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24 Abstract

25 Motivation

26 High content screening (HCS) experiments generate complex data from multiple object
27  features for each cell within a treated population. Usually these data are analyzed by using
28  population-averaged values of the features of interest, increasing the amount of false positives and
29  the need for intensive follow-up validation. Therefore, there is a strong need for novel approaches

30  with reproducible hit prediction by identifying significantly altered cell populations.

31 Results

32 Here we describe SOPRA, a workflow for analyzing image-based HCS data based on regression
33 analysis of non-averaged object features from cell populations, which can be run on hundreds of
34  samples using different cell features. Following plate-wise normalization the values are counted
35 within predetermined binning intervals, generating unique frequency distribution profiles
36  (histograms) for each population, which are then normalized to control populations. Statistically
37  significant differences are identified using a regression model approach. Significantly changed
38  profiles can be used to generate a heatmap from which altered cell populations with similar
39  phenotypes are identified, enabling detection of siRNAs and compounds with the same ‘on-target’
40  profile, reducing the number of false positive hits. A screen for cell cycle progression was used to
41  validate the workflow, which identified statistically significant changes induced by siRNA-mediated

42  gene perturbations and chemical inhibitors of different cell cycle stages.
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44

45 Background

46  The availability of robotic liquid handling combined with automated fluorescence microscopy and
47 high-performance image computing has enabled rapid advances in the development of high-
48  throughput screening. Numerous studies have demonstrated the power of high-throughput image-
49  based assays for characterizing drug effects (Perlman, et al., 2004), identifying active small molecules
50 (Tanaka, et al., 2005) and classifying sub-cellular protein localization (Boland and Murphy, 2001;
51 Conrad, et al., 2004), including genome-wide siRNA-mediated loss-of-function screens (Neumann, et
52 al., 2006) or gene deletion (Ohya, et al., 2005) libraries. For each single cell within a cellular sample
53 population, it is possible to achieve quantitative measurements of phenotypes such as expression
54  level and localization of proteins, post-translational modifications and even cellular or sub-cellular

55  morphologies.

56 Analyzing cellular populations in the early drug discovery process allows the complexity of
57  living systems to be addressed and produces vast amounts of data that are more meaningful than
58  those obtained from isolated proteins (Taylor, 2007). In combination with advanced bioinformatics
59  tools treatments can be identified which lead to altered cell populations, and therefore might be

60 relevant drugs or drug targets.

61 Nonetheless, several limitations in data analysis have restricted the full potential of high-
62  throughput image-based assays so far (Lang, et al., 2006; Zhou and Wong, 2006). The usual course of
63  events for a HCS analysis workflow starts with the extraction of image feature data, followed by
64 normalization and statistical analysis, including final hit selection (Buchser, et al.,, 2004). A wide
65  variety of microscopes, image-analysis and data-analysis software packages are available to address
66 these issues (Gough and Johnston, 2007). However, distributions of multidimensional, multivariate
67 phenotypic measurements from cellular populations are mostly transformed into single population-
68  averaged values such as mean or median values. These population-averaged values are used for
69 plate-wise or batch-wise normalizations, as well as for statistical analysis for hit selection
70 (Birmingham, et al., 2009; Singh, et al., 2014), which leads to a substantial loss of information.
71  Population-averaged values can indicate whether the value of the measured phenotype increases or
72  decreases upon treatment, but do not reflect the detailed response of a cellular population to a
73 certain treatment or gene depletion. Therefore, these population-averaged values are limiting the
74  power of the statistical approaches that are widely used, such as Z-Score or percent-of-control (POC)

75  analysis, making it impossible to identify more distinct reactions of a cell population. This loss of
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76  information also hampers the differentiation of treatments or gene depletions with the same ‘on-
77  target’ effect from those with ‘off-target’ effects, which is extremely important for RNAi gene

78  perturbation experiments, where multiple siRNAs are used per gene.

79  Some publications have described methods for non-averaged cell population data analysis from high-
80  content image-based screens. Knapp et al. (Knapp, et al., 2011) showed considerable effects of
81  population context on observed phenotypes when using non-averaged population data for the
82 normalization steps, but still used population-averaged values for hit detection. Another method
83  uses multivariate cell classification based on phenotypic changes for hit identification (Loo, et al.,
84  2007), which results in a drug effect score, and a vector, indicating the simultaneous phenotypic
85  changes induced by the drug. Another publication used multi-parametric phenotypic profiles to
86  cluster genes based on morphological changes of individual cells (Fuchs, et al., 2010). Yet another
87  group has proposed the use of Ripley’s K-function to identify knockdowns resulting in perturbation of
88  this cell clustering (Suratanee, et al., 2010). Also the Kolomogorow-Smirnov (KS) test has been used
89 to score the difference between control and samples populations (Gorenstein, et al., 2010).
90 However, all these methods have limitations that prevent them from being widely used for large-
91  scale high content cell population analysis. Multivariate classification methods are mostly based on
92  the analysis of predominantly redundant image features, spatial clustering requires a subjective and
93  work intensive classification step for the cellular populations and KS only uses one unique value to

94  identify cell population with altered distributions.

95 Here we present a new approach called Single Object Profiles Regression Analysis (SOPRA) that
96 overcomes many of these limitations by analyzing non-averaged cell population data. It uses a
97  classification free regression analysis of normalized frequency distribution profiles of cell
98  populations. SOPRA can be used to analyze data derived from various high-throughput techniques,
99  such as images from automated microscopy or single cell data from FACS analysis. The regression
100  workflow consists of i) a pre-processing step, ii) data gathering and normalization steps, iii)
101  identification of significant profiles, iv) post-processing. The normalization is performed in a plate-
102  wise and bin-wise fashion, resulting in a unique normalized frequency distribution profile for each
103  feature of a cell population. Finally, normalized distribution profiles that exhibit statistically
104  significant changes are identified by using a p-value and R-squared (RSQ)-value derived from the
105  regression analysis with the R-package maSigPro (Conesa, et al., 2006). Additionally, normalized
106  feature profiles that have been identified as significantly altered can be further clustered in a
107  heatmap according to their similarity. This can be used to identify treatments with the same ‘on-
108  target’ effects. Most loss-of-function screens use multiple siRNAs for the same gene, which should
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109 end up in the same cluster if they have a similar cell population phenotype. The more siRNAs for the
110  same gene are identified as having a similar cell population profile, the more reliably this gene can be
111  regarded as a hit. Beyond this, the derived values of a regression analysis of distribution profiles of
112 cellular features are not affected by experimental bias to the same degree as population-averaged
113  approaches (Sacher, et al.,, 2008), leading to more reproducible results. We used a cell-based
114  chemical compound and RNAI screen of cell cycle progression to validate the SOPRA workflow. The
115  cellular features ‘Area’, ‘Total Intensity DAPI’ and ‘Mean Intensity DAPI’ were extracted for each
116  nucleus using image analysis software and subjected to the SOPRA workflow. We found that SOPRA
117  can be used to identify statistically significant changes of frequency distribution profiles within
118  cellular populations, whether induced by gene perturbation through siRNAs or by chemical inhibitor
119 treatment. Taken together, SOPRA is a novel object-based data analysis workflow based on
120  regression analysis of cellular feature distribution profiles to identify significantly changed cell

121  populations from high-throughput data sets.

122 Results

123 SOPRA utilizes a data gathering step combined with plate-wise and a so-called bin-wise normalization
124  methods, as well as a two-step regression approach that first adjusts a global regression model with
125  defined variables in order to identify profiles exhibiting statistically significant changes (Conesa, et
126  al., 2006). The SOPRA workflow consists of several steps as outlined in Figure 1. A: High Content
127  Screen. This first step includes screening, image analysis and data extraction. B: Preparation of screen
128  description files and the single cell data files. C: Preprocessing (optional). The derived data files for
129  various image features at single cell level are subjected to a preprocessing step to exclude all data
130 from flagged wells that should be excluded from the analysis. D1: Data Gathering and Plate-Wise
131 Normalization. In this step each single cell object is annotated with additional information such as
132 RNA.ID, plate number, well number, replicate number, well content and gene symbol. If the imaging
133  software supports a gating procedure for objects that do not meet certain criteria, such as cell size,
134  these can also be flagged and excluded from subsequent analysis steps. The measured value of each
135  cell for the feature of interest is then normalized to the median of the objects in the neutral control
136 wells. D2: Data Gathering and Frequency Distribution Profiles (Histogram) Generation. Next, the
137  common binning axis of the distribution profiles is generated by determining the minimum and
138 maximum limits of the measured feature across all the data of the screen to avoid strong relative
139  differences at the tails of the distribution. The data are divided into equally spaced binning intervals,
140  which is sufficient for population data that follows a given order of regression model (such as

141 quadratic). A pseudo count of one is added to each bin to avoid bins with zero objects, and the
5
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142  relative frequency for each treatment is calculated by dividing the number of objects in each bin by
143 the population size (sum of all objects in all bins). Next, a bin-wise normalization step is performed by
144  dividing the relative frequency of each bin for each treatment by the median of the corresponding

145 bin of the control wells, such as the ‘AllStars’ control.

146  Binning creates equal-length bins to which data are assigned. The default number of bins (the

147  binning level)is 7.

148 For variable x, assume that the data set is {X}, let X;, Xo,....Xm represent the ordered values of the

149  variable. Let the x™ percentile be min(x) and max(x). The range of the variable is range(X) = max(x) —

max(x) — min(x)

150  min(x). For binning, the width of binning interval is L = E— The split points are s =

151 min(x) + L * k, where k = 1, 2,..., numbin-1 and numbin is n. For each bin a pseudocount of 1 is

152 added Countp(Xik) = Count(Xi) + 1.

153  The output data, consisting of a normalized frequency distribution profile for each cell population
154  and the annotation data are stored in the file ‘AllDataTable’. E: Determination of Statistically
155  Significant Altered Profiles. A regression analysis is performed using the Bioconductor R-package
156  maSigPro (Conesa, et al., 2006) to identify significantly changed normalized distribution profiles. F:
157  Postprocessing (optional). The gene, cluster and frequency of the gene within the cluster are listed

158  for all significantly changed normalized distribution profiles identified by the maSigPro analysis.

159  To generate the data for the cell cycle progression screen we seeded Hela cells in 384-well plates
160  either transfected or treated with the inhibitors in three independent biological replicates (Figure
161  2A). We used 166 different siRNAs to target 107 genes, from which 54 had been reported to interfere
162  with cell cycle progression (Kittler, et al., 2007) (Supplementary Figure 1, Supplementary Table 1).
163  Additionally, we used cells treated with the chemical inhibitors aphidicolin or nocodazole, which lead
164  to G1/S and G2/M cell cycle arrest, respectively. Cells left untreated (Mock) or treated with siRNAs
165  against ‘AllStars’ or ‘Luciferase’” were used as negative controls. While images from AllStars- and
166  Luciferase-treated cell populations showed an unaltered, normal phenotype, treatment of cells with
167  aphidicolin (A1-4) or nocodazole (N1-4) resulted in an altered phenotype as a consequence of G1/S
168 or G2/M phase arrest, respectively (Figure 2B). On day 4, cells were fixed, nuclei stained with
169 Hoechst (Figure 2A), images acquired using automated microscopy and automated image analysis
170  (Olympus Scan”R) was performed for extracting the image features ‘Area’, ‘Total Intensity DAPI’ and
171  ‘Mean Intensity DAPI’ for each nucleus (Supplementary Figure 2) in tab-delimited files using a Scan*R
172 export script. The cell population distribution profiles for the control as well as the chemically or
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173  siRNA-treated samples behave differently for the extracted object features (Figure 2C). They show a
174  strong shift towards smaller nuclei for nocodazole, and towards larger nuclei for aphidicolin-treated
175  samples for the feature ‘Area’, while for the feature ‘Mean Intensity DAPI’ the influence of these two
176  chemical treatments on the mean intensity is the opposite. Interestingly, for the feature ‘Total
177  Intensity DAPI’ a strong shift towards higher values was observed for nocodazole-treated samples,
178  while aphidicolin treatment did not alter the profile compared to that of the ‘Allstars’, ‘Luciferase’ or
179  ‘Mock’-treated wells. Distribution profiles of the cell populations treated with different siRNAs

180  (samples) showed no clear tendency (Figure 2C).

181  We then calculated p-values and RSQ-values using maSigPro regression analysis, as described, to
182  identify significantly altered distribution profiles compared to the neutral controls. The maSigPro
183 package computes a regression fit for each frequency distribution profile , and uses a linear step-up
184  (BH) false discovery rate (FDR) procedure (Benjamini and Hochberg, 1995). Here, we used a level of
185  0.05 for FDR control. Once statistically significant distribution profiles have been found, a variable
186  selection procedure is applied to find significant variables for each profile. The final step is to
187  generate lists of statistically significant profiles. As expected, cell populations treated with the
188  ‘AllStars’ or ‘Luciferase’ controls usually had high p-values and low RSQ- values. Only two (10%) and
189  four (20%) out of 20 cellular populations treated with the neutral controls ‘Allstars’ or ‘Luciferase’,
190 respectively, were identified to be significantly changed for at least one of the three cellular features
191  used (Supplementary Table 2; Figure 3A - Plate2, Well 207). When hits were only considered positive
192  if at least two of the image features were identified as significantly changed, none of the neutral
193  controls were identified as a hit. In contrast, cells treated with aphidicoline (A1-4) or nocodazole (N1-
194  4) showed significant changes, indicated by low p-values and high RSQ-values for all of the three
195  extracted cellular features (Figure 4A). All 28 profiles for each of the aphidicolin conditions A2 (4
196  ug/ml/24 h), A3 (2 ug/ml/12 h) and A4 (4 ug/ml/12 h), for each of the nocodazole conditions N1 (50
197 ng/ml/24 h), N2 (75 ng/ml/24 h), N3 (50 ng/ml/12 h) and N4 (75 ng/ml/12 h) and 27 out of 28
198  profiles for the aphidicolin condition Al (2 pg/ml/24 h) were identified as significantly changed hits
199  (Supplementary Figure 3). Interestingly, aphidicolin-treated samples showed marked differences for
200 the cellular features ‘Area’ and ‘Mean Intensity’ and only slight changes for the cell feature ‘Total
201 Intensity DAPI’ (Figure 3A — Al: Platel, Well 208, A2: Plate2, Well 353, A3: Platel, Well 44, A4:
202 Plate2, Well 213) , while nocodazole-treated samples showed strong changes in all three cellular
203 features used (Figure 3A -N4: Platel, Well 47, N1: Plate 2, Well 354). In total, using these thresholds
204  for the p-value and the RSQ-value, 359 normalized distribution profiles were identified as

205  significantly altered for each of the cellular features ‘Area’ and ‘Mean Intensity DAPI’ and 335
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206  normalized distribution profiles for the cellular feature ‘Total Intensity DAPI’. This resulted in a total
207  of 448 significantly changed cell populations; with 247 profiles significantly changed for all three, 111
208  profiles for two and 90 profiles for only one of the analyzed cellular features. Next, for the 448
209 profiles identified as significantly changed, a k-means clustering approach was performed (Figure 4B
210  and 4C). The normalized distribution profiles for the features ‘Area’, ‘Mean Intensity DAPI’ and ‘Total
211  Intensity DAPI’ were arranged in four, three and two profile clusters, respectively. Cluster numbers
212  were selected to give high cluster reproducibility. Finally, for all clustered profiles a heatmap was
213 defined, based on the k-means clustering result arranged as a vector (consisting of zeros and ones
214 such as 0001-010-10 for a profile resulting in cluster 4 for ‘Area’, cluster 2 for ‘Mean Intensity DAPI’
215  and cluster 1 for ‘Total Intensity DAPI’). The heatmap was sorted using a hierarchical clustering
216  (hclust) algorithm to identify cell populations with similar distribution profiles (Figure 3A). Finally, a

217  dendrogram cut-off value of 1.8 was used to generate three main groups in the matrix.

218  As a result, the aphidicolin-treated samples Al and A2 grouped differently from the aphidicolin-
219  treated samples A3 and A4, (Figure 3A, sidebar), while the nocodazole-treated samples N1 and N2, as
220  well as N3 and N4, grouped together. Further, the significant distribution profiles of samples treated
221 with siRNA were more dispersed in the heatmap, depending on the individual feature distribution.
222  Thus, with this two-step method - first identifying statistically significant normalized profiles for each
223 analyzed image feature, then using a heatmap to generate profile groups — we were able to
224  differentiate cell populations showing a similar distribution among the cluster profiles. Taken
225  together, the SOPRA workflow was responsive enough to distinguish not only nocodazole-treated
226  from aphidicolin-treated samples, but also to differentiate between samples that were treated with

227  the same concentration but for different durations (A1/A2 vs A3/A4).

228  As laid out above, analyzed features for siRNAs that target the same gene and have the same ‘on-
229  target’ phenotype should end up in the same cluster and also in the same heatmap group. Therefore,
230  we further analyzed if individual siRNAs for the same gene were represented in the same or different
231  heatmap groups. The individual siRNAs of 38 and 42 genes appeared exclusively in profile groups 1 or
232 2, respectively, strengthening the ‘on-target’ specificity of these siRNAs. In contrast, individual siRNAs
233 of 21 genes were represented in both of these groups, indicating less stringent ‘on-target’ specificity
234 or other influences, such as experimental variation. For the SOPRA workflow, two different siRNAs
235  were used for each gene in duplicate, therefore hits were classified as medium or weak hits if the

236  two siRNAs did not show the same cluster profile and were not grouped in the same heatmap group.
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237  To assess the reproducibility of plate replicates and SOPRA workflow the RSQ-values for different
238  groups of replicates were determined and the correlation matrix between these groups was
239  calculated. Firstly, we defined replicate group R1 containing replicate r2, r3 and r4 (i.e. without
240 replicate 1), replicate group R2 containing rl, r3, and r4 (without replicate 2) and so on. Running
241 SOPRA for cell feature ‘Total Intensity DAPI’ with pre-defined maSigPro parameters alfa=1, Q=1 and
242 RSQ=0 one gets the p-values and RSQ-values for each replicate group. The correlation matrix
243  between the RSQ-values for sample data from the different groups R1- R4 is calculated and

244  visualized (Figure 5).

245 Furthermore, we used Receiver Operating Characteristic (ROC) to assess the statistical performance
246  of SOPRA workflow in comparison to other approach, such as “Kolmogorov-Smirnov (KS) test” which
247  uses probability density and “t.test” for assessment of population differences. The RO curve for cell
248  feature ‘Total Intensity DAPI’ is depicted in Figure 6 and show that the SOPRA method lies between

249 the other two RO curves.

250  To benchmark the efficiency of this method in gene perturbation hit prediction, we tested whether
251  the results of the SOPRA workflow could be validated by either the original cell cycle data from Kittler
252 et al. (Kittler, et al., 2007) or FACS data generated by our group (Figure 3B). We selected 46 of the
253  genes (hits and non-hits) analyzed with SOPRA and performed FACS analysis for cell cycle profiles
254  with one siRNA per gene. A hit was scored as positive for a particular method if at least one other
255  method also leads to the same (positive or negative) result (Supplementary Table 3). Out of the 46
256  genes analyzed, 30 genes from the Kittler et al. study were validated with at least one of the other
257  methods (SOPRA or FACS), while for the SOPRA and FACS analyses 36 and 38 genes, respectively,
258  were validated by one of the other two methods. Taken together, SOPRA and FACS analysis scored
259  best in their ability to predict hits, compared to the data published by Kittler et al. (Kittler, et al.,
260  2007).

261  Thus, the SOPRA workflow offers a unique and fast analysis approach, based on measured single
262  features of cell populations, comparable to or better than published methods. In contrast to FACS
263  data analysis it does not need manual intervention or thresholding, such as cell gating. SOPRA is
264  therefore well suited for high-throughput and high-content data, as it can be easily run on multiple

265  features from an identical cell population.

266 Conclusions
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267 Most methods published for analyzing high-content microscopic screens use population-averaged
268  values or manually performed cell classification steps for normalization and hit classification. The
269  SOPRA workflow represents a novel approach for analyzing large microscopy-based high-content
270  screens using non-averaged data of cell populations for normalization and hit determination. The
271 workflow generates frequency distribution profiles of cellular features normalized to a neutral
272 control for each treatment. These normalized distribution profiles are used for hit identification by
273  regression analysis to identify significantly altered profiles using the R-package maSigPro, as originally

274  described for the analysis of single series time course gene-expression data.

275 RNAI screens are frequently performed with multiple siRNAs per target gene; however the use of
276  population-averaged values often leads to the identification of ‘off-target’ effects as hits, since
277 population averaged values can only monitor major variations of the phenotype such as up- or down-
278  regulation compared to a control. In contrast, non- averaged data can indicate more diverse changes
279  of a cell population upon treatment; thus different siRNAs targeting the same gene should have a
280  similar ‘on-target’ effect on the distribution profile of the measured cellular features and
281  consequently these are more likely to be ‘true’ hits. The SOPRA workflow we describe here has the
282  power to cluster all significantly altered normalized distribution profiles, identifying siRNAs with
283  similar ‘on-target’ profiles for the same gene via a heatmap approach. Therefore, the SOPRA
284  workflow can be used to avoid false-positive hits or ‘off-target’ effects, leading to more reliable HCS

285  hit results, reducing time and work intensive validation steps.

286 In principle, the SOPRA workflow can be used to analyze single cell population data from various
287  sources such as microscopy or FACS. In this study, we performed a microscopy-based high content
288  screen of the effect of siRNA-mediated gene knockdown of selected genes taken from a published
289 cell cycle data set from Kittler et al (Kittler, et al., 2007), as an example to demonstrate the utility of

290 the SOPRA workflow.

291  We were able to show that the false positive detection rate (detection of neutral controls as
292  significantly changed) can be reduced considerably when taking into account more than one cellular
293  feature. As described using the generated cell cycle data, we were able to demonstrate that the
294  SOPRA workflow led to no false-positive hits among the neutral controls, when at least two of the
295 image features were taken into account. For the cell populations treated with the cell cycle
296  inhibitors, a very high hit detection rate of 99.55% was achieved (223 of 224 cell population profiles).
297  We also used siRNA knockdowns in this screen, which produce less significant phenotypic effects

298  compared to small chemical compounds. Nevertheless, analysis of changed cell populations based on
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299  gene perturbation with siRNA using SOPRA still achieved a hit detection rate comparable to a manual

300  FACS analysis with commercial software, which requires predetermined gating or thresholding.

301  Taken together, SOPRA is a novel analysis workflow that uses a unique analysis approach for non-
302 averaged high-throughput data from cellular features, based on regression analysis of normalized
303  frequency distribution profiles of cell populations. It offers an easy to handle workflow and can be
304  runon hundreds of cell populations using multiple features. In particular, treated cell populations are
305 defined as significantly changed on two measurements - the p-value and the RSQ-value - followed by
306  a clustering step to identify treatments with the same normalized density profiles. A following
307  heatmap analysis enabled us to filter out most hits that are likely to be false positive. Thus, SOPRA is

308  aunique tool ideal for high content analysis of cell population data.

309 Methods

310 Cell Cycle perturbation screen

311 We generated a set of screening plates consisting of siRNAs (Qiagen, Germany) targeting proteins
312 responsible and not responsible for cell cycle progression, as well as the neutral siRNAs ‘AllStars’ and
313  ‘Luciferase’, and wells without treatment (Mock) (Supplementary Figure 1). On day one cells were
314  seeded in 96-well plates and transfected using Hiperfect (Qiagen, Germany). The chemical cell cycle
315 inhibitors nocodazole and aphidicolin were added as positive controls at the described time points
316  and concentrations. On day four cells were fixed using 4% PFA and stained with Hoechst 33342 (5
317  pg/ml, Sigma). The plates were imaged using an automated microscope (1X-81, Olympus, Germany)
318 and analyzed using the Scan?R software with an image analysis assay designed in-house

319  (Supplementary Figure 2).

320  Using a Scan”R single cell export script, single cell data was exported and are downloadable from

321 https://transfer.mpiib-berlin.mpg.de/s/AibR4AHLCRIxzDB?path=%2F.  The SOPRA  project

322 description (Supplementary File 1) is also available from GitHub

323 https://github.com/kppleissner/SOPRA/ .

324 Cell Cycle FACS validation

325 For FACS analysis of cell cycle profiles, 1 x 10° cells were seeded into each well of a 12-well plate 24 h
326  before transfection. Cells were then transfected with Hiperfect transfection reagent (Qiagen)
327  according to the manufacturer’s guidelines. In brief, 150 ng of specific siRNA was added to RPMI
328  without serum and incubated with 6 pl Hiperfect in a total volume of 100 pl. After 10 to 15 min, the

329  liposome-siRNA mixture was added to the cells with 1 ml of cell culture medium (RPMI (Gibco)
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330 supplemented with 10% fetal calf serum (FCS) (Biochrome), 2 mM glutamine, and 1 mM sodium
331  pyruvate), to give a final siRNA concentration of 10 nM. After 1 day, cells were trypsinized and
332  seeded into new 6-well plates. Three days after transfection, cells were detached from the plate with
333  the addition of trypsin-EDTA for 5 minutes, spun down for 10 minutes at 500 x g and resuspended in
334 0.5 ml PBS. The resuspended cells were then added to 70% ethanol for fixation and left at —20°C
335  overnight. Cells were collected by centrifugation, resuspended, rinsed in PBS and re-collected by
336  centrifugation. Pelleted cells were resuspended in 500 pl PBS containing a final concentration of 20
337  ug/ml propidium iodide and 200 pg/ml RNAse A and left in the dark for 30 minutes at room
338  temperature. Cell Cycle analysis was then performed using a Becton Dickinson FACsort flow

339  cytometer and BD CellQuest Pro Software (BD Biosciences).

340 SOPRA

341  The SOPRA workflow (Figure 1) consists of several steps and requires a variety of input files. The
342  ‘Single Cell Feature Files’ contain the features for every single cell measured, while the files
343  ‘PlateConf_LookUp’, ‘PlateList’ and ‘ScreenLog’ contain information about well content, plate content
344  and flagged wells. In the first step, the data is gathered, including flagging of wells and single objects
345  within wells. In the next step, a plate-wise median normalization is performed and the limits for the
346  binning intervals are defined. Subsequently, the single objects within each binning interval (bin) are
347  counted, and a bin-wise normalization is performed. Derived frequency distribution profiles of
348 measured features are then subjected to the regression analysis using R-Package maSigPro.
349  Significantly different profiles can be identified using the calculated p-value, RSQ-value and alpha-
350 value for each sample profile. The significant profiles can be clustered using different clustering
351  algorithms. Finally, a post processing step (optional) can be performed in order to convert siRNA into
352 gene names, cluster membership and frequency. The SOPRA workflow is written as a Shiny
353  application in R. A detailed project description with specific instructions for how to run the workflow
354  is available from GitHub.

355

356 Figures and Files

357  Figure 1 =SOPRA workflow of high-throughput data sets
358  (A) High content screening data is generated and used to prepare single object data files and input
359  data files. (B) Screen description and the single cell data files are generated manually. (C) Wells that

360 should be omitted are flagged and (D1) the single object data is filtered, normalized to the median of

12
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361 the controls and a common binning axis for all plates is determined. (D2) For each measured feature
362  the frequency distribution profile (histogram) is generated for each sample well, which is then
363  normalized for each bin to the median distribution profile of the controls. (E) Significantly changed
364 normalized distribution profiles are determined using regression analysis and (F) a post processing

365  stepis performed to determine the number of screening hits.

366  Figure 2 — Schematic representation of the microscopic cell cycle screening assay

367  (A) Cells were seeded in 384-well plates and treated with siRNAs or chemical cell cycle inhibitors at
368  different concentrations and time points to inhibit cell cycle progression. Cells were fixed, stained
369  with Hoechst and subjected to automated microscopy and image analysis. (B) Treatment with the
370  control-siRNAs AllStars and luciferase did not lead to any changes of the cell population. Treatment
371  with aphidocoline Al (2 pug/ml, 24 h), A2 (4 ug/ml, 24 h), A3 (2 pg/ml, 12 h), A4 (4 ug/ml, 12 h) and
372 nocodazole N1 (50 ng/ml, 24 h), N2 (75 ng/ml, 24 h), N3 (50 ng/ml, 12 h), N4 (75 ng/ml, 12 h)
373  resulted in cell populations arrested at various stages of the cell cycle. (C) Distribution profiles were
374  generated for each well from the data exported for the features ‘Area’, ‘Mean Intensity DAPI’ and

375  ‘Total Intensity DAPI’ for all nuclei.

376  Figure 3 — Heatmap analysis and examples of significantly altered distribution profiles

377  (A) The normalized regression profiles for different treatment conditions for aphidicolin (A1-A4) and
378 nocodazole (N1 and N4), as well as Luciferase are displayed. A heatmap was generated showing the
379  distribution of all cell populations with at least one significantly changed profile for the features
380 'Area’, 'Mean Intensity DAPI' and 'Total Intensity DAPI' among the SOPRA cluster profiles. Wells
381  treated with aphidicolin or nocodazole are displayed in different shades of green or blue in the row
382  sidebar. Wells Mock-treated or treated with siRNA against Luciferase or AllStars are indicated in red,
383  orange and yellow, respectively. Wells treated with siRNA against specific genes are displayed in grey
384  in the row sidebar. The heatmap is clustered using hierarchical clustering, and a dendogram, cut-off
385  of 1.8 performed resulting in the heatmap groups (1), (2) and (3). The Venn diagram displays the
386  distribution of the significantly changed profiles for each treatment among the heatmap groups (1)-
387  (3). (B) Examples of profiles for the features ‘Area’, ‘Total Intensity DAPI" and ‘Mean Intensity DAPI’
388 of cell populations significantly changed upon siRNA treatment, as well as the corresponding

389 microscopic and FACS images.

390  Figure 4 — Results of SOPRA regression analysis and cluster profiles
391 (A) Calculated RSQ and p-values of each well for the features ‘Area’, ‘Mean Intensity DAPI” and

392 ‘Total Intensity DAPI’ using the maSigPro package. (B) Data visualization by cluster analysis.
13
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393 Normalized distribution profiles of all significantly altered normalized profiles for the three
394 image features were clustered using k-means with 4, 3 and 2 clusters, respectively. The
395 average feature profile is shown (black line) together with the individual profiles of the cell
396 populations in the cluster (grey lines) or (C) as the mean of 3 replicates.

397

398  Figure 5— Reproducibility assessment between replicates

399  Correlation matrix between the RSQ-values for sample data from the different replicate groups R1-

400 R4 for cell feature ‘Total Intensity DAPI’
401
402  Figure 6 — Assessment of diagnostic quality by Reciever Operating Curve (ROC)

403 Receiver Operating Characteristic (ROC) serves to assess the SOPRA workflow in comparison to other
404  statistical approaches, such as “t.test” and “Kolmogorov-Smirnov (KS) test”. The RO curves for cell

405  feature ‘Total Intensity DAPI’ shows that the SOPRA method lies between the t.test and KS-test.

406

407  Code availability and implementation

408  Source code of SOPRA shiny application (ui.R , server.R), single cell data (96-wells plate) data for
409 testing and SOPRA project description (folder: Manual) are freely available from GitHub
410  https://github.com/kppleissner/SOPRA/ .

411

412  Supporting Data ZIP File for 384-wells plates (Single Cell Features) :

413 Due to large size of files the 384-wells plate data couldn’t be uploaded to GitHub and therefore are
414  available as 384_Plates_for_SOPRA.zip from MPI-IB Cloud tranfer server via this URL

415 https://transfer.mpiib-berlin.mpg.de/s/AibR4AHLCR9xzDB?path=%2F .

416  The 384 _wells_Plates_for_SOPRA.zip file contains data based on a cell cycle screen analyzed with

417  Scan’R (Olympus). Following cell features were measured: ‘Area’,” Mean Instensity DAPI’ and ‘Total
418 Intensity DAPI’. In general, any file of the correct format can be used for SOPRA. For each plate —or
419  part of a plate — one file is needed. The folders also contain the descriptive files 'PlateConf_LookUp',

420  'Platelist' and 'Screenlog".

14
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