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Core Ideas (max 95 char. each):
1. Transcriptomic data aid the study of vitamin levels in fresh sweet corn kernels.
2. crtRBI, lcyE, dxs2, dmes2, and cmkl were associated with carotenoid traits.
3. vted, hggtl, and gghl were associated with tocochromanol traits.
4. Transcriptomic data boosted predictive ability over genomic data alone for some traits.

5. Joint transcriptome- and genome-wide models achieved the highest predictive abilities.
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allowance; sh2, shrunken2; SNP, single-nucleotide polymorphism; sel, sugary enhancerl; sul,
sugaryl; TRM, transcriptomic relationship matrix; T, total tocopherols; XT3, total tocotrienols;

>T3 + XT, total tocochromanols; vtel, tocopherol cyclase; vte4, y-tocopherol methyltransferase
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ABSTRACT
Sweet corn is consistently one of the most highly consumed vegetables in the U.S., providing a
valuable opportunity to increase nutrient intake through biofortification. Significant variation for
carotenoid (provitamin A, lutein, zeaxanthin) and tocochromanol (vitamin E, antioxidants) levels
is present in temperate sweet corn germplasm, yet previous genome-wide association studies
(GWAS) of these traits have been limited by low statistical power and mapping resolution. Here,
we employed a high-quality transcriptomic dataset collected from fresh sweet corn kernels to
conduct transcriptome-wide association studies (TWAS) and transcriptome prediction studies for
39 carotenoid and tocochromanol traits. In agreement with previous GWAS findings, TWAS
detected significant associations for four causal genes, S-carotene hydroxylase (crtRB1),
lycopene epsilon cyclase (IcyE), y-tocopherol methyltransferase (vte4), and homogentisate
geranylgeranyltransferase (hggtl) on a transcriptome-wide level. Pathway-level analysis
revealed additional associations for deoxy-xylulose synthase2 (dxs2), diphosphocytidyl methyl
erythritol synthase2 (dmes?2), cytidine methyl kinasel (cmkl), and geranylgeranyl hydrogenasel
(gghl), of which, dmes2, cmkl, and gghl have not previously been identified through maize
association studies. Evaluation of prediction models incorporating genome-wide markers and
transcriptome-wide abundances revealed a trait-dependent benefit to the inclusion of both
genomic and transcriptomic data over solely genomic data, but both transcriptome- and
genome-wide datasets outperformed a priori candidate gene-targeted prediction models for most
traits. Altogether, this study represents an important step towards understanding the role of

regulatory variation in the accumulation of vitamins in fresh sweet corn kernels.
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INTRODUCTION

Micronutrient deficiencies affect more than two billion people across the globe (FAO 2020), with
most cases occurring in developing countries. Although clinical deficiency is less common in the
U.S., nutrient intake below the estimated average requirement is still prevalent in vulnerable
sectors of the population (Wallace et al. 2014; Eggersdorfer et al. 2018). Essential micronutrients
such as vitamins A and E are necessary for normal biological functioning and suboptimal levels
of these nutrients can contribute to health complications. Inadequate vitamin E intake has been
linked to increased risk of cardiovascular diseases (Knekt et al. 1994; Kushi et al. 1996), and
lutein and zeaxanthin, two non-provitamin A dietary carotenoids, have been associated with
reduced risk of age-related macular degeneration (Wu et al. 2015). The primary sources of
vitamins A and E are dietary carotenoids and tocochromanols, respectively, but bioavailability of
these nutrients varies depending on the food source and preparation (Yeum and Russell 2002;
Tanumihardjo et al. 2010; Borel et al. 2013).

Several strategies for improvement of micronutrient intake have been employed in the
U.S. including industrial fortification of commonly-consumed foods, multivitamin and mineral
supplementation, nutritional education for promotion of dietary diversification, and
biofortification (Allen et al. 2006). In terms of long-term impact, investment in biofortification
has the potential to provide the most lasting benefit, requiring no additional funding beyond
upfront research and development costs. The biofortification of staple crops through both
conventional and molecular breeding techniques has been successful in increasing the nutritional
content of new plant varieties through initiatives such as HarvestPlus (Bouis and Saltzman 2017,
Diaz-Gomez et al. 2017; Hirschi 2020; Bhullar and Gruissem 2013). Although few have focused

on U.S. impact, some of these efforts have targeted nutrients lacking in many U.S. diets such as
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carotenoids (Low et al. 2017) and tocochromanols (Che et al. 2016), thus serving as examples for
biofortification efforts in the U.S. Sweet corn is routinely ranked amongst the most highly
consumed vegetables in the U.S. (USDA ERS 2020), and adequate heritable variation exists for
improvement of carotenoid and tocochromanol traits in fresh sweet corn kernels (Baseggio et al.
2019; Baseggio et al. 2020; Xiao et al. 2020). Paired with the many genomic resources that can
be leveraged from the greater maize germplasm pool, these attributes position sweet corn as an
ideal target for biofortification.

Biofortification is enabled by our growing knowledge of the biosynthetic pathways and
variants controlling phenotypic diversity within a population, especially when powered by
genomics-assisted selection. While carotenoid and tocochromanol traits have been
well-characterized in mature maize grain through linkage analysis and genome-wide association
studies (GWAS) (Harjes et al. 2008; Yan et al. 2010; Li et al. 2012; Lipka et al. 2013; Owens et
al. 2014; Diepenbrock et al. 2017; Diepenbrock et al. 2021), sweet corn is a distinct
subpopulation of maize with allele frequencies that differ from those of the broader maize
germplasm base (Romay et al. 2013), potentially limiting the transferability of these findings.
Genetic dissection of carotenoid and tocochromanol accumulation in fresh sweet corn kernels
has revealed relatively fewer insights into the genetic control of these traits, with outcomes
limited by low mapping resolution and confounding associations of some endosperm-specific
traits with sugaryl (sul) and shrunken?2 (sh2), kernel endosperm starch mutations characteristic
of sweet corn (Baseggio et al. 2019; Baseggio et al. 2020). The use of gene expression data,
offering gene-level resolution and insight into regulatory variation, has the potential to help
overcome these obstacles. Transcriptome-wide association studies (TWAS), which assess the

association between gene expression and terminal phenotypes (Hirsch et al. 2014; Lin et al.


https://paperpile.com/c/wMypX2/Rq9I
https://paperpile.com/c/wMypX2/PgNY
https://www.ers.usda.gov/data-products/food-availability-per-capita-data-system/food-availability-per-capita-data-system/#Loss-Adjusted%20Food%20Availability
https://paperpile.com/c/wMypX2/9BQg+Luus+71Tt
https://paperpile.com/c/wMypX2/9BQg+Luus+71Tt
https://paperpile.com/c/wMypX2/tnM9+V4PM+g8S3+g2FK+yx9V+cRtB+iyJR
https://paperpile.com/c/wMypX2/tnM9+V4PM+g8S3+g2FK+yx9V+cRtB+iyJR
https://paperpile.com/c/wMypX2/yDrg
https://paperpile.com/c/wMypX2/9BQg+Luus
https://paperpile.com/c/wMypX2/5emv+9h0F+P2lY+Ui5r
https://doi.org/10.1101/2021.09.24.461734
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.09.24.461734; this version posted September 25, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

2017; Pasaniuc and Price 2017; Li et al. 2021), have successfully identified associations
previously found in GWAS and have highlighted new and promising associations for mature
grain carotenoids and tocochromanols (Kremling et al. 2019).

In general, genomic selection leverages dense genomic marker data for generating
genomic estimated breeding values to inform selection decisions, but its success is dependent on
the predictive abilities of the underlying statistical models. The models commonly employed for
genomic prediction (GP), such as GBLUP, assume numerous loci with small effects (Meuwissen
et al. 2001). However, this assumption is in contrast with the genetic architecture of carotenoid
and tocochromanol levels in physiologically mature maize grain and fresh sweet corn kernels,
which consists of few genes with large effects (Lipka et al. 2013; Owens et al. 2014;
Diepenbrock et al. 2017; Diepenbrock et al. 2021; Baseggio et al. 2019; Baseggio et al. 2020).
This suggests that an informed, unequal weighting of markers according to phenotypic variation
explained by causal genes would lead to more accurate predictions by GP models, a hypothesis
supported by studies in multiple biological systems (van 't Veer et al. 2002; Edwards et al. 2016;
Fang et al. 2017).

Several approaches have been used to incorporate biological information into GP models
for maize kernel tocochromanol and carotenoid traits, including quantitative trait loci (QTL)
identified via linkage analysis. Moderately high predictive abilities have been achieved when
utilizing both whole-genome prediction and smaller, carotenoid QTL-targeted marker sets in
mature kernels of a maize association panel (Owens et al. 2014). In contrast, predictive abilities
for many fresh kernel carotenoid and tocochromanol traits in a sweet corn association panel have
been lower for QTL-targeted as compared to whole-genome marker sets when using

joint-linkage (JL)-QTL identified in the maize nested association mapping (NAM) population
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(Baseggio et al. 2019; Baseggio et al. 2020). As only a fraction of these QTL were identified as
significant associations in this same sweet corn panel (Baseggio et al. 2019; Baseggio et al.
2020), it is possible that key causal variants were insufficiently represented in the targeted
marker set.

The incorporation of gene expression data into GP models has the potential to increase
predictive ability in sweet corn nutritional quality traits by providing additional information,
such as regulatory variation, that may not be captured by genomic variation alone. Any
improvements in the identification of causal genes through TWAS would also help to customize
targeted GP models to better fit the needs of sweet corn. Models that leverage expression data
have been shown to increase prediction abilities over genomic marker-based models, but
increases are not consistent for all tested traits (Guo et al. 2016; Schrag et al. 2018; Azodi et al.
2020). To our knowledge, these models are yet untested in sweet corn. We hypothesize that the
sum of these advantages may allow us to address the challenges faced in previous GWAS and GP
models with nutritional traits in sweet corn, resulting in a more deeply resolved genetic
architecture and increased predictive ability.

The objectives of this study were to integrate gene expression data with existing genomic
and phenotypic datasets to 1) better characterize the genetic architecture of carotenoid and
tocochromanol concentrations in fresh sweet corn kernels, and 2) evaluate the potential of
transcriptomic data to improve predictive abilities for genomic selection in a sweet corn

biofortification breeding program.

MATERIALS AND METHODS

Germplasm and experimental design
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A sweet corn association panel of 382 inbred lines representative of U.S. temperate breeding
program genetic diversity were selected from the panel studied by Baseggio et al. (2019; 2020)
based on the availability of single-nucleotide polymorphism (SNP) marker genotype and fresh
kernel carotenoid and tocochromanol phenotype data in those studies. Inbred lines with sugaryl
(sul), shrunken2 (sh2), and both sugaryl and shrunken2 (sulsh?2) starch-deficient endosperm
mutations were included, while the less common aeduwx or bt2 mutations and lines with missing
phenotypic data for both studies were excluded from this study.

The 382 lines were planted in an augmented incomplete block design as previously
described (Baseggio et al. 2019). Briefly, three sets organized by plant height were used to
reduce shading effects on shorter plants, with each set consisting of incomplete blocks of 20
single-row experimental plots. Each incomplete block was augmented with two of four
height-specific checks (We05407 and W5579, W5579 and 1a5125, or [a5125 and IL125b).
Twelve seeds were planted in each plot. The experiment was planted in field N (Lima silt loam
soil) at Cornell University’s Musgrave Research Farm in Aurora, NY on June 7, 2019. Plots were
3.05 m long with inter-row spacing of 0.76 m and a 0.91 m alley at the end of each plot.

A single ear per plot was harvested at approximately 400 growing-degree days (GDD)
after self-pollination and flash-frozen with liquid nitrogen in the field. When possible, samples
were not collected from the end plants of each plot. Ears were kept on dry ice during
transportation to the fieldhouse laboratory, where the middle third of each ear was shelled and
transferred into a sample cup. These samples were also kept on dry ice during transportation to a

-80°C freezer. In total, 373 experimental and 69 check kernel samples were collected.

RNA isolation and 3' mRNA sequencing
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Seven frozen kernels from each sample cup were ground in liquid nitrogen using an IKA
grinder (IKA Works, Inc., Staufen, Germany). RNA was extracted from approximately 100 mg
of ground tissue from each sample with hot borate and lithium chloride (Wan and Wilkins 1994).
Extracted samples were DNAse treated with the Ambion Turbo DNA-free Kit (Thermo Fisher
Scientific, Waltham, MA). The extraction process was repeated for degraded samples as
identified with agarose gel electrophoresis. After isolation, RNA was quantified using a BioTek
Epoch 2 microplate spectrophotometer (BioTek Instruments, Inc., Winooski, VT) and diluted to a
concentration of 200-300 ng/ul. Diluted samples were randomly assigned to five 96-well plates.
Two positive control wells containing pooled RNA from one of the field check inbred lines
(W5579) and two negative control wells (one blank and one water) were included per plate. The
five plates were submitted to the Cornell Biotechnology Resource Center (Cornell University,
Ithaca, NY, USA) where libraries were constructed using the Lexogen QuantSeq 3' mRNA-Seq
Library Kit FWD (Lexogen, Greenland, NH). Constructed libraries were sequenced on an

[1lumina NextSeq 500 (Illumina, San Diego, CA) with a single plate per sequencing lane.

Expression abundance estimation
The 3' mRNAseq reads were cleaned in accordance with Lexogen recommendations
(https://www.lexogen.com/wp-content/uploads/2020/04/015UG009V 0252 QuantSeq Illumina
2020-04-03.pdf) by completing two rounds of Cutadapt (v2.10) (Martin 2011). To summarize,
round one trimmed [llumina adapters and round two trimmed the first 12 bases and polyA tails.
Alignments were generated to the B73 v4 genome (Jiao et al. 2017) and the 1a453 genome (Hu et
al. 2021) using HISAT2 (v2.2.1) (Kim et al. 2019) with the following parameters;

--max-intronlen 5000, --dta-cufflinks, and --rna-strandness F. The htseq-count function from

10
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HTSeq (v0.12.4) (Anders et al. 2015) was used to generate counts with the following parameters;
--order=pos, --stranded=yes, --minaqual=10, --type=gene, and --mode=union. This was done in a
genome-dependent manner using the B73 v4.59 or [a453 v1.0 annotations. The count data were
normalized using the rlog function of DESeq2 (Love et al. 2014). Genes with a normalized count
of less than or equal to zero for all samples were filtered out of the final count matrix. The
normalized data were then filtered by removing samples that had high levels of contaminants (12
samples) that were introduced by the sequencing facility and further filtering out samples with
less than 250,000 reads (3 samples). This resulted in a high-quality dataset of 433 samples.
Additional stringent filtering steps were performed to further prepare the dataset for
downstream analyses. A total of 77 positive control and check samples were removed, resulting
in 356 experimental samples. All genes with 50% or more samples having normalized transcript
abundance values of zero were removed from the analysis. Extreme observations exceeding 100
median absolute deviations from the median for a given gene were removed from the analysis
following the method of Davies and Gathers (1993), resulting in 0.01% of total observations
removed in this step. These observations were imputed using the median normalized count value
for that gene, as no missing values were permitted in the downstream calculation of probabilistic
estimation of expression residuals (PEER) factors. Finally, genes with greater than 10% of
observations above the median absolute deviation threshold were removed from the analysis.
Filtering steps and metrics for each reference genome alignment are available in Supplemental

Table S1.

Statistical analysis of transcriptomic data

11
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Best linear unbiased estimators (BLUEs) were calculated using the normalized transcript
abundances for all genes passing quality control. The following mixed model was fitted to each

gene with ASReml-R version 3.0 (Gilmour et al. 2009):

yijklmno = u + Gi +Sj+ Sj:Bk + Cl + R m + P n+ D o + ¢ jkimno

Where yijumno 18 an individual normalized transcript abundance observation. p is the overall

mean, Gi is the fixed effect for genotype i, Sj is the random effect for set j, B kis the random effect
for block kin setj, C l is the random effect for plot grid column /, R . is the random effect for
plot grid row m, P . is the random effect for RNA sample 96-well plate n, D . is the random

effect for RNA extraction date o, a categorical variable with two levels representing extraction

dates before and after laboratory closures due to COVID-19, and ¢ . 1s the residual effect.

ijklmn
Model fitting did not converge for a subset of genes for each reference genome, so transcript
abundance BLUE values of 18,765 (B73) and 18,477 (Ia453) genes were obtained for 355 inbred
lines (Supplemental Table S1).

PEER (Stegle et al. 2010), a Bayesian factor analysis which removes hidden factors (e.g.,
experimental noise) from the transcript abundance data, was used to prepare the expression
profile for downstream analysis. First, an optimal number of factors was visually identified by
finding the “elbow” of the diagnosis plot of the factor relevance (so-called scree plot) up to 25
factors (Supplemental Table S2). This PEER calculation was applied after removing genotypes

that were not included in the phenotype dataset (four genotypes were removed for

tocochromanol data; 72 genotypes were removed for carotenoid data). Finally, a linear model
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with grand mean was fitted on the PEER residuals for each gene and Studentized deleted
residuals (Neter et al. 1996) were used for outlier identification given a Bonferroni correction (o

=0.05).

Existing phenotypic data

The sweet corn association panel was previously evaluated for fresh kernel
tocochromanol and carotenoid traits during the 2014 and 2015 field seasons at Cornell
University’s Musgrave Research Farm in Aurora, NY as previously described (Baseggio et al.
2019; Baseggio et al. 2020). BLUPs in pg g for these 20 tocochromanol traits [8-tocotrienol,
0T3; y-tocotrienol, yT3; a-tocotrienol, aT3; d-tocopherol, dT; y-tocopherol, yT; a-tocopherol, aT;
total tocotrienols, total T3; total tocopherols, total T; total tocochromanols, total T3 + T;
aT3/yT3; aT/YT; 8T3/aT3; 6T/aT; 6T3/yT3; 6T/yT; yT3/(yT3 + aT3); yT/(yT + aT); ST3/(yT3 +
aT3); 0T/(yT + aT); total T/total T3] from Baseggio et al. (2019) and 19 carotenoid traits
[antheraxanthin; B-carotene; B-cryptoxanthin; lutein; violaxanthin; zeaxanthin; zeinoxanthin;
other carotenes (lycopene, a-carotene, o-carotene, and other unidentified carotenes);
zeinoxanthin/lutein; B-cryptoxanthin/zeaxanthin; B-carotene/B-cryptoxanthin;
B-carotene/(p-cryptoxanthin+zeaxanthin); a-xanthophylls (sum of lutein and zeinoxanthin);
B-xanthophylls (sum of antheraxanthin, B-cryptoxanthin, violaxanthin, and zeaxanthin);
B-xanthophylls/a-xanthophylls; total carotenes (sum of B-carotene and other carotenes); total
xanthophylls (sum of a- and B-xanthophylls); total carotenes/total xanthophylls; total carotenoids
(sum of the seven carotenoid compounds and other carotenes)] from Baseggio et al. (2020) were

used for association and prediction analyses in this study.
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Transcriptome-wide association studies

TWAS was performed for each of the 39 fresh kernel tocochromanol and carotenoid traits
using transcripts aligned to the B73 v4 and 1a453 reference genomes. An additional TWAS was
conducted for kernel type mutations (s/2 or sul) with both reference genome alignments, but
because only 17 lines contained both 542 and sul kernel type mutations, lines including both
mutations were excluded from the analysis of this trait. Prior to conducting TWAS, a total of 44
models were compared for each tocochromanol and carotenoid trait: with or without kinship (n =
2 options), with or without kernel mutant type (n = 2 options), and different numbers of principal
components (PCs) (n = 11 options; 0-10 PCs). Kernel mutant type was not included as a fixed
effect in models for the kernel type trait, thus a total of 22 models were evaluated for this trait.
For models including kinship, a random genotypic effect was also included in the model. If
included in the optimal model, kernel mutant type and PCs were modeled as fixed effects. The
Bayesian information criterion (BIC) was used to select the optimal model for each trait
(Supplemental Table S3). Kinship matrices were calculated with SNPs having a minor allele
frequency > 0.05 obtained from the 10,773 SNP dataset from Baseggio et al. (2021) according to
VanRaden’s method 1 (VanRaden 2008) implemented in GAPIT version 3 (Lipka et al. 2012).
TWAS was implemented using the optimal model for each trait with the GWAS() function in the
rrBLUP R package (Endelman 2011). Resulting raw P-values were adjusted to control the false
discovery rate (FDR) using the p.adjust() function in base R (Benjamini and Hochberg 1995; R

Core Team 2018). Significant associations were identified as those passing a 5% FDR threshold.

Pathway-level analysis
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A pathway-level analysis considering only a priori candidate pathway genes in the
well-maintained and annotated B73 reference genome was employed to increase the probability
of identifying weaker-effect alleles contributing to carotenoid and tocochromanol phenotypic
variation (Lipka et al. 2013; Owens et al. 2014). A list of a priori candidate genes involved in
accumulation (carotenoids and tocochromanols) and retention (carotenoids) was compiled from
previous studies of carotenoid and tocochromanol levels in maize kernels (Diepenbrock et al.
2017; Diepenbrock et al. 2021) and further updated for tocochromanols in our study. The
common support intervals of JL-QTL from the U.S. maize NAM panel were uplifted from B73
v2 to B73 v4 according to the methods described by Wu et al. (2021). These common support
intervals and a priori candidate genes were matched with B73 v4-aligned TWAS results to
facilitate the biological interpretation of findings (Supplemental Table S4). Using subsets
including only the genes identified as a priori candidates for each set of traits, pathway-level
FDR adjustments were performed on the raw (unadjusted) TWAS P-values for both the
tocochromanol and carotenoid trait sets with the p.adjust() function in base R. A threshold of 5%

FDR was used to declare significant associations.

Genome- and transcriptome-wide prediction
Genomic relationship matrices (GRMs) were calculated according to VanRaden’s method
1 in GAPIT (VanRaden 2008; Lipka et al. 2012) using a set of 147,762 GBS SNPs from
Baseggio et al. (2021) uplifted to B73 v4 (Jiao et al. 2017) with minor allele frequency > 0.05 .
Transcriptomic relationship matrices (TRMs) were calculated for each reference genome by
scaling the cross-product of the centered and standardized expression-BLUE matrix by the

number of transcripts (VanRaden 2008; Morota and Gianola 2014).
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We built 11 unique models using six relationship matrices: five with a single relationship
matrix (GRM, TRM.B73, TRM.Ia453, TRM.cand, and TRM.non.cand) and six with multiple
relationship matrices (GRM+TRM.B73, GRM+TRM.[a453, GRM+TRM.cand,
GRM-+TRM.non.cand, TRM.both, and GRM+TRM.both) (Table 1). Relationship matrices were
additively included for models with more than one relationship matrix (i.e., multi-kernel
prediction). All models were tested with and without kernel mutant type included as a covariate.
When included, kernel mutant type was modeled as a fixed categorical variable with three levels
(sh2, sul, and sulsh2). All models were implemented in the BGLR package in R (Pérez and De
Los Campos 2014), with the number of iterations for MCMC set to 12,000 with 8,000 samples
for the burn-in period. All other parameters were set to the default values. Five-fold cross
validation was repeated 10 times to evaluate the predictive ability (Pearson’s correlation between
predicted and observed values) for each phenotype. Folds were stratified by endosperm mutant
type (sh2, sul, and sulsh?2) to represent population genotype frequencies and were held

consistent across all models.

Table 1. Summary of the models evaluated in this study

Relationship matrix
Model abbreviation # Matrices
GRM TRM.B73 TRM.non.cand TRM.cand
GRM 1
GRM+TRM.B73 2
TRM.B73 1
GRM+TRM.cand 2
TRM.cand 1
GRM+TRM.non.cand 2
TRM.non.cand 1
TRM.both 2
GRM+TRM.both 3
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GRM is the genomic relationship matrix, TRM.B73 is the transcriptomic relationship matrix
using all available genes, TRM.cand is the transcriptomic relationship matrix incorporating only
a priori candidate genes, and TRM.non.cand is the transcriptomic relationship matrix using only
genes categorized as not a priori candidates. A list of included or excluded candidate genes is
available in Supplemental Table S4. Models using transcriptomic data aligned to the [a453
reference genome (TRM.Ia453) follow the same form as those using TRM.B73 shown here, but
the transcriptomic data used to calculate the TRM.cand and TRM.non.cand matrices were
aligned to the B73 v4 reference genome only.
RESULTS

Kernel type TWAS

As a proof of concept, we performed TWAS for kernel mutation type in a diverse panel
of sweet corn inbred lines representative of temperate U.S. germplasm. As we defined it, this
trait is caused by mutations in two genes known to be involved in endosperm starch biosynthesis,
sh2 and sul, and was represented in a binary manner in this analysis. Due to structural
differences between the B73 and [a453 genomes at the sh2 locus (Hu et al. 2021), transcripts
from fresh kernels were aligned to both genomes to enable comparison between the two. [a453
has the sh2-reference mutant allele (sh2-R), which consists of two genes that originated from a
single copy of the functional sA2 allele as the result of structural rearrangement, while B73 has
the functional sh2 allele.

Strong associations were observed between kernel mutant type and transcript abundance
of sh2 using both the B73 (Zm00001d044129; P-value 3.20 x 107%°) and a453
(Zm00045a021195; P-value 1.31 x 107%°) reference genomes at a transcriptome-wide 5% FDR.
Transcript abundance of the second 542 gene in the [a453 reference genome, Zm00045a021196,
was not significantly associated with the kernel mutant type trait in our panel (P-value 6.73 x
107%). Despite a presumed causal relationship between mutations in the sul gene and the

resulting kernel phenotype, a significant association was not identified with transcript abundance

of this gene in our panel with either reference alignment (Figure 1). Supporting these results,
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there is little variation overall for sul expression regardless of visual and marker-based kernel
endosperm mutation classification, while a relatively large range in transcript abundance is

observed at sh2 based on these same groupings (Figure 2).
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Figure 1. Manhattan plot representing the -log,, P-values of the transcriptome-wide association
study of endosperm mutation type using the B73 v4 reference genome. Relative positions of sh2
(shrunken2; Zm00001d044129) and sul (sugaryl; Zm00001d049753) are indicated by black
dots and vertical lines.
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Figure 2. B73-aligned normalized transcript abundance of fresh sweet corn kernels by kernel
endosperm mutation type assignment for sh2 (shrunken2; Zm00001d044129) and sul (sugaryl,
Zm00001d049753). Visual and marker-based endosperm classifications on the x-axis are from
Baseggio et al. (2019; 2020), while name-based classifications (color and shape of data points)
are based on inbred line names alone. In cases for which classification of alleles at s42 was not

obvious based on line name alone, lines were designated as ‘unknown’.

Vitamin TWAS

Using normalized transcript abundance from fresh kernels, we performed TWAS based

on read alignments to the B73 and [a453 reference genomes for 39 existing tocochromanol and

carotenoid kernel phenotypes in the same sweet corn diversity panel. Across all traits, 23 unique

genes passed a transcriptome-wide FDR threshold of 5% when aligned to B73. Of these, six

were located within common support intervals of JL-QTL previously identified with the U.S.

maize NAM panel (Diepenbrock et al. 2017; Diepenbrock et al. 2021), including three causal
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genes: f-carotene hydroxylase 1 (crtRBI), [ycopene e-cyclase (IcyE), and vitamin E synthesis4
(vte4) (Supplemental Table S5). On a per trait basis, the number of genes passing the
significance threshold ranged from zero to nine.

crtRB1 encodes B-carotene hydroxylase, an enzyme that hydroxylates B-carotene to
produce B-cryptoxanthin and zeaxanthin (Yan et al. 2010). In our TWAS, transcript abundance of
this gene was significantly associated with four carotenoid traits at a transcriptome-wide level for
B73: B-carotene (P-value 2.45 x 107'"), the ratio of B-carotene to B-cryptoxanthin + zeaxanthin
(P-value 2.16 x 107", the ratio of B-carotene to B-cryptoxanthin (P-value 3.95 x 107'%) and
antheraxanthin (P-value 3.53 x 10°). lcyE, another core carotenoid biosynthesis gene (Harjes et
al. 2008), was the top association for a-xanthophylls and the ratio of B-xanthophylls to
a-xanthophylls (P-value 1.07 x 107'"), but only passed the B73 transcriptome-wide 5% FDR
threshold for the latter. vte4, a core tocochromanol pathway gene (Shintani and DellaPenna
1998), was the top association for five tocopherol traits in this TWAS: oT (P-value 3.10 x 107",
YT (P-value 3.85 x 107®), yT/(yT + oT) (P-value 3.11 x 107"%), aT/yT (P-value 1.13 x 107"%), and
8T/uT (P-value 3.03 x 10°®). Each of these five associations passed the transcriptome-wide 5%
FDR threshold for the B73 alignment.

In addition to these a priori candidate genes, five other genes were significantly
associated with carotenoid traits and 15 genes were significantly associated with tocochromanol
traits at the transcriptome-wide level. Of these non-a priori candidates, two are transcription
factors: Zea mays MADS18 (Zm00001d010233), which was significantly associated with
antheraxanthin (P-value 2.33 x 10°%), and HSF transcription factor 11 (Zm00001d034433),
which was significantly associated with both yT (P-value 1.80 x 107) and T (P-value 2.04 x

107). Although previous GWAS in this sweet corn diversity panel have identified significant
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SNPs on the same chromosomes as these genes, neither is physically close with
Zm00001d010233 and Zm00001d034433 approximately 33.9 and 8.2 Mb from the nearest
significant SNPs, respectively (Baseggio et al. 2019; Baseggio et al. 2020).

Overall, 1a453 TWAS results were similar to B73, with seven genes passing the
transcriptome-wide 5% FDR threshold for both alignments (Supplemental Table S6). All three of
the causal genes identified with the B73 alignment, crtRB1, lcyE, and vte4, also passed the
significance threshold for [a453. An additional 11 genes were significantly associated with
vitamin traits only in the [a453 alignment, including two tocotrienol traits (yT3/yT3+aT3,
P-value 8.4 x 1077; aT3/yT3, P-value 1.6 x 10°®) with homogentisate geranylgeranyl
transferasel (hggtl), a core tocochromanol pathway gene that encodes the first committed step

for the synthesis of tocotrienols.

Pathway-level analysis
The large number of individual tests required for TWAS results in a multiple testing

problem that requires correction to control for the Type I error rate, but this can limit the power
to detect weaker-effect associations. Using a set of a priori candidate genes from the carotenoid
and tocochromanol biosynthetic pathways identified in the B73 reference genome (Supplemental
Table S4), P-values from the B73-aligned TWAS were re-adjusted at a pathway-level. When
FDR-adjusted P-values were calculated on a pathway-level, eight genes passed the 5% threshold,
three for tocochromanol traits and five for carotenoid traits. Five of these genes were located
within NAM JL-QTL common support intervals, including crtRB1, IcyE, and vte4, the three

genes identified with the transcriptome-wide FDR threshold (Supplemental Table S7).
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Although only significant on the transcriptome-wide level for the [a453 alignment,
transcript abundance of 4ggt/ was significantly associated with several tocotrienol traits,
YT3/(yT3 + aT3) (P-value 9.41 x 107, aT3/yT3 (P-value 1.89 x 107%), and yT3 (P-value 1.87 x
10~*) on a pathway-level. Several genes involved in the biosynthesis of isoprenoid carotenoid
precursors, diphosphocytidyl methyl erythritol synthase2 (dmes2), deoxy-xylulose synthase?2
(dxs2), and cytidine methyl kinasel (cmkl), were identified on a pathway-level for
carotenoid-related traits. Transcript abundance of dmes2 was significantly associated with
antheraxanthin and B-xanthophylls, dxs2 was significantly associated with -carotene, and cmkl
was significantly associated with antheraxanthin and the ratio of B-carotene over B-cryptoxanthin
+ zeaxanthin. In addition to these carotenoid-associated genes, geranylgeranyl hydrogenasel
(gghl), which is involved in prenyl group and 3,8-divinyl-chlorophyllide biosynthesis I

synthesis, was significantly associated with yT/(yT + oT).

Predictions

A B73-aligned GRM and TRMs from B73 and [a453 reference genome alignments were
used in models with one or multiple relationship matrices for the prediction of all carotenoid and
tocochromanol traits. To assess the predictive ability of a priori candidate genes from both the
carotenoid and tocochromanol pathways, two additional B73-aligned transcriptome-based
relationship matrices were evaluated per pathway with one containing only candidate genes
(TRM.cand) and the other derived from all remaining non-candidate genes (TRM.non.cand)
(Table 1). All models were tested both with and without the inclusion of kernel type mutation
(sul, sh2, or sulsh?2) as a covariate, but with the exception of some candidate gene-targeted

models, its effect on mean predictive ability was less than 5% for all traits and models. Kernel
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type mutation was included as a covariate for all subsequently reported results. Across the
majority of both carotenoid and tocochromanol traits, models incorporating only a GRM
(tocochromanols: 0.27 - 0.70; carotenoids: 0.27 - 0.71) outperformed those with a B73-aligned
TRM alone (tocochromanols: 0.22 - 0.69; carotenoids: 0.19 - 0.67), with models incorporating
both a GRM and TRM (tocochromanols: 0.28 - 0.71; carotenoids: 0.26 - 0.71) obtaining the
highest overall predictive abilities. These patterns were consistent for both sets of traits for the
[a453 reference genome.

A priori candidate gene-targeted kernels were also tested for predictive ability using
B73-aligned transcriptome data. For both the carotenoid and tocochromanol pathways, models
containing relationship matrices derived from non-candidate genes alone (TRM.non.cand)
outperformed those containing only the candidate gene-targeted TRM (TRM.cand). However,
models incorporating a GRM in addition to either of these candidate or non-candidate
gene-targeted relationship matrices eliminated this advantage, producing similar predictive
abilities with both TRM subset matrices (Supplemental Table S8). In a model including both the
TRM.cand and TRM.non.cand relationship matrices (TRM.both), predictive abilities followed
similar patterns to models representing the entire transcriptome in a single relationship matrix
(TRM.B73), but the mean predictive ability was slightly higher at 0.53 across all carotenoid
traits and 0.48 across all tocochromanol traits. The performance difference between TRM.cand
models with and without kernel mutation type as a covariate ranged from a 0.17 percentage point
difference for T, a trait without endosperm mutation type effects, to a 52.81 percentage point
difference for other carotenes, one of the traits with a significant endosperm mutation type effect

(Supplemental Table S3).
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Although similar patterns were observed across all models for carotenoid traits, mean
predictive abilities were slightly higher overall for xanthophylls (0.51 - 0.56) as compared to
carotenes (0.48 - 0.51). Lutein, a xanthophyll, had the highest predictive ability amongst
carotenoid traits, with predictive abilities ranging from 0.65 (TRM.B73) to 0.71 (GRM and
GRM-+TRM for both alignments). In contrast, the ratio of zeinoxanthin to lutein had the lowest
predictive ability, ranging from 0.19 (TRM.B73) to 0.27 (GRM and GRM+TRM.Ia453). Among
models incorporating all transcriptome information for tocochromanol traits, tocotrienol
predictive abilities were higher than those for tocopherol traits (Figure 3). The highest
tocochromanol trait predictive abilities were obtained for 0T3, with predictive abilities ranging
from 0.69 (TRM.Ia453) to 0.71 (GRM + TRM for both alignments). yT/(yT+aT) had the lowest

predictive abilities overall, ranging from 0.22 (TRM.B73) to 0.29 (GRM + TRM.Ia453).
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Figure 3. Mean predictive abilities of models incorporating different combinations of
relationship matrices. Predictive ability is expressed as the mean Pearson’s correlation between
predictions and observed BLUPs for each category of traits across 10 repetitions of five-fold
cross-validation. Colors correspond to the types of relationship matrix or matrices included in
each model including genomic (GRM), transcriptomic (TRM), or one or more of both types

(GRM + TRM).
DISCUSSION

The biofortification of sweet corn provides an opportunity to address nutritional
insufficiencies in populations with high rates of sweet corn consumption. As an intermediate step
between genotype and terminal phenotypes, the transcriptome offers valuable insight into
mechanisms governing nutrient accumulation in fresh sweet corn kernels that could be exploited
for genetic gain by biofortification breeding programs. In this study, we performed
transcriptome-wide association and prediction in sweet corn, enabling deeper quantitative
genetic analysis of tocochromanol and carotenoid accumulation in fresh kernels.

The sweet kernels characteristic of the sweet corn subpopulation are caused by
interruptions to endosperm starch production and storage as a result of mutations in any of eight
genes, with su/ and sh2 being the most common (reviewed in Tracy et al. 2019). As these genes
and the biochemical functions of their encoded enzymes are well-characterized, the kernel
mutation type trait represents an ideal case study in which to evaluate the effectiveness of TWAS
for causal gene identification in sweet corn.

The sul gene encodes an isoamylase, a starch debranching enzyme that is necessary for
normal starch biosynthesis in the endosperm (Rahman et al. 1998). Maize kernels with a
mutation in this gene have increased levels of simple sugars and phytoglycogen, resulting in a
sweet taste and creamy mouth feel (James et al. 1995; Marshall and Tracy 2003). In the

progenitors of modern sweet corn in the U.S., the causal variant for su/ kernel types is a SNP
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resulting in an amino acid substitution from tryptophan to arginine that renders the enzyme
non-functional (Tracy et al. 2006; Kubo et al. 2010). Consistent with the findings of Dinges et al.
(2001) and Kubo et al. (2010), transcript abundance of mutant su/ did not differ from that of
wildtype (Sul) in our study (Figure 2), whereas a strong association with kernel mutation type
was detected through GWAS in this same sweet corn association panel (Baseggio et al. 2019).
This is likely because the mutation interferes with protein function without disrupting the
intermediate transcriptional process.

While sul was the most widely used kernel starch endosperm mutation in commercial
sweet corn through the 1960s (Tracy et al. 2019), it has been replaced or accompanied by s42 in
most modern cultivars. Compared to varieties with mutations in su/ alone, those homozygous for
shrunken2 mutations have higher levels of simple sugars and a longer shelf life (Garwood et al.
1976; Carey et al. 1982). These compositional changes in mutated kernels are due to
interruptions in the activity of ADP-glucose pyrophosphorylase, the enzyme encoded by sh2,
severely reducing the ability of the kernel to produce starch (Tsai and Nelson 1966). Unlike the
single SNP believed to confer the low starch mutation phenotype in su/, the most common
mutant allele for this gene, s42-R, has major structural rearrangements including an
intrachromosomal inversion, retrotransposons, and transposable element insertions (Hu et al.
2021; Kramer et al. 2015). These structural events resulted in the splitting of the single
progenitor gene into two separate genes, a feature that is reflected in the recently-assembled
[a453 reference genome with the sh2-R allele (Hu et al. 2021). Of these two genes,
Zm000452021195 and Zm00045a021196, only the expression of Zm00045a021195 was strongly
associated with kernel mutant type in our study (P-value 1.32 x 107%°). This gene codes for a

truncated protein product derived from the last 13 exons compared to the full
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glucose-1-phosphate adenylyltransferase domain encoded by the functional SA2 allele (Hu et al.
2021), while the second gene includes only three exons.

Contrary to sh2-R, the sh2-i mutant allele produces an intermediate phenotype rather than
a fully shrunken kernel type (Giroux and Hannah 1994). It is included alongside homozygous
mutant su/ alleles in some commercial sweet corn varieties to both maximize quality and
improve seed germination (Dodson-Swenson and Tracy 2015). As inferred from the inbred line
names (Supplemental Table S9), this is also the case with a subset of lines in our panel. In
agreement with Giroux and Hannah (1994), we found transcript abundance of Zm00001d044129
(the sh2 locus in B73) in sh2-i mutant individuals to approximate the levels of those with wild
type Sh2 alleles (Figure 2). The ability of TWAS to detect these previously-documented subtle
differences related to kernel endosperm starch mutation gene expression adds confidence to the
potential for the method to be used for accurate characterization of novel associations and
biological patterns.

We found TWAS alone to provide a level of detection of known causal genes (c7tRB1,
lcyE, vted4, and hggtl) comparable to that of GWAS for fresh kernel carotenoid and
tocochromanol traits in this panel (Baseggio et al. 2019; Baseggio et al. 2020). At a
genome-wide level, GWAS in sweet corn have identified similar numbers of candidate genes as
studies with kernel nutritional quality traits in non-sweet corn maize subpopulations (Lipka et al.
2013; Owens et al. 2014; Baseggio et al. 2019; Baseggio et al. 2020). Additional associations
were revealed by Lipka et al. (2013) and Owens et al. (2014) through pathway-level analyses,
but this type of analysis was not reported by Baseggio et al. (2019; 2020).

Expression of crtRB1 controls B-carotene concentration in maize endosperm (Yan et al.

2010), so it is unsurprising that we found a strong association with it in this study. Previous
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results have indicated similar associations in this and other maize diversity panels (Harjes et al.
2008; Yan et al. 2010; Owens et al. 2014; Suwarno et al. 2015; Azmach et al. 2018; Baseggio et
al. 2020). These findings are also supported by the identification of crtRBI as a correlated
expression and effect QTL (ceeQTL), displaying strong correlations between the JL-QTL allelic
effect estimates and expression at multiple stages of kernel development in the U.S. maize NAM
panel (Diepenbrock et al. 2021).

Lycopene e-cyclase adds an e-ring to one end of lycopene to create a-carotene and has
been implicated as a key enzyme at the branch point between a and [ carotenoids controlling the
accumulation of carotenoids in mature maize kernels (Harjes et al. 2008). The gene encoding this
enzyme, [cyE, was previously found to be significantly associated with the ratio of B- to
a-xanthophylls in this sweet corn panel (Baseggio et al. 2020) and with six carotenoid traits in
the Goodman-Buckler panel (Owens et al. 2014). Though this ratio trait was not tested in the
U.S. maize NAM panel, IcyE falls within the QTL region identified by JL analysis for six other
carotenoid traits (Diepenbrock et al. 2021). /cyE was also designated by Diepenbrock et al.
(2021) as a ceeQTL Given the major effects observed in these previous studies, it is confirmatory
that we were also able to detect strong associations between IcyE and several carotenoid traits
through TWAS.

While dxs2 has previously been associated with carotenoid content in GWAS and
ceeQTL analysis of the U.S. maize NAM and Goodman-Buckler panels (Owens et al. 2014;
Diepenbrock et al. 2021), significant associations of dmes2 and cmkl with carotenoid-related
traits have not previously been reported in maize despite assignment as a priori candidates. dxs2
encodes a paralog of 1-deoxy-D-xylulose 5-phosphate synthase (DXS), an enzyme involved in

IPP synthesis upstream of both the carotenoid and tocochromanol biosynthetic pathways. It was
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first associated with maize grain carotenoids by Owens et al. (2014) at a pathway-level and has
since been identified as a JL-QTL and ceeQTL in the U.S. maize NAM panel for both carotenoid
and tocochromanol traits (Diepenbrock et al. 2017; Diepenbrock et al. 2021). dxs2 was
associated with transcript abundance in a pathway-level TWAS of B-carotene but not for any
tocochromanol traits nor through GWAS of traits from either trait group in this panel (Baseggio
et al. 2020; Baseggio et al. 2019). The PVE for dxs2 in the US maize NAM panel was 8.1% for
B-carotene, larger than the PVEs for the same gene when associated with tocotrienol traits
(2.5-5.7% PVE), potentially explaining the difference in our ability to detect an association in the
sweet corn association panel.

For both tocopherols and tocotrienols, the protein encoded by vte4 methylates y- and
d-species to form a- and B-species, respectively. At least one known allele of vte4 has been
shown to affect transcript abundance of the gene (Li et al. 2012), with further support of
expression-mediated phenotypic control by the identification of this gene as a ceeQTL in the
U.S. NAM panel (Diepenbrock et al. 2017). Although associations have been found between
tocopherols and vze4 in both GWAS (Baseggio et al. 2019) and TWAS (this study) in our sweet
corn panel, no significant associations have been identified between tocotrienol traits and this
gene in sweet corn association studies (Baseggio et al. 2019) despite detected associations at the
genome-wide (Diepenbrock et al. 2017) and pathway-level (Lipka et al. 2013) in non-sweet corn
maize inbred panels. While there is not a clear biological reason for this finding, the lack of
signal present for tocotrienols in GWAS and TWAS in this panel suggests that unlike founders of
the maize U.S. NAM panel, the sweet corn panel may contain alleles in which vze4 is more

poorly expressed in the endosperm, the major site of tocotrienol synthesis in kernels (Grams et
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al. 1970), which would explain the association with tocopherols (whose major site of synthesis is
embryo; Grams et al. 1970) and absence of strong association with tocotrienols.

While hggtl did not pass the transcriptome-wide 5% FDR threshold for B73-aligned
transcripts in this study, significant associations were identified between this gene and several
tocotrienol traits at a transcriptome-wide level for the [a453 alignment. Additional significant
associations with 4ggt/ were identified at a pathway-level for B73. This gene has previously
been found to be highly expressed in the endosperm (Stelpflug et al. 2016), the primary location
for tocotrienol synthesis (Grams et al. 1970), during maize kernel development (Diepenbrock et
al. 2017). Markers in strong LD with hggtl/ were previously found to be significantly associated
with tocotrienol traits in this and other maize diversity panels (Baseggio et al. 2019; Lipka et al.
2013). These associations are further supported by Diepenbrock et al. (2017), who found hggt!/
to be a ceeQTL in addition to it explaining a large percentage of phenotypic variance for three
tocotrienol traits in the U.S. maize NAM panel. In contrast, we did not detect an association of
vitamin E synthesisl (vtel) with tocotrienols at either the transcriptome-wide or pathway-level,
although strong associations between vtel and tocotrienols have been detected via GWAS in this
sweet corn panel (Baseggio et al. 2019). While it is possible that the peak expression of vtel
alleles occurs outside of the RNA sampling time point, it is more likely that the causal variant(s)
does not have a strong expression effect.

Although the protochlorophyllide reductase (por) homologs porl and por2 together
account for the largest PVEs observed for total tocopherols in the U.S. NAM panel (Diepenbrock
et al. 2017), neither designated ceeQTL was significantly associated with tocochromanol traits in
this study. porl was not expressed in the majority of our samples, thus it did not pass necessary

quality filtering thresholds for inclusion in this study. In contrast, por2 was included in TWAS
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but was not amongst the most significant associations for any trait in this study. Severe
bottlenecks during sweet corn population development (Tracy 1997; Whitt et al. 2002) may have
resulted in large-effect causal variants becoming rarer or small-effect causal variants increasing
to higher frequency, thus limiting the detection of either por gene in a panel consisting
exclusively of sweet corn lines.

Predictions

For many traits, including aT3, 6T3, 0T, yT, yT3, £T, £T3, £T3 + XT, antheraxanthin,
B-cryptoxanthin, B-xanthophylls, and zeaxanthin, we observed substantial increases in the
predictive ability of models incorporating both a GRM and TRM over those with only a GRM,
regardless of the reference genome to which transcripts were aligned. This indicates that the
relative importance of including transcript abundance data varies depending on the predicted
trait, consistent with previous findings for other maize traits (Guo et al. 2016; Schrag et al.
2018). Furthermore, in concordance with the GRM-only predictive abilities obtained by
Baseggio et al. (2019; 2020), GRM + TRM, GRM-only and TRM-only accuracies were lower
for tocopherol traits as compared to tocotrienols and carotenoids for all reference genome
alignments.

Due to strong associations of tocotrienol and some carotenoid traits with kernel mutant
type in this sweet corn association panel (Baseggio et al. 2019; Baseggio et al. 2020), all models
were tested both with and without the inclusion of kernel type mutation (su/, sh2, or sulsh?2) as a
covariate. There was no clear pattern of improvement with or without kernel type across models
incorporating genome-wide or transcriptome-wide relationship matrices in either trait set, likely
because population structure, which is highly related to kernel mutant type in this panel

(Baseggio et al. 2019), is represented in the genomic and transcriptomic relationship matrices
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themselves. However, for both carotenoid and tocochromanol traits previously identified as
having a significant endosperm mutation type effect in this panel (Baseggio et al. 2019; Baseggio
et al. 2020), the inclusion of kernel mutant type as a covariate in models with only a TRM.cand
boosted model performance dramatically. A similar pattern was also observed by Baseggio et al.
(2019; 2020) for pathway-level and QTL-targeted genomic prediction models for these traits.

As was the case with pathway-level and QTL-targeted marker datasets (Baseggio et al.
2019; Baseggio et al. 2020), a priori candidate gene transcript abundance datasets alone did not
predict the majority of carotenoid or tocochromanol traits as well as genome- or
transcriptome-wide markers in this panel, regardless of the inclusion of kernel mutant type as a
covariate. Prediction models incorporating only TRM.cand outperformed those with
TRM.non.cand alone for only six traits: B-carotene, the ratio of B-carotene over B-cryptoxanthin
+ zeaxanthin, the ratio of B-xanthophylls over a-xanthophylls, oT, yT/(yT+aT), and aT/yT. This
gap in performance was minimized by the addition of genome-wide marker data, suggesting that
missing information in the transcriptome subset relationship matrices is made up for by the

presence of genomic markers.

CONCLUSION
Leveraging a high quality transcriptomic dataset collected from fresh kernels, this study
represents the first formal TWAS and transcriptomic prediction in sweet corn. As demonstrated
through both kernel mutation type and vitamin traits, TWAS is a viable approach for the
detection of causal genes in this system. On a transcriptome-wide level, TWAS enabled the
identification of four genes known to control vitamin accumulation: crtRB1, IcyE, vte4, and

hggtl. Pathway-level analysis further facilitated the detection of dxs2 and three genes that have
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not previously been reported in maize association studies: dmes2, cmkl, and gghl. The use of
transcriptome-wide data increased predictive ability when incorporated into models alongside
genome-wide markers, but the relative boost was trait dependent. Overall, predictive abilities
ranged from moderate to high, but a priori candidate gene-targeted prediction models
underperformed compared to those using transcriptome-wide datasets.

Given that this study explored transcriptomic data from a single environment and time
point, the collection and analysis of kernel RNA at additional developmental stages or of other
endophenotypes may help to more fully understand the biological mechanisms underpinning
vitamin accumulation in fresh sweet corn kernels. These data could further be incorporated into
prediction models to improve predictive abilities for these and other kernel traits. Taken together,
this work contributes to a better understanding of the role of gene expression in the accumulation
of carotenoids and tocochromanols in fresh sweet corn kernels, an additional step towards the

biofortification of sweet corn for increased nutritional quality.
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