANME) archaea and sulfate
43 reducing bacteria (SRB). Based on genome taxonomy, ANME lineages are polyphyletic within
44 the phylum *Halobacterota*, none of which have been isolated in pure culture. Here we reconstruct
45 28 ANME genomes from environmental metagenomes and flow sorted syntrophic consortia.
46 Together with a reanalysis of previously published datasets, these genomes enable a comparative
47 analysis of all marine ANME clades. We review the genomic features which separate ANME from
48 their methanogenic relatives and identify what differentiates ANME clades. Large multiheme
49 cytochromes and bioenergetic complexes predicted to be involved in novel electron bifurcation
50 reactions are well-distributed and conserved in the ANME archaea, while significant variations in
51 the anabolic C1 pathways exists between clades. Our analysis raises the possibility that
52 methylotrophic methanogenesis may have evolved from a methanotrophic ancestor.
53

54 Table of Contents

55	Abstract.....	2
56	Introduction	4
57	Results	5
58	Genome-resolved diversity of the methanotrophic archaea	5
59	ANME energy metabolism.....	8
60	Energy metabolism phase 1: The conserved C1 machinery of the methanogenesis pathway in	
61	ANME archaea.....	9
62	Function of the methanogenesis pathway in ANME archaea	9
63	Differing roles for MetF in ANME archaea	14
64	Energy metabolism phase 2: Cytoplasmic electron carrier oxidation and energy conservation... 16	
65	F ₄₂₀ H ₂ oxidation	17
66	Ferredoxin oxidation	18
67	CoM-SH/CoB-SH oxidation.....	19
68	Novel gene clusters encoding electron bifurcation/confirmation complexes.....	20
69	Energy metabolism phase 3: Genomic evidence for mechanisms of syntrophic electron transfer 24	
70	Hydrogen transfer	24
71	Formate transfer.....	25
72	Other soluble electron carriers.....	26
73	Direct interspecies electron transfer	26
74	Potential methanophenazine:cytochrome <i>c</i> oxidoreductase complexes	28
75	Multiheme cytochrome <i>c</i> protein abundance and expression	29
76	S-layer conduits	31
77	Duplication of Cytochrome <i>c</i> maturation machinery	33
78	Anabolic pathways	35
79	Anabolic C1 metabolism	36
80	Apparent amino acid prototrophy	39
81	Incomplete partial TCA cycles for 2-oxoglutarate synthesis	40
82	Additional ANME genomic features of interest	41
83	Nitrogenase in ANME	41
84	ANME-1 genomes harbor many FrhB/FdhB/FpoF paralogs	43
85	Extensive Dockerin/Cohesin domain-containing proteins	45
86	Phage-like protein translocation structures	46
87	Discussion.....	47
88	The evolution and conserved metabolic features of marine ANME archaea	47
89	The “Methanoalium” group of ANME-1 and the potential for methanogenesis in ANME	49
90	Anabolic independence of the ANME archaea from their syntrophic partner	50
91	Biogeochemical and microbiological consideration of ANME carbon signatures	50
92	MetF, F ₄₂₀ -dependent NADP reductase and electron bifurcation complexes.....	52
93	An energetic argument for both chemical diffusion and direct electron transfer in ANME-SRB	
94	syntrophy.....	53
95	Conclusion	55
96	Materials and Methods.....	55

97	<i>Acknowledgments</i>	62
98	<i>References</i>	62
99	<i>Supporting Information</i>	84
100		

101 **Introduction**

102 Anaerobic oxidation of methane (AOM) coupled to sulfate reduction is a key microbiological
103 process in ocean sediments that controls the amount of methane released into overlying waters and
104 the atmosphere. However, despite the global relevance and distribution of this process, there are
105 currently no strain isolates that will carry out AOM with sulfate. Thus, our understanding of the
106 physiological and biochemical basis for AOM has advanced much more slowly than it has for
107 many other microbially-mediated biogeochemical processes. Twenty years ago, strong evidence
108 emerged that archaea may be involved in AOM based on stable isotope measurements of archaeal
109 lipids and small subunit ribosomal RNA (SSU or 16S rRNA) gene clone libraries from marine
110 methane seeps (1). Shortly thereafter fluorescence *in situ* hybridization from methane seep
111 environments provided microscopic evidence for the existence of a prevalent interdomain
112 consortia consisting of an archaeon related to known methanogens and a bacterium related to
113 sulfate reducing bacteria (2, 3). These discoveries led to the current paradigm that sulfate-
114 dependent AOM is carried out by anaerobic methanotrophic (ANME) archaea in a syntrophic
115 partnership with sulfate reducing bacteria (SRB).

116 Subsequent work has expanded our understanding diversity and activities of the ANME archaea
117 and lead to various hypotheses pertaining to the biochemical mechanisms underlying the
118 syntrophic interactions between ANME and SRB. Diversity surveys have suggested that ANME
119 are polyphyletic with three distinct clades (ANME-1, 2, and 3) within the *Halobacterota*.
120 Investigations of 16S rRNA gene phylogenies support ANME-1 as a family-level clade, while
121 ANME-2 is comprised of two distinct families within the *Methanosarcinales*, and members of
122 ANME-3 are a novel genus closely related to *Methanococcoides* within the family
123 *Methanosarcinaceae* (4, 5). Initial ‘omic analysis of fosmid libraries from ANME organisms
124 supported “reverse methanogenesis” as the biochemical model for the methane oxidation pathway
125 in AOM (6–8). Subsequent analysis of more complete ANME genomes from enrichment cultures
126 (9–11), or metagenome assembled genomes (MAGs) from AOM habitats have added to our
127 understanding of some of the major groups of ANME, and further refined the “reverse
128 methanogenesis hypothesis” (12, 13).

129 The limited number of ANME genomes currently available relative to their 16S rRNA gene
130 diversity leads to questions about whether the observations made in previous studies represent
131 conserved features of the ANME archaea, or are skewed by the relatively small sample size and
132 the incomplete or biased nature of metagenomic binning methods. In order to develop a better
133 model for the evolution and metabolic capabilities of the ANME archaea we performed a large
134 comparative analysis of the most complete set of ANME genomes to date, encompassing 39
135 reconstructed MAGs, binned fosmid libraries, amplified single aggregate genomes (ASAGs), and
136 combine-assembled single amplified genomes (Co-SAGs), more than doubling the previously
137 available genomic information. This analysis includes representatives from all recognized marine
138 ANME groups including ANME-1, 2a, 2b, 2c, and 3. Using this expanded dataset we construct a
139

141 more robust phylogenetic framework for the ANME archaea and analyze the differences in
 142 metabolic potential that exist within and among ANME clades, as well as between ANME and
 143 their methanogenic relatives with emphasis on energy conservation and potential adaptations to
 144 syntrophic associations with SRB. Based on these genomic observations we present a model for
 145 ANME metabolism for the different clades and highlight important aspects of their physiology
 146 that remain uncertain.

147

148 **Results**

149 **Genome-resolved diversity of the methanotrophic archaea**

150 We reconstructed 28 new ANME genomes from metagenomic datasets and fluorescence-activated
 151 cell sorting of single aggregates (14), as well as from reanalyzed publicly available metagenomic
 152 data from the sequence read archive (SRA) and the MG-RAST analysis server (see **Materials and**
 153 **Methods**). These genomes were combined with 11 previously published marine ANME genomes
 154 recovered from diverse environments (7, 9, 11, 15–17) to generate a set of 39 ANME genomes for
 155 comparative genomics, representing all of the currently described clades (ANME-1, 2, 3) and
 156 subclades (e.g. ANME-2a, b, c and multiple clades in ANME-1) frequently detected in marine
 157 sediments (**Table 1**) (4). In most analyses we also include the recently described alkane-oxidizing
 158 “*Candidatus Syntrophoarchaeum*” (18), as well as the nitrate-reducing freshwater ANME relatives
 159 known as ANME-2d or “*Candidatus Methanoperedens*” (19, 20) and their marine relatives known
 160 as “*Candidatus Argoarchaeum*” (15, 21). At least one genus from each ANME subclade was
 161 assigned a name and formal etymology can be found in **Materials and Methods**.
 162

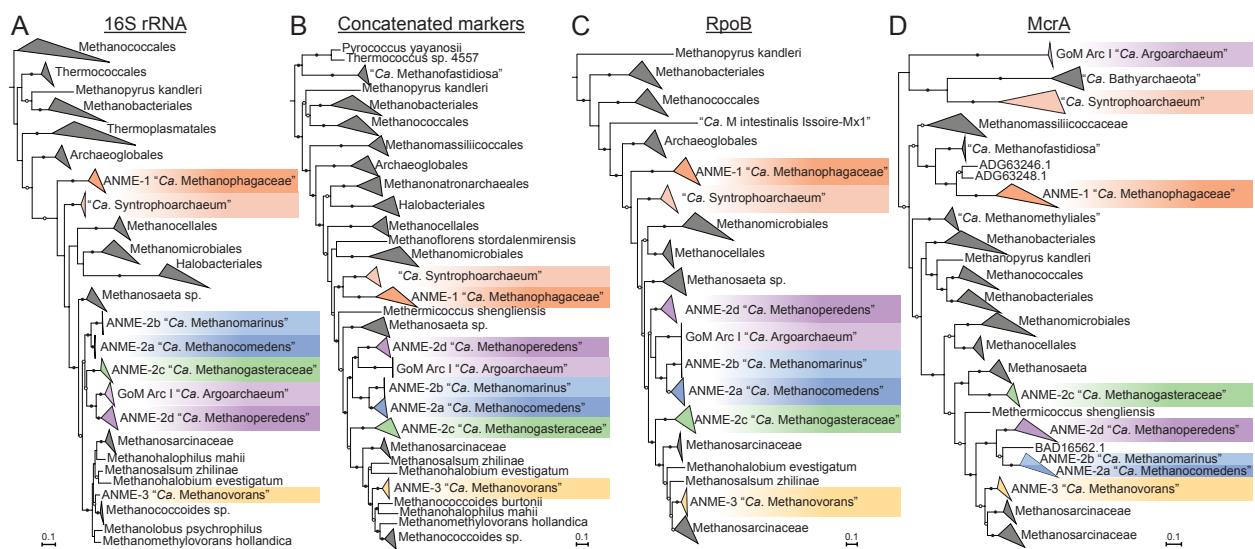
Genome	Order	Family	Genus	Species	Type	Sample Location	Habitat	Publication	Accession	Comp	Cont	Size (Mb)	Scaffolds
ANME-3 sp. HMMV	Methanococcales	Methanococcaceae	Methanococcans	sp. nov. 1	MAG	Haakon Mosby Mud Volcano	submarine mud volcano, 1250 m water depth	This study	DQG10000000	98.0	3	2.45	236
ANME-3 sp. HMMV2	Methanococcales	Methanococcaceae	Methanococcans	sp. nov. 2	MAG	Haakon Mosby Mud Volcano	submarine mud volcano, 1250 m water depth	This study	DQG10000000	94.4	4	2.56	334
ANME-2c sp. COP1	Methanococcales	Methanococcaceae	Methanococcans	sp. nov. 1	MAG	Coal Oil Point	natural hydrocarbon seep, 47m depth	Parks et al. 2017	DA5C01000000	88.5	2	2.39	222
ANME-2c sp. Agg-C10	Methanococcales	Methanococcaceae	Methanococcans	sp. nov. 1	ASAG	Hydrate Ridge, Oregon	cold seep sediment incubation, 6°C	This study	QB4U01000000	45.7	1	1.53	277
ANME-2c sp. HMMV-459B1	Methanococcales	Methanococcaceae	Methanococcans	sp. nov. 3	MAG	Haakon Mosby Mud Volcano	submarine mud volcano, 1250 m water depth	This study	QB4UV01000000	94.7	2	1.69	226
ANME-2c sp. HMMV-459B2	Methanococcales	Methanococcaceae	Methanococcans	sp. nov. 2	MAG	Elwha River, Washington	enrichment culture, 20°C	Krukenberg et al. 2018	PQ2001000000	95.7	3	3.98	7
ANME-2c sp. AMVER-41	Methanococcales	Methanococcaceae	Methanococcans	sp. nov. 4	MAG	Elwha River, Washington	submarine mud volcano, 1120 m water depth	This study	QB4U02010000	52.7	4	3.90	94
ANME-2c sp. ERB4	Methanococcales	Methanococcaceae	Methanococcans	sp. nov. 1	Fosmid	El River Basin, California	methane cold seep, 5°C	This study	see Methods	81.6	229	10.15	172
ANME-2c sp. AMVER-41	Methanococcales	Methanococcaceae	Methanococcans	gen. nov. 1	MAG	Amon Mud Volcano	submarine mud volcano, 1220 m water depth	This study	QB4US01000000	65.1	4	1.60	109
ANME-2c COP2	Methanococcales	Methanococcaceae	Methanococcans	gen. nov. 1	MAG	Coal Oil Point	natural hydrocarbon seep, 47m depth	Parks et al. 2017	DAWR01000000	92.5	2	2.37	224
ANME-2a S7142MS1	Methanococcales	Methanococcaceae	Methanococcans	sp. nov. 1	MAG	Santa Monica Mounds, California	cold seep sediment incubation, 6°C	Yu et al. 2018	PYCK01000000	94.5	0	1.89	267
ANME-2b CONST142H05b1	Methanococcales	Methanococcaceae	Methanococcans	sp. nov. 1	ASAG	Santa Monica Mounds, California	cold seep sediment incubation, 6°C	This study	QCHJ01000000	62.3	1	1.72	166
ANME-2a CONST142G09b1	Methanococcales	Methanococcaceae	Methanococcans	sp. nov. 1	ASAG	Santa Monica Mounds, California	cold seep sediment incubation, 6°C	This study	QCYW01000000	70.3	0	2.14	193
ANME-2a HMMV-459B4	Methanococcales	Methanococcaceae	Methanococcans	sp. nov. 1	MAG	Haakon Mosby Mud Volcano	submarine mud volcano, 1250 m water depth	This study	QB4U01000000	83.2	4	1.45	501
ANME-2a Wang	Methanococcales	Methanococcaceae	Methanococcans	sp. nov. 1	ASAG	Gulf of Cadiz	submarine mud volcano, 1200 m water depth	Wang et al. 2013	IM02565956544	98.5	3	3.64	575
ANME-2a HMMV-459A3	Methanococcales	Methanococcaceae	Methanococcans	sp. nov. 2	MAG	Haakon Mosby Mud Volcano	submarine mud volcano, 1250 m water depth	This study	QISUR01000000	70.9	0	1.17	192
ANME-2b HR1	Methanococcales	Methanococcaceae	Methanococcans	sp. nov. 1	MAG	Hydrate Ridge, Oregon	cold seep sediment incubation, 6°C	Yu et al. 2018	MZQX01000000	95.7	0	2.20	335
ANME-2b CONS3730F09p3b1	Methanococcales	Methanococcaceae	Methanococcans	sp. nov. 1	ASAG	Hydrate Ridge, Oregon	cold seep sediment incubation, 6°C	This study	QCXY01000000	79.1	0	2.03	213
ANME-2b CONS3730E1UFb2	Methanococcales	Methanococcaceae	Methanococcans	sp. nov. 1	ASAG	Hydrate Ridge, Oregon	cold seep sediment incubation, 6°C	This study	QENID01000000	71.8	1	2.14	224
ANME-2b CONS3730D1UFb2	Methanococcales	Methanococcaceae	Methanococcans	sp. nov. 1	ASAG	Hydrate Ridge, Oregon	cold seep sediment incubation, 6°C	This study	QYBA01000000	58.9	0	1.42	266
ANME-2b CONS3730P02p1	Methanococcales	Methanococcaceae	Methanococcans	sp. nov. 1	MAG	Hydrate Ridge, Oregon	biogeochemical reactor	Marhaba et al. 2015	QHAB01000000	3	3	3.74	216
ANME-2b Co. Methanoperedens nitroreducens	Methanococcales	Methanococcaceae	Methanococcans	sp. nov. 1	MAG	Hydrate Ridge, Oregon	nitroreducens	Marhaba et al. 2013	JMNY01000000	38.8	3	2.93	10
ANME-1 AG-394-G06	Methanophagales	Methanophagaceae	Methanophagans	sp. nov. 1	ASAG	Gulf of Mexico	methane cold seep, 5°C	This study	PRC20100000	66.0	1	1.53	119
ANME-1 AG-394-G21	Methanophagales	Methanophagaceae	Methanophagans	sp. nov. 1	ASAG	Gulf of Mexico	methane cold seep, 5°C	This study	PRCY01000000	68.5	1	1.87	101
ANME-1 Meyeriiks	Methanophagales	Methanophagaceae	Methanophagans	sp. nov. 1	MAG	North-Western Crimean sea	microbial mat, ~200 m water depth	Meyeriiks et al. 2010	FP565147	82.3	21	3.40	1
ANME-1 Gom3.2	Methanophagales	Methanophagaceae	Methanophagans	sp. nov. 1	MAG	Gulf of Mexico	methane cold seep, 5°C	This study	QBUUN01000000	81.5	6	2.73	426
ANME-1 ERB7	Methanophagales	Methanophagaceae	Methanophagans	sp. nov. 1	Fosmid	El River Basin, California	methane cold seep, 5°C	This study	see Methods	90.7	247	5.87	175
ANME-1 CONS3730B06UFb1	Methanophagales	Methanophagaceae	Methanophagans	sp. nov. 1	ASAG	Hydrate Ridge, Oregon	cold seep sediment incubation, 6°C	This study	QENH01000000	90.1	2	3.18	201
ANME-1 Agg-C03	Methanophagales	Methanophagaceae	Methanophagans	gen. nov. 1	ASAG	Hydrate Ridge, Oregon	cold seep sediment incubation, 6°C	This study	QUP01000000	65.4	3	1.90	375
ANME-1 CONS3730F02p1	Methanophagales	Methanophagaceae	Methanophagans	sp. nov. 1	ASAG	Hydrate Ridge, Oregon	cold seep sediment incubation, 6°C	This study	QENK01000000	74.6	3	2.75	380
ANME-1 CONS3730MDAH3UFb1	Methanophagales	Methanophagaceae	Methanophagans	gen. nov. 1	ASAG	Hydrate Ridge, Oregon	cold seep sediment incubation, 6°C	This study	QENL01000000	79.1	15	3.42	505
ANME-1 CONS3730H04p201	Methanophagales	Methanophagaceae	Methanophagans	gen. nov. 1	ASAG	Hydrate Ridge, Oregon	cold seep sediment incubation, 6°C	This study	QENJ01000000	64.4	1	2.57	369
ANME-1 Gom2	Methanophagales	Methanophagaceae	Methanophagans	gen. nov. 1	Co-SAG	Gulf of Mexico	methane cold seep, 5°C	This study	QBU01000000	79.3	3	2.19	251
ANME-1 Gom4	Methanophagales	Methanophagaceae	Methanophagans	gen. nov. 1	MAG	Gulf of Mexico	methane cold seep, 5°C	This study	QBU01000000	35.9	1	3.54	177
ANME-1 ERB6	Methanophagales	Methanophagaceae	Methanophagans	gen. nov. 2	MAG	Walton, South Africa	Gold Mine Aquifer, 37°C	Liu et al. 2014	mpn459100_3	91.3	2	2.01	196
ANME-1 SCGC AAA252-L18	Methanophagales	Methanophagaceae	Methanophagans	gen. nov. 2	Co-SAG	Gulf of California	methane cold seep, 5°C	This study	see Methods	66.4	82	4.55	134
ANME-1 Gom3	Methanophagales	Methanophagaceae	Methanophagans	gen. nov. 2	Co-SAG	Gulf of Mexico	methane cold seep, 5°C	This study	QBU10100000	71.4	6	2.57	700
ANME-1 ex4572-4	Methanophagales	Methanophagaceae	Methanophagans	gen. nov. 3	Co-SAG	Gulmeyas basin	orange microbial mat, 50-80°C	Dombrowski et al. 2017	NEM01000000	70.9	2	1.02	98
ANME-1 GB37	Methanophagales	Methanophagaceae	Methanophagans	gen. nov. 3	Co-SAG	Gulmeyas basin	enrichment culture, 37°C	Krukenberg et al. 2018	PQXB01000000	92.1	4	1.53	4
ANME-1 GB60	Methanophagales	Methanophagaceae	Methanophagans	gen. nov. 4	Co-SAG	Gulmeyas basin	enrichment culture, 60°C	Krukenberg et al. 2018	PQXC00000000	88.9	2	1.62	36

163 **Table 1. ANME genome statistics.** Summary of genome characteristics, sources and accession numbers
 164 of the analyzed ANME genomes. Major ANME clades are separated by bold lines and proposed taxonomy
 165 adheres to the GTDB framework. At least one genus within each clade has been given a proposed name,
 166 and genomes that fall within other genera or species are simply given numerical placeholders (Genus and
 167 Species columns, respectively). Type indicates the method used for genome reconstruction, including:
 168 metagenome assembled genome (MAG), amplified single aggregate genome (ASAG), combine-assembled
 169 single amplified genomes (Co-SAGs), or fosmid library. Estimated levels of completeness (comp) and
 170 contamination (cont) are reported as percent as evaluated by CheckM. Note: ERB4, ERB6 and ERB7 are
 171

172 fosmid libraries with highly similar strains combined which has resulted in high levels of “contamination”.
173 See **Materials and Methods** for complete details of assembly and binning for each genome.
174

175 The draft ANME genomes sequenced and assembled here were between 46% and 98% complete
176 (mean: 78%, median: 80%) as determined by the presence of a set of marker proteins common to
177 *Halobacterota*. Many of the less complete genomes originated from sequencing of individual flow
178 sorted aggregates (**Table 1**). Most of the genomes did not contain duplicated marker genes, with
179 the exception of the three genomes derived from sequenced fosmids, which encoded many
180 duplicates (**Table 1**). The fosmids representing these genomes have consistent nucleotide
181 signatures and, in many cases, contain overlapping regions that suggests that they are derived from
182 multiple strains rather than from a single clonal population. While genome incompleteness can
183 impact the accurate reconstruction of ANME metabolism, we found reproducible trends in gene
184 presence, absence, and synteny across the different ANME lineages, with multiple genomes for
185 each ANME clade, often originating from different studies and habitats. Taxonomic assignments
186 in **Table 1** were made consistent with GTDB release 89 using analysis of relative evolutionary
187 divergence (RED) (22).
188

189 Members of the ANME-1 were originally described in 16S rRNA gene surveys of methane seep
190 sediments (1) and representatives of the ANME-1 were among the first to be genetically
191 characterized (6). ANME-1 16S rRNA genes have since been identified in marine cold seep
192 environments, diffusive margin sulfate-methane transition zones, deep sea hydrothermal vents,
193 and select anoxic terrestrial ecosystems (23). With our updated genomic dataset there are now 19
194 representative genomes from ANME-1, recovered from eight locations, including deep-sea
195 methane cold seeps, hydrocarbon-impacted hydrothermal vents and cold seeps, a mud volcano and
196 a hot, deep gold mine aquifer. Collectively, these genomes are highly diverse at the sequence level
197 with the majority being at most 60% similar to each other, based on pairwise sequence similarity
198 and non-homologous gene content between genomes (**S1 Fig**). These genomes represent six genera
199 as determined by analysis of their RED values. Recently proposed nomenclature based on a single
200 ANME-1 genome from fosmid sequences placed ANME-1 within their own order
201 *Methanophagales* (24), and this is consistent with GTDB release 89. The 19 ANME-1 genomes
202 analyzed here represent a single family-level division within that order. We propose to conserve
203 the family and genus-level designation implied by “*Methanophagales*” with the ANME-1 genome
204 from Meyerdierks *et al.* 2010 belonging to the genus “*Candidatus Methanophaga*” within the
205 family *Methanophagaceae* (**Table 1**).
206

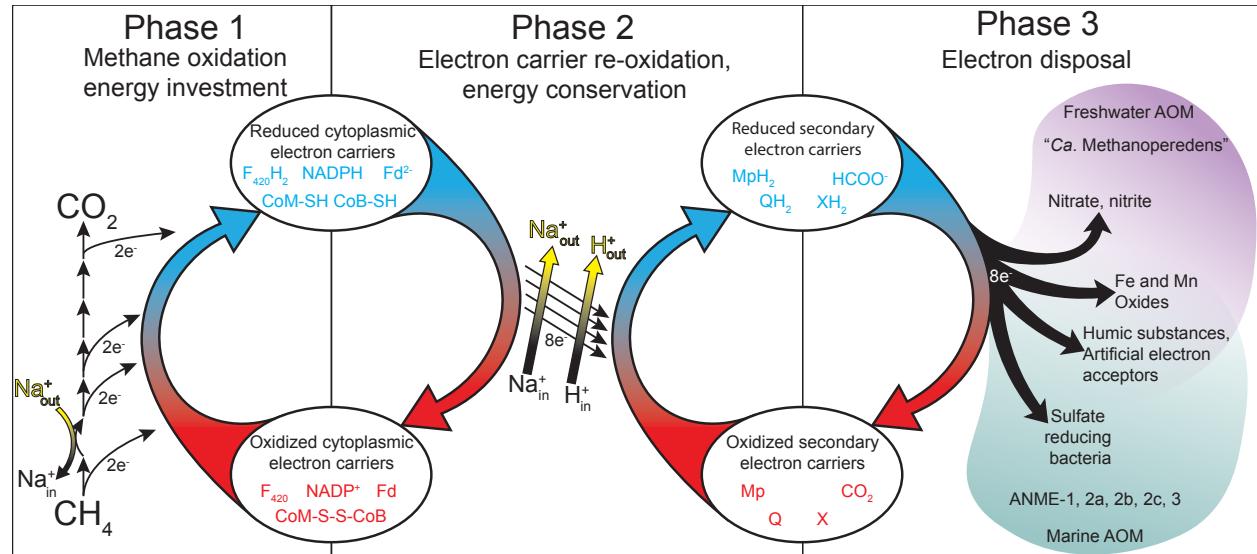

207 Marine members of the ANME-2 are within the order *Methanoscinciales* and are comprised of
208 subclades a, b, and c, first designated by 16S rRNA gene sequences (5). The ANME-2a and 2b
209 together form a family-level division with two genus-level clades corresponding to ANME-2a and
210 2b, recovered from six different locations including two methane cold seep sites, two submarine
211 mud volcanoes, a hydrocarbon seep and shallow coastal sandy sediments (**Table 1**). We propose
212 the name “*Candidatus Methanocomedens*” for the dominant genera corresponding to ANME-2a
213 with name propagating to the family level as *Methanocomedaceae*. Recent coupled fluorescence
214 and electron microscopy analyses have revealed distinct ultrastructural features of the ANME-2b
215 (25), and in conjunction with our phylogenomic information, we propose the genus name
216 “*Candidatus Methanomarinus*” for ANME-2b. The six “*Ca. Methanocomedens*” genomes have
217 average amino acid identity (AAI) values which range between 70% and 97% indicating that there
218 are multiple distinct species, whereas the three “*Ca. Methanomarinus*” genomes have >98% AAI

219 indicating that they represent strains of the same species (**S1 Fig**). The ANME-2c form a separate
220 family (84% AAI among the 8 genomes analyzed in this study) representing two genus-level
221 clades. For the dominant ANME-2c we propose the genus name “*Candidatus Methanogaster*” with
222 name propagating to the family level as *Methanogasteraceae*.
223

224 “*Ca. Methanoperedens*” sp. BLZ1 and nitroreducens are representatives representative of the
225 family *Methanoperedenaceae* formerly known as ANME-2d, within the order *Methanosarcinales*.
226 These are the only known ANME that do not couple AOM in syntrophy with partner SRB, instead
227 coupling the oxidation of methane with the reduction of nitrate, iron oxides or manganese oxides
228 in freshwater environments (20, 26, 27). The marine sister group of “*Ca. Methanoperedens*”, GoM
229 Arc I (also known as AAA), was recently described as an anaerobic ethane degrader, and contains
230 two genera “*Candidatus Argoarchaeum*” (15, 21) and the thermophilic “*Candidatus*
231 *Ethanoperedens*”(28). These clades are not specifically considered in the present work as they do
232 not appear to be marine methanotrophs, and have been extensively discussed in a recent study (29).
233

234 The ANME-3 clade is the ANME group most recently diverged from known methanogens. They
235 are closely related by their 16S rRNA genes (94-96% similarity) to *Methanococcoides*,
236 *Methanosalsum*, and *Methanolobus*, with 65% average AAI, indicating these organisms represent
237 a novel genus within the family *Methanosarcinaceae*, for which we propose the name “*Candidatus*
238 *Methanovorans*” (**Table 1, S1 Fig**). The two genomes were both recovered from the Haakon
239 Mosby Mud Volcano where this clade was originally described on the basis of 16S rRNA gene
240 sequences (30). ANME-3 forms consortia with bacteria from the *Desulfobulbus* group (31).
241

242 Phylogenetic reconstructions of 16S rRNA gene sequences, concatenated marker genes, DNA-
243 directed RNA polymerase subunit beta (RpoB) and the methane activating enzyme methyl-
244 coenzyme M reductase subunit A (McrA) were performed to demonstrate the evolutionary
245 relationship between ANME and other related archaea (**Fig 1**). All marker gene sets show
246 remarkably similar phylogenies, with ANME-1 forming the deepest branching ANME clade, while
247 ANME-2 and 3 grouped within the order *Methanosarcinales*. Importantly, in agreement with
248 previous studies, ANME-3 reproducibly branches well within the family *Methanosarcinaceae*, in
249 agreement with the AAI analysis described above. The McrA phylogeny deviates somewhat from
250 this pattern, with ANME-1 falling further outside of the traditional methanogens, but grouping
251 with some McrA from the H₂-dependent methylotrophic methanogens as has been previously
252 reported (12, 32, 33). The McrA in all ANME clades are more similar to methanogens than the
253 recently described divergent McrA homologs in various uncultured archaea that are thought to
254 utilize longer chain alkane substrates (15, 18, 21). With this general phylogenetic framework, we
255 set out to characterize the major conserved features of the ANME energy metabolism.
256


Fig 1. Phylogeny of ANME and related archaea. Phylogenetic trees constructed from ANME genomes, sequences of closely related archaea, and a selection of sequences derived from clone libraries demonstrate the relationship between ANME and methanogens of the *Halobacterota*. **(A)** Phylogenetic tree built with 16S rRNA gene sequences, root leads to sequence from *Sulfolobus solfataricus* p2. **(B)** Phylogenomic tree built with concatenated marker set 4 (see S1 Table for list), root also to *S. solfataricus* p2. **(C)** Phylogenetic tree built with protein sequence of RpoB, root leads to sequences from “*Ca. Methanomethyliales*” and “*Ca. Bathyarchaeota*”. **(D)** Phylogenetic tree of McrA protein sequences. Note the divergence of proposed alkane oxidizing McrA genes in “*Ca. Syntrophoarchaeum*”, “*Ca. Bathyarchaeota*” and “*Ca. Argoarchaeum*”. Branch support values of 100% are labelled with closed circles, >50% with open circles. Tree scales represent substitutions per site. Tree construction parameters are found in the **Materials and Methods** section. For tree files and alignments see **S1 Data**. Detailed tree figures are presented in **S2-S5 Figs**.

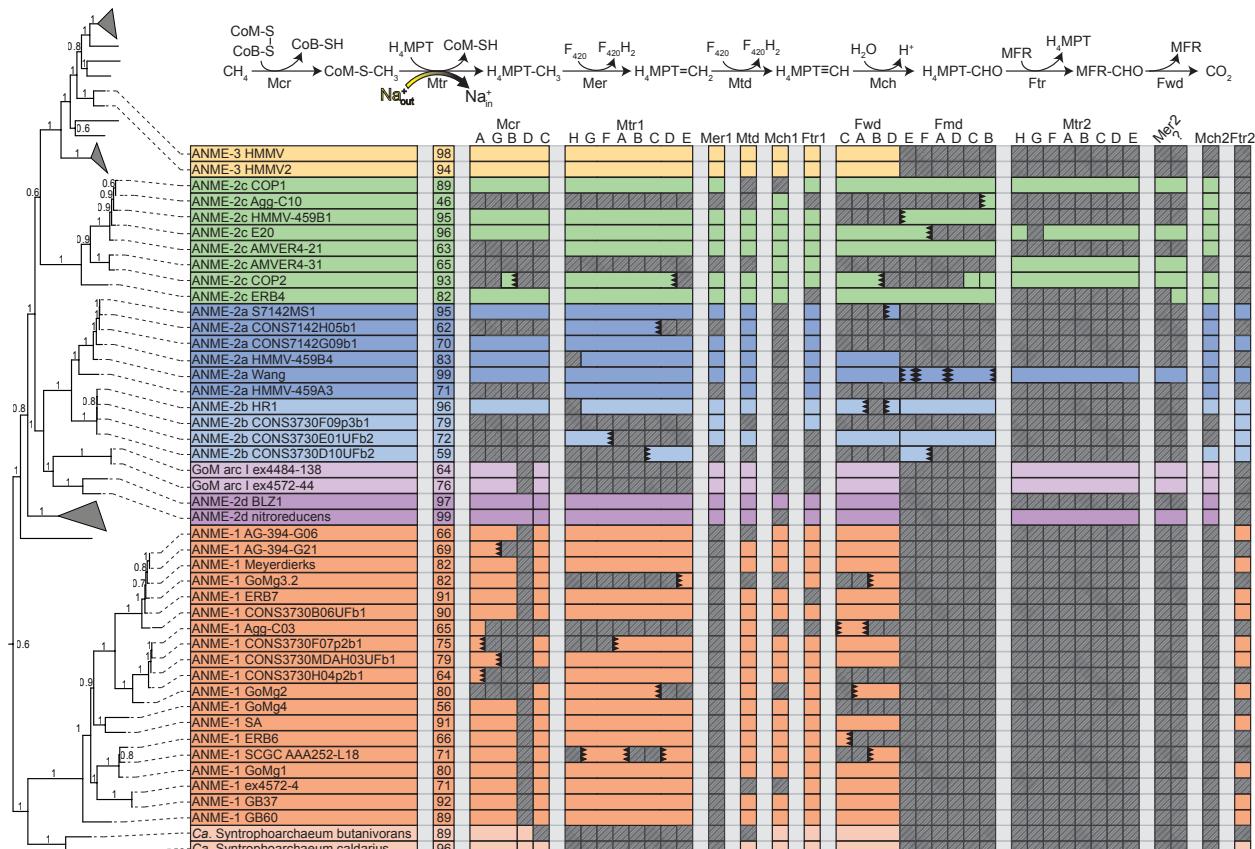
ANME energy metabolism

Biochemically it is assumed that the ANME archaea oxidize methane to CO_2 and pass electrons through an unconfirmed mechanism to their SRB partners to reduce sulfate. Metabolic reconstruction of a limited number of ANME draft genomes from environmental samples and enrichment cultures using multiple ‘omics approaches have shown that they contain and express the same genes used for methanogenesis (6, 7, 9, 10, 20, 34). Detailed enzymatic studies of the methanogenic pathway have shown that all 7 steps are reversible (35–37), including the methane producing step catalyzed by Mcr (38), which had previously been predicted to be irreversible. These findings reinforce the ‘reverse methanogenesis’ hypothesis (6, 39–41), in which ANME use the same methanogenic enzymes to oxidize, rather than produce, methane. This model offers the most likely pathway for carbon oxidation in ANME, however the mechanisms by which these archaea conserve energy from this process, and how methane-derived electrons are transferred to their syntrophic sulfate-reducing bacterial partners remain open questions.

It has been pointed out in recent reviews that a simple reversal of the methanogenesis pathway does not represent a viable basis for an energy metabolism in the ANME archaea, as the exact reversal of a process that results in net ATP generation must result in ATP loss (13, 42). Bioenergetic novelty beyond a wholesale reversal of methanogenesis therefore must exist. In the following discussion we break down the ANME energy metabolism into three phases and discuss the conserved features of these phases across our collection of ANME genomes (Fig 2). In the first phase, methane is oxidized to CO_2 and all eight electrons are deposited on cytoplasmic electron

290 carriers in an endergonic process that requires an investment of energy. In the second phase,
 291 cytoplasmic electron carriers are re-oxidized in an exergonic process that reduces a set of
 292 intermediate electron carriers, recovering the energy invested in the first phase and conserving
 293 additional energy as an ion motive force. In the final phase, electrons must be discarded, likely not
 294 involving energy gain or loss. We use this division of energy metabolism as an organizing
 295 framework throughout this work.
 296

297
 298 **Fig 2. Summary of ANME energy metabolism.** Schematic representation of the three phases of ANME
 299 energy metabolism in our current model. In Phase 1 methane is oxidized to CO₂ through the reversal of the
 300 canonical seven step methanogenesis pathway. Energy is invested in this phase in the form of sodium ion
 301 translocation from the outer face of the cytoplasmic membrane to the inner face (yellow arrow). As C1
 302 moieties are sequentially oxidized, eight electrons are transferred to soluble electron carriers such as F₄₂₀H₂,
 303 NADPH, Fd²⁻, and CoM-SH/CoB-SH. In Phase 2 eight electrons on these primary electron carriers are
 304 transferred to secondary electron carriers in a process that conserves energy needed for cell growth in the
 305 form of sodium and proton motive forces (yellow arrows). These secondary electron carriers may be quinols
 306 (QH₂) methanophenazine (MpH₂) or possibly soluble electron carriers such as formate (HCOO⁻) or an
 307 unknown electron shuttle (XH₂). In Phase 3 the secondary electron carriers are relieved of their electrons
 308 in various ways depending on the environmentally available electron acceptors, which can include sulfate
 309 reducing bacteria in the case of marine ANME-SRB consortia, iron, manganese or oxidized nitrogen species
 310 in the case of "Ca. Methanoperedens". Humic substances and artificial electron acceptors (AQDS) have
 311 also served as electron acceptors in laboratory experiments for a variety of different ANME from fresh and
 312 marine environments.
 313

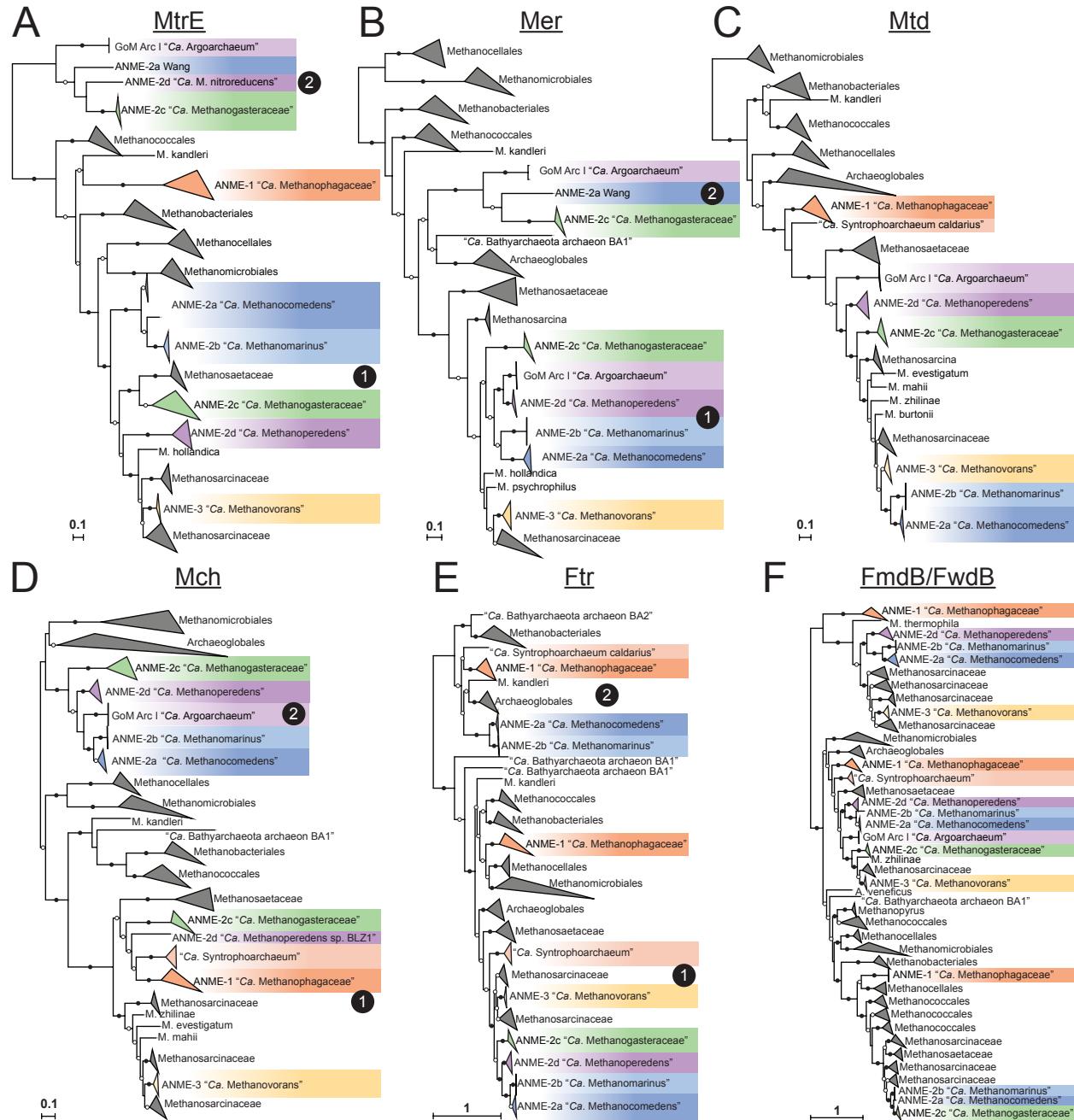

314 Energy metabolism phase 1: The conserved C1 machinery of the
 315 methanogenesis pathway in ANME archaea

Function of the methanogenesis pathway in ANME archaea

316 Our analysis of this expanded set of ANME genomes is consistent with early genomic work that
 317 identified reverse methanogenesis as the most likely pathway of carbon oxidation in the ANME
 318 archaea (6, 7, 11). Genes for all seven steps of the methanogenesis pathway were found in all
 319 ANME clades (Fig 3). The only consistent exception is F₄₂₀-dependent
 320 methylenetetrahydromethanopterin reductase (Mer), which is absent from all 19 ANME-1
 321 genomes as well as the "Ca. Syntrophoarchaeum", as observed previously (6, 7, 10, 18). This

323 modification of the canonical methanogenesis pathway is a common feature of the entire class
 324 Syntrophoarchaeia. Some ANME contain paralogous copies of enzymes carrying out certain steps
 325 of the pathway and these are indicated in **Fig 3**. Notably, none of the ANME genomes contain the
 326 specific methyltransferases for methanol (43), methylamines (44) or methylated sulfur compounds
 327 (45) used for methylotrophic methanogenesis in the *Methanosaerincaceae*. This strongly argues
 328 against ANME archaea using methylated compounds as intermediates or end products of methane
 329 oxidation.

330



331

332 **Fig 3. Presence of methanogenesis pathway genes in ANME archaea.** The proteins responsible for the
 333 seven steps of methanogenesis from CO₂. Mcr: Methyl-coenzyme M reductase; Mtr: N⁵-methyl-
 334 H₄MPT:coenzyme M methyltransferase; Mer: methylene-H₄MPT reductase; Mtd: F₄₂₀-dependent
 335 methylene-H₄MPT dehydrogenase; Mch: N⁵,N¹⁰-methenyl-H₄MPT cyclohydrolase; Ftr:
 336 formylmethanofuran-H₄MPT formyltransferase; Fmd/Fwd: formyl-methanofuran dehydrogenase. Colored
 337 boxes represent presence of homologs of these proteins in ANME genomes. Missing genes are represented
 338 by gray boxes with diagonal line fill. Numbers in the second column represent estimated genome
 339 completeness. When genes are together in a gene cluster their boxes are displayed fused together. If a gene
 340 cluster appears truncated by the end of a contig it is depicted by a serrated edge on the box representing the
 341 last gene on the contig. Numbers following protein names indicate whether the enzyme is closely related
 342 to those found in *Methanosaerincaceae* (1) or are distantly related homologs (2). Question mark represents
 343 hypothetical protein of unknown function found clustered with Mer2. Tree orienting genome order is the
 344 same as found **Fig 1B**. For details on paralog phylogenetic relations see **Fig 4**. Gene accession numbers can
 345 be found in **S2 Data**.

346

347 To understand whether the transition to a methanotrophic lifestyle is accompanied by a significant
348 diversification of the enzymes catalyzing the reactions of the reverse methanogenesis pathway we
349 built phylogenetic trees of the enzymes involved in each step. With regard to the first step, i.e. the
350 presumed involvement of the McrA in methane activation, the McrA phylogeny largely tracks with
351 phylogenetic marker trees, except for ANME-1 (**Fig 1**). The second step of the pathway is carried
352 out by the N⁵-methyl-H₄MPT:coenzyme M methyltransferase (Mtr) complex (**Fig 3**). All ANME
353 clades contain Mtr homologs that are phylogenetically consistent with their genome phylogeny
354 (**Fig 4A**). However, a highly divergent second copy of the entire Mtr complex exists that was first
355 observed in the genome of an ANME-2a from an enrichment culture (11). We find this second
356 “Mtr2” to be sporadically distributed through the ANME-2. Absent from the other ANME-2a
357 genomes, Mtr2 is present in ANME-2c, one ANME-2d and both “*Candidatus Argoarchaeum*”.
358 These Mtr2 complexes form a monophyletic group that is phylogenetically distinct from all
359 previously described methanogens yet still contains the same gene synteny in the eight-subunit
360 cluster. In addition, all the Mtr2 gene clusters are upstream of a highly divergent Mer2, which
361 catalyzes the third step in the methane oxidation pathway. All ANME-2 and 3 clades contain a less
362 divergent copy of Mer that tracks with their genome phylogeny (Mer1) (**Fig 4B**).
363

364
365 **Fig. 4 Phylogeny of enzymes in the methanogenesis pathway.** Phylogenetic trees constructed from
366 protein sequences of enzymes involved in the methanogenesis pathway in ANME and related archaea.
367 Mrp phylogeny is presented in **Fig 1**. Numbers next to clades indicates whether the cluster is closely related to
368 those found in *Methanosaetaceae* (1) or are distantly related homologs (2), matching labels in **Fig 3**. **A)**
369 MtrE: N⁵-methyl-H₄MPT:coenzyme M methyltransferase subunit E; **B)** Mer: methylene-H₄MPT reductase;
370 **C)** Mtd: F₄₂₀-dependent methylene-H₄MPT dehydrogenase; **D)** Mch: N⁵,N¹⁰-methenyl-H₄MPT
371 cyclohydrolase; **E)** Ftr: formylmethanofuran-H₄MPT formyltransferase; **F)** FmdB/FwdB: formyl-
372 methanofuran dehydrogenase subunit B, molybdenum/tungsten variety, respectively. Branch support
373 values of 100% are labelled with closed circles, >50% with open circles. Tree scales represent substitutions
374 per site. Tree construction parameters are found in the **Materials and Methods** section. Alignments and
375 tree files can be found in **S1 Data**.

376

377 The fourth step of the pathway is catalyzed by the F₄₂₀-dependent N⁵,N¹⁰-methylene-H₄MPT
378 dehydrogenase (Mtd) enzyme (**Fig 3**). Only a single copy of the gene encoding Mtd was found in
379 any genome, and the phylogeny of the predicted protein sequence is largely congruent with the
380 genome phylogenies (**Fig 4C**). The fifth step in the pathway is catalyzed by N⁵,N¹⁰-methenyl-
381 H₄MPT cyclohydrolase (Mch). The analysis of early fosmid libraries revealed a gene on an
382 ANME-2c-assigned fosmid encoding Mch (8), which was highly divergent from an Mch located
383 on an ANME-2-assigned fosmid from a previous study (6). This led the authors to question
384 whether the Mch had diverged rapidly between ANME-2c and different ANME-2 groups, or
385 whether multiple Mch copies were present as paralogs within ANME-2c genomes. Interestingly,
386 ANME-2a, 2b, 2c and 2d all share a well-supported monophyletic group of Mch genes (Mch2)
387 that are very different from those of closely related methanogens (Mch1) (**Fig 4D**). The Mch2
388 cluster corresponds to the gene identified as being closely related to Mch found in *Archaeoglobus*
389 (8). The ANME-2c genomes analyzed here also contain a copy of Mch1 that is closely related to
390 those found in the methanogenic *Methanosarcinaceae*, which corresponds to the gene found in the
391 first set of ANME-2-assigned fosmids (6). Apparently ANME-2c contain both copies of this gene,
392 while the ANME-2a, 2b, and 2d only contain the divergent Mch2. ANME-3 contain a copy very
393 similar to those of their close methanogenic relatives.

394

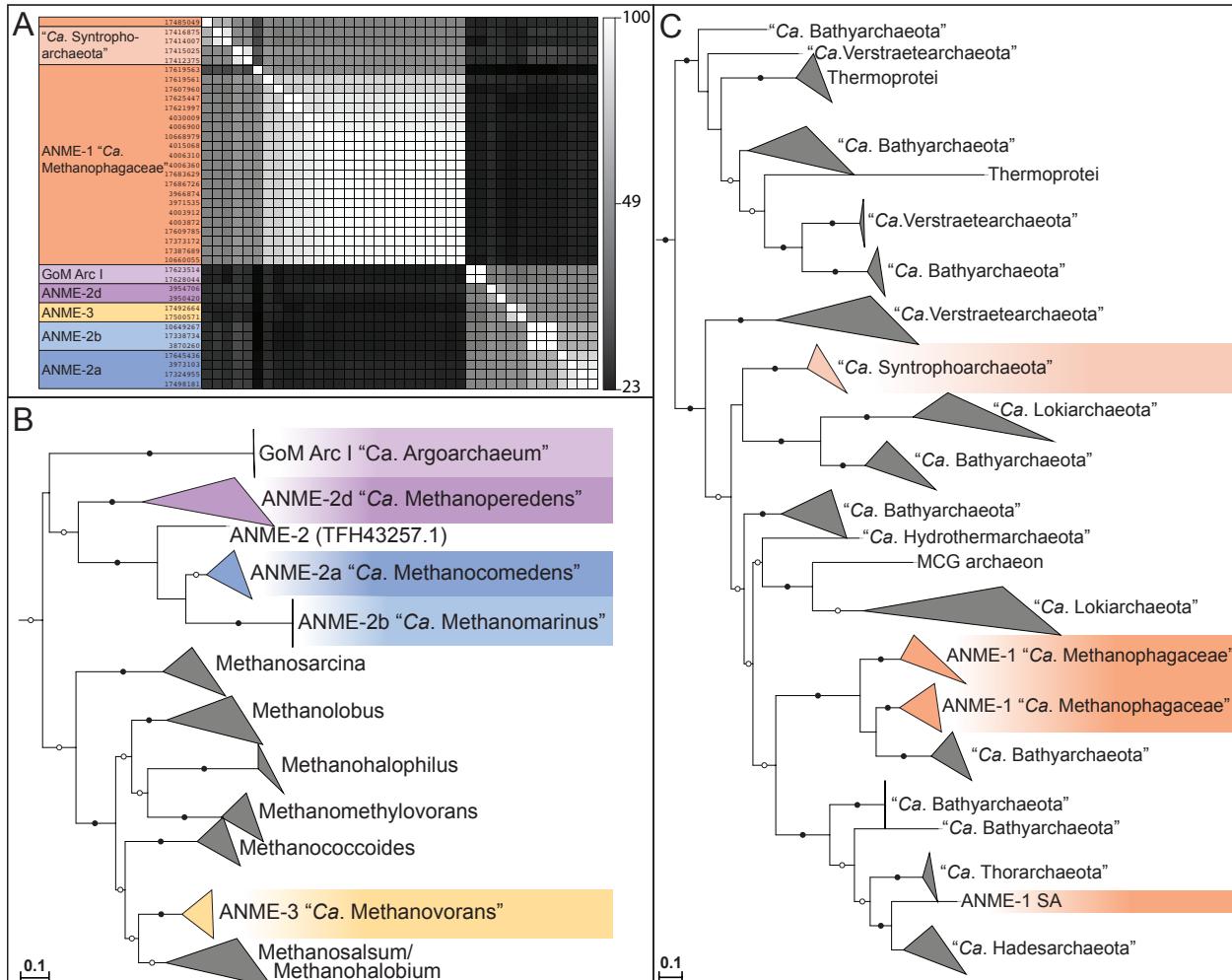
395 The reaction catalyzed by Mch is a curious step of the methanogenesis pathway to have a strongly
396 supported, ANME-specific clade of enzymes. The cyclohydrolase reaction is thought to occur
397 essentially at equilibrium (37), so it is unclear what evolutionary pressure would result in such a
398 stark difference between Mch2 enzymes in some ANME-2 and their closely related methanogenic
399 relatives. The pterin moiety of the H₄MPT analog could vary between ANME and the methanogens
400 in the *Methanosarcinaceae*. At least five pterins are known to be found in H₄MPT analogs in
401 methanogenic archaea: methanopterin, sarcinopterin, tatiopterin-I, tatiopterin-O and thermopterin
402 (46). However, this level of sequence variation is not observed in other enzymatic steps of the
403 pathway, which might be expected if the divergent Mch2 was the result of a significantly different
404 form of C1-carrier in ANME.

405

406 Divergent paralogs of formylmethanofuran-tetrahydromethanopterin N-formyltransferase (Ftr)
407 were found in ANME-1, 2a and 2b. These Ftr2 clustered together in the phylogenetic tree with Ftr
408 genes from *Archaeoglobales* and deeper branching hydrogenotrophic methanogens such as
409 *Methanopyrus kandleri* and *Methanothermobacter marburgensis* (**Fig 4E**). These archaea all
410 contain both Ftr1 and Ftr2, and only the Ftr1 versions have been biochemically characterized to
411 our knowledge (47). In the cases where transcriptomic information is available, Ftr1 is more highly
412 expressed in ANME, and is therefore expected to be the dominant version utilized in ANME
413 energy metabolism under the AOM conditions tested (**S3 Data**).

414

415 The seventh and final step of the methanogenesis pathway is carried out by formyl-methanofuran
416 dehydrogenase (**Fig 3**). Two major variants of formylmethanofuran dehydrogenase are present in
417 methanogens that contain either tungsten or molybdenum metal centers in their active sites (Fwd
418 and Fmd, respectively), and multiple paralogs of both can be found in methanogens such as
419 *Methanosarcina acetivorans* (48). Based on homology to versions of these enzymes in *M.*
420 *acetivorans*, it appears that ANME largely contain the Fwd version, which have been detected in
421 proteomic analyses of methane seeps (49) (**Fig 4F**). Some members of the ANME-2a, 2b, and 2c


422 have the Fmd version as well, and in the ANME-2c the genes encoding Fmd and Fwd occur
423 together in a single large gene cluster. As was observed in previous ANME-1 genomes, the FwdFG
424 subunits are not present in any ANME-1 (6, 7, 12).

425
426 Based on the above observations we conclude that the transition from methanogenesis to
427 methanotrophy required relatively little biochemical novelty within the central C1-carrying
428 pathway of ANME energy metabolism. The loss of Mer in ANME-1 (**Fig 3**) remains the single
429 major variation to the central C1-carrying pathway of ANME energy metabolism. Some paralogs
430 of other steps in the pathway exist, but with the exception of Mch2 in some ANME-2, these are
431 less well conserved and less well expressed than those previously found in methanogenic archaea.
432 While McrA in ANME-1 is slightly incongruous with its genome phylogeny, and was found to
433 bind a modified F₄₃₀ cofactor (50), we see little evidence for significant changes in ANME-2 or 3,
434 suggesting these modifications are not necessary for using Mcr to activate methane. These results
435 are broadly consistent with biochemical studies that have demonstrated the reversibility of the
436 enzymes in this pathway (36–38), suggests that there has likely been little specialization in terms
437 of their directionality during the evolution of the ANME archaea.

438
439 **Differing roles for MetF in ANME archaea**
440 Methylenetetrahydrofolate reductase (MetF) has been proposed to act in the third step as a
441 replacement for Mer in ANME-1 (10, 42) and is expressed at similar levels as other genes in the
442 reverse methanogenesis pathway (9) (**S3 Data**). MetF is structurally similar to Mer and completes
443 the same step of the Wood-Ljungdahl pathway in bacteria but uses NADPH as the electron donor
444 rather than F₄₂₀H₂, and interacts with C1-bound tetrahydrofolate (H₄F) instead of
445 tetrahydromethanopterin (H₄MPT).

446
447 MetF is not only found in ANME-1, but also in other ANME groups and methanogenic members
448 of the *Methanosaecinaceae*, where it is expected to function as a methylene-H₄F-interacting
449 enzyme involved in anabolic processes (51). Since the potential Mer/MetF switch in ANME-1
450 appears to be the only significant modification to the central carbon oxidation pathway in ANME
451 we investigated the distribution, phylogenetic placement, and genomic context of MetF in ANME
452 in order to try and better understand the evolutionary history of these proteins. MetF homologs
453 found in ANME-1 were clearly very different at the sequence level from those found in other
454 ANME genomes (**Fig 5A**), and, interestingly, the ANME-2c universally lack MetF of either type.
455 All ANME MetF are found next to a MetV gene which is a common feature of MetF in acetogenic
456 bacteria, and evidence suggests a complex forms between the proteins encoded by these two genes
457 (52).

458

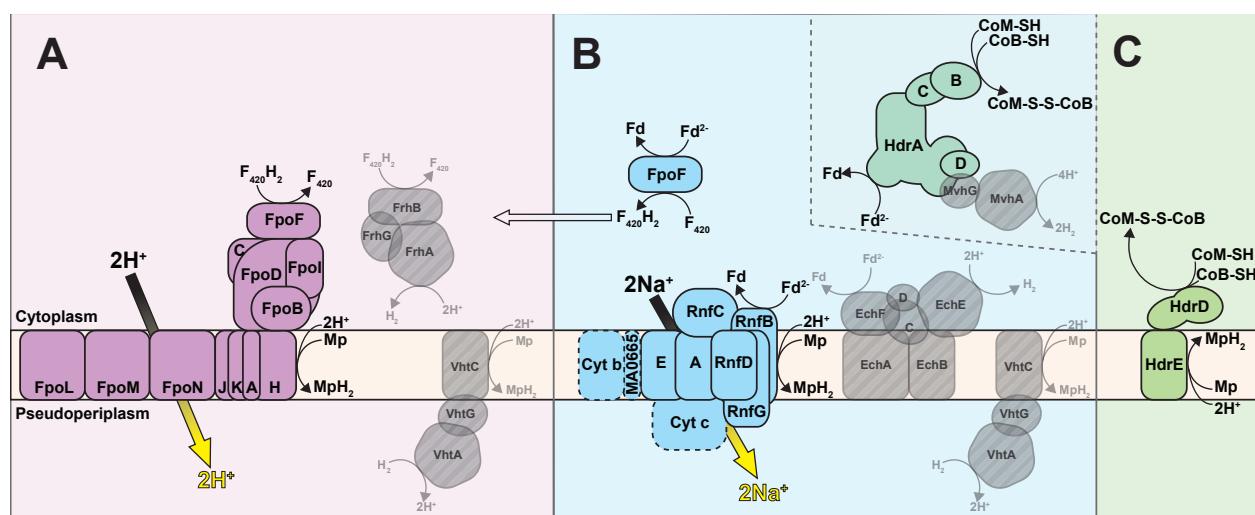
Fig. 5 MetF in ANME Archaea. (A) Amino acid sequence identity of MetF homologs found in ANME, “Ca. Argoarchaeum” and “Ca. Syntrophoarchaeum”. ANME-1 and “Ca. Syntrophoarchaeum” form one cluster based on sequence similarity, while ANME-2a, 2b, 2d, 3 and “Ca. Argoarchaeum” form a second. Grayscale values represent percent identity. Sequences similar to the ANME-2/3 or ANME-1 clusters were retrieved via BLAST search of the NCBI nr database and used to construct phylogenetic trees of these two groups. (B) ANME-2, 3 and “Ca. Argoarchaeum” cluster together with closely related members of the *Methanosaecinaeae*. (C) ANME-1 and “Ca. Syntrophoarchaeum” form a polyphyletic group within a diverse group of sequences derived from MAGs of uncultured archaea. Notably the ANME-1 sp. SA is significantly different than the rest of the ANME-1. Roots for both trees lead to closely related MetF sequences from bacteria. Branch support values of 100% are labelled with closed circles, >50% with open circles. Tree scales represent substitutions per site. Tree construction parameters are found in the **Materials and Methods** section. Alignments and tree files can be found in **S1 Data**.

473 Two phylogenetic trees were constructed with sequences of each of these MetF groups along with
 474 the most closely related homologs in the NCBI NR database (**Fig 5B and 5C**). The ANME-1 MetF
 475 homologs branched together with a diverse group of proteins found exclusively in uncultivated
 476 archaeal genomes, most of them identified as “*Ca. Bathyarchaeota*”, “*Ca. Verstraetearchaeota*”
 477 and various members of the “*Ca. Asgardarchaeota*”. The MetF from the other ANME were all
 478 found within a monophyletic group containing other closely related *Methanosaecinaeae*. MetF
 479 and MetV in the *Methanosaecinaeae* are found in gene clusters with other H4F-interacting

480 enzymes that carry out important C1 reactions in biosynthesis, which led to the conclusion that
481 H₄F is used for biosynthesis in the *Methanosarcinaceae* (51). This clustering of anabolic C1 genes
482 is preserved in many of the ANME-2 and 3, and we infer a similar function. For a detailed
483 discussion of C1 anabolic metabolism in ANME, see below.

484
485 The phylogeny of MetF proteins in ANME is best explained by two separate acquisitions of these
486 genes. MetF in ANME-2 and 3 were likely acquired in the common ancestor of these organisms
487 and the other *Methanosarcinaceae* along with other enzymes to utilize H₄F-bound C1 moieties for
488 the purpose of biosynthesis. Based on its distribution in uncultured archaea of different phyla, as
489 well as the paucity of other H₄F-interacting proteins in ANME-1, there is good support for a
490 different, possibly catabolic, function of MetF in ANME-1. Due to the structural similarity
491 between H₄F and H₄MPT (53), it is possible that the ANME-1-type MetF has evolved to react with
492 C1 moieties bound to H₄MPT instead of H₄F. A switch between H₄F and H₄MPT as a carbon
493 carrier is not unprecedented, as serine hydroxymethyl transferase (GlyA) has different versions
494 specific to either H₄F (51) or H₄MPT (54, 55). Additionally, MtdA in methylotrophic bacteria has
495 been shown to react with either H₄F or H₄MPT (56).

496
497 **Energy metabolism phase 2: Cytoplasmic electron carrier oxidation and
498 energy conservation**


499 After methane is oxidized to CO₂ in the pathway described above, four electrons will be found on
500 two molecules of F₄₂₀H₂, two electrons on reduced ferredoxin (Fd²⁻), and two electrons on the
501 reduced forms of coenzyme M and coenzyme B (CoM-SH, CoB-SH). If the proposed Mer/MetF
502 switch in ANME-1 is correct, then it is possible that MetF may have produced a reduced NADPH
503 instead of one of the F₄₂₀H₂ (Fig 2). Importantly, these C1 oxidation reactions do not produce
504 energy for the cell and will in fact consume sodium motive force at the step catalyzed by Mtr. This
505 investment of energy helps drive the reaction in the oxidative direction, and the effect of energy
506 investment can be seen in the decreased redox potential of the eight methane-derived electrons:
507 the CH₄/CO₂ redox couple has a standard state midpoint potential of -240mV, and the average
508 midpoint potential of the electrons once transferred to their cytoplasmic electron carriers is
509 approximately -340mV (two on Fd²⁻ (-500mV), four on F₄₂₀H₂ (-360mV) and two on CoM-
510 SH/CoB-SH (-145mV)) (37). The next phase of ANME energy metabolism, the re-oxidation of
511 these reduced cytoplasmic electron carriers, must conserve sufficient energy to overcome the loss
512 at Mtr and support growth.

513
514 This is very similar to the situation in the energy metabolism of methylotrophic methanogens in
515 the *Methanosarcinaceae* which are close relatives of ANME-2 and 3. In these methanogens methyl
516 groups are transferred from substrates such as methanol or methylamines onto CoM via substrate-
517 specific methyltransferases. The methyl group is subsequently oxidized to CO₂ via a reversal of
518 the first six steps of the methanogenesis pathway, consuming sodium motive force at Mtr and
519 producing two F₄₂₀H₂ and one Fd²⁻ that must be re-oxidized coupled to energy conservation. In
520 most cases, these electrons are transferred onto membrane-bound methanophenazine as an
521 intermediate electron carrier in processes that lead to ion motive force generation. This ion motive
522 force is then used to produce ATP via ATP synthase. The only oxidation reaction in ANME which
523 does not normally occur in any methanogen is the production of the heterodisulfide (CoM-S-S-
524 CoB) from the free sulfides CoM-SH and CoB-SH. Many of the strategies of energy conservation

525 coupled to cytoplasmic electron carrier oxidation that have been characterized in the
 526 methylotrophic methanogens appear to be conserved in the ANME archaea.
 527

528 **F₄₂₀H₂ oxidation**

529 F₄₂₀H₂ oxidation for the purpose of energy conservation in methylotrophic methanogens can occur
 530 via the F₄₂₀H₂:methanophenazine oxidoreductase complex (Fpo) or the F₄₂₀-reducing hydrogenase
 531 (Frh) (Fig 6A). F₄₂₀H₂ oxidation by the cytoplasmic Frh produces H₂ which diffuses out of the cell
 532 and is subsequently oxidized on the positive side of the membrane by a membrane-bound
 533 hydrogenase (Vht) (57). Our comparative analysis of ANME genomes does not support this
 534 mechanism of electron flow given the lack of both the NiFe hydrogenase subunit of Frh and Vht-
 535 like hydrogenases.
 536

537
 538 **Fig 6. Cytoplasmic electron carrier oxidation.** Some energy conservation systems discovered in
 539 methanogenic archaea are conserved in ANME archaea (colored fill) while others appear absent
 540 (transparent gray with diagonal line fill). (A) F₄₂₀H₂ oxidation is coupled to proton translocation in
 541 methylotrophic methanogens via the Fpo/Fqo complex or by the production of H₂ by Frh and subsequent
 542 oxidation by Vht. In either case, electrons are ultimately deposited on MpH₂. Neither Frh or Vht complexes
 543 have been observed in any ANME genomes analyzed here. (B) Fd²⁺ oxidation can be coupled either to
 544 sodium motive force or proton motive force in methylotrophic methanogens. The Rnf complex catalyzes
 545 Fd²⁺:Mp oxidoreductase reaction coupled to sodium translocation and is found in a number of methanogens
 546 and ANME. The ANME-2c contain most of the complex, but lack the cytochrome *c*, cytochrome *b* and
 547 MA0665 subunits, so their activity is difficult to predict. Ech and Vht can combine to produce net proton
 548 translocation via H₂ diffusion in methylotrophic methanogens, but neither complex is found in ANME.
 549 FpoF can catalyze a Fd²⁺:F₄₂₀ oxidoreductase reaction and F₄₂₀H₂ could then pass through the Fpo/Fqo
 550 complex. Various HdrABC complexes are present in all ANME genomes, and could in principle oxidize
 551 Fd²⁺ ad CoM-SH/CoB-SH through a reversal of electron bifurcation reaction. The electron acceptor in this
 552 process is likely to not be H₂ in most ANME groups due to the absence of MvhG and MvhA. (C) Besides
 553 the HdrABC complexes mentioned above and second possible CoM-SH/CoB-SH oxidation strategy would
 554 be a reversal of the HdrDE reaction found in methylotrophic methanogens. In ANME the reaction would
 555 have to proceed in the direction illustrated, and therefore would dissipate proton motive force by consuming
 556 a proton on the positive side of the membrane. For presence/absence of these systems in ANME genomes
 557 analyzed here see S6 Fig.
 558

559 This leaves Fpo as the much more likely candidate for $F_{420}H_2$ oxidation in ANME. Fpo is a
560 homolog of respiratory complex I, and in the *Methanosaerincaceae* it couples the transfer of
561 electrons from $F_{420}H_2$ to the membrane soluble electron carrier methanophenazine with the
562 translocation of protons across the cell membrane. In sulfate-reducing *Archaeoglobales* the
563 homologous $F_{420}H_2$:quinone oxidoreductase complex (Fqo) utilizes a membrane-soluble quinone
564 acceptor instead of methanophenazine (58, 59). These complexes are conserved across all ANME
565 clades (**S6 Fig**), and phylogenetic analysis of Fpo shows that homologs from ANME-2a, 2b, 2c
566 and 3 are most similar to the *Methanosaerincaceae*, suggesting they also may utilize
567 methanophenazine. The homologs from ANME-1 were distinct from those of the other ANME
568 clades and were most similar to the Fqo described from *Archaeoglobales* as previously reported
569 (6) (**S7 Fig**). Consistent with this possibility ANME-1 genomes also contain homologs of the
570 fthalosine pathway used for menaquinone biosynthesis that are absent in the other marine ANME
571 clades. This suggests that ANME-1 use a quinone as their membrane-soluble electron carrier as
572 was previously suggested (42). In either case, Fpo and Fqo are expected to be important points of
573 $F_{420}H_2$ oxidation and membrane energization in the ANME archaea.

574

575

576 **Ferredoxin oxidation**

577 Similar to $F_{420}H_2$ oxidation, several mechanisms are known for coupling ferredoxin oxidation to
578 energy conservation in methanogens. Four major pathways have been proposed: 1) a hydrogen
579 cycling mechanism using energy conserving hydrogenase (Ech) (57), 2) oxidation with a modified
580 version of the Rhodobacter nitrogen fixation (Rnf) complex (60), 3) an Fpo-dependent pathway
581 (61), and 4) a heterodisulfide reductase (Hdr)-mediated electron confurcation (62)(**Fig 6B**). The
582 Ech model is easily ruled out by the lack of Ech homologs in all marine ANME genomes, although
583 these are present in the freshwater ANME-2d genomes (19, 20).

584

585 Genomes from many members of the ANME-2a, 2b, 2c and 3 contained homologs of the Rnf
586 complex (**S6 Fig**). Rnf was first characterized in bacteria as an enzyme that performed the
587 endergonic transfer of electrons from NADH to ferredoxin by dissipating sodium motive force
588 (63). In methanogens however, Rnf is thought to couple the exergonic electron transfer from
589 ferredoxin to methanophenazine with the endergonic translocation of sodium ions to the positive
590 side of the cytoplasmic membrane. This activity in methanogens involves a novel multiheme
591 cytochrome *c* subunit encoded in their Rnf gene clusters (60), along with a small conserved integral
592 membrane protein (MA0665 in *M. acetivorans*). This enzyme complex operates in methylotrophic
593 members of the *Methanosaerincaceae* that do not conduct hydrogen cycling, and in some cases is
594 required for energy conservation during acetoclastic methanogenesis (64, 65).

595

596 Rnf was not found in the ANME-1 genomes analyzed here, with the exception of two genomes
597 from a genus-level subclade recovered from a South African gold mine aquifer (SA) and from a
598 hydrocarbon seep from the Gulf of Mexico (GoMg4) (**Table 1**; **S6 Fig**). Rnf gene clusters in
599 ANME-2a, 2b and 3 contain homologs of the cytochrome *c* subunit and MA0665 normally found
600 in methanogens, but surprisingly both were missing in the Rnf gene clusters from all ANME-2c
601 and the two ANME-1. Homologs for these subunits were not identified elsewhere in any of these
602 genomes. Based on the current information, it is unclear what reaction the ANME-2c and ANME-
603 1 Rnf are performing since it has been demonstrated that this cytochrome *c* is involved in the
604 electron transfer to methanophenazine (66). It is possible that Rnf retains the ability to transfer

605 electrons from ferredoxin to a membrane bound electron carrier in these lineages, or alternatively
606 they could function as ferredoxin:NAD⁺ oxidoreductase, as found in bacteria. It is unclear what
607 role the latter function could play in our current model of ANME metabolism.

608
609 An additional ANME-specific modification to the *rnf* gene cluster is the inclusion of a membrane-
610 bound b-type cytochrome in ANME-2a, 2b and 3. This type of cytochrome is generally involved
611 in electron transfer between membrane-bound and soluble electron carriers, and has no closely
612 related homologs in methanogens. If the protein encoded by this gene is incorporated into the Rnf
613 complex, it could be of great importance to the flow of electrons in these groups. This observation
614 is particularly striking in ANME-3 since their close methanogenic relatives in the
615 *Methanosarcinaceae* lack this b-type cytochrome. This means that ANME-3 has acquired this
616 subunit by horizontal gene transfer from an ANME-2a or 2b, or that all of the related methanogens
617 have lost it. Whichever evolutionary scenario is correct, this represents an important ANME-
618 specific modification to a key bioenergetic complex.

619
620 Because the majority of ANME-1 do not contain an Rnf complex an alternative mechanism is
621 needed to explain how ferredoxin is recycled. One option is the Fpo-dependent mechanism
622 proposed in *Methanosaeta thermophila* where ferredoxin is oxidized using an Fpo complex
623 without the FpoF subunit (61). If this pathway operates in ANME-1 the reduced ferredoxin would
624 donate electrons directly to the iron sulfur clusters found in the FqoBCDI subunits. Since FqoF
625 homologs are encoded in the ANME-1 genomes, and are expected to be used in complete Fqo
626 complexes to oxidize F₄₂₀H₂ as described above, this Fd²⁻ oxidation strategy would require some
627 Fqo complexes to have FqoF bound, while others do not.

628
629 Another possibility would be for soluble FqoF to act as a Fd²⁻:F₄₂₀ oxidoreductase, and then the
630 subsequent oxidation of F₄₂₀H₂ by a normal Fqo complex (Fig 6B). This pathway has been
631 proposed in *Methanosarcina mazei* based on the Fd²⁻:F₄₂₀ oxidoreductase activity of soluble FpoF
632 (67). In either of these Fpo/Fqo-dependent Fd²⁻ oxidation pathways, the oxidation of Fd²⁻ would
633 result in the reduction of a membrane-bound electron carrier coupled to energy conservation in the
634 form of proton translocation by the Fpo/Fqo complexes.

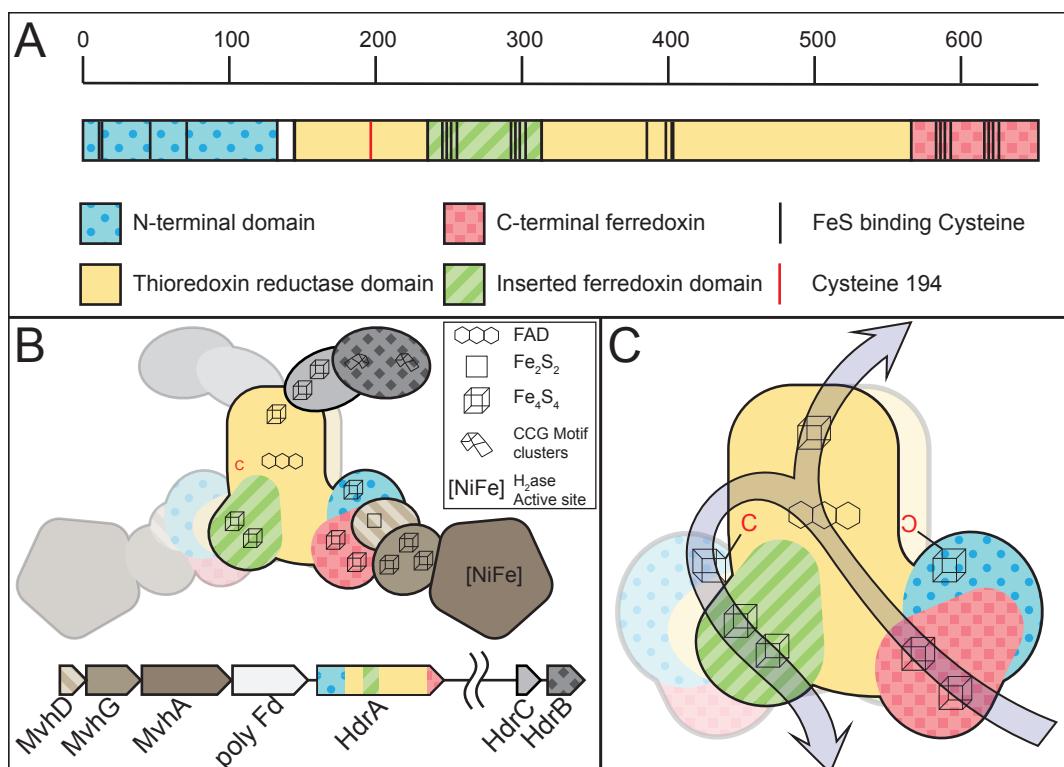
635
636 A final possible mechanism of Fd²⁻ oxidation is through soluble heterodisulfide reductase (Hdr)-
637 mediated flavin-based electron confurcation. This process has some biochemical support for
638 operating in this direction (62), but would constitute a reversal of the well accepted electron
639 bifurcation mechanism used by many hydrogenotrophic methanogens. In the best characterized
640 examples of this process, an enzyme complex of soluble Hdr and a hydrogenase (hdrABC-
641 mvhADG) reduce ferredoxin and heterodisulfide with four electrons sourced from two hydrogen
642 molecules (68). If reversed, this reaction could potentially oxidize Fd²⁻. As this mechanism would
643 also involve CoM-SH/CoB-SH oxidation it is discussed in detail in the following section.

644
645 **CoM-SH/CoB-SH oxidation**
646 The last oxidation that needs to occur during this part of ANME energy metabolism is CoM-
647 SH/CoB-SH oxidation to the heterodisulfide (CoM-S-S-CoB). This oxidation is the most
648 energetically challenging because the relatively high midpoint potential of the heterodisulfide (E_{0'}
649 = -145mV) rules out most methanogenic electron carriers as acceptors without the input of energy
650 to force electrons “uphill” to a lower redox potential. It also represents the second net reaction in

651 the ANME energy metabolism that does not occur during canonical methanogenesis (the first step
652 being methane activation through *Mcr*). In methylotrophic methanogens heterodisulfide is the
653 terminal electron acceptor for the six electrons that have passed through $F_{420}H_2$ and Fd^{2-} discussed
654 in the previous sections.

655
656 Two enzyme systems from methanogens could potentially produce heterodisulfide by running in
657 reverse: soluble HdrABC complexes using a confurcation mechanism as mentioned above, or
658 HdrDE, a membrane-bound system which would deposit electrons on methanophenazine (**Fig 6C**).
659 ANME-2a, 2b, 2c, 2d, and 3 genomes contained HdrDE genes similar to ones from closely related
660 methanogens. The reaction carried out by this complex in methanogens is expected to be readily
661 reversible, with electrons from CoM-SH/CoB-SH oxidation being deposited on
662 methanophenazine. This electron transfer reaction is slightly endergonic at standard state due to
663 the redox potential of methanophenazine ($E_0' = -165\text{mV}$) being lower than that of heterodisulfide
664 by 20mV. This reaction may be exergonic under physiological concentrations of oxidized and
665 reduced species. Alternatively, the slightly endergonic nature of the electron transfer could be
666 overcome by a quinol loop-like mechanism, where two protons are released in the cytoplasm from
667 CoM-SH/CoB-SH oxidation and two protons are consumed on the outer face of the cytoplasmic
668 membrane to form reduced MpH_2 , thus dissipating proton motive force (69). Electron transfer
669 from the cytoplasm to the outer face of the membrane occurs through the b-type cytochromes in
670 the HdrE subunit. The HdrDE complexes are well expressed in the ANME-2a, 2c and 2d (**S3**
671 **Data**).
672

673 HdrDE gene clusters are absent in all ANME-1 genomes. This, combined with the lack of Rnf and
674 Ech, suggests that ANME-1 in particular could rely on HdrABC complexes for both CoM-
675 SH/CoB-SH and ferredoxin oxidation. Since its discovery just over ten years ago (70), flavin-
676 based electron bifurcation and confurcation have been shown to be a key energy conversion point
677 in many anaerobic metabolisms, with a great diversity of different electron donors and acceptors
678 (71). In the complete HdrABC-MvhADG complex from methanogens the endergonic reduction of
679 Fd ($E_0' = -500\text{mV}$) with H_2 ($E_0' = -420\text{mV}$) is driven by the exergonic reduction of heterodisulfide
680 ($E_0' = -145\text{mV}$) with H_2 .
681

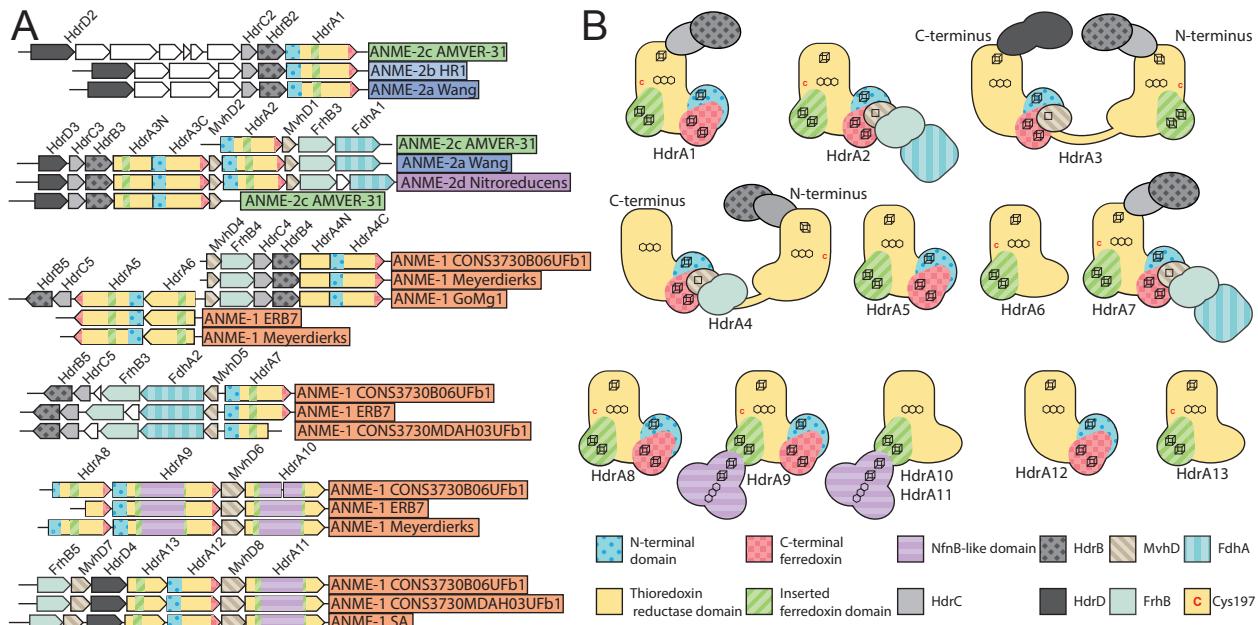

682 In most cases a strict reversal of H_2 electron bifurcation is not possible in ANME due to a lack of
683 MvhAG genes that encode the NiFe hydrogenase large and small subunits. The exceptions are two
684 small subclades within ANME-2c and ANME-1 that contain NiFe hydrogenases similar to Mvh.
685 These two subclades contain genomes recovered from different environments; a South African
686 gold mine (SA) and the Gulf of Mexico (GoMg4) for ANME-1, versus a hydrocarbon seep off of
687 Santa Barbara, CA (COP2) and a mud volcano from the Mediterranean (AMVER4-31) for ANME-
688 2c. The majority of ANME-2c and ANME-1 however lack these genes, and they are completely
689 absent in ANME-2a, 2b and 3, suggesting confurcation of electrons from Fd^{2-} and CoM-SH/CoB-
690 SH to H_2 is not a dominant process in most ANME lineages.
691

692 Novel gene clusters encoding electron bifurcation/confurcation complexes

693 While a strict reversal of hydrogen-dependent electron bifurcation seems unlikely in ANME, the
694 potential involvement of alternative bifurcation/confurcation reactions in ANME metabolism is
695 supported by the broad distribution and conservation of unusual HdrABC homologs, even in those
696 ANME genomes containing HdrDE. Alternative bifurcation reactions have been proposed in

697 methanogens, where formate or F_{420}H_2 can serve as the electron donor in place of hydrogen. In the
698 case of formate, MvhA and G are replaced by the F_{420}H_2 -dependent formate dehydrogenase genes
699 FdhAB (72, 73). In the case of F_{420}H_2 , certain HdrABC complexes might be able to interact with
700 F_{420}H_2 without any additional protein subunits (62, 74).

701
702 A comparison of ANME HdrA homologs to crystal structures of the entire HdrABC-MvhADG
703 complex purified from *Methanothermococcus wolfeii* (75), reveal some stark differences in how
704 these complexes may facilitate electron bifurcation. HdrA in methanogens normally consists of
705 four domains, an N-terminal domain with an iron sulfur cluster, a thioredoxin reductase domain
706 which binds the bifurcating FAD, and two ferredoxin domains (Fig 7). The MvhAG hydrogenase
707 feeds electrons through MvhD and the C-terminal ferredoxin domain to the FAD where they are
708 bifurcated, one pair passing up through HdrBC onto CoM-S-S-CoB, and the other through the
709 inserted ferredoxin domain to a free soluble ferredoxin. Interestingly, the heterohexameric
710 HdrABC-MvhADG forms dimers, and one of the cysteine ligands for the N-terminal iron sulfur
711 cluster comes from the thioredoxin-reductase domain of the other copy of HdrA (Cys197),
712 indicating an obligate dimeric nature of the complex in *M. wolfeii* (Fig 7C).
713



714
715 **Fig 7. HdrABC structure overview.** Depiction of the primary structure of HdrA and the quaternary
716 structure of the HdrABC-MvhADG complex based on the structure from *M. wolfeii*. (A) HdrA can be
717 broken down into four domains, the positions of these domains and key iron-sulfur cluster binding cysteines
718 are illustrated, scale denotes amino acid position in the *M. wolfeii* sequence. (B) Quaternary structure of
719 the entire HdrABC-MvhADG complex illustrating the dimeric structure. Metal cofactors involved in the
720 oxidation/reduction of substrates or electron transport through the complex are highlighted. (C) Detail of
721 HdrA domain structure highlighting cofactor position and proposed electron flow from MvhD in through
722 the C-terminal ferredoxin, bifurcation through the FAD cofactor, with two electrons flowing out through
723 HdrBC via the Thioredoxin reductase domain's FeS cluster, while two other electrons flow out through the

724 inserted ferredoxin domain, presumably to free ferredoxin (Fd^2). Importantly for the proposed
 725 heterodimeric HdrA discussed here, this latter electron flow passes through the FeS cluster bound through
 726 a combination of Cys residues in the N-terminal domain, combined with a single Cys from the other HdrA
 727 subunit (Cys197 highlighted in red).

728 By aligning the ANME HdrA paralogs and comparing the presence of domains, conserved
 729 residues, sequence similarity, and their genomic context, we clustered the dominant HdrA
 730 homologs into 14 groups (**Fig 8A, S8 Fig**). Most methanogen genomes contain 1-2 copies of
 731 *hdrABC* gene clusters, but ANME, and in particular ANME-1, have a greater abundance of HdrA
 732 homologs that exceed the number of *hdrBC* homologs (**S9 Fig**). Some of these HdrA homologs
 733 exceed 1000 amino acids in length. In comparison, HdrA from methanogens is usually 650 amino
 734 acids in length, with some slightly larger homologs occurring due to the fusion of *hdrA* and *mvhd*
 735 (76). The gene clusters containing HdrA homologs often contained HdrBC and MvhD as expected,
 736 but more unexpected was the co-occurrence of multiple copies of HdrA and the occasional
 737 presence of HdrD-like proteins (**Fig 8A, S10 Fig**). Although HdrD is a fusion of HdrB and HdrC,
 738 it is not common to find the fused form in gene clusters with HdrA in methanogens. Distant
 739 homologs of the F₄₂₀-dependent formate dehydrogenase FdhAB were also found in HdrA gene
 740 clusters in all ANME groups. The gene cluster containing HdrA2 and 3 along with FdhAB-like
 741 genes in ANME-2a was discussed in detail in one of the earliest studies of ANME fosmid libraries
 742 (8), and the significance of this cluster has now been substantiated by its broad conservation as
 743 well as reasonably high transcription levels (**S3 Data**).
 744

745

Fig 8. Hdr Operons and Domain heterogeneity. (A) Examples of gene clusters containing HdrA genes from select ANME genomes. HdrA paralogs present in ANME have extensive modification to the domain structure as compared to the HdrA crystalized from *M. wolfeii* (see **Fig 7** for details of HdrA structure). These domains and associated protein subunits are illustrated with the gene context and orientation. (B) Illustration of conserved domains and cofactor binding residues in the 13 HdrA clusters defined here. All HdrA appeared to retain residues responsible for interaction with FAD, however the presence of FeS-binding cysteine residues, and entire domains as defined on the *M. wolfeii* structure are variably retained. Importantly, tandem or fused HdrA appear to have complementary presence/absence of C-terminal ferredoxin domains and Cys197 suggesting the formation of a heterodimeric complex.

756

757 Many HdrA homologs in ANME were lacking various domains present in the crystallized complex
758 from *M. wolfeii* (**Fig 8B**). An interesting pattern emerges in gene clusters with tandem HdrA genes
759 (i.e. HdrA 5 and 6, or 12 and 13), in which one copy has the N-terminal domain but lacks the
760 Cys197 ligand for the N-terminal FeS cluster in its thioredoxin reductase domain (Hdr5 and 12),
761 while the second copy lacks the N-terminal domain but has Cys197 (Hdr6 and 13). It seems likely
762 that these tandem HdrA genes form heterodimers, breaking the rotational two-fold symmetry
763 found in the crystal structure from *M. wolfeii* (**Fig 7B**). This pattern of Cys197/N-terminal domain
764 complementarity can also be seen in largest HdrA homologs 3 and 4, which are fusions of two
765 HdrA genes. In both cases the N-terminal HdrA contains the N-terminal FeS cluster-binding
766 domain, but lacks Cys197, while the C-terminal HdrA contains Cys197 and no N-terminal domain,
767 suggesting these HdrA fusions within a single continuous peptide may act as their own
768 heterodimeric partners. Evidence for symmetry breaking in HdrABC complexes has recently been
769 demonstrated in *Methanococcus maripaludis*, where a hydrogenase and a formate dehydrogenase
770 can be simultaneously bound to dimerized HdrABC (77). This appears to be the result of
771 HdrABC's ability to bind either hydrogenase or formate dehydrogenase in these methanogens,
772 resulting in a mixture of subunits, whereas in the ANME case this asymmetric form may be
773 imposed by a heterodimer of two HdrA paralogs.

774

775 Another remarkable HdrA modification is a 500 amino acid insertion in the ferredoxin domain of
776 HdrA 9, 10, and 11, present only in some ANME-1 genomes (**Fig 8**). This insertion shares 45%
777 amino acid sequence identity to the NfnB subunit of the bifurcating NADH-dependent reduced
778 ferredoxin:NADP oxidoreductase crystallized from *Thermotoga maritima* (78). NfnB binds the b-
779 FAD cofactor thought to be responsible for bifurcation in the NfnAB complex, potentially giving
780 these HdrA-NfnB genes two electron bifurcation sites, and suggests NADPH as a possible electron
781 carrier in these compounds.

782

783 Based on the extensive conservation of FdhAB subunits in Hdr gene clusters in nearly all ANME
784 groups it is tempting to speculate that these enzymes may have an important role in CoM-SH/CoB-
785 SH oxidation through electron confurcation. A reversal of electron bifurcation from formate would
786 be a reasonable reaction to expect in ANME metabolism, as formate is a common syntrophic
787 intermediate. Based on the ratio of formate to bicarbonate in the cell one could envision the
788 midpoint potential to lie appropriately between that of Fd²⁻ and CoM-SH/CoB-SH to receive
789 electrons from both. FdhA belongs to the molybdopterin oxidoreductase family, members of which
790 act on many different substrates including formate, nitrate, and DMSO among others in
791 assimilatory and dissimilatory processes (79). The FdhA homologs from ANME genomes are
792 often annotated as formate dehydrogenases and retain a conserved cysteine ligand for binding the
793 molybdenum atom (sometimes a selenocysteine in other organisms). However, they are very
794 distantly related to any biochemically characterized enzymes, making it difficult to assign their
795 substrate with any level of certainty. A very closely related gene cluster with HdrA and FdhAB
796 can be found in the genomes of the methylotrophic methanogen genus *Methanolobus*, potentially
797 providing a good opportunity to study the substrate specificity of this specific group of
798 molybdopterin oxidoreductases in a pure culture organism. These are the only methanogens that
799 encode this type of Hdr gene cluster, and it is worth noting in this context that the *Methanolobus*
800 are incapable of using formate as a methanogenic substrate (80).

801

802 Another possibility is confurcation of Fd^{2-} and CoM-SH/CoB-SH electrons to F_{420}H_2 . FdHB and
803 homologous proteins carry out oxidoreductase reactions with F_{420} (81) in F_{420} -dependent
804 hydrogenases (FrhB), formate dehydrogenases (FdHB), F_{420} -dependant sulfite reductase (Fsr) and
805 the Fpo complex (FpoF). The observation of FdHB homologs in gene clusters with HdrA in
806 ANME-2d lead to the suggestion that these complexes could confurcate Fd^{2-} and CoM-SH/CoB-SH to reduce two molecules of F_{420} , although this model proposes no role for the FdHB homologs
807 present in the gene clusters (19). Some HdrA gene clusters only contain FdHB and not an FdHB
808 homolog, however these are found only in ANME-1 genomes (Fig 8A, S10 Fig). Additionally,
809 there is evidence that certain HdrABC complexes can interact with F_{420} without any additional
810 subunits (62, 74). If such a reaction were to produce F_{420}H_2 in ANME , its re-oxidation through the
811 Fpo complex could be coupled to energy conservation as has been previously proposed in *M. acetivorans* (82).
812
813

814 We can only speculate on the functions of all these modified HdrA paralogs, but it is clear that
815 ANME have an exceptionally diverse potential of bifurcation/confurcation complexes at their
816 disposal, and that the flow of electrons through these complexes will necessarily be different than
817 in the traditional HdrABC-MvhADG complex due to domain gain and loss within the HdrA
818 homologs, as well as the replacement of hydrogenase subunits with various other input modules.
819 While any electron confurcation schemes through HdrABC is speculative at this point, they seem
820 to be viable option for Fd^{2-} and CoM-SH/CoB-SH oxidation in ANME due to their widespread
821 conservation across all ANME clades, particularly in ANME-1 that lack HdrDE and most known
822 Fd^{2-} oxidation systems. Additionally, an examination of previously reported transcriptomic
823 information indicates that these complexes are often expressed to levels on par with other
824 components of the reverse methanogenesis pathway (S3 Data). A key question that remains is
825 what substrate the FdHB homologs in ANME act upon.
826
827

828 Energy metabolism phase 3: Genomic evidence for mechanisms of 829 syntrophic electron transfer

830 The most enigmatic phase of marine ANME metabolism is the interspecies electron transfer to the
831 sulfate-reducing partner; a process which appears to necessitate the formation of conspicuous
832 multicellular aggregates of the two organisms (4, 83). The cytoplasmic electron carrier oxidation
833 described in the previous section will result in 8 electrons on a combination of membrane-bound
834 MpH_2 or QH_2 and possibly some soluble electron carrier formed through an electron confurcation
835 reaction oxidizing Fd^{2-} and CoM-SH/CoB-SH . Based on energetic considerations and precedent
836 from other known syntrophies, the hypothesized mechanisms for the AOM syntrophy have
837 included the diffusive exchange of small molecules such as hydrogen, formate, acetate, methanol,
838 methylamine (84), methyl-sulfides (85), zero-valent sulfur (86), and direct electron transfer using
839 multiheme cytochrome *c* proteins (7, 87, 88). We assessed the genomic potential for each of these
840 syntrophic electron transfer strategies across our expanded sampling of ANME clades.
841

842 **Hydrogen transfer**

843 Hydrogen transfer is one of the most common forms of syntrophic electron transfer (89). A classic
844 mode of syntrophic growth involves hydrogenotrophic methanogens consuming H_2 produced by
845 the fermentative metabolism of a syntrophic partner. A direct reversal of the methanogenic side of
846 this syntropy is not possible as the majority of ANME genomes lack any identifiable
847 hydrogenases with the notable exception of MvhA homologs in a small set of ANME-1 and $2c$

848 genomes as mentioned in the preceding section (**S10 Fig**). The first report of an ANME-1 genome
849 from fosmid libraries contained a gene that appeared to encode an FeFe hydrogenase (7), however,
850 homologs of this gene were not found in any of the other ANME-1 genomes analyzed here.
851

852 This lack of hydrogenases is consistent with the lack of energy-conserving hydrogenases in the
853 genomes of their syntrophic sulfate-reducing bacterial partners from cold seeps (90) and previous
854 experimental results showing that the addition of excess hydrogen does not inhibit AOM (91, 92).
855 Hydrogen has been shown to stimulate sulfate reduction in AOM sediments suggesting that at least
856 some portion of the sulfate-reducing community can utilize this electron donor (84, 91, 93). In the
857 case of the syntrophic thermophilic ANME-1-“*Candidatus Desulfoervidus auxilii*” consortium,
858 hydrogen amendment suppresses growth of ANME-1, because the “*Ca. D. auxilii*” can grow alone
859 on hydrogen and stops investing in electron transferring structures (94). Together, genomic and
860 physiological data suggests that the vast majority of ANME are incapable of producing hydrogen
861 as an electron shuttle.
862

863 **Formate transfer**

864 Formate is another possible small molecule intermediate commonly involved in syntrophic
865 electron transfer (95), and was predicted to be a possible intermediate in the ANME-SRB
866 syntrophy based on early modeling studies (96). As described above FdhAB-like genes in
867 association with Hdr-containing gene clusters are broadly distributed in ANME and could
868 potentially be used to produce formate from Fd^{2-} and CoM-SH/CoB-SH and are relatively highly
869 expressed (**S3 Data**) but their substrate is currently unknown. In addition to these complexes, five
870 of the ANME-1 genomes contained a membrane-bound formate dehydrogenase with signal
871 sequences predicted to mediate their secretion to the positive side of the cytoplasmic membrane.
872 One of the ANME-1 genomes containing this formate dehydrogenase is based on early fosmid
873 libraries that were analyzed extensively, and it was suggested to play a role in electron transfer,
874 depicted as either being free-floating in the pseudoperiplasm, or anchored to the membrane via a
875 c-type cytochrome (7). Interestingly, the gene cluster encoding these formate dehydrogenases in
876 four other ANME-1 genomes also contain DmsC-like genes that traditionally serve as membrane
877 anchor subunits for members of the molybdopterin oxidoreductase family. The presence of these
878 genes in the other ANME-1 genomes makes it likely that this is how the complex is anchored and
879 interacts with the ANME-1 membrane-bound quinol, since this is a fairly common pattern for
880 members of this family of oxidoreductases (97). Interestingly these formate dehydrogenase genes
881 are distributed very sporadically through the ANME-1 genomes instead of being confined to a
882 specific subclade (**S10 Fig**).
883

884 This genomic evidence from different subclades provides a more plausible role for formate than
885 hydrogen in ANME metabolism. However, like hydrogen, formate addition was not shown to
886 inhibit AOM (84, 91, 92) which would be expected if it was the major electron donor to the sulfate
887 reducing partner in those sediments. The addition of formate to AOM sediments and enrichment
888 cultures of ANME-SRB consortia has also had mixed results in terms of stimulating sulfate
889 reduction (84, 91, 93). Additionally, genes encoding FdhC, a member of the formate-nitrate
890 transporter family thought to be responsible for formate transport in many formate-utilizing
891 methanogens (98, 99) was absent from all ANME genomes.
892

893 **Other soluble electron carriers**

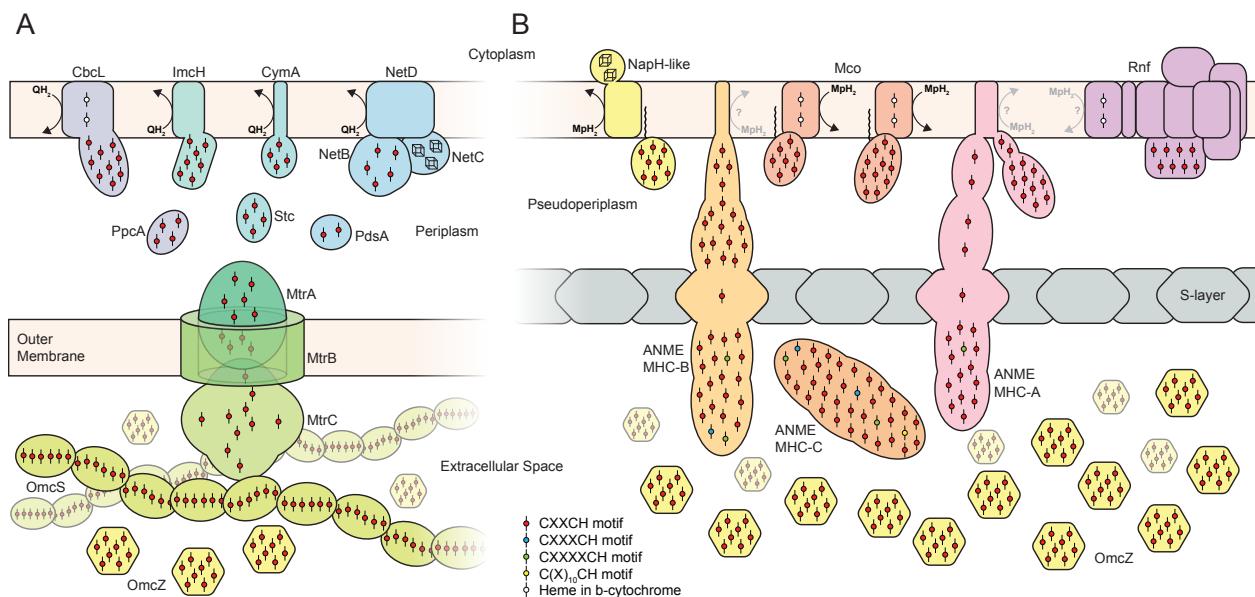
894 Acetate has been proposed as a syntrophic intermediate in sulfate-coupled AOM (7, 100), and one
895 could easily envision an energy conservation strategy in ANME archaea whereby methane and
896 CO₂ are combined in a reversal of acetoclastic methanogenesis and energy is conserved via
897 substrate-level phosphorylation through Pta and AckA as in acetogenic bacteria. Acetate thus
898 produced could be used by the SRB partner for sulfate reduction. Two problems exist with this
899 model that make it unlikely in any of the ANME groups represented here. First, Pta and AckA
900 were absent from all ANME genomes. Second, this model requires that the two electrons
901 transferred from methane to heterodisulfide ($E_0' = -145\text{mV}$) would be used for the reduction of
902 CO₂ which requires ferredoxin ($E_0' = -500\text{mV}$). This would mean the single ATP produced by
903 substrate level phosphorylation would have to overcome the sodium motive energy lost in the Mtr
904 step, force electrons energetically uphill by $\sim 350\text{mV}$ from the free disulfides onto ferredoxin, and
905 have energy left over for growth. Experimental addition of acetate to AOM enrichments has not
906 been found to decouple the partners and inhibit methane oxidation, as would be expected for a
907 soluble extracellular intermediate (84, 91, 92).

908

909 Methylsulfides were suggested to be a potential intermediate in AOM (85), but as noted above the
910 methyltransferase genes for methylsulfides, methanol, and methylamines were not recovered in
911 any ANME genomes, and experiments have not found methylsulfide-stimulated sulfate reduction
912 in ANME-SRB enrichments (91). Zero-valent sulfur has also been suggested as an intermediate in
913 marine AOM using an ANME-2 enrichment (86). However, in vitro studies with other ANME
914 consortia did not show a similar response (88, 93) and recent investigations into sulfur utilizing
915 genes in ANME found no evidence for dissimilatory sulfate reduction (17). If this process occurs,
916 it is in a restricted group of ANME through a novel biochemical mechanism. Electron transfer is
917 also possible via soluble organic shuttles. *Shewanella oneidensis* MR-1 was determined to utilize
918 small molecule shuttles derived from menaquinone (101) or flavins (102) that help electrons pass
919 through the external environment to their ultimate electron acceptor. The mechanism of producing
920 these compounds is very poorly understood. Only recently a major menaquinone-like shuttle was
921 identified and its biosynthesis elucidated (103). Such a shuttle-based electron transfer strategy
922 could be potentially used for accepting electrons from the ANME Hdr complexes, but predicting
923 the occurrence of these shuttling mechanisms from genomic information is not possible with our
924 current understanding of these processes.

925

926 **Direct interspecies electron transfer**


927 If soluble electron carriers were produced by ANME, they could simply diffuse through the
928 intracellular space between the ANME to the SRB without any specialized protein systems.
929 Specific transporters or permeases would only be needed if the compounds produced in the ANME
930 cytoplasm are not membrane permeable. On the other hand, electrons on MpH₂/QH₂ would require
931 an oxidation system with no analog in methanogens. In cytochrome-containing methanogens the
932 eventual electron acceptor for these membrane-bound electrons is the heterodisulfide located in
933 the cytoplasm, whereas the terminal electron acceptor of marine ANME would be their partner
934 SRB located outside of the cell.

935

936 This is a respiratory challenge that is similar to the one facing bacteria that carry out extracellular
937 electron transfer (EET) to utilize insoluble metal oxides or electrodes as terminal electron
938 acceptors. Instead of having a soluble terminal electron acceptor that can diffuse to the cytoplasmic

939 membrane and be reduced by a terminal oxidase, these organisms make conduits for their electron
940 transport chain to extend through the periplasm and outer membranes to interact directly with an
941 electron acceptor in the extracellular space (104).
942

943 Various systems have been discovered in Gram-negative bacteria that perform EET. These
944 generally consist of a quinol:cytochrome *c* oxidoreductase enzyme, small soluble cytochrome *c*
945 intermediates between the inner and outer membranes, and a beta barrel/decaheme cytochrome *c*
946 protein complex that is embedded in the outer membrane (Fig 9A)(105). In bacteria that form large
947 conductive biofilms, the extracellular space is also densely packed with secreted *c*-type
948 cytochromes which can form large conductive complexes (106) . Based on the similarity of the
949 metabolic challenge facing ANME and EET-capable bacteria, as well as the discovery of analogs
950 of bacterial EET systems in ANME genomes (7, 87, 88), an attractive hypothesis is that the
951 ANME-SRB syntrophy is based on direct electron transfer between the syntrophic partners.
952 However, in contrast to other EET-capable bacteria that use metals as terminal electron acceptors,
953 the highly specific interspecies interaction observed in the AOM consortia may require the partner
954 SRB to encode cognate electron-accepting systems.
955

956
957 **Fig 9. Overview of proposed extracellular electron transfer pathways.** Comparison between EET
958 systems known from Gram-negative bacteria and proposed analogous systems in ANME archaea. **A)** EET
959 systems in Gram-negative bacteria involve membrane-bound quinol:cytochrome *c* oxidoreductases (CbcL,
960 ImcH, CymA, NetD), small soluble cytochromes apparently involved in electron transport through the
961 periplasmic space (PpcA, Stc, PdsA), and a beta-barrel/decaheme cytochrome *c* protein complex (MtrCAB)
962 that acts as an electron conduit by which electrons can transit through the outer membrane to the
963 extracellular space filled with additional cytochrome *c* such as OmcZ and filaments of OmcS. **B)** Analogous
964 protein complexes found in ANME genomes that appear optimized for the challenges associated with EET
965 in the archaeal cell architecture. MpH₂:cytochrome *c* oxidoreductases are likely present in the form of gene
966 clusters containing VhtC cytochrome *b* subunits together with large 7 or 11 heme-binding MHC proteins
967 (Mco). Other potential options for this step could include the NapH homologs sporadically distributed
968 through ANME genomes, or through the action of the unique cytochrome *b* gene found in ANME Rnf
969 clusters. Electron transfer through the outer proteinaceous S-layer requires a different mechanism than the
970 beta-barrel/decaheme cytochrome strategy evolved in the EET-capable bacteria containing an outer
971 membrane. This step is expected to be overcome by the giant ANME-specific MHC proteins containing S-

972 layer domains allowing them to integrate into the S-layer structure. Very close homologs of OmcZ are
973 found in ANME (see **Fig 10**). For details of S-layer MHC fusions, see **Fig 11**.
974

975 **Potential methanophenazine:cytochrome *c* oxidoreductase complexes**

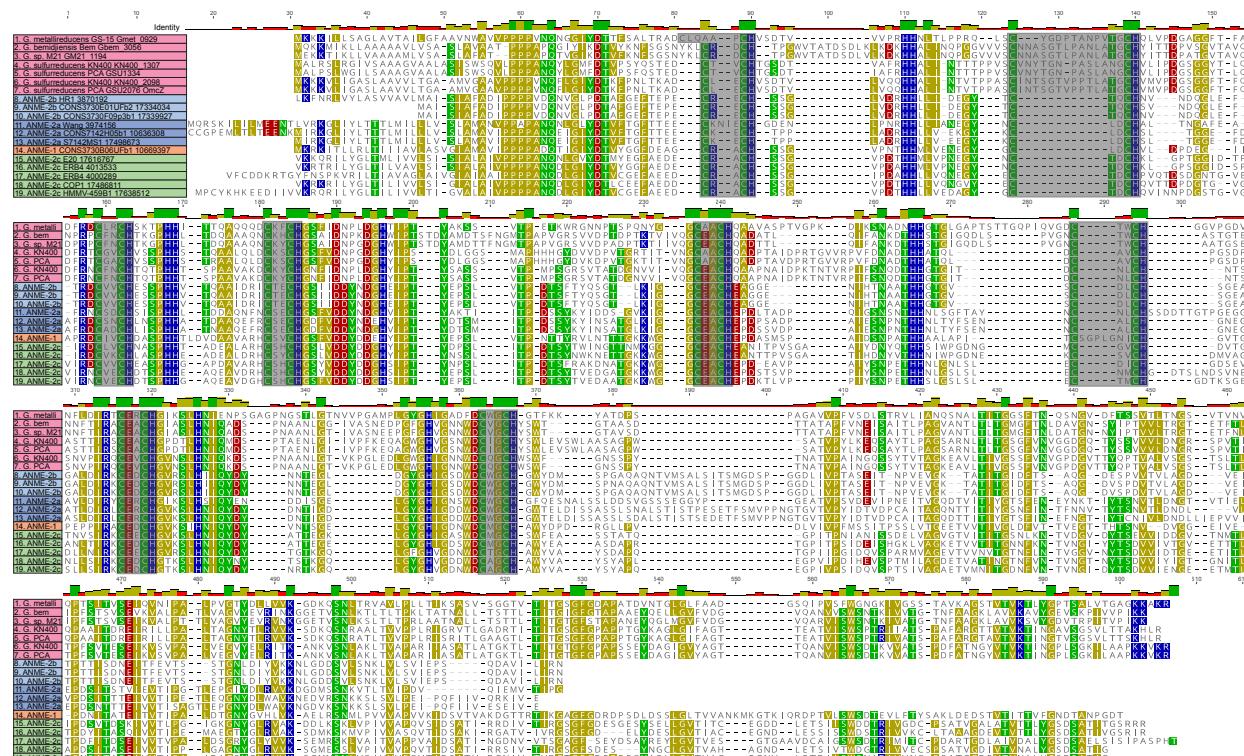
976 In bacteria capable of EET, the quinol:cytochrome *c* oxidoreduction step is carried out by a diverse
977 group of non-homologous enzymes. These can be as simple as CymA in *Shewanella oneidensis*
978 MR-1, which is a four heme-binding cytochrome *c* protein with a single transmembrane helix
979 (107), or more complex, involving multiple subunits such as the recently described NetBCD
980 system in *Aeromonas hydrophila* (108). These complexes are relatively easy to replace, as CymA
981 knockouts in *S. oneidensis* MR-1 can be rescued by suppressor mutants that turn on the expression
982 of completely unrelated quinol oxidoreductase complexes (109). In *Geobacter sulfurreducens* at
983 least two quinol:cytochrome *c* systems coexist, ImcH and CbcL, that appear to be tuned to the
984 redox potential of different terminal electron acceptors (110, 111). The only common features in
985 these systems is the presence of periplasmic cytochrome *c* or FeS binding proteins associated with,
986 or fused to, membrane anchor subunits that facilitate electron transfer from the membrane bound
987 quinol to the periplasmic acceptor (**Fig 9A**).
988

989 Due to the non-homologous nature of these electron transport systems in bacteria, we examined
990 the ANME genomes for genes and gene clusters with a potential for analogous function, but
991 adapted to the specifics of archaeal cell biology (**Fig 9B**). ANME-2a, 2b and 2c were found to
992 encode a membrane-bound cytochrome *b* that is closely related to the membrane-bound subunit of
993 the Vht hydrogenase (VhtC), which in methanogens mediates the reduction of methanophenazine
994 with electrons from H₂ (112) (**S11 Fig**). In the genomes of ANME-2a and 2b, this cytochrome *b*
995 is followed by a multiheme *c*-type cytochrome (MHC) containing between 7 and 11 heme-binding
996 motifs (CxxCH), instead of the *vhtAG* genes encoding the hydrogenase subunits found in
997 *Methanosarcina*. In ANME-2c a closely related homolog for this MHC protein was found
998 elsewhere in the genome. This conspicuous gene clustering is not found in any methanogenic
999 archaea, and the importance of this system is supported by the high expression of the cytochrome
1000 *b* subunit reported in both ANME-2a and ANME-2c (9, 11). Phylogenetic analysis shows these
1001 VhtC homologs to be a closely related sister group to those found in *Methanosarcina* (**S12 Fig**).
1002 These gene clusters are the clearest examples of biological novelty well conserved in ANME that
1003 could explain the evolution of electron transfer capabilities, and we refer to them here as
1004 methanophenazine-cytochrome *c* oxidoreductase (Mco).
1005

1006 Notably, ANME-1 and ANME-3 genomes did not contain homologs to Mco, so this does not
1007 appear to be a universal mechanism of electron transport in all ANME. ANME-1 lacked any
1008 identifiable cytochrome *b*, while the only ones apparent in ANME-3 were multiple copies of *hdrE*
1009 and the gene associated with the Rnf gene cluster mentioned above. These Rnf-associated
1010 cytochrome *b* in ANME-2a, 2b and 3 are not found in any related methanogens. It is conceivable
1011 that these genes are involved in the oxidation of MpH₂ and in the transfer of these electrons onto
1012 the Rnf-associated cytochrome *c* for the purpose of EET. Two recent studies on *M. acetivorans*
1013 have implicated the Rnf-associated cytochrome *c* in electron transfer to Fe(III) or the artificial
1014 electron acceptor AQDS (113, 114). Such a process may be occurring in the ANME-SRB
1015 syntrophy via a similar mechanism and explain previous results of marine ANME utilizing AQDS,
1016 Fe(III) and Mn(IV) (115, 116).
1017

1018 Another possible MpH_2/QH_2 oxidizing systems could be represented by diverse homologs related
1019 to the membrane-bound periplasmic nitrate reductase subunit NapH which are sporadically
1020 distributed across ANME genomes. NapH typically contains 4 transmembrane helices, two
1021 conserved cytoplasmic FeS clusters, and mediates electron flow from a menaquinol to the
1022 periplasmic nitrate reductase NapAB (117). The NapH homologs in ANME are not found in
1023 suggestive gene clusters except in one of the ANME-2c genomes in which NapH was followed
1024 immediately by an 8 heme MHC, reminiscent of quinol:cytochrome *c* oxidoreductase gene clusters
1025 described in bacteria (Fig 9B). NapH homologs are found in both ANME-3, as well as two ANME-
1026 1, and are worthy of investigating further due to the lack of other obvious candidates for
1027 menaquinol/methanophenazine oxidation in those genomes. However, under standard laboratory
1028 AOM conditions (9), the NapH homolog found in ANME-2c E20 had very low expression levels
1029 (S3 Data). Due to their uneven distribution in ANME genomes these NapH homologs may have
1030 other non-essential functions.

1031
1032 While no other gene clusters could be identified that seemed likely to mediate
1033 MpH_2/QH_2 :cytochrome *c* oxidoreduction, the example of CymA in *S. oneidensis* MR-1 highlights
1034 how simple these systems can be while still being vitally important respiratory proteins, and how
1035 easily one system can be functionally complemented by a completely unrelated one (107, 109).
1036 Numerous small multiheme cytochromes are encoded and expressed in ANME genomes that either
1037 have single membrane anchors on their C-terminus or PGF-CTERM archaeosortase motifs that
1038 are predicted to covalently link them to membrane lipids. These small MHC proteins could
1039 potentially act in a similar fashion to CymA. However, without an associated or fused large
1040 membrane anchor that is homologous to previously characterized systems it is difficult to implicate
1041 them directly in membrane bound electron carrier oxidation through genomic evidence alone.


1042
1043 **Multiheme cytochrome *c* protein abundance and expression**

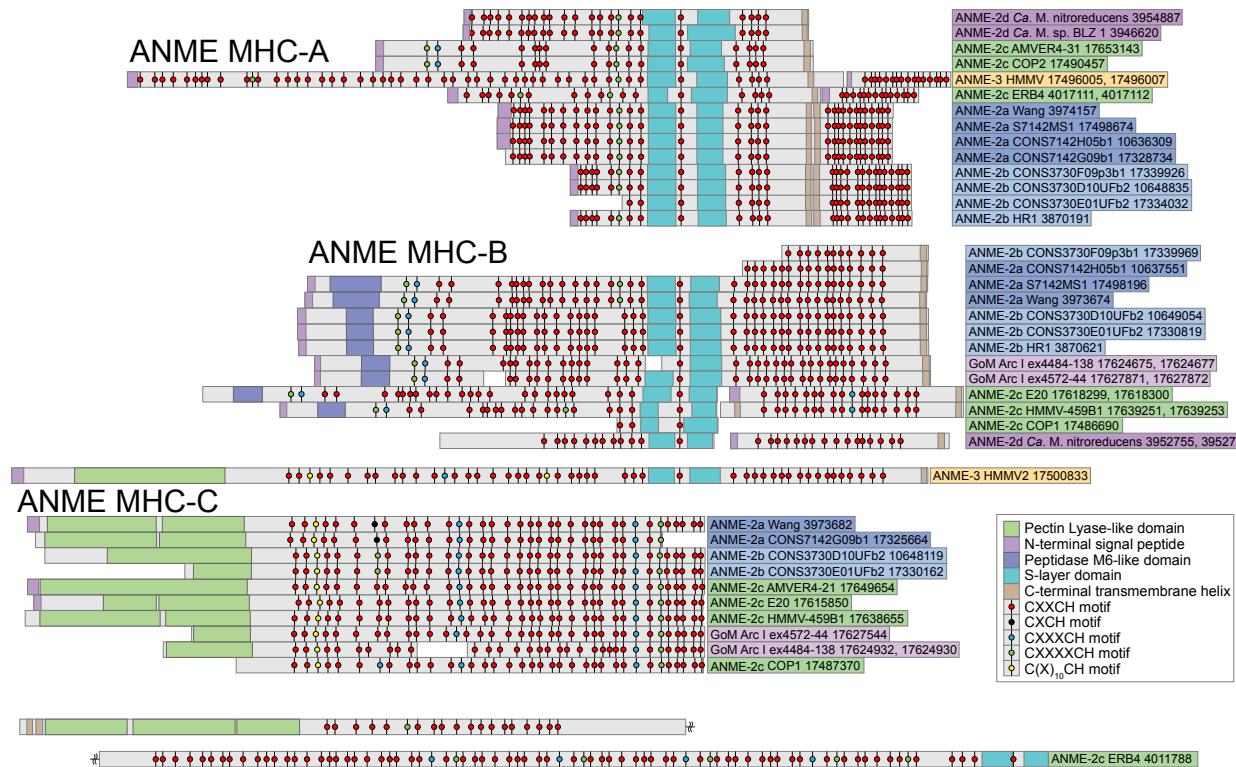
1044 ANME genomes contained many (5-8 times) more genes encoding MHCs than any of their
1045 methanogenic relatives (S13 Fig). Only the “*Ca. Syntrophoarchaeum*” and some members of the
1046 *Archaeoglobales* that are known to conduct EET contain a similar number of MHC genes among
1047 the archaea. Many homologous groups of these MHCs are only present in ANME and the
1048 aforementioned archaea. All MHC proteins are predicted to reside in the extracellular space as
1049 heme attachment to the cytochrome *c* apoprotein occurs here (118). Representatives of these
1050 MHCs are among the highest expressed proteins in multiple ANME lineages. Small MHC in
1051 ANME-2c E20, ANME-1 GB37 and ANME-1 GB60 were the 14th, 10th, and 18th highest expressed
1052 proteins, respectively, and contain 8, 4 and 4 heme binding motifs, respectively (S3 Data). One
1053 specific group of small MHC proteins has widespread distribution in the ANME, “*Ca.*
1054 *Syntrophoarchaeum*”, and some members of the *Archaeoglobales*, with no relatives in
1055 methanogenic archaea. Multiple paralogs exist in most ANME groups and these include some of
1056 the highest expressed proteins in ANME, many exceeding all methanogenesis pathway genes
1057 except Mcr (S14 Fig, S3 Data).

1058
1059 As with the quinol oxidation step, the intermediate small soluble cytochromes *c* vary greatly
1060 between different EET-capable bacteria. Any number of these ANME cytochromes could be
1061 capable of carrying electrons between the cytoplasmic membrane and outermost layer of the cells.
1062 A small six heme-binding cytochrome *c* protein OmcS was recently shown to form the conductive
1063 extracellular “nanowires” in *G. sulfurreducens* that are thought to imbue the biofilms with

1064 conductive properties (**Fig 9**) (106, 119). No close homolog of OmcS were identified in ANME
 1065 genomes, although any number of these relatively small cytochromes could be carrying out a
 1066 similar function in the extracellular space between ANME and SRB, consistent with ultrastructural
 1067 observations made with heme-reactive staining (9, 87).

An 8-heme MHC in *G. sulfurreducens* known as OmcZ was shown to be required for optimal anodic current in biofilms grown on electrodes, and is secreted in biofilms and in culture supernatant (120). It was recently shown that OmcZ will also polymerize, forming conductive nanowires (121). Very closely related homologs of OmcZ were found in multiple ANME-2a, 2b, and 2c genomes (Fig 10). The sequence similarity shared between OmcZ and the proteins found in these ANME groups is not limited to CxxCH motifs, but also extensive N- and C-terminal regions with many completely conserved residues. This level of sequence conservation is quite remarkable for homologs found in archaea and bacteria, and suggest an important conserved function of these non-heme binding domains, as well as a relatively recent inter-domain horizontal transfer. The OmcZ homolog in ANME-2c E20 is the 14th highest expressed protein in cultures grown under standard laboratory AOM conditions (S3 Data). In ANME-2a and 2b the genes encoding these OmcZ homologs are found next to the enormous MHCs described below. Investigations into the properties of ANME OmcZ homologs, specifically whether they can undergo the same polymerization observed in *G. sulfurreducens*, will be an important future area of research.

1085 17-ANME-2c D E F T E S I V E P V T V Y D A - D G D V Y G V Y D V - S E M R S I V A T I H A V A S T I - I N G D N V - V T S E - G E Y D S A V E V L G V T V E S - G T G A V D C A I G S T I M R I - D A R T I D D L A V D A Y V G S A L S I S I P A S H F
 1086 18-ANME-2c D E F T E S I V E P V T V Y D A - D G D V Y G V Y D V - S G M E S I V P I V D V V D T I S T I - R R S T V I - G R G S E D S I V P I V D V V D T I - V G L G O V T V A H - A G N D - L E T S I V T M D I - V E C S - S A T V Y D I V N V - S G M D S I V P I V D V V D T I - S T V - R G N I V - V R E D V - E Q V A E L E G T V A C C - E G N V A - L E T D I V V C N C - S A T G D E Y V I N A L S H - S D A T I G
 1087 19-ANME-2c D E F T E S I V E P V T V Y D A - D G D V Y G V Y D V - S G M N E S I V P I V D V V D T I - S T I - V G L G O V T V A H - A G N D - L E T S I V T M D I - V E C S - S A T V Y D I V N V - S G M D S I V P I V D V V D T I - S T V - R G N I V - V R E D V - E Q V A E L E G T V A C C - E G N V A - L E T D I V V C N C - S A T G D E Y V I N A L S H - S D A T I G
 1088 1089 1090


Fig 10. OmcZ homologs in ANME archaea. Protein sequence alignment of OmcZ homologs from various *Geobacter* species and ANME genomes reported here using muscle 3.8.31 with default settings. The eight CxxCH binding motifs are highlighted in gray. Regions of significant sequence identity are present throughout the protein, not just associated with the CxxCH motifs suggesting conserved function. Alignment file can be found in [S1 Data](#).

1091

1092 S-layer conduits

1093 ANME-2a, 2b, 2c, 2d, and 3 genomes also contain exceptionally large MHCs with 20 and 80 heme
1094 binding sites (Fig 11, S13 Fig). Similarly large cytochromes in archaea are only found in
1095 *Geoglobus* and *Ferroglobus* (87). Both of these groups are capable of extracellular iron reduction
1096 (122, 123). The largest and best conserved of these MHCs were classified into three major groups
1097 (ANME MHC Type A, B, and C) based on sequence identity, conserved domains, and heme-
1098 binding motif distribution (Fig 11). The most notable feature of ANME MHC-A and B is the
1099 presence of predicted S-layer domains, which commonly make up the outer proteinaceous shell
1100 surrounding the cytoplasmic membrane in many archaea (124). ANME MHC-B additionally
1101 contain an N-terminal domain free of heme-binding motifs and annotated as “peptidase M6-like
1102 domains”. The presence of an S-layer domain in these cytochromes suggests their use for electron
1103 transfer through this outermost layer. In *M. acetivorans* the S-layer domain structure has been
1104 determined by x-ray crystallography and contains two subdomains connected by a flexible linker
1105 (125). In all ANME MHC with S-layer domains, this flexible linker also contains a single heme-
1106 binding motif, which would place a heme group within the plane of the S-layer. Both ANME
1107 MHC-A and B encode for C-terminal regions predicted to be transmembrane helices that may
1108 anchor them cytoplasmic membrane. We suggest that ANME MHC-A and B are functionally
1109 analogous to the MtrCAB complexes found in the outer membranes of the EET-capable Gram-
1110 negative bacteria (Fig 9A) (104). In ANME an alternative mechanism needs to be employed since
1111 the outermost layer is proteinaceous.

1112

1113

1114

1115

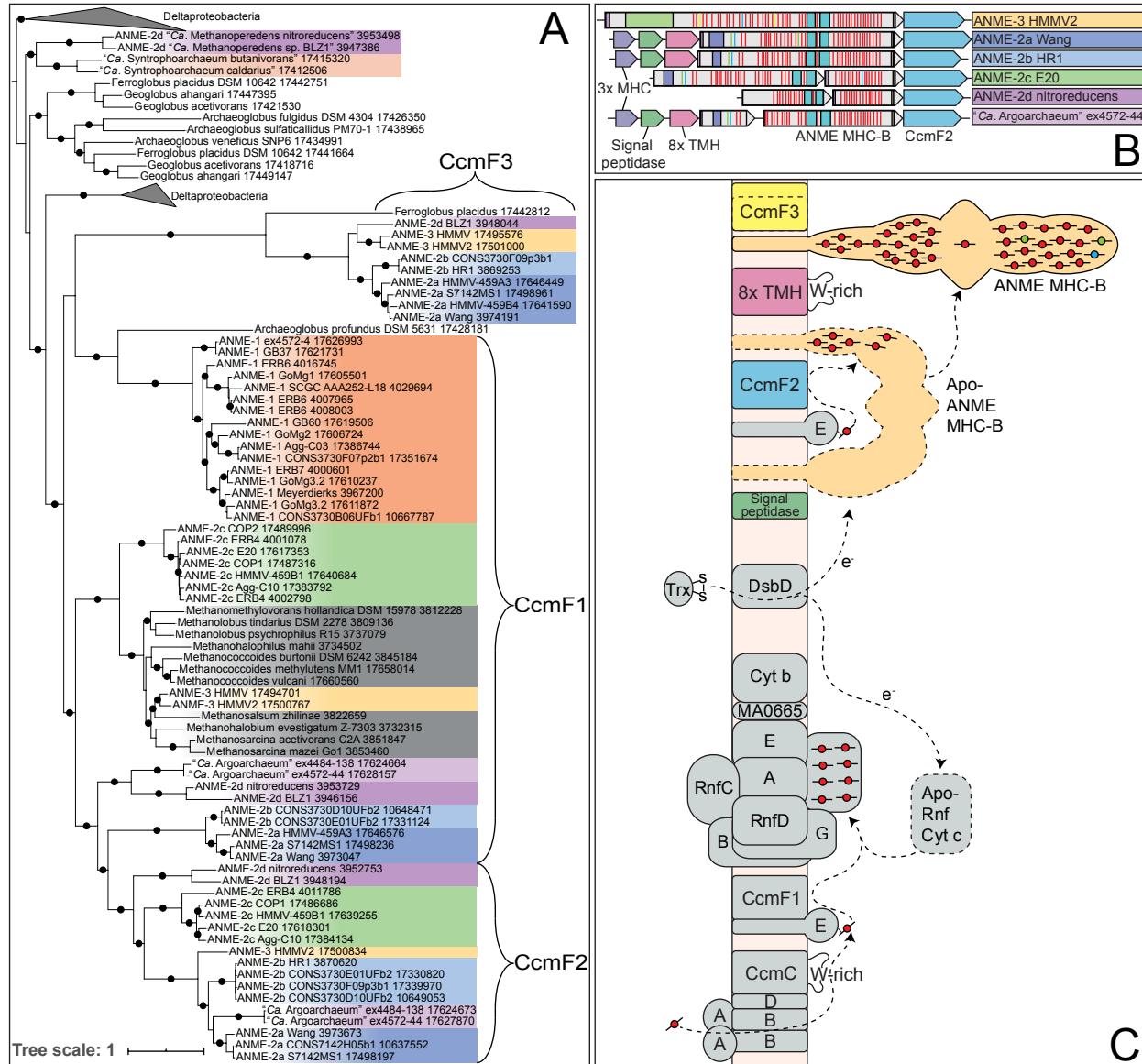
1116

1117

Fig 11. Large multiheme cytochrome c proteins in ANME archaea. Schematic of protein structure highlighting the position of heme-binding motifs and other conserved features of the large ANME-specific multiheme cytochromes. The ANME MHC were divided into three major groups based on sequence similarity and conserved domains structure. ANME MHC-A contains an S-layer domain and C-terminal

1118 transmembrane helix. In ANME-2a and 2b these proteins are extended by an additional transmembrane
1119 helix and more heme-binding motifs. ANME MHC-B contains an S-layer domain and C-terminal
1120 transmembrane helix as well, but an N-terminal region devoid of heme-binding domains has similarity to
1121 peptidase M6-like domains. ANME MHC-C do not contain S-layers or C-terminal transmembrane helices,
1122 but instead contain a large N-terminal region with a predicted pectin lyase-type domain. Domains predicted
1123 with InterProScan and are displayed with colored boxes. Large MHC proteins from ANME-3 sp. HMMV2
1124 and ANME-2c sp. ERB4 that do not clearly fit into these categories are also shown (Note: ANME-2c sp.
1125 ERB4 is a single peptide split between two lines due to its size).

1126
1127 ANME MHC type C do not encode for an S-layer domain or C-terminal transmembrane helices,
1128 but do encode for a large N-terminal “pectin lyase-like domain”. It is difficult to predict the
1129 function of this additional domain. However it is interesting to note that the pectin lyase fold
1130 typically occurs in proteins that attach to and/or degrade carbohydrates, and has been found in
1131 bacteriophage tail spike proteins for attachment to hosts (126). It is possible then that this domain
1132 is involved in recognizing the outer cell wall of partner bacteria. Some ANME genomes contained
1133 exceptionally large MHC that did not fall clearly into these three categories. ANME-3 HMMV2
1134 for example contained a single polypeptide containing C-terminal features of ANME MHC-C and
1135 N-terminal features of ANME MHC-B (**Fig 11**). A fosmid assigned to ANME-2c ERB4 encoded
1136 the largest MHC in our dataset containing an S-layer domain, a pectin lyase-like domain, and 86
1137 heme binding motifs.


1138
1139 In actively growing ANME-2c cultures, genes encoding these large ANME MHC were expressed
1140 at lower levels than the enzymes of the reverse methanogenesis pathway and some of the smaller
1141 MHCs leading the authors to conclude that these were of little importance to electron transfer in
1142 this culture (9). If two proteins are expected to carry out the same function in a pathway,
1143 transcription levels may be useful in determining which may be the dominant one operating under
1144 certain conditions. But this is not the case for the different classes of MHCs in the model of ANME
1145 EET presented here. The small MHCs are thought to serve as intermediates between the inner
1146 membrane and S-layer, as well as assist in conveying conductivity to the extracellular matrix,
1147 while the large S-layer proteins specifically provide a conduit through the S-layer. The small
1148 MHCs may cover longer distances, and would therefore be expected to be numerically dominant,
1149 but still could not make a functional EET system if no specific mechanisms existed for the short
1150 transfer through the S-layer to the extracellular environment. This is exactly the scenario observed
1151 in the electrogenic model bacterium *G. sulfurreducens* that requires MHC conduits through the
1152 outer membrane for EET formed by MtrCAB and other analogous porin-cytochrome systems
1153 (104). While absolutely necessary for efficient EET, these genes show lower expression levels
1154 than those of some of the smaller soluble MHCs encoded in the genome (127). We therefore find
1155 this previously reported transcript information to be consistent with the model of ANME-2 and 3
1156 EET presented here in which the S-layer fusions play a key role (**Fig 9B**).

1157
1158 ANME-1 contained fewer MHCs and at most had 10 predicted heme-binding motifs, and these
1159 proteins did not contain any identifiable S-layer domains. From the available genomic data, it is
1160 unclear how these cytochromes fit into the cell structure of ANME-1. It was recently suggested
1161 that ANME-1 lack an S-layer due to the absence of predicted S-layer domain containing proteins
1162 (42). However, the same analysis found no *Archaeoglobus* proteins with S-layer domains, yet the
1163 *Archaeoglobus* S-layer has been visualized and extensively characterized (128). The S-layer
1164 domain in the large MHC from ANME-2 and 3 are only recognizable because they are homologous

1165 to the S-layer protein of *M. acetivorans* that was recently crystallized (125). Before this study the
1166 S-layer domain was only identified as a domain of unknown function (DUF1608). The ANME-1
1167 ultrastructure is usually cylindrical and highly reminiscent of *Methanospirillum* which contain S-
1168 layers (129). How the MHC in ANME-1 fit into this cell structure will require further investigation.
1169 Gram-positive bacteria are also capable of EET, and in some cases have been found to use more
1170 modestly sized MHC proteins (6-9 heme binding motifs) for electron transport through the
1171 outermost cell wall (130). Such a model could very well apply to the cell wall and cytochromes
1172 encoded in the ANME-1 genomes.
1173

1174 **Duplication of Cytochrome c maturation machinery**

1175 Cytochrome *c* proteins are matured on the outer face of the cytoplasmic membrane through a
1176 variety of systems, the most common in bacteria and archaea being the cytochrome *c* maturation
1177 (Ccm) system (118). Ccm transports heme B to the positive side of energized membranes and
1178 mediates its attachment to the cytochrome *c* apoprotein (**Fig 12**). The Ccm system has been found
1179 in archaea closely related to ANME (131), and slight modifications to these systems in archaea
1180 have been investigated in detail (132). Most ANME genomes contained CcmABCEF and lacked
1181 CcmH a pattern observed previously in most other archaea including methanogens. One exception
1182 to this is the freshwater ANME-2d, which contains CcmH homologs similar to those found in
1183 *Ferroglobus* and *Geoglobus* sp. (131, 132).
1184

1185

1186 **Fig 12. Cytochrome maturation and CcmF duplication.** (A) Phylogenetic analysis of CcmF homologs
1187 from ANME and closely related archaea. CcmF1 cluster contains the CcmF found in the
1188 *Methanomicrobium* and *Methanomethylovinans*. CcmF2 is a closely related group of homologs found only in ANME and "Ca.
1189 Argoarchaeum", and in all cases is found next to the S-layer containing ANME MHC-B. CcmF3 comprises
1190 the larger of two encoded genes that appear to be a split CcmF, and are found in ANME and *Ferroglobus*.
1191 (B) Example gene clusters from all groups that contain CcmF2 illustrating their position with respect to
1192 ANME MHC-B. Some genomes additionally contain a signal peptidase and a predicted membrane integral
1193 ANME-specific gene in this cluster (8x TMH). Horizontal red lines denote CxxCH heme binding domains,
1194 teal represent S-layer domain (see **Figure 11** for details of ANME-MHC structure). (C) Schematic of
1195 cytochrome maturation pathway. CcmA and B comprise ABC transporter module that exports heme B,
1196 which is transferred to CcmE via CcmC's tryptophan (W)-rich periplasmic loop. CcmE is expected to
1197 utilize CcmF1 to mature cytochrome c proteins found in both ANME and methanogens of the
1198 *Methanomicrobium*. CcmF2 found only next to ANME MHC-B is expected to be involved in its
1199 maturation. The co-occurring signal peptidase is likely involved in cleavage of the N-terminal signal
1200 sequence. Closed circles represent branch support values between 80 and 100%. Tree scales represent

1201 substitutions per site. Tree construction parameters are found in the Materials and Methods section.
1202 Alignment and tree files can be found in **S1 Data**.
1203

1204 A very interesting feature of the ANME genomes reported here is the presence of multiple paralogs
1205 of CcmF. CcmF is the largest of the Ccm proteins, and is involved in the transfer and attachment
1206 of heme B to the cytochrome *c* apoprotein. One of these highly divergent CcmF paralogs that is
1207 conserved in ANME-2a, 2b, 2c, 2d, 3 and “*Ca. Argoarchaeum*” is found in every case next to the
1208 ANME MHC-B (**Figs 11 and 12B**). The diversification of CcmF paralogs in ANME and the
1209 clustering of one of the CcmF paralogs with ANME MHC-B suggests that special CcmF proteins
1210 may be needed to handle the extremely large apoproteins associated with these MHCs. The
1211 specialization of CcmF homologs to particular cytochromes *c* is not without precedent, a specific
1212 CcmF homolog NrfE is known to be required for insertion of heme B into NrfA at a modified
1213 heme binding site with a CxxCK motif (133). These additional CcmF homologs in ANME may be
1214 required due to the extreme size of the ANME MHC apoproteins or due to the presence of multiple
1215 modified heme biding motifs with increased amino acids between the cysteine residues (**Fig 11**).
1216

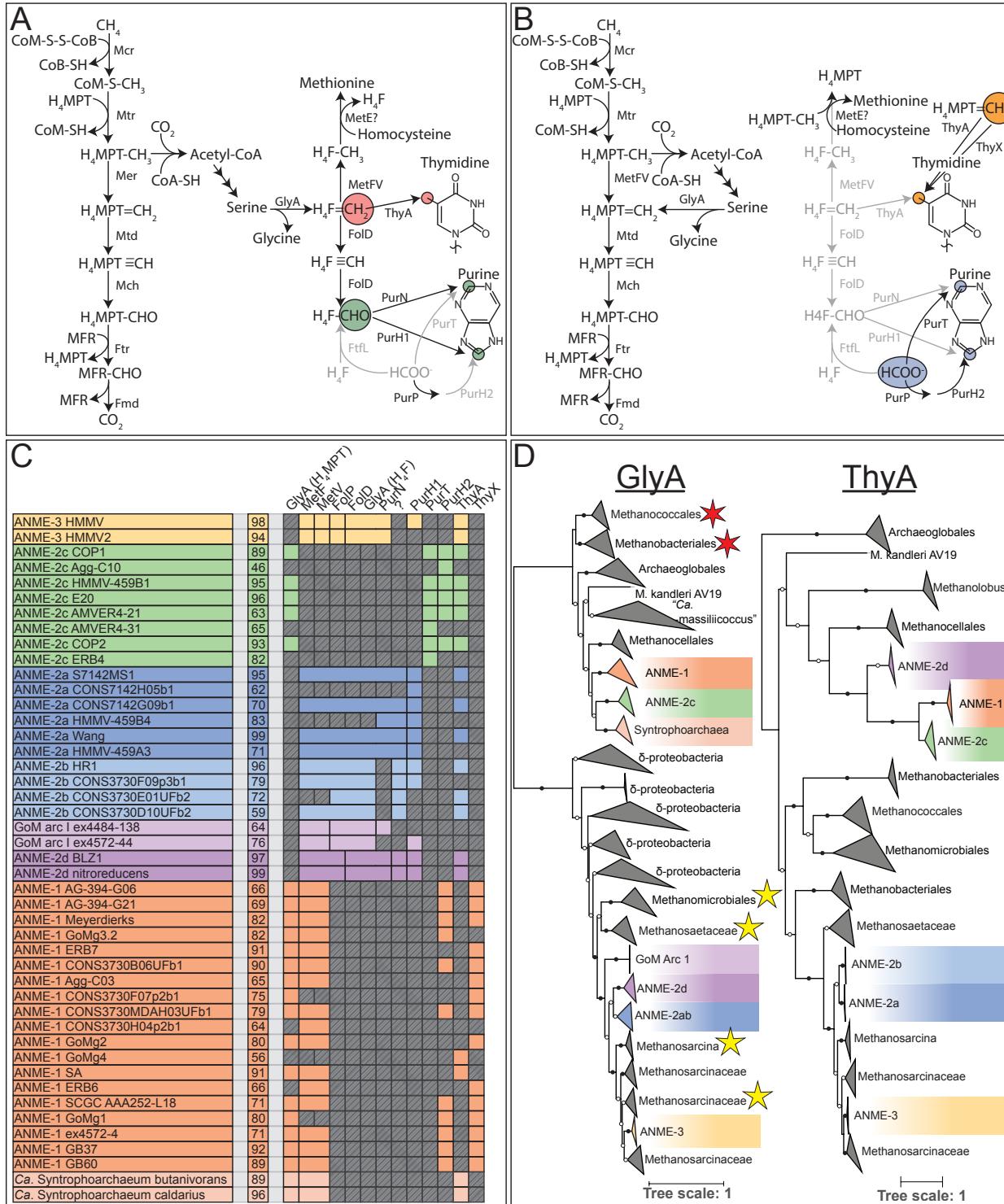
1217 Immediately upstream of the CcmF/ANME MHC-B genes in ANME-2a, 2b and 3 are two highly
1218 conserved genes also expected to be involved in MHC maturation (**Fig 12B, S11 Fig**). One is a
1219 signal peptidase which is likely involved in the cleavage of the N-terminal signal sequence present
1220 on most of the encoded MHC proteins in ANME. The second is an integral membrane protein that
1221 has no automated annotations (labelled 8x TMH). This later gene is found in every ANME group,
1222 “*Ca. Syntrophoarchaeum*”, “*Ca. Argoarchaeum*”, *Geoglobus*, and *Ferroglobus*. BLAST searches
1223 against the NCBI nr database revealed no homologs to this protein in any other organisms. While
1224 no specific motifs are clearly obvious, a large periplasmic loop is predicted that contains multiple
1225 conserved tryptophan residues which is a common feature of the heme handling proteins (HHP)
1226 family to which both CcmF and CcmE belong (133). This protein may have a role in heme handling
1227 in the maturation process of the MHC proteins in ANME as well. These two genes are also found
1228 in a cluster of cytochrome *c* genes highlighted in a previous metagenomic study of ANME-1 (7).
1229 Due to their similarity to peptidases and heme handling proteins we suspect these are not
1230 membrane anchors for the mature MHC proteins as previously posited. The unusual ANME-1
1231 subclade consisting of GoMg4 and SA contained no cytochrome *c* genes and also lacked
1232 CcmABCE, all CcmF paralogs, the signal peptidase, and the integral membrane protein described
1233 above. In conclusion, a key genomic difference between canonical methanogens and the ANME
1234 archaea are traits linked to direct interspecies electron transfer, especially large, diverse
1235 cytochromes and associated biosynthetic machinery. It should be noted that it is possible for
1236 engineered syntrophies to occur with methanogenic *Methanosarcinaceae* even in the absence of
1237 MHC, although the mechanistic details of how electrons are transferred in this system are lacking
1238 (134).
1239

1240 **Anabolic pathways**

1241 In addition to energy metabolism reconstruction, the diversity of ANME genomes presented here
1242 allows for an evaluation of the anabolic pathways present in the different methanotrophic lineages.
1243 The assimilation of isotopically light (¹³C-depleted) carbon into ANME lipids and bulk biomass
1244 was crucial to their initial discovery (1–3, 83, 135), and is an important signal used for the
1245 interpretation of stable isotope studies of ancient carbonate systems. A better understanding of the

1246 precise biochemical pathways available for building this biomass will help better interpret these
1247 types of analyses, as well as the results of stable isotope probing experiments. Early experiments
1248 also highlighted how isotope signatures serve to identify the syntrophic cooperation between the
1249 consortia partners (3, 5). In this regard, long-term symbiotic interactions between organisms has
1250 been hypothesized to lead to lasting anabolic impressions on the organisms involved, specifically
1251 the adaptive loss of anabolic pathways such that syntrophic partners are left with complementary
1252 set of functions such as amino acid biosynthesis (136, 137). Below we highlight some of the key
1253 conserved features and differences between anabolic pathways present across the different groups
1254 of ANME archaea.

1255


1256 **Anabolic C1 metabolism**

1257 C1 metabolism concerns the enzymes, reaction and cofactors mediating redox transformations of
1258 single carbon molecules and the ways these are incorporated into various biomolecules through
1259 the formation of carbon-carbon bonds. The single known anabolic C1 pathway present in all
1260 ANME is the Wood-Ljungdahl (reductive acetyl-Coenzyme A) pathway. The methyl branch of
1261 this pathway is the methanogenesis pathway described in previous sections. In this pathway,
1262 methyl groups attached to H₄MPT are combined with CO₂ and a pair of electrons from Fd²⁺ to
1263 make acetyl-CoA which can then be used in a wide variety of biosynthetic processes. This pathway
1264 ANME share with methanogens, some of which are autotrophic, i.e. derive their cell carbon from
1265 CO₂ reduction. Still, an important question for interpreting isotopic studies is whether there are
1266 other means of C1 assimilation and, if so, how these alternative mechanisms vary within and
1267 between ANME clades.

1268

1269 The H₄MPT cofactor of the Wood-Ljungdahl pathway was first discovered in methanogenic
1270 archaea and was originally thought to be an archaea-specific modified folate substituting in place
1271 of H₄F in all methanogens and their relatives for C1 carrying reactions. This view held until it was
1272 shown the H₄MPT was also present in methylotrophic bacteria (138). These bacteria contain both
1273 H₄MPT and H₄F and assessing roles of the C1 pools associated with each pathway for either
1274 catabolism or anabolism was a major challenge requiring decades of biochemical, genetic and
1275 comparative genomic analysis to begin to fully understand (139). In methylotrophic bacteria
1276 H₄MPT appears to be the dominant catabolic oxidation pathway for formaldehyde generated by
1277 methanol dehydrogenase, while H₄F can either serve as a catabolic oxidation pathway for certain
1278 methylated compounds or as a mechanism for transferring C1 moieties from formate into the
1279 anabolic serine cycle. Because of the nuanced understanding of C1 metabolism in methylotrophic
1280 bacteria and the apparent importance of maintaining separate C1 pathways in these organisms, we
1281 investigated the extent to which H₄F-bound C1 pools may be present in the ANME archaea (**Fig**
1282 **13**).

1283

Fig 13. H₄MPT vs H₄F C1 metabolisms. (A) Pathway of C1 transformations in ANME-2a, 2b, 2d and 3 based on presence of genes and precedent from *M. barkerii*. H₄MPT is the catabolic C1 carrier, while the H₄F C1 pool is derived from serine and is used for the biosynthesis of purine, thymidine and possibly methionine. (B) Pathway of C1 transformations available to ANME-1 and 2c which lack the vast majority of the H₄F interacting enzymes in (A). H₄F-CHO-specific enzymes in pyrimidine synthesis are replaced by free formate versions in ANME-2c. While present in these organisms, GlyA appears to be the type that interacts with H₄MPT instead of H₄F. Light gray pathways were not found. (C) Colored boxes represent

1292 presence of various H₄F-interacting genes in ANME genomes. Missing genes are represented by gray boxes
1293 with diagonal line fill. Numbers in the second column represent genome completeness. When genes are
1294 together in a gene cluster their boxes are displayed fused together. Gene accession numbers can be found
1295 in **S2 Data**. **(D)** Phylogenetic analysis of GlyA and ThyA homologs found in ANME genomes. Red and
1296 yellow stars indicate GlyA sequences shown to react with H₄MPT and H₄F, respectively. Closed circles
1297 represent branch support values of 100%, open circles >50%. Tree scales represent substitutions per site.
1298 Tree construction parameters are found in the Materials and Methods section. Alignment and tree files can
1299 be found in **S1 Data**.

1300
1301 In ANME-2a, 2b, 2d and 3, MetF is clustered with the genes for MetV, FolP, FolD, GlyA and
1302 PurN, all of which are involved in H₄F-related anabolic C1 reactions (**Fig 13C**). This cluster of
1303 genes is also found in other closely related methanogens in the *Methanosarcinaceae* (51). PurH1,
1304 encoded elsewhere in these genomes, also utilizes H₄F. A range of biochemical and isotope
1305 labelling studies found that these enzymes are involved in anabolic pathways and have
1306 demonstrated their specificity for H₄F in *M. barkeri*. Importantly, the C1 moieties in the H₄F
1307 pathway are not derived from free C1 compounds, as the critical enzyme formate H₄F ligase is not
1308 present in any ANME genome. Instead, in ANME the carbon atoms in compounds that are derived
1309 from methylene-H₄F will come from the C2 position of acetyl-CoA as was shown in *M. barkeri*
1310 (51). Acetyl-CoA derived carbon passes through pyruvate to serine, and through the activity of
1311 serine hydroxymethyl transferase (GlyA), the carbon derived from the C2 of acetate is transferred
1312 from serine to H₄F to be used for biosynthesis of purines, thymine and possibly methionine (**Fig**
1313 **13A**). The methyl group donor for methionine biosynthesis is likely a corrinoid protein, but its
1314 identity remains unknown in methanogens (140).
1315

1316 ANME-2c lacks a MetF of either the normal *Methanosarcinaceae* variety, or the ANME-
1317 1/uncultured archaeal version. Consistent with the lack of the *Methanosarcinaceae* variety of
1318 MetF, all ANME-2c genomes additionally lack MetV, FolP, FolD, PurN and PurH1 (**Fig 13C**).
1319 This absence of H₄F-interacting genes is also true of all the ANME-1 genomes, save for MetV
1320 which is found alongside the ANME-1 MetF. This suggests H₄F is not used in ANME-1 or 2c for
1321 biosynthetic reactions (**Fig 13B**)
1322

1323 GlyA homologs are found in all ANME genomes. Since GlyA is expected to interact with H₄F in
1324 ANME-2a, 2b, 2d and 3, we conducted a deeper analysis of GlyA in order to find an explanation
1325 for their presence in ANME-1 and 2c since they seemed to lack the other H₄F-related genes.
1326 Phylogenetic analysis of GlyA showed a clear differentiation between GlyA in ANME-1 and 2c
1327 vs. those in ANME-2a, 2b, 2d and 3 (**Fig 13D**). GlyA in methanogens without H₄F react with
1328 H₄MPT (54, 55), while the *Methanosarcinaceae* with H₄F contain GlyA active towards H₄F (51).
1329 ANME-1 and 2c GlyA sequences cluster with the GlyA that have been biochemically
1330 characterized to interact with H₄MPT, while GlyA from other ANME cluster with those of
1331 *Methanosarcinaceae* and would be expected to react with H₄F (141). This pattern of
1332 presence/absence of genes and phylogenetic affiliation of homologs suggests that H₄F is present
1333 in the ANME-2a 2b 2d and 3, H₄F is present and used in the same manner as *M. barkeri*. In ANME-
1334 1 and 2c we expect that GlyA is necessary to produce glycine from serine, but that the resulting
1335 C1 moiety is shuttled back into the H₄MPT-bound C1 pool.
1336

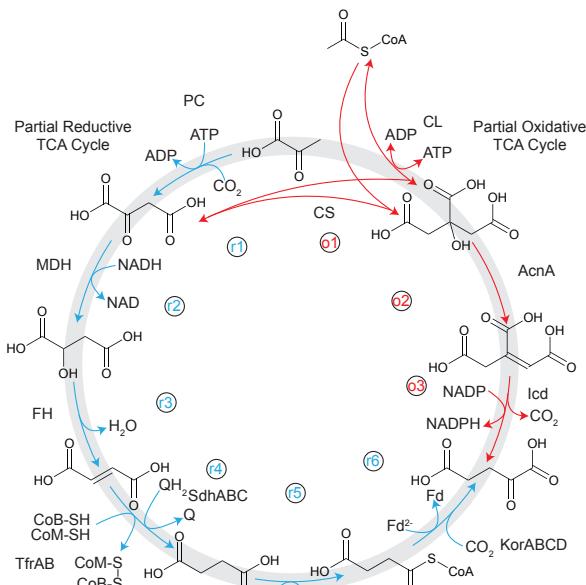
1337 PurH1 and PurN which are absent in ANME-1 and ANME-2c utilize formyl-H₄F as a source of
1338 C1 moieties for two of the carbon atoms in the biosynthesis of purines (**Fig 13A**). An interesting

1339 question is how ANME-1 and 2c are able to grow without these enzymes. Alternate enzymes, PurT
1340 and PurP/PurH2, can carry out these steps, but use free formate as the C1 donor (142). Notably,
1341 ANME-2c contained both PurT and PurH2 which are absent in the ANME-2a, 2b, 2d and 3, while
1342 ANME-1 genomes contained PurH2 but lacked PurT. A lack of both PurT and PurN has been
1343 observed in *Archaeoglobales* and *Methanobacteriales*, which suggests that there is an as yet
1344 unidentified enzyme catalyzing this step since both are known to synthesize their own purines
1345 (142). This distribution of genes involved with purine biosynthesis indicates at least an anabolic
1346 role for formate in ANME-1 and 2c metabolism.

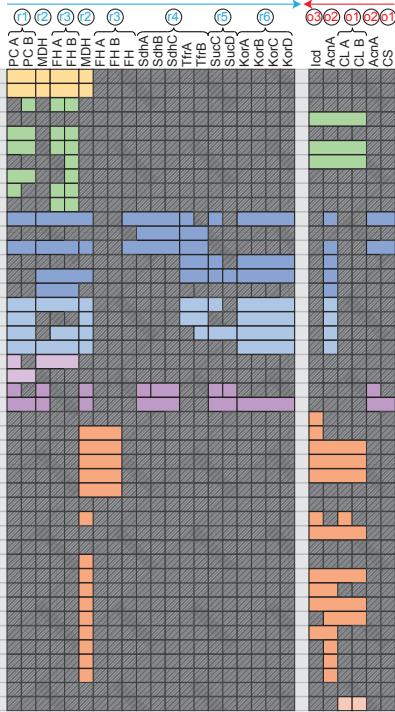
1347
1348 Another important anabolic C1 reaction is carried out by thymidylate synthase, a crucial step in
1349 the synthesis of the thymidine base of DNA, which catalyzes the methylation of deoxyuridine
1350 monophosphate (dUMP) to produce deoxythymidine monophosphate (dTDP). This C1 moiety is
1351 often derived from 5,10-methylene-H₄F, and this reaction can be carried out by two non-
1352 homologous thymidylate synthase proteins, known as ThyA and ThyX (143). The reactions
1353 catalyzed by these enzymes are slightly different, with ThyA using the H₄F itself as an electron
1354 donor to reduce the methylene to methyl, producing a dihydrofolate product. ThyX in contrast
1355 utilizes NAPDH in the reaction, leaving H₄F in the tetrahydro oxidation state.

1356
1357 The genomes of ANME-2a, 2b, 2c, 2d, and 3 contain ThyA, whereas most ANME-1 have ThyX.
1358 The only exception to this is the small ANME-1 subgroup comprised of genomes GoMg4 and SA
1359 that contain ThyA instead of ThyX, adding to the list of unique features of this ANME-1 subclade.
1360 Phylogenetic reconstruction of ThyA homologs revealed a similar split between ANME with and
1361 without H₄F; ANME-2a, 2b, and 3 cluster with their close methanogenic relatives, while ANME-
1362 1 and 2c cluster with *Methanocellales*. Curiously ANME-2d also cluster with ANME-1 and 2c
1363 although they contain all the other H₄F interacting proteins. Much less is known about ThyA
1364 biochemistry in methanogens. Labeling and biochemical studies have not been carried out to the
1365 same degree as with GlyA making it difficult to predict the cofactor specificity for either of these
1366 ThyA clusters. Due to the presumed lack of H₄F in ANME-1 and 2c the ANME-1, 2c and 2d
1367 cluster likely utilizes H₄MPT, while the ANME-2a, 2b and 3 cluster utilizes H₄F (**Fig 13A and**
1368 **13B**).

1369
1370 The difference between using ThyX or ThyA could be particularly useful because thymidylate
1371 synthase has recently been the subject of great interest as a druggable target in *Mycobacterium*
1372 *tuberculosis*. Humans use ThyA, while ThyX is thought to be essential for *M. tuberculosis*, and
1373 various ThyX inhibitors are being investigated for clinical antimicrobial uses (144). If ThyX
1374 inhibitors are shown to specifically inhibit ANME-1 they could be valuable tools for determining
1375 the contribution of ANME-1 to methane oxidation in mixed ANME communities.


1376
1377 **Apparent amino acid prototrophy**
1378 Obligate coupling between the energy metabolisms of syntrophic organisms has been suggested
1379 to lead to additional metabolic dependencies such as amino acid or vitamin auxotrophies through
1380 adaptive gene loss (136, 137). Yet, the genomes of all ANME clades contain a near complete
1381 complement of genes predicted for synthesizing all amino acids, including many of the pathway
1382 modifications described from cultured methanogens (**S15 Fig**). Of the enzymes that are widespread
1383 in related methanogens, only phosphoribosyl-ATP diphosphatase (EC 3.6.1.31), a step of histidine
1384 biosynthesis is not found in any other ANME genomes, with the exception of ANME-3 (**S15 Fig**).

1385 The gene responsible for this step is also absent in *Archaeoglobus fulgidus* and *Nitrosopumilus*
1386 *maritimus*, both of which are capable *de novo* histidine synthesis, suggesting other unknown
1387 mechanisms exist for completing this step of histidine biosynthesis (145).


1388
1389 Other isolated steps in amino acid synthesis were also unannotated in ANME genomes, however
1390 they were also missing in related methanogens known to complete these steps in an as yet
1391 uncharacterized manner. ANME genomes appear to lack phosphoserine transaminase but this is
1392 possibly complemented by a broad specificity aspartate aminotransferase as has been described in
1393 other methanogens (146). Aromatic amino acids appear to be produced via the 6-deoxy-5-
1394 ketofructose-1-phosphate (DKFP) pathway to produce shikimate (147–149), however DKFP
1395 synthase was not detected in most of the ANME genomes or in many of the *Methanosaarcinales*,
1396 again suggesting an as yet unidentified alternate gene may be used in this process (**S15 Fig**).
1397 Methionine appears to be synthesized using the partially described pathway converting aspartate-
1398 semialdehyde directly to homocysteine, though not all enzymes are known for this pathway (150).
1399 The final steps of tyrosine and phenylalanine synthesis did not have annotated genes in many
1400 methanogens or ANME genomes but may be complemented by a broad specificity amino acid
1401 transaminase. Finally, histidinol-phosphatase (EC3.1.3.15) that is also part of histidine
1402 biosynthesis is unannotated in all of the ANME and methanogen genomes, suggesting an alternate,
1403 undiscovered gene operating at this step.
1404

1405 **Incomplete partial TCA cycles for 2-oxoglutarate synthesis**

1406 Many biomolecules including porphyrins and amino acids are synthesized from 2-oxoglutarate,
1407 and this intermediate comes from the TCA cycle beginning with acetyl-CoA sourced from CH₃-
1408 H₄MPT and CO₂ via the acetyl-CoA decarbonylase/synthase complex (ACDS). In methanogens,
1409 a complete TCA cycle is not needed. Instead, one of two partial pathways is present to produce 2-
1410 oxoglutarate for biosynthesis: either the partial TCA cycle operates in the oxidative direction
1411 passing through isocitrate, as found in the *Methanosaarcinales*, or it runs in the reductive direction
1412 through succinate, as in *Methanococcus* (151)(**Fig 14**). Surprisingly, ANME-2a and 2b largely
1413 contain the enzymes of the reductive partial TCA cycle, diverging from their close
1414 *Methanosaarcinaceae* relatives (**Fig 14**). In contrast, the ANME-1 and 2c universally lack some of
1415 the genes in the reductive pathway, but contained the three genes catalyzing the reactions in the
1416 partial oxidative pathway. This pathway would involve ATP citrate lyase operating in the direction
1417 of ATP production, which is not typical. While some ANME-2a come close to having a complete
1418 TCA cycle, no single genome was found that contains all steps in the pathway, supporting the
1419 notion that these enzymes are more used as a means to make an important biosynthetic
1420 intermediate, not for running a complete reverse TCA cycle for carbon fixation. The ANME-3
1421 genomes lack the complete set of genes for either pathway, and it is currently unclear how they
1422 can produce 2-oxoglutarate.
1423

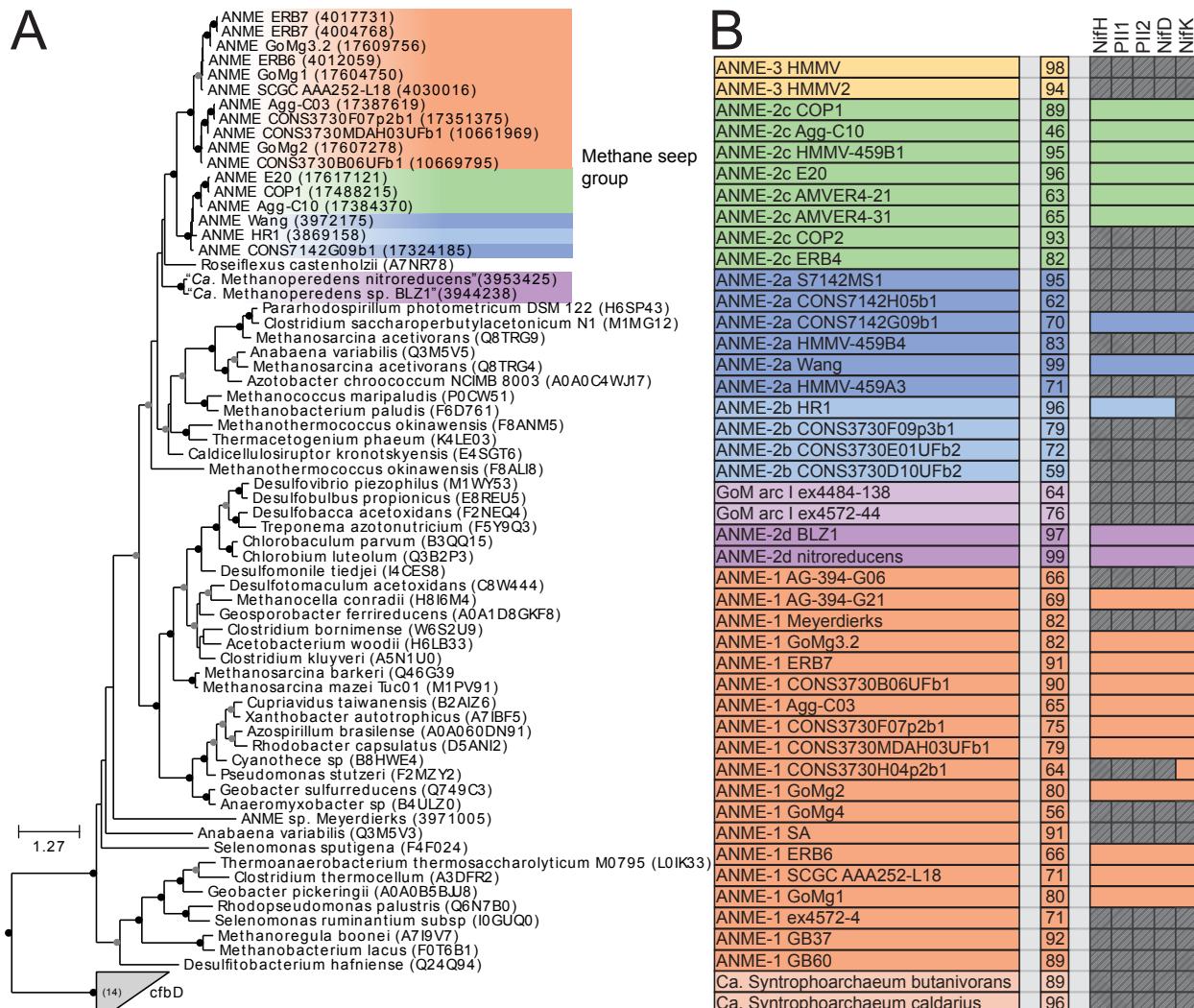
ANME-3 HMMV	98
ANME-3 HMMV2	94
ANME-2c COP1	89
ANME-2c Agg-C10	46
ANME-2c E20	96
ANME-2c AMVER4-21	63
ANME-2c AMVER4-31	65
ANME-2c COP2	93
ANME-2c ERB4	82
ANME-2a S7142MS1	95
ANME-2a CONST7142H05b1	62
ANME-2a CONST7142G09b1	70
ANME-2a HMMV/459B4	83
ANME-2a Wang	99
ANME-2a HMMV/459A3	71
ANME-2b HR1	96
ANME-2b CONST3730F09p3b1	79
ANME-2b CONST3730E01Ub2	72
ANME-2b CONST3730D10Ub2	59
GoM arc I ex4572-138	64
GoM arc I ex4572-44	76
ANME-2d BLZ1	97
ANME-2d nitroreducens	99
ANME-1 AG-394-G06	66
ANME-1 AG-394-G21	69
ANME-1 Meyerbergs	82
ANME-1 GoMg3.2	82
ANME-1 ERB7	91
ANME-1 CONS3730B06UFb1	90
ANME-1 Agg-C03	65
ANME-1 CONS3730F07p2b1	75
ANME-1 CONS3730MDAH03UFb1	79
ANME-1 CONS3730H04p2b1	64
ANME-1 GoMg2	80
ANME-1 GoMg4	56
ANME-1 SA	91
ANME-1 ERB6	66
ANME-1 SCGC AAA252-L18	71
ANME-1 GoMg1	80
ANME-1 ex4572-4	71
ANME-1 GB37	92
ANME-1 GB60	89
Ca. Syntrophoarchaeum butanivorans	89
Ca. Syntrophoarchaeum caldarius	96

1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434

Fig 14. TCA cycle gene present in ANME archaea (A) Schematic of the enzymes and reactants in the partial oxidative and reductive TCA cycles in ANME that lead to 2-oxoglutarate for the purpose of producing anabolic intermediates for biosynthesis. Reductive pathway shown in blue, oxidative pathway shown in red. (B) Colored boxes represent presence of various TCA cycle genes in ANME genomes. Missing genes are represented by gray boxes with diagonal line fill. Numbers in the second column represent genome completeness. When genes are together in a gene cluster their boxes are displayed fused together. Note: some steps can be carried out by multiple different enzyme systems. Gene accession numbers can be found in S2 Data.

1435

Additional ANME genomic features of interest


1436
1437
1438
1439
1440

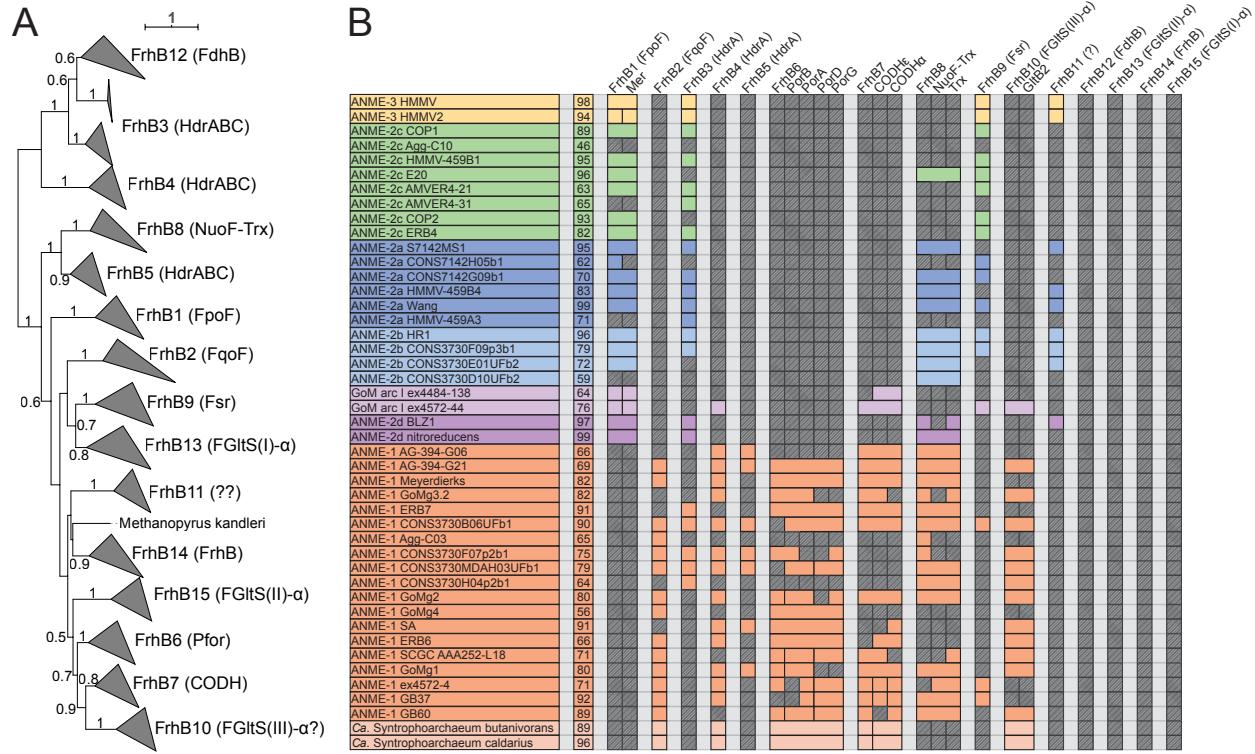
Nitrogenase in ANME

1441
1442
1443
1444
1445
1446
1447
1448
1449
1450

A phylogeny of the large subunit of nitrogenase, NifD, indicates that the ANME nitrogenases of the “methane seep group” form a monophyletic clade (Fig 15A). The closest relatives of this group are from *Roseiflexus castenholzii*, which was also reported for *nifH* gene clones (152). This cluster is notably divergent from the NifD in methanogenic *Methanosaecinales* capable of N₂ fixation (Fig 15A). The ANME NifD, as well as *R. castenholzii* and *Endomicrobium proavitum*, all contain the conserved cysteine and histidine residues for binding the P-cluster and FeMoCo ligands (153), which suggests they may be functional in nitrogen fixation, consistent with *nifH* transcript expression in the environment and correlated FISH-NanoSIMS analysis of ¹⁵N₂ assimilation (152). All gene clusters of the methane seep group exhibit the gene order NifHI₁I₂DK, and lack the *nifN*

1451 and *nifE* genes that function as molecular scaffolds for the maturation of the FeMo cofactor (**Fig**
 1452 **15B**). These genes were traditionally thought to be crucial for a functioning nitrogenase (154, 155).
 1453 However, recent reports of nitrogen fixation in *E. proavitum*, which also lack *nifEN*, suggests that
 1454 these genes are not strictly necessary for nitrogen fixation (156).
 1455

1456
 1457 **Fig 15. Methane seep group nitrogenase phylogeny and distribution.** (A) Maximum likelihood
 1458 phylogenetic tree of NifD amino acid sequences from the “methane seep” group of nitrogenase, with close
 1459 relatives. Closed circles represent branch support values of 80 to 100%, gray circles between 70 and 80%.
 1460 Tree scales represent substitutions per site. Tree construction parameters are found in the Materials and
 1461 Methods section. Alignments and tree files can be found in **S1 Data**. (B) Presence of seep group nitrogenase
 1462 in genomes presented here. Colored boxes represent presence of various nitrogenase related genes in
 1463 ANME genomes. Missing genes are represented by gray boxes with diagonal line fill. Numbers in the
 1464 second column represent genome completeness. When genes are together in a gene cluster their boxes are
 1465 displayed fused together. Gene accession numbers can be found in **S2 Data**.


1466
 1467 It was unexpected to find nitrogenases of the “methane seep group” in many of our ANME-1
 1468 genomes. Clone libraries of *nifH* amplicons from methane seeps were used to define four major
 1469 groups present and expressed in these habitats referred to as: methane seep group, methanosarcina-

1470 like group, group III and group IV (157). The methane seep group is composed of sequences almost
1471 exclusively found in seep environments and was assigned to members of the ANME-2 based on
1472 multiple lines of evidence (34, 158). Group IV were detected in ANME-1 fosmids and shown to
1473 be poorly expressed by metatranscriptome analysis. This low expression coupled with the fact that
1474 group IV NifH were proposed to be involved in F₄₃₀ biosynthesis instead of nitrogen fixation (159)
1475 led to conclusion that ANME-1 are likely incapable of nitrogen fixation (7). Group III NifH
1476 sequences are largely comprised of sequences similar to those found in *Delta proteobacteria*, likely
1477 corresponding to the ANME's syntrophic partners (157). The *Methanosaarcina*-like group is very
1478 similar to sequences found in genomes of the *Methanosaarcina* genus, and they were expected to
1479 come from low abundance methanogens occasionally present in methane seep environments. The
1480 wide distribution of methane seep group nitrogenase in addition to nitrogenases belonging to the
1481 group IV in ANME-1 suggest that these organisms may also be capable of nitrogen fixation.
1482

1483 The monophyletic nature of the nitrogenase genes in ANME is notable in the context of the
1484 paraphyletic nature of ANME organisms. This form of nitrogenase may have been present in the
1485 common ancestor of all ANME, and was subsequently lost in all methanogenic members of the
1486 *Methanosaarcinaceae* and then replaced with a phylogenetically distinct nitrogenase in some
1487 lineages. Alternatively, separate horizontal gene transfer events could have taken place to insert
1488 this nitrogenase into the various ANME clades which would seem to imply a strong selection for
1489 this specific nitrogenase clade in the ANME metabolism. Notably, ANME-3 is the only ANME
1490 clade lacking a nitrogenase suggesting a requirement for fixed nitrogen, such as porewater
1491 ammonium (160).
1492

1493 **ANME-1 genomes harbor many FrhB/FdhB/FpoF paralogs**

1494 Since F₄₂₀ is an electron carrier expected to be used by ANME we examined the diversity of genes
1495 predicted to be involved in F₄₂₀ redox reactions. A number of proteins that interact with F₄₂₀ have
1496 been discussed above, and many of them share homologous subunits that carry out F₄₂₀ redox
1497 chemistry such as FrhB (F₄₂₀ dependent hydrogenase), FdhB (F₄₂₀ dependent formate
1498 dehydrogenase) and FpoF/FqoF. Other enzymes utilizing this FrhB-like domain are known such
1499 as F₄₂₀-dependent sulfite reductase (Fsr), which has recently been examined in detail in ANME
1500 (17). Surprisingly, our examination of this protein family revealed many additional unknown
1501 paralogs, particularly in ANME-1 (Fig 16). These paralogs were generally monophyletic within
1502 the ANME-1, suggesting duplication and neofunctionalization within the order
1503 *Syntrophoarchaeales* (S16 Fig). The gene clusters containing these FrhB paralogs were often well
1504 conserved, and seemed to contain genes that code for enzymes not generally expected to interact
1505 directly with F₄₂₀. For example, FrhB6 is mainly found in gene clusters containing pyruvate
1506 ferredoxin oxidoreductase, the enzyme responsible for the reductive carboxylation of acetyl-CoA
1507 to form pyruvate. Similarly, FrhB7 was found in gene clusters with CODH alpha and epsilon
1508 subunits. These subunits of the larger CODH/ACS complex are responsible for the carbon
1509 monoxide dehydrogenase activity (161).
1510

1539 dependent reduction in crude cell extracts was attributed to secondary reduction of F₄₂₀ by Fd
1540 (163). The gene clusters here may represent a dedicated system of F₄₂₀ reduction associated with
1541 the breakdown of multi-carbon compounds. Whether this system is used in the breakdown of
1542 carbon storage molecules, or is an important part of ANME catabolism remains to be determined.
1543

1544 Additional noteworthy ANME-specific FrhB paralogs include FrhB10, which are found in gene
1545 clusters with various subunits of glutamate synthase, potentially representing a third putative group
1546 of F₄₂₀-dependent glutamate synthases (164). FrhB8 are found in gene clusters with divergent
1547 NuoF homologs and thioredoxin genes, and are almost exclusively found in ANME groups (**Fig**
1548 **16B, S16 Fig**). While our limited transcriptome data shows many of these FrhB homologs to be
1549 expressed at moderate levels, FrhB7 in ANME-1 GB60 is an exception, with expression levels
1550 near those of the methanogenesis pathway (**S3 Data**). As with the diversity of HdrA-containing
1551 gene clusters, this expansion of FrhB-containing gene clusters in the ANME-1 points to a wide
1552 range of novel electron transport capabilities in ANME-1.
1553

1554 **Extensive Dockerin/Cohesin domain-containing proteins**

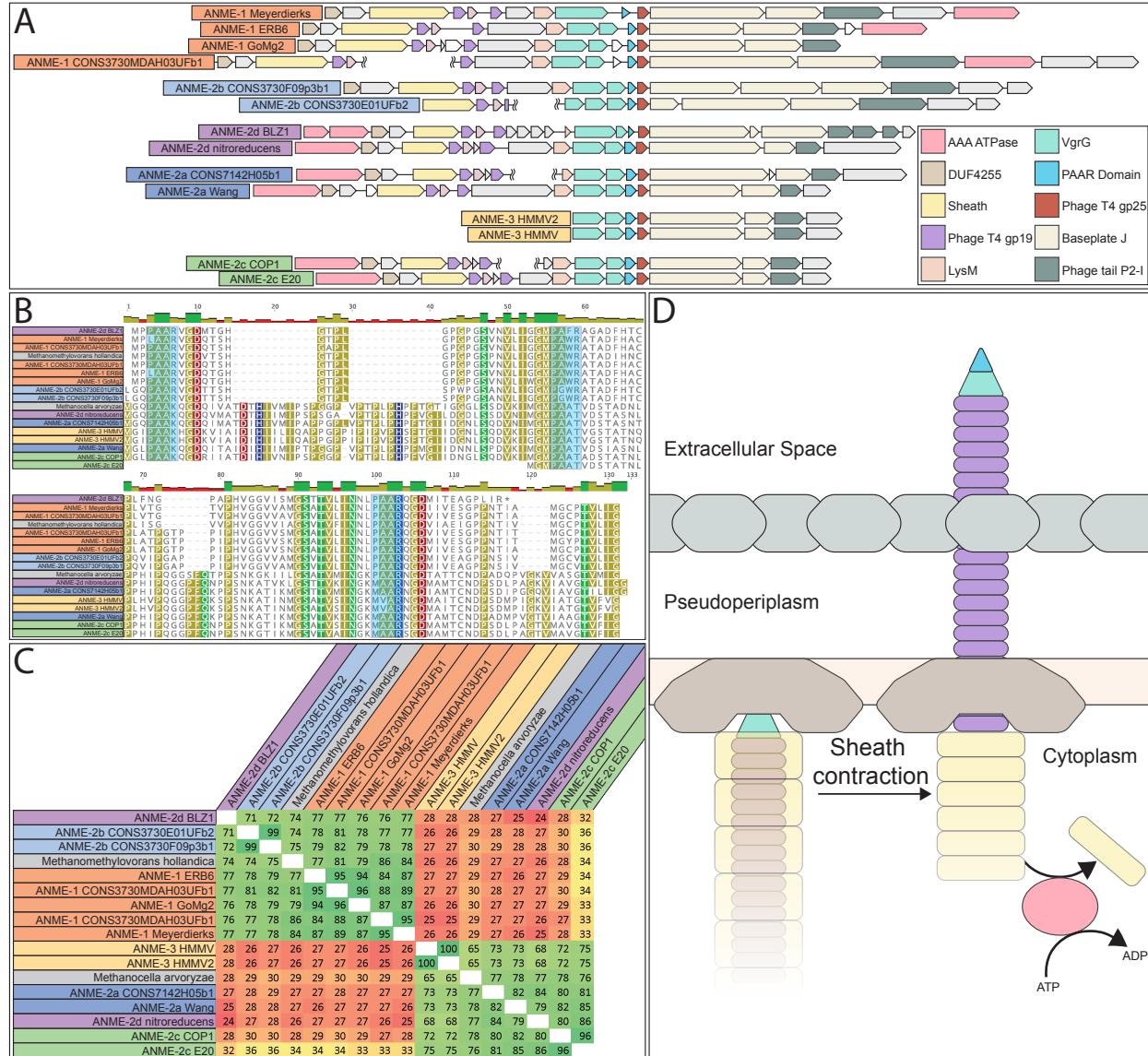
1555 Recently a protein domain study of three marine ANME genomes reported that ANME-1 and
1556 ANME-2a contained a surprising number of proteins predicted to have dockerin or cohesin
1557 domains (42). These domains are best known from their role in the construction of the cellulosomes
1558 which are large, multiprotein complexes that bind and degrade extracellular cellulose in *Clostridia*
1559 and other cellulose degrading bacteria (165). Dockerin and cohesin domains form strong bonds
1560 with one another, and by encoding multiple sets of complementary dockerin and cohesin-
1561 containing proteins many copies of enzymes with cellulolytic activity can be linked to other
1562 proteins containing cellulose binding domain as well as anchored to the cell surface. These
1563 multiprotein complexes can be bound to the cell by anchor proteins that contain cohesion and S-
1564 layer homology (SLH) domains or via covalent linkage to lipids through the action of sortases.
1565

1566 Cohesin and dockerin domains have been found in diverse bacteria and archaea that are not thought
1567 to be involved with cellulose degradation, suggesting functions beyond the well characterized ones
1568 in clostridia (166). Early work found proteins containing dockerin and cohesin domains in
1569 *Archaeoglobus* and these archaeal versions have been verified to perform specific strong dockerin-
1570 cohesin bonds (167, 168). However archaea that contained dockerin or cohein domains did not
1571 contain large so-called “scaffoldin” proteins with multiple copies of cohesin domains which are
1572 required for the formation of large multimeric complexes (166). Since dockerin and cohesin
1573 domains simply facilitate the linkage of functional domains, the implications of these domains are
1574 not clear simply by their presence in the genome.
1575

1576 Dockerin and cohesin domain-containing proteins in bacteria vary considerably between closely
1577 related species in the number and identity of additional domains, and the proteins in ANME are
1578 similarly variable, but a few consistent trends are apparent. In members of ANME-2a, ANME-2c
1579 and ANME-1 there are proteins that consist of a dockerin domain and multiple cohesin domains,
1580 up to as many as five. These scaffoldin-like proteins therefore have the ability to localize multiple
1581 copies of whatever proteins contain their cohesins’ complementary dockerin domains. Common
1582 dockerin containing proteins in ANME are the periplasmic substrate-binding components of ABC
1583 transporters of various types, such as the nickel/dipeptide/oligopeptide (NikA/OppA) system and
1584 the TroA system used for metal ion uptake (169, 170). In most ANME-2c genomes there are

1585 proteins encoding S-layer domains and dockerin domains, suggesting dockerin/cohesin pairing
1586 may be important for attaching functional proteins to the outer layer of the cell and possibly
1587 mediating interactions with bacteria. Using experimental methods to determine which dockerin
1588 and cohesin domains bind to each other will lead to a better understanding of composition of the
1589 ANME extracellular space. A complete list of ANME proteins containing dockerin or cohesin
1590 domains can be found in **S4 Data**.

1591


1592 **Phage-like protein translocation structures**

1593 Phage-like protein translocation structures (PLTSs) are large multiprotein complexes that share
1594 structural and functional similarities to type VI secretion systems, pyocins, and the *Serratia*
1595 *entomophila* antifeeding prophage described in a broad survey of microbial genomes based on
1596 sequence identity and synteny (171). This broad family of related complexes have a wide variety
1597 of functions, from neighboring cell lysis, to morphologic transformation of targeted eukaryotic
1598 cells (172), stabilizing symbiotic interactions (173) and mediating sibling conflict in the
1599 multicellular aggregate bacterium *Myxococcus xanthus* (174). PLTSs are anchored in the
1600 cytoplasmic membrane and upon contraction of the sheath proteins extrude a protein complex with
1601 a sharp spike that penetrates neighboring cell membranes and can deliver various effector proteins
1602 (175). Recent reviews of the known structure and function of these complexes highlight the
1603 conserved features which include phage baseplate-like proteins, sheath proteins, AAA+ ATPases,
1604 LysM-motif proteins for peptidoglycan binding, and VgrG and PAAR-domain spike proteins
1605 (176).

1606

1607 Gene clusters related to these systems were identified in all ANME groups with gene synteny
1608 similar to that of *Methanomethylovorans hollandica* that was described in a recent review (171)
1609 (**Fig 17**). This gene cluster was relatively well expressed in ANME-2c (**S3 Data**), and could
1610 potentially play an important role in the symbiosis between ANME and partner bacteria, or
1611 alternatively defend AOM consortia from invasion. Interestingly, PLTS clusters from closely
1612 related ANME-2a and 2b were very different from one another, with the ANME-2b sequences
1613 much more closely related to the ones found in ANME-1 (**Fig 17C**). In the two ANME-2d genomes
1614 available, one encoded the version like ANME-2a, ANME-2c and ANME-3, while the other
1615 ANME-2d genome encoded a version that was very similar to ANME-1 and ANME-2b. This
1616 difference is most apparent in the PAAR domain spike proteins, with ANME-2b much more
1617 similar to the PAAR domain proteins encoded in ANME-1 (**Fig 17C**). It is interesting that such
1618 closely related ANME groups encode such different PLTS systems, and suggests that ANME-1
1619 and 2b may have similar interactions with organisms (possibly syntrophic SRB partners) that are
1620 quite different than those in association with ANME-2a, 2c and 3.

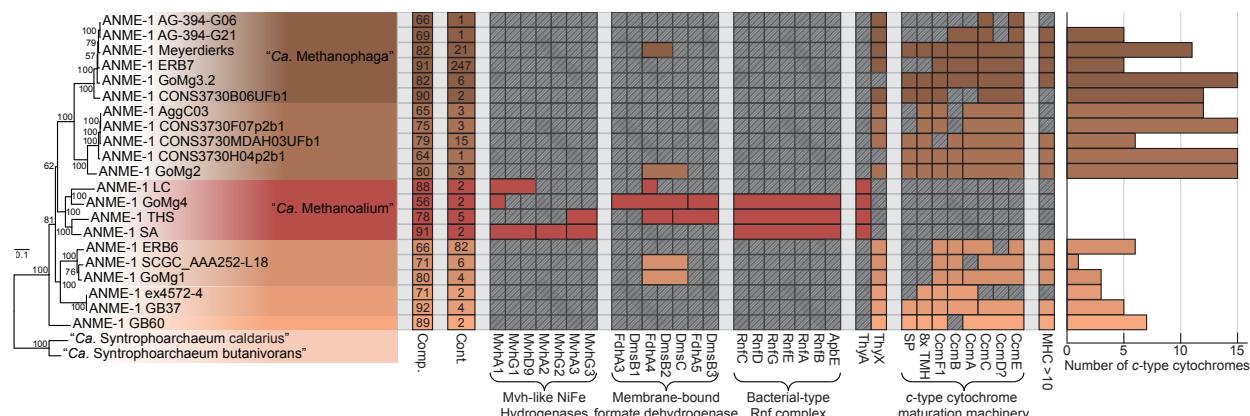
1621

Fig 17. Phage-like protein translocation structures. (A) PLTS gene clusters in ANME genomes. **(B)** Alignment of PAAR domain spike proteins. PAAR motifs highlighted in blue. Alignments were made using muscle 3.8.31 with default settings, and alignment file can be found in **S1 Data**. **(C)** amino acid identity of PAAR domain proteins highlighting two clear groupings. Note: closely related ANME-2a and 2b genomes contain PLTS structures belonging to different clusters. **(D)** Schematic of PLTS function.

1622
1623
1624
1625
1626
1627
1628

1629 Discussion

1630 The evolution and conserved metabolic features of marine ANME archaea


1631 Our investigation of this expanded set of ANME genomes revealed key features present in ANME
1632 that are absent in their methanogenic relatives. While methanogens and methanotrophs use the
1633 same set of core enzyme for their catabolic C1 metabolisms, the key difference occurs in the way
1634 in which electrons are input or output from this pathway. A unifying feature of the ANME archaea
1635 appears to be a multitude of multiheme *c*-type cytochromes that are absent in methanogens. This
1636 expansive repertoire of MHCs, some harboring 30+ heme binding domains in ANME-2 and 3,

1637 specific cytochrome *c* maturation machinery, and associated conserved hypothetical proteins are
1638 features only shared by certain members of the *Archaeoglobales* that are known to conduct EET.
1639 The large ANME-MHCs with S-layer fusions and the repurposing of the cytochrome *b* subunit of
1640 membrane bound hydrogenases into a potential methanophenazine:cytochrome *c* oxidoreductase
1641 complex (Mco) remain some of the clearest examples of bioenergetic novelty in ANME compared
1642 to their methanogenic relatives. The study of EET in symbiotic associations is relatively new, and
1643 there are no specific marker proteins yet identified that definitively confer EET ability. There is
1644 however a general pattern in that the genomes of EET-capable organisms contain many, often
1645 exceptionally large, MHCs, as well as systems enabling the transfer of electrons through the
1646 various outer layers of the cell. ANME appear to contain all of these genomic features, and this
1647 clear EET potential represents an important physiological difference between ANME and
1648 methanogens. This electron transfer system, not any modification to the C1-handling enzymes
1649 themselves, is likely the major determining factor in the directionality of the “reverse
1650 methanogenesis” pathway.
1651
1652 Another common feature of ANME genomes that set them apart from their methanogenic
1653 counterparts is the high abundance and diversity of soluble Hdr complexes with divergent formate
1654 dehydrogenase (FdhAB) homologs. This is especially true for ANME-1 that lack certain features
1655 often found within *Methanosaerincaceae* including HdrDE and, in most cases, the Rnf complex. It
1656 is likely that these soluble Hdr complexes are involved in electron recycling and transfer processes
1657 in at least ANME-1, but also ANME-2 and 3 based on their conservation and expression levels.
1658 So far, experimental evidence suggests that formate is not an electron carrying intermediate in
1659 AOM, and the canonical formate transport protein (FdhC) is absent. Hence, the specific substrate
1660 and function of these well-conserved complexes remains a fundamental question in ANME
1661 metabolism remaining to be addressed. Regardless of the nature of the electron acceptor utilized
1662 by these Hdr complexes, the reverse methanogenesis model requires that their combined effect is
1663 a net oxidation of CoM-SH/CoB-SH, presumably through electron confurcation.
1664
1665 This expanded set of ANME genomes also helps us better understand their evolutionary history.
1666 The paraphyletic nature of ANME suggests that the transition between methanogenic and
1667 methanotrophic metabolisms has occurred multiple times. The order of these events is not
1668 immediately evident, as multiple scenarios could lead to the observed pattern of metabolism and
1669 gene content. This is particularly true in the case of ANME-3, which contains multiple features
1670 identified in ANME-2 genomes including large MHC proteins, specific duplicated CcmF proteins,
1671 the *b*-type cytochrome associated with Rnf, divergent FdhAB associated with HdrA genes, among
1672 others. The presence of these bioenergetic genes within ANME-3, which appear to be the most
1673 recently diverged from within the *Methanosaerincaceae*, strongly suggests that this repertoire is
1674 critical to the methane oxidation phenotype. With the present data we do not believe there is a
1675 clear parsimony-based argument to distinguish between the possibilities that these ANME-specific
1676 features represent a gain of function through horizontal gene transfer into the ancestor of ANME-
1677 3, or whether they were lost in the methanogenic members of the *Methanosaerincaceae*.
1678
1679 It has long been assumed that ANME evolved from methanogenic ancestors and our current
1680 phylogenies support this scenario, as many groups of hydrogenotrophic methanogens emerge from
1681 the archaeal tree before the rise of the deep branching ANME-1 (Fig 1). With this expanded set of
1682 ANME genomes, another interesting evolutionary possibility presents itself: the entire group of

1683 methylotrophic methanogens within the *Methanosarcinaceae* may be derived from a
 1684 methanotrophic ancestor. These methanogens run six of seven steps of the methanogenesis
 1685 pathway in reverse. This fact was used early on to suggest “reverse methanogenesis” was
 1686 reasonable for ANME, since they would only have to reverse one additional step. The order of our
 1687 discovery of these metabolisms may not reflect the order with which these metabolisms evolved,
 1688 and the complete reversal of the methanogenesis pathway may date back to the last common
 1689 ancestor of ANME-1 and the other ANME. In this evolutionary scenario, methylotrophic
 1690 methanogenesis in the *Methanosarcinaceae* evolved by the simple acquisition of methyl
 1691 transferases and the subsequent loss of ANME-specific systems of EET. Instead of transferring
 1692 electrons from methane oxidation to the outside of the cell, the *Methanosarcinaceae* electrons are
 1693 funneled from methyl group oxidation back into the cytoplasm to reduce heterodisulfide.
 1694

1695 **The “Methanoalium” group of ANME-1 and the potential for methanogenesis in ANME**

1696 The clade within ANME-1 represented by the SA and GoM4 genomes is an exceptional group
 1697 which requires further detailed study. This group has previously been referred to as the “freshwater
 1698 ANME-1 clade” and has been found in 16S rRNA gene surveys of various terrestrial and marine
 1699 environments (23, 177, 178). A recent report constructed the first genome from this group of
 1700 ANME-1 from a Tibetan hot spring (THS) (12). We recognized similar characteristics between
 1701 the THS genome and the GoM4 and SA genomes reconstructed here, including the bacterial-type
 1702 Rnf and the absence of MHC. Although not mentioned previously, we find the same MvhA-type
 1703 hydrogenase in the ANME-1-THS genome and an absence of cytochrome maturation machinery.
 1704 As a final check on the novel characteristics of this unusual ANME-1 clade, we reconstructed one
 1705 additional genome from a recent metagenomic dataset of the Lost City hydrothermal field. This
 1706 site has reported 16S rRNA genes and McrA sequences belonging to this freshwater ANME-1
 1707 clade (12, 177–179). This additional Lost City ANME-1 MAG was 88% complete with 2%
 1708 contamination and notably had all the hallmark genomic features observed in GoM4, SA, and THS
 1709 (Fig 18).
 1710

1711 **Fig 18. Comparison between “Ca. Methanoalium” and other ANME-1 genera.** Phylogenomic tree
 1712 based on concatenated marker proteins highlighting individual ANME-1 genera, two of which have been
 1713 assigned “*Candidatus*” names. Estimated genome completeness and contamination are shown in the first
 1714 and second columns. Comparison of the presence of hydrogenase, membrane-associated formate
 1715 dehydrogenases, Rnf complexes and cytochrome maturation machinery highlights important differences in
 1716 electron flow between these genera. Genomes encoding MHC with more than 10 CxxCH heme-binding
 1717 motifs are marked in the final column. Bar chart on the far right demonstrates the number of *c*-type
 1718 cytochromes per genome. Only branch support values >50% are shown for clarity. Tree scales represent
 1719

1720 substitutions per site. Tree construction parameters are found in the Materials and Methods section.
1721 Alignment and tree files can be found in **S1 Data**, and gene accession numbers can be found in **S2 Data**.
1722

1723 A number of investigations of ANME-dominated environments have concluded that some ANME
1724 lineages, particularly ANME-1, maybe have net methanogenic capabilities (180–183). Genomic
1725 analysis alone cannot falsify the hypothesis that ANME archaea can gain energy from
1726 methanogenesis, due to the similarities in the main methanogenic pathway enzymes. Yet,
1727 incubations of methane seep samples with methanogenic substrates has only succeeded in
1728 stimulating the growth of low abundance traditional methanogens, never ANME (93). The
1729 evolution between methanotrophy (e.g. ANME-2a, 2b and 2c), and methanogenesis (canonical
1730 members of the *Methanosaerincinaceae*) as well as the apparently recent transition back to
1731 methanotrophy in ANME-3 appears to include biochemical innovation and genomic adaptation
1732 which occurs on evolutionary timescales, but not ad hoc in the environment. Likely, in a group as
1733 old and diverse as ANME-1 (representing at least 6 genera), such a transition may have also
1734 occurred. We hypothesize that this clade of ANME-1 (SA, GoM4, THS, and LC) that encode for
1735 hydrogenases and lack *c*-type cytochromes may be bona fide methanogens. However, the little
1736 evidence currently available for representatives of this clade from the terrestrial subsurface
1737 suggests that members of this clade may carry out methane oxidation as well (23). Whether this
1738 process occurs in association with a syntrophic partner is currently unknown. What is clear is that
1739 this clade's genomic content and environmental distribution sets them well apart from other
1740 ANME. We propose the genus "*Ca. Methanoalium*" for the "freshwater ANME-1 clade" in
1741 recognition of the differences in their metabolic potential and unusual environmental distribution
1742 (see **S1 File** for etymology).
1743

1744 **Anabolic independence of the ANME archaea from their syntrophic partner**

1745 The tight metabolic coupling between syntrophic ANME and SRB could be expected to result in
1746 reductive biosynthetic pathway loss in one of the partners as predicted in the "Black Queen
1747 Hypothesis" (137). Unfortunately, the partner SRB have not yet been cultured, and thus it remains
1748 unknown if these show specific genomic adaptations to a consortia lifestyle. However, we do not
1749 observe obvious evidence of this occurring at the level of major ANME lineages for amino acids.
1750 If this sort of reductive evolution does occur in the ANME-SRB symbiosis, it may be occurring at
1751 the species or strain level, and would be very difficult to confidently detect in coarse-grained
1752 genomic analysis with partial genomes. More detailed investigations of the question of
1753 complementary biosynthetic pathways between syntrophic partners will be best studied in
1754 sediments or enrichment cultures that are dominated by a single ANME-SRB pairing, where near
1755 complete genomes of both partners can be generated. But, on the broad scale of ANME evolution
1756 to their syntrophic lifestyle, there does not seem to be a concerted loss of anabolic independence
1757 in any of the major lineages. This result is distinct from that described in some other syntrophic
1758 communities such as those performing the anaerobic oxidation of hexadecane (136).
1759

1760 **Biogeochemical and microbiological consideration of ANME carbon signatures**

1761 Bacterial methylotrophs and methanotrophs have traditionally been defined as organisms that
1762 derive both their carbon and energy from the oxidation of C1 compounds or methane, respectively
1763 (184, 185). ANME were originally called methanotrophs because it appeared that their energy
1764 metabolism was based on methane oxidation, and the ^{13}C -depleted isotope signature of their lipids
1765 was thought to be evidence of the assimilation of ^{13}C -depleted methane carbon. Biogeochemical

1766 studies additionally show that the respiration of methane to CO₂ dominates carbon turnover in
1767 most ANME environments, and thus that the dissolved inorganic pool of carbon is mostly
1768 methane-derived. As a consequence, the carbon assimilated for biomass production is only a few
1769 percent of the methane oxidized and thus also methane-derived from a biogeochemical perspective
1770 (186, 187). However, *in vivo* isotope-probing experiments showed that ANME biomass is
1771 effectively labelled by ¹⁴CO₂ or ¹³CO₂, leading to the conclusion that ANME assimilate a mixture
1772 of CO₂ and CH₄ (187, 188), or almost only CO₂ (189). Short pulse-chase experiments with ¹⁴CO₂
1773 and ¹⁴CH₄ also support this latter interpretation (93).

1774
1775 Microbiological considerations for the classification of this C1 metabolism were best articulated
1776 by Leadbetter and Foster in the context of aerobic methane oxidizing bacteria (190):
1777

1778 *“Although there is no universally accepted definition of the nature of the autotrophic mode*
1779 *of life, the ability to grow at the expense of CO₂ as the exclusive source of carbon for cell*
1780 *synthesis remains as the cardinal consideration in the concept of an autotroph.*

1781 *The question needing study is whether, during growth on methane, these bacteria*
1782 *dehydrogenate the methane molecule to CO₂ and “active” hydrogen, following this with a*
1783 *reductive assimilation of the CO₂ with “active” hydrogen.”*

1784
1785 The dominant bacterial methanotrophs in most environments assimilate methane-derived carbon
1786 at the oxidation state of formaldehyde for a large portion of their biomass using either the serine
1787 or ribulose monophosphate pathway (RuMP) (185). Some organisms have been discovered that
1788 use the oxidation of C1 compounds for their source of energy, but use a Calvin-Benson-Bassham
1789 (CBB) cycle for the fixation of CO₂. These organisms presented a problem for nutritional
1790 nomenclature because the definition of methylotroph/methanotroph normally involves the
1791 incorporation of cell carbon. For methylotrophs, *Paracoccus denitrificans* uses a CBB cycle when
1792 growing on C1 compounds, and this has earned them the label of “autotrophic methylotroph” (185,
1793 191). More recently, the methane-oxidizing bacteria *Methylacidiphilum fumariolicum* and
1794 “*Candidatus Methyloirabilis oxyfera*” have been found to operate a CBB cycle for carbon
1795 assimilation from CO₂ (192, 193). These authors have taken a similar naming scheme, referring to
1796 *M. fumariolicum* as an “autotrophic methanotroph” (192). These examples from bacteria
1797 suggesting that the “methanotroph” label should be conserved for ANME, and the only question
1798 remaining is whether to adopt the “autotroph” label as well.

1799
1800 The predominant labelling of ANME biomass by ¹⁴CO₂ or ¹³CO₂ is intriguing, and suggests that
1801 they could either act as true autotrophs, or produce biomass by a combination of CO₂ assimilation
1802 and the incorporation of carbon at other oxidation states, as has been described for some other
1803 archaea and methanogens. (194, 195). All ANME genomes encode the Wood-Ljungdahl pathway
1804 which can be used for carbon fixation, but the methyl branch of this pathway is used for methane
1805 oxidation. One option to explain these isotope labelling results is that ANME are autotrophic
1806 methanotrophs, and have an additional CO₂ fixation pathway so that anabolic and catabolic C1
1807 reactions can run in opposite directions simultaneously, such as the CBB cycle in *M. fumariolicum*.
1808 However, we have not found evidence for a second carbon fixation pathway in the ANME.
1809 Another possibility could be a complete assimilatory Wood-Ljungdahl pathway utilizing H₄F as
1810 found in bacteria, but the H₄F-interacting enzymes found in some ANME-2 and -3 would not allow
1811 them to activate CO₂ via formate, and are instead expected to be involved in specific anabolic

1812 reactions well downstream of acetyl-CoA production. If the ANME archaea are autotrophs, it
1813 remains to be determined how this is carried out from a biochemical perspective.

1814
1815 Another plausible explanation for the predominant labelling of ANME biomass by $^{13}\text{CO}_2$ could be
1816 carbon back flux along the methyl branch on the Wood-Ljungdahl pathway to the point of $\text{CH}_3\text{-H}_4\text{MPT}$, against the net flux of carbon. Metabolisms operating at close to equilibrium can present
1817 challenges to isotope labeling studies because the forward and reverse fluxes through that pathway
1818 approach equal values (35). AOM operates as close to equilibrium as is thought to be possible to
1819 support life, and most of the steps of the methyl branch of the Wood-Ljungdahl pathway are
1820 essentially at equilibrium (37). Under these conditions it seems quite possible that the isotope label
1821 of the DIC in these incubations could back flux up through the methyl branch of the Wood-
1822 Ljungdahl pathway to the point of $\text{CH}_3\text{-H}_4\text{MPT}$, even if the net reaction is in the oxidative
1823 direction. Further experiments are required to distinguish between these possible explanations, and
1824 determine whether ANME should be referred to as “autotrophic methanotrophs” or simply
1825 “methanotrophs”.
1826

1827
1828 **MetF, F_{420} -dependent NADP reductase and electron bifurcation complexes**

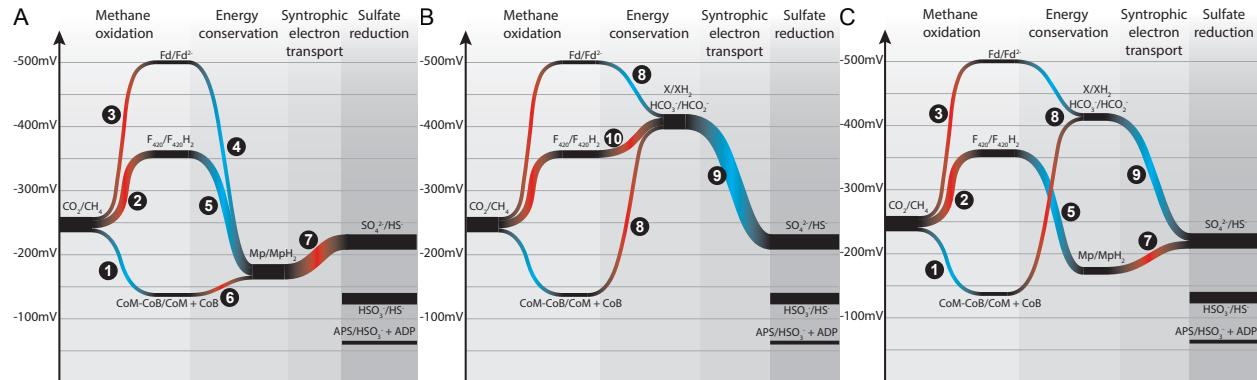
1829 There remains no clear explanation for what evolutionary or bioenergetic pressures may have led
1830 to the loss of Mer and presumed replacement by MetF in ANME-1. An important challenge posed
1831 by this switch is that MetF interacts with NADPH instead of F_{420}H_2 , and it is not immediately
1832 apparent how electrons from NADPH are harnessed for energy production in ANME-1. In one
1833 sense, this is similar to the case of methanogens that use multicarbon alcohols as electron donors
1834 for CO_2 reduction (196). Some of these methanogens contain alcohol dehydrogenases that utilize
1835 F_{420} as the electron acceptor, and therefore the electrons liberated from the alcohols as F_{420}H_2 can
1836 immediately be used in the methanogenesis pathway. Other methanogens however contain alcohol
1837 dehydrogenases that are NADPH specific and so a secondary oxidoreductase is needed to transfer
1838 NADPH electrons onto F_{420} . It was discovered that in this latter group of methanogens, high
1839 activities of $\text{F}_{420}\text{H}_2\text{:NADP}$ oxidoreductase (Fno) could be found, and the protein responsible was
1840 purified, characterized and sequenced (196, 197). If an Fno enzyme was expressed at sufficiently
1841 high levels in ANME-1 then the electrons on NADPH derived from MetF could be fed back into
1842 the F_{420} pool for catabolism, just as in the alcohol-oxidizing methanogens.
1843

1844 Remarkably, ANME-1 universally lack homologs of Fno although they are present in all other
1845 ANME and methanogens that we examined. In most methanogens Fno is present for the reverse
1846 reaction, the production of NADPH for anabolic reactions. This conspicuous absence in ANME-1
1847 of what seems to be a nearly universally conserved mechanism of hydride transfer between the
1848 F_{420}H_2 and NADPH pools is noteworthy on its own, but is particularly interesting when considered
1849 in the context of the Mer/MetF switch. If ANME-1 produce NADPH from MetF, they will have
1850 more electrons than they need for anabolism through this reaction since this amounts to a quarter
1851 of all methane-derived electrons. If this is how MetF is being utilized in ANME-1, then how these
1852 NADPH electrons are transferred back into an energy conservation pathway is an important open
1853 question. Most ANME-1 also contain a homolog of what we have designated HdrA9, 10 or 11,
1854 which constitute HdrA with large insertions with high sequence identity with NfnB. This subunit
1855 interacts with NADPH in the well characterized Nfn systems (78), so if MetF produces NADPH,
1856 these modified HdrA/NfnB fusions may represent a novel path back into the catabolic energy
1857 metabolism of ANME-1, confurcating electrons from NADPH and CoM-SH/CoB-SH.

1858

1859 The prevalence of many diverse copies of HdrABC systems in ANME-1 may offer an alternative
1860 explanation for how MetF-derived electrons are directed back into central catabolism. Recently a
1861 protein complex containing MetFV, HdrABC and MvhD was discovered in *Moorella*
1862 *thermoacetica* that is suggested to carry out electron bifurcation with NADH, CH₂=H4F and other
1863 unknown reactants (52). Genomic analysis revealed the genes coding for these six proteins were
1864 found in a gene cluster together in *M. thermoacetica* and our examination of this HdrA homolog
1865 in this complex is much like HdrA 3 and 4 described above, with two fused HdrA domains with
1866 complementary Cys197/N-terminal domain loss. While none of the ANME-1 genomes analyzed
1867 here contain MetF in a gene cluster with HdrA homologs, the two “*Ca. Syntrophoarchaeum*”
1868 genomes both contain gene clusters containing MetFV, HdrA and MvhD. If MetF catalyzes the
1869 CH₃-H₄MPT oxidation step in ANME-1, it may form complexes with one of the many HdrA
1870 paralogs. This would allow electrons to funnel directly into a bifurcation/branching reaction
1871 without passing through the F₄₂₀H₂ pool. In any case, electron flow through ANME-1 is likely to
1872 involve a significant amount of novelty that will require detailed biochemical studies to test these
1873 genomic predictions.

1874


1875 **An energetic argument for both chemical diffusion and direct electron transfer in ANME-** 1876 **SRB syntropy**

1877 Two strategies for syntrophic electron transfer could be widespread in the ANME-SRB syntropy
1878 based on the conserved features of energy metabolism described here, EET utilizing the abundant
1879 MHC proteins, as well as diffusion of soluble electron carriers potentially produced by the diverse
1880 HdrABC complexes. A possible explanation for the conservation of these two systems in the
1881 genomes of ANME is that a mixed electron transfer through both systems may best suit an equal
1882 division of energy between the ANME and their sulfate reducing syntrophic partners.

1883

1884 If ANME-2a were to use Fpo, Rnf and HdrDE to oxidize F₄₂₀H₂, Fd²⁻, and CoM-SH/CoB-SH, our
1885 expectation would be that all eight electrons from methane oxidation would end up on MpH₂ (**Fig**
1886 **19A**). This would conserve abundant energy for the ANME through the Fpo and Rnf complexes,
1887 but the redox potential of the Mp/MpH₂ couple ($E_0' = -165\text{mV}$) is more than 50mV more positive
1888 than the SO₄²⁻/HS⁻ redox couple ($E_0' = -217\text{mV}$). If all electrons were to pass through MpH₂ to the
1889 SRB their entire metabolism would be endergonic by about 40kJ/mol sulfate. For an equitable
1890 sharing of energy between ANME and SRB, the average redox potential of electrons during
1891 transfer should be approximately halfway between the CH₄/CO₂ ($E_0' = -240\text{mV}$) redox potential
1892 and the SO₄²⁻/HS⁻ couple ($E_0' = -217\text{mV}$). The MpH₂ pool would need to be more than 90%
1893 reduced to drop its midpoint potential to ~ -230mV from -165mV, but this would render the HdrDE
1894 reaction impossible to run in the CoM-SH/CoB-SH oxidizing direction since the heterodisulfide
1895 E_0' is approximately 100mV more positive than this. The situation would be even more difficult
1896 for ANME-1 which are predicted to use a menaquinone which is very likely at a higher potential
1897 than MpH₂, requiring the membrane-bound electron carrier pool to be greater than 99% reduced
1898 for the SRB to yield any energy accepting all eight electrons from menaquinone. In addition,
1899 whatever the MpH₂ or QH₂ pool midpoint potential is, it will be lower than the potential the SRB
1900 will receive electrons at, since the transfer from ANME to SRB through MHC must be down a
1901 redox gradient to maintain electron flow.

1902

Figure 19 Energetics of mixed electron transfer Energy flow diagrams showing the redox potential (y-axis) of electrons as they travel from methane through the ANME energy metabolism to the SRB partner (x-axis is reaction progression). Width of paths correspond to number of electrons. Endergonic electron flow (uphill) shown in red, exergonic (downhill) in blue. Steps labelled with numbers are carried out by the following enzymes; 1: Mcr, 2: Mer/Mtd, 3: Fwd/Fmd, 4: Rnf, 5: Fpo/Fqo, 6: HdrDE, 7: Mco and ANME-MHC, 8: HdrABC and ANME-specific FrhB, FdhA, 9: uncatalyzed diffusion of electron carrier 10: FdhAB, possibly confurcation through HdrA complexes. X/XH₂ represent a hypothetical low-potential electron carrier that could be used as a diffusive electron shuttle. (A) electron transfer based entirely on EET from the methanophenazine pool. (B) electron transfer based entirely on soluble electron shuttle produced in the cytoplasmic space. (C) Mixed model with half of the electrons passing through each pathway.

On the other hand, if all methane-derived electrons were used to produce a low-potential soluble electron carrier like formate through the action of cytoplasmic HdrA-based confurcation then the SRB could readily grow with electrons at this potential for sulfate reduction. In this scenario however the ANME's entire energy metabolism would contain no steps that could be coupled to energy conservation. Energy would be lost at the sodium pumping Mtr step, and there is no mechanism for recovering this energy since these soluble Hdr/Fdh complexes do not produce transmembrane potential or carry out substrate-level phosphorylation (Fig 19B).

A combined model of cytochrome-based EET and diffusion of low potential intermediates could alleviate the need for extremely reduced quinol pools to overcome the energetic inequalities between ANME and SRB, and may help explain the conservation and high expression of these two seemingly opposing methods of syntrophic electron transfer (Fig 19C). Four electrons transferred from two F₄₂₀H₂ through MpH₂/QH₂ and MHC-based EET could provide just enough energy to the ANME to overcome the losses at Mtr and support growth. This would utilize the Fpo and Fqo homologs that are universally conserved in all ANME groups. If the remaining four electrons are confurcated to formate or a similarly low potential electron carrier then the effective midpoint potential of this compound could be tuned to reach a balance where the effective redox potential of all eight of the transferred electrons were ~ -230mV, with the ANME conserving energy via the four electrons passing through Fpo/Fqo, and the SRB conserving energy through the four electrons on the lower potential soluble electron carrier. The SRB would need to continue consuming the higher potential EET electrons, or else the lower potential electrons would cease flowing. Experimental results argue against formate as the predominant free extracellular intermediate in AOM (84, 91–93), but perhaps another small molecule or diffusible organic substrate of sufficiently low redox potential could solve this energetic puzzle.

1940 **Conclusion**

1941 In proposing that AOM might be explained by methanogens running in reverse and transferring
1942 intermediates to a sulfate reducing bacterial partner, Zehnder and Brock concluded (41):

1943
1944 *“We do not pretend that our hypothesis provides a complete explanation for the*
1945 *geochemical observations in anoxic marine environments, but our results provide*
1946 *reasonable evidence that methane is not biologically inert in strict anaerobic ecosystems.”*

1947
1948 In a similar spirit, we present these genome-based models of ANME metabolism with the
1949 understanding that they represent a series of hypotheses that require biochemical, genetic or
1950 physiological experiments performed on purified ANME or ANME-encoded proteins to test.
1951 These models in the context of our expanded phylogenetic framework will help address important
1952 remaining questions in ANME-SRB syntrophy. Future studies will need to focus on specific
1953 ANME subgroups, preferably at the species level, to address questions of energy conservation
1954 mechanisms and adaptation to specific niches in anoxic marine environments. Novel methods of
1955 analysis such as electrode cultivation may provide important new insights into predicted EET-
1956 capabilities. Features specifically supporting syntrophy, including extracellular structures such as
1957 pili, specific interactions using phage-like protein translocation structures, or dockerin-cohesin
1958 systems will require careful experimental analysis far beyond genomic studies, but may have
1959 significant impacts on our understanding of cell-cell interactions in AOM consortia. We expect
1960 that explicit consideration of the carbon and electron transfer pathways in specific ANME clades
1961 will help address controversial results such as net methane production and the question autotrophic
1962 growth. Our continued investigations into the enigmatic origin and function of AOM is important
1963 for understanding of the dynamics of methane fluxes in Earth history, and also for the evolution
1964 of the archaea and their syntrophic interactions with bacteria.

1965 **Materials and Methods**

1966 **BONCAT sorted aggregate assembly and binning**

1967 Single aggregates were sorted using bioorthogonal noncanonical amino acid tagging (BONCAT)
1968 combined with fluorescence-activated cell sorting (FACS), an activity-based flow cytometry
1969 method from samples described previously (14). Two sediment samples were used, originating
1970 from Hydrate Ridge, Oregon, USA (sample #3730), or Santa Monica Mounds, California, USA
1971 and incubated at 4°C with the artificial amino acid L-homopropargylglycine (HPG) for 114 days
1972 for sample #3730, or 25 days for sample #7142. Anabolically active cells were fluorescently
1973 labelled using BONCAT followed by FACS sorting using the standard procedure implemented by
1974 the Joint Genome Institute's (JGI's) single cell sequencing pipeline. Each individual sorted
1975 aggregate was lysed and the DNA amplified using multiple displacement amplification (MDA).
1976 Metagenomic data was sequenced, assembled and annotated at the JGI. Metagenomic assembly
1977 was performed using the jigsaw pipeline v2.6.2 and annotation performed using the standard IMG
1978 annotation pipeline (198). Binning of the two partner microorganisms from these single aggregate
1979 metagenomes was performed using VizBin (199).

1980

1981 **Gulf of Mexico (GoM) assembly and binning**

1982 Sediment samples from the Gulf of Mexico were retrieved by push coring on March 2015 during
1983 RV METEOR expedition ME114/2 (quest dive 362) from a gas and oil seep at the Chapopote
1984 asphalt volcano, Campeche Knolls (0-10 cm, GeoB 19351-14, 21°53.993'N; 93°26.112'W) (200).

1985 This is a cold seep located in the northern part of the Campeche Knolls field in the Gulf of Mexico
1986 at 2925 m water depth. On board, sediments were transferred into a Duran bottle, closed with a
1987 gas-tight butyl rubber stopper and headspace was exchanged to pure N₂. Anoxic aliquots of these
1988 samples were shipped at 5°C to the Bigelow Laboratory Single Cell Genomics Center (SCGC;
1989 <https://scgc.bigelow.org>) where sequencing took place as previously described (201). In short,
1990 sediment samples were diluted and cells were separated from the sediment by a slow centrifugation
1991 step. Afterwards, single cells were sorted by high-speed fluorescence-activated and droplet-based
1992 cell sorting (FACS) into three 384-well plates and cell lysis followed using five freeze-thaw cycles
1993 and KOH treatment. Then, whole-genome amplification via multiple displacement amplification
1994 (MDA) was performed with subsequent cell screening and genome sequencing. Cell screening
1995 identifying archaeal cells affiliated with ANME was performed by 16S rRNA-gene tag
1996 sequencing, while libraries for genome sequencing were created with Nextera XT (Illumina) and
1997 were sequenced with NextSeq 500 (Illumina). Reads were quality trimmed using Trimmomatic
1998 v0.32 with the following parameters: ‘-phred33 LEADING:0 TRAILING:5
1999 SLIDINGWINDOW:4:15 MINLEN:36’ and screened for contamination against the human
2000 genome assembly GRCh38. Individual single cell datasets were assembled by normalizing the
2001 kmer coverage of the reads using kmernorm 1.05 (<https://sourceforge.net/projects/kmernorm/>)
2002 using the parameters ‘-k 21 -t 30 -c 3’ and assembled using SPAdes with the parameters ‘--careful
2003 --sc --phred-offset 33’. From these assemblies, only contigs greater than 2200 bp were kept for the
2004 final assembly.

2005
2006 Eleven single-cell amplified genomes (ASAGs) affiliated to ANME clades from the Gulf of
2007 Mexico were identified. These had different levels of completeness and were clustered using the
2008 previously amplified 16S rRNA gene fragments and genome comparisons (average nucleotide
2009 identity, ANI) in to seven different groups for coassembly in order to improve completeness. Raw
2010 reads of the clustered were coassembled using SPAdes 3.9.0 (202) and scaffolds under 2000 bp
2011 were discarded from the coassembled genomes. Contamination and completeness was assessed by
2012 checkM (203). In total, 4 genome bins were retrieved: ANME GoMg1 (combined from 2 SAGs),
2013 ANME GoMg2 (combined from 2 SAGs), ANME GoMg3.2 (combined from 5 SAGs) and ANME
2014 GoMg4 (combined from 2 SAGs).

2015 2016 **Haakon Mosby Mud Volcano (HMMV) assembly and binning**

2017 The Haakon Mosby Mud Volcano is located on the Norwegian continental slope, west of the
2018 Barents Sea at 1,270 m water depth and it is characterized by gas hydrate accumulation in certain
2019 areas (204). ANME genomes were recovered from sediment samples collected on two different
2020 cruises, and from a laboratory enrichment culture inoculated from sediment collected on a third
2021 cruise. Genome ANME sp. HMMV and ANME HMMV2 were obtained from publicly available
2022 data in the sequence read archive (SRA) from a 2010 cruise to HMMV, accessions SRR1971623
2023 and SRR1971624, respectively.

2024
2025 Genome ANME HMMV-459A3 was obtained from a sediment sample (459A) collected during
2026 cruise PS ARKII/1b in June/July 2007 from station PS70/096-1; 72.0032° N, 14.7205° E at 1263
2027 m water depth; a site covered with a white microbial mat. Directly after recovery, samples were
2028 frozen at -20°C until further processing. Genomes of ANME sp. HMMV-459B4 and -459B1 were
2029 obtained from an enrichment culture established from sediment samples collected during cruise
2030 PS ARKXIX/3b in June/July 2003. Directly after recovery, samples were frozen at -20°C and then

2031 were used to established enrichment cultures in the Max Planck Institute of Marine Microbiology
2032 (Bremen, Germany). The enrichment cultures were established from sediment samples diluted
2033 with artificial seawater (205) with methane as the only energy source as described previously
2034 (186). Enrichment cultures were incubated at 4°C in the dark and propagated when sulfide
2035 concentration reached values over 12 mM. DNA was extracted from the sediment sample and an
2036 enrichment aliquot following the Zhou protocol (206) and sent to the Max Planck Genome Center
2037 in Cologne for sequencing. From the extracted DNA, Illumina paired-end libraries were prepared
2038 and sequenced using HiSeq machines generating 2x100 paired-end reads with an average insert
2039 length of 290 bp. In total, 26,574,291 and 28,965,807 paired-end reads were generated respectively
2040 for libraries 459A and 459B. The metagenomic reads from 459A and 459B libraries were
2041 independently assembled using SPAdes 3.9.0 (202). The assembled metagenome was binned using
2042 MetaWatt 3.5.3 (207) with a scaffold length threshold of 1000 bp.

2043

2044 ANME HMMV

2045 SRR1971623 was downloaded from the NCBI sequencing read archive and assembled using
2046 Megahit (208). ANME sp. HMMV was binned from the metagenome using differential coverage
2047 as described previously (209), using read mapping of SRA runs SRR1971621, SRR1971623 and
2048 SRR1971624 with BBmap (<http://sourceforge.net/projects/bbmap/>) with a 98% identity cutoff. To
2049 further improve upon this bin, it was used for 30 iterative cycles of mapping and assembly, to
2050 extend the edges of contigs and fill gaps, using BBmap and SPAdes.

2051

2052 ANME HMMV2

2053 SRR1971624 reads were recovered from SRA, trimmed, and quality filtered using Trimmomatic
2054 (210). The reads were assembled with Metaspades, version 3.9.0 using the default parameters
2055 (211). Scaffolding and gapfilling of the metagenome assembly was performed using the 'roundup'
2056 mode of FinishM v0.0.7 (<https://github.com/wwood/finishm>). Population genomes were recovered
2057 from the assembled contigs using the groopm2 (<https://github.com/timbalam/GroopM>) binning
2058 method (212).

2059

2060 Amon Mud Volcano (AMV) assembly and binning

2061 Genomes of ANME sp. AMVER4-31 and AMVER4-21 were obtained from sediment samples
2062 coming from Amon Mud Volcano (031° 42.6' N, 032° 22.2' E) during cruise R/V L'Atalante on
2063 September/October 2003 using the submersible Nautile. Amon Mud volcano is a gas-rich mud
2064 volcano located in the Eastern Mediterranean at 1,120 m water depth (213). Directly after recovery,
2065 samples were frozen at -20°C and then were used to established enrichment cultures in the Max
2066 Planck Institute of Marine Microbiology (Bremen, Germany). The enrichment cultures were
2067 established and maintained as described above for the HMMV enrichments with the exception of
2068 the incubation temperature that was 20 °C. DNA was extracted following the Zhou protocol (206).
2069 DNA was sent to the Center for Biotechnology (CeBiTec, Bielefeld, Germany) for sequencing.
2070 From the extracted DNA, two Illumina paired-end libraries were prepared and sequenced
2071 generating 2x250 paired-end reads with an average insert length of 550 bp. In total, 3,886,975 and
2072 5,190,719 paired-end reads were generated respectively for each library. The metagenomics reads
2073 of both libraries were used for a combined assembly using SPAdes 3.9.0 (202). The resulting
2074 assembled metagenome was binned using MetaWatt 3.5.3 (207) with a scaffold length threshold of
2075 1000 bp.

2076

2077 **ANME SA assembly and binning**
2078 Raw reads from MG-RAST sample mgm4536100.3, which were sourced from a South African
2079 Gold mine (214), were downloaded (<https://metagenomics.anl.gov/>) and assembled using megahit
2080 1.0.3 (208). Contig coverage was estimated by mapping the reads onto the assembled contigs using
2081 BBmap 33.21. Subsequently, the coverage and composition of a contig containing the ANME-1
2082 mcrA gene was used to guide manual binning of the ANME-1 genome using R statistical
2083 programming language (R Core Team 2016), as described previously (215).
2084
2085 This initial genome bin was improved by reassembly using spades 3.9. 0 (202). First, all reads
2086 from the samples were aligned against the initial genome bin with bwa 0.7.10 using the ‘mem’
2087 algorithm and default alignment settings (216). Reads that aligned to the initial genome bin were
2088 separated into proper pairs - which also included reads that did not map to the genome bin but their
2089 paired sequence did - and reads without a pair in the dataset. These reads were used as input for
2090 spades 3.9.0, which was run with default settings. The scaffolds from the spades assembly were
2091 filtered to remove those that were less than 1000bp or those with a coverage of less than 5 or
2092 greater than or equal to 30; both of these statistics were taken straight from the contig names
2093 produced by spades. Additionally, five contigs were manually removed as they contained partial
2094 16S rRNA genes that were not phylogenetically related to ANME-1, in addition to one large contig
2095 which appeared to be a phage genome.
2096
2097 **ANME S7142MS1 assembly and binning**
2098 DNA from methane seep sediment incubation #7142 (~2mL) was extracted using the MoBio
2099 Powersoil DNA kit (MoBio) according to the manufacturer’s protocol. DNA concentrations were
2100 quantified using the Quant-iT dsDNA HS assay kit (Invitrogen) as per the manufacturer’s
2101 instructions. The paired-end library was prepared using the Nextera XT DNA library preparation
2102 kit (Illumina, USA) for DNA extracted. The libraries were sequenced on a NextSeq500 (Illumina,
2103 USA) platform generating 2×150 bp paired-end reads with an average insert length of 300 bp. In
2104 total, 168,382,029 paired-end reads for the metagenome were generated from the library. Bulk
2105 metagenome reads were trimmed and quality filtered using Trimmomatic (210) and BBMerge
2106 (<http://sourceforge.net/projects/bbmap/>) using default settings. Low-abundance k-mer trimming
2107 was applied using the khmer (217) script trim-low-abund.py using with the K = 20 and C = 30
2108 parameter and assembled with MetaSPAdes (211), version 3.9.0 using the default parameters.
2109 Scaffolding and gapfilling of the metagenome assembly was performed using the ‘roundup’ mode
2110 of FinishM v0.0.7 (<https://github.com/wwood/finishm>). Population genomes were recovered from
2111 the assembled contigs using MetaBat (218). ANME sp. S7142MS1 was further refined by
2112 removing scaffolds with divergent GC-content, tetranucleotide frequencies or coverage using the
2113 outlier method in RefineM v0.0.13 (<https://github.com/dparks1134/RefineM>).
2114
2115 **ANME SCGC AAA252-L18 assembly and binning**
2116 ANME SCGC AAA252-L18 was coassembled from 12 single cell datasets publicly available
2117 under the NCBI bioproject accession PRJEB7694, which were sourced from a mud volcano in the
2118 Gulf of Cadiz. Reads from these 12 samples were assembled together using Spades 3.5.0 (202)
2119 using the single cell (--sc) mode. This combined assembly was binned using VizBin (199) to
2120 remove contigs that contained divergent pentanucleotide sequences.
2121
2122 **ANME ERB4, ERB6, ERB7 binning**

2123 Fosmid libraries from Eel River Basin were isolated and sequenced in conjunction with a previous
2124 study (6). Previously unpublished fosmids were binned using VizBin (199) to create ANME
2125 ERB4, ERB6 and ERB7. These fosmids-derived genome bins were quite large due to duplicate
2126 regions of the genomes and represent a population of very closely related strains which were
2127 difficult to further assemble due to apparent genome rearrangements. Fosmid NCBI accession
2128 numbers assigned to specific bins can be found in **S5 Data**.

2129

2130 **ANME-1 LC assembly and binning**

2131 A metagenome coassembly from various Lost City hydrothermal fluids (unpublished) was
2132 screened for McrA sequences from the ANME-1 SA group of ANME-1 since McrA from this
2133 group has been previously reported at this site (179). A close hit ~85% identity to ANME-1 sp.
2134 SA McrA was found on a short contig. Reads from all separate samples were mapped onto this
2135 contig and one sample was found to have high coverage of this contig. This sample was
2136 reassembled alone using MEGAHIT v1.2.9 (208) using minimum contig size of 1000 and meta-
2137 large option. Assembly was binned with MetaBAT2 v1.7 and genome completeness and
2138 phylogeny were determined by CheckM v1.0.18 and GTDB_Tk v1.1.0, respectively (203, 219).
2139 One bin was highly >80% complete and identified as being ANME-1 by GTDB_Tk. The entire
2140 assembly was visualized in R using scripts from mmgenome package and a subset of ~5000
2141 contigs surrounding those assigned to this bin in a plot of coverage vs. the second principle
2142 component of tetranucleotide frequency were exported (220). These 5,000 contigs were
2143 subjected to manual binning using the anvi'o workflow for metagenome binning (with only a
2144 single sample for coverage information) (221). This improved genome bin was 88% complete
2145 and 2% contaminated as estimated by CheckM. This ANME-1 LC MAG was 1,073,849 bp in
2146 length and contained 152 contigs. MEGAHIT, CheckM, GTDB_Tk were implemented on the
2147 KBase platform (222). The ANME-1 LC assembly has been uploaded to NCBI under Assembly
2148 accession number GCA_014061035.1.

2149

2150 **Quality and taxonomic assessment of genomes**

2151 All genomes were assessed for their completeness and contamination using checkM 1.0.6 (203)
2152 using the 'taxonomy_wf' command and the Euryarchaeota marker set containing 188 marker
2153 genes. Genome taxonomy was assigned using the GTDB_Tk (219) and naming conventions are
2154 consistent with the GTDB release 89.

2155

2156 **16S rRNA gene sequencing of sorted single aggregates**

2157 For sorted single aggregate samples that did not have a 16S rRNA gene in the binned genomic
2158 dataset, we attempted to amplify the 16S rRNA genes for cloning and subsequent sequencing. The
2159 original MDA amplified samples were used as template to amplify the bacterial 16S rRNA gene
2160 using a modified universal reverse primer u1492R (5'-GGYTACCTTGTACGACTT-3') and
2161 modified bacterial b8F-ym (5'-AGAGTTGATYMTGGCTC- 3') (223). The u1492R primer was
2162 also paired with a modified archaeal a8F-y (5'-TCCGGTTGATCCYGCC- 3') to amplify the
2163 archaeal 16S rRNA gene (224). Fifteen microliter PCRs were run for 1 min at 94°C, followed by
2164 40 cycles of 15s at 94°C, 30s at 54°C, and 45s at 72°C, and a final elongation step at 72°C for 4
2165 min. The reaction mix included 0.2 μM forward and reverse primers (Integrated DNA
2166 Technologies, Inc. Coralville, IA, USA), 1× ExTaq PCR buffer (Takara, Clontech Laboratories,
2167 Inc., Mountain View, CA, USA), 0.75 U ExTaq (Takara), 0.22 mM dNTPs (New England Biolabs,
2168 Ipswich, MA, USA), and 1 μl template. No amplicon was visible in triplicate DNA control

2169 reactions when 4 μ l were run on a 1.5% agarose gel visualized with SYBR Safe (ThermoFisher
2170 Scientific; cat. no. S33102). PCR products were plate purified (Millipore Multiscreen filter plates;
2171 cat. no. MSNU03010), ligated with the Invitrogen TOPO TA Cloning Kit (ThermoFisher
2172 Scientific; cat. No. K457501) and transformed using Top Ten chemically competent Escherichia
2173 coli cells. Picked colonies were grown overnight in Luria–Bertani broth (Miller’s modification)
2174 and amplified using M13 primers for 30 cycles. The M13 products were visualized to confirm the
2175 correct size insert and screened by RFLP digest using HaeIII enzyme (NEB) on a 3% agarose gel.
2176 All unique clones were plate purified and sent for sequencing using T3 and T7 primers at Laragen
2177 Sequencing (Culver City, CA, USA). Contigs were assembled using Geneious software version
2178 R10 (225). Sequence accessions for the clones from these genomes can be found in **S2 Table**.
2179

2180 **Calculation of genome similarity**

2181 The average amino acid identity (AAI) was calculated between each pair of genomes was
2182 calculated using compareM and its AAI workflow (aai_wf) command
2183 (<https://github.com/dparks1134/CompareM>). Briefly this workflow first identifies all open reading
2184 frames were determined using prodigal 2.0.6 (226) and then homologous genes were determined
2185 using reciprocal best-hits using 0.7.11 (227). The AAI was calculated by averaging the percent
2186 similarity of all proteins that were reciprocal best hits. The genome similarity (GS) displayed in
2187 **S1 Fig** was calculated by first calculating the percent alignment between the genomes as the
2188 fraction of the genes that are reciprocal best hits (RBH), using the smaller number of total genes
2189 between the two genomes (X & Y) as the denominator, and then multiplying the AAI value by that
2190 fraction (i.e. GS = AAI*RBH/min(X, Y)). The order of the matrix was calculated using the R
2191 statistical programming language 3.3.2 (R Core Team 2016) using the ‘hclust’ function using the
2192 default distance metric (‘euclidean’) and the ‘ward.D2’ method of agglomeration. This matrix was
2193 visualized using ggplot2 (228).
2194

2195 **16S rRNA gene phylogeny**

2196 16S rRNA gene sequences were extracted from SILVA 128 (229, 230) and new sequences from
2197 ANME genomes were aligned using SINA 1.2.11 (231) though the online portal at
2198 <https://www.arb-silva.de/aligner/>. Alignment columns were masked in ARB 6.0.2 (232) using the
2199 inbuilt ‘archaea ssuref’ filter and exported in fasta format removing all columns that contained
2200 only gaps. The phylogenetic tree in **Fig 1A** was constructed using RAxML 8.1.7 (233) using the
2201 following parameters: `raxmlHPC-PTHREADS-SSE3 -f a -k -x 12395 -p 48573 -N 100 -T 16 -m`
2202 `GTRGAMMAI`. Trees were visualized using ete3 (234).
2203

2204 **Concatenated protein phylogeny**

2205 The genome trees in **Figs 1B, 3 and 18** were constructed from a list of 43 hidden markov models
2206 (HMM) trained from proteins common to both bacteria and archaea sourced from Pfam and
2207 TIGRfam (see above for list). Open reading frames were annotated onto genome sequences using
2208 prodigal 2.6 (226) and candidates for the marker genes were identified using hmmsearch 3.1b1
2209 (<http://hmmer.org>). Only the top match to each marker was retained and aligned to the HMM using
2210 hmmpalign 3.1b1 (<http://hmmer.org>). The alignment was trimmed on each side using the stockholm
2211 format reference coordinate annotation (line beginning with #=GC RF) to include only residues
2212 that matched the reference (columns containing an ‘x’). The protein sequences were then
2213 concatenated and a phylogenetic tree was constructed using RAxML 8.1.7 (233) using the
2214 following parameters: `raxmlHPC-PTHREADS-SSE3 -f a -k -x 67842 -p 568392 -N 100 -T 16 -m`

2215 PROTGAMMAWAG -o IMG_638154518. Note that the outgroup is specified in the command
2216 line (-o IMG_638154518), which corresponds to *Sulfolobus solfataricus*.
2217

2218 **McrA phylogeny**

2219 McrA sequences from cultured methanogenic and methanotrophic archaea and genome sequences
2220 from uncultured representatives were downloaded from the NCBI refseq database. These
2221 sequences were combined with clone sequences from ANME dominated environments (31, 235)
2222 and from the ANME genomes sequenced here. These sequences were aligned using muscle 3.8.31
2223 (236) with the default parameters. The phylogenetic tree in **Fig 1D** was constructed using RAxML
2224 8.1.7 (233) using in the following parameters: `raxmlHPC-PTHREADS-SSE3 -f a -k -x 67842 -p`
2225 `19881103 -N 100 -T 16 -m PROTGAMMAWAG`.
2226

2227 **Transcriptome data**

2228 Data shown in **S3 Data** was reproduced from the main text or supplemental data of papers
2229 reporting on the ANME-2a Wang genome (11), the ANME-2d BLZ1 genome (19), and the
2230 ANME-2c E20, ANME-1 GB37 and GB60 genomes (9).
2231

2232 **NifD and FpoH phylogenies**

2233 Homologs of NifD and FpoH were identified in ANME genomes using KEGG ortholog IDs
2234 K02586 and K00337, respectively. Genes annotated with these KEGG IDs were separately
2235 combined with a set of protein sequences from uniprot that were also annotated with these IDs
2236 using the following website (in the case of NifD (<http://www.uniprot.org/uniprot/?query=k02586&sort=score&format=fasta>)). A representative set of genes was made using cd-hit
2237 4.6 (237) by removing all sequences that were greater than 95% amino acid similarity to each
2238 other. In the case of FpoH most bacterial sequences were omitted. These sequences were aligned
2239 using muscle 3.8.31 (236) with the default parameters. A phylogenetic tree was constructed using
2240 RAxML 8.1.7 (233) using in the following parameters: `raxmlHPC-PTHREADS-SSE3 -f a -k -x`
2241 `8512 -p 110339 -N 100 -T 16 -m PROTGAMMAWAG`. Tree was visualized using ete3 (234).
2242

2243

2244 **Additional protein phylogenies**

2245 Phylogenetic trees for RpoB, MtrE, Mer, Mtd, Mch, Ftr, FwdB/FmdB, MetF, HdrA, VhtC/McoA,
2246 Small ANME MHCs, CcmF, GlyA, ThyA, FrhB were constructed based on alignments using
2247 muscle 3.8.31 (236) with the default parameters. Trees were built with PhyML 3.0 (238)
2248 implemented on the website (<http://www.atgc-montpellier.fr/phym/>) with automatic substitution
2249 model selection based on the Akaike Information Criterion as implemented by SMS (239). Branch
2250 support was provided by the aLRT SH-like fast likelihood-based method. Trees were visualized
2251 with iTOL (240).
2252

2253

2253 **Determination of cytochrome orthologs**

2254 Homologous proteins displayed in **S13 Fig** were determined using proteinortho 5.16 (241) using
2255 the option ‘-singles’ to keep even unique proteins. Orthologs containing multiheme cytochromes
2256 were determined by counting the number of CxxCH motifs in the amino acid sequences.
2257 Orthologous groups where the median count of heme binding domains was greater than one were
2258 included for analysis. These groups were then curated to resolve any erroneous placement of
2259 individual proteins. Each group of cytochromes was aligned using muscle 3.8.31 (236) and
2260 individual sequences that did not share conserved residues or contained unusual insertions or

2261 deletions were moved into separate orthologs. Proteins that were originally categorized as unique
2262 were also compared using blastp 2.6.0+ (242) to determine if they could be placed into an
2263 orthologous group.

2264

2265 **Analysis of ANME-MHCs**

2266 Cytochromes with greater than ten heme binding motifs were annotated using Interpro (243, 244)
2267 and were categorized based on the presence of an S-layer domain, transmembrane helices, and the
2268 presences and type of putative sugar binding/degrading motifs.

2269

2270 **Identification of dockerin/cohesin domains**

2271 Proteins containing dockerin and/or cohesin domains were identified by predicting domains in all
2272 hypothetical proteins in all ANME genomes using the KBase platform's Annotate Domains app
2273 (v.1.0.7) with the "All domain libraries" function (drawing from COGs, CDD, SMART, PRK,
2274 Pfam, TIGRFAMs and NCBIIfam) (222). All domain annotations were downloaded as csv files,
2275 and any protein containing a dockerin or cohesin domain was exported along with other domains
2276 therein to a separate csv file. These csv files can be found in **S4 Data**.

2277 **Acknowledgments**

2278 We thank Stephanie A. Connon and Alice Michel for help sequencing 16S rRNA genes from some
2279 single aggregates. The work conducted by the U.S. Department of Energy Joint Genome Institute,
2280 a DOE Office of Science User Facility, is supported under Contract No. DE-AC02-05CH11231.
2281 We acknowledge the support of all crews of the expeditions mentioned here for sampling and work
2282 at sea, and the work of Susanne Menger for the cultivation of AOM consortia. Funding for this
2283 study was received by the DFG Leibniz grant and by the Max Planck Society to AB. Genomes of
2284 BONCAT-FACS sorted ANME-consortia were generated via a JGI Director Discretionary Project
2285 Award (to R.H. and V.J.O.). We thank Chief Scientist Susan Lang, the scientific party of the 2018
2286 Lost City Expedition, and NSF support to Lang and Brazelton (OCE- 1536702/1536405). Grayson
2287 L. Chadwick is supported by the Miller Institute for Basic Research in Science, University of
2288 California Berkeley.

2289

2290 The authors declare no competing interests.

2291

2292 **References**

- 2293 1. Hinrichs KU, Hayes JM, Sylva SP, Brewer PG, DeLong EF. 1999. Methane-consuming
2294 archaebacteria in marine sediments. *Nature* 398:802–805.
- 2295 2. Boetius A, Ravenschlag K, Schubert CJ, Rickert D, Widdel F, Gieseke A, Amann R,
2296 Jørgensen BB, Witte U, Pfannkuche O. 2000. A marine microbial consortium apparently
2297 mediating anaerobic oxidation of methane. *Nature* 407:623–626.
- 2298 3. Orphan VJ, House CH, Hinrichs K-U, McKeegan KD, DeLong EF. 2001. Methane-
2299 Consuming Archaea Revealed by Directly Coupled Isotopic and Phylogenetic Analysis.
2300 *Science* 293:484–487.

2301 4. Knittel K, Boetius A. 2009. Anaerobic oxidation of methane: progress with an unknown
2302 process. *Annu Rev Microbiol* 63:311–334.

2303 5. Orphan VJ, Hinrichs K-U, Ussler W, Paull CK, Taylor LT, Sylva SP, Hayes JM, Delong
2304 EF. 2001. Comparative Analysis of Methane-Oxidizing Archaea and Sulfate-Reducing
2305 Bacteria in Anoxic Marine Sediments. *Appl Env Microbiol* 67:1922–1934.

2306 6. Hallam SJ, Putnam N, Preston CM, Detter JC, Rokhsar D, Richardson PM, DeLong EF.
2307 2004. Reverse Methanogenesis: Testing the Hypothesis with Environmental Genomics.
2308 *Science* 305:1457–1462.

2309 7. Meyerdierks A, Kube M, Kostadinov I, Teeling H, Glöckner FO, Reinhardt R, Amann R.
2310 2010. Metagenome and mRNA expression analyses of anaerobic methanotrophic archaea
2311 of the ANME-1 group. *Env Microbiol* 12:422–439.

2312 8. Meyerdierks A, Kube M, Lombardot T, Knittel K, Bauer M, Glöckner FO, Reinhardt R,
2313 Amann R. 2005. Insights into the genomes of archaea mediating the anaerobic oxidation
2314 of methane. *Environ Microbiol* 7:1937–1951.

2315 9. Krukenberg V, Riedel D, Gruber-Vodicka HR, Buttigieg PL, Tegetmeyer HE, Boetius A,
2316 Wegener G. 2018. Gene expression and ultrastructure of meso- and thermophilic
2317 methanotrophic consortia. *Env Microbiol*.

2318 10. Stokke R, Roalkvam I, Lanzen A, Haflidason H, Steen IH. 2012. Integrated metagenomic
2319 and metaproteomic analyses of an ANME-1-dominated community in marine cold seep
2320 sediments. *Env Microbiol* 14:1333–1346.

2321 11. Wang F-P, Zhang Y, Chen Y, He Y, Qi J, Hinrichs K-U, Zhang X-X, Xiao X, Boon N.
2322 2013. Methanotrophic archaea possessing diverging methane-oxidizing and electron-
2323 transporting pathways. *ISME J*.

2324 12. Borrel G, Adam PS, McKay LJ, Chen L-X, Sierra-García IN, Sieber CMK, Letourneau Q,
2325 Ghozlane A, Andersen GL, Li W-J, Hallam SJ, Muyzer G, Oliveira VM de, Inskeep WP,
2326 Banfield JF, Gribaldo S. 2019. Wide diversity of methane and short-chain alkane
2327 metabolisms in uncultured archaea. *Nat Microbiol* 4:603–613.

2328 13. McGlynn SE. 2017. Energy Metabolism during Anaerobic Methane Oxidation in ANME
2329 Archaea. *Microbes Env* 32:5–13.

2330 14. Hatzenpichler R, Connon SA, Goudeau D, Malmstrom RR, Woyke T, Orphan VJ. 2016.
2331 Visualizing *in situ* translational activity for identifying and sorting slow-growing archaeal-
2332 bacterial consortia. *Proc Natl Acad Sci U A* 113:E4069-78.

2333 15. Dombrowski N, Seitz KW, Teske AP, Baker BJ. 2017. Genomic insights into potential
2334 interdependencies in microbial hydrocarbon and nutrient cycling in hydrothermal
2335 sediments. *Microbiome* 5:106.

2336 16. Parks DH, Rinke C, Chuvochina M, Chaumeil P-A, Woodcroft BJ, Evans PN, Hugenholtz
2337 P, Tyson GW. 2017. Recovery of nearly 8,000 metagenome-assembled genomes
2338 substantially expands the tree of life. *Nat Microbiol*.

2339 17. Yu H, Susanti D, McGlynn SE, Skennerton CT, Chourey K, Iyer R, Scheller S, Tavormina
2340 PL, Hettich RL, Mukhopadhyay B, Orphan VJ. 2018. Comparative Genomics and
2341 Proteomic Analysis of Assimilatory Sulfate Reduction Pathways in Anaerobic
2342 Methanotrophic Archaea. *Front Microbiol* 9.

2343 18. Laso-Pérez R, Wegener G, Knittel K, Widdel F, Harding KJ, Krukenberg V, Meier DV,
2344 Richter M, Tegetmeyer HE, Riedel D, Richnow H-H, Adrian L, Reemtsma T, Lechtenfeld
2345 O, Musat F. 2016. Thermophilic archaea activate butane via alkyl-coenzyme M formation.
2346 *Nature*.

2347 19. Arshad A, Speth DR, de Graaf RM, Op den Camp HJM, Jetten MSM, Welte CU. 2015. A
2348 Metagenomics-Based Metabolic Model of Nitrate-Dependent Anaerobic Oxidation of
2349 Methane by Methanoperedens-Like Archaea. *Front Microbiol* 6:1423.

2350 20. Haroon MF, Hu S, Shi Y, Imelfort M, Keller J, Hugenholtz P, Yuan Z, Tyson GW. 2013.
2351 Anaerobic oxidation of methane coupled to nitrate reduction in a novel archaeal lineage.
2352 *Nature* 500:567–570.

2353 21. Chen S-C, Musat N, Lechtenfeld OJ, Paschke H, Schmidt M, Said N, Popp D, Calabrese
2354 F, Stryhanyuk H, Jaekel U, Zhu Y-G, Joye SB, Richnow H-H, Widdel F, Musat F. 2019.
2355 Anaerobic oxidation of ethane by archaea from a marine hydrocarbon seep. *Nature*
2356 568:108–111.

2357 22. Parks DH, Chuvochina M, Waite DW, Rinke C, Skarszewski A, Chaumeil P-A,
2358 Hugenholtz P. 2018. A standardized bacterial taxonomy based on genome phylogeny
2359 substantially revises the tree of life. *Nat Biotechnol* 36:996–1004.

2360 23. Takeuchi M, Yoshioka H, Seo Y, Tanabe S, Tamaki H, Kamagata Y, Takahashi HA, Igari
2361 S, Mayumi D, Sakata S. 2011. A distinct freshwater-adapted subgroup of ANME-1
2362 dominates active archaeal communities in terrestrial subsurfaces in Japan. *Environ
2363 Microbiol* 13:3206–3218.

2364 24. Adam PS, Borrel G, Brochier-Armanet C, Gribaldo S. 2017. The growing tree of Archaea:
2365 new perspectives on their diversity, evolution and ecology. *ISME J*.

2366 25. McGlynn SE, Chadwick GL, O'Neill A, Mackey M, Thor A, Deerinck TJ, Ellisman MH,
2367 Orphan VJ. 2018. Subgroup characteristics of marine methane-oxidizing ANME-2
2368 archaea and their syntrophic partners revealed by integrated multimodal analytical
2369 microscopy. *Appl Env Microbiol*.

2370 26. Cai C, Leu AO, Xie G-J, Guo J, Feng Y, Zhao J-X, Tyson GW, Yuan Z, Hu S. 2018. A
2371 methanotrophic archaeon couples anaerobic oxidation of methane to Fe(III) reduction.
2372 *ISME J* 12:1929–1939.

2373 27. Ettwig KF, Zhu B, Speth D, Keltjens JT, Jetten MSM, Kartal B. 2016. Archaea catalyze
2374 iron-dependent anaerobic oxidation of methane. *Proc Natl Acad Sci U A* 113:12792–
2375 12796.

2376 28. Hahn CJ, Laso-Pérez R, Vulcano F, Vaziourakis K-M, Stokke R, Steen IH, Teske A,
2377 Boetius A, Liebeke M, Amann R, Knittel K, Wegener G. 2020. “*Candidatus
2378 Ethanoperedens*,” a Thermophilic Genus of Archaea Mediating the Anaerobic Oxidation
2379 of Ethane. *mBio* 11.

2380 29. Leu AO, McIlroy SJ, Ye J, Parks DH, Orphan VJ, Tyson GW. 2020. Lateral gene transfer
2381 drives metabolic flexibility in the anaerobic methane oxidising archaeal family
2382 *Methanoperedenaceae*. *bioRxiv* 2020.02.06.936641.

2383 30. Niemann H, Lösekann T, de Beer D, Elvert M, Nadalig T, Knittel K, Amann R, Sauter EJ,
2384 Schluter M, Klages M, Foucher JP, Boetius A. 2006. Novel microbial communities of the
2385 Haakon Mosby mud volcano and their role as a methane sink. *Nature* 443:854–858.

2386 31. Lösekann T, Knittel K, Nadalig T, Fuchs B, Niemann H, Boetius A, Amann R. 2007.
2387 Diversity and abundance of aerobic and anaerobic methane oxidizers at the Haakon
2388 Mosby Mud Volcano, Barents Sea. *Appl Env Microbiol* 73:3348–3362.

2389 32. Boyd JA, Jungbluth SP, Leu AO, Evans PN, Woodcroft BJ, Chadwick GL, Orphan VJ,
2390 Amend JP, Rappé MS, Tyson GW. 2019. Divergent methyl-coenzyme M reductase genes
2391 in a deep-subseafloor Archaeoglobi. *ISME J* 13:1269–1279.

2392 33. Spang A, Caceres EF, Ettema TJG. 2017. Genomic exploration of the diversity, ecology,
2393 and evolution of the archaeal domain of life. *Science* 357:eaaf3883.

2394 34. Pernthaler A, Dekas AE, Brown CT, Goffredi SK, Embaye T, Orphan VJ. 2008. Diverse
2395 syntrophic partnerships from deep-sea methane vents revealed by direct cell capture and
2396 metagenomics. *Proc Natl Acad Sci* 105:7052–7057.

2397 35. Holler T, Wegener G, Niemann H, Deusner C, Ferdelman TG, Boetius A, Brunner B,
2398 Widdel F. 2011. Carbon and sulfur back flux during anaerobic microbial oxidation of
2399 methane and coupled sulfate reduction. *Proc Natl Acad Sci* 108:E1484–E1490.

2400 36. Kojima H, Moll J, Kahnt J, Fukui M, Shima S. 2014. A reversed genetic approach reveals
2401 the coenzyme specificity and other catalytic properties of three enzymes putatively
2402 involved in anaerobic oxidation of methane with sulfate: Enzymes involved in anaerobic
2403 oxidation of methane. *Environ Microbiol* 16:3431–3442.

2404 37. Thauer RK. 2011. Anaerobic oxidation of methane with sulfate: on the reversibility of the
2405 reactions that are catalyzed by enzymes also involved in methanogenesis from CO₂. *Curr
2406 Opin Microbiol* 14:292–299.

2407 38. Scheller S, Goenrich M, Boecker R, Thauer RK, Jaun B. 2010. The key nickel enzyme of
2408 methanogenesis catalyses the anaerobic oxidation of methane. *Nature* 465:606–608.

2409 39. Hoehler TM, Alperin MJ, Albert DB, Martens CS. 1994. Field and laboratory studies of
2410 methane oxidation in an anoxic marine sediment: Evidence for a methanogen-sulfate
2411 reducer consortium. *Glob Biogeochem Cycles* 8:451–463.

2412 40. Krüger M, Meyerdierks A, Glöckner FO, Amann R, Widdel F, Kube M, Reinhardt R,
2413 Kahnt J, Böcher R, Thauer RK, Shima S. 2003. A conspicuous nickel protein in microbial
2414 mats that oxidize methane anaerobically. *Nature* 426:878–881.

2415 41. Zehnder AJB, Brock TD. 1980. Anaerobic Methane Oxidation: Occurrence and Ecology.
2416 *Appl Environ Microbiol* 39:194–204.

2417 42. Timmers PHA, Welte CU, Koehorst JJ, Plugge CM, Jetten MSM, Stams AJM. 2017.
2418 Reverse Methanogenesis and Respiration in Methanotrophic Archaea. *Archaea* 2017.

2419 43. Sauer K, Harms U, Thauer RK. 1997. Methanol: Coenzyme M Methyltransferase from
2420 Methanosarcina Barkeri. Purification, Properties and Encoding Genes of the Corrinoid
2421 Protein MT1. *Eur J Biochem* 243:670–677.

2422 44. Paul L, Ferguson DJ, Krzycki JA. 2000. The Trimethylamine Methyltransferase Gene and
2423 Multiple Dimethylamine Methyltransferase Genes of Methanosarcina barkeri Contain In-
2424 Frame and Read-Through Amber Codons. *J Bacteriol* 182:2520–2529.

2425 45. Fu H, Metcalf WW. 2015. Genetic Basis for Metabolism of Methylated Sulfur
2426 Compounds in Methanosarcina Species. *J Bacteriol* 197:1515–1524.

2427 46. Raemakers-Franken PC, Bongaerts R, Fokkens R, Drift C, Vogels GD. 1991.
2428 Characterization of two pterin derivatives isolated from *Methanoculleus thermophilicum*.
2429 *Eur J Biochem* 200:783–787.

2430 47. Mamat B, Roth A, Grimm C, Ermler U, Tziatzios C, Schubert D, Thauer RK, Shima S.
2431 2009. Crystal structures and enzymatic properties of three formyltransferases from
2432 archaea: Environmental adaptation and evolutionary relationship. *Protein Sci* 11:2168–
2433 2178.

2434 48. Rohlin L, Gunsalus RP. 2010. Carbon-dependent control of electron transfer and central
2435 carbon pathway genes for methane biosynthesis in the Archaean, *Methanosarcina*
2436 *acetivorans* strain C2A. *BMC Microbiol* 10:62.

2437 49. Glass JB, Yu H, Steele JA, Dawson KS, Sun S, Chourey K, Pan C, Hettich RL, Orphan
2438 VJ. 2014. Geochemical, metagenomic and metaproteomic insights into trace metal
2439 utilization by methane-oxidizing microbial consortia in sulphidic marine sediments.
2440 *Environ Microbiol* 16:1592–1611.

2441 50. Shima S, Krueger M, Weinert T, Demmer U, Kahnt J, Thauer RK, Ermler U. 2012.
2442 Structure of a methyl-coenzyme M reductase from Black Sea mats that oxidize methane
2443 anaerobically. *Nature* 481:98–101.

2444 51. Buchenau B, Thauer RK. 2004. Tetrahydrofolate-specific enzymes in *Methanosarcina*
2445 *barkeri* and growth dependence of this methanogenic archaeon on folic acid or p-
2446 aminobenzoic acid. *Arch Microbiol* 182:313–325.

2447 52. Mock J, Wang S, Huang H, Kahnt J, Thauer RK. 2014. Evidence for a Hexaheteromeric
2448 Methylenetetrahydrofolate Reductase in *Moorella thermoacetica*. *J Bacteriol* 196:3303–
2449 3314.

2450 53. Shima S, Warkentin E, Grabarse W, Sordel M, Wicke M, Thauer RK, Ermler U. 2000.
2451 Structure of coenzyme F(420) dependent methylenetetrahydromethanopterin reductase
2452 from two methanogenic archaea. *J Mol Biol* 300:935–950.

2453 54. Angelaccio S, Chiaraluce R, Consalvi V, Buchenau B, Giangiacomo L, Bossa F,
2454 Contestabile R. 2003. Catalytic and Thermodynamic Properties of
2455 Tetrahydromethanopterin-dependent Serine Hydroxymethyltransferase from
2456 *Methanococcus jannaschii*. *J Biol Chem* 278:41789–41797.

2457 55. Hoyt JC, Oren A, Escalante-Semerena JC, Wolfe RS. 1986. Tetrahydromethanopterin-
2458 dependent serine transhydroxymethylase from *Methanobacterium thermoautotrophicum*.
2459 *Arch Microbiol* 145:153–158.

2460 56. Vorholt JA, Chistoserdova L, Lidstrom ME, Thauer RK. 1998. The NADP-Dependent
2461 Methylene Tetrahydromethanopterin Dehydrogenase in *Methylobacterium extorquens*
2462 AM1. *J Bacteriol* 180:5351–5356.

2463 57. Kulkarni G, Mand TD, Metcalf WW. 2018. Energy Conservation via Hydrogen Cycling in
2464 the Methanogenic Archaeon *Methanosarcina barkeri*. *mBio* 9.

2465 58. Baumer S, Ide T, Jacobi C, Johann A, Gottschalk G, Deppenmeier U. 2000. The F420H₂
2466 dehydrogenase from *Methanosarcina mazei* is a Redox-driven proton pump closely related
2467 to NADH dehydrogenases. *J Biol Chem* 275:17968–17973.

2468 59. Brüggemann H, Falinski F, Deppenmeier U. 2000. Structure of the F420H₂:quinone
2469 oxidoreductase of *Archaeoglobus fulgidus* identification and overproduction of the
2470 F420H₂-oxidizing subunit. *Eur J Biochem* 267:5810–5814.

2471 60. Li Q, Li L, Rejtar T, Lessner DJ, Karger BL, Ferry JG. 2006. Electron transport in the
2472 pathway of acetate conversion to methane in the marine archaeon *Methanosarcina*
2473 *acetivorans*. *J Bacteriol* 188:702–710.

2474 61. Welte C, Deppenmeier U. 2011. Membrane-Bound Electron Transport in *Methanosaeta*
2475 *thermophila*. *J Bacteriol* 193:2868–2870.

2476 62. Yan Z, Ferry JG. 2018. Electron Bifurcation and Confurcation in Methanogenesis and
2477 Reverse Methanogenesis. *Front Microbiol* 9.

2478 63. Biegel E, Schmidt S, González JM, Müller V. 2011. Biochemistry, evolution and
2479 physiological function of the Rnf complex, a novel ion-motive electron transport complex
2480 in prokaryotes. *Cell Mol Life Sci* 68:613–634.

2481 64. Schlegel K, Welte C, Deppenmeier U, Müller V. 2012. Electron transport during
2482 aceticlastic methanogenesis by *Methanosarcina acetivorans* involves a sodium-
2483 translocating Rnf complex. *FEBS J* 279:4444–4452.

2484 65. Welte C, Deppenmeier U. 2014. Bioenergetics and anaerobic respiratory chains of
2485 aceticlastic methanogens. *Biochim Biophys Acta BBA - Bioenerg* 1837:1130–1147.

2486 66. Wang M, Tomb J-F, Ferry JG. 2011. Electron transport in acetate-grown *Methanosarcina*
2487 *acetivorans*. *BMC Microbiol* 11:165.

2488 67. Welte C, Deppenmeier U. 2011. Re-evaluation of the function of the F420 dehydrogenase
2489 in electron transport of *Methanosarcina mazei*: Role of F420 dehydrogenase in *Ms. mazei*.
2490 *FEBS J* 278:1277–1287.

2491 68. Buckel W, Thauer RK. 2013. Energy conservation via electron bifurcating ferredoxin
2492 reduction and proton/Na⁺ translocating ferredoxin oxidation. *Biochim Biophys Acta BBA*
2493 - *Bioenerg* 1827:94–113.

2494 69. Simon J, van Spanning RJM, Richardson DJ. 2008. The organisation of proton motive and
2495 non-proton motive redox loops in prokaryotic respiratory systems. *Biochim Biophys Acta*
2496 *BBA - Bioenerg* 1777:1480–1490.

2497 70. Li F, Hinderberger J, Seedorf H, Zhang J, Buckel W, Thauer RK. 2008. Coupled
2498 Ferredoxin and Crotonyl Coenzyme A (CoA) Reduction with NADH Catalyzed by the
2499 Butyryl-CoA Dehydrogenase/Etf Complex from *Clostridium kluyveri*. *J Bacteriol*
2500 190:843–850.

2501 71. Buckel W, Thauer RK. 2018. Flavin-Based Electron Bifurcation, A New Mechanism of
2502 Biological Energy Coupling. *Chem Rev* 118:3862–3886.

2503 72. Costa KC, Lie TJ, Xia Q, Leigh JA. 2013. VhuD Facilitates Electron Flow from H₂ or
2504 Formate to Heterodisulfide Reductase in *Methanococcus maripaludis*. *J Bacteriol*
2505 195:5160–5165.

2506 73. Costa KC, Wong PM, Wang T, Lie TJ, Dodsworth JA, Swanson I, Burn JA, Hackett M,
2507 Leigh JA. 2010. Protein complexing in a methanogen suggests electron bifurcation and
2508 electron delivery from formate to heterodisulfide reductase. *Proc Natl Acad Sci U A*
2509 107:11050–11055.

2510 74. Yan Z, Wang M, Ferry JG. 2017. A Ferredoxin- and F420H₂-Dependent, Electron-
2511 Bifurcating, Heterodisulfide Reductase with Homologs in the Domains Bacteria and
2512 Archaea. *MBio* 8.

2513 75. Wagner T, Koch J, Ermler U, Shima S. 2017. Methanogenic heterodisulfide reductase
2514 (HdrABC-MvhAGD) uses two noncubane [4Fe-4S] clusters for reduction. *Science*
2515 357:699–703.

2516 76. Stojanowic A, Mander GJ, Duin EC, Hedderich R. 2003. Physiological role of the F420-
2517 non-reducing hydrogenase (Mvh) from *Methanothermobacter marburgensis*. *Arch*
2518 *Microbiol* 180:194–203.

2519 77. Milton RD, Ruth JC, Deutzmann JS, Spormann AM. 2018. *Methanococcus maripaludis*
2520 Employs Three Functional Heterodisulfide Reductase Complexes for Flavin-Based
2521 Electron Bifurcation Using Hydrogen and Formate. *Biochemistry*
2522 <https://doi.org/10.1021/acs.biochem.8b00662>.

2523 78. Demmer JK, Huang H, Wang S, Demmer U, Thauer RK, Ermler U. 2015. Insights into
2524 Flavin-based Electron Bifurcation via the NADH-dependent Reduced Ferredoxin:NADP
2525 Oxidoreductase Structure. *J Biol Chem* 290:21985–21995.

2526 79. Hille R, Hall J, Basu P. 2014. The mononuclear molybdenum enzymes. *Chem Rev*
2527 114:3963–4038.

2528 80. Kendall MM, Boone DR. 2006. The Order Methanosaecinales, p. 244–256. *In* Dworkin,
2529 M, Falkow, S, Rosenberg, E, Schleifer, K-H, Stackebrandt, E (eds.), *The Prokaryotes*:
2530 Volume 3: Archaea. Bacteria: Firmicutes, Actinomycetes. Springer New York, New York,
2531 NY.

2532 81. Mills DJ, Vitt S, Strauss M, Shima S, Vonck J. 2013. De novo modeling of the F(420)-
2533 reducing [NiFe]-hydrogenase from a methanogenic archaeon by cryo-electron
2534 microscopy. *Elife* 2:e00218.

2535 82. Buan NR, Metcalf WW. 2010. Methanogenesis by *Methanosaecina acetivorans* involves
2536 two structurally and functionally distinct classes of heterodisulfide reductase. *Mol*
2537 *Microbiol* 75:843–853.

2538 83. Orphan VJ, House CH, Hinrichs K-U, McKeegan KD, DeLong EF. 2002. Multiple
2539 archaeal groups mediate methane oxidation in anoxic cold seep sediments. *Proc Natl Acad*
2540 *Sci* 99:7663–7668.

2541 84. Nauhaus K, Treude T, Boetius A, Krüger M. 2005. Environmental regulation of the
2542 anaerobic oxidation of methane: a comparison of ANME-I and ANME-II communities.
2543 *Env Microbiol* 7:98–106.

2544 85. Moran JJ, Beal EJ, Vrentas JM, Orphan VJ, Freeman KH, House CH. 2008. Methyl
2545 sulfides as intermediates in the anaerobic oxidation of methane. *Env Microbiol* 10:162–
2546 173.

2547 86. Milucka J, Ferdelman TG, Polerecky L, Franzke D, Wegener G, Schmid M, Lieberwirth I,
2548 Wagner M, Widdel F, Kuypers MMM. 2012. Zero-valent sulphur is a key intermediate in
2549 marine methane oxidation. *Nature* 491:541–546.

2550 87. McGlynn SE, Chadwick GL, Kempes CP, Orphan VJ. 2015. Single cell activity reveals
2551 direct electron transfer in methanotrophic consortia. *Nature* 526:531–535.

2552 88. Wegener G, Krukenberg V, Riedel D, Tegetmeyer HE, Boetius A. 2015. Intercellular
2553 wiring enables electron transfer between methanotrophic archaea and bacteria. *Nature*
2554 526:587–590.

2555 89. Schink B, Stams AJM. 2006. Syntrophism among Prokaryotes, p. 309–335. *In* Dworkin,
2556 M, Falkow, S, Rosenberg, E, Schleifer, K-H, Stackebrandt, E (eds.), *The Prokaryotes*.
2557 Springer New York, New York, NY.

2558 90. Skennerton CT, Chourey K, Iyer R, Hettich RL, Tyson GW, Orphan VJ. 2017. Methane-
2559 Fueled Syntrophy through Extracellular Electron Transfer: Uncovering the Genomic
2560 Traits Conserved within Diverse Bacterial Partners of Anaerobic Methanotrophic Archaea.
2561 *MBio* 8.

2562 91. Meulepas RJW, Jagersma CG, Khadem AF, Stams AJM, Lens PNL. 2010. Effect of
2563 methanogenic substrates on anaerobic oxidation of methane and sulfate reduction by an
2564 anaerobic methanotrophic enrichment. *Appl Microbiol Biotechnol* 87:1499–1506.

2565 92. Nauhaus K, Boetius A, Krüger M, Widdel F. 2002. In vitro demonstration of anaerobic
2566 oxidation of methane coupled to sulphate reduction in sediment from a marine gas hydrate
2567 area. *Env Microbiol* 4:296–305.

2568 93. Wegener G, Krukenberg V, Ruff SE, Kellermann MY, Knittel K. 2016. Metabolic
2569 Capabilities of Microorganisms Involved in and Associated with the Anaerobic Oxidation
2570 of Methane. *Front Microbiol* 7:46.

2571 94. Krukenberg V, Harding K, Richter M, Glöckner FO, Gruber-Vodicka H, Adam B, Berg
2572 JS, Knittel K, Tegetmeyer HE, Boetius A, Wegener G. 2016. *Candidatus Desulfofervidus*
2573 *auxilii*, a hydrogenotrophic sulfate-reducing bacterium involved in the thermophilic
2574 anaerobic oxidation of methane. *Env Microbiol*.

2575 95. Schink B. 1997. Energetics of syntrophic cooperation in methanogenic degradation.
2576 *Microbiol Mol Biol Rev* 61:262–280.

2577 96. Sørensen KB, Finster K, Ramsing NB. 2001. Thermodynamic and kinetic requirements in
2578 anaerobic methane oxidizing consortia exclude hydrogen, acetate, and methanol as
2579 possible electron shuttles. *Microb Ecol* 42:1–10.

2580 97. Grimaldi S, Schoepp-Cothenet B, Ceccaldi P, Guigliarelli B, Magalon A. 2013. The
2581 prokaryotic Mo/W-bisPGD enzymes family: A catalytic workhorse in bioenergetic.
2582 *Biochim Biophys Acta BBA - Bioenerg* 1827:1048–1085.

2583 98. Wang Y, Huang Y, Wang J, Cheng C, Huang W, Lu P, Xu Y-N, Wang P, Yan N, Shi Y.
2584 2009. Structure of the formate transporter FocA reveals a pentameric aquaporin-like
2585 channel. *Nature* 462:467–472.

2586 99. Wood GE, Haydock AK, Leigh JA. 2003. Function and Regulation of the Formate
2587 Dehydrogenase Genes of the Methanogenic Archaeon *Methanococcus maripaludis*. *J*
2588 *Bacteriol* 185:2548–2554.

2589 100. Valentine DL, Reeburgh WS. 2000. New perspectives on anaerobic methane oxidation.
2590 *Env Microbiol* 2:477–484.

2591 101. Newman DK, Kolter R. 2000. A role for excreted quinones in extracellular electron
2592 transfer. *Nature* 405:94–97.

2593 102. Brutinel ED, Gralnick JA. 2012. Shuttling happens: soluble flavin mediators of
2594 extracellular electron transfer in *Shewanella*. *Appl Microbiol Biotechnol* 93:41–48.

2595 103. Mevers E, Su L, Pishchany G, Baruch M, Cornejo J, Hobert E, Dimise E, Ajo-Franklin
2596 CM, Clardy J. 2019. An elusive electron shuttle from a facultative anaerobe. *eLife*
2597 8:e48054.

2598 104. Richardson DJ, Butt JN, Fredrickson JK, Zachara JM, Shi L, Edwards MJ, White G,
2599 Baiden N, Gates AJ, Marritt SJ, Clarke TA. 2012. The “porin-cytochrome” model for
2600 microbe-to-mineral electron transfer. *Mol Microbiol* 85:201–212.

2601 105. Shi L, Dong H, Reguera G, Beyenal H, Lu A, Liu J, Yu H-Q, Fredrickson JK. 2016.
2602 Extracellular electron transfer mechanisms between microorganisms and minerals. *Nat*
2603 *Rev Microbiol* 14:651–662.

2604 106. Wang F, Gu Y, O’Brien JP, Yi SM, Yalcin SE, Srikanth V, Shen C, Vu D, Ing NL,
2605 Hochbaum AI, Egelman EH, Malvankar NS. 2019. Structure of Microbial Nanowires
2606 Reveals Stacked Hemes that Transport Electrons over Micrometers. *Cell* 177:361–369.e10.

2607 107. Schwalb C, Chapman SK, Reid GA. 2003. The Tetraheme Cytochrome CymA Is Required
2608 for Anaerobic Respiration with Dimethyl Sulfoxide and Nitrite in *Shewanella oneidensis* [†].
2609 *Biochemistry* 42:9491–9497.

2610 108. Conley BE, Intile PJ, Bond DR, Gralnick JA. 2018. Divergent Nrf Family Proteins and
2611 MtrCAB Homologs Facilitate Extracellular Electron Transfer in *Aeromonas hydrophila*.
2612 *Appl Environ Microbiol* 84.

2613 109. Cordova CD, Schicklberger MFR, Yu Y, Spormann AM. 2011. Partial Functional
2614 Replacement of CymA by SirCD in *Shewanella oneidensis* MR-1. *J Bacteriol* 193:2312–
2615 2321.

2616 110. Levar CE, Chan CH, Mehta-Kolte MG, Bond DR. 2014. An Inner Membrane Cytochrome
2617 Required Only for Reduction of High Redox Potential Extracellular Electron Acceptors.
2618 *mBio* 5:e02034-14.

2619 111. Zacharoff L, Chan CH, Bond DR. 2016. Reduction of low potential electron acceptors
2620 requires the CbcL inner membrane cytochrome of *Geobacter sulfurreducens*.
2621 *Bioelectrochemistry* 107:7–13.

2622 112. Thauer RK, Kaster A-K, Goenrich M, Schick M, Hiromoto T, Shima S. 2010.
2623 Hydrogenases from methanogenic archaea, nickel, a novel cofactor, and H₂ storage. Annu
2624 Rev Biochem 79:507–536.

2625 113. Holmes DE, Ueki T, Tang H-Y, Zhou J, Smith JA, Chaput G, Lovley DR. 2019. A
2626 Membrane-Bound Cytochrome Enables *Methanosarcina acetivorans* To Conserve Energy
2627 from Extracellular Electron Transfer. mBio 10:e00789-19, /mbio/10/4/mBio.00789-
2628 19.atom.

2629 114. Prakash D, Chauhan SS, Ferry JG. 2019. Life on the thermodynamic edge: Respiratory
2630 growth of an acetotrophic methanogen. Sci Adv 5:eaaw9059.

2631 115. Beal EJ, House CH, Orphan VJ. 2009. Manganese- and Iron-Dependent Marine Methane
2632 Oxidation. Science 325:184–187.

2633 116. Scheller S, Yu H, Chadwick GL, McGlynn SE, Orphan VJ. 2016. Artificial electron
2634 acceptors decouple archaeal methane oxidation from sulfate reduction. Science 351:703–
2635 707.

2636 117. Sparacino-Watkins C, Stolz JF, Basu P. 2014. Nitrate and periplasmic nitrate reductases.
2637 Chem Soc Rev 43:676–706.

2638 118. Sanders C, Turkarslan S, Lee D-W, Daldal F. 2010. Cytochrome c biogenesis: the Ccm
2639 system. Trends Microbiol 18:266–274.

2640 119. Filman DJ, Marino SF, Ward JE, Yang L, Mester Z, Bullitt E, Lovley DR, Strauss M.
2641 2019. Cryo-EM reveals the structural basis of long-range electron transport in a
2642 cytochrome-based bacterial nanowire. Commun Biol 2:219.

2643 120. Inoue K, Qian X, Morgado L, Kim B-C, Mester T, Izallalen M, Salgueiro CA, Lovley DR.
2644 2010. Purification and Characterization of OmcZ, an Outer-Surface, Octaheme c-Type
2645 Cytochrome Essential for Optimal Current Production by *Geobacter sulfurreducens*. Appl
2646 Environ Microbiol 76:3999–4007.

2647 121. Yalcin SE, O'Brien JP, Gu Y, Reiss K, Yi SM, Jain R, Srikanth V, Dahl PJ, Huynh W, Vu
2648 D, Acharya A, Chaudhuri S, Varga T, Batista VS, Malvankar NS. 2020. Electric field
2649 stimulates production of highly conductive microbial OmcZ nanowires. 10. Nat Chem
2650 Biol 16:1136–1142.

2651 122. Slobodkina GB, Kolganova TV, Querellou J, Bonch-Osmolovskaya EA, Slobodkin AI.
2652 2009. *Geoglobus acetivorans* sp. nov., an iron(III)-reducing archaeon from a deep-sea
2653 hydrothermal vent. Int J Syst Evol Microbiol 59:2880–2883.

2654 123. Smith JA, Aklujkar M, Risso C, Leang C, Giloteaux L, Holmes DE. 2015. Mechanisms
2655 involved in Fe(III) respiration by the hyperthermophilic archaeon *Ferroglobus placidus*.
2656 Appl Env Microbiol 81:2735–2744.

2657 124. Albers S-V, Meyer BH. 2011. The archaeal cell envelope. Nat Rev Microbiol 9:414–426.

2658 125. Arbing MA, Chan S, Shin A, Phan T, Ahn CJ, Rohlin L, Gunsalus RP. 2012. Structure of
2659 the surface layer of the methanogenic archaeal Methanosaerica acetivorans. *Proc Natl
2660 Acad Sci* 109:11812–11817.

2661 126. Latka A, Maciejewska B, Majkowska-Skrobek G, Briers Y, Drulis-Kawa Z. 2017.
2662 Bacteriophage-encoded virion-associated enzymes to overcome the carbohydrate barriers
2663 during the infection process. *Appl Microbiol Biotechnol* 101:3103–3119.

2664 127. Jiménez Otero F, Chan CH, Bond DR. 2018. Identification of Different Putative Outer
2665 Membrane Electron Conduits Necessary for Fe(III) Citrate, Fe(III) Oxide, Mn(IV) Oxide,
2666 or Electrode Reduction by *Geobacter sulfurreducens*. *J Bacteriol* 200:e00347-18,
2667 /jb/200/19/e00347-18.atom.

2668 128. Kessel M, Volker S, Santarius U, Huber R, Baumeister W. 1990. Three-dimensional
2669 Reconstruction of the Surface Protein of the Extremely Thermophilic Archaeabacterium
2670 *Archaeoglobus fulgidus*. *Syst Appl Microbiol* 13:207–213.

2671 129. Beveridge TJ, Sprott GD, Whipple P. 1991. Ultrastructure, inferred porosity, and gram-
2672 staining character of *Methanospirillum hungatei* filament termini describe a unique cell
2673 permeability for this archaeobacterium. *J Bacteriol* 173:130–140.

2674 130. Carlson HK, Iavarone AT, Gorur A, Yeo BS, Tran R, Melnyk RA, Mathies RA, Auer M,
2675 Coates JD. 2012. Surface multiheme c-type cytochromes from *Thermincola potens* and
2676 implications for respiratory metal reduction by Gram-positive bacteria. *Proc Natl Acad Sci*
2677 109:1702–1707.

2678 131. Kletzin A, Heimerl T, Flechsler J, van Niftrik L, Rachel R, Klingl A. 2015. Cytochromes c
2679 in Archaea: distribution, maturation, cell architecture, and the special case of *Ignicoccus*
2680 *hospitalis*. *Front Microbiol* 6.

2681 132. Allen JWA, Harvat EM, Stevens JM, Ferguson SJ. 2006. A variant System I for
2682 cytochrome c biogenesis in archaea and some bacteria has a novel CcmE and no CcmH.
2683 *FEBS Lett* 580:4827–4834.

2684 133. Lee J-H, Harvat EM, Stevens JM, Ferguson SJ, Saier MH. 2007. Evolutionary origins of
2685 members of a superfamily of integral membrane cytochrome c biogenesis proteins.
2686 *Biochim Biophys Acta BBA - Biomembr* 1768:2164–2181.

2687 134. Yee MO, Rotaru A-E. 2020. Extracellular electron uptake in Methanosaericales is
2688 independent of multiheme c-type cytochromes. 1. *Sci Rep* 10:1–12.

2689 135. Pancost RD, Damsté JSS, Lint S de, Maarel MJEC van der, Gottschal JC, Party‡ TMSS.
2690 2000. Biomarker Evidence for Widespread Anaerobic Methane Oxidation in
2691 Mediterranean Sediments by a Consortium of Methanogenic Archaea and Bacteria. *Appl
2692 Environ Microbiol* 66:1126–1132.

2693 136. Embree M, Liu JK, Al-Bassam MM, Zengler K. 2015. Networks of energetic and
2694 metabolic interactions define dynamics in microbial communities. *Proc Natl Acad Sci U A*
2695 112:15450–15455.

2696 137. Morris JJ, Lenski RE, Zinser ER. 2012. The Black Queen Hypothesis: Evolution of
2697 Dependencies through Adaptive Gene Loss. *mBio* 3.

2698 138. Chistoserdova L. 1998. C1 Transfer Enzymes and Coenzymes Linking Methylotrophic
2699 Bacteria and Methanogenic Archaea. *Science* 281:99–102.

2700 139. Chistoserdova L, Kalyuzhnaya MG, Lidstrom ME. 2009. The Expanding World of
2701 Methylotrophic Metabolism. *Annu Rev Microbiol* 63:477–499.

2702 140. Schroder I, Thauer RK. 1999. Methylcobalamin:homocysteine methyltransferase from
2703 *Methanobacterium thermoautotrophicum*. Identification as the *metE* gene product. *Eur J*
2704 *Biochem* 263:789–796.

2705 141. Lin Z, Sparling R. 1998. Investigation of serine hydroxymethyltransferase in
2706 methanogens. *Can J Microbiol* 44:652–656.

2707 142. Brown AM, Hoopes SL, White RH, Sarisky CA. 2011. Purine biosynthesis in archaea:
2708 variations on a theme. *Biol Direct* 6:63.

2709 143. Myllykallio H. 2002. An Alternative Flavin-Dependent Mechanism for Thymidylate
2710 Synthesis. *Science* 297:105–107.

2711 144. Basta T, Boum Y, Briffaut J, Becker HF, Lamarre-Jouenne I, Lambry J-C, Skouloubris
2712 S, Liebl U, Graille M, van Tilbeurgh H, Myllykallio H. 2012. Mechanistic and structural
2713 basis for inhibition of thymidylate synthase ThyX. *Open Biol* 2:120120–120120.

2714 145. Fondi M, Emiliani G, Liò P, Gribaldo S, Fani R. 2009. The Evolution of Histidine
2715 Biosynthesis in Archaea: Insights into the *his* Genes Structure and Organization in LUCA.
2716 *J Mol Evol* 69:512.

2717 146. Helgadóttir S, Rosas-Sandoval G, Söll D, Graham DE. 2007. Biosynthesis of
2718 phosphoserine in the Methanococcales. *J Bacteriol* 189:575–582.

2719 147. Porat I, Sieprawska-Lupa M, Teng Q, Bohanon FJ, White RH, Whitman WB. 2006.
2720 Biochemical and genetic characterization of an early step in a novel pathway for the
2721 biosynthesis of aromatic amino acids and p-aminobenzoic acid in the archaeon
2722 *Methanococcus maripaludis*. *Mol Microbiol* 62:1117–1131.

2723 148. White RH. 2004. L-Aspartate semialdehyde and a 6-deoxy-5-ketohexose 1-phosphate are
2724 the precursors to the aromatic amino acids in *Methanocaldococcus jannaschii*.
2725 *Biochemistry* 43:7618–7627.

2726 149. White RH, Xu H. 2006. Methylglyoxal is an intermediate in the biosynthesis of 6-deoxy-
2727 5-ketofructose-1-phosphate: a precursor for aromatic amino acid biosynthesis in
2728 *Methanocaldococcus jannaschii*. *Biochemistry* 45:12366–12379.

2729 150. Allen KD, Miller DV, Rauch BJ, Perona JJ, White RH. 2015. Homocysteine is
2730 biosynthesized from aspartate semialdehyde and hydrogen sulfide in methanogenic
2731 archaea. *Biochemistry* 54:3129–3132.

2732 151. Simpson PG, Whitman WB. 1993. Anabolic Pathways in Methanogens, p. 445–472. In
2733 Ferry, JG (ed.), *Methanogenesis: Ecology, Physiology, Biochemistry & Genetics*. Springer
2734 US, Boston, MA.

2735 152. Dekas AE, Poretsky RS, Orphan VJ. 2009. Deep-sea archaea fix and share nitrogen in
2736 methane-consuming microbial consortia. *Science* 326:422–426.

2737 153. McGlynn SE, Boyd ES, Peters JW, Orphan VJ. 2012. Classifying the metal dependence of
2738 uncharacterized nitrogenases. *Front Microbiol* 3:419.

2739 154. Dos Santos PC, Fang Z, Mason SW, Setubal JC, Dixon R. 2012. Distribution of nitrogen
2740 fixation and nitrogenase-like sequences amongst microbial genomes. *BMC Genomics*
2741 13:162.

2742 155. Hu Y, Ribbe MW. 2016. Biosynthesis of the Metalloclusters of Nitrogenases. *Annu Rev*
2743 *Biochem* 85:455–483.

2744 156. Zheng H, Dietrich C, Radek R, Brune A. 2016. *Endomicrobium proavitum*, the first isolate
2745 of *Endomicrobia* class. nov. (phylum *Elusimicrobia*)—an ultramicrobacterium with an
2746 unusual cell cycle that fixes nitrogen with a Group IV nitrogenase. *Env Microbiol* 18:191–
2747 204.

2748 157. Dekas AE, Connon SA, Chadwick GL, Trembath-Reichert E, Orphan VJ. 2016. Activity
2749 and interactions of methane seep microorganisms assessed by parallel transcription and
2750 FISH-NanoSIMS analyses. *ISME J* 10:678–692.

2751 158. Miyazaki J, Higa R, Toki T, Ashi J, Tsunogai U, Nunoura T, Imachi H, Takai K. 2009.
2752 Molecular Characterization of Potential Nitrogen Fixation by Anaerobic Methane-
2753 Oxidizing Archaea in the Methane Seep Sediments at the Number 8 Kumano Knoll in the
2754 Kumano Basin, Offshore of Japan. *Appl Env Microbiol* 75:7153–7162.

2755 159. Staples CR, Lahiri S, Raymond J, Von Herbulis L, Mukhopadhyay B, Blankenship RE.
2756 2007. Expression and Association of Group IV Nitrogenase NifD and NifH Homologs in
2757 the Non-Nitrogen-Fixing Archaeon *Methanocaldococcus jannaschii*. *J Bacteriol*
2758 189:7392–7398.

2759 160. Bowles M, Joye S. 2011. High rates of denitrification and nitrate removal in cold seep
2760 sediments. 3. *ISME J* 5:565–567.

2761 161. Gong W, Hao B, Wei Z, Ferguson DJ, Tallant T, Krzycki JA, Chan MK. 2008. Structure
2762 of the $\alpha 2\epsilon 2$ Ni-dependent CO dehydrogenase component of the Methanosaarcina barkeri
2763 acetyl-CoA decarbonylase/synthase complex. Proc Natl Acad Sci 105:9558–9563.

2764 162. Zeikus JG, Fuchs G, Kenealy W, Thauer RK. 1977. Oxidoreductases Involved in Cell
2765 Carbon Synthesis of Methanobacterium thermoautotrophicum. J Bacteriol 132:604–613.

2766 163. Bock A-K, Kunow J, Glasemacher J, Schönheit P. 1996. Catalytic Properties, Molecular
2767 Composition and Sequence Alignments of Pyruvate: Ferredoxin Oxidoreductase from the
2768 Methanogenic Archaeon Methanosaarcina Barkeri (Strain Fusaro). Eur J Biochem 237:35–
2769 44.

2770 164. Susanti D, Mukhopadhyay B. 2012. An Intertwined Evolutionary History of
2771 Methanogenic Archaea and Sulfate Reduction. PLOS ONE 7:e45313.

2772 165. Bayer EA, Belaich J-P, Shoham Y, Lamed R. 2004. The Cellulosomes: Multienzyme
2773 Machines for Degradation of Plant Cell Wall Polysaccharides. Annu Rev Microbiol
2774 58:521–554.

2775 166. Peer A, Smith SP, Bayer EA, Lamed R, Borovok I. 2009. Noncellulosomal cohesin- and
2776 dockerin-like modules in the three domains of life. FEMS Microbiol Lett 291:1–16.

2777 167. Bayer EA, Coutinho PM, Henrissat B. 1999. Cellulosome-like sequences in
2778 *Archaeoglobus fulgidus* : an enigmatic vestige of cohesin and dockerin domains. FEBS
2779 Lett 463:277–280.

2780 168. Haimovitz R, Barak Y, Morag E, Voronov-Goldman M, Shoham Y, Lamed R, Bayer EA.
2781 2008. Cohesin-dockerin microarray: Diverse specificities between two complementary
2782 families of interacting protein modules. PROTEOMICS 8:968–979.

2783 169. Berntsson RP-A, Doeven MK, Fusetti F, Duurkens RH, Sengupta D, Marrink S-J,
2784 Thunnissen A-MWH, Poolman B, Slotboom D-J. 2009. The structural basis for peptide
2785 selection by the transport receptor OppA. EMBO J 28:1332–1340.

2786 170. Zheng B, Zhang Q, Gao J, Han H, Li M, Zhang J, Qi J, Yan J, Gao GF. 2011. Insight into
2787 the Interaction of Metal Ions with TroA from *Streptococcus suis*. PLoS ONE 6:e19510.

2788 171. Sarris PF, Ladoukakis ED, Panopoulos NJ, Scoulica EV. 2014. A Phage Tail-Derived
2789 Element with Wide Distribution among Both Prokaryotic Domains: A Comparative
2790 Genomic and Phylogenetic Study. Genome Biol Evol 6:1739–1747.

2791 172. Shikuma NJ, Pilhofer M, Weiss GL, Hadfield MG, Jensen GJ, Newman DK. 2014. Marine
2792 Tubeworm Metamorphosis Induced by Arrays of Bacterial Phage Tail-Like Structures.
2793 Science 343:529–533.

2794 173. Speare L, Cecere AG, Guckes KR, Smith S, Wollenberg MS, Mandel MJ, Miyashiro T,
2795 Septer AN. 2018. Bacterial symbionts use a type VI secretion system to eliminate
2796 competitors in their natural host. Proc Natl Acad Sci 115:E8528–E8537.

2797 174. Troselj V, Treuner-Lange A, Søgaard-Andersen L, Wall D. 2018. Physiological
2798 Heterogeneity Triggers Sibling Conflict Mediated by the Type VI Secretion System in an
2799 Aggregative Multicellular Bacterium. *mBio* 9.

2800 175. Shneider MM, Butch SA, Ho BT, Basler M, Mekalanos JJ, Leiman PG. 2013. PAAR-
2801 repeat proteins sharpen and diversify the type VI secretion system spike. *Nature* 500:350–
2802 353.

2803 176. Taylor NMI, Raaij MJ van, Leiman PG. 2018. Contractile injection systems of
2804 bacteriophages and related systems. *Mol Microbiol* 108:6–15.

2805 177. Brazelton WJ, Ludwig KA, Sogin ML, Andreishcheva EN, Kelley DS, Shen C-C,
2806 Edwards RL, Baross JA. 2010. Archaea and bacteria with surprising microdiversity show
2807 shifts in dominance over 1,000-year time scales in hydrothermal chimneys. *Proc Natl
2808 Acad Sci* 107:1612–1617.

2809 178. Brazelton WJ, Schrenk MO, Kelley DS, Baross JA. 2006. Methane- and Sulfur-
2810 Metabolizing Microbial Communities Dominate the Lost City Hydrothermal Field
2811 Ecosystem. *Appl Env Microbiol* 72:6257–6270.

2812 179. Kelley DS, Karson JA, Früh-Green GL, Yoerger DR, Shank TM, Butterfield DA, Hayes
2813 JM, Schrenk MO, Olson EJ, Proskurowski G, Jakuba M, Bradley A, Larson B, Ludwig K,
2814 Glickson D, Buckman K, Bradley AS, Brazelton WJ, Roe K, Elend MJ, Delacour A,
2815 Bernasconi SM, Lilley MD, Baross JA, Summons RE, Sylva SP. 2005. A Serpentinite-
2816 Hosted Ecosystem: The Lost City Hydrothermal Field. *Science* 307:1428–1434.

2817 180. Bertram S, Blumenberg M, Michaelis W, Siegert M, Krüger M, Seifert R. 2013.
2818 Methanogenic capabilities of ANME-archaea deduced from ¹³ C-labelling approaches.
2819 *Environ Microbiol* 15:2384–2393.

2820 181. Beulig F, Røy H, McGlynn SE, Jørgensen BB. 2019. Cryptic CH₄ cycling in the sulfate–
2821 methane transition of marine sediments apparently mediated by ANME-1 archaea. *ISME J*
2822 13:250–262.

2823 182. Lloyd KG, Alperin MJ, Teske A. 2011. Environmental evidence for net methane
2824 production and oxidation in putative ANaerobic MEthanotrophic (ANME) archaea.
2825 *Environ Microbiol* 13:2548–2564.

2826 183. House CH, Orphan VJ, Turk KA, Thomas B, Pernthaler A, Vrentas JM, Joye SB. 2009.
2827 Extensive carbon isotopic heterogeneity among methane seep microbiota. *Environ
2828 Microbiol* 11:2207–2215.

2829 184. Hanson RS, Hanson TE. 1996. Methanotrophic bacteria. *Microbiol Rev* 60:439–471.

2830 185. Lidstrom ME. 2006. Aerobic Methylo trophic Prokaryotes, p. 618–634. *In* Dworkin, M,
2831 Falkow, S, Rosenberg, E, Schleifer, K-H, Stackebrandt, E (eds.), *The Prokaryotes: Volume 2: Ecophysiology and Biochemistry*. Springer, New York, NY.

2833 186. Nauhaus K, Albrecht M, Elvert M, Boetius A, Widdel F. 2007. In vitro cell growth of
2834 marine archaeal-bacterial consortia during anaerobic oxidation of methane with sulfate.
2835 *Env Microbiol* 9:187–196.

2836 187. Treude T, Orphan V, Knittel K, Gieseke A, House CH, Boetius A. 2007. Consumption of
2837 Methane and CO₂ by Methanotrophic Microbial Mats from Gas Seeps of the Anoxic
2838 Black Sea. *Appl Environ Microbiol* 73:2271–2283.

2839 188. Wegener G, Niemann H, Elvert M, Hinrichs K-U, Boetius A. 2008. Assimilation of
2840 methane and inorganic carbon by microbial communities mediating the anaerobic
2841 oxidation of methane. *Environ Microbiol* 10:2287–2298.

2842 189. Kellermann MY, Wegener G, Elvert M, Yoshinaga MY, Lin Y-S, Holler T, Mollar XP,
2843 Knittel K, Hinrichs K-U. 2012. Autotrophy as a predominant mode of carbon fixation in
2844 anaerobic methane-oxidizing microbial communities. *Proc Natl Acad Sci* 109:19321–
2845 19326.

2846 190. Leadbetter ER, Foster JW. 1958. Studies on Some Methane-Utilizing Bacteria. *Arch
2847 Microbiol* 30:91–118.

2848 191. Anthony C. 1982. The biochemistry of methylotrophs. London: Academic press.

2849 192. Khadem AF, Pol A, Wieczorek A, Mohammadi SS, Francoijis K-J, Stunnenberg HG,
2850 Jetten MSM, Op den Camp HJM. 2011. Autotrophic Methanotrophy in Verrucomicrobia:
2851 *Methylacidiphilum fumariolicum* SolV Uses the Calvin-Benson-Bassham Cycle for
2852 Carbon Dioxide Fixation. *J Bacteriol* 193:4438–4446.

2853 193. Rasigraf O, Kool DM, Jetten MSM, Sinninghe Damsté JS, Ettwig KF. 2014. Autotrophic
2854 Carbon Dioxide Fixation via the Calvin-Benson-Bassham Cycle by the Denitrifying
2855 Methanotroph “*Candidatus Methyloviridis oxyfera*.” *Appl Environ Microbiol* 80:2451–
2856 2460.

2857 194. Weimer PJ, Zeikus JG. 1978. One carbon metabolism in methanogenic bacteria. *Arch
2858 Microbiol* 119:49–57.

2859 195. Berg IA, Kockelkorn D, Ramos-Vera WH, Say RF, Zarzycki J, Hügler M, Alber BE,
2860 Fuchs G. 2010. Autotrophic carbon fixation in archaea. *Nat Rev Microbiol* 8:447–460.

2861 196. Berk H, Thauer RK. 1997. Function of coenzyme F 420 -dependent NADP reductase in
2862 methanogenic archaea containing an NADP-dependent alcohol dehydrogenase. *Arch
2863 Microbiol* 168:396–402.

2864 197. Berk H, Thauer RK. 1998. F420H2:NADP oxidoreductase from *Methanobacterium
2865 thermoautotrophicum*: identification of the encoding gene via functional overexpression in
2866 *Escherichia coli*. *FEBS Lett* 438:124–126.

2867 198. Chen I-MA, Chu K, Palaniappan K, Pillay M, Ratner A, Huang J, Huntemann M,
2868 Varghese N, White JR, Seshadri R, Smirnova T, Kirton E, Jungbluth SP, Woyke T, Elo-

2869 Fadrosh EA, Ivanova NN, Kyrpides NC. 2019. IMG/M v.5.0: an integrated data
2870 management and comparative analysis system for microbial genomes and microbiomes.
2871 *Nucleic Acids Res* 47:D666–D677.

2872 199. Laczny CC, Sternal T, Plugaru V, Gawron P, Atashpendar A, Margossian HH, Coronado
2873 S, der Maaten L van, Vlassis N, Wilmes P. 2015. VizBin - an application for reference-
2874 independent visualization and human-augmented binning of metagenomic data.
2875 *Microbiome* 3:1.

2876 200. Laso-Pérez R, Hahn C, Vliet DM van, Tegetmeyer HE, Schubotz F, Smit NT, Pape T,
2877 Sahling H, Bohrmann G, Boetius A, Knittel K, Wegener G. 2019. Anaerobic Degradation
2878 of Non-Methane Alkanes by “Candidatus Methanoliparia” in Hydrocarbon Seeps of the
2879 Gulf of Mexico. *mBio* 10.

2880 201. Stepanauskas R, Fergusson EA, Brown J, Poulton NJ, Tupper B, Labonté JM, Becraft ED,
2881 Brown JM, Pachiadaki MG, Povilaitis T, Thompson BP, Mascena CJ, Bellows WK,
2882 Lubys A. 2017. Improved genome recovery and integrated cell-size analyses of individual
2883 uncultured microbial cells and viral particles. *Nat Commun* 8:84.

2884 202. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, Lesin VM,
2885 Nikolenko SI, Pham S, Prjibelski AD, Pyshkin AV, Sirotnik AV, Vyahhi N, Tesler G,
2886 Alekseyev MA, Pevzner PA. 2012. SPAdes: a new genome assembly algorithm and its
2887 applications to single-cell sequencing. *J Comput Biol* 19:455–477.

2888 203. Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. 2015. CheckM:
2889 assessing the quality of microbial genomes recovered from isolates, single cells, and
2890 metagenomes. *Genome Res* 25:1043–1055.

2891 204. Milkov AV, Vogt PR, Crane K, Lein AY, Sassen R, Cherkashev GA. 2004. Geological,
2892 geochemical, and microbial processes at the hydrate-bearing H\akon Mosby mud
2893 volcano: a review. *Chem Geol* 205:347–366.

2894 205. Widdel F, Bak F. 1992. Gram-Negative Mesophilic Sulfate-Reducing Bacteria, p. 3352–
2895 3378. *In* The Prokaryotes. Springer, New York, NY.

2896 206. Zhou J, Bruns MA, Tiedje JM. 1996. DNA recovery from soils of diverse composition.
2897 *Appl Env Microbiol* 62:316–322.

2898 207. Strous M, Kraft B, Bisdorf R, Tegetmeyer HE. 2012. The binning of metagenomic contigs
2899 for microbial physiology of mixed cultures. *Front Microbiol* 3:410.

2900 208. Li D, Liu C-M, Luo R, Sadakane K, Lam T-W. 2015. MEGAHIT: an ultra-fast single-
2901 node solution for large and complex metagenomics assembly via succinct de Bruijn graph.
2902 *Bioinformatics* 31:1674–1676.

2903 209. Albertsen M, Hugenholtz P, Skarszewski A, Nielsen KL, Tyson GW, Nielsen PH. 2013.
2904 Genome sequences of rare, uncultured bacteria obtained by differential coverage binning
2905 of multiple metagenomes. *Nat Biotechnol* 31:533–538.

2906 210. Bolger AM, Lohse M, Usadel B. 2014. Trimmomatic: a flexible trimmer for Illumina
2907 sequence data. *Bioinformatics* 30:2114–2120.

2908 211. Nurk S, Meleshko D, Korobeynikov A, Pevzner PA. 2017. metaSPAdes: a new versatile
2909 metagenomic assembler. *Genome Res* 27:824–834.

2910 212. Imelfort M, Parks D, Woodcroft BJ, Dennis P, Hugenholtz P, Tyson GW. 2014. GroopM:
2911 An automated tool for the recovery of population genomes from related metagenomes.
2912 *PeerJ* 2:e603.

2913 213. Dupré S, Buffet G, Masclé J, Foucher J-P, Gauger S, Boetius A, Marfia C, The AsterX
2914 AUV Team, The Quest ROV Team, Party TBS. 2008. High-resolution mapping of large
2915 gas emitting mud volcanoes on the Egyptian continental margin (Nile Deep Sea Fan) by
2916 AUV surveys. *Mar Geophys Res* 29:275–290.

2917 214. Lau MCY, Cameron C, Magnabosco C, Brown CT, Schilkey F, Grim S, Hendrickson S,
2918 Pullin M, Sherwood Lollar B, van Heerden E, Kieft TL, Onstott TC. 2014. Phylogeny and
2919 phylogeography of functional genes shared among seven terrestrial subsurface
2920 metagenomes reveal N-cycling and microbial evolutionary relationships. *Front Microbiol*
2921 5:531.

2922 215. Speth DR, In 't Zandt MH, Guerrero-Cruz S, Dutilh BE, Jetten MSM. 2016. Genome-
2923 based microbial ecology of anammox granules in a full-scale wastewater treatment
2924 system. *Nat Commun* 7:11172.

2925 216. Li H. 2013. Aligning sequence reads, clone sequences and assembly contigs with BWA-
2926 MEM. *ArXiv Q-BioGN*.

2927 217. Crusoe MR, Alameldin HF, Awad S, Boucher E, Caldwell A, Cartwright R, Charbonneau
2928 A, Constantinides B, Edvenson G, Fay S, Fenton J, Fenzl T, Fish J, Garcia-Gutierrez L,
2929 Garland P, Gluck J, González I, Guermond S, Guo J, Gupta A, Herr JR, Howe A, Hyer A,
2930 Härpfer A, Irber L, Kidd R, Lin D, Lippi J, Mansour T, McA'Nulty P, McDonald E, Mizzi
2931 J, Murray KD, Nahum JR, Nanlohy K, Nederbragt AJ, Ortiz-Zuazaga H, Ory J, Pell J,
2932 Pepe-Ranney C, Russ ZN, Schwarz E, Scott C, Seaman J, Sievert S, Simpson J,
2933 Skennerton CT, Spencer J, Srinivasan R, Standage D, Stapleton JA, Steinman SR, Stein J,
2934 Taylor B, Trimble W, Wiencko HL, Wright M, Wyss B, Zhang Q, Zyme E, Brown CT.
2935 2015. The khmer software package: enabling efficient nucleotide sequence analysis.
2936 *F1000Res* 4:900.

2937 218. Kang DD, Froula J, Egan R, Wang Z. 2015. MetaBAT, an efficient tool for accurately
2938 reconstructing single genomes from complex microbial communities. *PeerJ* 3:e1165.

2939 219. Chaumeil P-A, Mussig AJ, Hugenholtz P, Parks DH. 2020. GTDB-Tk: a toolkit to classify
2940 genomes with the Genome Taxonomy Database. *Bioinformatics* 36:1925–1927.

2941 220. Karst SM, Kirkegaard RH, Albertsen M. 2016. mmgenome: a toolbox for reproducible
2942 genome extraction from metagenomes. *bioRxiv* 059121.

2943 221. Eren AM, Esen ÖC, Quince C, Vineis JH, Morrison HG, Sogin ML, Delmont TO. 2015.
2944 Anvi'o: an advanced analysis and visualization platform for 'omics data. *PeerJ* 3:e1319.

2945 222. Arkin AP, Cottingham RW, Henry CS, Harris NL, Stevens RL, Maslov S, Dehal P, Ware
2946 D, Perez F, Canon S, Sneddon MW, Henderson ML, Riehl WJ, Murphy-Olson D, Chan
2947 SY, Kamimura RT, Kumari S, Drake MM, Brettin TS, Glass EM, Chivian D, Gunter D,
2948 Weston DJ, Allen BH, Baumohl J, Best AA, Bowen B, Brenner SE, Bun CC, Chandonia
2949 J-M, Chia J-M, Colasanti R, Conrad N, Davis JJ, Davison BH, DeJongh M, Devoid S,
2950 Dietrich E, Dubchak I, Edirisinghe JN, Fang G, Faria JP, Frybarger PM, Gerlach W,
2951 Gerstein M, Greiner A, Gurtowski J, Haun HL, He F, Jain R, Joachimiak MP, Keegan KP,
2952 Kondo S, Kumar V, Land ML, Meyer F, Mills M, Novichkov PS, Oh T, Olsen GJ, Olson
2953 R, Parrello B, Pasternak S, Pearson E, Poon SS, Price GA, Ramakrishnan S, Ranjan P,
2954 Ronald PC, Schatz MC, Seaver SMD, Shukla M, Sutormin RA, Syed MH, Thomason J,
2955 Tintle NL, Wang D, Xia F, Yoo H, Yoo S, Yu D. 2018. KBase: The United States
2956 Department of Energy Systems Biology Knowledgebase. *Nat Biotechnol* 36:566–569.

2957 223. Lane DJ. 1991. 16S/23S rRNA sequencing, p. 115–147. *In* Stackebrandt, E, Goodfellow,
2958 M (eds.), *Nucleic acid techniques in bacterial systematics*. John Wiley and Sons, New
2959 York, NY.

2960 224. von Wintzingerode F, Selent B, Hegemann W, Göbel UB. 1999. Phylogenetic analysis of
2961 an anaerobic, trichlorobenzene-transforming microbial consortium. *Appl Env Microbiol*
2962 65:283–286.

2963 225. Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, Buxton S, Cooper
2964 A, Markowitz S, Duran C, Thierer T, Ashton B, Meintjes P, Drummond A. 2012.
2965 Geneious Basic: an integrated and extendable desktop software platform for the
2966 organization and analysis of sequence data. *Bioinformatics* 28:1647–1649.

2967 226. Hyatt D, Chen GL, Locascio PF, Land ML, Larimer FW, Hauser LJ. 2010. Prodigal:
2968 prokaryotic gene recognition and translation initiation site identification. *BMC
2969 Bioinformatics* 11:119.

2970 227. Buchfink B, Xie C, Huson DH. 2015. Fast and sensitive protein alignment using
2971 DIAMOND. *Nat Methods* 12:59–60.

2972 228. Wickham H. 2009. *ggplot2: Elegant Graphics for Data Analysis*. Springer-Verlag New
2973 York.

2974 229. Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J,
2975 Gl\$\surd\$ckner FO. 2013. The SILVA ribosomal RNA gene database project:
2976 improved data processing and web-based tools. *Nucleic Acids Res* 41:D590–D596.

2977 230. Yilmaz P, Parfrey LW, Yarza P, Gerken J, Pruesse E, Quast C, Schweer T, Peplies J,
2978 Ludwig W, Glöckner FO. 2014. The SILVA and "All-species Living Tree Project (LTP)"
2979 taxonomic frameworks. *Nucleic Acids Res* 42:D643-8.

2980 231. Pruesse E, Peplies J, Glöckner FO. 2012. SINA: accurate high-throughput multiple
2981 sequence alignment of ribosomal RNA genes. *Bioinformatics* 28:1823–1829.

2982 232. Ludwig W, Strunk O, Westram R, Richter L, Meier H, Yadhukumar, Buchner A, Lai T,
2983 Steppi S, Jobb G, F\$\\surd\$\$\\partial\$ster W, Brettske I, Gerber S, Ginhart AW, Gross O,
2984 Grumann S, Hermann S, Jost R, K\$\\surd\$\$\\partial\$nig A, Liss T, L\$\\surd\$^o\$\\surd\$ümann
2985 R, May M, Nonhoff B, Reichel B, Strehlow R, Stamatakis A, Stuckmann N, Vilbig A,
2986 Lenke M, Ludwig T, Bode A, Schleifer K. 2004. ARB: a software environment for
2987 sequence data. *Nucleic Acids Res* 32:1363–1371.

2988 233. Stamatakis A. 2014. RAxML version 8: a tool for phylogenetic analysis and post-analysis
2989 of large phylogenies. *Bioinformatics* 30:1312–1313.

2990 234. Huerta-Cepas J, Serra F, Bork P. 2016. ETE 3: Reconstruction, Analysis, and
2991 Visualization of Phylogenomic Data. *Mol Biol Evol* 33:1635–1638.

2992 235. Trembath-Reichert E, Case DH, Orphan VJ. 2016. Characterization of microbial
2993 associations with methanotrophic archaea and sulfate-reducing bacteria through statistical
2994 comparison of nested Magneto-FISH enrichments. *PeerJ* 4:e1913.

2995 236. Edgar RC. 2004. MUSCLE: multiple sequence alignment with high accuracy and high
2996 throughput. *Nucleic Acids Res* 32:1792–1797.

2997 237. Li W, Godzik A. 2006. Cd-hit: a fast program for clustering and comparing large sets of
2998 protein or nucleotide sequences. *Bioinformatics* 22:1658–1659.

2999 238. Guindon S, Dufayard J-F, Lefort V, Anisimova M, Hordijk W, Gascuel O. 2010. New
3000 Algorithms and Methods to Estimate Maximum-Likelihood Phylogenies: Assessing the
3001 Performance of PhyML 3.0. *Syst Biol* 59:307–321.

3002 239. Lefort V, Longueville J-E, Gascuel O. 2017. SMS: Smart Model Selection in PhyML. *Mol
3003 Biol Evol* 34:2422–2424.

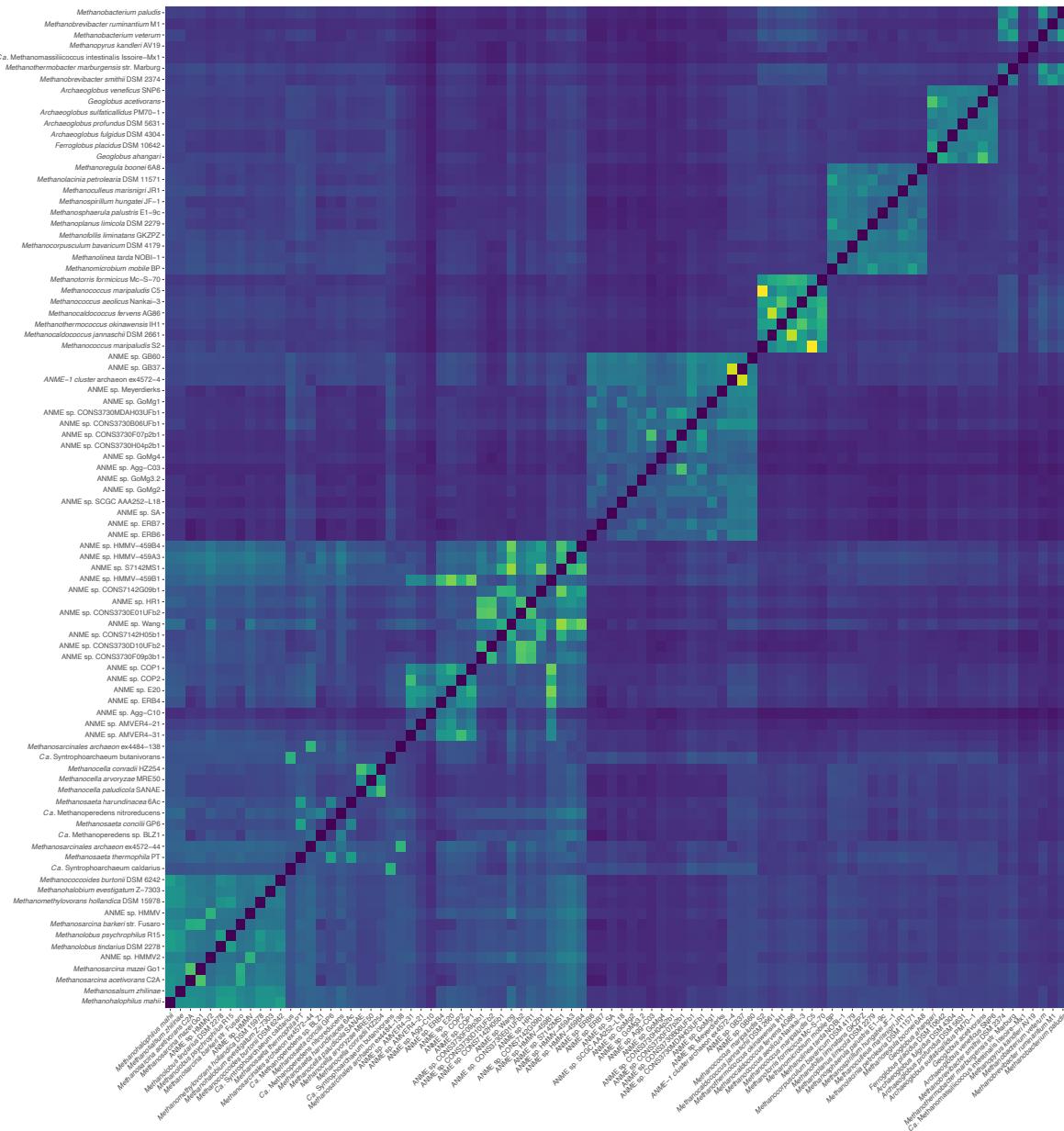
3004 240. Letunic I, Bork P. 2019. Interactive Tree Of Life (iTOL) v4: recent updates and new
3005 developments. *Nucleic Acids Res* 47:W256–W259.

3006 241. Lechner M, Findeiß S, Steiner L, Marz M, Stadler P, Prohaska S. 2011. Proteinortho:
3007 Detection of (Co-)orthologs in large-scale analysis. *BMC Bioinformatics* 12:124.

3008 242. Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, Madden TL.
3009 2009. BLAST+: architecture and applications. *BMC Bioinformatics* 10:421.

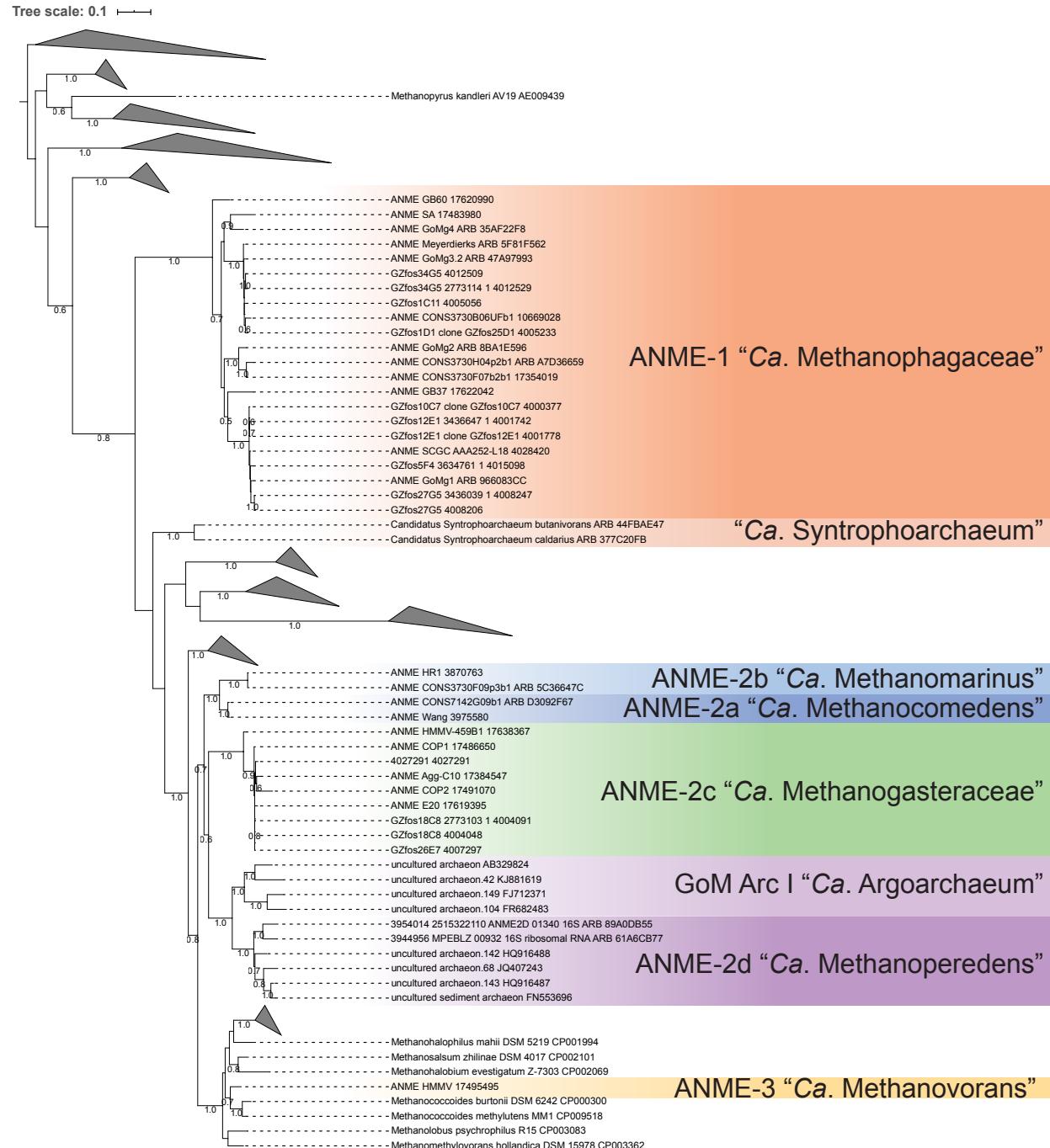
3010 243. Finn RD, Attwood TK, Babbitt PC, Bateman A, Bork P, Bridge AJ, Chang H-Y,
3011 Dosztányi Z, El-Gebali S, Fraser M, Gough J, Haft D, Holliday GL, Huang H, Huang X,
3012 Letunic I, Lopez R, Lu S, Marchler-Bauer A, Mi H, Mistry J, Natale DA, Necci M, Nuka
3013 G, Orengo CA, Park Y, Pesceat S, Piovesan D, Potter SC, Rawlings ND, Redaschi N,
3014 Richardson L, Rivoire C, Sangrador-Vegas A, Sigrist C, Sillitoe I, Smithers B, Squizzato
3015 S, Sutton G, Thanki N, Thomas PD, Tosatto SCE, Wu CH, Xenarios I, Yeh L-S, Young S-

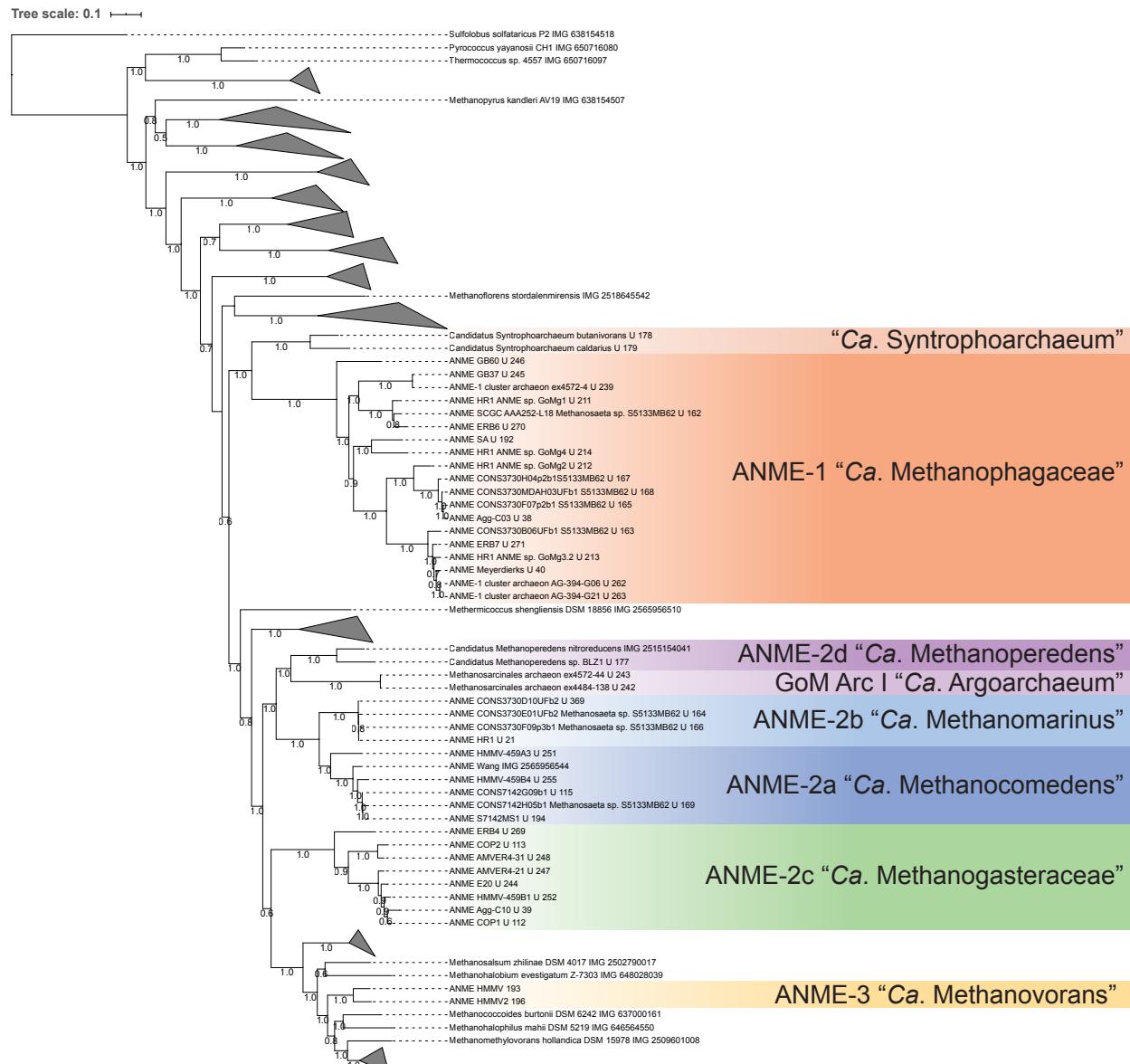
3016 Y, Mitchell AL. 2017. InterPro in 2017-beyond protein family and domain annotations.
3017 Nucleic Acids Res 45:D190–D199.

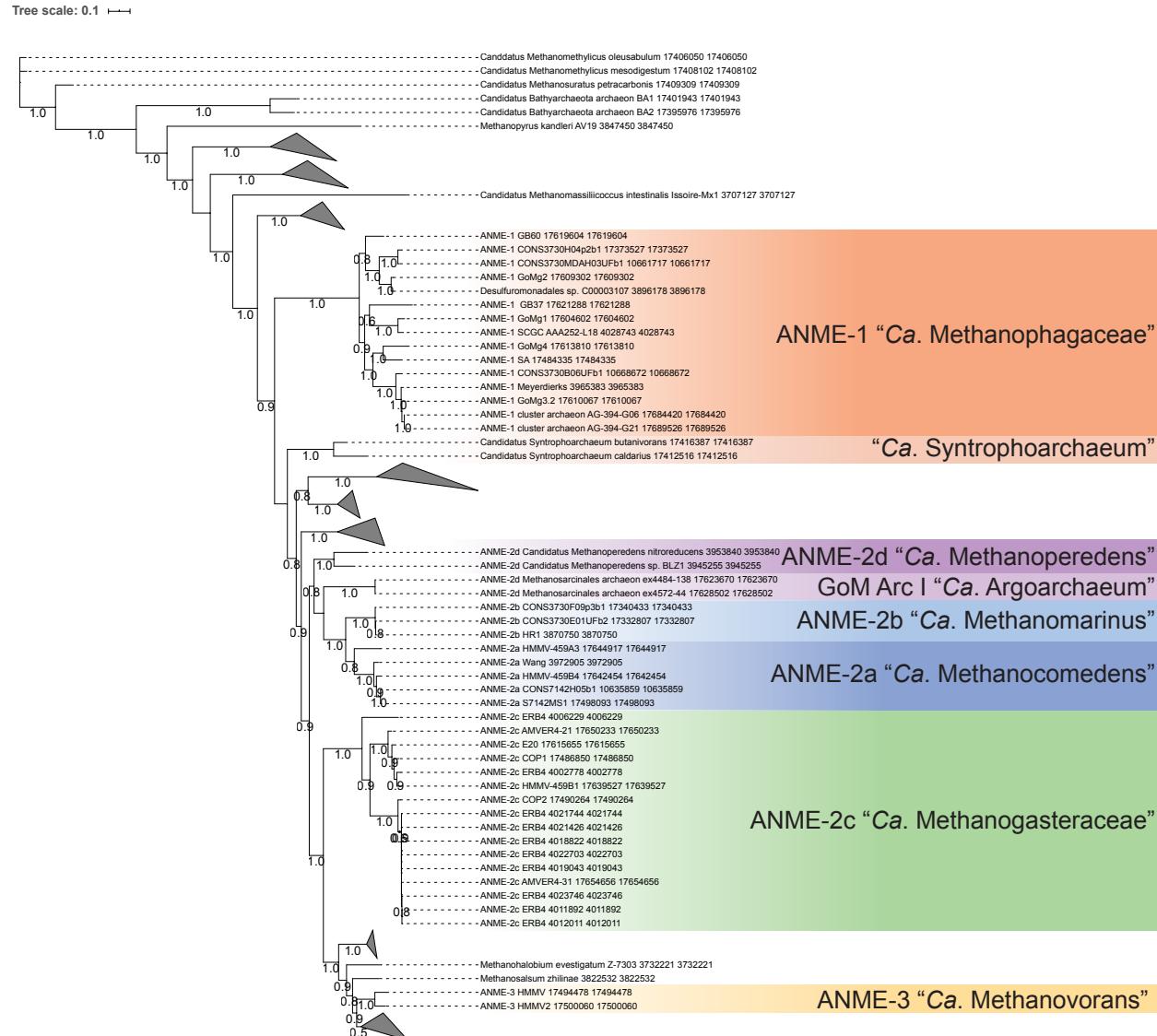

3018 244. Jones P, Binns D, Chang H-Y, Fraser M, Li W, McAnulla C, McWilliam H, Maslen J,
3019 Mitchell A, Nuka G, Pesseat S, Quinn AF, Sangrador-Vegas A, Scheremetjew M, Yong S-
3020 Y, Lopez R, Hunter S. 2014. InterProScan 5: genome-scale protein function classification.
3021 Bioinformatics 30:1236–1240.

3022

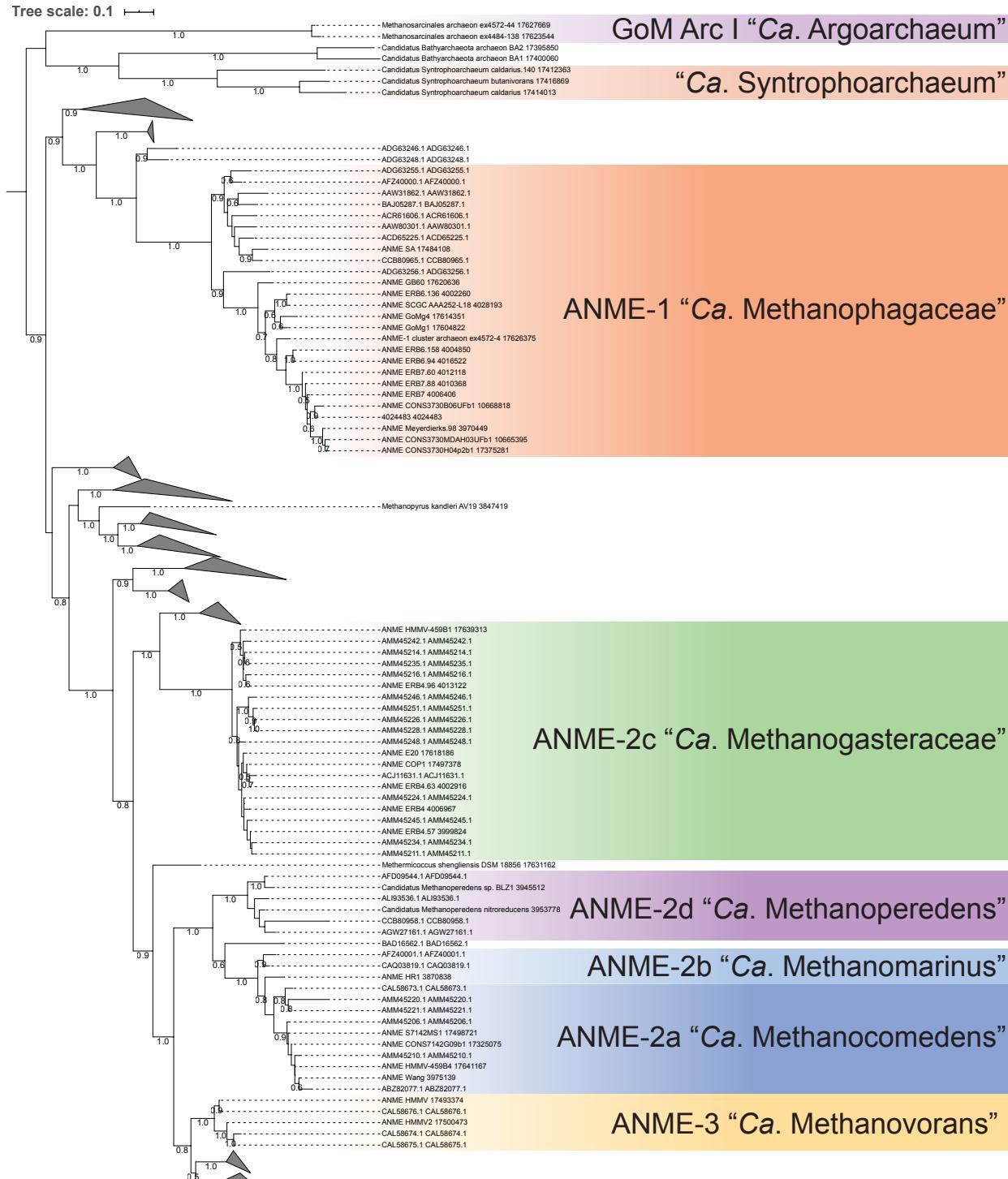
3023


3024

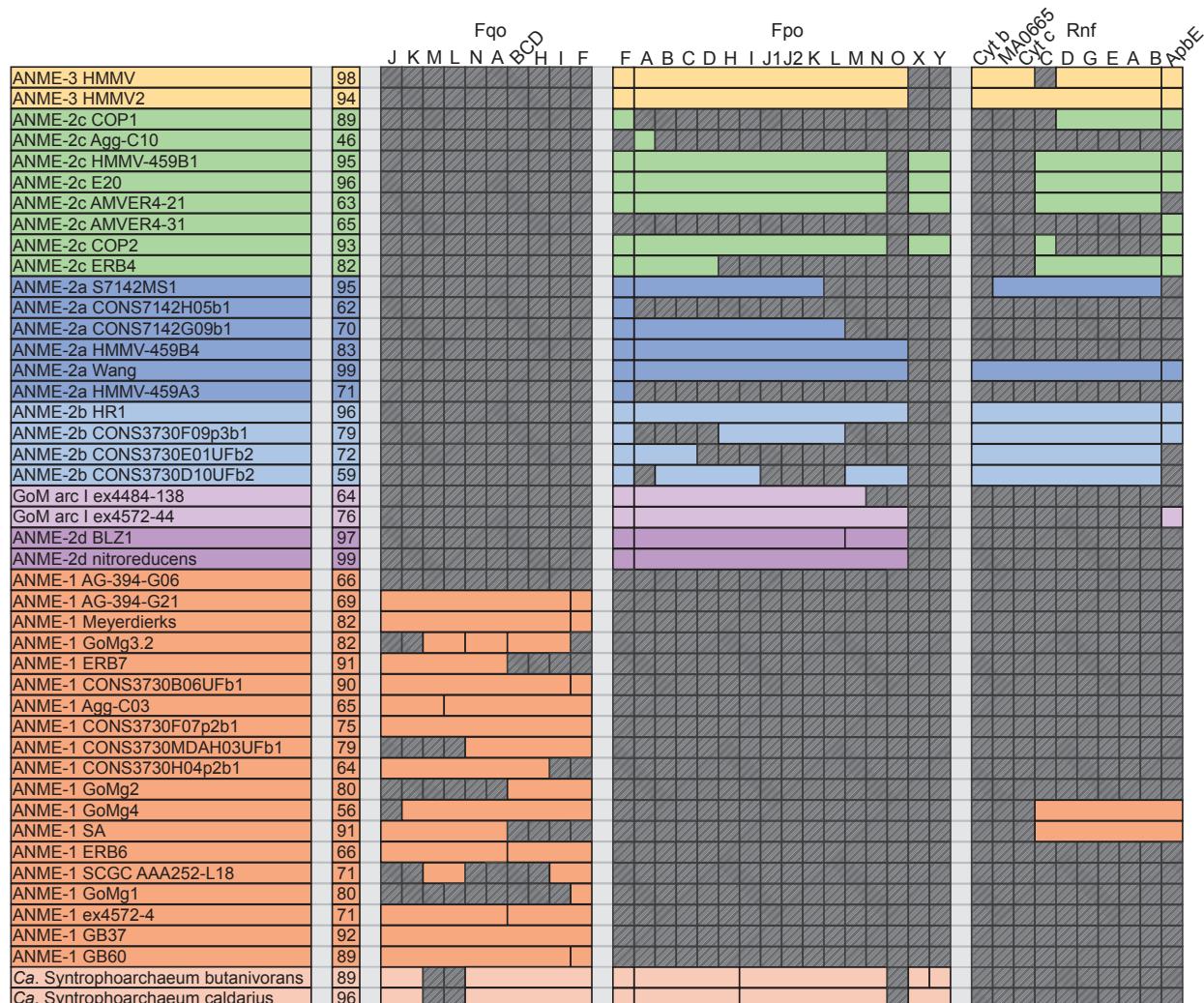

Supporting Information


3025

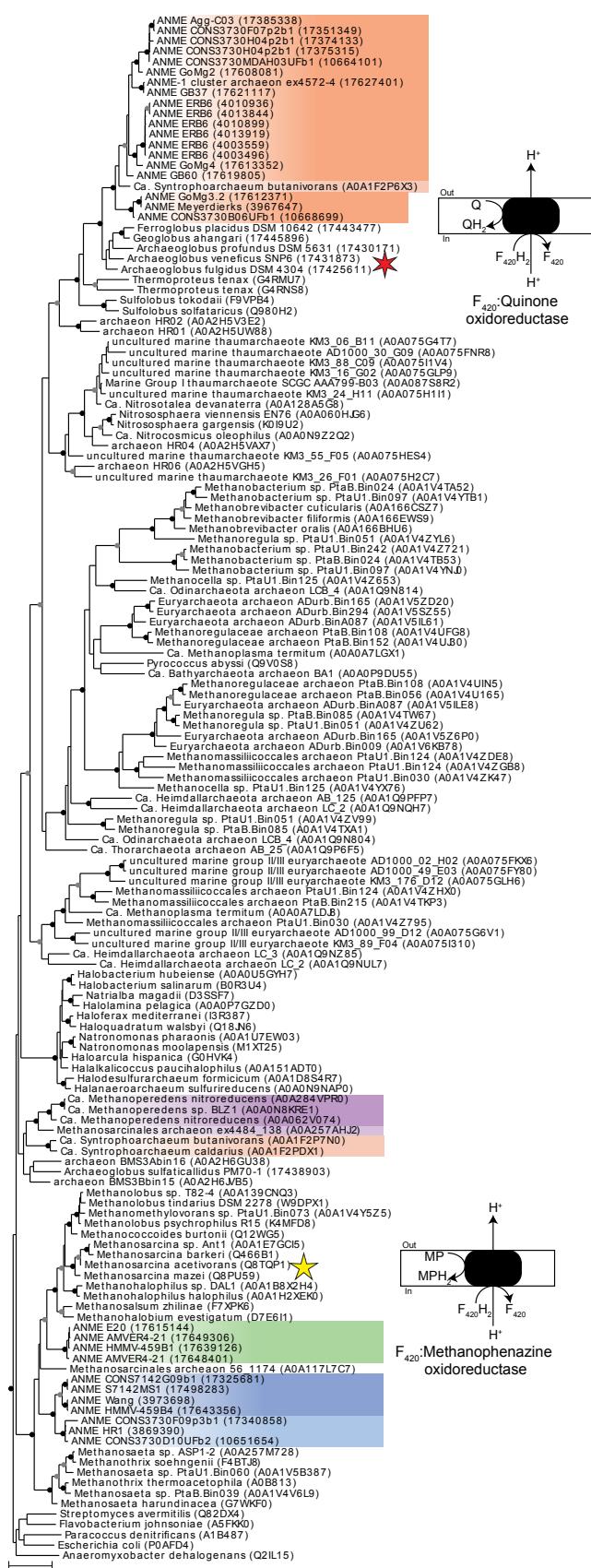
3026 **S1 Fig. Genome similarity.** Genome similarity between methanogen and ANME genomes
3027 reported here. Details of similarity calculations can be found below in the Materials and Methods.
3028



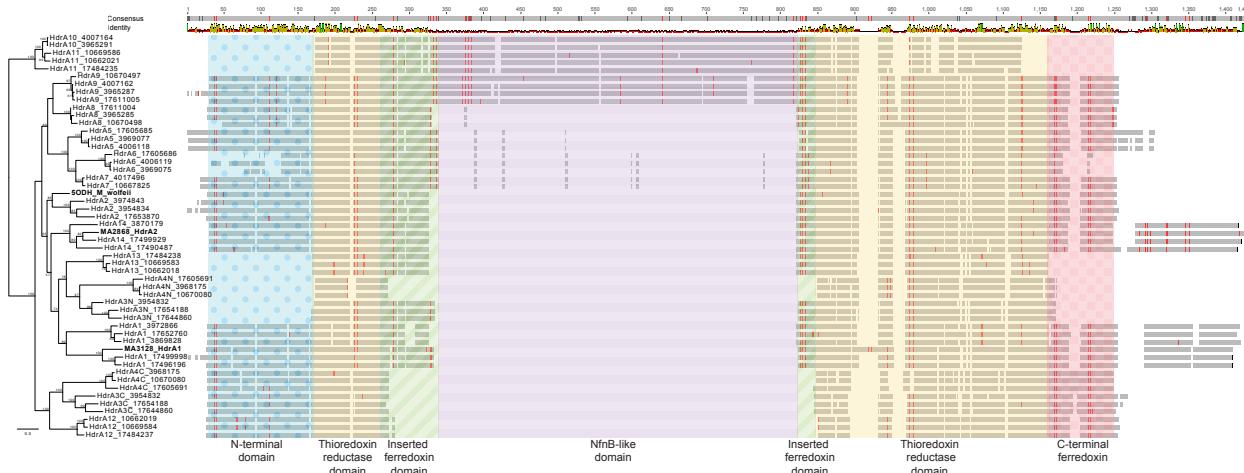
3032
3033 **S3 Fig. Expanded concatenated marker protein tree. Tree expanding compressed clades in Fig**
3034 **1B.**
3035


3036
3037
3038

S4 Fig. Expanded RpoB protein tree. Tree expanding compressed clades in **Fig 1C**.


3039
3040
3041

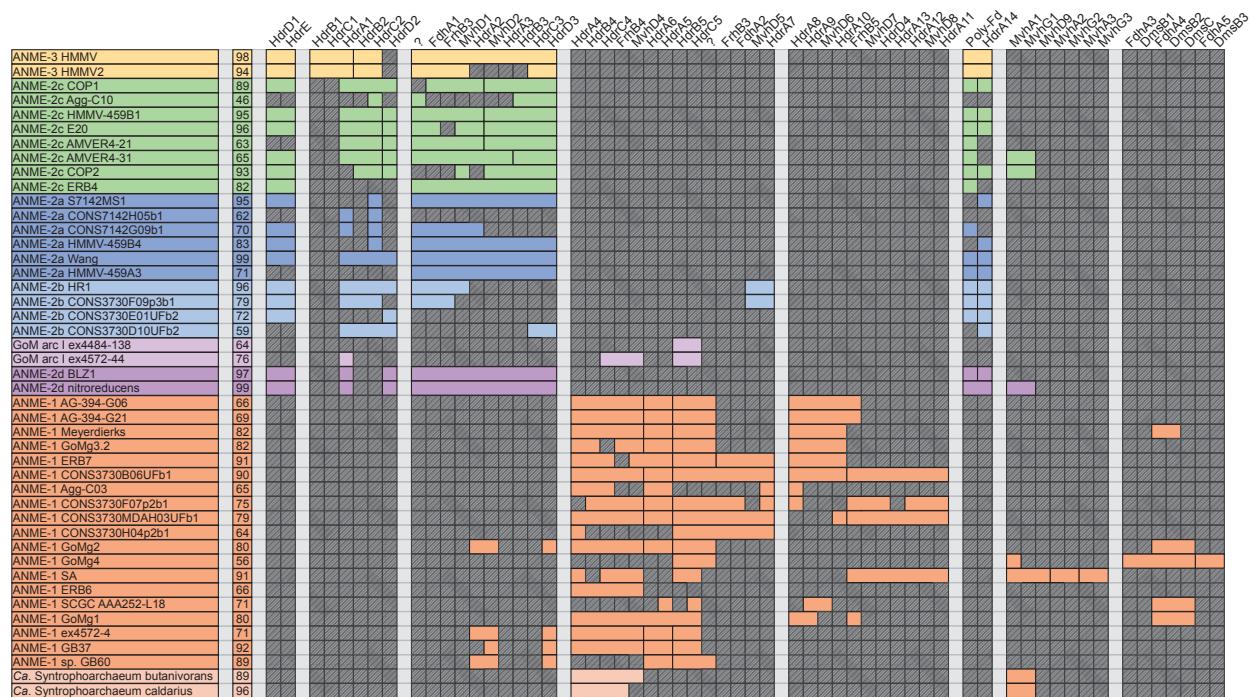
S5 Fig. Expanded mcrA protein tree. Tree expanding compressed clades in Fig 1D.



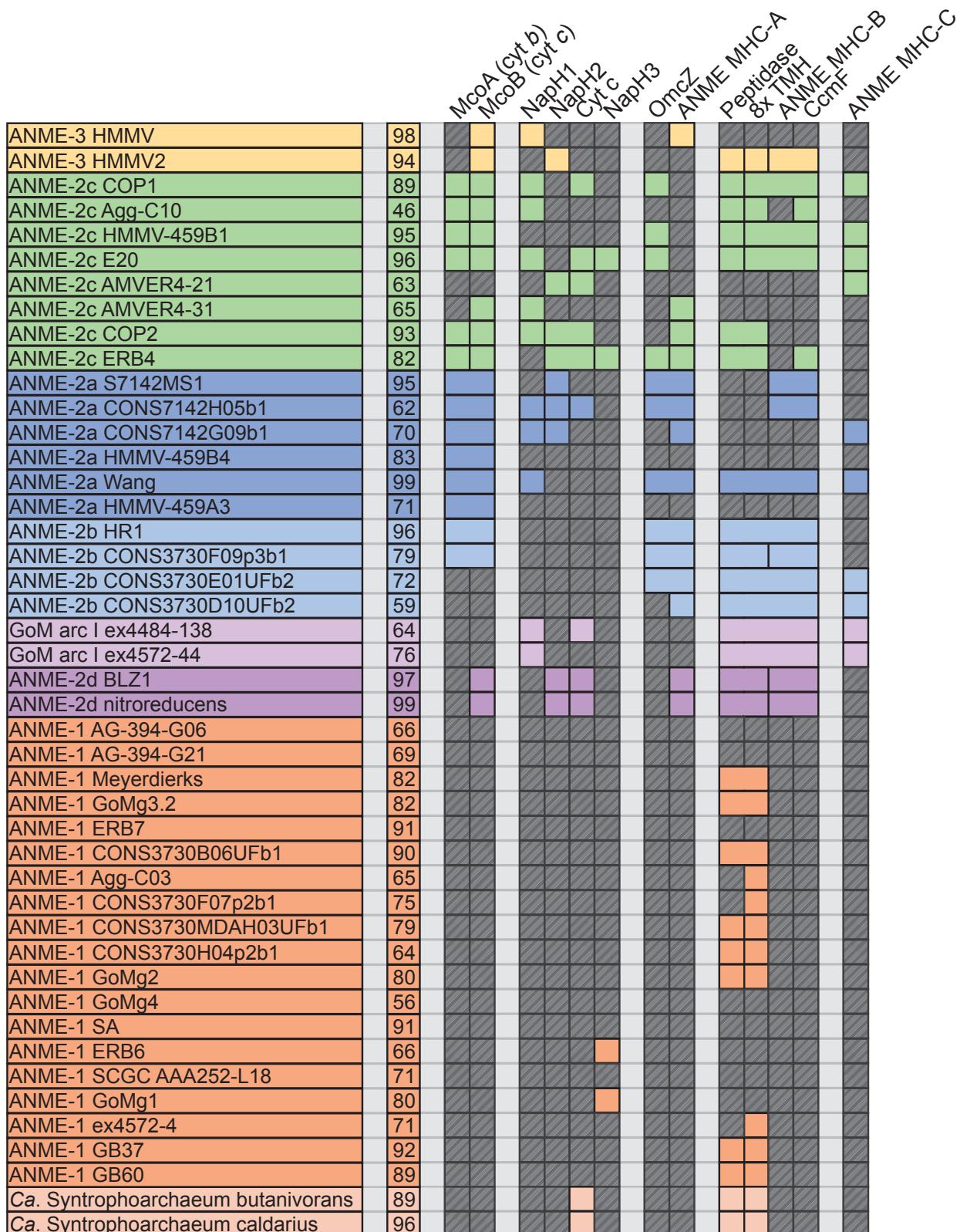
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051

S6 Fig. Presence of Fd^{2-} and F_{420}H_2 oxidation systems. The presence of each subunit of the oxidation complexes outlined in **Figure 6** is represented by colored boxes. ANME-2c and “*Ca. Syntrophoarchaeum*” lack the FpoO subunit found in other ANME and methanogens, and instead are followed by two highly expressed and conserved proteins denoted FpoX and Y . ApbE is a flavin transferase involved in Rnf biosynthesis. Missing genes are represented by transparent gray boxes with diagonal line fill. Numbers in the second column represent genome completeness. When genes are together in a gene cluster their boxes are displayed fused together. Gene accession numbers can be found in **S2 Data**.

3053 **S7 Fig. FpoH phylogenetic tree.** Phylogeny of the H subunit of Fpo/Fqo complexes found in
3054 ANME and related organisms demonstrates the large evolutionary distance between these
3055 complexes. See methods for details of tree construction. Sequences labeled with five and six-sided
3056 stars represent the biochemically characterized Fpo and Fqo complexes, respectively. ANME
3057 groups are highlighted. Closed circles represent branch support values of 80 to 100%, gray circles
3058 between 70 and 80%. Tree scales represent substitutions per site. Tree construction parameters are
3059 found in the methods section. Alignment and tree file can be found in **S1 Data**.
3060

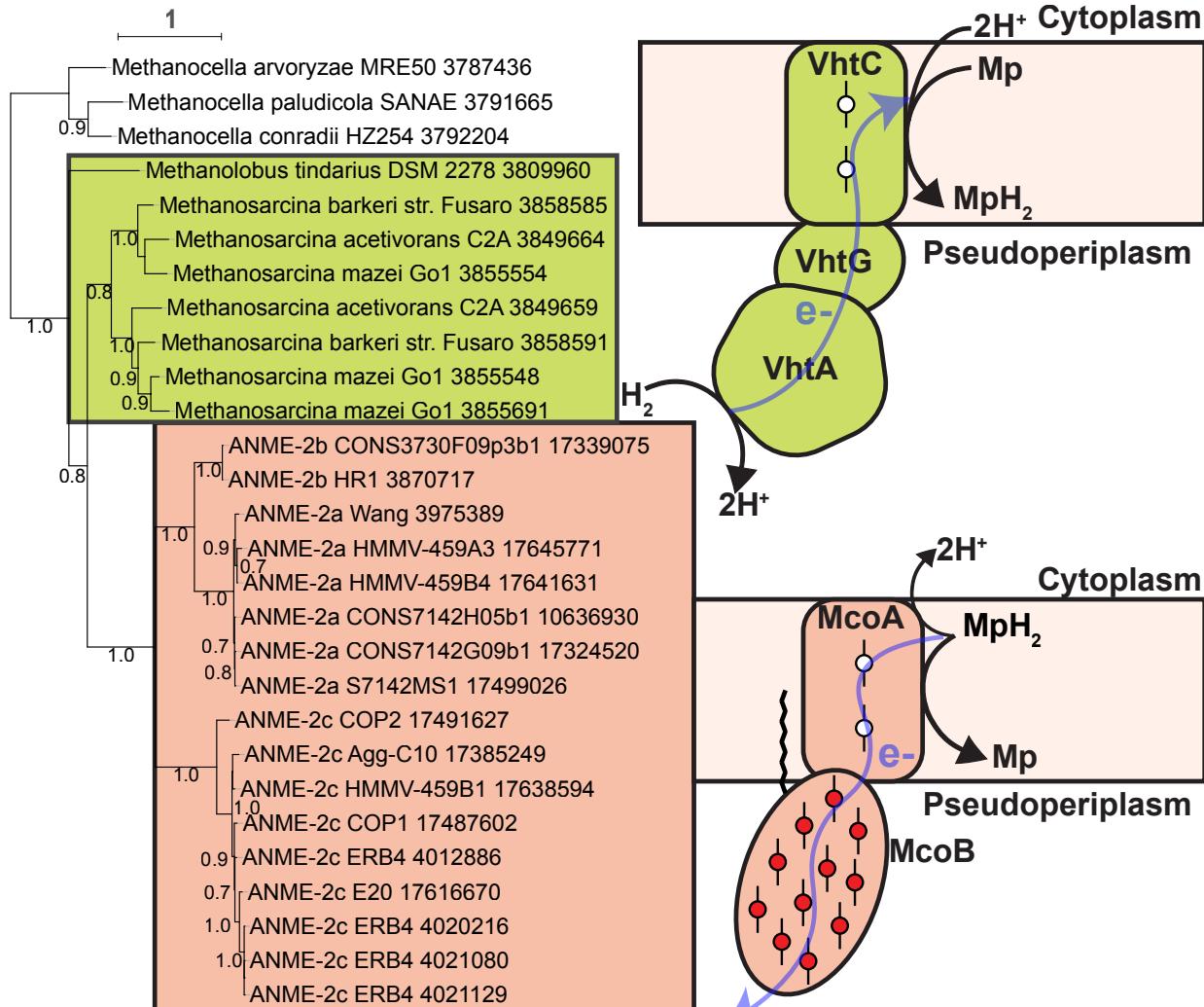


3061
3062 **S8 Fig. Alignment of HdrA sequences.** Protein alignments of representative ANME HdrA
3063 sequences were made and overlaid with the domains as colored in **Figs 7 and 8** based on the
3064 domains identified in the *M. wolfeii* structure. Cysteine residues are highlighted as red lines.
3065 Large insertion in the middle corresponds to the NfnB-like domain that interrupts the inserted
3066 ferredoxin domain in some ANME-1 HdrA. “HdrA1 (MA3128)” and “HdrA2 (MA2868)” from
3067 *M. acetivorans* (numbering from Buan and Metcalf, 2010) are included as references. Branch
3068 support values >50% are reported. Tree scales represent substitutions per site. Tree construction
3069 parameters are found in the methods section. Alignment and tree files can be found in **S1 Data**.
3070



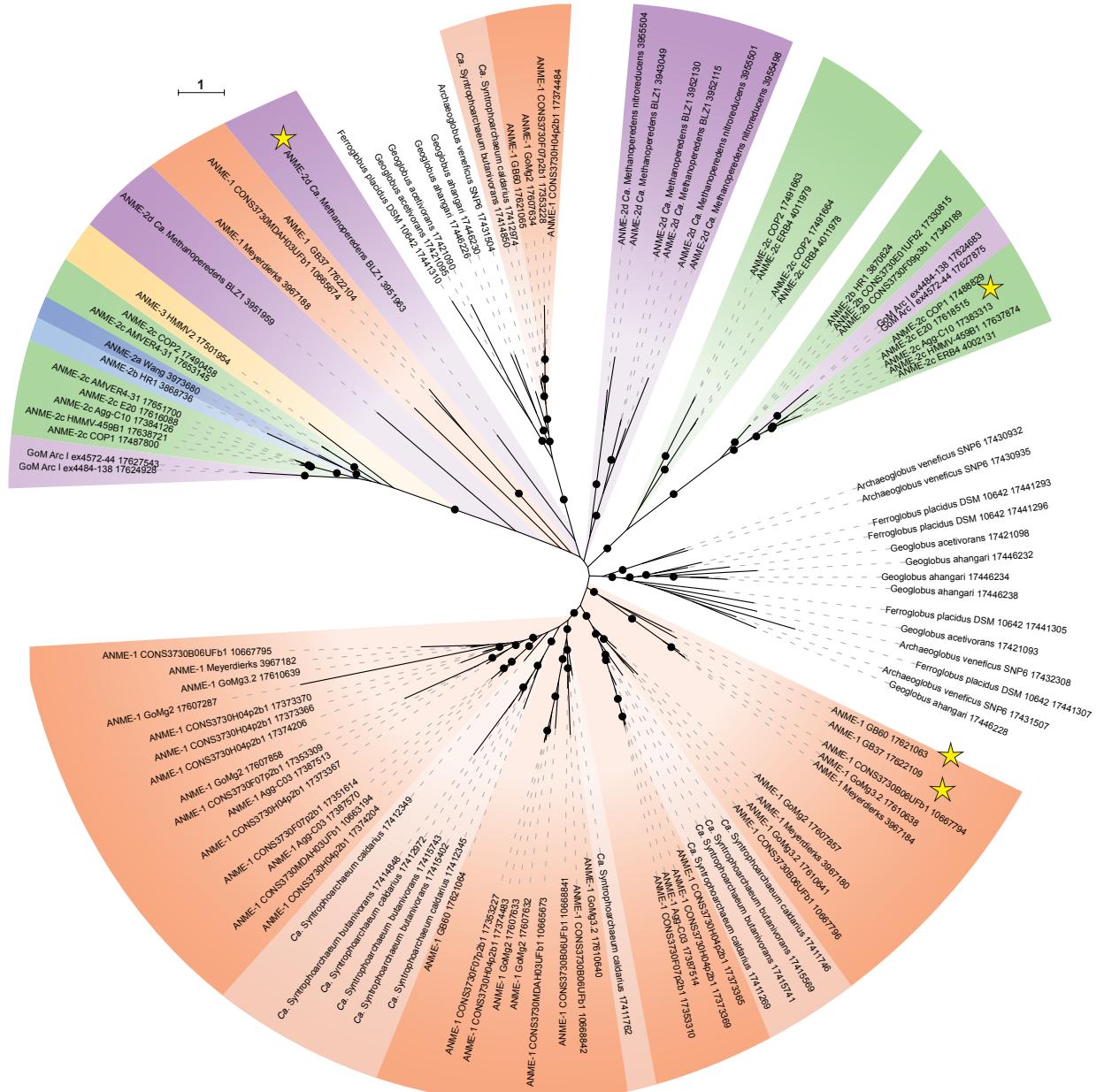
3071
3072
3073
3074
3075

S9 Fig. Hdr counts per genome. Most ANME and methanogen genomes contain 1-2 copies of *hdrABC* genes, however ANME-1 have a much greater abundance of *hdrA* homologs that are not accompanied by an increase in the number of *hdrB* or *C* homologs.

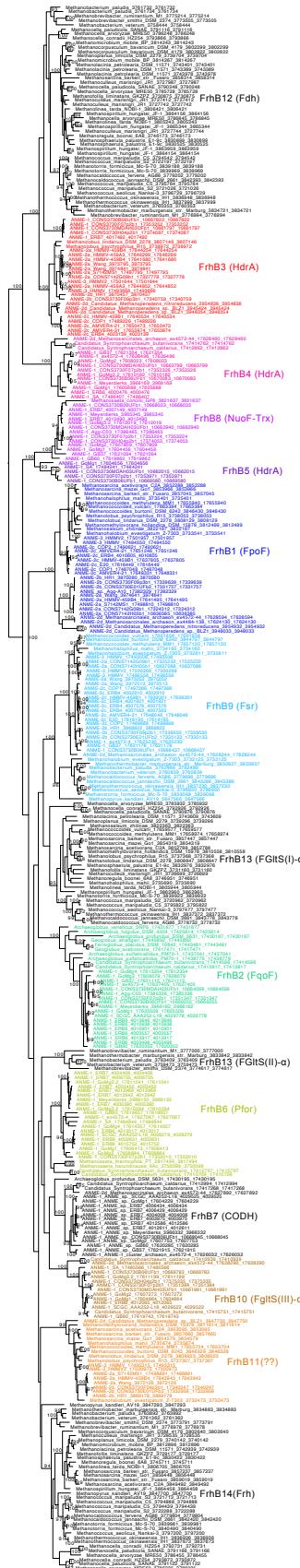


3076
3077 **S10 Fig. Hdr Presence/Absence.** Colored boxes represent presence of Hdr and associated genes
3078 in ANME genomes. HdrA1 in ANME is the same group as HdrA1 (MA3128) from *M. acetivorans*.
3079 Interestingly, only in ANME-3 is HdrA1 paired with HdrB1C1 (numbering from Buan and Metcalf,
3080 2010). In other ANME HdrA1 is paired with HdrB2C2. HdrA2 from *M. acetivorans* (here called
3081 HdrA14), is found in ANME-2 and 3 and largely lacks clear gene clustering, although its
3082 associated polyferredoxin is found elsewhere in most genomes. Question marks represent genes
3083 with no known annotation but that are conserved in Hdr gene clusters. Missing genes are
3084 represented by gray boxes with diagonal line fill. Numbers in the second column represent genome
3085 completeness. When genes are together in a gene cluster their boxes are displayed fused together.
3086 Numbers were assigned to distinct clusters of paralogs, matching those labels found in **Fig 8**. Gene
3087 accession numbers can be found in **S2 Data**.
3088

3089
3090 **S11 Fig. EET presence/absence.** Colored boxes represent presence of various key hypothetical
3091 EET genes in ANME genomes. Peptidase and 8x TMH denote a signal peptidase involved in
3092 cytochrome maturation and a hypothetical membrane protein with 8 predicted transmembrane


3093 helices that are found only in ANME and EET-capable *Ferroglobus* and *Geoglobus sp*. Missing
3094 genes are represented by gray boxes with diagonal line fill. Numbers in the second column
3095 represent genome completeness. When genes are together in a gene cluster their boxes are
3096 displayed fused together. Gene accession numbers can be found in **S2 Data**.
3097


3098
 3099 **S12 Fig. Mco phylogeny.** VhtC and McoA homologs from a selection of methanogens and the
 3100 ANME genomes reported here were used to build a phylogenetic tree. ANME VhtC homologs
 3101 clustered with multiheme cytochrome genes in ANME-2a and 2b, whereas in methanogens they
 3102 always clustered with the VhtAG gene encoding the hydrogenase enzyme used by these organisms.
 3103 Branch support values $>50\%$ are reported. Tree scales represent substitutions per site. Tree
 3104 construction parameters are found in the methods section. Alignment and tree files can be found
 3105 in **S1 Data**.
 3106


3107
3108 **S13 Fig. Cytochrome c orthologs.** Multiheme cytochromes present in ANME, methanogens and
3109 *Archaeoglobales* genomes. The central panel depicts the presence of cytochromes between
3110 genomes, where cytochromes between genomes have been grouped based on reciprocal best-hit
3111 blast results. The cytochromes in the central panel are ordered based on the median number of
3112 heme binding sites (CxxCH motifs) present in each group (upper bar plot). The clade distribution
3113 of each cytochrome is shown in the lower bar plot, while the right bar plot depicts the number of
3114 cytochromes present in each organism. Genomes that did not contain any multiheme cytochromes,
3115 which were most methanogens, are not shown.
3116

3117
3118 **S14 Fig. Broadly distributed cytochrome *c* homologs in ANME.** Unrooted phylogenetic
3119 reconstruction of the most broadly distributed group of MHC proteins found in the ANME archaea.
3120 Homologs to this group were only found in ANME, “*Ca. Argoarchaeum*”, “*Ca.*
3121 *Syntrophoarchaeum*” and members of the *Archaeoglobales* known for their EET capabilities. Stars
3122 represents the sequence corresponding to the exceptionally highly expressed cytochromes
3123 highlighted in **S3 Data**. Branch support values >90% are depicted as filled circles. Tree scales
3124 represent substitutions per site. Tree construction parameters are found in the Materials and
3125 Methods section. Alignment and tree files can be found in **S1 Data**.
3126

3127
3128 **S15 Fig. Amino acid pathways.** Amino acid pathways present in ANME genomes, methanogens
3129 and sulfate reducing bacteria. Each enzymatic reaction is labelled with an enzyme commission
3130 (EC) number, or in one case where an EC number is not available, a Pfam accession number and
3131 a matrix of small colored boxes. Each colored box represents a single genome, if the box is colored
3132 it means that that genome contains an annotation for that enzyme, otherwise it is left blank.
3133 Genomes are colored based on their clade.
3134

3136 **S16 Fig. Expanded FdhB protein tree.** FrhB paralogs are labelled as in Figure 16. Only branch
3137 support values >90% are shown for clarity. Tree scales represent substitutions per site. Tree
3138 construction parameters are found in the Materials and Methods section. Alignment and tree files
3139 can be found in **S1 Data**.

3140

3141 **S1 Data.** Alignments and tree files used in **Figs 1, 4, 5, 12, 13, 15-18**; and **S7, S8, S12 and S14**
3142 **Figs.**

3143

3144 **S2 Data.** Accession numbers for proteins represented in presence/absence figures presented in
3145 **Figs 3, 13, 14-16, and 18**; and **S6, S10 and S11 Figs.**

3146

3147 **S3 Data.** Compilation of transcriptomic data from the ANME-2a Wang genome (11), the ANME-
3148 2d BLZ1 genome (19), and the ANME-2c E20, ANME-1 GB37 and GB60 genomes (9).

3149

3150 **S4 Data.** Spreadsheets listing domain annotations of all proteins in ANME genomes found to have
3151 dockerin or cohesin domains.

3152

3153 **S5 Data.** List of accession numbers for fosmids that were assigned to bins ERB4, ERB 6 and ERB
3154 7.

3155

3156 **S1 File.** Formal etymology of proposed ANME genera.

3157

3158 **S1 Table.** Proteins comprising marker set 4 used for concatenated protein phylogenies.

3159

3160 **S2 Table.** 16S sequence accessions determined for single sorted aggregates.