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Abstract 24 

Motivation 25 

High content screening (HCS) experiments generate complex data from multiple object 26 

features for each cell within a treated population. Usually these data are analyzed by using 27 

population-averaged values of the features of interest, increasing the amount of false positives and 28 

the need for intensive follow-up validation. Therefore, there is a strong need for novel approaches 29 

with reproducible hit prediction by identifying significantly altered cell populations.  30 

Results 31 

Here we describe SOPRA, a workflow for analyzing image-based HCS data based on regression 32 

analysis of non-averaged object features from cell populations, which can be run on hundreds of 33 

samples using different cell features. Following plate-wise normalization the values are counted 34 

within predetermined binning intervals, generating unique frequency distribution profiles 35 

(histograms) for each population, which are then normalized to control populations. Statistically 36 

significant differences are identified using a regression model approach. Significantly changed 37 

profiles can be used to generate a heatmap from which altered cell populations with similar 38 

phenotypes are identified, enabling detection of siRNAs and compounds with the same ‘on-target’ 39 

profile, reducing the number of false positive hits. A screen for cell cycle progression was used to 40 

validate the workflow, which identified statistically significant changes induced by siRNA-mediated 41 

gene perturbations and chemical inhibitors of different cell cycle stages. 42 

  43 
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 44 

Background 45 

The availability of robotic liquid handling combined with automated fluorescence microscopy and 46 

high-performance image computing has enabled rapid advances in the development of high-47 

throughput screening. Numerous studies have demonstrated the power of high-throughput image-48 

based assays for characterizing drug effects (Perlman, et al., 2004), identifying active small molecules 49 

(Tanaka, et al., 2005) and classifying sub-cellular protein localization (Boland and Murphy, 2001; 50 

Conrad, et al., 2004), including genome-wide siRNA-mediated loss-of-function screens (Neumann, et 51 

al., 2006) or gene deletion (Ohya, et al., 2005) libraries. For each single cell within a cellular sample 52 

population, it is possible to achieve quantitative measurements of phenotypes such as expression 53 

level and localization of proteins, post-translational modifications and even cellular or sub-cellular 54 

morphologies.  55 

Analyzing cellular populations in the early drug discovery process allows the complexity of 56 

living systems to be addressed and produces vast amounts of data that are more meaningful than 57 

those obtained from isolated proteins (Taylor, 2007). In combination with advanced bioinformatics 58 

tools treatments can be identified which lead to altered cell populations, and therefore might be 59 

relevant drugs or drug targets.  60 

Nonetheless, several limitations in data analysis have restricted the full potential of high-61 

throughput image-based assays so far (Lang, et al., 2006; Zhou and Wong, 2006). The usual course of 62 

events for a HCS analysis workflow starts with the extraction of image feature data, followed by 63 

normalization and statistical analysis, including final hit selection (Buchser, et al., 2004). A wide 64 

variety of microscopes, image-analysis and data-analysis software packages are available to address 65 

these issues (Gough and Johnston, 2007). However, distributions of multidimensional, multivariate 66 

phenotypic measurements from cellular populations are mostly transformed into single population-67 

averaged values such as mean or median values. These population-averaged values are used for 68 

plate-wise or batch-wise normalizations, as well as for statistical analysis for hit selection 69 

(Birmingham, et al., 2009; Singh, et al., 2014), which leads to a substantial loss of information. 70 

Population-averaged values can indicate whether the value of the measured phenotype increases or 71 

decreases upon treatment, but do not reflect the detailed response of a cellular population to a 72 

certain treatment or gene depletion. Therefore, these population-averaged values are limiting the 73 

power of the statistical approaches that are widely used, such as Z-Score or percent-of-control (POC) 74 

analysis, making it impossible to identify more distinct reactions of a cell population. This loss of 75 
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information also hampers the differentiation of treatments or gene depletions with the same ‘on-76 

target’ effect from those with ‘off-target’ effects, which is extremely important for RNAi gene 77 

perturbation experiments, where multiple siRNAs are used per gene.  78 

Some publications have described methods for non-averaged cell population data analysis from high-79 

content image-based screens. Knapp et al. (Knapp, et al., 2011) showed considerable effects of 80 

population context on observed phenotypes when using non-averaged population data for the 81 

normalization steps, but still used population-averaged values for hit detection. Another method 82 

uses multivariate cell classification based on phenotypic changes for hit identification (Loo, et al., 83 

2007), which results in a drug effect score, and a vector, indicating the simultaneous phenotypic 84 

changes induced by the drug. Another publication used multi-parametric phenotypic profiles to 85 

cluster genes based on morphological changes of individual cells (Fuchs, et al., 2010). Yet another 86 

group has proposed the use of Ripley’s K-function to identify knockdowns resulting in perturbation of 87 

this cell clustering (Suratanee, et al., 2010). Also the Kolomogorow-Smirnov (KS) test has been used 88 

to score the difference between control and samples populations (Gorenstein, et al., 2010). 89 

However, all these methods have limitations that prevent them from being widely used for large-90 

scale high content cell population analysis. Multivariate classification methods are mostly based on 91 

the analysis of predominantly redundant image features, spatial clustering requires a subjective and 92 

work intensive classification step for the cellular populations and KS only uses one unique value to 93 

identify cell population with altered distributions.  94 

Here we present a new approach called Single Object Profiles Regression Analysis (SOPRA) that 95 

overcomes many of these limitations by analyzing non-averaged cell population data. It uses a 96 

classification free regression analysis of normalized frequency distribution profiles of cell 97 

populations. SOPRA can be used to analyze data derived from various high-throughput techniques, 98 

such as images from automated microscopy or single cell data from FACS analysis. The regression 99 

workflow consists of i) a pre-processing step, ii) data gathering and normalization steps, iii) 100 

identification of significant profiles, iv) post-processing. The normalization is performed in a plate-101 

wise and bin-wise fashion, resulting in a unique normalized frequency distribution profile for each 102 

feature of a cell population. Finally, normalized distribution profiles that exhibit statistically 103 

significant changes are identified by using a p-value and R-squared (RSQ)-value derived from the 104 

regression analysis with the R-package maSigPro (Conesa, et al., 2006). Additionally, normalized 105 

feature profiles that have been identified as significantly altered can be further clustered in a 106 

heatmap according to their similarity. This can be used to identify treatments with the same ‘on-107 

target’ effects. Most loss-of-function screens use multiple siRNAs for the same gene, which should 108 
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end up in the same cluster if they have a similar cell population phenotype. The more siRNAs for the 109 

same gene are identified as having a similar cell population profile, the more reliably this gene can be 110 

regarded as a hit. Beyond this, the derived values of a regression analysis of distribution profiles of 111 

cellular features are not affected by experimental bias  to the same degree as population-averaged 112 

approaches (Sacher, et al., 2008), leading to more reproducible results. We used a cell-based 113 

chemical compound and RNAi screen of cell cycle progression to validate the SOPRA workflow. The 114 

cellular features ‘Area’, ‘Total Intensity DAPI’ and ‘Mean Intensity DAPI’ were extracted for each 115 

nucleus using image analysis software and subjected to the SOPRA workflow. We found that SOPRA 116 

can be used to identify statistically significant changes of frequency distribution profiles within 117 

cellular populations, whether induced by gene perturbation through siRNAs or by chemical inhibitor 118 

treatment. Taken together, SOPRA is a novel object-based data analysis workflow based on 119 

regression analysis of cellular feature distribution profiles to identify significantly changed cell 120 

populations from high-throughput data sets.   121 

Results 122 

SOPRA utilizes a data gathering step combined with plate-wise and a so-called bin-wise normalization 123 

methods, as well as a two-step regression approach that first adjusts a global regression model with 124 

defined variables in order to identify profiles exhibiting statistically significant changes (Conesa, et 125 

al., 2006). The SOPRA workflow consists of several steps as outlined in Figure 1. A: High Content 126 

Screen. This first step includes screening, image analysis and data extraction. B: Preparation of screen 127 

description files and the single cell data files. C: Preprocessing (optional). The derived data files for 128 

various image features at single cell level are subjected to a preprocessing step to exclude all data 129 

from flagged wells that should be excluded from the analysis. D1: Data Gathering and Plate-Wise 130 

Normalization. In this step each single cell object is annotated with additional information such as 131 

RNA.ID, plate number, well number, replicate number, well content and gene symbol. If the imaging 132 

software supports a gating procedure for objects that do not meet certain criteria, such as cell size, 133 

these can also be flagged and excluded from subsequent analysis steps. The measured value of each 134 

cell for the feature of interest is then normalized to the median of the objects in the neutral control 135 

wells. D2: Data Gathering and Frequency Distribution Profiles (Histogram) Generation. Next, the 136 

common binning axis of the distribution profiles is generated by determining the minimum and 137 

maximum limits of the measured feature across all the data of the screen to avoid strong relative 138 

differences at the tails of the distribution. The data are divided into equally spaced binning intervals, 139 

which is sufficient for population data that follows a given order of regression model (such as 140 

quadratic). A pseudo count of one is added to each bin to avoid bins with zero objects, and the 141 
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relative frequency for each treatment is calculated by dividing the number of objects in each bin by 142 

the population size (sum of all objects in all bins). Next, a bin-wise normalization step is performed by 143 

dividing the relative frequency of each bin for each treatment by the median of the corresponding 144 

bin of the control wells, such as the ‘AllStars’ control.  145 

Binning creates equal-length bins to which data are assigned. The default number of bins (the 146 

binning level) is 7.  147 

For variable x, assume that the data set is {xi}, let x1, x2,….xm represent the ordered values of the 148 

variable. Let the x
th

 percentile be min(x) and max(x). The range of the variable is range(x) = max(x) – 149 

min(x). For binning, the width of binning interval is � �
������ � ��	���

	
. The split points are sk = 150 

min(x) + L * k , where k = 1, 2,… , numbin-1 and numbin is n. For each bin a pseudocount of 1 is 151 

added Countp(Xik ) = Count(Xik) + 1. 152 

The output data, consisting of a normalized frequency distribution profile for each cell population 153 

and the annotation data are stored in the file ‘AllDataTable’. E: Determination of Statistically 154 

Significant Altered Profiles. A regression analysis is performed using the Bioconductor R-package 155 

maSigPro (Conesa, et al., 2006) to identify significantly changed normalized distribution profiles. F: 156 

Postprocessing (optional). The gene, cluster and frequency of the gene within the cluster are listed 157 

for all significantly changed normalized distribution profiles identified by the maSigPro analysis.  158 

To generate the data for the cell cycle progression screen we seeded HeLa cells in 384-well plates 159 

either transfected or treated with the inhibitors in three independent biological replicates (Figure 160 

2A). We used 166 different siRNAs to target 107 genes, from which 54 had been reported to interfere 161 

with cell cycle progression (Kittler, et al., 2007) (Supplementary Figure 1, Supplementary Table 1). 162 

Additionally, we used cells treated with the chemical inhibitors aphidicolin or nocodazole, which lead 163 

to G1/S and G2/M cell cycle arrest, respectively. Cells left untreated (Mock) or treated with siRNAs 164 

against ‘AllStars’ or ‘Luciferase’ were used as negative controls. While images from AllStars- and 165 

Luciferase-treated cell populations showed an unaltered, normal phenotype, treatment of cells with 166 

aphidicolin (A1-4) or nocodazole (N1-4) resulted in an altered phenotype as a consequence of G1/S 167 

or G2/M phase arrest, respectively (Figure 2B). On day 4, cells were fixed, nuclei stained with 168 

Hoechst (Figure 2A), images acquired using automated microscopy and automated image analysis 169 

(Olympus Scan^R) was performed for extracting the image features ‘Area’, ‘Total Intensity DAPI’ and 170 

‘Mean Intensity DAPI’ for each nucleus (Supplementary Figure 2) in tab-delimited files using a Scan^R 171 

export script. The cell population distribution profiles for the control as well as the chemically or 172 
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siRNA-treated samples behave differently for the extracted object features (Figure 2C). They show a 173 

strong shift towards smaller nuclei for nocodazole, and towards larger nuclei for aphidicolin-treated 174 

samples for the feature ‘Area’, while for the feature ‘Mean Intensity DAPI’ the influence of these two 175 

chemical treatments on the mean intensity is the opposite. Interestingly, for the feature ‘Total 176 

Intensity DAPI’ a strong shift towards higher values was observed for nocodazole-treated samples, 177 

while aphidicolin treatment did not alter the profile compared to that of the ‘Allstars’, ‘Luciferase’ or 178 

‘Mock’-treated wells. Distribution profiles of the cell populations treated with different siRNAs 179 

(samples) showed no clear tendency (Figure 2C). 180 

We then calculated p-values and RSQ-values using maSigPro regression analysis, as described, to 181 

identify significantly altered distribution profiles compared to the neutral controls. The maSigPro 182 

package computes a regression fit for each frequency distribution profile , and uses a linear step-up 183 

(BH) false discovery rate (FDR) procedure (Benjamini and Hochberg, 1995). Here, we used a level of 184 

0.05 for FDR control. Once statistically significant distribution profiles have been found, a variable 185 

selection procedure is applied to find significant variables for each profile. The final step is to 186 

generate lists of statistically significant profiles. As expected, cell populations treated with the 187 

‘AllStars’ or ‘Luciferase’ controls usually had high p-values and low RSQ- values. Only two (10%) and 188 

four (20%) out of 20 cellular populations treated with the neutral controls ‘Allstars’ or ‘Luciferase’, 189 

respectively, were identified to be significantly changed for at least one of the three cellular features 190 

used (Supplementary Table 2; Figure 3A - Plate2, Well 207). When hits were only considered positive 191 

if at least two of the image features were identified as significantly changed, none of the neutral 192 

controls were identified as a hit. In contrast, cells treated with aphidicoline (A1-4) or nocodazole (N1-193 

4) showed significant changes, indicated by low p-values and high RSQ-values for all of the three 194 

extracted cellular features (Figure 4A). All 28 profiles for each of the aphidicolin conditions A2 (4 195 

µg/ml/24 h), A3 (2 µg/ml/12 h) and A4 (4 µg/ml/12 h), for each of the nocodazole conditions N1 (50 196 

ng/ml/24 h), N2 (75 ng/ml/24 h), N3 (50 ng/ml/12 h) and N4 (75 ng/ml/12 h) and 27 out of 28 197 

profiles for the aphidicolin condition A1 (2 µg/ml/24 h) were identified as significantly changed hits 198 

(Supplementary Figure 3). Interestingly, aphidicolin-treated samples showed marked differences for 199 

the cellular features ‘Area’ and ‘Mean Intensity’ and only slight changes for the cell feature ‘Total 200 

Intensity DAPI’ (Figure 3A – A1: Plate1, Well 208, A2: Plate2, Well 353, A3: Plate1, Well 44, A4: 201 

Plate2, Well 213) , while nocodazole-treated samples showed strong changes in all three cellular 202 

features used (Figure 3A -N4: Plate1, Well 47, N1: Plate 2, Well 354). In total, using these thresholds 203 

for the p-value and the RSQ-value, 359 normalized distribution profiles were identified as 204 

significantly altered for each of the cellular features ‘Area’ and ‘Mean Intensity DAPI’ and 335 205 
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normalized distribution profiles for the cellular feature ‘Total Intensity DAPI’. This resulted in a total 206 

of 448 significantly changed cell populations; with 247 profiles significantly changed for all three, 111 207 

profiles for two and 90 profiles for only one of the analyzed cellular features. Next, for the 448 208 

profiles identified as significantly changed, a k-means clustering approach was performed (Figure 4B 209 

and 4C). The normalized distribution profiles for the features ‘Area’, ‘Mean Intensity DAPI’ and ‘Total 210 

Intensity DAPI’ were arranged in four, three and two profile clusters, respectively. Cluster numbers 211 

were selected to give high cluster reproducibility. Finally, for all clustered profiles a heatmap was 212 

defined, based on the k-means clustering result arranged as a vector (consisting of zeros and ones 213 

such as 0001-010-10 for a profile resulting in cluster 4 for ‘Area’, cluster 2 for ‘Mean Intensity DAPI’ 214 

and cluster 1 for ‘Total Intensity DAPI’). The heatmap was sorted using a hierarchical clustering 215 

(hclust) algorithm to identify cell populations with similar distribution profiles (Figure 3A). Finally, a 216 

dendrogram cut-off value of 1.8 was used to generate three main groups in the matrix. 217 

As a result, the aphidicolin-treated samples A1 and A2 grouped differently from the aphidicolin-218 

treated samples A3 and A4, (Figure 3A, sidebar), while the nocodazole-treated samples N1 and N2, as 219 

well as N3 and N4, grouped together. Further, the significant distribution profiles of samples treated 220 

with siRNA were more dispersed in the heatmap, depending on the individual feature distribution. 221 

Thus, with this two-step method - first identifying statistically significant normalized profiles for each 222 

analyzed image feature, then using a heatmap to generate profile groups – we were able to 223 

differentiate cell populations showing a similar distribution among the cluster profiles. Taken 224 

together, the SOPRA workflow was responsive enough to distinguish not only nocodazole-treated 225 

from aphidicolin-treated samples, but also to differentiate between samples that were treated with 226 

the same concentration but for different durations (A1/A2 vs A3/A4).   227 

As laid out above, analyzed features for siRNAs that target the same gene and have the same ‘on-228 

target’ phenotype should end up in the same cluster and also in the same heatmap group. Therefore, 229 

we further analyzed if individual siRNAs for the same gene were represented in the same or different 230 

heatmap groups. The individual siRNAs of 38 and 42 genes appeared exclusively in profile groups 1 or 231 

2, respectively, strengthening the ‘on-target’ specificity of these siRNAs. In contrast, individual siRNAs 232 

of 21 genes were represented in both of these groups, indicating less stringent ‘on-target’ specificity 233 

or other influences, such as experimental variation. For the SOPRA workflow, two different siRNAs 234 

were used for each gene in duplicate, therefore hits were classified as medium or weak hits if the 235 

two siRNAs did not show the same cluster profile and were not grouped in the same heatmap group. 236 
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To assess the reproducibility of plate replicates and SOPRA workflow the  RSQ-values for different 237 

groups of replicates were determined  and  the correlation matrix between these groups was 238 

calculated. Firstly, we defined replicate group R1 containing replicate r2, r3 and r4 (i.e. without 239 

replicate 1), replicate group R2 containing  r1, r3, and r4 (without replicate 2) and so on. Running 240 

SOPRA for cell feature ‘Total Intensity DAPI’ with pre-defined maSigPro parameters alfa=1, Q=1 and 241 

RSQ=0 one gets the p-values and RSQ-values for each replicate group. The correlation matrix 242 

between the  RSQ-values for sample data from the different groups R1- R4 is calculated and 243 

visualized (Figure 5). 244 

Furthermore,  we used Receiver Operating Characteristic (ROC) to  assess the statistical performance 245 

of SOPRA workflow in comparison to other approach, such as “Kolmogorov-Smirnov (KS) test” which 246 

uses probability density  and  “t.test” for assessment of  population differences. The RO curve for cell 247 

feature ‘Total Intensity DAPI’  is depicted in Figure 6 and show that the SOPRA method lies between 248 

the other two RO curves.  249 

To benchmark the efficiency of this method in gene perturbation hit prediction, we tested whether 250 

the results of the SOPRA workflow could be validated by either the original cell cycle data from Kittler 251 

et al. (Kittler, et al., 2007) or FACS data generated by our group (Figure 3B). We selected 46 of the 252 

genes (hits and non-hits) analyzed with SOPRA and performed FACS analysis for cell cycle profiles 253 

with one siRNA per gene. A hit was scored as positive for a particular method if at least one other 254 

method also leads to the same (positive or negative) result (Supplementary Table 3). Out of the 46 255 

genes analyzed, 30 genes from the Kittler et al. study were validated with at least one of the other 256 

methods (SOPRA or FACS), while for the SOPRA and FACS analyses 36 and 38 genes, respectively, 257 

were validated by one of the other two methods. Taken together, SOPRA and FACS analysis scored 258 

best in their ability to predict hits, compared to the data published by Kittler et al. (Kittler, et al., 259 

2007). 260 

Thus, the SOPRA workflow offers a unique and fast analysis approach, based on measured single 261 

features of cell populations, comparable to or better than published methods. In contrast to FACS 262 

data analysis it does not need manual intervention or thresholding, such as cell gating. SOPRA is 263 

therefore well suited for high-throughput and high-content data, as it can be easily run on multiple 264 

features from an identical cell population.  265 

Conclusions 266 
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Most methods published for analyzing high-content microscopic screens use population-averaged 267 

values or manually performed cell classification steps for normalization and hit classification. The 268 

SOPRA workflow represents a novel approach for analyzing large microscopy-based high-content 269 

screens using non-averaged data of cell populations for normalization and hit determination. The 270 

workflow generates frequency distribution profiles of cellular features normalized to a neutral 271 

control for each treatment. These normalized distribution profiles are used for hit identification by 272 

regression analysis to identify significantly altered profiles using the R-package maSigPro, as originally 273 

described for the analysis of single series time course gene-expression data. 274 

RNAi screens are frequently performed with multiple siRNAs per target gene; however the use of 275 

population-averaged values often leads to the identification of ‘off-target’ effects as hits, since 276 

population averaged values can only monitor major variations of the phenotype such as up- or down-277 

regulation compared to a control. In contrast, non- averaged data can indicate more diverse changes 278 

of a cell population upon treatment; thus different siRNAs targeting the same gene should have a 279 

similar ‘on-target’ effect on the distribution profile of the measured cellular features and 280 

consequently these are more likely to be ‘true’ hits. The SOPRA workflow we describe here has the 281 

power to cluster all significantly altered normalized distribution profiles, identifying siRNAs with 282 

similar ‘on-target’ profiles for the same gene via a heatmap approach. Therefore, the SOPRA 283 

workflow can be used to avoid false-positive hits or ‘off-target’ effects, leading to more reliable HCS 284 

hit results, reducing time and work intensive validation steps.  285 

In principle, the SOPRA workflow can be used to analyze single cell population data from various 286 

sources such as microscopy or FACS. In this study, we performed a microscopy-based high content 287 

screen of the effect of siRNA-mediated gene knockdown of selected genes taken from a published 288 

cell cycle data set from Kittler et al (Kittler, et al., 2007), as an example to demonstrate the utility of 289 

the SOPRA workflow.  290 

We were able to show that the false positive detection rate (detection of neutral controls as 291 

significantly changed) can be reduced considerably when taking into account more than one cellular 292 

feature. As described using the generated cell cycle data, we were able to demonstrate that the 293 

SOPRA workflow led to no false-positive hits among the neutral controls, when at least two of the 294 

image features were taken into account. For the cell populations treated with the cell cycle 295 

inhibitors, a very high hit detection rate of 99.55% was achieved (223 of 224 cell population profiles). 296 

We also used siRNA knockdowns in this screen, which produce less significant phenotypic effects 297 

compared to small chemical compounds. Nevertheless, analysis of changed cell populations based on 298 
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gene perturbation with siRNA using SOPRA still achieved a hit detection rate comparable to a manual 299 

FACS analysis with commercial software, which requires predetermined gating or thresholding.  300 

Taken together, SOPRA is a novel analysis workflow that uses a unique analysis approach for non-301 

averaged high-throughput data from cellular features, based on regression analysis of normalized 302 

frequency distribution profiles of cell populations. It offers an easy to handle workflow and can be 303 

run on hundreds of cell populations using multiple features. In particular, treated cell populations are 304 

defined as significantly changed on two measurements - the p-value and the RSQ-value - followed by 305 

a clustering step to identify treatments with the same normalized density profiles. A following 306 

heatmap analysis enabled us to filter out most hits that are likely to be false positive. Thus, SOPRA is 307 

a unique tool ideal for high content analysis of cell population data.  308 

Methods 309 

Cell Cycle perturbation screen 310 

We generated a set of screening plates consisting of siRNAs (Qiagen, Germany) targeting proteins 311 

responsible and not responsible for cell cycle progression, as well as the neutral siRNAs ‘AllStars’ and 312 

‘Luciferase’, and wells without treatment (Mock) (Supplementary Figure 1). On day one cells were 313 

seeded in 96-well plates and transfected using Hiperfect (Qiagen, Germany). The chemical cell cycle 314 

inhibitors nocodazole and aphidicolin were added as positive controls at the described time points 315 

and concentrations. On day four cells were fixed using 4% PFA and stained with Hoechst 33342 (5 316 

µg/ml, Sigma). The plates were imaged using an automated microscope (IX-81, Olympus, Germany) 317 

and analyzed using the Scan^R software with an image analysis assay designed in-house 318 

(Supplementary Figure 2).  319 

Using a Scan^R single cell export script, single cell data was exported and are downloadable from 320 

https://transfer.mpiib-berlin.mpg.de/s/AibR4AHLCR9xzDB?path=%2F. The  SOPRA project 321 

description (Supplementary File 1) is also available from GitHub 322 

https://github.com/kppleissner/SOPRA/ . 323 

Cell Cycle FACS validation 324 

For FACS analysis of cell cycle profiles, 1 × 10
5
 cells were seeded into each well of a 12-well plate 24 h 325 

before transfection. Cells were then transfected with Hiperfect transfection reagent (Qiagen) 326 

according to the manufacturer’s guidelines. In brief, 150 ng of specific siRNA was added to RPMI 327 

without serum and incubated with 6 µl Hiperfect in a total volume of 100 µl. After 10 to 15 min, the 328 

liposome-siRNA mixture was added to the cells with 1 ml of cell culture medium (RPMI (Gibco) 329 
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supplemented with 10% fetal calf serum (FCS) (Biochrome), 2 mM glutamine, and 1 mM sodium 330 

pyruvate), to give a final siRNA concentration of 10 nM. After 1 day, cells were trypsinized and 331 

seeded into new 6-well plates. Three days after transfection, cells were detached from the plate with 332 

the addition of trypsin-EDTA for 5 minutes, spun down for 10 minutes at 500 x g and resuspended in 333 

0.5 ml PBS. The resuspended cells were then added to 70% ethanol for fixation and left at –20°C 334 

overnight. Cells were collected by centrifugation, resuspended, rinsed in PBS and re-collected by 335 

centrifugation. Pelleted cells were resuspended in 500 µl PBS containing a final concentration of 20 336 

µg/ml propidium iodide and 200 µg/ml RNAse A and left in the dark for 30 minutes at room 337 

temperature. Cell Cycle analysis was then performed using a Becton Dickinson FACsort flow 338 

cytometer and BD CellQuest Pro Software (BD Biosciences). 339 

SOPRA  340 

The SOPRA workflow (Figure 1) consists of several steps and requires a variety of input files. The 341 

‘Single Cell Feature Files’ contain the features for every single cell measured, while the files 342 

‘PlateConf_LookUp’, ‘PlateList’ and ‘ScreenLog’ contain information about well content, plate content 343 

and flagged wells. In the first step, the data is gathered, including flagging of wells and single objects 344 

within wells. In the next step, a plate-wise median normalization is performed and the limits for the 345 

binning intervals are defined. Subsequently, the single objects within each binning interval (bin) are 346 

counted, and a bin-wise normalization is performed. Derived frequency distribution profiles of 347 

measured features are then subjected to the regression analysis using R-Package maSigPro. 348 

Significantly different profiles can be identified using the calculated p-value, RSQ-value and alpha-349 

value for each sample profile. The significant profiles can be clustered using different clustering 350 

algorithms. Finally, a post processing step (optional) can be performed in order to convert siRNA into 351 

gene names, cluster membership and frequency. The SOPRA workflow is written as a Shiny 352 

application in R. A detailed project description with specific instructions for how  to run the workflow 353 

is available from GitHub. 354 

 355 

Figures and Files 356 

Figure 1 –SOPRA workflow of high-throughput data sets 357 

(A) High content screening data is generated and used to prepare single object data files and input 358 

data files. (B) Screen description and the single cell data files are generated manually. (C) Wells that 359 

should be omitted are flagged and (D1) the single object data is filtered, normalized to the median of 360 
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the controls and a common binning axis for all plates is determined. (D2) For each measured feature 361 

the frequency distribution profile (histogram) is generated for each sample well, which is then 362 

normalized for each bin to the median distribution profile of the controls. (E) Significantly changed 363 

normalized distribution profiles are determined using regression analysis and (F) a post processing 364 

step is performed to determine the number of screening hits.  365 

Figure 2 – Schematic representation of the microscopic cell cycle screening assay 366 

(A) Cells were seeded in 384-well plates and treated with siRNAs or chemical cell cycle inhibitors at 367 

different concentrations and time points to inhibit cell cycle progression. Cells were fixed, stained 368 

with Hoechst and subjected to automated microscopy and image analysis. (B) Treatment with the 369 

control-siRNAs AllStars and luciferase did not lead to any changes of the cell population. Treatment 370 

with aphidocoline A1 (2 µg/ml, 24 h), A2 (4 µg/ml, 24 h), A3 (2 µg/ml, 12 h), A4 (4 µg/ml, 12 h) and 371 

nocodazole N1 (50 ng/ml, 24 h), N2 (75 ng/ml, 24 h), N3 (50 ng/ml, 12 h), N4 (75 ng/ml, 12 h) 372 

resulted in cell populations arrested at various stages of the cell cycle. (C) Distribution profiles were 373 

generated for each well from the data exported for the features ‘Area’, ‘Mean Intensity DAPI’ and 374 

‘Total Intensity DAPI’ for all nuclei.  375 

Figure 3 – Heatmap analysis and examples of significantly altered distribution profiles 376 

(A) The normalized regression profiles for different treatment conditions for aphidicolin (A1-A4) and 377 

nocodazole (N1 and N4), as well as Luciferase are displayed. A heatmap was generated showing the 378 

distribution of all cell populations with at least one significantly changed profile for the features 379 

'Area', 'Mean Intensity DAPI' and 'Total Intensity DAPI' among the SOPRA cluster profiles. Wells 380 

treated with aphidicolin or nocodazole are displayed in different shades of green or blue in the row 381 

sidebar. Wells Mock-treated or treated with siRNA against Luciferase or AllStars are indicated in red, 382 

orange and yellow, respectively. Wells treated with siRNA against specific genes are displayed in grey 383 

in the row sidebar. The heatmap is clustered using hierarchical clustering, and a dendogram, cut-off 384 

of 1.8 performed resulting in the heatmap groups (1), (2) and (3). The Venn diagram displays the 385 

distribution of the significantly changed profiles for each treatment among the heatmap groups (1)-386 

(3). (B) Examples of profiles for the features ‘Area’, ‘Total Intensity DAPI’ and ‘Mean Intensity DAPI’ 387 

of cell populations significantly changed upon siRNA treatment, as well as the corresponding 388 

microscopic and FACS images.  389 

Figure 4 – Results of SOPRA regression analysis and cluster profiles   390 

(A) Calculated RSQ and p-values of each well for the features ‘Area’, ‘Mean Intensity DAPI’ and 391 

‘Total Intensity DAPI’ using the maSigPro package. (B) Data visualization by cluster analysis. 392 
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Normalized distribution profiles of all significantly altered normalized profiles for the three 393 

image features were clustered using k-means with 4, 3 and 2 clusters, respectively. The 394 

average feature profile is shown (black line) together with the individual profiles of the cell 395 

populations in the cluster (grey lines) or (C) as the mean of 3 replicates. 396 

 397 

Figure 5 –  Reproducibility assessment  between replicates 398 

Correlation matrix between the  RSQ-values for sample data from the different replicate groups R1- 399 

R4  for cell feature ‘Total Intensity DAPI’ 400 

 401 

Figure 6 – Assessment of diagnostic quality by Reciever Operating Curve (ROC) 402 

Receiver Operating Characteristic (ROC) serves to  assess the SOPRA workflow in comparison to other 403 

statistical approaches, such as “t.test” and “Kolmogorov-Smirnov (KS) test”. The RO curves for cell 404 

feature ‘Total Intensity DAPI’ shows that the SOPRA method lies between the  t.test and KS-test. 405 

 406 

Code availability and implementation 407 

Source code  of SOPRA shiny application (ui.R , server.R) , single cell data (96-wells plate) data for 408 

testing and SOPRA project description (folder: Manual) are freely available from GitHub  409 

https://github.com/kppleissner/SOPRA/ . 410 

 411 

Supporting Data ZIP File for 384-wells plates (Single Cell Features) : 412 

Due to large size of  files   the 384-wells plate data  couldn`t be uploaded to GitHub and therefore are 413 

available as 384_Plates_for_SOPRA.zip  from MPI-IB Cloud tranfer server  via this  URL  414 

https://transfer.mpiib-berlin.mpg.de/s/AibR4AHLCR9xzDB?path=%2F  .  415 

The 384_wells_Plates_for_SOPRA.zip  file contains data based on a cell cycle screen analyzed with 416 

Scan^R (Olympus). Following cell features were measured:  ‘Area’ ,’ Mean Instensity DAPI’ and ‘Total 417 

Intensity DAPI’.  In general, any file of the correct format can be used for SOPRA. For each plate – or 418 

part of a plate – one file is needed. The folders also contain the descriptive files 'PlateConf_LookUp', 419 

'PlateList' and 'ScreenLog'.  420 
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