

1 **Broad ultra-potent neutralization of SARS-CoV-2 variants by monoclonal
2 antibodies specific to the tip of RBD**

3
4 **Running title: Potential clinical treatment to COVID-19 by SARS-CoV-2 variants**

5
6 Hang Ma^{1*}, Yingying Guo^{3,4*}, Haoneng Tang^{1*}, Chien-Te K. Tseng^{5,6,7,8*}, Lei Wang¹,
7 Huifang Zong¹, Zhenyu Wang², Yang He², Yunsong Chang², Shusheng Wang⁹, Haiqiu
8 Huang⁹, Yong Ke¹, Yunsheng Yuan¹, Mingyuan Wu¹, Yuanyuan Zhang^{3,4}, Aleksandra
9 Drelich⁵, Kempaiah Rayavara Kempaiah⁵, Bi-Hung Peng⁶, Ailin Wang⁹, Kaiyong Yang⁹,
10 Haiyang Yin¹, Junjun Liu¹, Yali Yue¹, Wenbo Xu¹⁰, Shuangli Zhu¹⁰, Tianjiao Ji¹⁰, Xiaoju
11 Zhang¹¹, Ziqi Wang¹¹, Gang Li², Guangchun Liu², Jingjing Song², Lingling Mu²,
12 ZongShang Xiang², Zhangyi Song⁹, Hua Chen⁹, Yanlin Bian¹, Baohong Zhang¹, Hui
13 Chen¹, Jiawei Zhang¹, Yunji Liao¹, Li Zhang⁹, Li Yang¹¹, Yi Chen¹², John Gilly^{2,9}, Xiaodong
14 Xiao^{2,9}, Lei Han^{2,13#}, Hua Jiang^{2,9#}, Yueqing Xie^{9#}, Qiang Zhou^{3,4#}, Jianwei Zhu^{1,2,9,13#}

15
16 ¹Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education,
17 China; Shanghai Jiao Tong University, Shanghai 200240, China

18 ²Jecho Biopharmaceuticals Co., Ltd. Tianjin 300467, China

19 ³Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and
20 Biomedicine, Key Laboratory of Structural Biology of Zhejiang, School of Life Sciences,
21 Westlake University, Hangzhou 310024, Zhejiang, China.

22 ⁴Institute of Biology, Westlake Institute for Advanced Study, Hangzhou 310024, Zhejiang,
23 China.

24 ⁵University of Texas, Medical Branch, Departments of Microbiology and Immunology,
25 Galveston, TX 77555, USA

26 ⁶University of Texas, Medical Branch, Neurosciences, Cell Biology, and Anatomy,
27 Galveston, TX 77555, USA

28 ⁷University of Texas, Medical Branch, Pathology, Galveston, TX 77555, USA

29 ⁸University of Texas, Medical Branch, Center for Biodefense and Emerging Disease,
30 Galveston, TX 77555, USA

31 ⁹Jecho Laboratories, Inc. Frederick, MD 21704, USA

32 ¹⁰National Institute for Viral Disease Control and Prevention, China CDC, Beijing 102206,
33 China

34 ¹¹Zhengzhou University People's Hospital; Henan Provincial People's Hospital,
35 Department of Respiratory and Critical Care Medicine, Zhengzhou 450003, Henan, China

36 ¹²Zhengzhou University People's Hospital; Henan Provincial People's Hospital, Clinical
37 Research Service Center, Zhengzhou 450003, Henan, China

38 ¹³Jecho Institute, Co., Ltd. Shanghai 200240, China

39 *These authors contributed equally: Hang Ma, Yingying Guo, Haoneng Tang, Chien-Te K.
40 Tseng

41 #Correspondent authors: LH, lei.han@jechobio.com; HJ, hua.jiang@jecholabs.com; YX,
42 yueqing.xie@jecholabs.com; QZ, zhouqiang@westlake.edu.cn; JZ, jianweiz@sjtu.edu.cn

43

44

45 **Abstract**

46 Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern
47 (VOCs) continue to wreak havoc across the globe. Higher transmissibility and immunologic
48 resistance of VOCs bring unprecedented challenges to epidemic extinguishment. Here we
49 describe a monoclonal antibody, 2G1, that neutralizes all current VOCs and has surprising
50 tolerance to mutations adjacent to or within its interaction epitope. Cryo-electron
51 microscopy structure showed that 2G1 bound to the tip of receptor binding domain (RBD)
52 of spike protein with small contact interface but strong hydrophobic effect, which resulted
53 in nanomolar to sub-nanomolar affinities to spike proteins. The epitope of 2G1 on RBD
54 partially overlaps with ACE2 interface, which gives 2G1 ability to block interaction between
55 RBD and ACE2. The narrow binding epitope but high affinity bestow outstanding
56 therapeutic efficacy upon 2G1 that neutralized VOCs with sub-nanomolar IC_{50} *in vitro*. In
57 SARS-CoV-2 and Beta- and Delta- variant-challenged transgenic mice and rhesus
58 macaque models, 2G1 protected animals from clinical illness and eliminated viral burden,
59 without serious impact to animal safety. Mutagenesis experiments suggest that 2G1 could
60 be potentially capable of dealing with emerging SARS-CoV-2 variants in future. This report
61 characterized the therapeutic antibodies specific to the tip of spike against SARS-CoV-2
62 variants and highlights the potential clinical applications as well as for developing vaccine
63 and cocktail therapy.

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89 **Introduction**

90 Since the first Coronavirus Disease 2019 (COVID-19) case was diagnosed at the end of
91 2019, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused
92 more than 200 million confirmed infections and 4.5 million deaths in the following eighteen
93 months, with no sign of stopping (<https://ourworldindata.org/coronavirus>)¹⁻⁶. The hope-
94 placed distribution of vaccines once appeared effectively controlling the virus spread.
95 However, the antigenic evolution of SARS-CoV-2, especially in the spike (S) protein
96 associated with receptor binding, alters the viral immunogenicity facilitating the virus's
97 immune escape and crossing transmission barriers^{7,8}.

98 Receptor binding domain (RBD) on the S protein is a determinant that mediates the binding
99 of SARS-CoV-2 to the angiotensin-converting enzyme 2 (ACE2). Neutralizing antibodies
100 targeting RBD were proved to be effective⁹⁻¹¹. Correspondingly, substitutions on RBD may
101 reduce neutralizing efficacy¹²⁻¹⁴. Several variants, listed as Variant of Concern (VOC),
102 featured with RBD substitutions and non-RBD mutations showed to have higher
103 transmissibility and led to more severe illness¹⁵⁻¹⁷, which has been causing great global
104 dissemination concern. SARS-CoV-2 B.1.1.7 (Alpha) was first identified in United Kingdom
105 in late summer of 2020 and rapidly became the dominant variant. This variant has nine
106 mutations in the S protein, one of which is N501Y in RBD¹⁸. Alpha variant possesses a
107 comparative transmission advantage, with a reproductive number 50% to 100% higher
108 than other non-VOC lineages¹. Vaccine-elicited neutralizing antibody responses were
109 shown to be at risk of being desensitized by Alpha¹⁹. SARS-CoV-2 B.1.351 (Beta) has three
110 substitutions in RBD, i.e., K417N, E484K, and N501Y. Incorporation of E484K empowers
111 variants possible being completely resistant to plasma neutralization²⁰. Mutations E484K
112 together with K417N and N501Y largely contribute to the escape of Beta variant from
113 convalescent and vaccine-induced sera^{21,22}. SARS-CoV-2 P.1 (Gamma) shares three
114 identical site-mutations in RBD with Beta variant, and their differences are that the
115 substitution of K417 is threonine in Gamma variant, while is asparagine in Beta variant.
116 Similarly, Gamma variant notably reduced susceptibility to antibody treatment and vaccine
117 protection^{23,24}. SARS-CoV-2 B.1.617.2 (Delta) was first reported in India and quickly
118 spread globally in the first half of 2021. This strain has more than ten S protein mutations
119 and two of them, L452R and T478K, are in RBD. Delta variant exhibits more extensive
120 immunologic resistance than Alpha, escaping from many S protein antibodies targeting
121 RBD and non-RBD epitopes^{25,26}. Individuals who recovered from Beta and Gamma
122 variants are more susceptible to be infected with Delta²⁷. In addition to these VOCs,
123 potential outbreaks of several variants have raised public concern, such as the recently
124 rapidly spreading variant C.37 (Lambda)²⁸ and the new variant B.1.621 (Mu)²⁹. The
125 emergence of these variants, even possible hybrid variants, raises the risk of
126 compromising the therapeutic effectiveness of vaccines and neutralizing antibodies that
127 were previously developed^{30,31}.

128 Here we report our efforts on discovering neutralizing antibodies that provide extensive
129 protection against the variants with global impact, especially the VOCs. We isolated RBD
130 positive single B cells from convalescent individuals and cloned monoclonal antibodies
131 (mAbs) within. After a series of programmed screening, several antibodies with remarkable
132 neutralizing effect were panned out from the candidates (Fig. 1a). One of these antibodies,

133 designated as 2G1, efficiently neutralized all VOCs including widely spread Alpha, Beta,
134 Gamma, Delta variants and Cluster 5, a variant with Y453F substitution once caused public
135 concern due to the zoonotic characteristics. The antibody 2G1 was subsequently fully
136 characterized physico-chemically and biologically, as well as evaluated in potential in clinical
137 applications.

138

139 **Results**

140 Molecule discovery of 2G1

141 We collected blood samples from 20 convalescent individuals who were infected by SARS-
142 CoV-2 in February 2020. Peripheral blood mononuclear cells were enriched and sorted
143 with fluorescently labeled recombinant SARS-CoV-2 RBD (WA1/2020) protein (Fig. 1b).
144 Over 1200 B cells were isolated and more than 500 pairs of IgG antibody genes were
145 cloned by single-cell PCR. Of which, 375 are kappa subtype and 174 are lambda subtype
146 (Fig. 1c). 143 RBD binders were obtained after the ELISA-based preliminary screening
147 (Fig. 1d). In the following pseudovirus-based screening, three molecules, including 2G1,
148 displayed ultra-potent neutralization with IC_{50} less than 0.01 μ g/mL (Fig. 1e). Antibody 2G1
149 stood out from these candidates after further investigation despite the binding and ACE2
150 blocking abilities were not remarkable (Supplementary information, Fig. S1a-b). In the
151 germline analysis of 33 candidates, 23 heavy chains were from IGHV3 and 18 light chains
152 were from IGKV1 (Supplementary information, Fig. S2). Six heavy chains, including 2G1,
153 were from IGHV3-53, which was reported having short complementarity-determining
154 region and with minimal affinity but high efficacy³².

155 WA1/2020 RBD-mFc and S trimer proteins and pseudovirus were employed to further
156 confirm the antigen-binding and neutralizing ability of 2G1. Antibody 2G1 bound to RBD-
157 mFc and S trimer with EC_{50} of 0.016 μ g/mL and 0.135 μ g/mL (Fig. 2a-b) and neutralized
158 WA1/2020 pseudovirus with IC_{50} 0.0031 μ g/mL (Fig. 2c), in line with the results of previous
159 screening. Affinity of monovalent 2G1 (Fab) to RBD was measured by surface plasmon
160 resonance (SPR). Relatively moderate dissociation constant (K_d) of 2G1 to WA1/2020 RBD
161 was determined as $1.05 \times 10^{-3} \text{ s}^{-1}$. The rapid binding of 2G1 with association constant K_a
162 = $2.55 \times 10^6 \text{ M}^{-1} \text{ s}^{-1}$ offered a sub-nanomolar equilibrium dissociation constant (K_D) value of
163 0.41 nM (Fig. 2d). Next, the antibody 2G1 was moved to further characterization including
164 *in vitro* and *in vivo* biological activities as well as structural and mechanism investigation.

165

166 2G1 neutralizing SARS-CoV-2 variants

167 With the continuing spread of mutations, combating SARS-CoV-2 variants has become a
168 crucial task. We explored the effects of 2G1 on the mutations at several important sites
169 such as N439K, Y453F, E484K and N501Y in terms of blocking the ACE2-RBD interaction.
170 The IC_{50} of 2G1 blocking WA1/2020 RBD, N439K, Y453F, E484K and N501Y interacting
171 with ACE2 were 0.1504, 0.1050, 0.2225, 0.1951 and 0.1672 μ g/mL, respectively (Fig. 3a).
172 To further study the S mutants of VOCs influence on blocking ability of 2G1, mutant trimeric
173 S proteins of VOCs were used in ACE2 blocking experiment. The IC_{50} of 2G1 were 0.0821,
174 0.1066, 0.1074, 0.1047, and 0.7973 μ g/mL, corresponding to WA1/2020, Alpha, Beta,
175 Gamma, and Delta (Fig. 3b). We determined the affinities of 2G1 with various S trimers
176 using SPR. 2G1 Fab bound to S trimers with nanomolar affinities. K_D of its binding to

177 WA1/2020, Alpha, Beta, Gamma, Kappa, and Delta were 1.02, 0.86, 2.77, 2.30, 1.04, and
178 15.30 nM, respectively (Fig. 3c). The dissociation rate of 2G1/Delta ($K_d = 4.27 \times 10^{-2} \text{ s}^{-1}$)
179 was increased as compared with WA1/2020 ($K_d = 1.05 \times 10^{-3} \text{ s}^{-1}$), which leads to the
180 decrease in affinity.

181 In pseudovirus neutralization assays, we found that antibody 2G1 robustly neutralized all
182 pseudoviruses, including D614G, Alpha, Beta, Gamma, Delta, and Cluster 5 variants (Fig.
183 4a-g, Supplementary information, Fig. S3) with low IC_{50} , especially 0.0005 $\mu\text{g/mL}$ against
184 Gamma and 0.0002 $\mu\text{g/mL}$ against Cluster 5. Live SARS-CoV-2 neutralization assay
185 results were consistent with those from experiments using pseudoviruses. Antibody 2G1
186 neutralized WA1/2020 live virus with IC_{50} of 0.0240 $\mu\text{g/mL}$ (Fig. 4h) while it was more
187 inclined to neutralize Alpha, Beta, and Gamma live virus, with IC_{50} decrease about 1.7-fold
188 (0.0138 $\mu\text{g/mL}$), 5.2-fold (0.0046 $\mu\text{g/mL}$), and 3.0-fold (0.0079 $\mu\text{g/mL}$). In this assay, 2G1
189 had the same neutralizing activity ($IC_{50} = 0.0240 \mu\text{g/mL}$) against Delta and WA1/2020.
190

191 *In vivo* protection in animal models

192 To evaluate *in vivo* antiviral efficacy of 2G1 against SARS-CoV-2 challenge, we performed
193 viral clearance assay employing both ACE2 transgenic mouse and rhesus macaque
194 models. In the transgenic mouse study, animals were challenged with high copies of 100
195 times of half lethal dose (LD_{50}) of SARS-CoV-2 WA1/2020, Beta, or Delta at day 0, followed
196 by three different 2G1 dose treatments (20, 6.7 or 2.2 mg/kg) or vehicle injection (PBS).
197 Four days post infection (dpi), four mice in each group including vehicle and differentially
198 treated groups were euthanized, and lungs and brains were collected for the titration of
199 viral load (Fig. 5a). Mice treated with vehicle developed an acute wasting syndrome and
200 quickly met the designed endpoint at 5 dpi. In contrast, WA1/2020 and Beta virus-infected
201 mice that received 20, 6.7 or 2.2 mg/kg treatments survived without losing any weight or
202 revealing any obvious signs of illness throughout the study (Fig. 5b-d). Delta virus-infected
203 mice in the 20 mg/kg group all survived throughout the trial period and had a good clinical
204 wellbeing score. In the same study, 55.6% mice in the 6.7 mg/kg group and 10% mice in
205 the 2.2 mg/kg group recovered back to healthy physiological condition (Fig. 5b-d) from the
206 virus challenge. The results indicated that at the range of 6.7 - 20 mg/kg 2G1 antibody
207 treatment was effective for animals to recover from the viral infection.

208 In the study of rhesus macaque animal model (Fig. 6a), the animals were infected with 10^5
209 $TCID_{50}$ of SARS-CoV-2 (2019-nCoV-WIV04) per animal and randomly divided into control
210 (vehicle injection), low-dose (10 mg/kg of 2G1), and high-dose (50 mg/kg of 2G1) groups,
211 with one male and one female in each group. Drugs were intravenously given 24 h post
212 infection. All animals in the two therapy groups had a high viral load of 10^6 copies/mL in
213 the throat swab at 1 dpi. After the drug injection, the viral titer was gradually decreased.
214 The throat virus was cleared at 3 dpi in one of the high-dose animals and at 4 dpi in the
215 remaining treated animals (Fig. 6b). One animal in the control group had an elevated viral
216 titer in the anal swab at 5 dpi, but no animals in the antibody treated groups showed this
217 trend until 7 dpi (Fig. 6c). In addition, we checked the viral distribution in lung, trachea, and
218 bronchus tissues. The virus was detectable in most areas of the lungs, in the tracheas, and
219 bronchi of the control animals. In the group treated with high-dose of the antibody, the virus
220 was present in right-middle, left-middle, and left-lower of the lungs, as well as left-bronchi.

221 In the low-dose group, the virus was only found in tracheas (Fig. 6d). Results from both
222 transgenic mouse and rhesus macaque studies showed a promising protective efficacy of
223 2G1, in consistent with the *in vitro* neutralization results.

224 We further investigated the Fc effector function of 2G1. Results showed that 2G1 had no
225 obvious antibody-dependent cellular cytotoxicity (ADCC) effect (not shown) but moderate
226 antibody-dependent cellular phagocytosis (ADCP) up to 35% (Supplementary information,
227 Fig. S4a). We hypothesize that the moderate ADCP may help the antigen presentation of
228 SARS-CoV-2. Pharmacokinetics (PK) study revealed the half-life of 2G1 in mice was 11.1
229 days (Supplementary information, Fig. S4b), similar to many therapeutic antibodies. Mice
230 treated with 15 mg/kg, 30 mg/kg, or 60 mg/kg showed no statistical changes in body weight,
231 white blood cell count, red blood cell count, hemoglobin, and platelets (Supplementary
232 information, Fig. S4c-g). Mice received 2G1 treatment had no evident pathological changes
233 in hearts, livers, spleens, lungs and kidneys (Supplementary information, Fig. S5).
234 Currently, Investigational New Drug-directed systematic safety assessment is ongoing to
235 support the pre-clinical safety of using 2G1 in human clinical trials. Toxicology study in non-
236 human primate showed that 2G1 was well tolerated at the maximum experimented dosage
237 of 200 mg/kg.

238

239 Cryo-EM structure of the complex between 2G1 and SARS-CoV-2 S protein
240 To investigate the binding mode of antibody 2G1 on S trimer, we solved the cryo-electron
241 microscopy (cryo-EM) structure of 2G1 in complex with S trimer at 2.7 Å resolution (Fig.
242 7a, Supplementary information, Fig. S6-7). Yet, the cryo-EM map density on the interface
243 between RBD and 2G1 were smeared. So, we performed local refinement
244 and improved the antibody-antigen interface resolution to 3.2 Å, enabling reliable analysis
245 of the interactions between the RBD and 2G1 (Fig. 7b). In the S/2G1 complex, three solved
246 Fabs bound to trimeric S with all RBDs in the “down” position and the S protein in a locked
247 conformation^{33,34} (Fig. 7a). There is an additional density in RBD domain of the structure,
248 which was reported as free fatty acid linoleic acid (LA) in a locked conformation³³.
249 For detailed analysis of the interface, antibody 2G1 binds to tip area of RBD of S trimer,
250 overlapping with the ACE2 binding site on RBD and offset from the major mutational
251 hotspots in VOCs. The heavy chain of 2G1 interacts with RBD mainly through three
252 complementarity-determining regions, named CDRH1 (residues 30 to 35), CDRH2
253 (residues 50 to 65), and CDRH3 (residues 98 to 111). The light chain of 2G1 participates
254 interaction mainly through two CDRs, CDRL1 (residues 23 to 36) and CDRL3 (residues 91
255 to 100) (Fig. 7b-e). The interface between RBD and 2G1 is stabilized by an extensive
256 hydrophobic interaction network. Phe486 on the RBD top loop interacts with Tyr33, Tyr52
257 on heavy chain and Tyr34, Tyr93, Trp99 on light chain through hydrophobic and/or π-π
258 interactions simultaneously (Fig. 7c). CDRH1 and CDRH3 of the 2G1 heavy chain were
259 positioned above the LA binding pocket in the adjacent RBD' (Fig. 7b and 7e). We further
260 compared 2G1 with three antibodies (S2E12, B1-182.1 and REGN10933), which have
261 similar patterns of epitope (Fig. 8a-c). Structural comparison reveals that the epitope for
262 2G1 partially overlaps with these three antibodies (S2E12, B1-182.1 and REGN10933),
263 but they have different binding directions (Fig. 8b). Besides, 2G1 has a relative narrow
264 binding epitope which may result less probability of losing neutralizing activity due to viral

265 mutagenesis (Fig. 8c).

266

267 Potential escape risk evaluation

268 To address the potential virus escape issue, we collected the high-frequency mutation sites
269 near the 2G1 binding epitope from GISAID database as of August 2021 (Fig. 9a), and
270 constructed a series of S protein sequences containing these mutations. The change in
271 binding ability of 2G1 was reflected by the normalized mean fluorescent intensity (MFI)
272 relative to the wild-type S protein in flow cytometry. Mutants 484K, 477N/484Q/490S, and
273 477R/478K/484K distinctly reduced 2G1 binding (Fig. 9b). Mutants 477N/490S,
274 477R/490S, 478K/484Q, and 484K/490S remarkably enhanced 2G1 binding (Fig. 9b). The
275 484K substitution is featured in variants Beta and Gamma. Although 484K alone leads to
276 a decreased binding ability of 2G1, trimeric S harbor all mutation sites only slightly
277 influenced the affinity of 2G1 (Fig. 3c). The 484K substitution leads to the loss of salt bridge
278 between Glu484 and ACE2 Lys31, resulting in the reduced affinity of ACE2³⁵. It may be
279 one of the reasons why the activity of 2G1 even slightly improved in neutralizing Beta and
280 Gamma mutants. Another substitution in residue 484 with Gln (484Q) only slightly
281 weakened the binding of 2G1 (Fig. 9b). SARS-CoV-2 Delta variant possesses the T478K
282 substitution, which is a contact residue with 2G1. The single point mutation with T478K has
283 mildly decreased the 2G1 binding (Fig. 9b), which is consistent with the SPR data.
284 We also directly mutated the key interacting residues between RBD and 2G1 by alanine
285 substitution, though they are not high-frequency mutation sites. Only moderate decline in
286 2G1 interaction was found in several mutations, including 486A, 489A, 477A/487A, and
287 477A/489A (Fig. 9c). These results suggest that 2G1 could potentially be effective against
288 future SARS-CoV-2 variants.

289

290 Discussion

291 SARS-CoV-2 has no sign of stopping its transmission since the outbreak, and the
292 emergence of variants with increased transmissibility and capability of surveillance escape
293 has assisted its continued existence. Recently, the variant Delta has become an intensively
294 concerned strain due to its unparalleled transmissibility, which is embodied in the 1000
295 times higher viral load than the ancestral strain of SARS-CoV-2^{6,36}. The high-frequency
296 mutation nature of SARS-CoV-2 necessitates the development of therapies with
297 breadth^{37,38}. We screened antibodies with broad spectrum of neutralizing effects from
298 convalescent subjects. One of which, 2G1, showed excellent and extensive neutralization
299 to both ancestral SARS-CoV-2 WA1/2020 and VOCs at sub-nanomolar IC₅₀ level. In the *in*
300 *vivo* study, transgenic mice infected by the WA1/2020- and Beta- were cured by antibody
301 2G1 at a dose as low as 2.2 mg/kg, as well as fully protected from Delta infection in the
302 range from 6.7 to 20 mg/kg, even when animals were challenged with 100 times LD₅₀ of
303 viral load. These results indicate that 2G1 is a potent therapeutic antibody against the
304 broad spectrum of variants currently being concerned.

305 The cryo-EM structure of 2G1 in complex with the S protein revealed that 2G1 binds to the
306 tip of S trimer through small interface but strong hydrophobic effect. The strong
307 hydrophobic effect provides high affinity for 2G1, and the K_D of interaction with S trimers of
308 SARS-CoV-2 and VOCs ranges from 0.86 nM to 15.3 nM. SARS-CoV-2 variants Beta and

309 Gamma possess E484K and N501Y substitutions, which are adjacent to the epitope of
310 2G1. We correspondingly detected a slight decrease in the affinity of 2G1, from 1.02 nM
311 for WA1/2020 to 2.77 nM for Beta and 2.30 nM for Gamma. Surprisingly, 2G1 showed no
312 compromise in activity against Beta and Gamma in both pseudo- and live- viruses, and
313 both *in vitro* and *in vivo*. The dose of 2.2 mg/kg of 2G1 completely cleared the viral load in
314 Beta virus challenged transgenic mice, and the efficacy of which was as good as for
315 WA1/2020 virus challenged mice. The IC₅₀ even improved in the *in vitro* live virus test,
316 decreased from 0.0240 µg/mL against WA1/2020 to 0.0046 µg/mL against Beta and 0.0079
317 µg/mL against Gamma. These results suggest that changes in affinity may not ultimately
318 determine the therapeutic effect of neutralizing antibodies, and various other factors could
319 be involved^{35,39}. In addition, the small binding epitope reduces the probability of
320 interference between 2G1 and other RBD antibodies so that 2G1 can cooperatively work
321 with those antibodies to achieve a synergistic effect, for better responding to immunologic
322 evasion of SARS-CoV-2 variants.

323 Furthermore, the specific 2G1 antibody epitope of RBD tip is offset from mutational hot
324 spots and increases neutralization breadth covering new-onset VOCs. Variants Lambda
325 comprising L452Q/F490S and Mu comprising E484K/N501Y in RBD have recently raised
326 concerns^{28,29}. Although residue 490 is nearing 2G1 epitope, our results suggested that
327 F490S did not cause significant affinity alteration. The E484K/N501Y substitution in variant
328 Mu is also seen in Beta and Gamma. In view of the good binding and neutralization of 2G1
329 against Beta and Gamma, we believe that 2G1 will likely be comparatively effective against
330 Mu. In addition, we directly mutated the amino acid residues adjacent to the epitope on
331 RBD by 2G1, as well as several residues that directly interact with 2G1, and found that
332 only few mutation groups may cause a significant weakening of the 2G1 binding ability.
333 Collectively, the model of 2G1 binding to the tip of S trimer provides a good reference for
334 developing vaccines and optimizing a better combination therapy.

335 The neutralizing antibody 2G1 has been manufactured under cGMP to support the
336 Investigational New Drug application. We would believe that antibody treatment with 2G1
337 will bring clinical benefit to COVID-19 patients.

338

339 **Materials and Methods**

340 B cells

341 Blood samples were obtained from patients who were recovered from COVID-19 for 10
342 weeks and had a negative nucleic acid test. Samples with serum antibody titer over 1 ×
343 10⁶ were chosen for the peripheral blood mononuclear cells (PBMCs) separation using
344 Ficoll density gradient centrifugation method. B cells were enriched applying a human B
345 Cell Isolation Kit (Stemcell). Afterwards, B cells were then stained with APC-Alex700
346 labeled anti-CD19 (BD), BV421 labeled anti-CD27 (BD), BV510 labeled anti-IgG (BD),
347 Biotin labeled RBD (Sino Biological), PE labeled streptavidin (ThermoFisher) and 7AAD
348 (BD) Single memory B cells with potential SARS-CoV-2 antibody secretion were sorted out
349 by gating 7AAD⁻, CD19⁺, CD27⁺, IgG⁺, and RBD⁺ using a BD Aria III cell sorter with
350 fluorescence-activated cell sorting modules. B cells were suspended into lysis buffer and
351 quickly frozen. B cell mRNA was subsequently converted to cDNA by SuperScript III
352 Reverse Transcriptase (Invitrogen) and V gene were rescued by PCR. Linear Cassettes

353 were composed of CMV promoter V_H or V_L and polyA tail, and were used for expressing a
354 small amount of antibody for preliminary screening.

355

356 mAb preparation

357 Heavy chains and light chain genes were inserted separately into pcDNA3.4 and amplified
358 in *E. coli* DH5α. PureLink™ HiPure Plasmid Miniprep Kit (Invitrogen) was used for low
359 endotoxin plasmid preparation. Monoclonal antibodies were transiently expressed by co-
360 transfecting ExpiCHO-S cells (ThermoFisher) with heavy chain and light chain plasmids
361 using an ExpiCHO™ Expression System (Gibco). Cell culture was harvested after an 8- to
362 14- day incubation at 37°C with humidified atmosphere of 8% CO₂ with shaking. Full-length
363 IgG was obtained by affinity purification utilizing a Protein A chromatography column (GE
364 Healthcare) in AKTA avant (Cytiva). For long-term storage, antibodies were kept in a
365 solution containing 10 mM Histidine-HCl, 9% trehalose, and 0.01% polysorbate 80.

366

367 293T-ACE2 cells

368 To obtain HEK-293T cells with stable expression of ACE2 protein, a lentiviral system
369 bearing ACE2 (Genbank ID: BAJ21180.1) gene was constructed. In brief, HEK-293T cells
370 (ATCC) with 70% - 80% confluence in a 10 cm dish were co-transfected with 12 µg of
371 plasmid pHIV-puro encoding RRE and ACE2 genes, 8 µg of plasmid psPAX2 encoding gag
372 and pol, and 4 µg of plasmid VSV-G encoding G glycoprotein of vesicular stomatitis
373 virus(VSVG) using Lipofectamine 3000 Reagent (Invitrogen). 12 h later, the medium was
374 changed to fresh DMEM (Gibco) supplemented with 10% FBS (Gibco) for another 48 h
375 culturing. Medium containing virus particles was harvested and concentrated using a
376 Lentivirus Concentration Kit (Genomeditech). The concentrated virus particles were used
377 to infect HEK-293T cells under selection pressure of 10 µg/mL puromycin (Beyotime
378 Biotechnology). The transfection efficiency was examined by flow cytometry using S1-mFc
379 recombinant protein (Sino Biological) as primary antibody and FITC-AffiniPure Goat Anti-
380 Mouse IgG (Jackson) as secondary antibody. The resulting bulk transfected population
381 was sorted on a BD FACSJazz Cell Sorter (BD) with the BD FACS™ Software. Cells with
382 top 1% fluorescence intensity were retained and expanded for subsequent use.

383

384 S protein over-expression cells

385 The coding sequence for full-length wild-type S protein (GenBank: QHD43416.1) from
386 Met1 to Thr1273 was inserted into plasmid pHIV-puro1.0, followed by an internal ribosome
387 entry site (IRES) and puromycin resistance gene. The lentiviruses were generated using
388 the HEK-293T packaging system as mentioned above. 500 µL of filtered lentivirus
389 supernatant was added in a 24-well plate with Jurkat cells (ATCC). After cell expansion
390 and selection with 10 µg/mL puromycin for one week, the positive S expression was
391 confirmed by flow cytometry.

392

393 Antigen-binding ELISA

394 Enzyme-linked immunosorbent assays (ELISA) were applied to study the binding ability of
395 antibodies with SARS-CoV-2 RBDs (Sino Biological) and S trimers (AcroBiosystems).
396 Antigens were diluted with ELISA Coating Buffer (Solarbio) to 1.0 µg/mL and immobilized

397 onto High Binding ELISA 96-Well Plate (BEAVER) with 100 μ L per well overnight at 4°C.
398 Plates were washed 4 times with PBST (Solarbio) and blocked with 3% skim milk for 1 h
399 at 37°C. Then, serially diluted antibodies were added 100 μ L per well and incubated at 37°C
400 for 1h. After pipetting off the unbound antibodies, plates were washed 4 times with PBST
401 and further incubated with 100 μ L per well of goat anti-human IgG (Fc specific)-Peroxidase
402 antibody (1 : 5000 dilution, Sigma) for 1 h at 37°C. After a final 4 times washing with PBST,
403 the binding of antibodies with SARS-CoV-2 antigens were visualized by adding 100 μ L
404 peroxidase substrate TMB Single-Component Substrate solution (Solarbio) and incubating
405 for 15 min in dark. The reaction was terminated by adding 50 μ L stop buffer (Solarbio) and
406 the plates were immediately submitted to an ELISA microplate reader (TECAN Infinite
407 M200 Pro) to measure the optical density (OD) at 450 nm. Data were analyzed with
408 GraphPad Prism Version 9.0.0 and EC₅₀ values were determined using a four-parameter
409 nonlinear regression.

410

411 ACE2 competition ELISA

412 For experiments involving the competitive binding of antibodies to SARS-CoV-2 RBD or S
413 trimer, recombinant hACE2-Fc protein was first biotinylated using EZ-Link Sulfo-NHS-
414 Biotin (ThermoFisher) as the instruction described. SARS-CoV-2 RBD (Sino Biological), S
415 trimer (AcroBiosystems), mutated RBDs (Sino Biological), and mutated S trimers
416 (AcroBiosystems) were coated onto High Binding ELISA 96-Well Plate (BEAVER). In order
417 to obtain an optimized hACE2-Fc concentration for this experiment, the concentration-
418 dependent binding of biotinylated hACE2-Fc to coated SARS-CoV-2 antigens was
419 measured by performing a conventional receptor-binding ELISA. The EC₈₀ of biotinylated
420 hACE2-Fc was calculated by the four-parameter nonlinear fitting. Antibodies were serially
421 diluted in 1% BSA (Sigma) and added 50 μ L into the antigen coated plates. Biotinylated
422 hACE2-Fc at EC₈₀ concentration was subsequently pipetted into. After incubation at 37°C
423 for 1 h, plates were 4 times washed with PBST and incubated with 100 μ L of 1 : 2000
424 diluted Ultrasensitive Streptavidin–Peroxidase Polymer (Sigma). After further washing, 100
425 μ L TMB was added, and followed by detection of the bound hACE2 in the microplate reader.
426 Four-parameter nonlinear regression fitting in GraphPad Prism Version 9.0.0 was applied
427 for result analysis.

428

429 Surface Plasmon Resonance (SPR)

430 The binding affinities of antibodies to SARS-CoV-2 RBD and S trimers (wild-
431 type/B.1.1.7/B.1.351/P.1/B.1.617.1/B.1.617.2) were tested using a BIACore 8K system
432 (Cytiva) together with CM5 biosensor chips (Cytiva). Antigens were diluted in pH 5.0
433 Acetate (Cytiva) and covalently coupled on chips using an Amine Coupling Kit (Cytiva).
434 After reaching a 70 RU coupling level, the excess antigens were washed away and the
435 unbound sites were blocked with ethanolamine. Antibodies were 2-fold serially diluted from
436 1.250 μ g/mL to 0.039 μ g/mL in HBS-EP buffer (Cytiva) and then injected for 120 s at 30
437 μ L/min. After that, the binding was dissociated with HBS-EP buffer for 120 s, followed by
438 chip regeneration with pH 1.5 Glycine (Cytiva). Parameters including K_a, K_d and K_D values
439 were calculated employing a monovalent analyte model with BIAsimulation software.

440

441 Pseudovirus neutralization
442 ACE2-293T cells were seeded in a white 96-well plate (Corning) at a density of 1×10^4
443 cells per well one night prior to use. Serially diluted antibodies were incubated with wild-
444 type (Yeasen) or mutant pseudoviruses (GENEWIZ) for 0.5 h at 37°C. Human ACE2-Fc or
445 other SARS-CoV-2 RBD specific antibodies were used as a positive control to validate data
446 collection in different panels of screening. Medium containing equal amount of
447 pseudoviruses but no antibodies was used as blank control. The culture medium of ACE2-
448 293T cells was removed and then replaced by the antibody-pseudovirus mixture. All
449 operations were conducted in the BSL-2 lab in Shanghai Jiao Tong University. After an
450 additional 48 h incubation, the luminescence of each well was measured using a ONE-
451 Glo™ Luciferase Assay System (Promega) in the Infinite M200 Pro NanoQuant (TECAN).
452 The acquired luminescence units were normalized to those of blank control wells. Dose-
453 dependent neutralization curves were fitted using a four-parameter nonlinear regression in
454 GraphPad Prism Version 9.0.0.

455

456 Plaque reduction neutralization
457 Plaque reduction neutralization test was performed using SARS-CoV-2 WA1/2020
458 (US_WA-1/2020 isolate), Alpha- (B.1.1.7/UK, Strain: SARS-CoV-
459 2/human/USA/CA_CDC_5574/2020), Beta-(B.1.351/SA, Strain: hCoV-19/USA/MD-
460 HP01542/2021), Gamma- (P.1/Brazil, Strain: SARS-CoV-2/human/USA/MD-MDH-
461 0841/2021), and Delta-variants (B.1.617.2/Indian, Strain: GNL-751, a recently isolated
462 strain from Galveston County, Texas) at Galveston National Laboratory at University of
463 Texas Medical Branch at Galveston, Texas. Briefly, antibodies were 3-fold serially diluted
464 in MEM medium (Gibco) from 20 μ g/mL for preparing the working solution. The dilutions
465 were mixed with equal volume of 100 TCID₅₀ virus in two replicates and incubated at room
466 temperature for 1 h. The mixture was then added into a 96-well plate covered with Vero
467 cells. Blank controls and virus infection controls were set up simultaneously. After
468 incubation at 37°C, 5% CO₂ for 3 days, cytopathic effect (CPE) was observed under
469 microscope and plaques were counted for efficacy evaluation. Wells with CPE changes
470 are recorded as "+", otherwise recorded as "-". IC₅₀ values were calculated according to
471 the following equation: $IC_{50} = \text{Antilog} (D - C \times (50 - B) / (A - B))$. Where A indicates the
472 percentage of inhibition higher than 50%, B indicates the percentage of inhibition less than
473 50%, C is \log_{10} (dilution factor), D is \log_{10} (Sample concentration which the inhibition is less
474 than 50%).

475

476 ACE2 transgenic mouse protection
477 AC70 human ACE2 transgenic mice (Taconic Biosciences) were divided into control (100
478 μ L PBS) and treatment (20, 6.7, or 2.2 mg/kg of 2G1, 100 μ L) groups, with 14 in each
479 group. Animal studies were carried out at Galveston National Laboratory at University of
480 Texas Medical Branch at Galveston, Texas, an AAALAC accredited (November 24, 2020)
481 and PHS OLAW approved (February 26, 2021) high-containment National Laboratory,
482 based on a protocol approved by the Institutional Animal Care and Use Committee at
483 UTMB at Galveston. Mice were challenged with 100 LD₅₀ of SARS-CoV-2 (US_WA-1/2020
484 isolate), Beta-(B.1.351/SA, Strain: hCoV-19/USA/MD-HP01542/2021), or Delta-variants

485 (B.1.617.2/Indian, Strain: GNL-751, a recently isolated strain from Galveston County,
486 Texas), provided through World Reference Center for Emerging Viruses and Arboviruses
487 (WRCEVA) were used in the study. The first dose of antibody 2G1 and PBS were given 4
488 h post infection; and the second and third were given 2 days and 4 days post infection.
489 Mice were clinically observed at least once daily and scored based on a 1 to 4 grading
490 system that describes the clinical wellbeing. In the standardized 1 to 4 grading system,
491 score 1 is healthy; Score 2 is with ruffled fur and lethargic; Score 3 is with additional clinical
492 sign such as hunched posture, orbital tightening, increased respiratory rate, and/or > 15%
493 weight loss; Score 4 is showing dyspnea and/or cyanosis, reluctance to move when
494 stimulated, or ≥ 20% weight loss that need immediate euthanasia. Four mice in each group
495 were euthanized at 4 days post infection for assessing viral loads and histopathology of
496 lung and brain. The remaining 10 mice were continue monitored for morbidity and mortality
497 for up to 12 days post infection.

498

499 Rhesus macaque protection

500 Rhesus macaques at six to seven years old were purchased from Hubei Tianqin
501 Biotechnology Co., Ltd. All animal procedures and operations were approved by the ethical
502 committee of Wuhan Institute of Virology, Chinese Academy of Sciences. SARS-CoV-2
503 strain 2019-nCoV-WIV04 (GISAID number: EPI_ISI_402124) was isolated from the
504 bronchoalveolar lavage fluid of a patient who was infected COVID-19 in Wuhan in
505 December 2019. Rhesus macaques were randomly divided into control group, low-dose
506 (10 mg/kg of 2G1) and high-dose (50 mg/kg of 2G1) groups with one male and one female
507 in each. Animals were endotracheally infected with 4 mL of 1×10^5 TCID50 virus. Antibody
508 2G1 and PBS were intravenously given 24 h after infection. Rhesus macaques were
509 monitored for disease-related changes during the period. Body weight and temperature
510 were measured every day, and throat swab and anal swab samples were collected for virus
511 titrating. Animals were euthanized at 7 dpi and tissue samples were collected for virus
512 examining. Viral RNA was extracted using the QIAamp Viral RNA Mini Kit (Qiagen). A one-
513 step real-time quantitative PCR was used to quantify the viral RNA according to the
514 supplier's instructions (HiScript® II One Step qRT-PCR SYBR® Green Kit, Vazyme Biotech
515 Co., Ltd) together with primers for the RBD gene (RBD-qF1: 5'-CAATGGTTAAGGCAGG-
516 3'; RBD-qR1: 5'-CTCAAGGTCTGGATCACG-3').

517

518 Antibody-Dependent Cellular Phagocytosis (ADCP)

519 In ADCP experiment, CD14⁺ monocytes (Allcells) were cultured and differentiated for 7
520 days to obtain macrophage cells. Macrophages were labeled with violet dye
521 (ThermoFisher), and Jurkat cells with stable SARS-CoV-2 S expression were labeled with
522 CFSE dye (ThermoFisher). 75,000 Jurkat cells were added to macrophage cells in a 96-
523 well plate in the presence of 2G1 or the isotype control antibody. After incubating at 37°C
524 for 30 mins, the macrophages were digested and fixed with 4% paraformaldehyde, and the
525 proportion of double-positive cell populations was analyzed by flow cytometry.

526

527 Pharmacokinetic study and toxicity test

528 For the pharmacokinetic study, BALB/c mice were tail intravenously injected with 2G1 (15,

529 30, or 60 mg/kg), or equivalent volume of PBS. Three males and three females were in
530 each subset. Blood samples were collected 0.5 h, 6 h, 1 d, 2 d, 4 d, 7 d, 10 d, 15 d, 21 d,
531 and 28 d after injection. Serum 2G1 concentration was quantified using ELISA. Briefly,
532 Mouse Anti-human IgG Lambda (SouthBiotech) at 2 µg/mL was coated in ELISA plates.
533 Serum samples and antibody 2G1 control were added into the plates and incubated for 1
534 h. After washing, a Goat Anti-human Fc HRP (Sigma) was used as secondary antibody
535 with 1:6000 dilutions. After the chromogenic reaction by the HRP substrate (Solarbio), the
536 plates were read at 450 nm.

537 Crlj:CD1(ICR) mice were randomly divided into control (PBS), 15 mg/kg, 30 mg/kg, and 60
538 mg/kg groups for testing the *in vivo* toxicity of 2G1, with three males and three females
539 each group. Body weight was tracked every two days. Blood samples were collected 14
540 days after administration and mice were subsequently euthanized for tissue damage
541 detection. Blood indicators including white blood cell count, red blood cell count,
542 hemoglobin, and platelets were measured in multiple automated hematology analyzer
543 (Sysmex XT-2000iV). Pathological changes of hearts, livers, spleens, lungs and kidneys
544 were examined by hematoxylin-eosin (HE) staining.

545

546 Expression and purification of S protein

547 The prefusion S extracellular domain (1-1208 a.a) (Genbank ID: QHD43416.1) was cloned
548 into the pCAG vector (Invitrogen) with six proline substitutions at residues 817, 892, 899,
549 942, 986 and 987³⁹, a “GSAS” substitution (instead of “RRAR”) at residues 682 to 685 and
550 a C-terminal T4 fibrin trimerization motif followed by one Flag tag.

551 This recombinant S protein was overexpressed using the HEK 293F mammalian cells
552 (Invitrogen) at 37°C under 5% CO₂ in a Multitron-Pro shaker (Infors, 130 rpm). For secreted
553 S protein production, about 1.5 mg of the plasmid was premixed with 3 mg of
554 polyethylenimines (PEIs) (Polysciences) in 50 mL of fresh medium for 15 mins before
555 adding to cell culture, and transiently transfected into the cells, when the cell density
556 reached 2.0 ×10⁶ cells/mL. Cells were removed by centrifugation at 4000×g for 15 mins
557 and cell culture supernatant was collected sixty hours after transfection. The secreted S
558 proteins were purified by anti-FLAG M2 affinity resin (Sigma Aldrich). After loading two
559 times, the anti-FLAG M2 resin was washed with the wash buffer containing 25 mM Tris (pH
560 8.0), 150 mM NaCl. The protein was eluted with the wash buffer plus 0.2 mg/mL flag
561 peptide. The eluent was then concentrated and subjected to gel filtration chromatography
562 (Superose 6 Increase 10/300 GL, GE Healthcare) in buffer containing 25 mM Tris (pH 8.0),
563 150 mM NaCl. The peak fractions were collected and concentrated to incubate with mAb.
564 The purified S protein was mixed with the 2G1 at a molar ratio of about 1:5 for one hour,
565 respectively. Then the mixture was subjected to gel filtration chromatography (Superose 6
566 Increase 10/300 GL, GE Healthcare) in buffer containing 25 mM Tris (pH 8.0), 150 mM
567 NaCl. The peak fractions were collected for EM analysis.

568

569 Cryo-EM sample preparation, data collection and data processing

570 The peak fractions of complex were concentrated to about 2.5 mg/mL and applied to the
571 grids. Aliquots (3.3 µL) of the S/2G1 complex were placed on glow-discharged holey
572 carbon grids (Quantifoil Au R1.2/1.3). The grids were blotted for 2.5 s or 3.0 s and flash-

573 frozen in liquid ethane cooled by liquid nitrogen with Vitrobot (Mark IV, ThermoFisher). The
574 prepared grids were transferred to a Titan Krios operating at 300 kV equipped with Gatan
575 K3 detector and GIF Quantum energy filter. Movie stacks were automatically collected
576 using AutoEMation⁴⁰, with a slit width of 20 eV on the energy filter and a defocus range
577 from -1.2 μ m to -2.2 μ m in super-resolution mode at a nominal magnification of 81,000 \times .
578 Each stack was exposed for 2.56 s with an exposure time of 0.08 s per frame, resulting in
579 a total of 32 frames per stack. The total dose rate was approximately 50 e \cdot \AA^2 for each
580 stack. The stacks were motion corrected with MotionCor2⁴¹ and binned 2-fold, resulting in
581 a pixel size of 1.087 \AA /pixel. Meanwhile, dose weighting was performed⁴². The defocus
582 values were estimated with Gctf⁴³.

583 Particles for S in complex with 2G1 were automatically picked using Relion 3.0.6⁴⁴⁻⁴⁷ from
584 manually selected micrographs. After 2D classification with Relion, good particles were
585 selected and subject to two cycle of heterogeneous refinement without symmetry using
586 cryoSPARC⁴⁸. The good particles were selected and subjected to Non-uniform Refinement
587 (beta) with C1 symmetry, resulting in the 3D reconstruction for the whole structures, which
588 was further subject to 3D auto-refinement and post-processing with Relion. For interface
589 between S protein of SARS-CoV-2 and 2G1, the dataset was subject to focused refinement
590 with adapted mask on each RBD-2G1 sub-complex to improve the map quality. The
591 dataset of similar RBD-2G1 sub-complexes were combined if possible and necessary. The
592 re-extracted dataset was 3D classified with Relion focused on RBD-2G1 sub-complex.
593 Then the good particles were selected and subject to focused refinement with Relion,
594 resulting in the 3D reconstruction of better quality on RBD-2G1 sub-complex. The
595 resolution was estimated with the gold-standard Fourier shell correlation 0.143 criterion⁴⁹
596 with high-resolution noise substitution⁵⁰. Refer to Supplementary information, Fig. S6-7
597 and Table S1 for details of data collection and processing.

598 For model building of the complex of S of SARS-CoV-2 with 2G1, the atomic model of the
599 S in complex 4A8 (PDB ID: 7C2L) were used as templates, which were molecular dynamics
600 flexible fitted⁵¹ into the whole cryo-EM map of the complex and the focused-refined cryo-
601 EM map of the RBD-2G1 sub-complex, respectively. A Chainsaw⁵² model of the 2G1 was
602 first obtained using the 4A8 as a template, which was further manually adjusted based on
603 the focused-refined cryo-EM map of the RBD-2G1 sub-complex with Coot⁵³. Each residue
604 was manually checked with the chemical properties taken into consideration during model
605 building. Several segments, whose corresponding densities were invisible, were not
606 modeled. Structural refinement was performed in Phenix⁵⁴ with secondary structure and
607 geometry restraints to prevent overfitting. To monitor the potential overfitting, the model
608 was refined against one of the two independent half maps from the gold-standard 3D
609 refinement approach. Then, the refined model was tested against the other map. Statistics
610 associated with data collection, 3D reconstruction and model building were summarized in
611 Supplemental information, Supplementary information, Table S1.

612

613 Binding to S mutants on cell surface

614 Plasmids encoding full length SARS-CoV-2 S (GenBank ID: QHD43416.1) with one or
615 more mutation sites were carried into HEK-293T cells using lipofectamine 3000
616 (ThermoFisher) according to the manufacturer's instruction. After 48 hours, cells were

617 disassociated from the plates using a Cell Dissociation Buffer (ThermoFisher) followed by
618 washing with PBS. Antibody 2G1 at 10 µg/ml was added into cells for a 30 min incubation.
619 Subsequently, cells were washed and incubated with Alexa Fluor 647 labeled Goat anti-
620 Human IgG (ThermoFisher) for 30 mins. After final washing, signals were acquired in flow
621 cytometer (BD) and the binding ability to S mutants were evaluated by mean fluorescent
622 intensity (MFI).

623

624 **Acknowledgments**

625 Authors would like to acknowledge following organizations and individuals for their
626 assistances in the preparation of the manuscript: Professors Chuan Qin and Jiangning Liu
627 from Institute of Laboratory Animal Sciences, CAMS & PUMC, China for their support in
628 initial cell based assay on neutralizing activity of the antibody generated in our lab; Dr.
629 Liang Zhang of Jecho Biopharmaceuticals Co., Ltd. for his input on potential clinical
630 applications of the antibodies; Professor Buyong Ma of SJTU for discussion and analysis
631 on the structural interaction between the virus and antibody; We thank the cryo EM facility
632 and the High-Performance Computing Center of Westlake University for providing supports.
633 This work was funded by the National Natural Science Foundation of China (81773621,
634 82073751 to J.Z. 32022037, 31971123, 31800139 to Q.Z.); the National Science and
635 Technology Major Project “Key New Drug Creation and Manufacturing Program” of China
636 (No.2019ZX09732001-019 to J.Z.); the Key R&D Supporting Program (Special support for
637 developing medicine for infectious diseases) from the Administration of Chinese and
638 Singapore Tianjin Eco-city to Jecho Biopharmaceuticals Ltd. Co.; Zhejiang University
639 special COVID-19 grant 2020XGXZ099 and Shanghai Jiao Tong University “Crossing
640 Medical and Engineering” grant 20X190020003 to JZ. This work was funded by the
641 Leading Innovative and Entrepreneur Team Introduction Program of Hangzhou, and
642 Special Research Program of Novel Coronavirus Pneumonia of Westlake University and
643 Tencent Foundation. We would like to express our sincere gratitude towards the generous
644 supports from Tencent Foundation and Westlake Education Foundation.

645

646 **Author Contributions**

647 LH, HM designed and conducted experiments on antibody binding activities, antibody
648 neutralizing experiments using pseudovirus system and drafted manuscript. LH, HT, HZ,
649 LW, YK, YY, HY, HuiC, JZhang, YL conducted experiments on molecular discovery from
650 blood sample to antibodies and characterization. MW, JL, YYue designed and executed
651 animal study on metabolic profile and toxicology. CKT, AD, KRK, BHP designed and
652 executed *in vitro* and *in vivo* study on virus neutralizing activity. XX provided technical
653 instructions on antibody screening from B cells. JG provided critical discussions and
654 manuscript editing. YX, HJ coordinated project on molecular discovery, characterization,
655 preparation, and provided critical discussions on *in vitro* and *in vivo* animal study on virus
656 neutralization. XZ, ZW, LY, YChen coordinated blood sample collection from convalescent
657 individuals and facilitated B-cell screening. ZW, YH, YChang, GL, GcL, JJS, LLM, ZX
658 conducted sample preparation, quality control, and product characterization. QZ conceived
659 the project on structure analysis. YG designed and did the cryo-EM experiments. YZ solved
660 the cryo-EM structures and YG and YZ analyzed the cryo-EM structures and made figures.

661 SW, HH, AW, KY, ZS, HuaC, LiZ conducted experiments on antibody expression, analytical
662 development, and characterization. WX, SZ, TJ, conducted *in vitro* virus neutralizing
663 assays. YB, BZ coordinate project activities and provided critical discussion. JZhu
664 designed the overall project, organized and coordinated activities from all participating
665 institutes, and revised manuscript.

666

667 **Conflict of Interest**

668 We declare that none of the authors have competing financial interests.

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

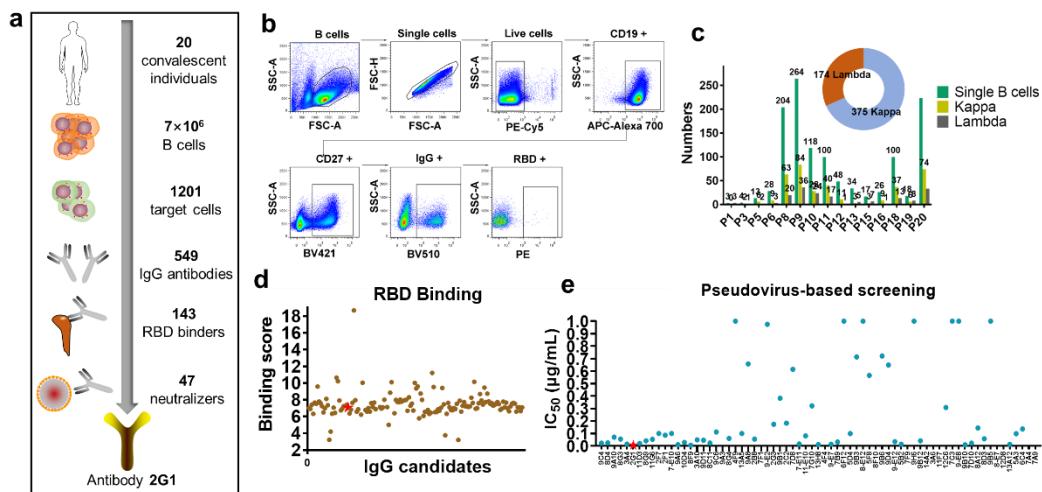
685

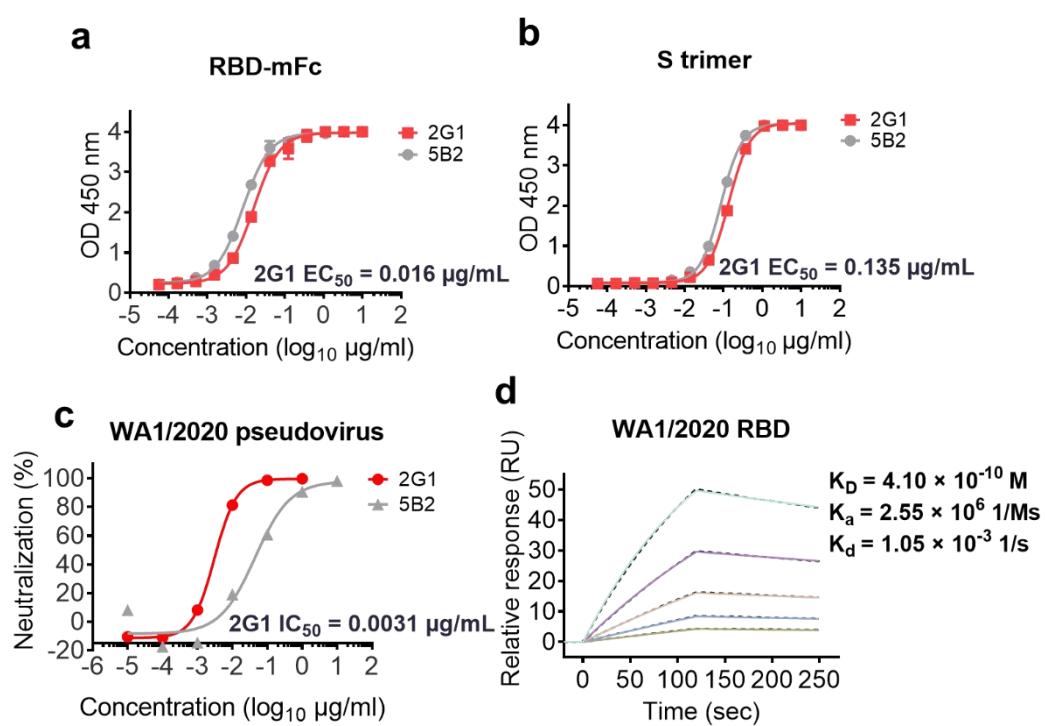
686

687

688

689

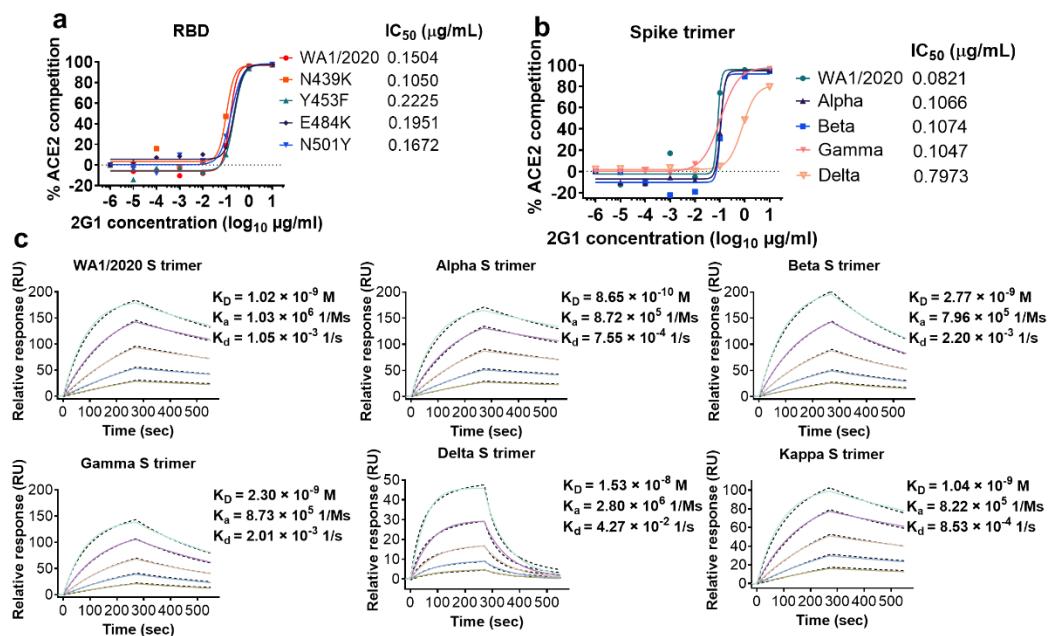

690


691

692

693

694



715

716 **Fig. 2 Characterization of 2G1 using WA1/2020 related S and RBD proteins and**
717 **pseudovirus. a-b**, 2G1 concentration-dependently binds to RBD-mFc (a) and S trimer (b)
718 of SARS-CoV-2 in ELISA test. A neutralizing antibody 5B2 targeting SARS-CoV-2 RBD
719 was used as control. Values from two replicates are shown as mean \pm S.D. **c**, Serial ten-
720 fold-diluted 2G1 was incubated with SARS-CoV-2 WA1/2020 pseudovirus and used to
721 infect 293T-ACE2 cells. After a 48 h incubation, the infection was quantified using a
722 fluorescence detection kit. **d**, Binding kinetics of 2G1 to SARS-CoV-2 RBD in SPR. Serial
723 dilutions of 2G1 Fab were flowed through a chip fixed with RBD recombinant protein. The
724 kinetics data were fitted with results from different concentrations.

725

726

727

728 **Fig. 3 Binding and blocking characteristics of 2G1 to SARS-CoV-2 variants. a-b**, 2G1
729 competitively blocked the ACE2 binding to single point mutant RBD proteins (a) and VOC
730 S trimers (b). c, Affinity analysis of 2G1 bound to S trimers of SARS-CoV-2 WA1/2020,
731 Alpha, Beta, Gamma, Kappa and Delta by SPR. Chips fixed with S trimers were loaded on
732 a BIACore 8K system. 2G1 Fab varied from 1.250 μg/mL to 0.039 μg/mL were injected over
733 the chips for measuring the real-time association and dissociation parameters.

734

735

736

737

738

739

740

741

742

743

744

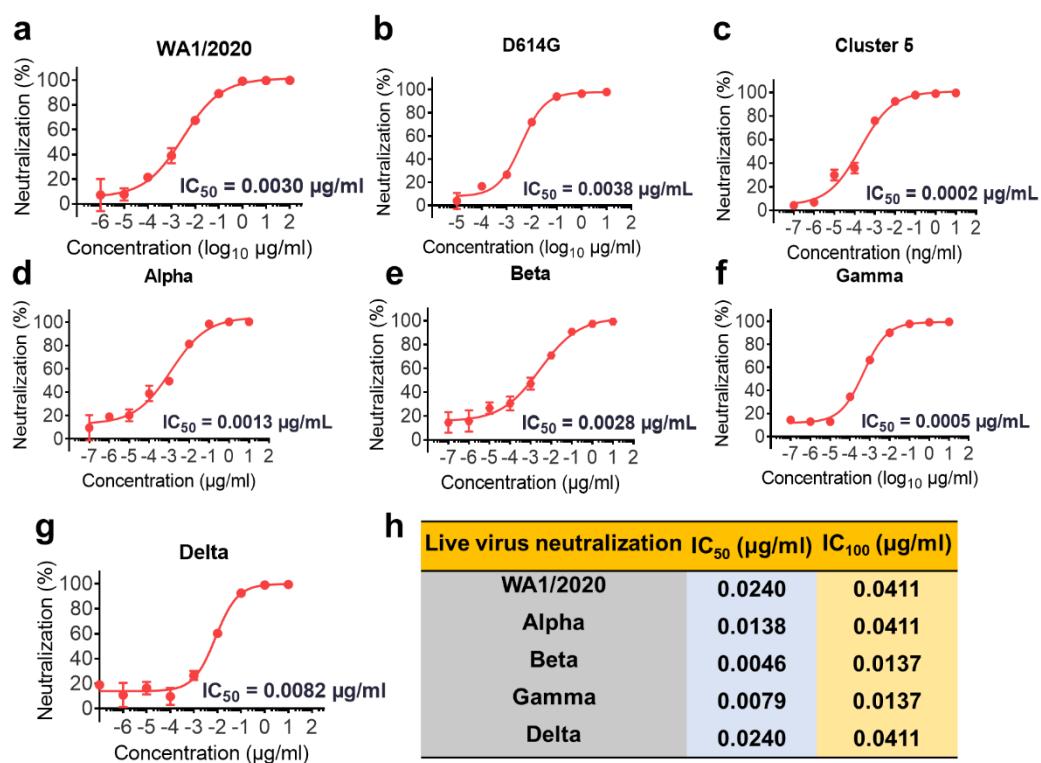
745

746

747

748

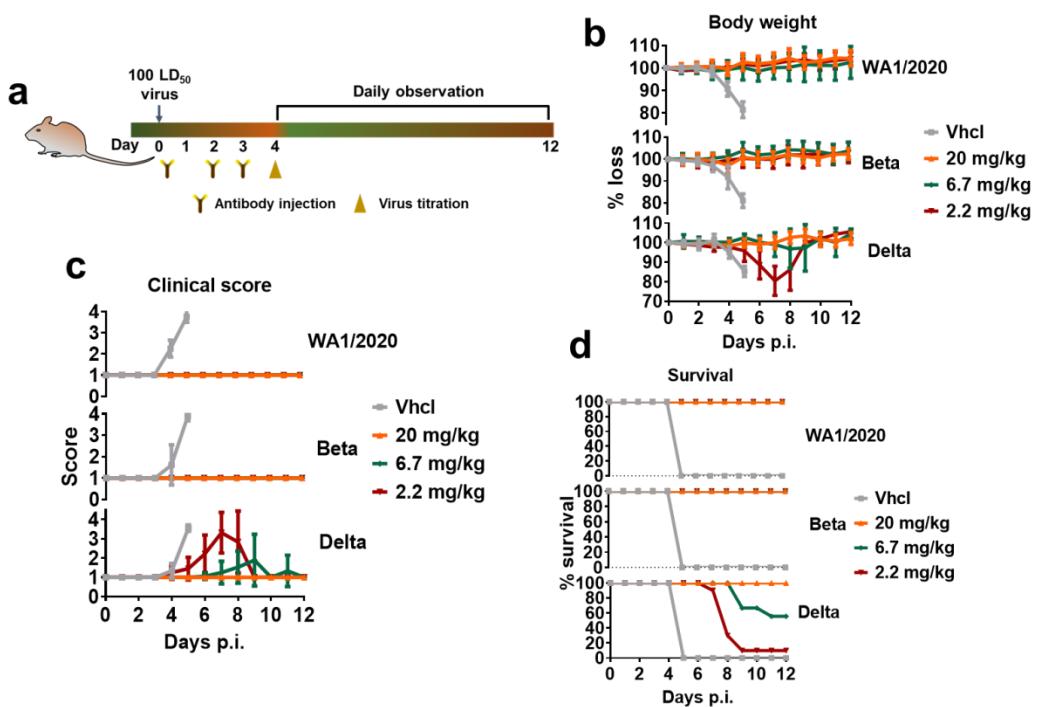
749


750

751

752

753


754

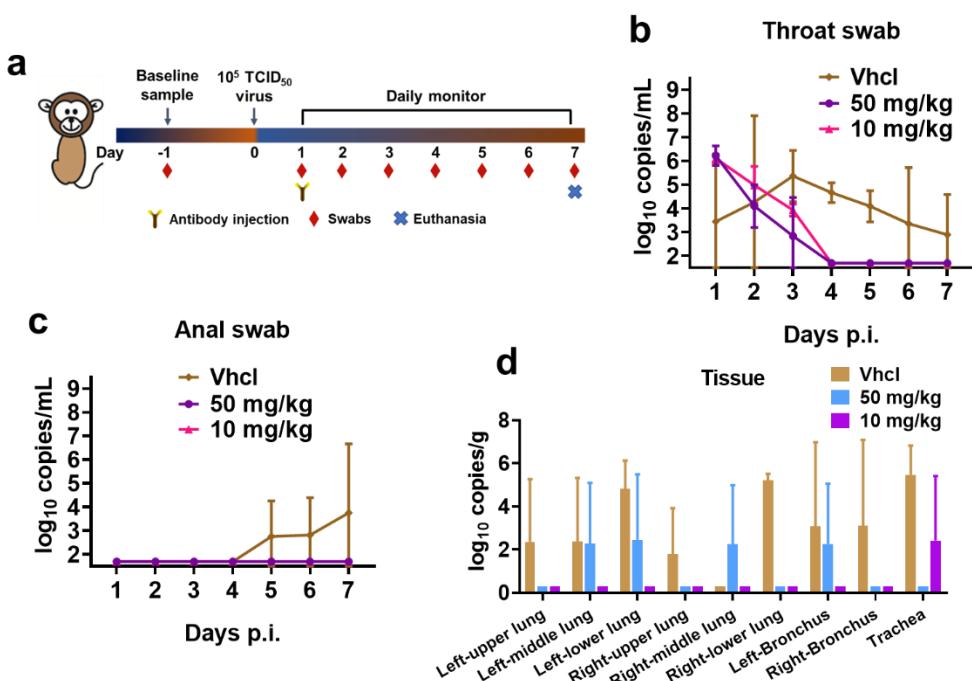
755

756 **Fig. 4 Extensive neutralization of 2G1 against SARS-CoV-2 variants.** a-g,
757 Neutralization of 2G1 to diverse SARS-CoV-2 pseudoviruses. Pseudoviruses with active
758 titer higher than 1×10^7 TU/mL were employed in this study. Concentration-dependent
759 neutralization of 2G1 was quantified by detecting the fluorescence from the luciferase
760 reporter. Data in duplicate are displayed as mean \pm S.D. h, Live virus neutralization by
761 100 TCID₅₀ of SARS-CoV-2 (WA1/2020, Alpha, Beta, gamma and Delta) were
762 incubated with threefold-diluted 2G1 and then added to Vero E6 cells. After a 3-day
763 incubation, cytopathic effect (CPE) was assessed by counting the plaque formation.

764

765

766 **Fig. 5 Therapeutic efficacy of 2G1 against SARS-CoV-2 variants in transgenic mice.**

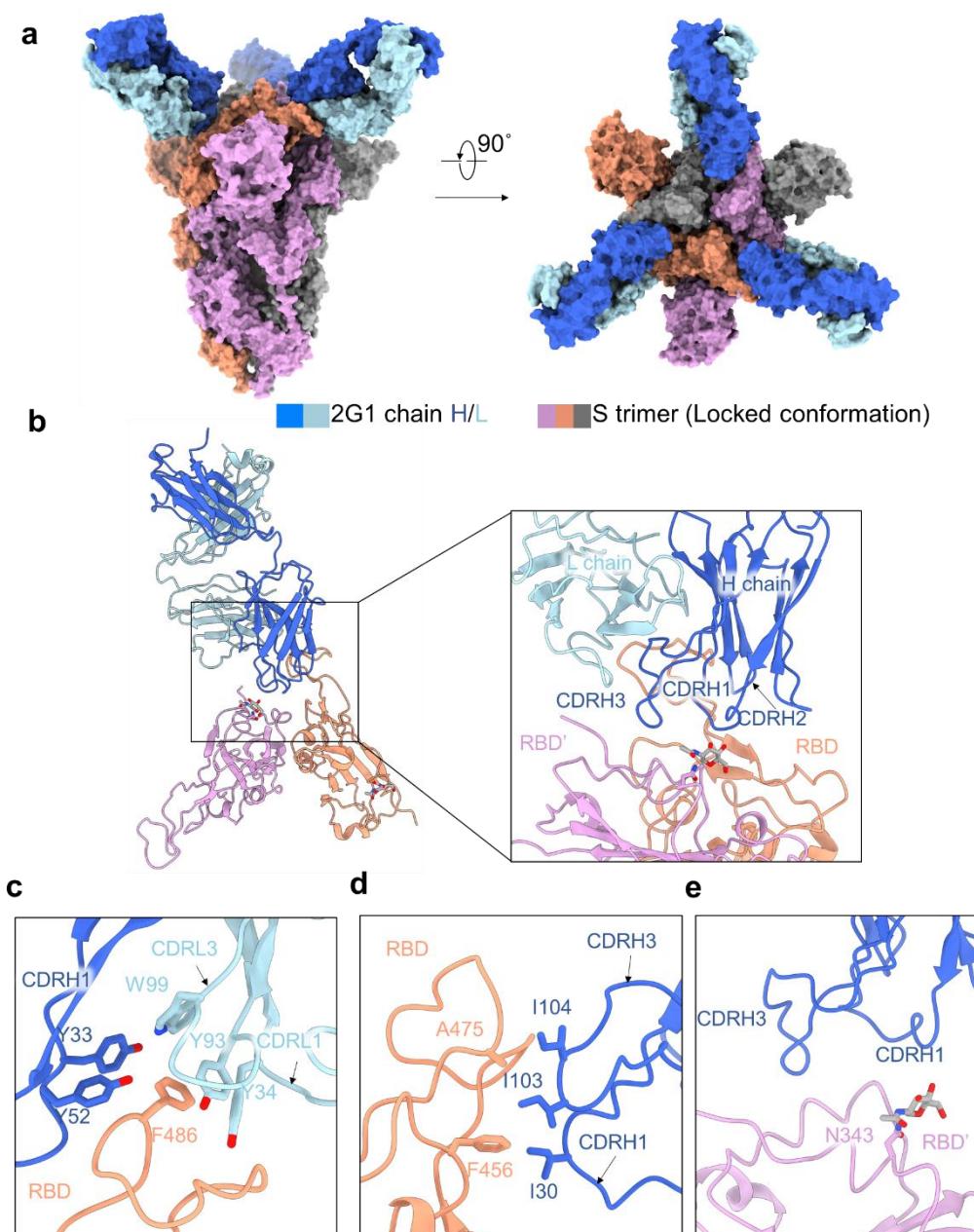

767 a, High permissive AC70 human ACE2 transgenic mice were challenged with 100 LD₅₀ of
768 SARS-CoV-2 WA1/2020, Beta- or Delta- variants, followed by 20, 6.7, or 2.2 mg/kg of 2G1
769 treatment (n = 14). A 12-day clinical observation was implemented. b, Body weight change
770 of mice. c, Clinical illness of mice was assessed based on a standardized 1 to 4 grading
771 system that describes the clinical wellbeing of mice. d, Mortality of mice. Data are shown
772 as mean ± S.D. Vhcl, vehicle control; p.i., post infection.

773

774

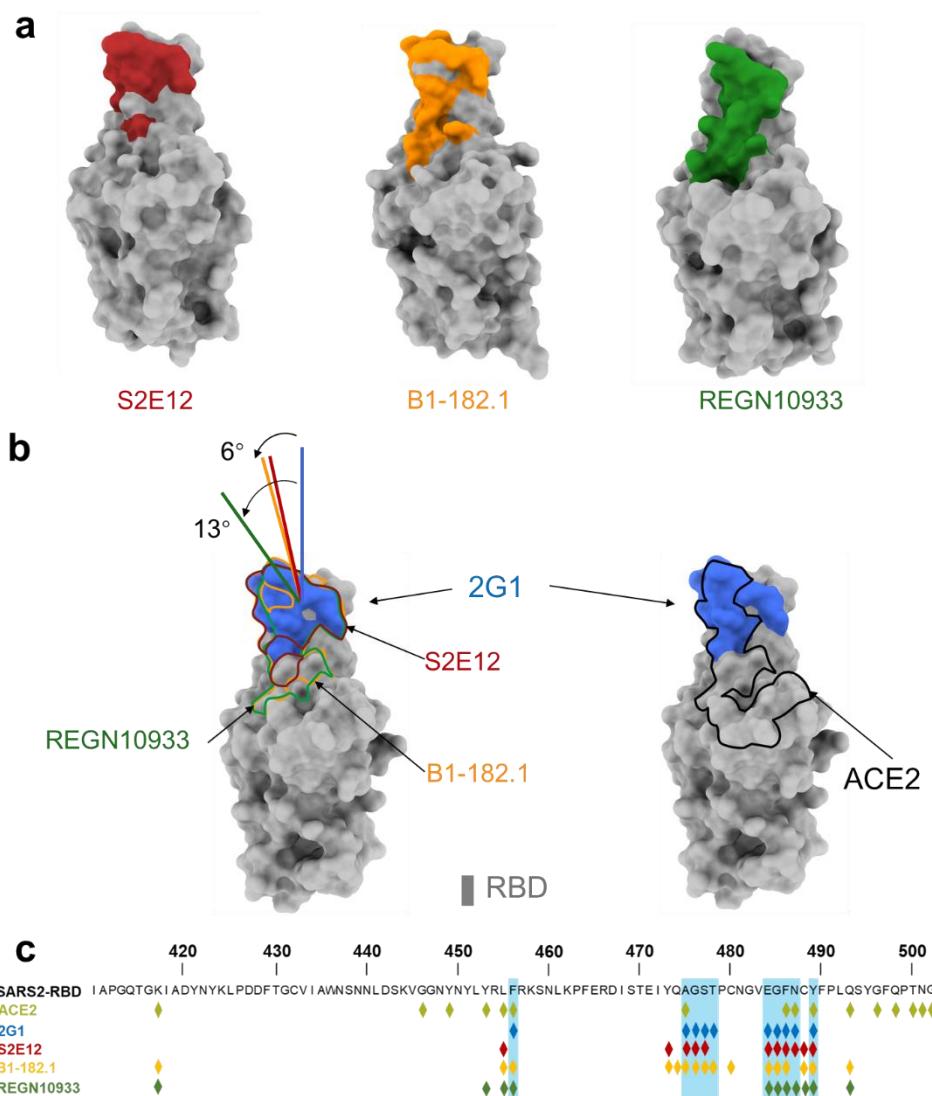
775

776

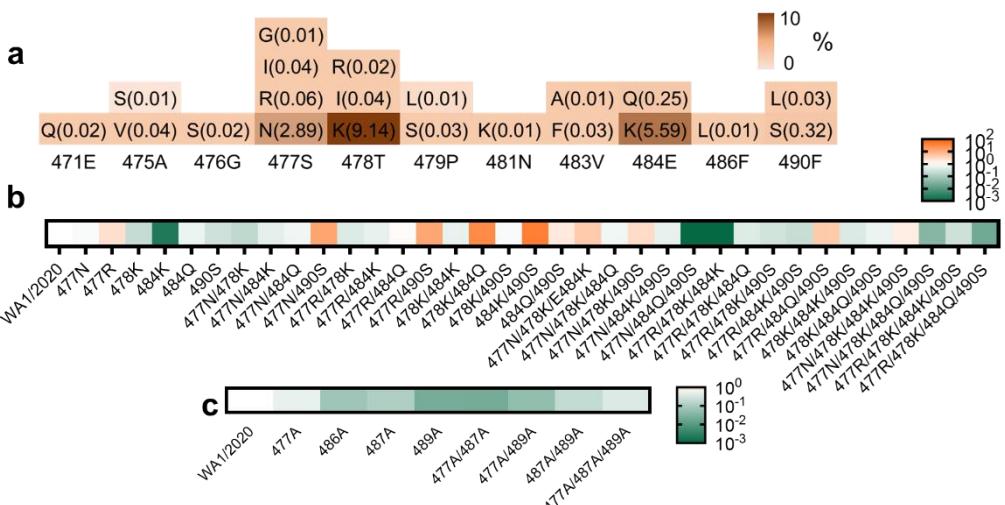

777

778 **Fig. 6 Therapeutic efficacy of 2G1 against SARS-CoV-2 variants in rhesus macaques.**
779 **a**, One male and one female rhesus macaques in each group were endotracheally
780 challenged with 1×10^5 TCID₅₀ of SARS-CoV-2. 2G1 at 10 mg/kg or 50 mg/kg, or equal
781 amount of PBS were intravenously given at 1 dpi. Throat and anal swabs were sampled
782 daily until 7 dpi. **b**, Viral load in throat swab. **c**, Viral load in anal swab. **d**, Viral load in lungs,
783 tracheas, and bronchi. Data with duplications are shown as mean \pm S.D. p.i., post infection.

784

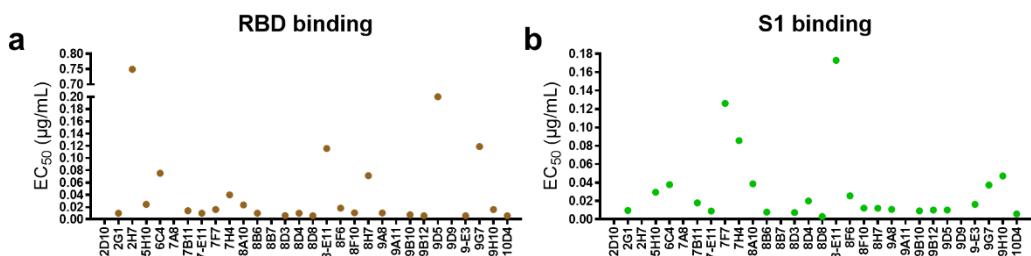

785

786

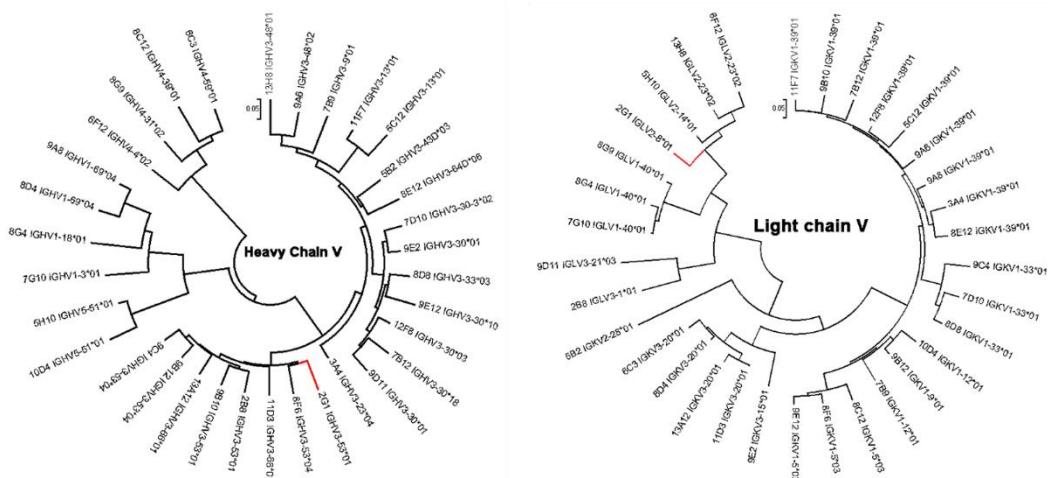


787

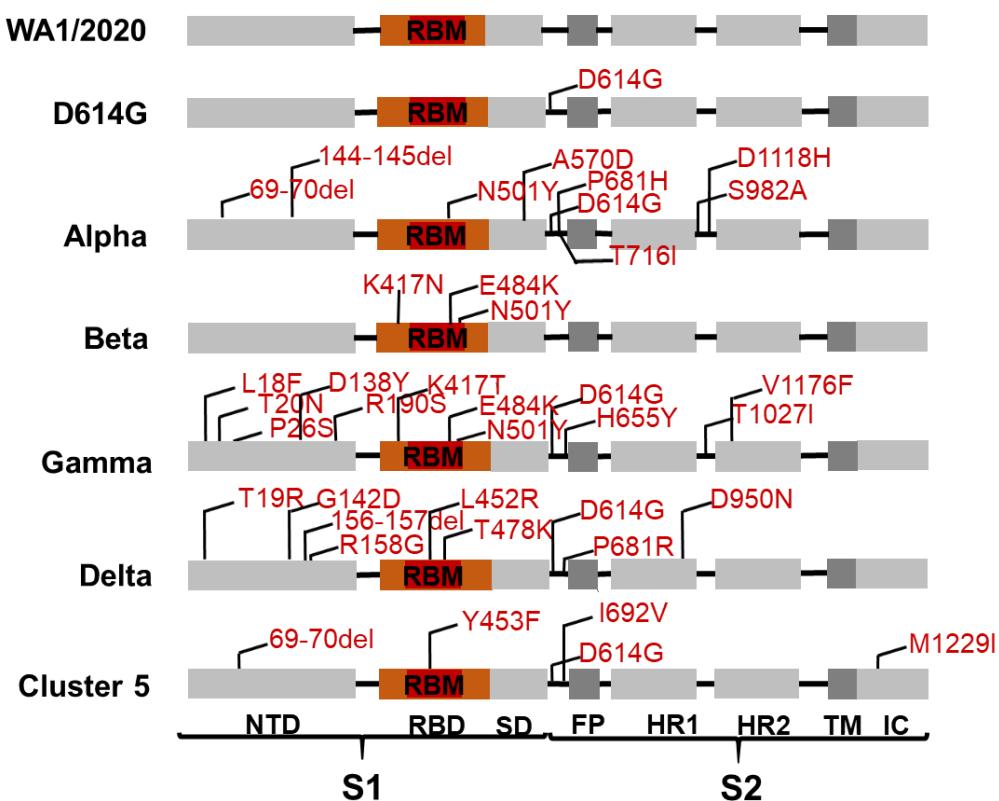
788 **Fig. 7 Cryo-EM structure of 2G1 and the complex with WA1/2020 S protein.** **a**, The
789 domain-colored cryo-EM map of SARS-CoV-2 S ectodomain trimer and 2G1 Fab
790 fragments complex is shown, viewed along two perpendicular orientations. The heavy and
791 light chains of 2G1 are colored blue and cyan, respectively. **b**, The three protomer of
792 trimeric S protein are colored grey, orange and pink. **c-e**, The binding interface between
793 2G1 and RBD and adjacent RBD'. RBD and 2G1 interact each other mainly through
794 hydrophobic interactions (**c** and **d**). 2G1 heavy chain (CDRH3 and CDRH1) lie above the
795 adjacent RBD' (**e**).
796



797 **Fig. 8 Analysis of different binding modes of 2G1, S2E12, B1-182.1 and REGN10933. a,** The
798 epitope surfaces of S2E12, B1-182.1 and REGN10933 on S protein are in red, orange and
799 green, respectively. **b,** Comparison of binding modes of 2G1, S2E12, B1-182.1 and
800 REGN10933. The epitope surface of 2G1 is in blue. The borderlines of ACE2-binding site,
801 S2E12, B1-182.1 and REGN10933 are shown in black, red, orange and green respectively.
802 The connecting lines between the center of 2G1 Fab and RBD is taken as the principal
803 axis, and axis of Fab S2E12, B1-182.1 are rotated 6° and REGN10933 is rotated 13°
804 approximately. **c,** Mapping of S2E12, B1-182.1 and REGN10933 epitopes on RBD.
805
806



807
808 **Fig. 9 Identification of critical binding residues for 2G1.** **a**, Statistics of mutation
809 proportion in RBD residue 471Glu - 490Phe where key for 2G1 epitope from GISAID
810 database as of August 2021. **b**, Identification of critical binding residues for 2G1. Spike
811 genes with high frequency mutation sites between 471Glu and 490Phe (>0.05%) were
812 cloned and transiently expressed on the surface of 293T cells. The binding ability of 2G1
813 to these mutant S proteins was measured by flow cytometry. The fold change of binding
814 ability was normalized by comparing to WA1/2020 S protein. **c**, Mutations in the key
815 interaction sites of 2G1 that affects the binding ability of 2G1 to varying degrees.


816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837

838
839 **Fig. S1 Evaluation of binding and neutralization of selected antibody candidates. a-**
840 **b**, Candidates' EC₅₀ in the concentration-dependent RBD (a) and S1 (b) binding test using
841 ELISA. Antigens were 3-fold serially diluted from 0.300 µg/mL to 0.0012 µg/mL.

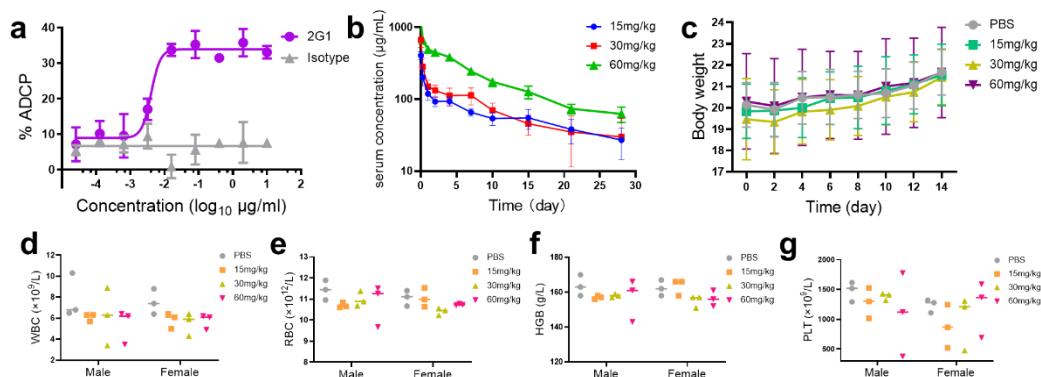
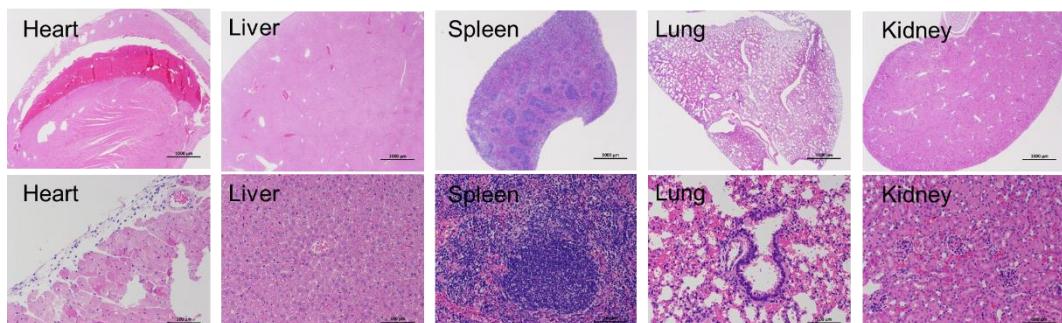


Fig. S2 Germline identification of VH and VL. Germline gene distribution of the heavy chain and light chain of 33 candidates and their clustering analysis.

849
850 **Fig. S3 Mutational sites of pseudoviruses used in this report.** The spike region of
851 SARS-CoV-2 is displayed in different modules. The mutation sites are annotated in
852 corresponding positions in detail. RBD is highlighted in saffron yellow and RBM is
853 highlighted in red. NTD, N-terminal domain; RBD, receptor binding domain; RBM, receptor
854 binding motif; SD, subdomain; FP, fusion peptide; HR1, heptad repeats 1; HR2, heptad
855 repeats 2; TM, transmembrane region; IC, intracellular region.

856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871



872

873 **Fig. S4 2G1 induces cellular phagocytosis but no evident adverse effects.** a,
874 Antibody-dependent cellular phagocytosis (ADCP) induced by 2G1. Jurkat cells with stable
875 S expression were incubated with macrophages in the presence of different concentrations
876 of 2G1. After incubating at 37°C for 30 mins, the proportion of Jurkat cells phagocytosed
877 by macrophages was detected by flow cytometry. b, Pharmacokinetic study of 2G1.
878 BALB/c mice were treated with different doses of 2G1, and blood samples were collected
879 at different time points. The serum concentration of 2G1 was measured by ELISA. c-g,
880 Adverse effect study of 2G1. Crlj:CD1(ICR) mice were treated with different doses of 2G1.
881 Body weight of mice was tracked (c). The blood routine indexes including WBC (d), RBC
882 (e), HGB (f), and PLT (g) were measured 14 days later. WBC, white blood cell count; RBC,
883 red blood cell count; HGB, hemoglobin; PLT, platelets. Data are presented as mean \pm S.D.

884

885

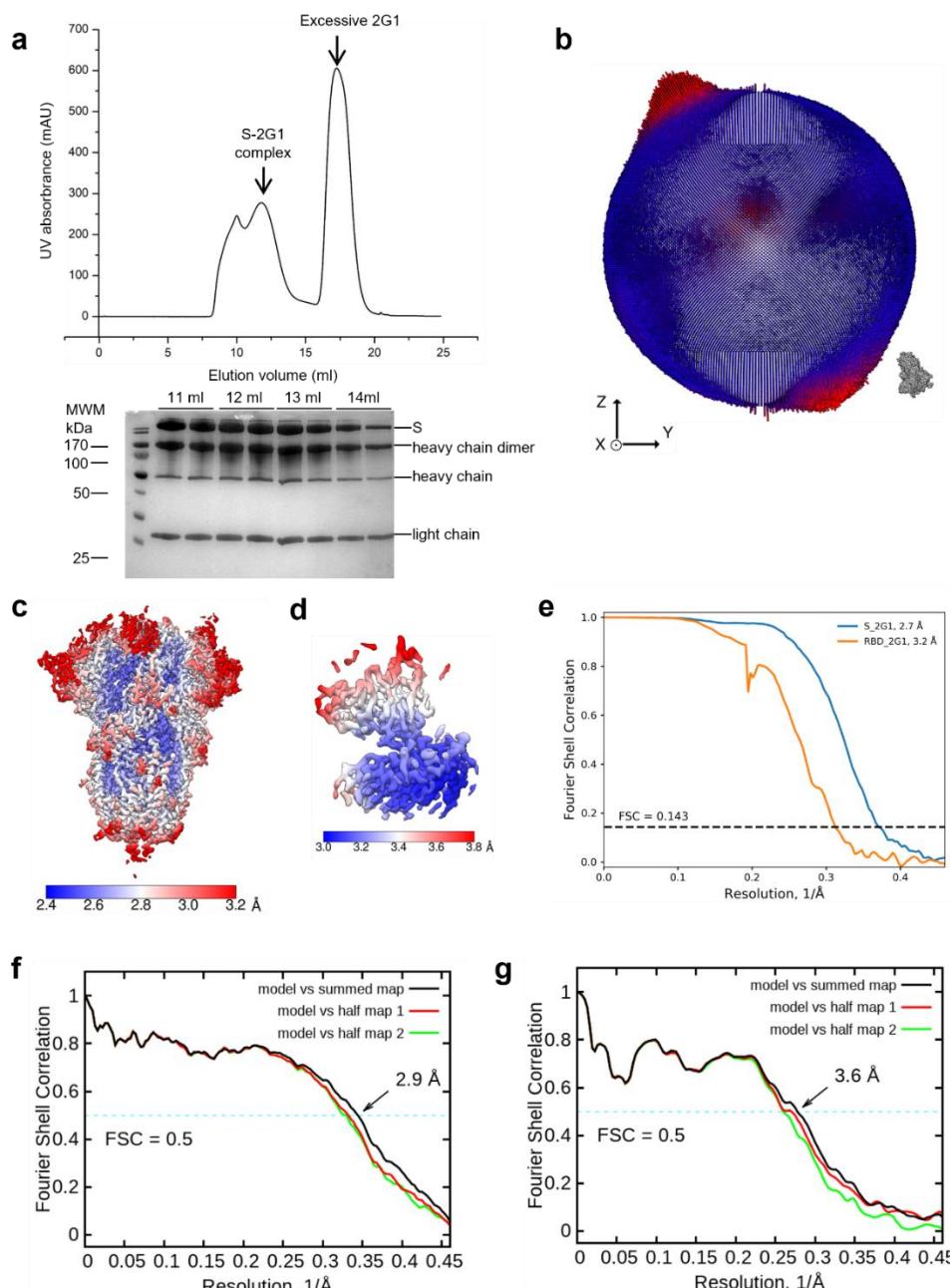
886

887 **Fig. S5 Organ toxicity study.** Crlj:CD1(ICR) mice were treated with 15, 30, or 60 mg/kg
888 of 2G1. Inflammatory damage of hearts, livers, spleens, lungs and kidneys were checked
889 by hematoxylin-eosin (HE) staining. No apparent pathological changes were observed.
890 Representative sections from 60 mg/kg group are displayed.

891

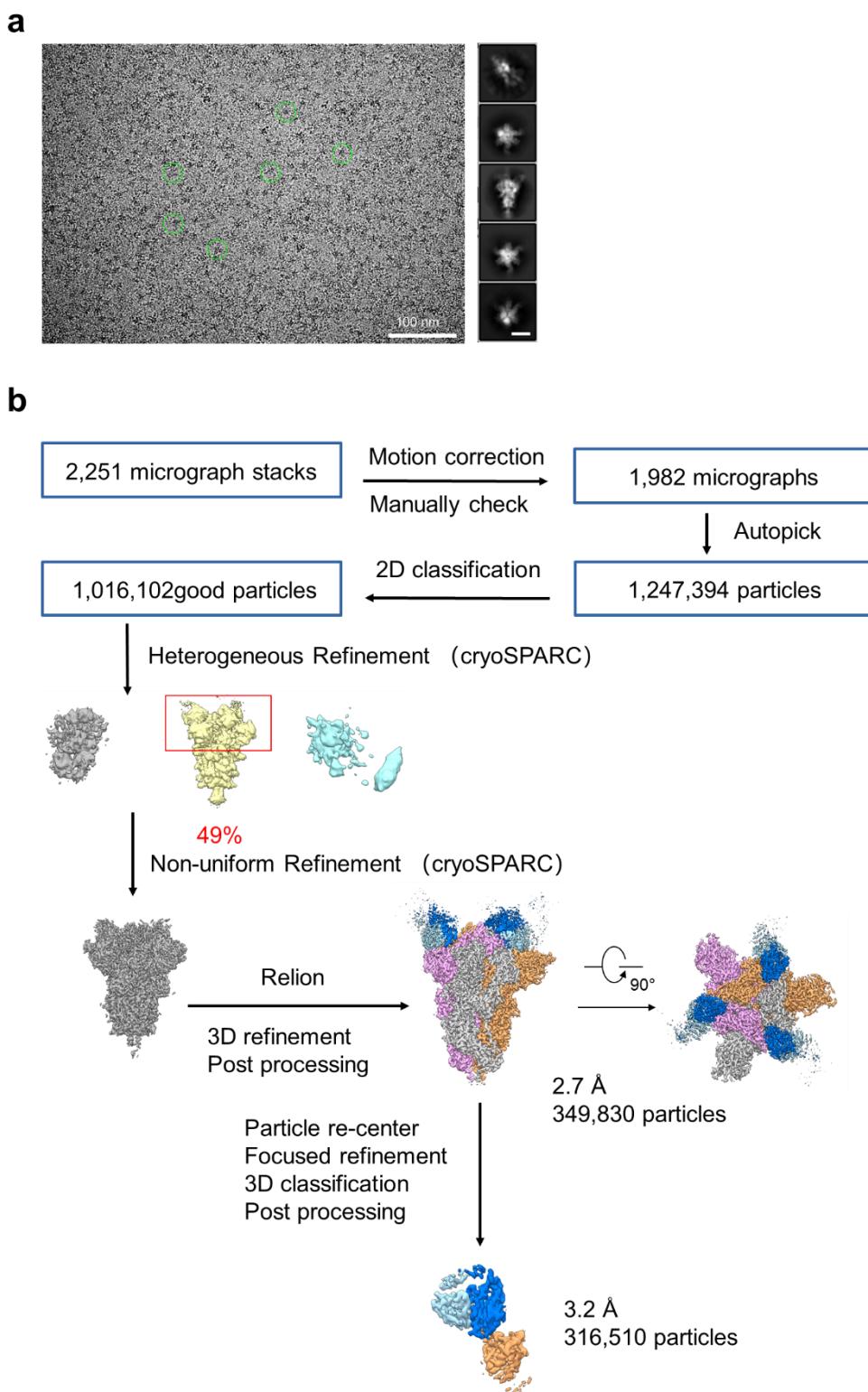
892

893


894

895

896


897

898

899

900 **Fig. S6 Cryo-EM analysis of SARS-CoV-2 S trimer in complex with 2G1.** **a**,
901 Representative gel filtration chromatography purification profile of the SARS-CoV-2 S
902 extracellular domain in complex with 2G1. **b**, Euler angle distribution in the final 3D
903 reconstruction of S bound with 2G1. **c-d**, Local resolution map for the 3D reconstruction of
904 overall structure and RBD-2G1 sub-complex, respectively. **e**, FSC curve of the overall
905 structure (blue) and RBD-2G1 sub-complex (orange). **f**, FSC curve of the refined model of
906 S bound with 2G1 versus the overall structure that it is refined against (black); of the model
907 refined against the first half map versus the same map (red); and of the model refined
908 against the first half map versus the second half map (green). The small difference between
909 the red and green curves indicates that the refinement of the atomic coordinates did not
910 suffer from overfitting. **g**, FSC curve of the refined model of RBD-2G1 sub-complex, which
911 is same to the **f**.

912

913 **Fig. S7 Flowchart for cryo-EM data processing of SARS-CoV-2 S trimer in complex**
914 **with 2G1. a**, Representative cryo-EM micrograph and 2D class averages of cryo-EM
915 particle images of **SARS-CoV-2 S trimer** bound with 2G1. The scale bar in 2D class
916 averages is 10 nm. **b**, Please refer to the 'Data Processing' in Methods section for details.

917

918

919 **Table S1 Data collection, 3D reconstruction and model statistic.**

Data collection		
EM equipment	Titan Krios (Thermo Fisher Scientific)	
Voltage (kV)	300	
Detector	Gatan K3 Summit	
Energy filter	Gatan GIF Quantum, 20 eV slit	
Pixel size (Å)	1.087	
Electron dose (e-/Å ²)	50	
Defocus range (μm)	-1.2 ~ -2.2	
Number of collected micrographs	2,251	
Number of selected micrographs	1,982	
Sample	S protein in complex with 2G1	
3D Reconstruction		
	Whole model	Interface between RBD and 2G1
Software	cryoSPARC/ Relion	Relion
Number of used particles	349,830	316,510
Resolution (Å)	2.7	3.2
Symmetry	C1	
Map sharpening B factor (Å ²)	-90	
Refinement		
Software	Phenix	
Cell dimensions (Å)	313.056	
Model composition		
Protein residues	4,572	
Side chains assigned	4,572	
Sugar	78	
Linoleic acid	3	
R.m.s deviations		
Bonds length (Å)	0.007	
Bonds Angle (°)	0.936	
Ramachandran plot statistics (%)		
Preferred	93.61	
Allowed	6.16	
Outlier	0.23	

920

921

922

923

924

925

926

927

928

929

930

931

932 **References**

- 933 1 Volz, E. *et al.* Assessing transmissibility of SARS-CoV-2 lineage B.1.1.7 in England. *Nature* **593**,
934 266-269 (2021).
- 935 2 Alpert, T. *et al.* Early introductions and transmission of SARS-CoV-2 variant B.1.1.7 in the United
936 States. *Cell* **184**, 2595-2604 (2021).
- 937 3 Liu, J. *et al.* BNT162b2-elicited neutralization of B.1.617 and other SARS-CoV-2 variants. *Nature*
938 **596**, 273-275 (2021).
- 939 4 Dejnirattisai, W. *et al.* Antibody evasion by the P.1 strain of SARS-CoV-2. *Cell* **184**, 2939-
940 2954.e2939 (2021).
- 941 5 Chen, R. E. *et al.* In vivo monoclonal antibody efficacy against SARS-CoV-2 variant strains.
942 *Nature* **596**, 103-108 (2021).
- 943 6 Li, B. *et al.* Viral infection and transmission in a large, well-traced outbreak caused by the SARS-
944 CoV-2 Delta variant. *medRxiv*, doi:10.1101/2021.07.07.21260122 (2021).
- 945 7 Andreano, E. & Rappuoli, R. SARS-CoV-2 escaped natural immunity, raising questions about
946 vaccines and therapies. *Nat Med* **27**, 759-761 (2021).
- 947 8 Cohen, A. A. *et al.* Mosaic nanoparticles elicit cross-reactive immune responses to zoonotic
948 coronaviruses in mice. *Science* **371**, 735-741 (2021).
- 949 9 Ju, B. *et al.* Human neutralizing antibodies elicited by SARS-CoV-2 infection. *Nature* **584**, 115-
950 119 (2020).
- 951 10 Lv, Z. *et al.* Structural basis for neutralization of SARS-CoV-2 and SARS-CoV by a potent
952 therapeutic antibody. *Science* **369**, 1505-1509 (2020).
- 953 11 Chi, X. *et al.* A neutralizing human antibody binds to the N-terminal domain of the Spike protein
954 of SARS-CoV-2. *Science* **369**, 650-655 (2020).
- 955 12 Liu, Z. M. *et al.* Identification of SARS-CoV-2 spike mutations that attenuate monoclonal and
956 serum antibody neutralization. *Cell Host Microbe* **29**, 477-488 (2021).
- 957 13 Chen, R. E. *et al.* Resistance of SARS-CoV-2 variants to neutralization by monoclonal and serum-
958 derived polyclonal antibodies. *Nat Med* **27**, 717-726 (2021).
- 959 14 Garcia-Beltran, W. F. *et al.* Multiple SARS-CoV-2 variants escape neutralization by vaccine-
960 induced humoral immunity. *Cell* **184**, 2372-2383 (2021).
- 961 15 Gupta, R. K. Will SARS-CoV-2 variants of concern affect the promise of vaccines? *Nat Rev
962 Immunol* **21**, 340-341 (2021).
- 963 16 Kannan, S., Shaik Syed Ali, P. & Sheeza, A. Evolving biothreat of variant SARS-CoV-2 - molecular
964 properties, virulence and epidemiology. *Eur Rev Med Pharmacol Sci* **25**, 4405-4412 (2021).
- 965 17 Bal, A. *et al.* Two-step strategy for the identification of SARS-CoV-2 variant of concern
966 202012/01 and other variants with spike deletion H69-V70, France, August to December 2020.
967 *Euro Surveill* **26**, 2100008 (2021).
- 968 18 Wang, P. F. *et al.* Antibody resistance of SARS-CoV-2 variants B.1.351 and B.1.1.7. *Nature* **593**,
969 130-135 (2021).
- 970 19 Collier, D. A. *et al.* Sensitivity of SARS-CoV-2 B.1.1.7 to mRNA vaccine-elicited antibodies.
971 *Nature* **593**, 136-141 (2021).
- 972 20 Andreano, E. *et al.* SARS-CoV-2 escape in vitro from a highly neutralizing COVID-19
973 convalescent plasma. *bioRxiv*, doi:10.1101/2020.12.28.424451 (2020).
- 974 21 Madhi, S. A. *et al.* Efficacy of the ChAdOx1 nCoV-19 Covid-19 Vaccine against the B.1.351
975 Variant. *N Engl J Med* **384**, 1885-1898 (2021).

- 976 22 Zhou, D. *et al.* Evidence of escape of SARS-CoV-2 variant B.1.351 from natural and vaccine-induced sera. *Cell* **184**, 2348-2361 (2021).
- 977 23 Alter, G. *et al.* Immunogenicity of Ad26.COV2.S vaccine against SARS-CoV-2 variants in humans. *Nature* **596**, 268-272 (2021).
- 978 24 Hoffmann, M. *et al.* SARS-CoV-2 variants B.1.351 and P.1 escape from neutralizing antibodies. *Cell* **184**, 2384-2393 (2021).
- 979 25 Planas, D. *et al.* Reduced sensitivity of SARS-CoV-2 variant Delta to antibody neutralization. *Nature* **596**, 276-280 (2021).
- 980 26 Augusto, G. *et al.* In vitro data suggest that Indian variant B.1.617 of SARS-CoV-2 escapes neutralization by both receptor affinity and immune evasion. *Allergy*, doi:10.1111/all.15065 (2021).
- 981 27 Liu, C. *et al.* Reduced neutralization of SARS-CoV-2 B.1.617 by vaccine and convalescent serum. *Cell* **184**, 4220-4236 (2021).
- 982 28 Padilla-Rojas, C. *et al.* Genomic analysis reveals a rapid spread and predominance of lambda (C.37) SARS-CoV-2 lineage in Peru despite circulation of variants of concern. *J Med Virol*, doi:10.1002/jmv.27261 (2021).
- 983 29 Laiton-Donato, K. *et al.* Characterization of the emerging B.1.621 variant of interest of SARS-CoV-2. *Infect Genet Evol* **95**, 105038 (2021).
- 984 30 Gomez, C. E., Perdiguero, B. & Esteban, M. Emerging SARS-CoV-2 Variants and Impact in Global Vaccination Programs against SARS-CoV-2/COVID-19. *Vaccines-Basel* **9**, doi:ARTN 243 10.3390/vaccines9030243 (2021).
- 985 31 Harvey, W. T. *et al.* SARS-CoV-2 variants, spike mutations and immune escape. *Nat Rev Microbiol* **19**, 409-424, doi:10.1038/s41579-021-00573-0 (2021).
- 986 32 Yuan, M. *et al.* Structural basis of a shared antibody response to SARS-CoV-2. *Science* **369**, 1119-1123 (2020).
- 987 33 Toelzer, C. *et al.* Free fatty acid binding pocket in the locked structure of SARS-CoV-2 spike protein. *Science* **370**, 725-730, doi:10.1126/science.abd3255 (2020).
- 988 34 Walls, A. C. *et al.* Structure, Function, and Antigenicity of the SARS-CoV-2 Spike Glycoprotein. *Cell* **181**, 281-292 (2020).
- 989 35 Cai, Y. F. *et al.* Structural basis for enhanced infectivity and immune evasion of SARS-CoV-2 variants. *Science* **373**, 642-648 (2021).
- 990 36 Liu, Y. & Rocklöv, J. The reproductive number of the Delta variant of SARS-CoV-2 is far higher compared to the ancestral SARS-CoV-2 virus. *J Travel Med*, doi:10.1093/jtm/taab124 (2021).
- 991 37 Hoffmann, M. *et al.* SARS-CoV-2 variant B.1.617 is resistant to bamlanivimab and evades antibodies induced by infection and vaccination. *Cell Rep* **36**, 109415 (2021).
- 992 38 Lopez Bernal, J. *et al.* Effectiveness of Covid-19 Vaccines against the B.1.617.2 (Delta) Variant. *N Engl J Med* **385**, 585-594 (2021).
- 993 39 Hsieh, C. L. *et al.* Structure-based design of prefusion-stabilized SARS-CoV-2 spikes. *Science* **369**, 1501-1505 (2020).
- 994 40 Lei, J. & Frank, J. Automated acquisition of cryo-electron micrographs for single particle reconstruction on an FEI Tecnai electron microscope. *J Struct Biol* **150**, 69-80 (2005).
- 995 41 Zheng, S. Q. *et al.* MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy. *Nat Methods* **14**, 331-332 (2017).
- 996 42 Grant, T. & Grigorieff, N. Measuring the optimal exposure for single particle cryo-EM using a

- 1020 2.6 angstrom reconstruction of rotavirus VP6. *Elife* **4**, e06980 (2015).
- 1021 43 Zhang, K. Gctf: Real-time CTF determination and correction. *Journal of Structural Biology* **193**,
1022 1-12 (2016).
- 1023 44 Zivanov, J. *et al.* New tools for automated high-resolution cryo-EM structure determination in
1024 RELION-3. *Elife* **7**, e42166 (2018).
- 1025 45 Kimanius, D., Forsberg, B. & Lindahl, E. Accelerated Cryo-EM Structure Determination with
1026 Parallelisation using GPUs in Relion-2. *Elife* **5**, e18722 (2016).
- 1027 46 Scheres, S. H. W. RELION: Implementation of a Bayesian approach to cryo-EM structure
1028 determination. *Journal of Structural Biology* **180**, 519-530 (2012).
- 1029 47 Scheres, S. H. W. A Bayesian View on Cryo-EM Structure Determination. *J Mol Biol* **415**, 406-
1030 418 (2012).
- 1031 48 Punjani, A., Rubinstein, J. L., Fleet, D. J. & Brubaker, M. A. cryoSPARC: algorithms for rapid
1032 unsupervised cryo-EM structure determination. *Nature Methods* **14**, 290-296 (2017).
- 1033 49 Rosenthal, P. B. & Henderson, R. Optimal determination of particle orientation, absolute hand,
1034 and contrast loss in single-particle electron cryomicroscopy. *J Mol Biol* **333**, 721-745 (2003).
- 1035 50 Chen, S. X. *et al.* High-resolution noise substitution to measure overfitting and validate
1036 resolution in 3D structure determination by single particle electron cryomicroscopy.
Ultramicroscopy **135**, 24-35 (2013).
- 1038 51 Trabuco, L. G., Villa, E., Mitra, K., Frank, J. & Schulten, K. Flexible fitting of atomic structures
1039 into electron microscopy maps using molecular dynamics. *Structure* **16**, 673-683 (2008).
- 1040 52 Winn, M. D. *et al.* Overview of the CCP4 suite and current developments. *Acta Crystallogr D* **67**,
1041 235-242 (2011).
- 1042 53 Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. *Acta
1043 Crystallographica Section D-Biological Crystallography* **66**, 486-501 (2010).
- 1044 54 Adams, P. D. *et al.* PHENIX: a comprehensive Python-based system for macromolecular
1045 structure solution. *Acta Crystallogr D Biol Crystallogr* **66**, 213-221 (2010).
- 1046
- 1047
- 1048