

1 **Single Object Profiles Regression Analysis (SOPRA): A novel method for**
2 **analyzing high content cell-based screens**

3

4 Rajendra Kumar Gurumurthy^{2#}, Klaus-Peter Pleissner^{1#}, Cindrilla Chumduri², Thomas F.
5 Meyer², André P. Mäurer^{1*}

6

7 [#]These authors contributed equally to the manuscript

8 ¹Steinbeis Center for Systems Biomedicine, Steinbeis Innovation gGmbH, 14612 Falkensee,
9 Germany

10 ²Max Planck Institute for Infection Biology, Department of Molecular Biology, 10117 Berlin,
11 Germany

12

13 *To whom correspondence should be addressed:

14 Klaus-Peter Pleissner

15 Max Planck Institute for Infection Biology

16 10117 Berlin, Germany

17 E-Mail: pleissner@mpiib-berlin.mpg.de

18 Tel: +49 030 28 460 0

19

20 **Running title:** Single Object Profiles Regression Analysis

21

22

23

24 **Abstract**

25 Motivation

26 High content screening (HCS) experiments generate complex data from multiple object
27 features for each cell within a treated population. Usually these data are analyzed by using
28 population-averaged values of the features of interest, increasing the amount of false positives and
29 the need for intensive follow-up validation. Therefore, there is a strong need for novel approaches
30 with reproducible hit prediction by identifying significantly altered cell populations.

31 Results

32 Here we describe SOPRA, a workflow for analyzing image-based HCS data based on regression
33 analysis of non-averaged object features from cell populations, which can be run on hundreds of
34 samples using different cell features. Following plate-wise normalization the values are counted
35 within predetermined binning intervals, generating unique frequency distribution profiles
36 (histograms) for each population, which are then normalized to control populations. Statistically
37 significant differences are identified using a regression model approach. Significantly changed
38 profiles can be used to generate a heatmap from which altered cell populations with similar
39 phenotypes are identified, enabling detection of siRNAs and compounds with the same 'on-target'
40 profile, reducing the number of false positive hits. A screen for cell cycle progression was used to
41 validate the workflow, which identified statistically significant changes induced by siRNA-mediated
42 gene perturbations and chemical inhibitors of different cell cycle stages.

43

44

45 **Background**

46 The availability of robotic liquid handling combined with automated fluorescence microscopy and
47 high-performance image computing has enabled rapid advances in the development of high-
48 throughput screening. Numerous studies have demonstrated the power of high-throughput image-
49 based assays for characterizing drug effects (Perlman, et al., 2004), identifying active small molecules
50 (Tanaka, et al., 2005) and classifying sub-cellular protein localization (Boland and Murphy, 2001;
51 Conrad, et al., 2004), including genome-wide siRNA-mediated loss-of-function screens (Neumann, et
52 al., 2006) or gene deletion (Ohya, et al., 2005) libraries. For each single cell within a cellular sample
53 population, it is possible to achieve quantitative measurements of phenotypes such as expression
54 level and localization of proteins, post-translational modifications and even cellular or sub-cellular
55 morphologies.

56 Analyzing cellular populations in the early drug discovery process allows the complexity of
57 living systems to be addressed and produces vast amounts of data that are more meaningful than
58 those obtained from isolated proteins (Taylor, 2007). In combination with advanced bioinformatics
59 tools treatments can be identified which lead to altered cell populations, and therefore might be
60 relevant drugs or drug targets.

61 Nonetheless, several limitations in data analysis have restricted the full potential of high-
62 throughput image-based assays so far (Lang, et al., 2006; Zhou and Wong, 2006). The usual course of
63 events for a HCS analysis workflow starts with the extraction of image feature data, followed by
64 normalization and statistical analysis, including final hit selection (Buchser, et al., 2004). A wide
65 variety of microscopes, image-analysis and data-analysis software packages are available to address
66 these issues (Gough and Johnston, 2007). However, distributions of multidimensional, multivariate
67 phenotypic measurements from cellular populations are mostly transformed into single population-
68 averaged values such as mean or median values. These population-averaged values are used for
69 plate-wise or batch-wise normalizations, as well as for statistical analysis for hit selection
70 (Birmingham, et al., 2009; Singh, et al., 2014), which leads to a substantial loss of information.
71 Population-averaged values can indicate whether the value of the measured phenotype increases or
72 decreases upon treatment, but do not reflect the detailed response of a cellular population to a
73 certain treatment or gene depletion. Therefore, these population-averaged values are limiting the
74 power of the statistical approaches that are widely used, such as Z-Score or percent-of-control (POC)
75 analysis, making it impossible to identify more distinct reactions of a cell population. This loss of

76 information also hampers the differentiation of treatments or gene depletions with the same 'on-
77 target' effect from those with 'off-target' effects, which is extremely important for RNAi gene
78 perturbation experiments, where multiple siRNAs are used per gene.

79 Some publications have described methods for non-averaged cell population data analysis from high-
80 content image-based screens. Knapp et al. (Knapp, et al., 2011) showed considerable effects of
81 population context on observed phenotypes when using non-averaged population data for the
82 normalization steps, but still used population-averaged values for hit detection. Another method
83 uses multivariate cell classification based on phenotypic changes for hit identification (Loo, et al.,
84 2007), which results in a drug effect score, and a vector, indicating the simultaneous phenotypic
85 changes induced by the drug. Another publication used multi-parametric phenotypic profiles to
86 cluster genes based on morphological changes of individual cells (Fuchs, et al., 2010). Yet another
87 group has proposed the use of Ripley's K-function to identify knockdowns resulting in perturbation of
88 this cell clustering (Surathee, et al., 2010). Also the Kolomogorow-Smirnov (KS) test has been used
89 to score the difference between control and samples populations (Gorenstein, et al., 2010).
90 However, all these methods have limitations that prevent them from being widely used for large-
91 scale high content cell population analysis. Multivariate classification methods are mostly based on
92 the analysis of predominantly redundant image features, spatial clustering requires a subjective and
93 work intensive classification step for the cellular populations and KS only uses one unique value to
94 identify cell population with altered distributions.

95 Here we present a new approach called Single Object Profiles Regression Analysis (SOPRA) that
96 overcomes many of these limitations by analyzing non-averaged cell population data. It uses a
97 classification free regression analysis of normalized frequency distribution profiles of cell
98 populations. SOPRA can be used to analyze data derived from various high-throughput techniques,
99 such as images from automated microscopy or single cell data from FACS analysis. The regression
100 workflow consists of i) a pre-processing step, ii) data gathering and normalization steps, iii)
101 identification of significant profiles, iv) post-processing. The normalization is performed in a plate-
102 wise and bin-wise fashion, resulting in a unique normalized frequency distribution profile for each
103 feature of a cell population. Finally, normalized distribution profiles that exhibit statistically
104 significant changes are identified by using a p-value and R-squared (RSQ)-value derived from the
105 regression analysis with the R-package maSigPro (Conesa, et al., 2006). Additionally, normalized
106 feature profiles that have been identified as significantly altered can be further clustered in a
107 heatmap according to their similarity. This can be used to identify treatments with the same 'on-
108 target' effects. Most loss-of-function screens use multiple siRNAs for the same gene, which should

109 end up in the same cluster if they have a similar cell population phenotype. The more siRNAs for the
110 same gene are identified as having a similar cell population profile, the more reliably this gene can be
111 regarded as a hit. Beyond this, the derived values of a regression analysis of distribution profiles of
112 cellular features are not affected by experimental bias to the same degree as population-averaged
113 approaches (Sacher, et al., 2008), leading to more reproducible results. We used a cell-based
114 chemical compound and RNAi screen of cell cycle progression to validate the SOPRA workflow. The
115 cellular features 'Area', 'Total Intensity DAPI' and 'Mean Intensity DAPI' were extracted for each
116 nucleus using image analysis software and subjected to the SOPRA workflow. We found that SOPRA
117 can be used to identify statistically significant changes of frequency distribution profiles within
118 cellular populations, whether induced by gene perturbation through siRNAs or by chemical inhibitor
119 treatment. Taken together, SOPRA is a novel object-based data analysis workflow based on
120 regression analysis of cellular feature distribution profiles to identify significantly changed cell
121 populations from high-throughput data sets.

122 **Results**

123 SOPRA utilizes a data gathering step combined with plate-wise and a so-called bin-wise normalization
124 methods, as well as a two-step regression approach that first adjusts a global regression model with
125 defined variables in order to identify profiles exhibiting statistically significant changes (Conesa, et
126 al., 2006). The SOPRA workflow consists of several steps as outlined in Figure 1. *A: High Content*
127 *Screen*. This first step includes screening, image analysis and data extraction. *B: Preparation of screen*
128 *description files and the single cell data files. C: Preprocessing (optional)*. The derived data files for
129 various image features at single cell level are subjected to a preprocessing step to exclude all data
130 from flagged wells that should be excluded from the analysis. *D1: Data Gathering and Plate-Wise*
131 *Normalization*. In this step each single cell object is annotated with additional information such as
132 RNA.ID, plate number, well number, replicate number, well content and gene symbol. If the imaging
133 software supports a gating procedure for objects that do not meet certain criteria, such as cell size,
134 these can also be flagged and excluded from subsequent analysis steps. The measured value of each
135 cell for the feature of interest is then normalized to the median of the objects in the neutral control
136 wells. *D2: Data Gathering and Frequency Distribution Profiles (Histogram) Generation*. Next, the
137 common binning axis of the distribution profiles is generated by determining the minimum and
138 maximum limits of the measured feature across all the data of the screen to avoid strong relative
139 differences at the tails of the distribution. The data are divided into equally spaced binning intervals,
140 which is sufficient for population data that follows a given order of regression model (such as
141 quadratic). A pseudo count of one is added to each bin to avoid bins with zero objects, and the

142 relative frequency for each treatment is calculated by dividing the number of objects in each bin by
143 the population size (sum of all objects in all bins). Next, a bin-wise normalization step is performed by
144 dividing the relative frequency of each bin for each treatment by the median of the corresponding
145 bin of the control wells, such as the 'AllStars' control.

146 Binning creates equal-length bins to which data are assigned. The default number of bins (the
147 binning level) is 7.

148 For variable x , assume that the data set is $\{x_i\}$, let x_1, x_2, \dots, x_m represent the ordered values of the
149 variable. Let the x^{th} percentile be $\min(x)$ and $\max(x)$. The range of the variable is $\text{range}(x) = \max(x) -$
150 $\min(x)$. For binning, the width of binning interval is $L = \frac{\max(x) - \min(x)}{n}$. The split points are $s_k =$
151 $\min(x) + L * k$, where $k = 1, 2, \dots, \text{numbin}-1$ and numbin is n . For each bin a pseudocount of 1 is
152 added $\text{Countp}(X_{ik}) = \text{Count}(X_{ik}) + 1$.

153 The output data, consisting of a normalized frequency distribution profile for each cell population
154 and the annotation data are stored in the file 'AllDataTable'. *E: Determination of Statistically*
155 *Significant Altered Profiles*. A regression analysis is performed using the Bioconductor R-package
156 maSigPro (Conesa, et al., 2006) to identify significantly changed normalized distribution profiles. *F:*
157 *Postprocessing (optional)*. The gene, cluster and frequency of the gene within the cluster are listed
158 for all significantly changed normalized distribution profiles identified by the maSigPro analysis.

159 To generate the data for the cell cycle progression screen we seeded HeLa cells in 384-well plates
160 either transfected or treated with the inhibitors in three independent biological replicates (Figure
161 2A). We used 166 different siRNAs to target 107 genes, from which 54 had been reported to interfere
162 with cell cycle progression (Kittler, et al., 2007) (Supplementary Figure 1, Supplementary Table 1).
163 Additionally, we used cells treated with the chemical inhibitors aphidicolin or nocodazole, which lead
164 to G1/S and G2/M cell cycle arrest, respectively. Cells left untreated (Mock) or treated with siRNAs
165 against 'AllStars' or 'Luciferase' were used as negative controls. While images from AllStars- and
166 Luciferase-treated cell populations showed an unaltered, normal phenotype, treatment of cells with
167 aphidicolin (A1-4) or nocodazole (N1-4) resulted in an altered phenotype as a consequence of G1/S
168 or G2/M phase arrest, respectively (Figure 2B). On day 4, cells were fixed, nuclei stained with
169 Hoechst (Figure 2A), images acquired using automated microscopy and automated image analysis
170 (Olympus Scan^{^R}) was performed for extracting the image features 'Area', 'Total Intensity DAPI' and
171 'Mean Intensity DAPI' for each nucleus (Supplementary Figure 2) in tab-delimited files using a Scan^{^R}
172 export script. The cell population distribution profiles for the control as well as the chemically or

173 siRNA-treated samples behave differently for the extracted object features (Figure 2C). They show a
174 strong shift towards smaller nuclei for nocodazole, and towards larger nuclei for aphidicolin-treated
175 samples for the feature 'Area', while for the feature 'Mean Intensity DAPI' the influence of these two
176 chemical treatments on the mean intensity is the opposite. Interestingly, for the feature 'Total
177 Intensity DAPI' a strong shift towards higher values was observed for nocodazole-treated samples,
178 while aphidicolin treatment did not alter the profile compared to that of the 'Allstars', 'Luciferase' or
179 'Mock'-treated wells. Distribution profiles of the cell populations treated with different siRNAs
180 (samples) showed no clear tendency (Figure 2C).

181 We then calculated p-values and RSQ-values using maSigPro regression analysis, as described, to
182 identify significantly altered distribution profiles compared to the neutral controls. The maSigPro
183 package computes a regression fit for each frequency distribution profile, and uses a linear step-up
184 (BH) false discovery rate (FDR) procedure (Benjamini and Hochberg, 1995). Here, we used a level of
185 0.05 for FDR control. Once statistically significant distribution profiles have been found, a variable
186 selection procedure is applied to find significant variables for each profile. The final step is to
187 generate lists of statistically significant profiles. As expected, cell populations treated with the
188 'AllStars' or 'Luciferase' controls usually had high p-values and low RSQ- values. Only two (10%) and
189 four (20%) out of 20 cellular populations treated with the neutral controls 'Allstars' or 'Luciferase',
190 respectively, were identified to be significantly changed for at least one of the three cellular features
191 used (Supplementary Table 2; Figure 3A - Plate2, Well 207). When hits were only considered positive
192 if at least two of the image features were identified as significantly changed, none of the neutral
193 controls were identified as a hit. In contrast, cells treated with aphidicoline (A1-4) or nocodazole (N1-
194 4) showed significant changes, indicated by low p-values and high RSQ-values for all of the three
195 extracted cellular features (Figure 4A). All 28 profiles for each of the aphidicolin conditions A2 (4
196 µg/ml/24 h), A3 (2 µg/ml/12 h) and A4 (4 µg/ml/12 h), for each of the nocodazole conditions N1 (50
197 ng/ml/24 h), N2 (75 ng/ml/24 h), N3 (50 ng/ml/12 h) and N4 (75 ng/ml/12 h) and 27 out of 28
198 profiles for the aphidicolin condition A1 (2 µg/ml/24 h) were identified as significantly changed hits
199 (Supplementary Figure 3). Interestingly, aphidicolin-treated samples showed marked differences for
200 the cellular features 'Area' and 'Mean Intensity' and only slight changes for the cell feature 'Total
201 Intensity DAPI' (Figure 3A – A1: Plate1, Well 208, A2: Plate2, Well 353, A3: Plate1, Well 44, A4:
202 Plate2, Well 213), while nocodazole-treated samples showed strong changes in all three cellular
203 features used (Figure 3A -N4: Plate1, Well 47, N1: Plate 2, Well 354). In total, using these thresholds
204 for the p-value and the RSQ-value, 359 normalized distribution profiles were identified as
205 significantly altered for each of the cellular features 'Area' and 'Mean Intensity DAPI' and 335

206 normalized distribution profiles for the cellular feature 'Total Intensity DAPI'. This resulted in a total
207 of 448 significantly changed cell populations; with 247 profiles significantly changed for all three, 111
208 profiles for two and 90 profiles for only one of the analyzed cellular features. Next, for the 448
209 profiles identified as significantly changed, a k-means clustering approach was performed (Figure 4B
210 and 4C). The normalized distribution profiles for the features 'Area', 'Mean Intensity DAPI' and 'Total
211 Intensity DAPI' were arranged in four, three and two profile clusters, respectively. Cluster numbers
212 were selected to give high cluster reproducibility. Finally, for all clustered profiles a heatmap was
213 defined, based on the k-means clustering result arranged as a vector (consisting of zeros and ones
214 such as 0001-010-10 for a profile resulting in cluster 4 for 'Area', cluster 2 for 'Mean Intensity DAPI'
215 and cluster 1 for 'Total Intensity DAPI'). The heatmap was sorted using a hierarchical clustering
216 (hclust) algorithm to identify cell populations with similar distribution profiles (Figure 3A). Finally, a
217 dendrogram cut-off value of 1.8 was used to generate three main groups in the matrix.

218 As a result, the aphidicolin-treated samples A1 and A2 grouped differently from the aphidicolin-
219 treated samples A3 and A4, (Figure 3A, sidebar), while the nocodazole-treated samples N1 and N2, as
220 well as N3 and N4, grouped together. Further, the significant distribution profiles of samples treated
221 with siRNA were more dispersed in the heatmap, depending on the individual feature distribution.
222 Thus, with this two-step method - first identifying statistically significant normalized profiles for each
223 analyzed image feature, then using a heatmap to generate profile groups – we were able to
224 differentiate cell populations showing a similar distribution among the cluster profiles. Taken
225 together, the SOPRA workflow was responsive enough to distinguish not only nocodazole-treated
226 from aphidicolin-treated samples, but also to differentiate between samples that were treated with
227 the same concentration but for different durations (A1/A2 vs A3/A4).

228 As laid out above, analyzed features for siRNAs that target the same gene and have the same 'on-
229 target' phenotype should end up in the same cluster and also in the same heatmap group. Therefore,
230 we further analyzed if individual siRNAs for the same gene were represented in the same or different
231 heatmap groups. The individual siRNAs of 38 and 42 genes appeared exclusively in profile groups 1 or
232 2, respectively, strengthening the 'on-target' specificity of these siRNAs. In contrast, individual siRNAs
233 of 21 genes were represented in both of these groups, indicating less stringent 'on-target' specificity
234 or other influences, such as experimental variation. For the SOPRA workflow, two different siRNAs
235 were used for each gene in duplicate, therefore hits were classified as medium or weak hits if the
236 two siRNAs did not show the same cluster profile and were not grouped in the same heatmap group.

237 To assess the reproducibility of plate replicates and SOPRA workflow the RSQ-values for different
238 groups of replicates were determined and the correlation matrix between these groups was
239 calculated. Firstly, we defined replicate group R1 containing replicate r2, r3 and r4 (i.e. without
240 replicate 1), replicate group R2 containing r1, r3, and r4 (without replicate 2) and so on. Running
241 SOPRA for cell feature 'Total Intensity DAPI' with pre-defined maSigPro parameters alfa=1, Q=1 and
242 RSQ=0 one gets the p-values and RSQ-values for each replicate group. The correlation matrix
243 between the RSQ-values for sample data from the different groups R1- R4 is calculated and
244 visualized (Figure 5).

245 Furthermore, we used Receiver Operating Characteristic (ROC) to assess the statistical performance
246 of SOPRA workflow in comparison to other approach, such as "Kolmogorov-Smirnov (KS) test" which
247 uses probability density and "t.test" for assessment of population differences. The RO curve for cell
248 feature 'Total Intensity DAPI' is depicted in Figure 6 and show that the SOPRA method lies between
249 the other two RO curves.

250 To benchmark the efficiency of this method in gene perturbation hit prediction, we tested whether
251 the results of the SOPRA workflow could be validated by either the original cell cycle data from Kittler
252 *et al.* (Kittler, et al., 2007) or FACS data generated by our group (Figure 3B). We selected 46 of the
253 genes (hits and non-hits) analyzed with SOPRA and performed FACS analysis for cell cycle profiles
254 with one siRNA per gene. A hit was scored as positive for a particular method if at least one other
255 method also leads to the same (positive or negative) result (Supplementary Table 3). Out of the 46
256 genes analyzed, 30 genes from the Kittler *et al.* study were validated with at least one of the other
257 methods (SOPRA or FACS), while for the SOPRA and FACS analyses 36 and 38 genes, respectively,
258 were validated by one of the other two methods. Taken together, SOPRA and FACS analysis scored
259 best in their ability to predict hits, compared to the data published by Kittler *et al.* (Kittler, et al.,
260 2007).

261 Thus, the SOPRA workflow offers a unique and fast analysis approach, based on measured single
262 features of cell populations, comparable to or better than published methods. In contrast to FACS
263 data analysis it does not need manual intervention or thresholding, such as cell gating. SOPRA is
264 therefore well suited for high-throughput and high-content data, as it can be easily run on multiple
265 features from an identical cell population.

266 **Conclusions**

267 Most methods published for analyzing high-content microscopic screens use population-averaged
268 values or manually performed cell classification steps for normalization and hit classification. The
269 SOPRA workflow represents a novel approach for analyzing large microscopy-based high-content
270 screens using non-averaged data of cell populations for normalization and hit determination. The
271 workflow generates frequency distribution profiles of cellular features normalized to a neutral
272 control for each treatment. These normalized distribution profiles are used for hit identification by
273 regression analysis to identify significantly altered profiles using the R-package maSigPro, as originally
274 described for the analysis of single series time course gene-expression data.

275 RNAi screens are frequently performed with multiple siRNAs per target gene; however the use of
276 population-averaged values often leads to the identification of 'off-target' effects as hits, since
277 population averaged values can only monitor major variations of the phenotype such as up- or down-
278 regulation compared to a control. In contrast, non- averaged data can indicate more diverse changes
279 of a cell population upon treatment; thus different siRNAs targeting the same gene should have a
280 similar 'on-target' effect on the distribution profile of the measured cellular features and
281 consequently these are more likely to be 'true' hits. The SOPRA workflow we describe here has the
282 power to cluster all significantly altered normalized distribution profiles, identifying siRNAs with
283 similar 'on-target' profiles for the same gene via a heatmap approach. Therefore, the SOPRA
284 workflow can be used to avoid false-positive hits or 'off-target' effects, leading to more reliable HCS
285 hit results, reducing time and work intensive validation steps.

286 In principle, the SOPRA workflow can be used to analyze single cell population data from various
287 sources such as microscopy or FACS. In this study, we performed a microscopy-based high content
288 screen of the effect of siRNA-mediated gene knockdown of selected genes taken from a published
289 cell cycle data set from Kittler et al (Kittler, et al., 2007), as an example to demonstrate the utility of
290 the SOPRA workflow.

291 We were able to show that the false positive detection rate (detection of neutral controls as
292 significantly changed) can be reduced considerably when taking into account more than one cellular
293 feature. As described using the generated cell cycle data, we were able to demonstrate that the
294 SOPRA workflow led to no false-positive hits among the neutral controls, when at least two of the
295 image features were taken into account. For the cell populations treated with the cell cycle
296 inhibitors, a very high hit detection rate of 99.55% was achieved (223 of 224 cell population profiles).
297 We also used siRNA knockdowns in this screen, which produce less significant phenotypic effects
298 compared to small chemical compounds. Nevertheless, analysis of changed cell populations based on

299 gene perturbation with siRNA using SOPRA still achieved a hit detection rate comparable to a manual
300 FACS analysis with commercial software, which requires predetermined gating or thresholding.

301 Taken together, SOPRA is a novel analysis workflow that uses a unique analysis approach for non-
302 averaged high-throughput data from cellular features, based on regression analysis of normalized
303 frequency distribution profiles of cell populations. It offers an easy to handle workflow and can be
304 run on hundreds of cell populations using multiple features. In particular, treated cell populations are
305 defined as significantly changed on two measurements - the p-value and the RSQ-value - followed by
306 a clustering step to identify treatments with the same normalized density profiles. A following
307 heatmap analysis enabled us to filter out most hits that are likely to be false positive. Thus, SOPRA is
308 a unique tool ideal for high content analysis of cell population data.

309 **Methods**

310 Cell Cycle perturbation screen

311 We generated a set of screening plates consisting of siRNAs (Qiagen, Germany) targeting proteins
312 responsible and not responsible for cell cycle progression, as well as the neutral siRNAs 'AllStars' and
313 'Luciferase', and wells without treatment (Mock) (Supplementary Figure 1). On day one cells were
314 seeded in 96-well plates and transfected using Hiperfect (Qiagen, Germany). The chemical cell cycle
315 inhibitors nocodazole and aphidicolin were added as positive controls at the described time points
316 and concentrations. On day four cells were fixed using 4% PFA and stained with Hoechst 33342 (5
317 µg/ml, Sigma). The plates were imaged using an automated microscope (IX-81, Olympus, Germany)
318 and analyzed using the Scan^R software with an image analysis assay designed in-house
319 (Supplementary Figure 2).

320 Using a Scan^R single cell export script, single cell data was exported and are downloadable from
321 <https://transfer.mpiib-berlin.mpg.de/s/AibR4AHLCR9xzDB?path=%2F>. The SOPRA project
322 description (Supplementary File 1) is also available from GitHub
323 <https://github.com/kpleissner/SOPRA/>.

324 Cell Cycle FACS validation

325 For FACS analysis of cell cycle profiles, 1×10^5 cells were seeded into each well of a 12-well plate 24 h
326 before transfection. Cells were then transfected with Hiperfect transfection reagent (Qiagen)
327 according to the manufacturer's guidelines. In brief, 150 ng of specific siRNA was added to RPMI
328 without serum and incubated with 6 µl Hiperfect in a total volume of 100 µl. After 10 to 15 min, the
329 liposome-siRNA mixture was added to the cells with 1 ml of cell culture medium (RPMI (Gibco)

330 supplemented with 10% fetal calf serum (FCS) (Biochrome), 2 mM glutamine, and 1 mM sodium
331 pyruvate), to give a final siRNA concentration of 10 nM. After 1 day, cells were trypsinized and
332 seeded into new 6-well plates. Three days after transfection, cells were detached from the plate with
333 the addition of trypsin-EDTA for 5 minutes, spun down for 10 minutes at 500 x g and resuspended in
334 0.5 ml PBS. The resuspended cells were then added to 70% ethanol for fixation and left at -20°C
335 overnight. Cells were collected by centrifugation, resuspended, rinsed in PBS and re-collected by
336 centrifugation. Pelleted cells were resuspended in 500 µl PBS containing a final concentration of 20
337 µg/ml propidium iodide and 200 µg/ml RNase A and left in the dark for 30 minutes at room
338 temperature. Cell Cycle analysis was then performed using a Becton Dickinson FACsort flow
339 cytometer and BD CellQuest Pro Software (BD Biosciences).

340 SOPRA

341 The SOPRA workflow (Figure 1) consists of several steps and requires a variety of input files. The
342 'Single Cell Feature Files' contain the features for every single cell measured, while the files
343 'PlateConf_LookUp', 'PlateList' and 'ScreenLog' contain information about well content, plate content
344 and flagged wells. In the first step, the data is gathered, including flagging of wells and single objects
345 within wells. In the next step, a plate-wise median normalization is performed and the limits for the
346 binning intervals are defined. Subsequently, the single objects within each binning interval (bin) are
347 counted, and a bin-wise normalization is performed. Derived frequency distribution profiles of
348 measured features are then subjected to the regression analysis using R-Package maSigPro.
349 Significantly different profiles can be identified using the calculated p-value, RSQ-value and alpha-
350 value for each sample profile. The significant profiles can be clustered using different clustering
351 algorithms. Finally, a post processing step (optional) can be performed in order to convert siRNA into
352 gene names, cluster membership and frequency. The SOPRA workflow is written as a [Shiny](#)
353 [application in R](#). A detailed project description with specific instructions for how to run the workflow
354 is available from GitHub.

355

356 **Figures and Files**

357 **Figure 1 –SOPRA workflow of high-throughput data sets**

358 **(A)** High content screening data is generated and used to prepare single object data files and input
359 data files. **(B)** Screen description and the single cell data files are generated manually. **(C)** Wells that
360 should be omitted are flagged and **(D1)** the single object data is filtered, normalized to the median of

361 the controls and a common binning axis for all plates is determined. (D2) For each measured feature
362 the frequency distribution profile (histogram) is generated for each sample well, which is then
363 normalized for each bin to the median distribution profile of the controls. (E) Significantly changed
364 normalized distribution profiles are determined using regression analysis and (F) a post processing
365 step is performed to determine the number of screening hits.

366 **Figure 2 – Schematic representation of the microscopic cell cycle screening assay**

367 (A) Cells were seeded in 384-well plates and treated with siRNAs or chemical cell cycle inhibitors at
368 different concentrations and time points to inhibit cell cycle progression. Cells were fixed, stained
369 with Hoechst and subjected to automated microscopy and image analysis. (B) Treatment with the
370 control-siRNAs AllStars and luciferase did not lead to any changes of the cell population. Treatment
371 with aphidicoline A1 (2 µg/ml, 24 h), A2 (4 µg/ml, 24 h), A3 (2 µg/ml, 12 h), A4 (4 µg/ml, 12 h) and
372 nocodazole N1 (50 ng/ml, 24 h), N2 (75 ng/ml, 24 h), N3 (50 ng/ml, 12 h), N4 (75 ng/ml, 12 h)
373 resulted in cell populations arrested at various stages of the cell cycle. (C) Distribution profiles were
374 generated for each well from the data exported for the features 'Area', 'Mean Intensity DAPI' and
375 'Total Intensity DAPI' for all nuclei.

376 **Figure 3 – Heatmap analysis and examples of significantly altered distribution profiles**

377 (A) The normalized regression profiles for different treatment conditions for aphidicolin (A1-A4) and
378 nocodazole (N1 and N4), as well as Luciferase are displayed. A heatmap was generated showing the
379 distribution of all cell populations with at least one significantly changed profile for the features
380 'Area', 'Mean Intensity DAPI' and 'Total Intensity DAPI' among the SOPRA cluster profiles. Wells
381 treated with aphidicolin or nocodazole are displayed in different shades of green or blue in the row
382 sidebar. Wells Mock-treated or treated with siRNA against Luciferase or AllStars are indicated in red,
383 orange and yellow, respectively. Wells treated with siRNA against specific genes are displayed in grey
384 in the row sidebar. The heatmap is clustered using hierarchical clustering, and a dendrogram, cut-off
385 of 1.8 performed resulting in the heatmap groups (1), (2) and (3). The Venn diagram displays the
386 distribution of the significantly changed profiles for each treatment among the heatmap groups (1)-
387 (3). (B) Examples of profiles for the features 'Area', 'Total Intensity DAPI' and 'Mean Intensity DAPI'
388 of cell populations significantly changed upon siRNA treatment, as well as the corresponding
389 microscopic and FACS images.

390 **Figure 4 – Results of SOPRA regression analysis and cluster profiles**

391 (A) Calculated RSQ and p-values of each well for the features 'Area', 'Mean Intensity DAPI' and
392 'Total Intensity DAPI' using the maSigPro package. (B) Data visualization by cluster analysis.

393 Normalized distribution profiles of all significantly altered normalized profiles for the three
394 image features were clustered using k-means with 4, 3 and 2 clusters, respectively. The
395 average feature profile is shown (black line) together with the individual profiles of the cell
396 populations in the cluster (grey lines) or (C) as the mean of 3 replicates.

397

398 **Figure 5 – Reproducibility assessment between replicates**

399 Correlation matrix between the RSQ-values for sample data from the different replicate groups R1-
400 R4 for cell feature 'Total Intensity DAPI'

401

402 **Figure 6 – Assessment of diagnostic quality by Reciever Operating Curve (ROC)**

403 Receiver Operating Characteristic (ROC) serves to assess the SOPRA workflow in comparison to other
404 statistical approaches, such as "t.test" and "Kolmogorov-Smirnov (KS) test". The RO curves for cell
405 feature 'Total Intensity DAPI' shows that the SOPRA method lies between the t.test and KS-test.

406

407 **Code availability and implementation**

408 Source code of SOPRA shiny application (ui.R , server.R) , single cell data (96-wells plate) data for
409 testing and SOPRA project description (folder: Manual) are freely available from GitHub
410 <https://github.com/kpleissner/SOPRA/> .

411

412 **Supporting Data ZIP File for 384-wells plates (Single Cell Features) :**

413 Due to large size of files the 384-wells plate data couldn't be uploaded to GitHub and therefore are
414 available as ***384_Plates_for_SOPRA.zip*** from MPI-IB Cloud tranfer server via this URL

415 <https://transfer.mpiib-berlin.mpg.de/s/AibR4AHLCR9xzDB?path=%2F> .

416 The ***384_wells_Plates_for_SOPRA.zip*** file contains data based on a cell cycle screen analyzed with
417 Scan^R (Olympus). Following cell features were measured: 'Area' , ' Mean Instensity DAPI' and 'Total
418 Intensity DAPI'. In general, any file of the correct format can be used for SOPRA. For each plate – or
419 part of a plate – one file is needed. The folders also contain the descriptive files '*PlateConf_LookUp*',
420 '*PlateList*' and '*ScreenLog*'.

421

422 **Author contributions**

423 RKG- Conceived, designed, performed and analyzed the screen and wrote the manuscript

424 KPP- Wrote R-Scripts for SOPRA workflow, replication and ROC analysis, shiny interface, project
425 description and realized storage of SOPRA into GitHub

426 CC – Performed the FACS validation of hits

427 TFM – Supervised the project

428 APM- Conceived the project, conceived, designed and analyzed the screen, wrote the R-Scripts , user
429 interface UI.R and server.R in the Shiny environment, the SOPRA-Project Description and the
430 manuscript.

431

432 **Acknowledgements**

433 The authors would like to thank Kathrin Lättig for excellent technical support, Oliver Friedrichs and
434 Ralf Träger for IT support, Hilmar Berger for critical reading and Rike Zietlow for editing the
435 manuscript.

436 This work was supported by the Bundesministerium für Wirtschaft und Energie (Federal Ministry for
437 Economic Affairs and Energy) BMWi ZIM program (grant no. KF3149632LW4).

438

439 **References**

440 Benjamini, Y. and Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach
441 to multiple testing. *Journal of the Royal Statistical Society. Series B (Methodological)* 1995;289-300.

442 Birmingham, A., et al. Statistical methods for analysis of high-throughput RNA interference screens.
443 *Nat Methods* 2009;6(8):569-575.

444 Boland, M.V. and Murphy, R.F. A neural network classifier capable of recognizing the patterns of all
445 major subcellular structures in fluorescence microscope images of HeLa cells. *Bioinformatics*
446 2001;17(12):1213-1223.

447 Buchser, W., et al. Assay Development Guidelines for Image-Based High Content Screening, High
448 Content Analysis and High Content Imaging. In: Sittampalam, G.S., et al., editors, *Assay Guidance*
449 *Manual*. Bethesda (MD); 2004.

450 Conesa, A., et al. maSigPro: a method to identify significantly differential expression profiles in time-
451 course microarray experiments. *Bioinformatics* 2006;22(9):1096-1102.

452 Conrad, C., et al. Automatic identification of subcellular phenotypes on human cell arrays. *Genome*
453 *Res*. 2004;14(6):1130-1136.

454 Fuchs, F., et al. Clustering phenotype populations by genome-wide RNAi and multiparametric
455 imaging. *Mol. Syst. Biol.* 2010;6:370.

456 Gorenstein, J., et al. Reducing the multidimensionality of high-content screening into versatile
457 powerful descriptors. *Biotechniques* 2010;49(3):663-665.

458 Gough, A.H. and Johnston, P.A. Requirements, features, and performance of high content screening
459 platforms. *Methods Mol. Biol.* 2007;356:41-61.

460 Kittler, R., et al. Genome-scale RNAi profiling of cell division in human tissue culture cells. *Nat. Cell*
461 *Biol.* 2007;9(12):1401-1412.

462 Knapp, B., et al. Normalizing for individual cell population context in the analysis of high-content
463 cellular screens. *BMC Bioinformatics* 2011;12:485.

464 Lang, P., et al. Cellular imaging in drug discovery. *Nat Rev Drug Discov* 2006;5(4):343-356.

465 Loo, L.H., Wu, L.F. and Altschuler, S.J. Image-based multivariate profiling of drug responses from
466 single cells. *Nat Methods* 2007;4(5):445-453.

467 Neumann, B., et al. High-throughput RNAi screening by time-lapse imaging of live human cells. *Nat*
468 *Methods* 2006;3(5):385-390.

469 Ohya, Y., et al. High-dimensional and large-scale phenotyping of yeast mutants. *Proc. Natl. Acad. Sci.*
470 *U. S. A.* 2005;102(52):19015-19020.

471 Perlman, Z.E., et al. Multidimensional drug profiling by automated microscopy. *Science*
472 2004;306(5699):1194-1198.

473 Sacher, R., Stergiou, L. and Pelkmans, L. Lessons from genetics: interpreting complex phenotypes in
474 RNAi screens. *Curr. Opin. Cell Biol.* 2008;20(4):483-489.

475 Singh, S., Carpenter, A.E. and Genovesio, A. Increasing the Content of High-Content Screening: An
476 Overview. *J Biomol Screen* 2014;19(5):640-650.

477 Suratane, A., et al. Detecting host factors involved in virus infection by observing the clustering of
478 infected cells in siRNA screening images. *Bioinformatics* 2010;26(18):i653-658.

479 Tanaka, M., et al. An unbiased cell morphology-based screen for new, biologically active small
480 molecules. *PLoS Biol.* 2005;3(5):e128.

481 Taylor, D.L. Past, present, and future of high content screening and the field of cellomics. *Methods*
482 *Mol. Biol.* 2007;356:3-18.

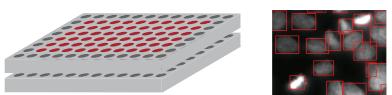
483 Zhou, X. and Wong, S.T. Informatics challenges of high-throughput microscopy. *Signal Processing*
484 *Magazine, IEEE* 2006;23(3):63-72.

485

Figure 1

A. High Content Screen

- High Content Screening



- Single Cell Image Analysis

B. Input Data Files

- Screen description files
- Single object data files

C. Preprocessing (optional)

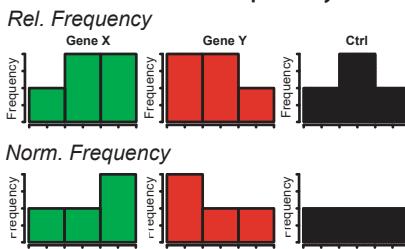
- Well flagging.

D1. Data Gathering

- Perform for each plate:
 - Object annotation
 - Object filtering
 - Object-based normalization
- Determination of common binning axis for all plates

D2. Data Gathering

- Histogram generation for each well:
 - Absolute frequency
 - Relative frequency
- Bin-wise normalization:
 - Normalized frequency



- Output: 'AllDataTable'

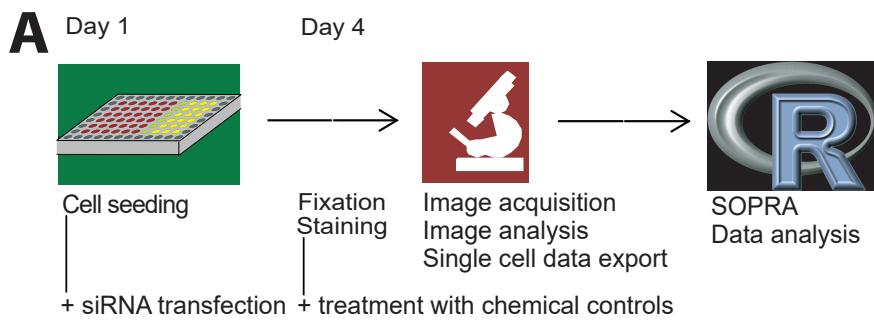
E. Determination of Significantly Altered Profiles

- Regression fit
- Stepwise-regression fit
- Determination of significant profiles
- Clustering of significant profiles

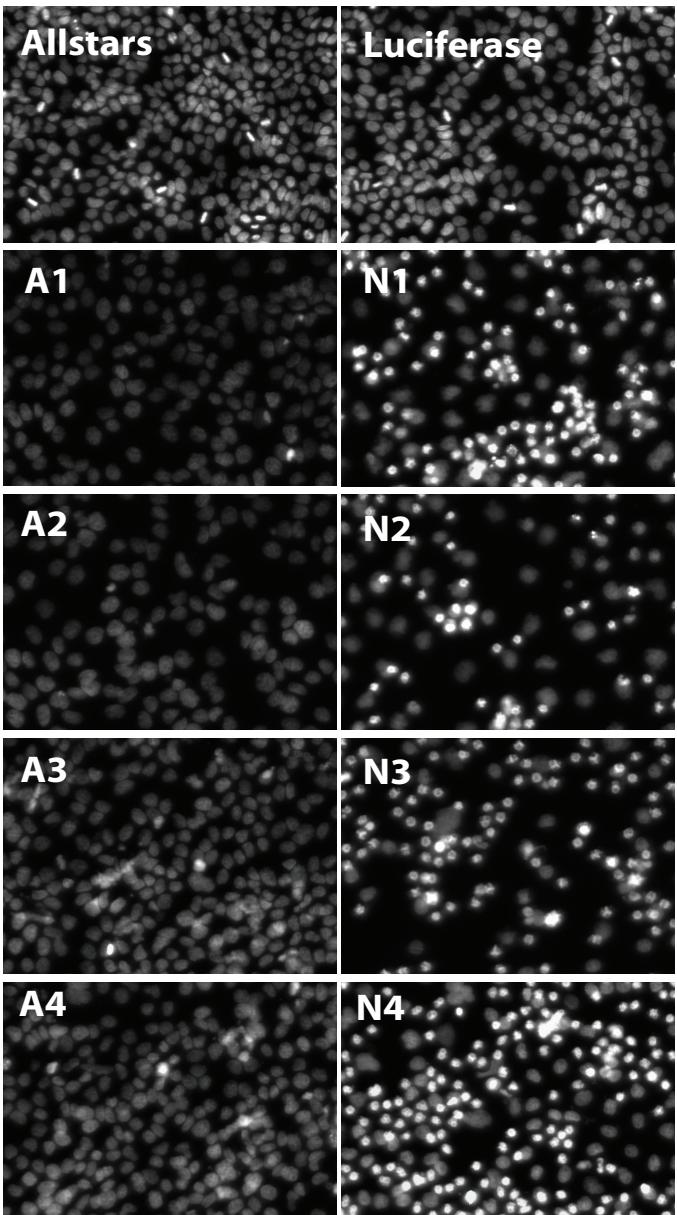
F. Postprocessing

- Listing of gene, cluster and frequency of a gene in a cluster

Figure 2



B



C

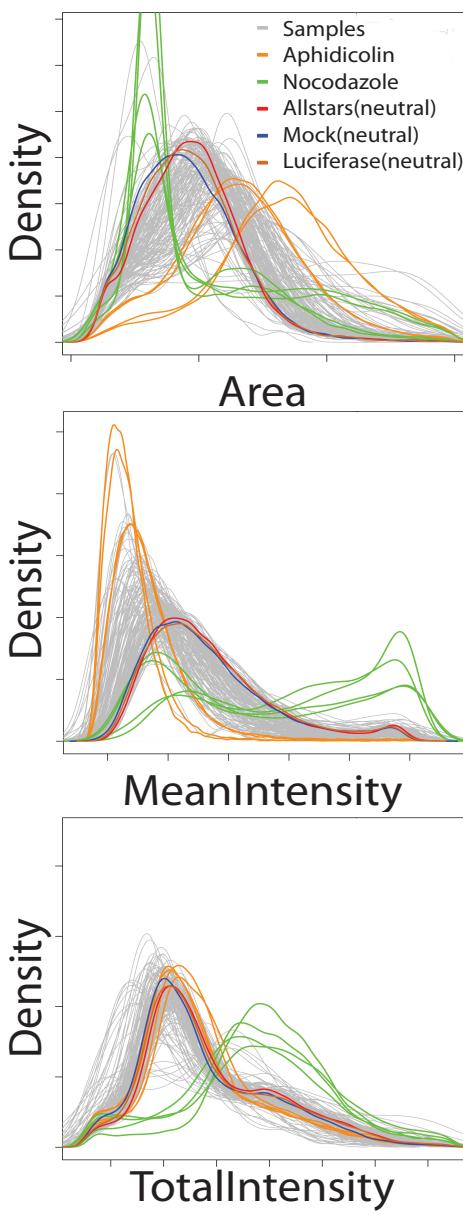
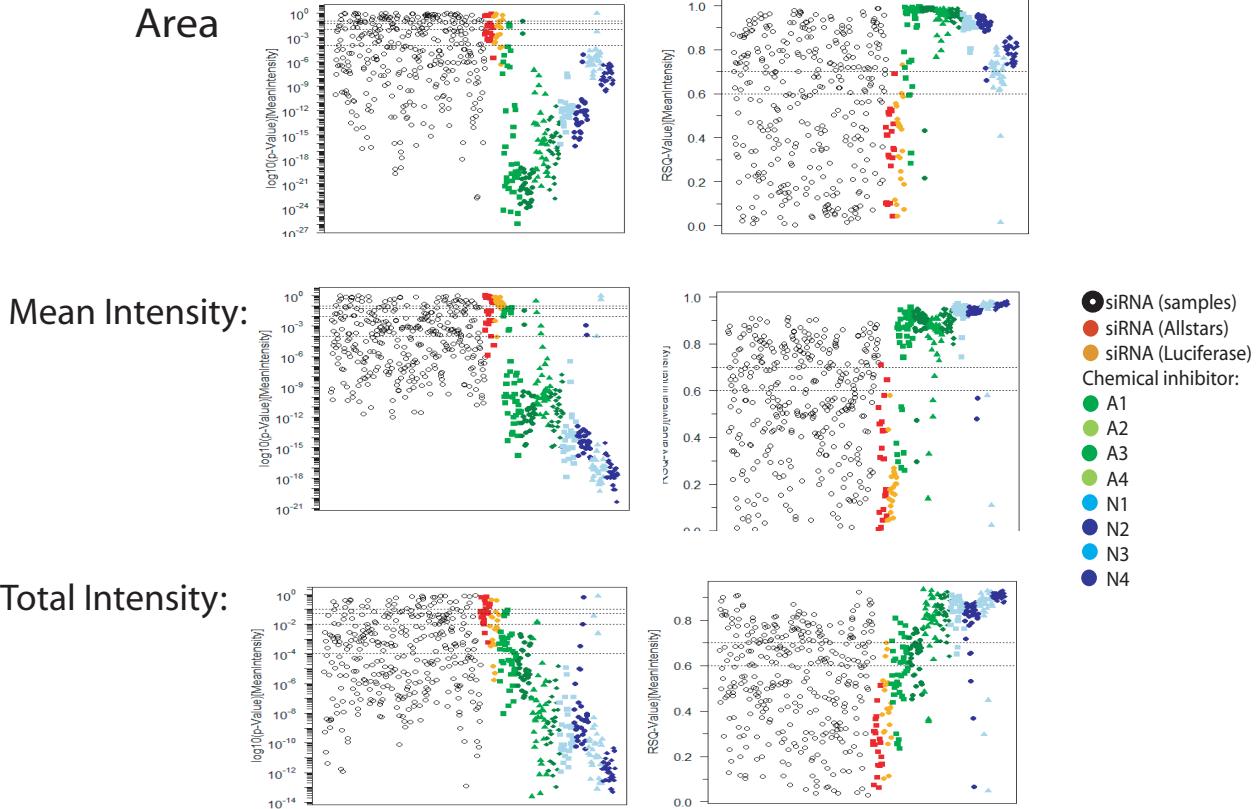
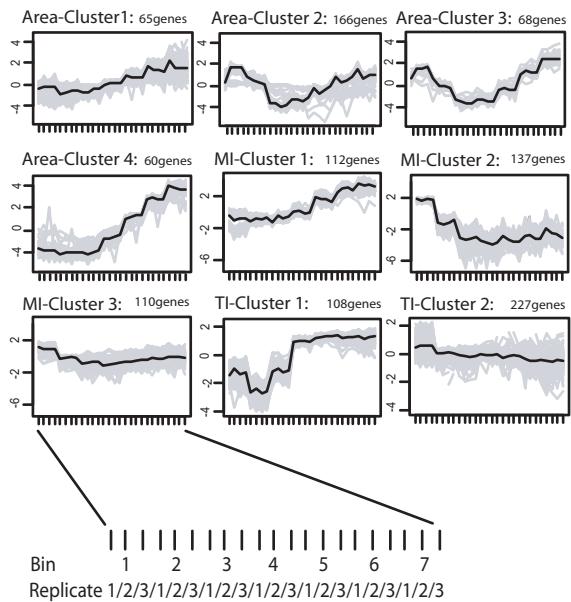


Figure 3

A



B



C

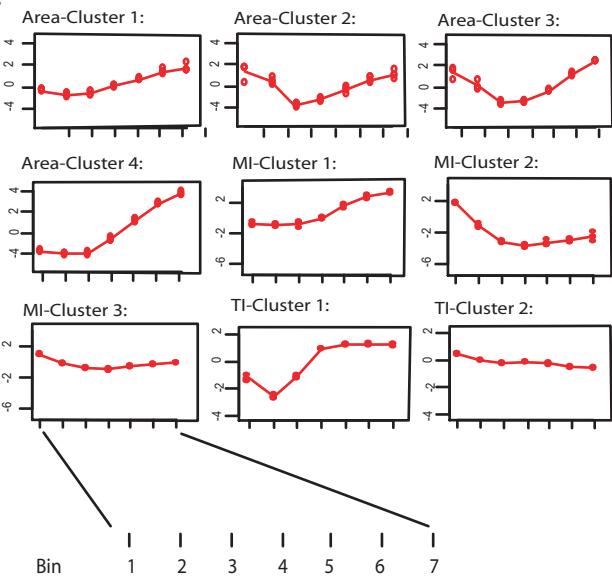
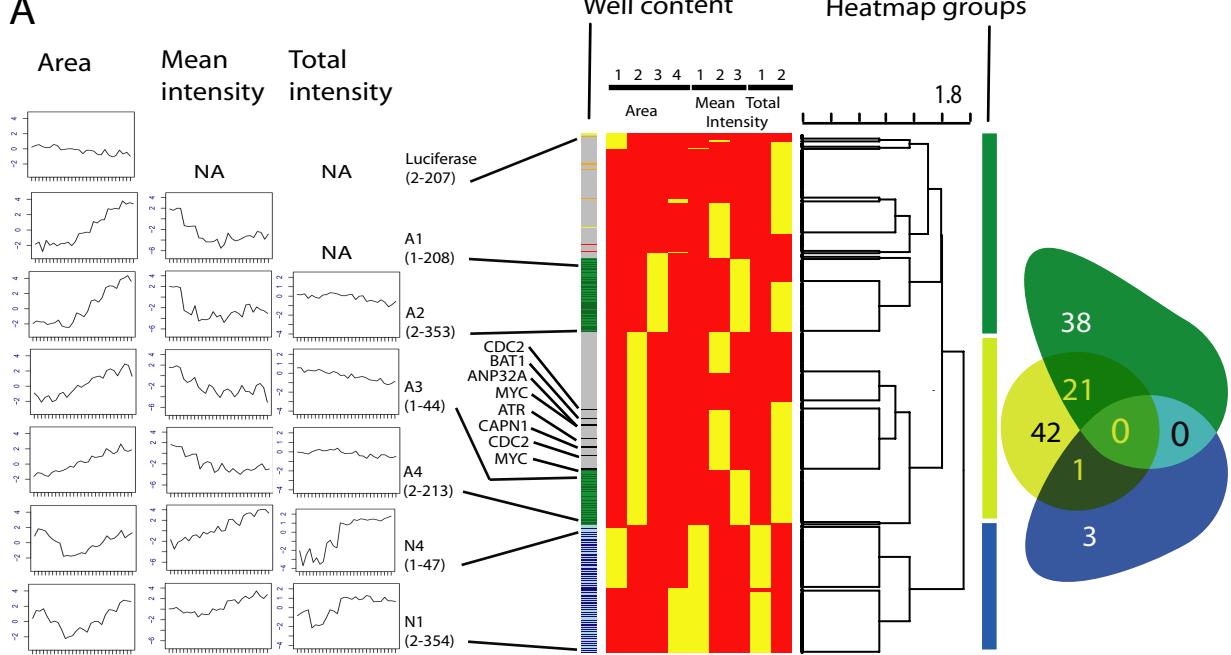
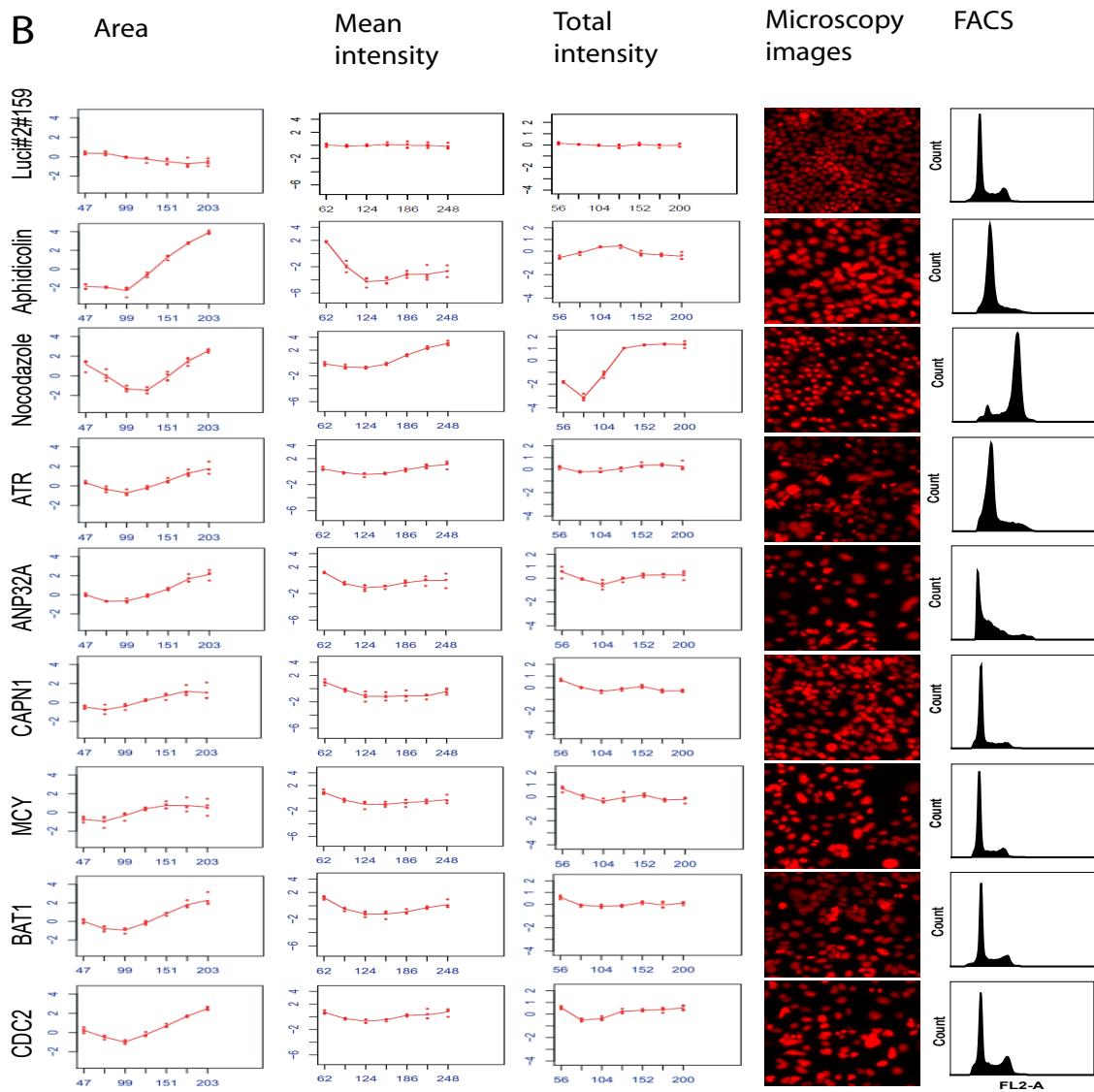


Figure 4

A



B



Correlation matrix based on RSQ-values of samples for feature TotalIntensity

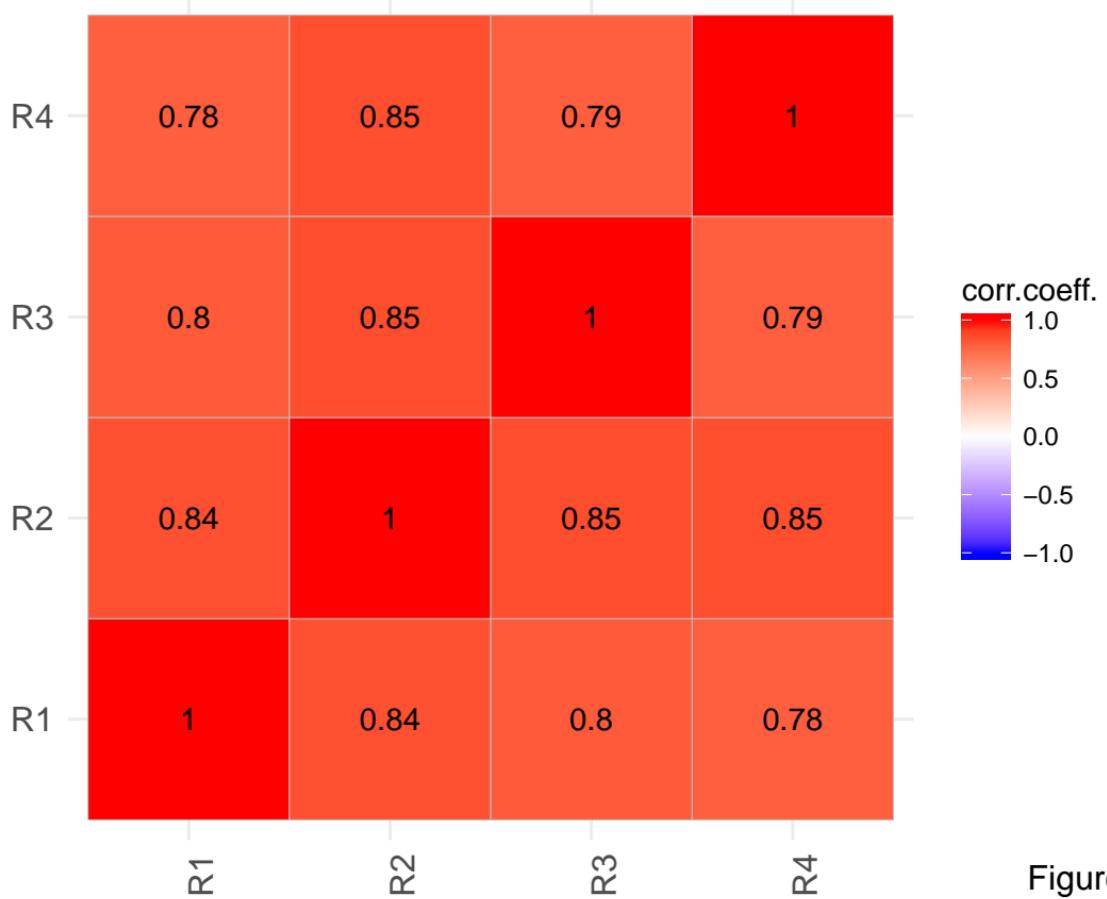


Figure 5

ROC for TotalIntensity: Positive-vs-Neutral

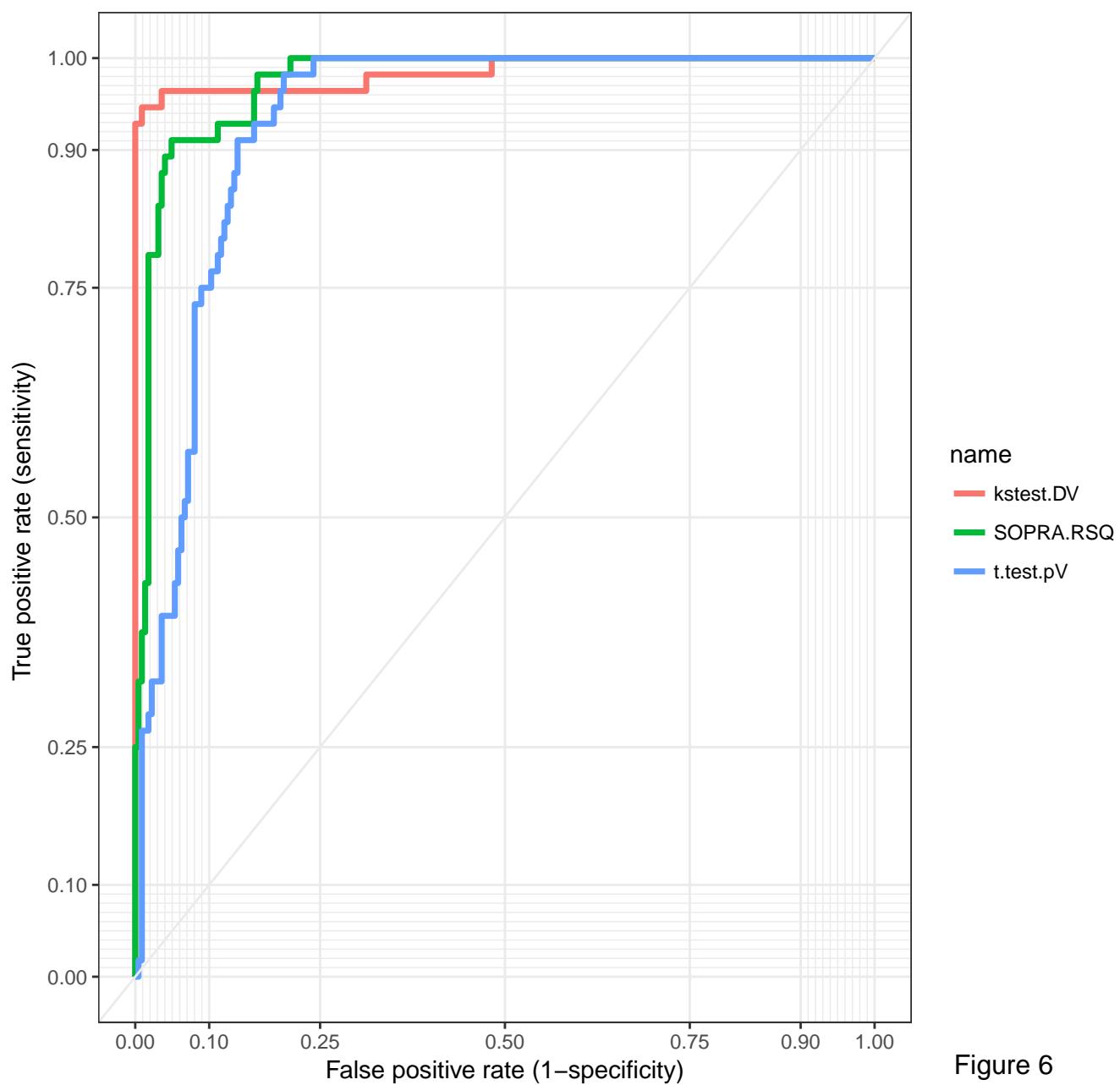


Figure 6