

1 Complete sequences of epidermin and nukacin encoding plasmids from oral-derived
2 *Staphylococcus epidermidis* and their antibacterial activity
3
4 Short title: Nucleotide determination of the *S. epidermidis* plasmids coding bacteriocins
5
6 Kenta Nakazono^{1#}, Mi Nguyen-Tra Le^{2,3#}, Miki Kawada-Matsuo^{2,3}, Noy Kimheang²,
7 Junzo Hisatsune^{3,4}, Yuichi Oogai⁵, Masanobu Nakata⁵, Norifumi Nakamura¹, Motoyuki
8 Sugai^{3,4}, Hitoshi Komatsuzawa^{2,3}
9
10 ¹Department of Oral and Maxillofacial surgery, Field of Maxillofacial Rehabilitation,
11 Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima,
12 Japan
13 ²Department of Bacteriology, Hiroshima University Graduate School of Biomedical and
14 Health Sciences, Hiroshima, Japan
15 ³Project Research Centre for Nosocomial Infectious Diseases, Hiroshima University,
16 Hiroshima, Japan
17 ⁴Antimicrobial Resistance Research Centre, National Institute of Infectious Diseases,
18 Higashi Murayama, Japan.
19 ⁵Department of Oral Microbiology, Kagoshima University Graduate School of Medical
20 and Dental Sciences, Kagoshima, Japan
21
22 #equal contribution
23 Corresponding author: Miki Kawada-Matsuo, DDS, PhD

24 Department of Bacteriology, Hiroshima University Graduate School of Biomedical and
25 Health Sciences, Kasumi 1-2-3, Hiroshima City, Hiroshima 734-8551, Japan.
26 Phone: +81 82 257 5637 Fax: +81 82 257 5639
27 E-mail: *mmatsuo@hiroshima-u.ac.jp*

29 **Abstract**

30

31 *Staphylococcus epidermidis* is a commensal bacterium in humans. To persist in the
32 bacterial flora of the host, some bacteria produce antibacterial factors such as the
33 antimicrobial peptides known as bacteriocins. In this study, we tried to isolate
34 bacteriocin-producing *S. epidermidis* strains. Among 150 *S. epidermidis* isolates from
35 the oral cavities of 287 volunteers, we detected two bacteriocin-producing strains,
36 KSE56 and KSE650. Complete genome sequences of the two strains confirmed that
37 they carried the epidermin-harbouring plasmid pEpi56 and the nukacin IVK45-like-
38 harbouring plasmid pNuk650. The amino acid sequence of epidermin from KSE56 was
39 identical to the previously reported sequence, but the epidermin synthesis-related genes
40 were partially different. The prepeptide amino acid sequences of nukacin KSE650 and
41 nukacin IVK45 showed one mismatch, but both mature peptides were entirely similar.
42 pNuk650 was larger and had an additional seven ORFs compared to pIVK45. We then
43 investigated the antibacterial activity of the two strains against several skin and oral
44 bacteria and found their different activity patterns. In conclusion, we report the
45 complete sequences of 2 plasmids coding for bacteriocins from *S. epidermidis*, which
46 were partially different from those previously reported. Furthermore, this is the first
47 report to show the complete sequence of an epidermin-carrying plasmid, pEpi56.

48

49 Key words: bacteriocin, *Staphylococcus epidermidis*, antibacterial peptide

50

51

52

53 **Introduction**

54 Staphylococci are classified into two groups, *Staphylococcus aureus* and coagulase -
55 negative staphylococci (CoNS) due to their clinical importance. CoNS are abundant
56 colonizers on the skin and are considered to contribute to the maintenance of skin
57 integrity and homeostasis [1–3]. CoNS assist in immune activity to prevent pathogen
58 colonization by immune cell priming, cutaneous inducing antimicrobial peptides from
59 the epithelium, and direct production of antibacterial factors such as phenol-soluble
60 modulins (PSMs) and bacteriocins [4–6]. Therefore, the colonization of CoNS provides
61 several benefits to the host. However, CoNS are commonly isolated in clinical cultures
62 and considered to be major nosocomial pathogens in humans [7,8]. CoNS are often
63 isolated from blood and indwelling medical implants such as intravascular catheters and
64 urinary catheters, leading to opportunistic infectious diseases. In addition, most clinical
65 isolates of *Staphylococcus epidermidis* carry the genes encoding for antibiotic resistance
66 and biofilm formation, which significantly challenge current antibiotic therapy [9,10].

67 Among staphylococci, *S. epidermidis* is a major commensal bacterium in humans,
68 mainly localized in the skin and nasal cavity [2,3]. To persist among the bacterial flora
69 of the host, it is well known that some bacteria produce antibacterial factors such as the
70 antimicrobial peptides known as bacteriocins, and hydrogen peroxide [11–15].
71 Previously, it was reported that *S. epidermidis* produced bacteriocins such as epidermin
72 [16–18], Pep5 [18–20], epilancin K7 [18,21], epilancin 15X [22,23], epicidin 280 [24]
73 and nukacin IVK45 [25] to counter other bacterial species in the skin flora. However,
74 the whole-genome sequences of these bacteriocin-producing strains have not been well
75 characterized. Only, the nucleotide sequence of the plasmid coding for nukacin IVK45
76 was determined [25]. Bacteriocins are ribosomally synthesized and these *S. epidermidis*

77 bacteriocins are classified as lantibiotics, which contain unusual amino acids such as
78 lanthionine, β -methyllanthionine and dehydrated amino acids [11–13]. The antibacterial
79 activity of these bacteriocins was characterized, but the main focus was on their effect
80 against skin commensal bacteria. Since *S. epidermidis* is also found in the oral cavity
81 [26,27], it is also important to understand its antibacterial activity against oral bacteria.
82 In this study, we isolated 135 *S. epidermidis* strains from the oral cavity and found 2
83 strains that produced epidermin and nukacin IVK45. We performed complete genome
84 analysis of these 2 strains and identified the plasmids harbouring the epidermin or
85 nukacin IVK45-like bacteriocin gene cluster. The nucleotide sequences of these
86 plasmids were not entirely similar to the previously reported sequences. Additionally,
87 we evaluated the antibacterial activity of these 2 bacteriocins against skin and oral
88 commensal bacteria.

89

90 **Materials and methods**

91

92 **Bacterial strains and growth conditions.** *S. epidermidis* clinical isolates were grown
93 in trypticase soy broth (TSB) (Becton, Dickinson and Company [BD], Franklin Lakes,
94 NJ, USA) at 37°C. The *Staphylococcus aureus* MW2 strain and 14 sets of-inactivated
95 mutants of each two-component system (TCS) were obtained previously [28]. Other
96 bacteria used in this study are listed in Table 1. Staphylococcal strains and *Micrococcus*
97 *luteus* were grown in TSB at 37°C and 30°C, respectively. Streptococcal strains were
98 grown in TSB at 37°C with 5% CO₂. *Cutibacterium acnes* was grown on sheep blood
99 agar at 37°C anaerobically. *Corynebacterium* and *Rothia mucilanginosa* were grown
100 at 37°C in R medium and BHI (BD) aerobically, respectively. The composition of R

101 medium is as follows: 1g of bacto peptone (BD), 0.5g of yeast extract (BD), 0.5g of
102 malt extract (BD), 0.5g of casamino acids (BD), 0.2g of beef extract (BD), 0.2g of
103 glycerol, 5mg of Tween 80, 0.1g of MgSO₄ in 100 ml distilled water. When necessary,
104 tetracycline (5 µg/ml) was added to the medium.

105 Table 1. Strains used in this study

Strains	Character	Origin
<i>Staphylococcus epidermidis</i>		
KSE1	Wild type	This study
KSE3	Wild type	This study
KSE56	Wild type	This study
KSE650	Wild type	This study
KSE56-	KSE56 plasmid deleted	This study
KSE650-	KSE650 plasmid deleted	This study
<i>Staphylococcus warneri</i> ISK-1	Wild type	[29]
<i>Staphylococcus hominis</i> JCM31912	Wild type	Riken BRC ¹
<i>Staphylococcus haemolyticus</i> JCM2416	Wild type	Riken BRC ¹
<i>Staphylococcus capitis</i> JCM2420	Wild type	Riken BRC ¹
<i>Staphylococcus simulans</i> JCM2424	Wild type	Riken BRC ¹
<i>Staphylococcus saprophyticus</i> JCM20595	Wild type	Riken BRC ¹
<i>Cutibacterium acnes</i> JCM6425	Wild type	Riken BRC ¹
<i>Corynebacterium accolens</i> JCM8331	Wild type	Riken BRC ¹
<i>Corynebacterium pseudodiphtheriticum</i> JCM1320	Wild type	Riken BRC ¹
<i>Rothia mucilaginosa</i> JCM10910	Wild type	Riken BRC ¹
<i>Micrococcus luteus</i> JCM1464	Wild type	Riken BRC ¹
<i>Streptococcus mutans</i> UA159	Wild type	[30]
<i>Streptococcus sanguinis</i> GTC217	Wild type	Gifu University
<i>Streptococcus salivarius</i> GTC215	Wild type	Gifu University
<i>Streptococcus gordonii</i>	JCM12995	Riken BRC ¹
<i>Staphylococcus aureus</i> COL	Wild type	[31]
RN4220	NCTS8325 derivative	[32]
MW2	clinical strain, methicillin-resistant (<i>mecA</i> +)	[33]

Δ TCS2	<i>MW0918-99</i> inactivation in MW2, Tc ^r ²	[28]
Δ TCS3	<i>lytSR</i> inactivation in MW2, Tc ^r	[28]
Δ TCS4	<i>apsRS</i> inactivation in MW2, Tc ^r	[28]
Δ TCS5	<i>saeRS</i> inactivation in MW2, Tc ^r	[28]
Δ TCS6	<i>MW1208-09</i> inactivation in MW2, Tc ^r	[28]
Δ TCS7	<i>arlRS</i> inactivation in MW2, Tc ^r	[28]
Δ TCS8	<i>srrAB</i> inactivation in MW2, Tc ^r	[28]
Δ TCS9	<i>phoPR</i> inactivation in MW2, Tc ^r	[28]
Δ TCS10	<i>MW1789-90</i> inactivation in MW2, Tc ^r	[28]
Δ TCS11	<i>vraSR</i> inactivation in MW2, Tc ^r	[28]
Δ TCS12	<i>agrCA</i> inactivation in MW2, Tc ^r	[28]
Δ TCS13	<i>kdpDE</i> inactivation in MW2, Tc ^r	[28]
Δ TCS14	<i>hssRS</i> inactivation in MW2, Tc ^r	[28]
Δ TCS15	<i>nreBC</i> inactivation in MW2, Tc ^r	[28]
Δ TCS16	<i>braRS</i> inactivation in MW2, Tc ^r	[28]

106 1. Japan Collection of Microorganisms
107 2. Tetracycline resistance

108

109 **Isolation of *Staphylococcus epidermidis* from the oral cavity.**

110 *S. epidermidis* strains were isolated from the oral cavities of 287 volunteers. Saliva
111 collected from the oral cavity was plated on No.110 medium (Eiken Chemical Co. Ltd,
112 Tokyo, Japan) and incubated for 2 days at 37°C. The strains were picked from a single
113 white colony on the agar and further investigated by PCR with specific primers for *S.*
114 *epidermidis* (forward primer: GGCAAATTGTGGGTCAAGA, reverse primer:
115 TGGCTAATGGTTGTCACCA). Isolated *S. epidermidis* strains were replated on TSB
116 containing 2% agar (TSA) medium. The isolated strains were then replated again on
117 TSA to pick up a single colony and finally, *S. epidermidis* confirmed by PCR was used
118 in this study. Clinical isolates were designated as KSE strains. *S. epidermidis* isolation

119 was approved by the ethics committee of the Kagoshima University Graduate School of
120 Medical and Dental Sciences (No. 701) and the Ethical Committee for Epidemiology of
121 Hiroshima University (E-1998). All methods were performed in accordance with the
122 approved guidelines and regulations.

123

124 **Screening of bacteriocin producing *S. epidermidis*.** To investigate bacteriocin
125 production among *S. epidermidis* strains, we performed a direct assay using *S. aureus*
126 MW2 *braRS* knockout mutant as an indicator strain because this mutant showed
127 increased susceptibility to several bacteriocins [34]. Overnight cultures of *S.*
128 *epidermidis* strains were spotted on a TSA plate and cultured at 37°C for 24 h. Then, 3.5
129 ml of prewarmed half-strength TSB soft agar (1%) containing *braRS* knockout mutant
130 cells (10⁷ cells/ml) were poured over the TSA plate. The plates were incubated at 37°C
131 for 24 h. The strains which showed the growth inhibition zones surrounding *S.*
132 *epidermidis* strain were picked up. The strains were reconfirmed for bacteriocin
133 production by the direct assay again.

134

135 **Complete genome sequences of bacteriocin-producing *S. epidermidis* strains.** To
136 perform whole-genome sequencing of *S. epidermidis* strains, DNA was extracted from
137 each strain. *S. epidermidis* cells grown overnight in 5 ml TSB were collected and then
138 suspended in 0.5 ml of CS buffer (100 mM Tris-HCl [pH 7.5], 150 mM NaCl, 10 mM
139 EDTA) containing lysostaphin (Sigma-Aldrich, St. Louis, MO, USA) (final
140 concentration: 50 µg/ml) and RNase (Nippon Gene, Tokyo, Japan) (final: 20 µg/ml).
141 After incubation at 37°C for 1 h, proteinase K (Nacalai Tesque, Kyoto, Japan) (final:
142 150 µg/ml) and SDS (final 1%) were added, followed by incubation at 55°C for 5 h.

143 After treatment with phenol followed by phenol-chloroform, DNA was precipitated by
144 ethanol. Whole-genome sequencing (WGS) of *S. epidermidis* strains was performed
145 using the Illumina MiSeq sequencing platform, followed by annotation with Rapid
146 Annotation using Subsystem Technology (RAST) version 2.0 [35]. After confirming the
147 presence of bacteriocin genes using WGS, long-read sequencing by MinION (Oxford
148 Nanopore Technologies, UK) was carried out to determine the complete sequences of
149 the chromosomes and plasmids of these strains. Hybrid assembly of Illumina short reads
150 and MinION long reads was performed with Unicycler v0.4.8. The complete sequences
151 of plasmids harbouring bacteriocin genes were selected, including epidermin-carrying
152 plasmid pEpi56 and nukacin-carrying plasmid pNuk650. Each plasmid was compared
153 with publicly available plasmids or gene clusters, including the *epiY'-epiP* gene cluster
154 (X62386), *epiG-epiT''* gene cluster (U77778), and pIVK45 (accession number
155 KP702950).

156

157 **Accession numbers**

158 The complete plasmids carrying epidermin (pEpi56) and nukacin (pNuk650) have been
159 deposited in the NCBI database under accession numbers OK031036 and OK031035,
160 respectively.

161

162 **Identification of epidermin and nukacin KSE650 produced by *S. epidermidis*.** To
163 identify the bacteriocin, we purified the bacteriocin from two *S. epidermidis* strains.
164 Overnight cultures (500 ml) of *S. epidermidis* KSE56 and KSE650 were centrifuged at
165 4,000 x g for 15 min. Macro-Prep cationic resin (1.5 ml)(Bio rad, USA) was added to
166 the supernatant and stirred for 12 h. The resin was collected into an open column, then

167 washed three times with 10 ml of 25 mM ammonium acetate (pH 7.5). To elute the
168 bacteriocin, the resin was treated with 500 μ l of 5% acetic acid. This elution was
169 repeated 10 times. After each fraction was evaporated completely, the samples were
170 dissolved in 50 μ l of distilled water. Each solution was tested for antibacterial activity
171 against *M. luteus*. Overnight cultures of *M. luteus* (100 μ l) were inoculated on TSA
172 plates. Then, 5 μ l of each solution was spotted on TSA. After overnight incubation at
173 37°C, growth inhibition was observed. Samples with antibacterial activity were
174 subjected to HPLC chromatography using an Octadecyl C18 column. After
175 equilibrating the column with 0.1% TFA water, the sample was injected. Thereafter, a
176 linear gradient of 0 to 60% acetonitrile for 30 min was applied to the column. Each peak
177 was fractionated, and the samples were evaporated, then dissolved with 50 μ l of
178 distilled water. Subsequently, the antibacterial activity of each fraction was tested with
179 the method above. ESI-MS analysis was performed by LTQ Orbitrap XL (Thermo
180 Fisher Scientific, USA).

181

182 **Isolation of the strain curing bacteriocin-encoded plasmid.** Plasmid deletion in
183 KSE56 and KSE650 was performed with the method described elsewhere [36].
184 Overnight cultures of KSE56 or KSE650 were inoculated into 5 ml of fresh TSB and
185 incubated at 37°C with shaking. When the OD660 reached 0.5, acriflavine was added at
186 a concentration of 25 μ g/ml. After incubation for 12 h, the culture was diluted and
187 plated on TSA. After 24 h of incubation at 37°C, colonies were picked, replated on TSA
188 and then incubated at 37°C for 24 h. Next, 0.75% soft agar (3.5 ml) containing *Bacillus*
189 *coagulans* (200 μ l of overnight culture) was poured on that plate and incubated at 37°C
190 for 24 h. The strains with no inhibitory zone were picked. Finally, PCR was performed

191 using specific primers for *S. epidermidis*-specific genes and bacteriocin genes coding
192 for nukacin KSE650 or epidermin.

193

194 **Direct assay.** To evaluate the antibacterial activity of epidermin, nukacin KSE650 and
195 nukacin ISK-1, a direct assay was performed with a previously described method [34].
196 An overnight culture of the bacteriocin-producing strain was spotted on a TSA plate and
197 cultured at 37°C for 24 h. Then, 3.5 ml of prewarmed half-strength TSB soft agar (1%)
198 containing indicator bacterial cells (10⁷ cells/ml) was poured over the TSA plate. The
199 plates were incubated at 37°C for 16 h. The diameters of the growth inhibition zones
200 surrounding the bacteriocin-producing strains were measured in three directions. Three
201 independent experiments were performed, and the average diameter was calculated.

202

203 **Co-culture of *S. epidermidis* with *M. luteus*.** For analysis of the proportion of each
204 bacterium (*S. epidermidis* and *M. luteus*) in coculture by qPCR, we first set up the
205 method for the calculation of bacterial cell number by qPCR. A single overnight culture
206 of the bacterium was first adjusted to OD₆₆₀=1.0, and then a 10-fold serial dilution was
207 performed in 500 µl of lysis buffer. After heating at 95°C for 15 min, samples were
208 centrifuged at 15,000 x rpm for 10 min. Using the supernatant, qPCR was performed
209 with the respective specific primers. For *S. epidermidis*, the forward and reverse primers
210 used were GGCAAATTGTGGGTCAAGA and TGGCTAATGGTTGTCACCA,
211 respectively. For *M. luteus*, the forward and reverse primers were
212 GGGTTGCGATACTGTGAGGT and TTCGGGTGTTACCGACTTTC, respectively.
213 Finally, the linear relationship between bacterial cell number and cut off value (Ct
214 value) was constructed in each bacterium. Overnight cultures of *S. epidermidis* KSE1

215 (no bacteriocin production), KSE56, KSE650 and *M. luteus* were adjusted to
216 OD₆₆₀=1.0, and the bacterial culture was diluted to 10-fold. Next, 100 µl of *S.*
217 *epidermidis* culture and *M. luteus* were mixed thoroughly. A small portion (20 µl) of
218 mixed culture was spotted on TSA. After overnight incubation at 37°C, the bacterial
219 colonies growing on agar plates were scraped and suspended in 500 µl of lysis buffer.
220 After heating at 95°C for 15 min, the bacterial suspension was centrifuged at 15,000 x
221 rpm for 10 min and the culture supernatant was stocked as the template for quantitative
222 PCR (qPCR). qPCR was performed using appropriate specific primers to determine the
223 cell number of each bacterium in the coculture samples. Finally, the proportion of 2
224 bacterial species was determined. Three independent experiments were performed. Post
225 hoc multiple comparisons were made using Tukey's test.

226

227 **Results**

228

229 **Isolation of *S. epidermidis* that produced bacteriocin.** From 287 volunteers, 150 *S.*
230 *epidermidis* strains (52.3%) were isolated from the oral cavity. Among 150 *S.*
231 *epidermidis* strains, 2 strains showing a clear inhibitory zone against the *S. aureus* MW2
232 *braRS* inactivated mutant were identified by the direct method (Fig.1).

233

234 **Nucleotide sequence of epidermin-encoding plasmid.** The size of the entire plasmid,
235 pEpi56, is 64,386 bp, with 81 ORFs (Fig. 2a and Table 2). The plasmid contains
236 epidermin synthesis genes (*epiA* coding for epidermin KSE56, modification genes
237 *epiBCD*, processing genes *epiP*, export genes *epiHT*, immunity genes *epiGEF*, and
238 regulatory gene *epiQ*), replication-related genes, and other genes including the genes

239 coding for hypothetical proteins (Table 2). Compared with epidermin-related genes in
240 the Tü3298 strain (16), *epiT*, which codes for an exporter, was intactin pEpi56, while a
241 gene disrupted into two fragments (*epiT'* and *epiT''* or *epiY* and *epiY'*) was found in the
242 Tü3298 strain (Fig. 2b, Supplemental Fig. 1). The nucleotide sequence of *epiA* in
243 KSE56 showed 2 mismatches with that of the Tü3298 strain (Supplemental Fig. 2).
244 However, the amino acid sequence of epidermin KSE56 showed 100% identity with
245 that in the Tü3298 strain.

Table 2. Genes in pEpi56

No.	Location (bp)	Size (aa) ^a	Translation signal ^b	Homologue as determined by BLAST and/or FASTA					Note
				Source	Description(s)	Identity (%)	Overlap (aa) ^c	Accession no.	
1	190- 1191	333	<u>GAGGTTTTTATTATG</u>	<i>S. epidermidis</i>	replication initiator protein A	99	333/338	WP_002498716.1	
2	1423- 1983	186	<u>AAGGAGTAATAAAAAATG</u>	<i>S. epidermidis</i>	TIGR00730 family Rossman fold protein	99	186/186	WP_158171994.1	
3	2300- 2515	71	-	<i>S. epidermidis</i>	hypothetical protein	67	48/78	MBM0824966.1	
4	2889- 3014	41	<u>GGAGAATAATTAATAAACCGTT</u> ACAAAATAAGCAATATCTATAAG TTTTTAAAAATTAAAAATTCTAA AATATGTAAGTATG	<i>S. epidermidis</i> SK135	ATP-binding cassette domain-containing protein	100	41/41	EFA87131.1	
5	3507- 3695	62	<u>GAGTTAGACCAATAAATTGAAAC</u> GAAAAAAACAATTGTTG	<i>S. epidermidis</i>	hypothetical protein	100	62/62	MBC8789835.1	
6	4346- 4513	55	<u>GGAGGCATTGTCATG</u>	<i>S. epidermidis</i>	hypothetical protein	100	55/55	WP_002498713.1	
7	4819- 5685	288	<u>GGAGTGATATATATG</u>	<i>S. epidermidis</i>	RepB family plasmid replication initiator protein	99	287/288	WP_203085279.1	
8	5791- 5934	47	<u>GGAGACATAAAAAGTTATG</u>	<i>S. epidermidis</i>	hypothetical protein	100	47/47	WP_002498711.1	
9	6397- 7026	209	<u>GAGTAATCATG</u>	<i>S. epidermidis</i>	ABC transporter, ATP-binding protein	100	209/209	EJD97739.1	

10	7029- 9071	680	<u>AGGTATTATACATATG</u>	<i>S. epidermidis</i> <i>NIHLM040</i>	bacteriocin-associated integral membrane protein	100	680/680	EJD97738.1	
11	9165- 9557	130	<u>GGAGGATTAAAGTTGATG</u>	<i>S. epidermidis</i> <i>NIHLM040</i>	bacteriocin, lactococcin 972 family	100	130/130	EJD97736.1	
12	9743- 10105	120	<u>GAGAATTATACACAAAAATG</u>	<i>S. epidermidis</i>	DUF3139 domain- containing protein	100	120/120	WP_002498706.1	
13	10304- 10669	121	<u>GAGGGACATACATTAGATATTGG</u> TTG	<i>S. epidermidis</i> <i>NIHLM040</i>	IS431mec, transposase	100	121/121	EJD97734.1	
14	10732- 10884	50	<u>GGAGTCTTCTGTATG</u>	<i>S. epidermidis</i> <i>NIHLM040</i>	hypothetical protein	100	50/50	EJD97733.1	
15	11171- 12556	461	<u>GAGGTGCTATATG</u>	<i>S. epidermidis</i> <i>NIHLM040</i>	putative epidermin leader peptide- processing serine protease EpiP	100	461/461	EJD97732.1	<i>epiP</i>
16	12567- 13184	205	<u>GGAATAAAATG</u>	<i>S. epidermidis</i>	winged helix family transcriptional regulator	100	205/205	MBM0752529.1	<i>epiQ</i>
17	13181- 13726	181	<u>GGAGGAATAAGATATG</u>	<i>S. epidermidis</i> <i>NIHLM040</i>	epidermin decarboxylase	100	181/181	EJD97730.1	<i>epiD</i>
18	13742- 14992	416	<u>GGATGGTTGTG</u>	<i>S. epidermidis</i> <i>NIHLM040</i>	putative epidermin biosynthesis protein EpiC	100	416/416	EJD97729.1	<i>epiC</i>
19	14985- 17945	986	<u>GAGGTGAAATAGAATTG</u>	<i>S. epidermidis</i> <i>NIHLM040</i>	thiopeptide-type bacteriocin biosynthesis domain protein	100	986/986	EJD97728.1	<i>epiB</i>

20	18011- 18169	52	<u>AGGAGTGTAAATG</u>	<i>S. epidermidis</i> <i>NIHLM040</i>	lantibiotic epidermin	100	52/52	EJD97726.1	<i>epiA</i>
21	18419- 19969	516	<u>GGACTAATATTGAGTTG</u>	<i>S. epidermidis</i>	ABC transporter ATP-binding protein/permease	100	516/516	WP_002498696.1	<i>epiT'</i>
22	19985- 20977	330	<u>GAGATAAGGGAGATATG</u>	<i>S. epidermidis</i>	YdcF family protein	100	330/330	WP_032605946.1	<i>epiH</i>
23	21136- 21831	231	<u>GGAGGAATAATTCTTG</u>	<i>S. epidermidis</i>	lantibiotic protection ABC transporter ATP-binding protein lantibiotic immunity	100	231/231	WP_002498693.1	<i>epiF</i>
24	21833- 22597	254	<u>GGAAATAATATG</u>	<i>S. epidermidis</i>	ABC transporter MutE/EpiE family permease subunit	100	254/254	WP_002498692.1	<i>epiE</i>
25	22587- 23279	230	<u>GGAATATAAATG</u>	<i>S. epidermidis</i>	epidermin immunity protein F	100	230/230	WP_002498691.1	<i>epiG</i>
26	23432- 24034	200	<u>GAGGTGGAAATCAATG</u>	<i>S. epidermidis</i> <i>NIHLM040</i>	putative transposon DNA-invertase Bin3	100	200/200	EJD97719.1	
27	24455- 26071	538	<u>GGAGGAAGAAAAATG</u>	<i>S. epidermidis</i> <i>NIHLM040</i>	ABC transporter, ATP-binding protein	100	538/538	EJD97718.1	
28	26621- 27463	280	<u>GGAGCATTAAATTATG</u>	<i>S. epidermidis</i>	hypothetical protein	100	280/280	WP_002498688.1	
29	27952- 28383	143	<u>AAGGAGTCTTCTGTATG</u>	<i>S. epidermidis</i> <i>NIHLM040</i>	IS431mec, transposase family protein	100	143/143	EJD97715.1	
30	28376- 28627	83	<u>AGGCACCTTCAACGAAGGTAGCA</u> <u>ATG</u>	<i>S. epidermidis</i> <i>NIHLM040</i>	IS431mec, transposase family protein	100	83/83	EJD97714.1	

31	28733- 29455	240	<u>GGAGTGTAAAGCTTTG</u>	<i>S. epidermidis</i>	peptide ABC transporter permease	100	240/240	WP_002498749.1
32	29472- 30107	211	<u>GGAGCTGTAAACATTG</u>	<i>S. epidermidis</i> <i>NIHLM040</i>	ABC transporter, ATP- binding protein	100	211/211	EJD97793.1
33	30389- 30484	31	<u>GGAGAGATTAAATG</u>	<i>S. epidermidis</i> <i>NIHLM040</i>	hypothetical protein	100	31/31	EJD97792.1
34	30495- 30665	56	<u>AGGTTAATTTATG</u>	<i>S. epidermidis</i>	hypothetical protein	100	56/56	TID00490.1
35	30897- 31535	212	<u>AGGTTCAAGATGAAAACAAAGAA</u> ATG	<i>S. epidermidis</i> <i>NIHLM040</i>	hypothetical protein	100	212/212	EJD97791.1
36	31698- 32063	121	<u>GAGGAGAGAACTTTAAAATG</u>	<i>S. epidermidis</i> <i>NIHLM040</i>	hypothetical protein	100	121/121	EJD97790.1
37	32230- 32406	58	<u>GGAGTGATTAAATG</u>	<i>S. epidermidis</i> <i>NIHLM040</i>	hypothetical protein	100	58/58	EJD97789.1
38	32573- 34183	536	<u>GGAAGGATTATTATG</u>	<i>S. epidermidis</i>	DNA mismatch repair protein MutS	100	536/536	WP_002498743.1
39	34762- 35058	98	<u>GGATTGAATG</u>	<i>S. epidermidis</i>	replication initiation protein	100	98/98	MBF2337202.1
40	35232- 35510	92	<u>GGAGAGATTAAATG</u>	<i>S. epidermidis</i>	hypothetical protein	100	92/92	WP_002498740.1
41	35521- 35691	56	<u>GGATTTTATG</u>	<i>S. epidermidis</i>	hypothetical protein	100	56/56	WP_099800689.1
42	36232- 36369	45	<u>GGAG</u> ACATAAGAAGGTATG	<i>S. epidermidis</i>	hypothetical protein	100	45/45	MBM6015004.1

43	36517- 36732	71	<u>GGAAATGACACATCTTAAATCGA</u> CATATTCCAAAAATATGTTAGAA TACTGGTTACATG	<i>S. epidermidis</i>	hypothetical protein	100	71/71	WP_002498738.1
44	37358- 37726	122	<u>GAGACGTCTATG</u>	<i>S. epidermidis</i> <i>NIHLM040</i>	hypothetical protein	100	122/122	EJD97781.1
45	37880- 38335	151	-	<i>S. epidermidis</i>	putative plasmid recombination enzyme	100	151/151	TID00443.1
46	38651- 38905	84	<u>GGAGTTCCCTTAAATG</u>	<i>S. epidermidis</i>	hypothetical protein	100	84/84	EJD97779.1
47	38927- 39067	46	<u>GGAAGATGAAATAGTCCTAATG</u>	<i>S. epidermidis</i>	hypothetical protein	100	46/46	WP_151520775.1
48	39102- 40481	459	<u>GGAGGTATGATAGATG</u>	<i>S. epidermidis</i> <i>NIHLM040</i>	drug resistance MFS transporter, drug:H+ antiporter-2 family	100	459/459	EJD97777.1
49	40630- 41637	335	<u>GGAGCGATGGAAATG</u>	<i>S. epidermidis</i>	tryptophan--tRNA ligase	100	335/335	WP_002498732.1
50	41862- 42590	242	<u>AAGGAGAATAAACAAATG</u>	<i>S. epidermidis</i> <i>NIHLM040</i>	ABC transporter permease	100	242/242	EJD97775.1
51	42594- 43457	287	<u>AAGGAGAATAAAATG</u>	<i>S. epidermidis</i> <i>NIHLM040</i>	ABC transporter, ATP- binding protein	100	287/287	EJD97774.1
52	43704- 44525	273	<u>GGAGGATTATG</u>	<i>S. epidermidis</i> <i>NIHLM040</i>	transcriptional regulator, LysR family	100	273/273	EJD97773.1
53	44678- 45817	379	<u>GAGGATGGGATAATAATG</u>	<i>S. epidermidis</i> <i>NIHLM040</i>	MFS transporter	100	379/379	EJD97772.1
54	46236- 46613	125	<u>GGAAAAGAGTAAATG</u>	<i>S. epidermidis</i> <i>NIHLM040</i>	hypothetical protein	96	125/125	EJE04311.1

55	46649- 47338	229	<u>GGAGACGATAATGTG</u>	<i>S. epidermidis</i> <i>NIHLM040</i>	ABC transporter, ATP-binding protein	100	229/229	EJD97770.1
56	47346- 48107	253	<u>GGAGGAATGAAGCAATTATG</u>	<i>S. epidermidis</i>	ABC transporter permease	99	253/253	WP_002503830.1
57	48465- 48857	130	-	<i>S. epidermidis</i> <i>NIHLM040</i>	hypothetical protein	100	130/130	EJD97768.1
58	48948- 49919	323	<u>GGAGAAATTATG</u>	<i>S. epidermidis</i>	DUF418 domain-containing protein	99	323/323	WP_095694513.1
59	49974- 50108	44	<u>GGAAGGATTG</u>	<i>S. epidermidis</i>	hypothetical protein	100	44/44	EFA87101.1
60	50567- 50722	51	-	<i>S. epidermidis</i>	hypothetical protein	100	51/51	MBC2926404.1
61	51633- 52454	273	<u>AGGTGTGATTAAATG</u>	<i>S. epidermidis</i>	relaxase MobL	99	273/273	WP_161382396.1
62	52466- 52849	127	<u>GGAGGAATAAAATG</u>	<i>S. epidermidis</i> <i>NIHLM040</i>	hypothetical protein	100	127/127	EJD97765.1
63	52851- 53129	92	<u>GGAATGATTTTTTG</u>	<i>S. epidermidis</i> <i>NIHLM040</i>	hypothetical protein	100	92/92	EJD97764.1
64	54078- 54224	48		<i>S. epidermidis</i>	hypothetical protein	100	48/48	WP_002456268.1
65	54621- 54800	59	<u>GGAGGCTTATACATG</u>	<i>S. epidermidis</i> <i>NIHLM040</i>	CsbD family protein	100	59/59	EJD97762.1
66	54833- 55231	132	<u>GAGGTGTTGTATATG</u>	<i>S. epidermidis</i>	YolD-like family protein	100	132/132	WP_002498728.1
67	55394- 55651	85	-	<i>S. epidermidis</i> <i>NIHLM040</i>	prevent-host-death family protein	100	85/85	EJD97760.1

68	55651- 55917	88	-	<i>S. epidermidis</i> <i>NIHLM040</i>	addiction module toxin, Txe/YoeB family	100	88/88	EJD97759.1
69	55934- 56104	56	<u>GGAGGACTCGTTAATG</u>	<i>S. epidermidis</i>	hypothetical protein	100	56/56	KAB2267008.1
70	56465- 56689	74		<i>S. epidermidis</i>	putative glycoside hydrolase	100	74/74	QRX38739.1
71	57190- 57546	118	<u>GGAGGTTGTATGTATG</u>	<i>S. epidermidis</i> <i>NIHLM040</i>	hypothetical protein	100	118/118	EJD97756.1
72	57860- 58408	182	-	<i>S. epidermidis</i> <i>NIHLM040</i>	putative resolvase	100	182/182	EJD97755.1
73	59658- 60926	422	<u>GGAGAATTAAATAATG</u>	<i>S. epidermidis</i>	penicillin-binding protein PBP4	99	422/422	WP_002498725.1
74	61202- 61603	133	-	<i>S. epidermidis</i>	transposase DNA- binding domain protein	100	133/133	TID00494.1
75	61744- 61926	60	<u>GAGTCGTTAGATG</u>	<i>S. epidermidis</i>	transposase	98	60/60	WP_203079065.1
76	61958- 62188	76	<u>GAGGTGTATTGACATG</u>	<i>S. epidermidis</i> <i>NIHLM040</i>	hypothetical protein	99	76/76	EJD97751.1
77	62255- 62407	50	<u>GGAGGAATTAAATTG</u>	<i>S. epidermidis</i> <i>NIHLM040</i>	hypothetical protein	100	50/50	EJD97750.1
78	62434- 62595	53	<u>GGAGGCGGGAAATTG</u>	<i>S. epidermidis</i>	BH0509 family protein	100	53/53	EJD97749.1
79	62670- 62909	79	<u>GGAGGAAGATAATG</u>	<i>S. epidermidis</i>	hypothetical protein	100	79/79	WP_002498719.1
80	63024- 63272	82	<u>GGAGGTATCAAGGTTATG</u>	<i>S. epidermidis</i>	CopG family transcriptional regulator	100	82/82	MBM0752797.1

81	63390- 64280	296	-	<i>S. epidermidis</i>	ParA family protein	100	268/296	WP_002498717.1
----	-----------------	-----	---	-----------------------	---------------------	-----	---------	----------------

^a aa, amino acids.

^b Bold letters indicate start codons. Underlines indicate putative ribosome binding sites complementary to the 3' end of the 16s rRNA

^c Overlap is indicated as the number of overlapping amino acids/total number of amino acids

Nucleotide sequence of nukacin-encoding plasmid. The size of the entire plasmid, pNuk650, was 26,160 bp, with 29 open reading frames (ORFs). The plasmid contained nukacin KSE650 synthesis genes (*nukA* coding for prepeptide nukacin KSE650, posttranslational modification enzyme genes *nukM*, processing and secretion transporter genes *nukT*, and immunity protein genes *nukFEGH*), replication-related genes, and other genes including genes coding for hypothetical proteins (Fig. 3a, Table 3). Compared to the plasmid pIVK45 (21,840 bp), which carried the gene coding for nukacin IVK45 (16), pNuk650 was larger with a higher number of ORFs (Fig. 3a). The amino acid sequence of nukacin KSE650 showed similarity to nukacin IVK45 with one mismatch at the 4th position, but displayed lower similarity to nukacin ISK-1 with 10 mismatches [36][29] (Fig. 3b). The mature peptide of nukacin KSE650 showed a perfect match with nukacin IVK45 and 5 mismatches with nukacin ISK-1.

Table 3. Genes in pNuk650

No.	Location (bp)	Size (aa) ^a	Translation signal ^b	Homologue as determined by BLAST and/or FASTA				
				Source	Description(s)	Identity (%)	Overlap (aa) ^c	Accession no.
1	413-541	42	<u>GGAAAAGATATCCATG</u>	<i>S. epidermidis</i>	RepB (pAQZ2)	83	42/42	AZL87916
2	680-850	56	-	<i>S. epidermidis</i>	replication protein	91	56/56	WP_194376762
3	976-1911	311	<u>GGAAAGAGGTTTATATTATG</u>	<i>S. epidermidis</i>	replication initiator protein A	100	311/311	WP_194378689
4	2467- 3261	264	<u>AGGAGGTATTATTTTG</u>	<i>S. epidermidis</i>	ParA family protein	100	264/264	WP_172686110
5	3258- 3467	69	<u>GAGGGTGTGTG</u>	<i>S. epidermidis</i>	plasmid replication associated protein, putative transcriptional regulator	98	66/69	AKQ51589
6	3821- 3994	57	<u>AGGGGGTATTATAATG</u>	<i>S. epidermidis</i> (pIVK45)	NukA	98	57/57	AKQ51579
7	4068- 4250	60	<u>AGGTACCGCGTTTAAATTG</u> TATATATG	<i>S. epidermidis</i>	transposase family protein	92	38/60	MBV5159007
8	4256- 4393	45	<u>GAGACCATG</u>	<i>S. epidermidis</i>	hypothetical protein	100	45/45	WP_194378692
9	4605- 4844	79	-	<i>S. epidermidis</i>	transposase	100	74/79	WP_172686114
10	5583- 6326	247	<u>GAGTGAATTATATG</u>	<i>S. epidermidis</i>	LytTR family transcriptional regulator DNA-binding domain-containing protein	100	247/247	WP_194378694
11	6570- 9323	917	<u>AGGAGAGGTTATATATG</u>	<i>S. epidermidis</i> (pIVK45)	NukM	100	917/917	AKQ51580

12	9345- 11429	694	<u>AGGTGAATACAATTG</u>	<i>S. epidermidis</i> (pIVK45)	NukT	99	694/694	KP702950
13	11442- 12350	302	<u>AGGAGGTTCAATTATG</u>		NukF	99	302/302	AKQ51583
14	12351- 13103	250	<u>GGAAAGGAATATTATAAATG</u>	<i>S. epidermidis</i> (pIVK45)	NukE	99	250/250	AKQ51582
15	13100- 13837	245	<u>AAGGAGAGATTATCTTG</u>	<i>S. epidermidis</i> (pIVK45)	NukG	88	245/245	AKQ51591
16	13844- 14122	92	<u>GAGGATTAATAACTAATG</u>	<i>S. epidermidis</i> (pIVK45)	NukH	100	92/92	AKQ51584
17	14444- 14623	59	-	<i>S. epidermidis</i>	replication initiator protein A, partial	88	59/272	WP_064595943
18	14790- 14930	46	<u>GGATAACAAAATAACATCA</u> ACACAATGTCACGATTTCAT AATATAGCATG	<i>S. epidermidis</i>	hypothetical protein	98	46/46	WP_172686106
19	15014- 15157	47	<u>GGAATGATAAATTCAACTTT</u> TTCTTCCGATCATTAATAA AATAAATG		no significant similarity found			
20	15425- 16423	332	<u>TAAGGTGTCGAATCTAAATA</u> AAACTGGGGCTTTTATG	<i>S. epidermidis</i>	protein rep	98	332/332	WP_145461985
21	17100- 17483	127	<u>AGGGGTTTTTATG</u>	<i>S. epidermidis</i> IS-K	bacterial transcription activator, effector-binding domain protein	99	127/127	EID36019
22	17957- 18664	235	<u>GAGAGGTGTTTTTATGTCT</u> GGTGAACAGTAGTATATAG AAATG	<i>S. epidermidis</i>	RepB family plasmid replication initiator protein	100	235/235	WP_194378685

23	18712- 19323	203	<u>AGGAGTAGTTTATG</u>	<i>S. epidermidis</i>	helix-turn-helix domain-containing protein	99	203/203	WP_194378686
24	19890- 20699	269	<u>GGAGAGAAATATATATTG</u>	<i>S. epidermidis</i>	CPBP family intramembrane metalloprotease	100	269/269	WP_168429436
25	20725- 21039	104	<u>GAGGTGTAAAAAATG</u>	<i>S. epidermidis</i>	helix-turn-helix domain-containing protein	99	104/104	WP_002455864
26	21312- 22928	538	<u>AGGATTATTATG</u>	<i>S. epidermidis</i>	MutS family DNA mismatch repair protein	99	538/538	WP_194378687
27	23374- 25119	581	<u>AGGTGAAGTTAAAAGTG</u>	<i>S. epidermidis</i>	AIPR family protein	100	581/581	WP_194378688
28	25145- 25853	202	<u>GGAATCAATG</u>	<i>S. epidermidis</i> (pIVK45)	Sin recombinase	100	202/202	AKQ51586
29	25976- 26077	33	<u>AAGGAGGAATACTATG</u>	<i>S. epidermidis</i>	NAD-dependent epimerase/dehydratase family protein	100	33/33	WP_172686124

^a aa, amino acids.

^b Bold letters indicate start codons. Underlines indicate putative ribosome binding sites complementary to the 3' end of the 16s rRNA

^c Overlap is indicated as the number of overlapping amino acids/total number of amino ac

Identification of epidermin KSE56 and nukacin KSE650. Epidermin KSE56 and nukacin KSE650 were purified from the culture supernatant of KSE56 and KSE650, respectively. Using ESI-MS analysis, the molecular masses of purified epidermin KSE56 and nukacin KSE650 were found to be 2163.95 Da and 2938.33 Da, respectively. The mass of these peptides corresponded to calculated mass of epidermin (2163.95 Da) and nukacin KSE650 (2938.33 Da).

Antibacterial activity of epidermin KSE56 and nukacin KSE650 against several skin and oral commensal bacteria. In this study, *S. epidermidis* strains were isolated from the oral cavity. *S. epidermidis* is also known as a commensal bacterium. Therefore, we investigated the antibacterial activity of the two bacteriocins against oral and skin commensal bacterial species.

We first performed a direct assay using KSE56, KSE650 and plasmid-deleted strains. The plasmid-deleted strains showed no inhibitory zone against *S. hominis*, while the wild-type strains, KSE56 and KSE650, displayed inhibitory zones (Fig. 4).

Afterwards, we performed a direct assay using KSE56 and KSE650 (Table 4). The epidermin-producing strain, KSE56, showed a strong antibacterial activity (>20 mm diameter of inhibitory zone) against *M. luteus*, *C. pseudodiphtheriticum*, *S. captis*, and *S. hominis*, and an activity (>5 mm diameter) against *R. mucilaginosa*, *S. haemolyticus*, *S. simulans*, and *S. saprophyticus*. KSE56 also showed an antibacterial activity against *S. epidermidis* without bacteriocin production (KSE1, 10, 12, 16), plasmid-curing KSE56 and plasmid-curing KSE650. The inhibitory zone was not observed in *S. epidermidis* KSE56, *S. epidermidis* KSE650, *C. accolens*, the *S. warneri* ISK-1 and *S. aureus* strains. Regarding oral streptococci, KSE56 showed a strong activity against *S. salivarius* and *S. gordonii*, and modest activity against *S.*

mutans and *S. sanguinis*.

Table 4. Antibacterial activity of KSE56 and KSE650 against various bacterial species

Indicator strains	Halo size (mm)		
	KSE56	KSE650	<i>S. warneri</i>
<i>Corynebacterium pseudodiphtheriticum</i> JCM1320	10.0±0.8	10.7±0.5	11.7±0.5
<i>Corynebacterium accolens</i> JCM8331	5.0	5.0	11.3±0.5
<i>Micrococcus luteus</i> JCM1464	31.7±1.2	27.0±0	33.0±0
<i>Rothia mucilaginosa</i> JCM10910	8.7±0.5	8.0±0	13.0±0
<i>Staphylococcus haemolyticus</i> JCM2416	14.3±0.9	13.3±0.5	16.0±0.8
<i>Staphylococcus capitis</i> JCM2420	27.7±0.9	27.3±0.5	17.3±0.5
<i>Staphylococcus simulans</i> JCM2424	12.7±0.5	28.7±0.5	22.7±0.5
<i>Staphylococcus saprophyticus</i> JCM20595	12.0±1.6	12.3±0.5	13.3±0.5
<i>Staphylococcus hominis</i> JCM31912	26.3±0.5	16.3±0.5	21.7±0.5
<i>Staphylococcus epidermidis</i> KSE1	12.3±0.5	7.0±0.8	5.0
<i>Staphylococcus epidermidis</i> KSE10	12.0±0	7.3±0.5	N.D. ¹
<i>Staphylococcus epidermidis</i> KSE12	17.0±0.8	9.7±0.5	N.D.
<i>Staphylococcus epidermidis</i> KSE16	14.3±0.5	8.7±0.5	N.D.
<i>Staphylococcus epidermidis</i> KSE56	5.0	5.0	5.0
<i>Staphylococcus epidermidis</i> KSE650	5.0	5.0	5.0
<i>Staphylococcus epidermidis</i> KSE56 plasmid-deleted	20.3±0.5	11.3±0.5	N.D.
<i>Staphylococcus epidermidis</i> KSE650 plasmid-deleted	11.0±0	11.7±0.5	N.D.
<i>Staphylococcus warneri</i> ISK-1	5.0	5.0	5.0
<i>Staphylococcus aureus</i> MW2	5.0	5.0	11.3±0.5
<i>Staphylococcus aureus</i> COL	5.0	5.0	11.0±0
<i>Staphylococcus aureus</i> RN4220 (MSSA)	5.0	5.0	10.7±0.5
<i>Streptococcus mutans</i> UA159	15.0±0.8	5.0	5.0
<i>Streptococcus sanguinis</i> GTC217	12.0±0	5.0	10.3±0.9
<i>Streptococcus salivarius</i> GTC215	27.7±0.5	12.3±0.5	18.3±0.5
<i>Streptococcus gordonii</i> JCM12995	29.0±0	17.0±0	23.0±0

¹Not determined

The nukacin KSE650-producing strain KSE650, showed strong antibacterial activity (>20 mm diameter) against *M. luteus*, *S. capitis*, and *S. simulans* and activity

(>5 mm diameter) against *C. pseudodiphtheriticum*, *R. mucilaginosa*, *S. haemolyticus*, *S. hominis*, and *S. saprophyticus*. KSE650 also showed an antibacterial activity against *S. epidermidis* without bacteriocin production (KSE1, 10, 12, 16), plasmid-curing KSE56 and plasmid-curing KSE650. The inhibitory zone was not observed in *S. epidermidis* KSE56, *S. epidermidis* KSE650, *C. accolens*, *S. warneri* ISK-1 and *S. aureus* strains. Regarding oral streptococci, KSE650 showed activity against *S. salivarius*, and *S. gordonii*, and no activity against *S. mutans* and *S. sanguinis*. Compared to the nukacin ISK-1-producing *S. warneri* strain, *S. warneri* showed stronger activity against commensal and oral bacteria except *S. capitis* and *S. simulans*. Notably, *S. warneri* ISK-1 showed activity against the *S. aureus* strain.

Next, we investigated the antibacterial activity of KSE56 and KSE650 against each TCS-inactivated mutant in *S. aureus* (Fig.5). The *apsRS*- and *braRS*-inactivated mutants showed an inhibitory zone compared to the WT and the other TCS-inactivated mutants. In particular, the *braRS*-inactivated mutant showed the strong susceptibility to these strains.

Co-culture of *S. aureus* with *S. warneri* or *L. lactis*. Cocultures of *S. epidermidis* KSE1 (bacteriocin negative), KSE56, and KSE650 with *M. luteus* were analysed. In coculture with *M. luteus*, the proportion of *S. epidermidis* KSE1 was 46.2%, while the proportions of KSE56 and KSE650 were 70.4% and 79.8%, respectively (Fig. 6).

Discussion

In this study, we tried to isolate *S. epidermidis* strains that produced bacteriocin. We used the *S. aureus* MW2 *braRS*-inactivated mutant as the indicator strain for screening. We previously reported that BraRS was involved in resistance to several

bacteriocins including nisin A, nukacin ISK-1 and bacitracin [34]; therefore, a *braRS*-inactivated mutant increased susceptibility to these bacteriocins. Nisin A and nukacin ISK-1 are lantibiotics that act against lipid II molecules, which are responsible for cell wall biosynthesis, and subsequently, form a pour complex[37]. In addition, it was reported that many gram-positive bacteria, including staphylococci, streptococci, bacilli, lactococci and enterococci, produced lantibiotics that bind to lipid II [12,16,38,39,17–24] Therefore, the *braRS*-inactivated mutant is a good indicator strain to screen lipid II-binding lantibiotics. Finally, we identified 2 strains that produce epidermin and nukacin IVK45-like bacteriocins. Whole genome analysis of the 2 strains revealed that both genes were located on the plasmids (Fig. 2a and 3a).

Epidermin was first identified in the *S. epidermidis* Tü3298 strain [16,40]. In the Tü3298 strain, epidermin is located on the plasmid, pTu32. Recently, the whole genome sequence of the Tü3298 strain was determined [41], but the entire plasmid sequence of pEpi56 was not reported. Therefore, our study is the first to report the complete nucleotide sequence of epidermin harbouring plasmids. Additionally, the epidermin-producing strain identified in this study was the second strain, following the Tü3298 strain. The nucleotide sequence of the *epiA* coding epidermin showed 2 mismatches between the two strains, but the amino acid sequence was similar. When the epidermin synthesis genes were compared between the 2 strains, *epiT* showed a significant difference (Fig. 2b). *epiT* in KSE56 was intact, while this gene in Tu3298 was disrupted into 2 genes, *epiT'* and *epiT''* in Tü3298.

EpiT is involved in the secretion of the peptide. In previous reports that demonstrated the antibacterial activity of epidermin in Tü3298 [16–18], epidermin was correctly modified and secreted externally. However, Peschel A et al reported that the

introduction of intact *gdmT*, encoding the secretion protein for gallidermin, which was close to epidermin in Tü3298, increased the production of epidermin in culture supernatant [42]. Therefore, the secretion activity of epiT'/T'' is considered to be partial, while the intact *epiT* gene in KSE56 may be responsible for full secretion of the epidermin peptide.

Nukacin IVK-1 was first identified in *S. warneri* [29]. Since then, nukacin ISK-1 like bacteriocins have been identified in *S. epidermidis* [25], *S. hominis* [43], and *S. simulans* [44]. The amino acid sequence of KSE650 shows a high similarity with that of IVK45 by only one mismatch in the entire peptide, and 100% match with the mature peptide. Comparison of the plasmid between the two strains showed that KSE650 was larger than Tü3298, but the composition and the order of nukacin-related genes were identical (Fig. 2a). The larger size of pNuk650 was due to the insertion of an approximately 8 kbp fragment, which was detected in pNuk650 but not in pIVK45 (Fig. 3a, red arrows).

The antibacterial activity of these peptides against skin and oral commensal bacteria (oral streptococci) showed different patterns. In particular, the epidermin-producing strain (KSE56) had antibacterial activity against oral streptococci, while nukacin-producing strains had less activity. Interestingly, comparing nukacin ISK-1 and nukacin KSE650 suggested that 5 amino acid differences (Fig. 7) were responsible for the different activities against several bacteria used in this study. Previously, it was reported that the structure of ring A in nukacin ISK-1 binds to the pyrophosphate moiety of lipid II, the precursor for cell wall peptidoglycan biosynthesis, and ring C was also associated with the binding of the isoprene chain [45]. Since lipid II molecules are widely conserved among gram positive bacteria, the different antibacterial activities between nukacin ISK-1 and nukacin KSE650 are

influenced by the other molecules specific to each bacterial species. Furthermore, it is noteworthy that epidermin and nukacin KSE650 showed no inhibitory zone against *S. epidermidis* KSE650 and KSE56, respectively, while epidermin and nukacin KSE650 showed an activity against plasmid-curing KSE650 and plasmid-curing KSE56, respectively (Table 4). Although the immunity factors for epidermin and nukacin KSE650 were EpiFEG and NukFEG/NukH, respectively, which could be found in a respective plasmid, our results indicate that these immunity factors showed a cross-resistance to another bacteriocin. We previously reported that BraRS and ApsRS, TCSs, are involved in resistance to nisin A and nukacin ISK-1 [34]. Since *S. epidermidis* also possesses TCSs with similarity to BraRS and ApsRS, *S. epidermidis* TCSs may be involved in the resistance to epidermin and nukacin KSE650.

In conclusion, we determined the complete sequence of two plasmids encoding epidermin and nukacin KSE650 in *S. epidermidis* isolated from the oral cavity. *S. epidermidis* is the major commensal bacterium in human skin and the oral cavity. Based on our findings of the direct assay and coculture assay, it is speculated that bacteriocins produced by *S. epidermidis* affect the bacterial composition of the host flora, including the skin, nasal and oral flora. However, in this study, we focused on the isolation of lantibiotic-producing strains using a *braRS*-inactivated strain as the indicator. Therefore, it is possible that *S. epidermidis* also produces other types of bacteriocins. Further studies are required to demonstrate the influence of *S. epidermidis* bacteriocins on the formation of bacterial flora.

Acknowledgments

We thank Dr. Tomoko Amimoto, the Natural Science Center for Basic Research and

Development (N-BARD), Hiroshima University for the measurement of ESI-MS analysis.

Author contributions

Conceptualization: Miki Kawada-Matsuo, Norifumi Nakamura, Hitoshi Komatsuzawa

Data curation: Kenta Nakazono, Mi Nguyen-Tra Le

Formal analysis: Kenta Nakazono, Mi Nguyen-Tra Le

Funding acquisition: Miki Kawada-Matsuo, Norifumi Nakamura, Hitoshi Komatsuzawa, Motoyuki Sugai

Investigation: Kenta Nakazono, Mi Nguyen-Tra Le, Noy Kimheang, Junzo Hisatsune, Yuichi Oogai, Miki Kawada-Matsuo

Methodology: Motoyuki Sugai, Miki Kawada-Matsuo, Hitoshi Komatsuzawa

Project administration: Miki Kawada-Matsuo, Norifumi Nakamura, Hitoshi Komatsuzawa

Resources: Masanobu Nakata, Miki Kawada-Matsuo, Norifumi Nakamura, Motoyuki Sugai, Hitoshi Komatsuzawa

Software: Mi Nguyen-Tra Le

Supervision: Masanobu Nakata, Miki Kawada-Matsuo, Norifumi Nakamura, Motoyuki Sugai, Hitoshi Komatsuzawa

Validation: Masanobu Nakata, Miki Kawada-Matsuo, Norifumi Nakamura, Hitoshi Komatsuzawa

Visualization: Masanobu Nakata, Miki Kawada-Matsuo, Hitoshi Komatsuzawa

Writing – original draft: Kenta Nakazono, Mi Nguyen-Tra Le, Miki Kawada-Matsuo

Writing – review & editing: Miki Kawada-Matsuo, Mi Nguyen-Tra Le, Masanobu

Nakata, Yuuichi Oogai, Norifumi Nakamura, Motoyuki Sugai, Hitoshi Komatsuzawa

Figure legends

Figure 1. Direct assay of bacteriocin-producing *S. epidermidis* against *braRS*-inactivated *S. aureus*

The antibacterial activity of bacteriocin-producing *S. epidermidis* was evaluated by the direct assay using *S. aureus* MW2 *braRS*-inactivated mutant.

Figure 2. Gene map of the plasmid carrying epidermin in KSE56.

(a) Epidermin-encoding plasmid from KSE56 (pEpi56). ORFs are shown as arrows, indicating the orientation of transcription. The arrow numbers indicate the ORF number displayed in Table 2. Colors indicate the classification of gene function.

(b) Bacteriocin-coding region (KSE56 epidermin). The bacteriocin-coding region from pEpi56 was compared with pTu32 *epiP-Y'* (accession number X62386) and pTu32 *epiT"-G* (accession number U77778). Striped blue arrows indicate truncated *epiT*.

Figure 3. Comparison of the plasmids between *S. epidermidis* KSE650 and IVK45 strains.

(a) Nukacin-encoding plasmid from KSE650 (pNuk650) and the comparison with pIVK45

(b) Amino acid alignment of nukacin ISK-1, nukacin 3299, nukacin KQU131, nukacin IVK45 and nukacin KSE650.

Figure 4. Antibacterial activity of KSE56, KSE650 and their plasmid-deleted strains.

Direct assays were performed using KSE56, KSE650 and their plasmid-deleted strains. *S. hominis* was used as an indicator strain.

Figure 5. Antibacterial activity of KSE56, and KSE650 against *S. aureus* TCS-inactivated mutants.

Direct assay was performed using KSE56 and KSE650. Fourteen sets of TCS-inactivated *S. aureus* mutants were used as indicator strains (a). Three independent experiments were performed. The diameter of the inhibitory zone was measured and the average values were calculated (b).

Figure 6. The proportion of *S. epidermidis* KSE1, KSE56 and KSE650 cocultured with *M. luteus*.

Coculture assays were performed according to the method described in the Materials and methods. Post hoc multiple comparisons were made using Tukey's test.

Figure 7. Structure of nukacin ISK-1 and nukacin KSE650.

The mature peptide sequences of nukacin ISK-1 and nukacin KSE650 are shown. The deduced calculated mass of mature nukacin KSE650 is consistent with that observed by ESI-MS. The structure is identical to that of nukacin ISK-1, except for the residues indicated by grey circles. Dhb, Ala-S-Ala, and Abu-S-Ala indicate dehydrobutyrine, lanthionine, and 3-methyllanthionine respectively.

References

1. Parlet CP, Brown MM, Horswill AR. Commensal Staphylococci influence *Staphylococcus aureus* skin colonization and disease. *Trends Microbiol.* 2019;27: 497–507. doi:10.1016/j.tim.2019.01.008
2. Grice EA, Kong HH, Conlan S, Deming CB, Davis J, Young AC, et al. Topographical and temporal diversity of the human skin microbiome. *Science.* 2009;324: 1190–1192. doi:10.1126/science.1171700
3. Byrd AL, Belkaid Y, Segre JA. The human skin microbiome. *Nat Rev Microbiol.* 2018;16: 143–155. doi:10.1038/nrmicro.2017.157
4. Nguyen TH, Park MD, Otto M. Host Response to *Staphylococcus epidermidis* colonization and infections. *Front Cell Infect Microbiol.* 2017;7: 90. doi:10.3389/fcimb.2017.00090
5. Lai Y, Cogen AL, Radek KA, Park HJ, Macleod DT, Leichtle A, et al. Activation of TLR2 by a small molecule produced by *Staphylococcus epidermidis* increases antimicrobial defense against bacterial skin infections. *J Invest Dermatol.* 2010;130: 2211–2221. doi:10.1038/jid.2010.123
6. Scharschmidt TC, Vasquez KS, Truong H-A, Gearty S V, Pauli ML, Nosbaum A, et al. A Wave of regulatory T cells into neonatal skin mediates tolerance to commensal microbes. *Immunity.* 2015;43: 1011–1021. doi:10.1016/j.jimmuni.2015.10.016
7. Rogers KL, Fey PD, Rupp ME. Coagulase-negative staphylococcal infections. *Infect Dis Clin North Am.* 2009;23: 73–98. doi:10.1016/j.idc.2008.10.001
8. Uçkay I, Pittet D, Vaudaux P, Sax H, Lew D, Waldvogel F. Foreign body infections due to *Staphylococcus epidermidis*. *Ann Med.* 2009;41: 109–119. doi:10.1080/07853890802337045

9. Otto M. *Staphylococcus epidermidis*--the “accidental” pathogen. *Nat Rev Microbiol.* 2009;7: 555–567. doi:10.1038/nrmicro2182
10. Miragaia M, Couto I, de Lencastre H. Genetic diversity among methicillin-resistant *Staphylococcus epidermidis* (MRSE). *Microb Drug Resist.* 2005;11: 83–93. doi:10.1089/mdr.2005.11.83
11. Cotter PD, Hill C, Ross RP. Bacteriocins: developing innate immunity for food. *Nat Rev Microbiol.* 2005;3: 777–788. doi:10.1038/nrmicro1273
12. Jack RW, Tagg JR, Ray B. Bacteriocins of gram-positive bacteria. *Microbiol Rev.* 1995;59: 171–200. doi:10.1128/mr.59.2.171-200.1995
13. Nissen-Meyer J, Nes IF. Ribosomally synthesized antimicrobial peptides: their function, structure, biogenesis, and mechanism of action. *Arch Microbiol.* 1997;167: 67–77.
14. Ryan CS, Kleinberg I. Bacteria in human mouths involved in the production and utilization of hydrogen peroxide. *Arch Oral Biol.* 1995;40: 753–763. doi:10.1016/0003-9969(95)00029-o
15. García-Mendoza A, Liébana J, Castillo AM, de la Higuera A, Piédrola G. Evaluation of the capacity of oral streptococci to produce hydrogen peroxide. *J Med Microbiol.* 1993;39: 434–439. doi:10.1099/00222615-39-6-434
16. Allgaier H, Jung G, Werner RG, Schneider U, Zähner H. Epidermin: sequencing of a heterodetic tetracyclic 21-peptide amide antibiotic. *Eur J Biochem.* 1986;160: 9–22. doi:10.1111/j.1432-1033.1986.tb09933.x
17. Schnell N, Entian KD, Schneider U, Götz F, Zähner H, Kellner R, et al. Prepeptide sequence of epidermin, a ribosomally synthesized antibiotic with four sulphide-rings. *Nature.* 1988;333: 276–278. doi:10.1038/333276a0
18. Bierbaum G, Götz F, Peschel A, Kupke T, van de Kamp M, Sahl HG. The

biosynthesis of the lantibiotics epidermin, gallidermin, Pep5 and epilancin K7. Antonie Van Leeuwenhoek. 1996;69: 119–127. doi:10.1007/BF00399417

19. Kalletta C, Entian KD, Kellner R, Jung G, Reis M, Sahl HG. Pep5, a new lantibiotic: structural gene isolation and prepeptide sequence. *Arch Microbiol*. 1989;152: 16–19. doi:10.1007/BF00447005

20. Weil HP, Beck-Sickinger AG, Metzger J, Stevanovic S, Jung G, Josten M, et al. Biosynthesis of the lantibiotic Pep5. Isolation and characterization of a prepeptide containing dehydroamino acids. *Eur J Biochem*. 1990;194: 217–223. doi:10.1111/j.1432-1033.1990.tb19446.x

21. van de Kamp M, Horstink LM, van den Hooven HW, Konings RN, Hilbers CW, Frey A, et al. Sequence analysis by NMR spectroscopy of the peptide lantibiotic epilancin K7 from *Staphylococcus epidermidis* K7. *Eur J Biochem*. 1995;227: 757–771. doi:10.1111/j.1432-1033.1995.tb20199.x

22. Ekkelenkamp MB, Hanssen M, Danny Hsu S-T, de Jong A, Milatovic D, Verhoef J, et al. Isolation and structural characterization of epilancin 15X, a novel lantibiotic from a clinical strain of *Staphylococcus epidermidis*. *FEBS Lett*. 2005;579: 1917–1922. doi:10.1016/j.febslet.2005.01.083

23. Velásquez JE, Zhang X, van der Donk WA. Biosynthesis of the antimicrobial peptide epilancin 15X and its N-terminal lactate. *Chem Biol*. 2011;18: 857–867. doi:10.1016/j.chembiol.2011.05.007

24. Heidrich C, Pag U, Josten M, Metzger J, Jack RW, Bierbaum G, et al. Isolation, characterization, and heterologous expression of the novel lantibiotic epicidin 280 and analysis of its biosynthetic gene cluster. *Appl Environ Microbiol*. 1998;64: 3140–3146. doi:10.1128/AEM.64.9.3140-3146.1998

25. Janek D, Zipperer A, Kulik A, Krismer B, Peschel A. High Frequency and Diversity of Antimicrobial Activities Produced by Nasal *Staphylococcus* Strains against Bacterial Competitors. *PLoS Pathog.* 2016;12: e1005812. doi:10.1371/journal.ppat.1005812
26. McManus BA, Daly B, Polyzois I, Wilson P, Brennan GI, Fleming TE, et al. Comparative Microbiological and Whole-Genome Analysis of *Staphylococcus aureus* Populations in the Oro-Nasal Cavities, Skin and Diabetic Foot Ulcers of Patients With Type 2 Diabetes Reveals a Possible Oro-Nasal Reservoir for Ulcer Infection. *Front Microbiol.* 2020;11: 748. doi:10.3389/fmicb.2020.00748
27. Simões-Silva L, Ferreira S, Santos-Araujo C, Tabaio M, Pestana M, Soares-Silva I, et al. Oral Colonization of *Staphylococcus* Species in a Peritoneal Dialysis Population: A Possible Reservoir for PD-Related Infections? *Can J Infect Dis Med Microbiol = J Can des Mal Infect la Microbiol medicale.* 2018;2018: 5789094. doi:10.1155/2018/5789094
28. Matsuo M, Kato F, Oogai Y, Kawai T, Sugai M, Komatsuzawa H. Distinct two-component systems in methicillin-resistant *Staphylococcus aureus* can change the susceptibility to antimicrobial agents. *The Journal of antimicrobial chemotherapy.* 2010. pp. 1536–1537. doi:10.1093/jac/dkq141
29. Aso Y, Sashihara T, Nagao J-I, Kanemasa Y, Koga H, Hashimoto T, et al. Characterization of a gene cluster of *Staphylococcus warneri* ISK-1 encoding the biosynthesis of and immunity to the lantibiotic, nukacin ISK-1. *Biosci Biotechnol Biochem.* 2004;68: 1663–1671. doi:10.1271/bbb.68.1663
30. Murchison HH, Barrett JF, Cardineau GA, Curtiss R 3rd. Transformation of *Streptococcus mutans* with chromosomal and shuttle plasmid (pYA629)

DNAs. *Infect Immun.* 1986;54: 273–282. doi:10.1128/iai.54.2.273-282.1986

31. Kornblum J, Hartman BJ, Novick RP, Tomasz A. Conversion of a homogeneously methicillin-resistant strain of *Staphylococcus aureus* to heterogeneous resistance by Tn551-mediated insertional inactivation. *Eur J Clin Microbiol.* 1986;5: 714–718. doi:10.1007/BF02013311
32. Kreiswirth BN, Löfdahl S, Betley MJ, O'Reilly M, Schlievert PM, Bergdoll MS, et al. The toxic shock syndrome exotoxin structural gene is not detectably transmitted by a prophage. *Nature.* 1983;305: 709–712. doi:10.1038/305709a0
33. Four pediatric deaths from community-acquired methicillin-resistant *Staphylococcus aureus* — Minnesota and North Dakota, 1997-1999. *MMWR Morb Mortal Wkly Rep.* 1999;48: 707–710.
34. Kawada-Matsuo M, Yoshida Y, Zendo T, Nagao J, Oogai Y, Nakamura Y, et al. Three distinct two-component systems are involved in resistance to the class I bacteriocins, nukacin ISK-1 and nisin A, in *Staphylococcus aureus*. Otto M, editor. *PLoS One.* 2013;8: e69455. doi:10.1371/journal.pone.0069455
35. Overbeek R, Olson R, Pusch GD, Olsen GJ, Davis JJ, Disz T, et al. The SEED and the Rapid Annotation of microbial genomes using Subsystems Technology (RAST). *Nucleic Acids Res.* 2014;42: D206-14. doi:10.1093/nar/gkt1226
36. Aso Y, Koga H, Sashihara T, Nagao J-I, Kanemasa Y, Nakayama J, et al. Description of complete DNA sequence of two plasmids from the nukacin ISK-1 producer, *Staphylococcus warneri* ISK-1. *Plasmid.* 2005;53: 164–178. doi:10.1016/j.plasmid.2004.08.003
37. Islam MR, Nagao J-I, Zendo T, Sonomoto K. Antimicrobial mechanism of lantibiotics. *Biochem Soc Trans.* 2012;40: 1528–1533.

doi:10.1042/BST20120190

38. Vogel V, Spellerberg B. Bacteriocin production by beta-hemolytic Streptococci. *Pathog (Basel, Switzerland)*. 2021;10. doi:10.3390/pathogens10070867

39. Barbosa J, Caetano T, Mendo S. Class I and class II Lanthipeptides produced by *Bacillus* spp. *J Nat Prod*. 2015;78: 2850–2866. doi:10.1021/np500424y

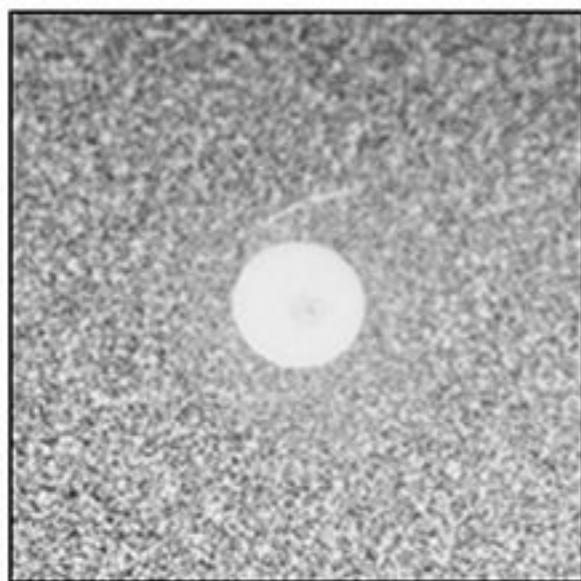
40. Schnell N, Engelke G, Augustin J, Rosenstein R, Ungermann V, Götz F, et al. Analysis of genes involved in the biosynthesis of lantibiotic epidermin. *Eur J Biochem*. 1992;204: 57–68. doi:10.1111/j.1432-1033.1992.tb16605.x

41. Moran JC, Horsburgh MJ. Whole-genome sequence of *Staphylococcus epidermidis* Tü3298. *Genome Announc*. 2016;4. doi:10.1128/genomeA.00112-16

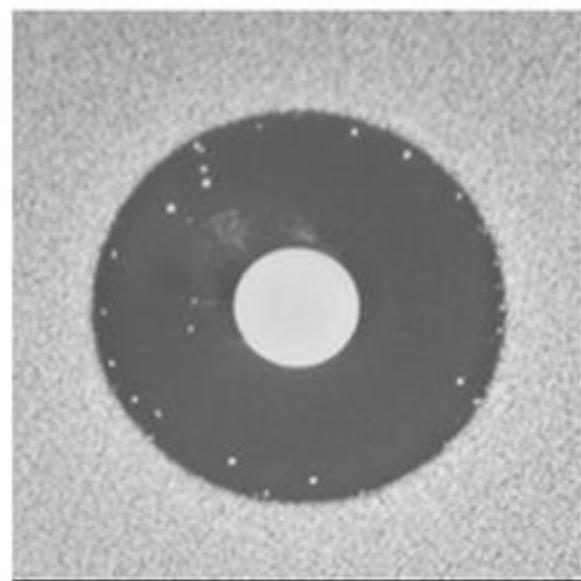
42. Peschel A, Schnell N, Hille M, Entian KD, Götz F. Secretion of the lantibiotics epidermin and gallidermin: sequence analysis of the genes *gdmT* and *gdmH*, their influence on epidermin production and their regulation by EpiQ. *Mol Gen Genet*. 1997;254: 312–318. doi:10.1007/s004380050421

43. Wilaipun P, Zendo T, Okuda K, Nakayama J, Sonomoto K. Identification of the nukacin KQU-131, a new type-A(II) lantibiotic produced by *Staphylococcus hominis* KQU-131 isolated from Thai fermented fish product (Pla-ra). *Biosci Biotechnol Biochem*. 2008;72: 2232–2235. doi:10.1271/bbb.80239

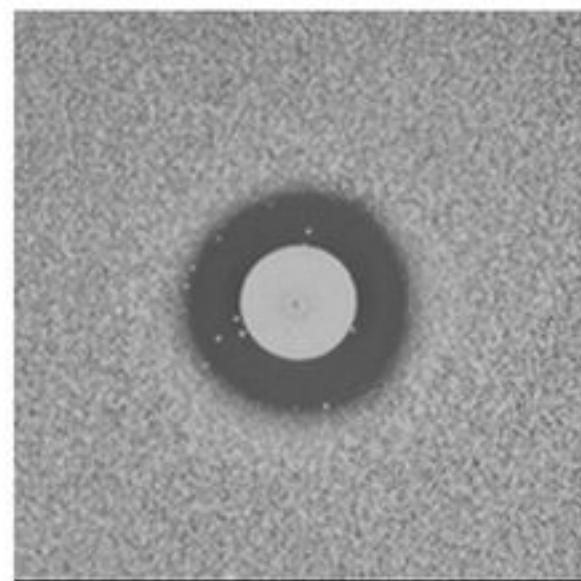
44. Ceotto H, Holo H, da Costa KFS, Nascimento J dos S, Salehian Z, Nes IF, et al. Nukacin 3299, a lantibiotic produced by *Staphylococcus simulans* 3299 identical to nukacin ISK-1. *Vet Microbiol*. 2010;146: 124–131. doi:10.1016/j.vetmic.2010.04.032


45. Fujinami D, -Mahin A-A, Elsayed KM, Islam MR, Nagao J-I, Roy U, et al. The lantibiotic nukacin ISK-1 exists in an equilibrium between active and inactive lipid-II binding states. *Commun Biol.* 2018;1: 150. doi:10.1038/s42003-018-0150-3

Supporting information


S1 Fig. Comparison of amino acid sequences of EpiT between the KSE56 and Tü3298 strains

S2 Fig. Comparison of nucleotide (A) and amino acid sequences (B) of *epiA* between the KSE56 and Tü3298 strains


KSE1

KSE56

KSE650

Indicator cell: *S. aureus* MW2 (Δ braRS)

Figure1

Figure2a

EpiA_Tu3298	MEAVKEKNDLFNLDVKVNAKESNDSGAEPRIASKFICTPGCAKTGSFNSYCC*	52
EpiA_KSE56	MEAVKEKNDLFNLDVKVNAKESNDSGAEPRIASKFICTPGCAKTGSFNSYCC*	52

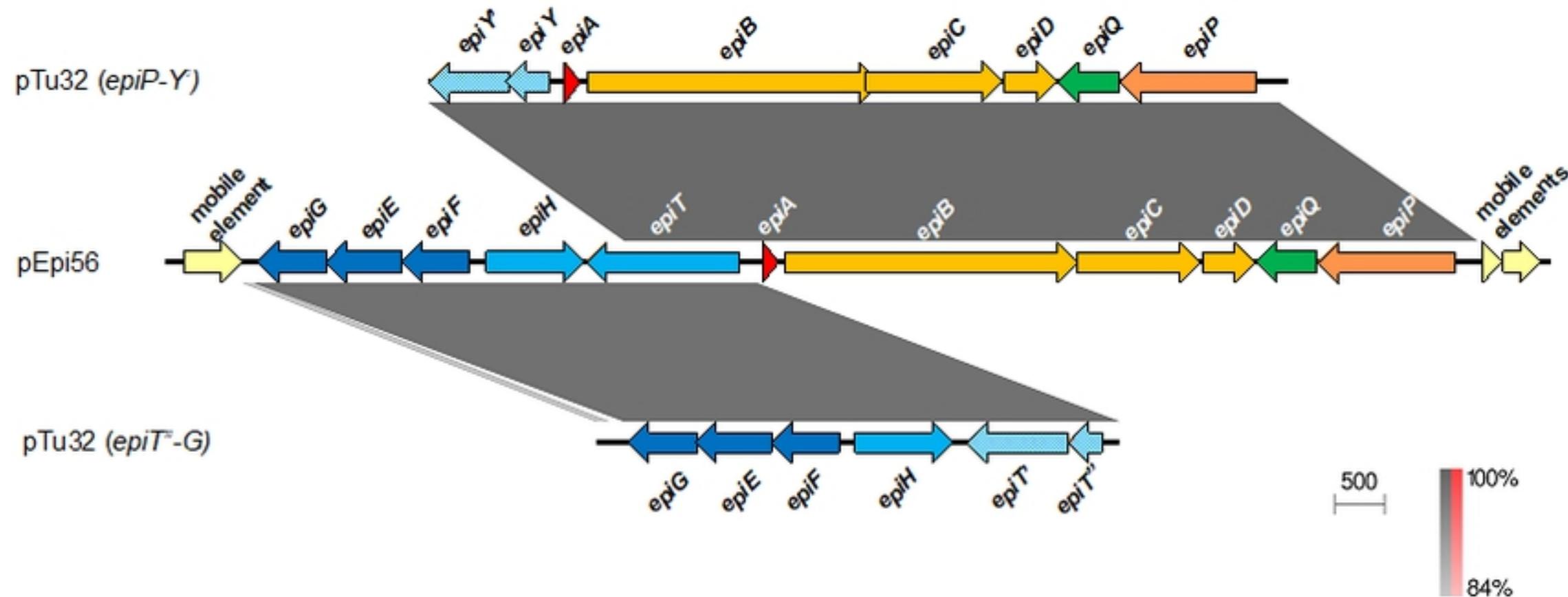
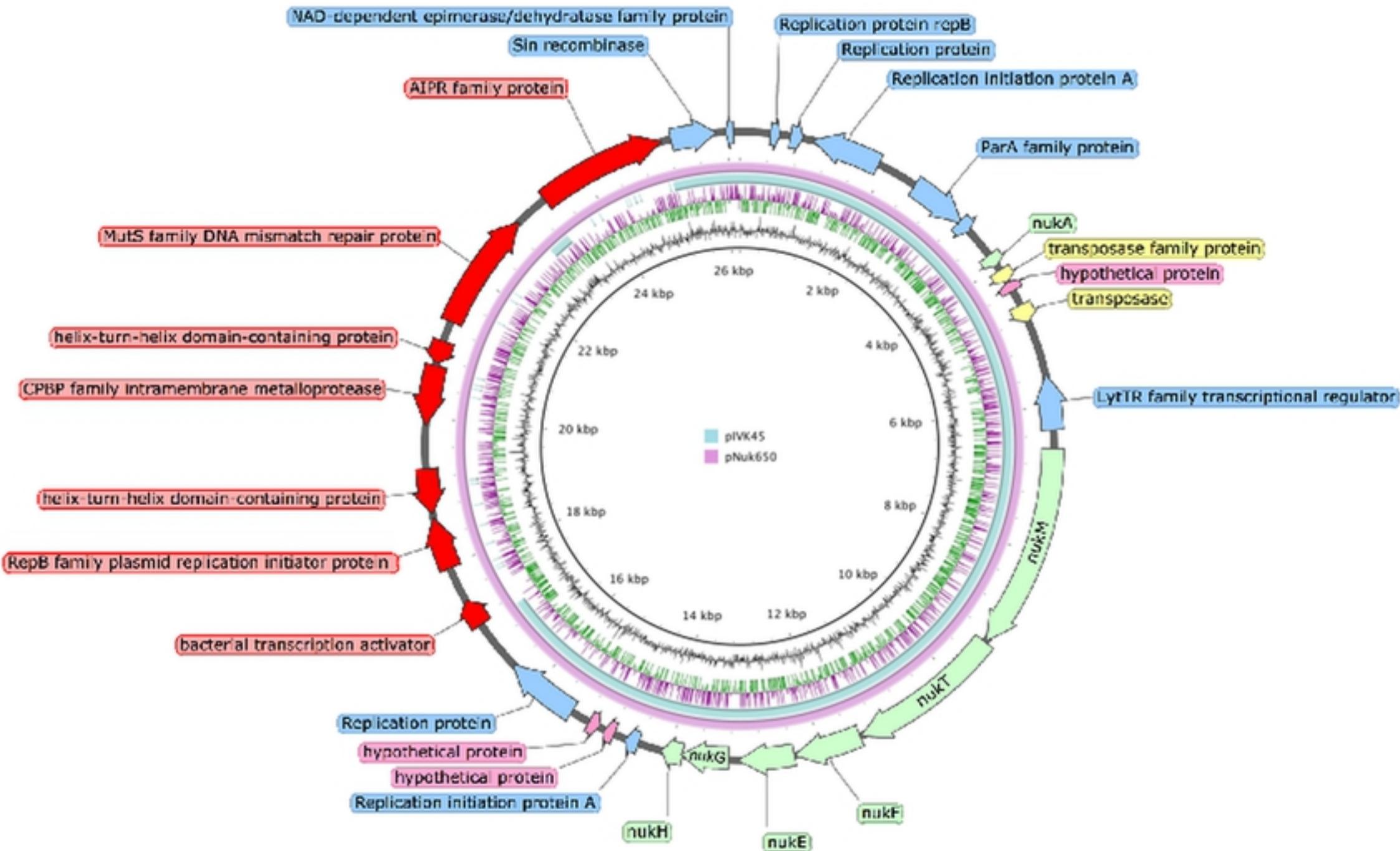
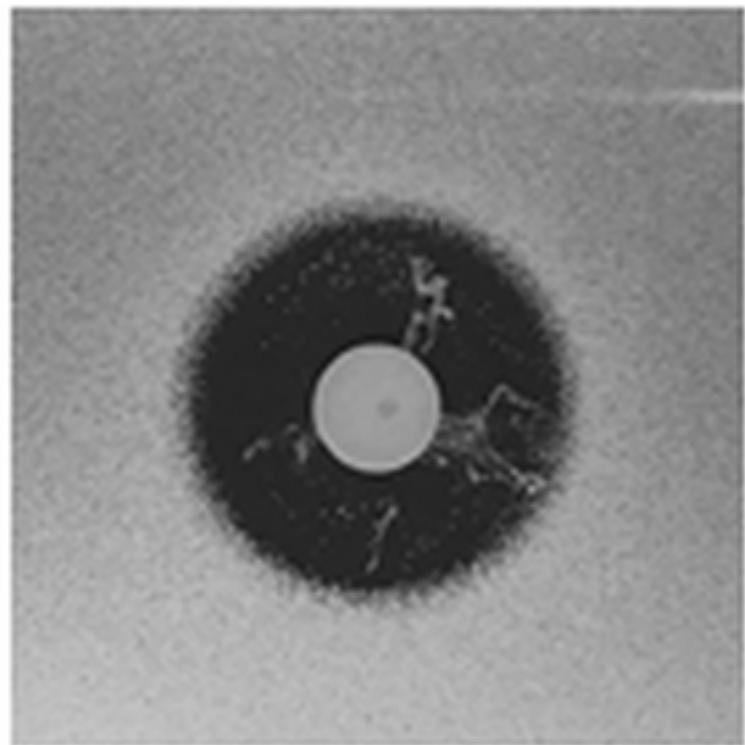
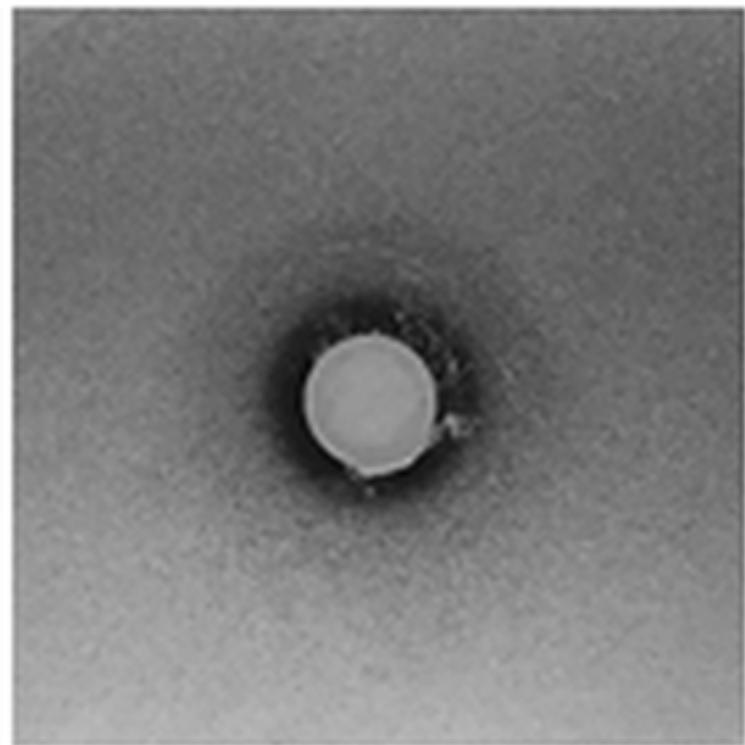
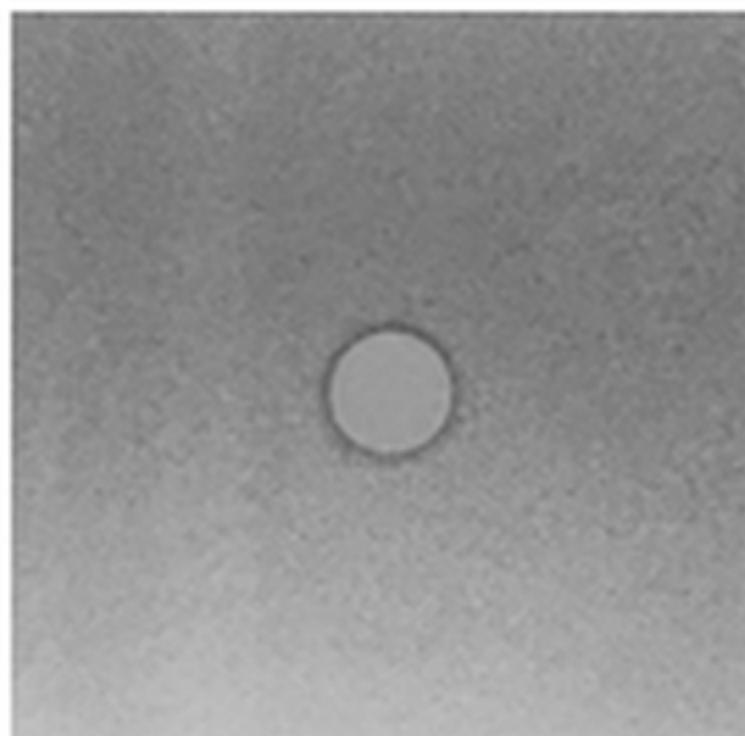


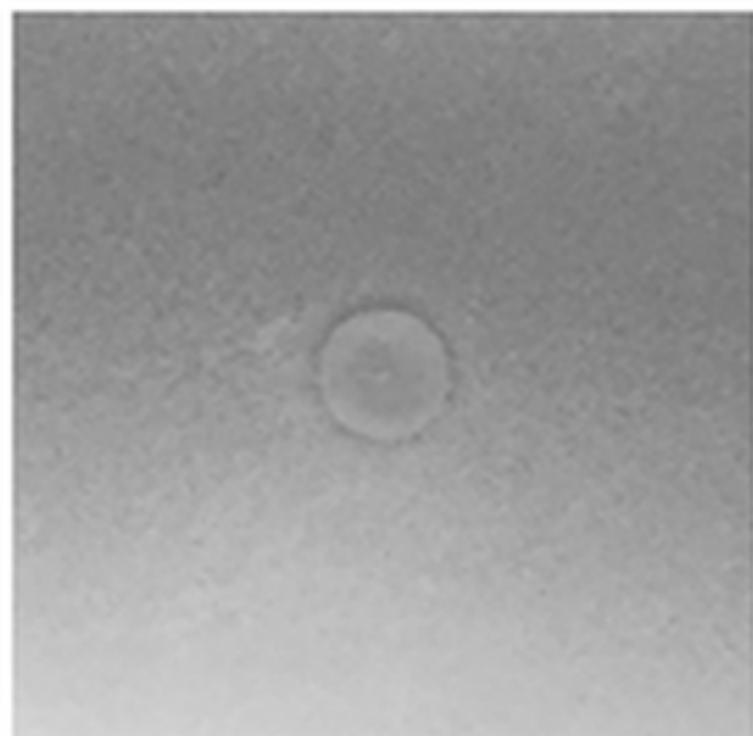
Figure2b

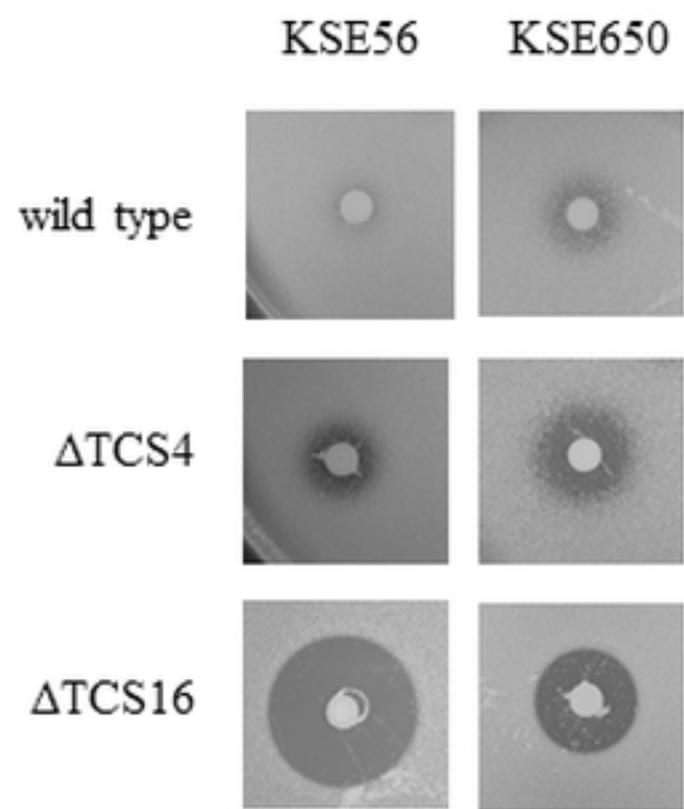

Figure 3a

		Cleavage site	Lipid II binding motif	
<i>S. warneri</i> ISK-1	MENSKVMKDIEVANLLEEVQEDELNEVLGAKKKSGVIP	↓	PTVSHDC	HMNSFQFVFTCCS 57
<i>S. simulans</i> 3299	MENSKVMKDIEVANLLEEVQEDELNEVLGAKKKSGVIP	↓	PTVSHDC	HMNSFQFVFTCCS 57
<i>S. hominis</i> KQU131	MENSKIMKDIEVANLLEEVQEDELNEVLGAKKKSGVIP	↓	PTVSHDC	HMNTFQFMFTCCS 57
<i>S. epidermidis</i> IVK-45	MENFKVIEDIEVSNLLEEIQEDELNEVLGAKKKSGAVP	↓	PTVSHDC	HMNSWQFIFTCCG 57
<i>S. epidermidis</i> KSE650	MENLKVIEDIEVSNLLEEIQEDELNEVLGAKKKSGAVP	↓	PTVSHDC	HMNSWQFIFTCCG 57
	*** * : : * * * * : * * * * * * * * * * * * * * * * : * * * * * * * * * : * * : * * * * .			


Figure3b

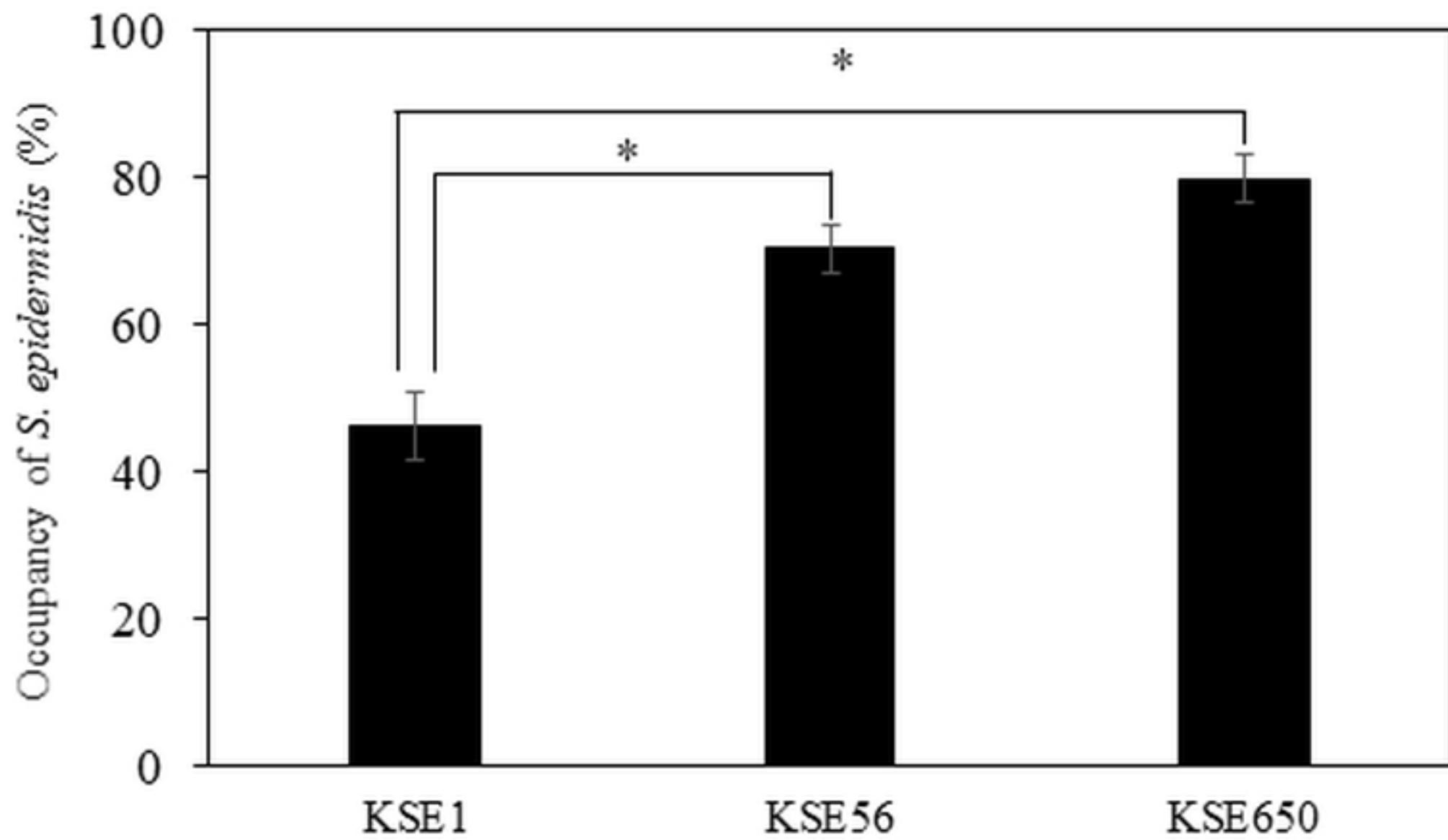

KSE56

KSE650


KSE56 plasmid-deleted

KSE650 plasmid-deleted

Figure4


(a)

(b)

Strains	Halo size (mm)	
	KSE56	KSE650
WT	5.0	5.0
Δ TCS2	5.0	5.0
Δ TCS3	5.0	5.0
Δ TCS4	13.3 \pm 0.5	12.0 \pm 0
Δ TCS5	5.0	5.0
Δ TCS6	5.0	5.0
Δ TCS7	5.0	5.0
Δ TCS8	5.0	5.0
Δ TCS9	5.0	5.0
Δ TCS10	5.0	5.0
Δ TCS11	5.0	5.0
Δ TCS12	5.0	5.0
Δ TCS13	5.0	5.0
Δ TCS14	5.0	5.0
Δ TCS15	5.0	5.0
Δ TCS16	28.7 \pm 0.5	19.0 \pm 0

Figure 5

*, $p < 0.01$

Figure6

Nukacin ISK-1

Nukacin KSE650

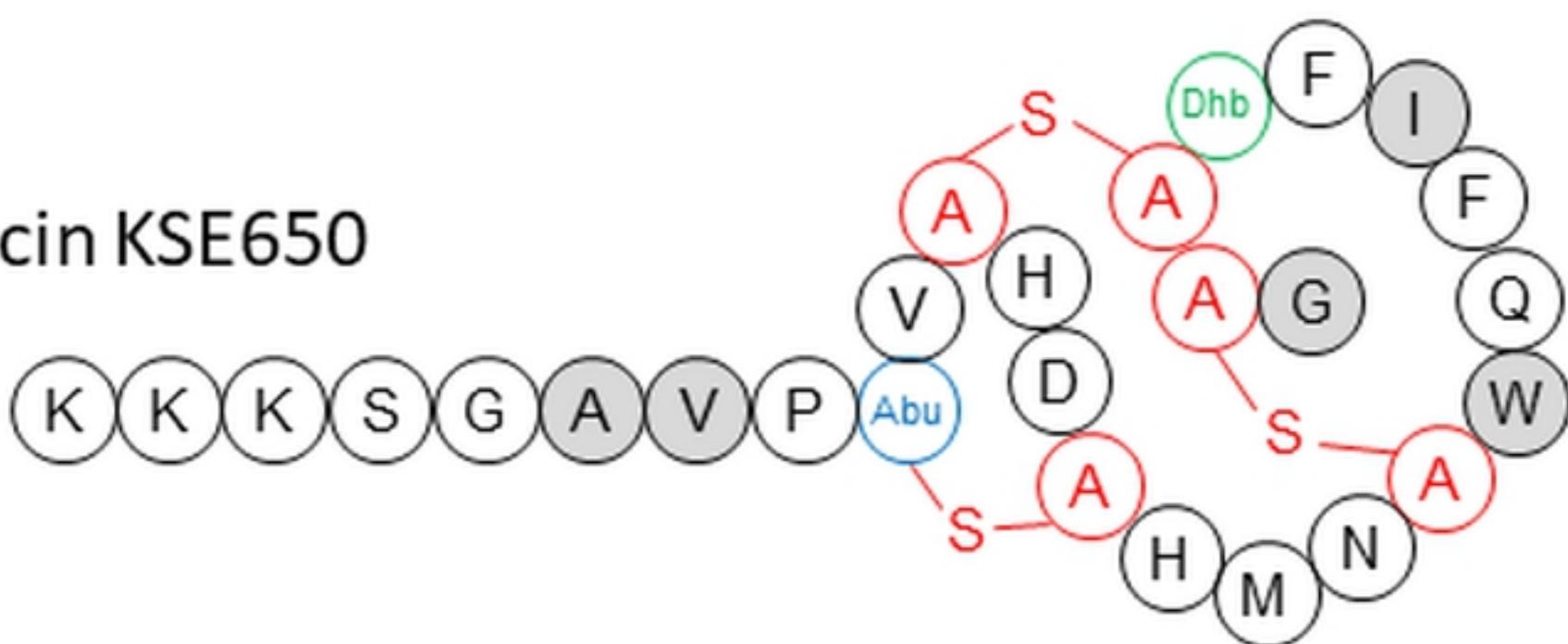


Figure 7