

Multi-context genetic modeling of transcriptional regulation resolves novel disease loci

Mike Thompson^{*1}, Mary Grace Gordon^{2,3,4}, Andrew Lu⁵, Anchit Tandon⁶, Eran Halperin^{1,7,8,9}, Alexander Gusev^{10,11}, Chun Jimmie Ye^{2,3,12,13,14}, Brunilda Balliu⁹, and Noah Zaitlen^{*1,15}

*mjthompson@ucla.edu**, *gracie.gordon@ucsf.edu*, *anchit.tandon.iit.delhi@gmail.com*,
eranhalperin@gmail.com, *agusev@hsph.harvard.edu*, *jimmie.ye@ucsf.edu*,
bballiu@ucla.edu, *nzaitlen@ucla.edu**

*Corresponding Author

¹Department of Computer Science, University of California Los Angeles, Los Angeles, CA, USA

²Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA

³Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA

⁴Biological and Medical Informatics Graduate Program, University of California, San Francisco, San Francisco, CA, USA

⁵UCLA-Caltech Medical Scientist Training Program, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA

⁶Department of Mathematics, Indian Institute of Technology Delhi, Hauz Khas, Delhi, India

⁷Department of Human Genetics, University of California Los Angeles, Los Angeles, CA, USA

⁸Department of Anesthesiology and Perioperative Medicine, University of California Los Angeles, Los Angeles, CA, USA

⁹Department of Computational Medicine, University of California Los Angeles, Los Angeles, CA, USA

¹⁰Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA

¹¹Division of Genetics, Brigham and Women's Hospital, Boston, MA

¹²Chan-Zuckerberg Biohub, San Francisco, CA, USA

¹³Division of Rheumatology, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA

¹⁴Institute for Computational Health Sciences, University of California, San Francisco, California, USA

¹⁵Department of Neurology, University of California Los Angeles, Los Angeles, CA, USA

¹ Abstract

² A majority of the variants identified in genome-wide association studies fall in non-coding regions of the
³ genome, indicating their mechanism of impact is mediated via gene expression. Leveraging this hypothe-
⁴ sis, transcriptome-wide association studies (TWAS) have assisted in both the interpretation and discovery
⁵ of additional genes associated with complex traits. However, existing methods for conducting TWAS do
⁶ not take full advantage of the intra-individual correlation inherently present in multi-context expression
⁷ studies and do not properly adjust for multiple testing across contexts. We developed CONTENT—
⁸ a computationally efficient method with proper cross-context false discovery correction that leverages
⁹ correlation structure across contexts to improve power and generate context-specific and context-shared
¹⁰ components of expression. We applied CONTENT to bulk multi-tissue and single-cell RNA-seq data
¹¹ sets and show that CONTENT leads to a 42% (bulk) and 110% (single cell) increase in the number of
¹² genetically predicted genes relative to previous approaches. Interestingly, we find the context-specific
¹³ component of expression comprises 30% of heritability in tissue-level bulk data and 75% in single-cell
¹⁴ data, consistent with cell type heterogeneity in bulk tissue. In the context of TWAS, CONTENT in-
¹⁵ creased the number of gene-phenotype associations discovered by over 47% relative to previous methods
¹⁶ across 22 complex traits.

¹⁷ 1 Introduction

¹⁸ A large portion of the signal discovered in genome-wide associations studies (GWAS) has been localized to
¹⁹ non-coding regions [1]. In light of this, researchers have developed post-GWAS approaches to elucidate the
²⁰ functional consequences of variants and their impact on the etiology of traits [2]. One notable approach
²¹ has been to generate genetic predictors of gene expression and leverage these predictors with GWAS data
²² to associate genes with traits of interest [3, 4]. These transcriptome-wide association studies (TWAS)
²³ have not only shown great promise in terms of discovery and interpretation of association signals but
²⁴ have also helped prioritize potentially causal genes for complex diseases [5]. Nonetheless, methods like
²⁵ TWAS are limited by the accuracy and power of the genetic predictors generated in training datasets
²⁶ [6–11].

²⁷ The original TWAS methodology builds genetic predictors of expression on a context-by-context
²⁸ basis. For example, in a study with RNA-seq and genotypes collected across multiple tissues, the ex-

29 expression of each tissue would be modeled independently [3, 4]. More recent methods model multiple
30 contexts simultaneously and leverage the sharing of genetic effects across contexts [8–10, 12]. However,
31 these approaches do not maximize predictive power because they ignore the intra-individual correlation
32 of gene expression across contexts inherent to studies with repeated sampling, e.g., the Genotype-Tissue
33 Expression (GTEx) project [13] (Figure S1) or single-cell RNA-Sequencing (scRNA-Seq) experiments
34 (Figure S2). Moreover, they build predictors which are mixtures of both context-specific and context-
35 shared (pleiotropic) genetic effects, making it difficult to distinguish the relevant contexts for a disease
36 gene, and are often computationally inefficient [9]. A recent approach by Wheeler et al. [14] does model
37 correlated intra-individual noise with a linear-mixed model, but does not produce combined predictions
38 of expression, reducing overall power. Finally, existing methods employ multiple testing strategies that
39 either fail to control for all tests performed, (e.g., by controlling the false discovery rate (FDR) within
40 each context separately [4, 15]), or act too stringently (e.g., by using Bonferroni adjustment across all
41 contexts [15]). Together, these shortcomings reduce power and interpretability of TWAS.

42 Here, we introduce CONTENT—CONtexT spEcific geNeTics—a novel method that leverages the
43 correlation structure of multi-context studies to efficiently and powerfully generate genetic predictors of
44 gene expression. Briefly, CONTENT decomposes the gene expression of each individual across contexts
45 into context-shared and context-specific components [16], builds genetic predictors for each component
46 separately, and creates a final predictor using both components. To identify genes with significant disease
47 associations, CONTENT employs a hierarchical testing procedure (termed “hFDR”; see Figure S3) [17,
48 18]. CONTENT has several advantages over existing methods. First, it explicitly accounts for intra-
49 individual correlation across contexts, boosting prediction performance. Second, by building specific and
50 shared predictors, it can distinguish context-shared from context-specific genetic components of gene
51 expression and disease. Third, it employs a recently developed hierarchical testing procedure [18] to not
52 only adequately control the FDR across and within contexts, but boost power in cases where a gene
53 has a significant association to disease in multiple contexts. Fourth, this adjustment procedure allows
54 for inclusion of other TWAS predictors [3, 4, 8–10, 12], enabling approaches to be complementary in
55 discovering associations. Finally, CONTENT is orders of magnitude more computationally efficient than
56 several previous approaches.

57 We evaluated the performance of CONTENT over simulated data sets, GTEx[2, 11, 13], and
58 a single-cell RNA-Seq data set[19, 20]. We show in simulations that CONTENT captures a greater
59 proportion of the heritable component of expression than previous methods (at minimum over 22% more),

and that CONTENT successfully distinguishes the specific and shared components of genetic variability on expression. In applications to GTEx, CONTENT improved over previous context-by-context methods both in the number of genes with a significant heritable component (average 42% increase in significant gene-tissue pairs discovered) as well as the proportion of variability explained by the heritable component (average increase of 28%) [3, 4]. Consistent with complex cell type heterogeneity within tissues [21–24], we find that in applications to the single-cell data, genetic predictors at the cell type level have substantially more context-specific heritability than the tissue-level models. We then performed TWAS across 22 phenotypes using weights trained on GTEx and scRNA and found that CONTENT discovered over 47% additional significantly associated genes. We provide CONTENT gene expression weights for both GTEx and the single-cell dataset at TWASHub (<http://twashub.org/>).

2 Results

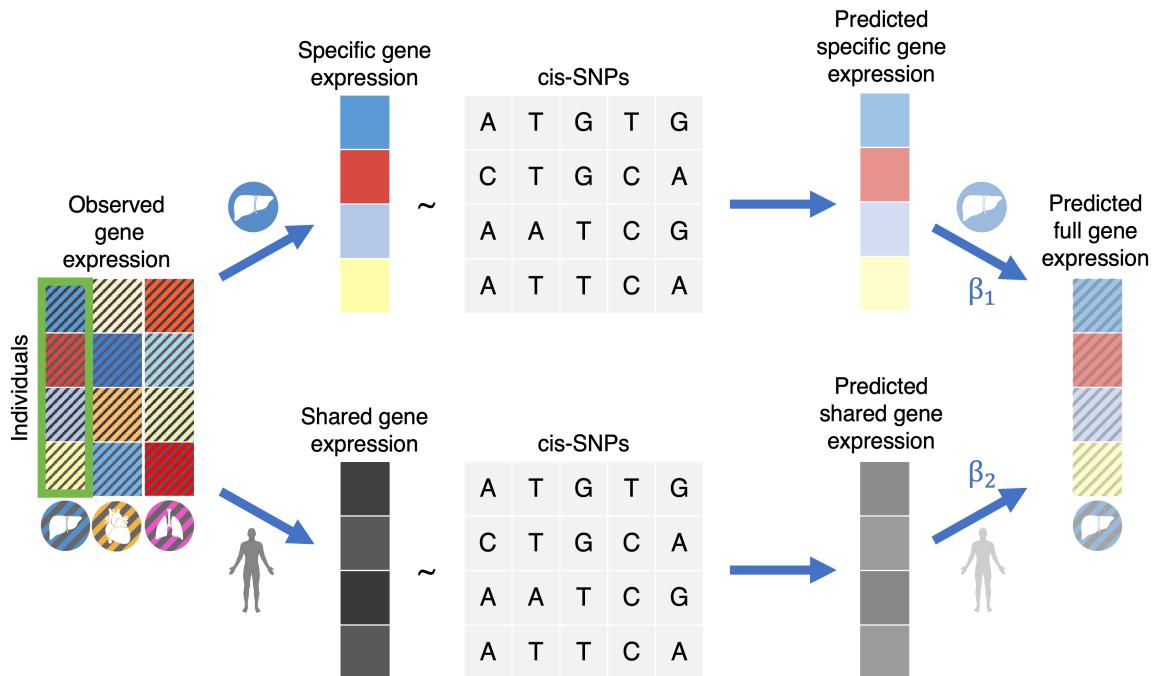


Figure 1. An overview of the CONTENT approach. CONTENT first decomposes the observed expression for each individual into context-specific and context-shared components following [16]. Then, CONTENT fits predictors for the context-shared component of expression as well as each context-specific component of expression (e.g., liver). Finally, for a given context, CONTENT combines the genetically predicted components into the full model using a simple regression.

71 **Methods overview** We developed CONTENT, a method for generating genetic predictors of gene
72 expression across contexts for use in downstream applications such as TWAS. Briefly, for each individual,
73 CONTENT leverages our recently developed FastGxC method [16] to decompose the gene expression
74 across C contexts into one context-shared component and C context-specific components. Next, CON-
75 TENT builds genetic predictors for the shared component and each of the C context-specific components
76 of expression using penalized regression. We refer to these predictors as the CONTENT(Shared) and
77 CONTENT(Specific) models. In addition, CONTENT generates genetic predictors of the total expres-
78 sion in each context by combining the context-shared and context-specific genetic predictors with linear
79 regression. We refer to these predictors as the CONTENT(Full) models. A given gene may have CON-
80 TENT(Specific), CONTENT(Shared), and/or CONTENT(Full) models depending on the architecture of
81 genetic effects.

82 We residualized the expression of each gene in each context over their corresponding covariates
83 (e.g. PEER factors, age, sex, batch information) prior to decomposing and then fitting an elastic net with
84 double ten-fold cross-validation for both CONTENT(Shared) and CONTENT(Specific). We examined
85 the number of significantly predicted genes as well as the prediction accuracy (in terms of adjusted
86 R^2) between the cross-validation-predicted and true gene expression per gene-context pair. To properly
87 control the FDR for each method across contexts and genes, we employed a hierarchical FDR correction
88 [17, 18] (Figure S3 and Methods). We note that groups of contexts may comprise additional sources of
89 pleiotropy (e.g. in GTEx the group of brain tissues may have their own shared effects in addition to
90 the overall tissue-shared effects). The decomposition of CONTENT is flexible and can account for both
91 levels of pleiotropy among contexts (see Supplementary Methods).

92 **CONTENT is powerful and well-calibrated in simulated data.** We evaluate the prediction
93 accuracy of CONTENT in a series of simulations and compare its performance to the context-by-context
94 approach[3, 4], which builds predictors by fitting an elastic net in each context separately, as well as
95 UTMOST[9], which builds predictors over all contexts simultaneously using a group LASSO penalty.
96 Implicitly, we compare to the method from [14] which decomposes expression into orthogonal context-
97 shared and context-specific components, as the CONTENT(Shared) and CONTENT(Specific) models
98 are related to these components (See Methods). We omit comparison to other TWAS methods as many
99 of them are built on the same framework as the context-by-context approach, or require external data,
100 such as curated DNase I hypersensitivity measurements [8, 10, 12].

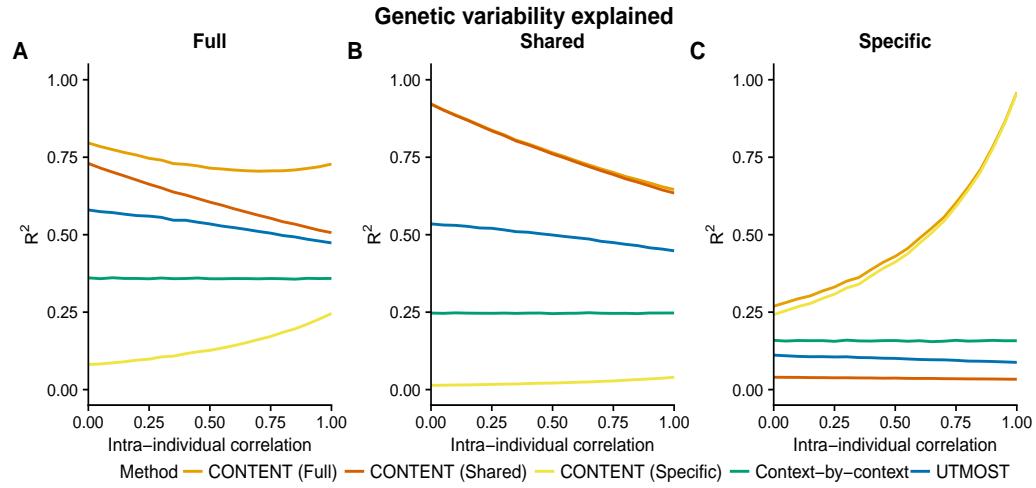


Figure 2. CONTENT is powerful and well-calibrated in simulated data. Accuracy of each method to predict the genetically regulated gene expression of each gene-context pair for different correlations of intra-individual noise across contexts. Mean adjusted R^2 across contexts between the true (A) full (context-specific + context-shared), (B) shared, and (C) specific genetic components of expression and the predicted component for each method and for different levels of intra individual correlation. The context-by-context approach and UTMOST output only a single predictor, and we show the variability captured by this predictor for each component of expression. CONTENT, however, generates predictors for all three components of expression, and notably, CONTENT(Specific) and CONTENT(Shared) capture their intended component of expression without capturing the opposite (i.e. the predictor for CONTENT(Specific) is uncorrelated with the true shared component of expression and vice versa). We show here the accuracy for each component and method on gene-contexts with both context-shared and context-specific effects, but show in Figure S4 the accuracy for all gene-contexts pairs.

101 We used simulation parameters from GTEx, the largest multi-context eQTL study to-date, as
 102 a guideline. Specifically, we generated gene expression and genotype data such that context-specific
 103 genetic effects mostly lie on the same loci as context-shared eQTLs, and context-specific eQTLs without
 104 context-shared effects are rare [2, 16]. Intuitively, this framework assumes that, most often, SNPs affect
 105 expression of a gene in all contexts, but to a different extent in each context (rather than, for example,
 106 acting as an eQTL in only a single context). We varied the proportion of contexts with context-specific
 107 heritability, the number of context-specific eQTLs without a context-shared effect, the number of causal
 108 SNPs, and the intra-individual residual correlation while keeping the number of genes (1000), contexts
 109 (20), *cis*-SNPs (500) and the proportion of context-shared and context-specific heritability constant (.3
 110 and .1 respectively).

111 Throughout our simulations, CONTENT significantly outperformed the context-by-context and
 112 UTMOST approaches in terms of prediction accuracy of the total genetic contribution to expression
 113 variability (Figures 2A, S4). The average increase in adjusted R^2 between the true genetic component of

114 expression and the CONTENT(Full) predictor was .22 over UTMOST ($p < 2e-16$ paired two-way t-test)
115 and .48 over the context-by-context approach ($p < 2e-16$ paired two-way t-test). Across nearly the entirety
116 of parameter settings, CONTENT generated context-specific components that were uncorrelated with
117 the true context-shared components (mean adjusted $R^2 = .023$, and vice versa .026; Figure 2B,C). This
118 property is central to the objective as it reduces confounding from pleiotropy in downstream applications
119 such as context fine-mapping. As expected, the previous methods failed to disentangle the context-specific
120 and context-shared components (Figure 2B,C), since they were not developed with this property in mind.
121 Our results were consistent under different values of the simulation parameters (Figures S5, S6, S7, S8).

122 **CONTENT improves prediction accuracy over previous methods in the GTEx and CLUES**
123 **datasets** We next evaluated CONTENT, the context-by-context approach, and UTMOST in terms of
124 prediction accuracy and power across 22,447 genes measured in 48 tissues of 519 European individuals
125 in the bulk RNA-seq GTEx data set [2, 11, 13]. Due to computational issues (Figure S9), UTMOST was
126 examined only on 22,307 genes rather than the entire data set of 22,447 genes. We show a comparison
127 on this smaller set of genes in Figure S10. We also examined, for the first time in a large-scale TWAS
128 context, a single-cell RNAseq data set from the California Lupus Epidemiology Study (CLUES) [19,
129 20]. The CLUES data set contained 9,592 genes measured in 9 cell types in peripheral blood from 90
130 individuals.

131 In GTEx, CONTENT identified more gene-tissue pairs with a significantly predictable genetic
132 component of expression (278,101 over 20,506 genes) than the context-by-context approach (195,607 over
133 17,723 genes) and UTMOST (167,865 over 11,442 genes) at an hFDR of 5%. We also compared the
134 performance of each method on the union of genes that were significantly predicted (hFDR $\leq 5\%$) by at
135 least one method. As CONTENT can generate up to three models (Shared, Specific, Full) for a given
136 gene-tissue pair, and because each gene may have its own unique architecture (i.e. different proportions of
137 specific or shared heritability), we selected the model that achieved the greatest cross-validated adjusted
138 R^2 . CONTENT greatly outperformed the context-by-context and UTMOST approaches across all tissues
139 (average 28% and 22% increase in adjusted R^2 across tissues and genes; Figures 3, S10). Further, for genes
140 with significant CONTENT(Shared), CONTENT(Specific), and CONTENT(Full) predictors, prediction
141 accuracy increases substantially with the addition of the context-specific component to the context-shared
142 component (average gain of CONTENT(Full) over CONTENT(Shared) adj. R^2 of 55.92%), emphasizing
143 the need to extend previous approaches[14] with CONTENT(Full) to build a powerful predictor.

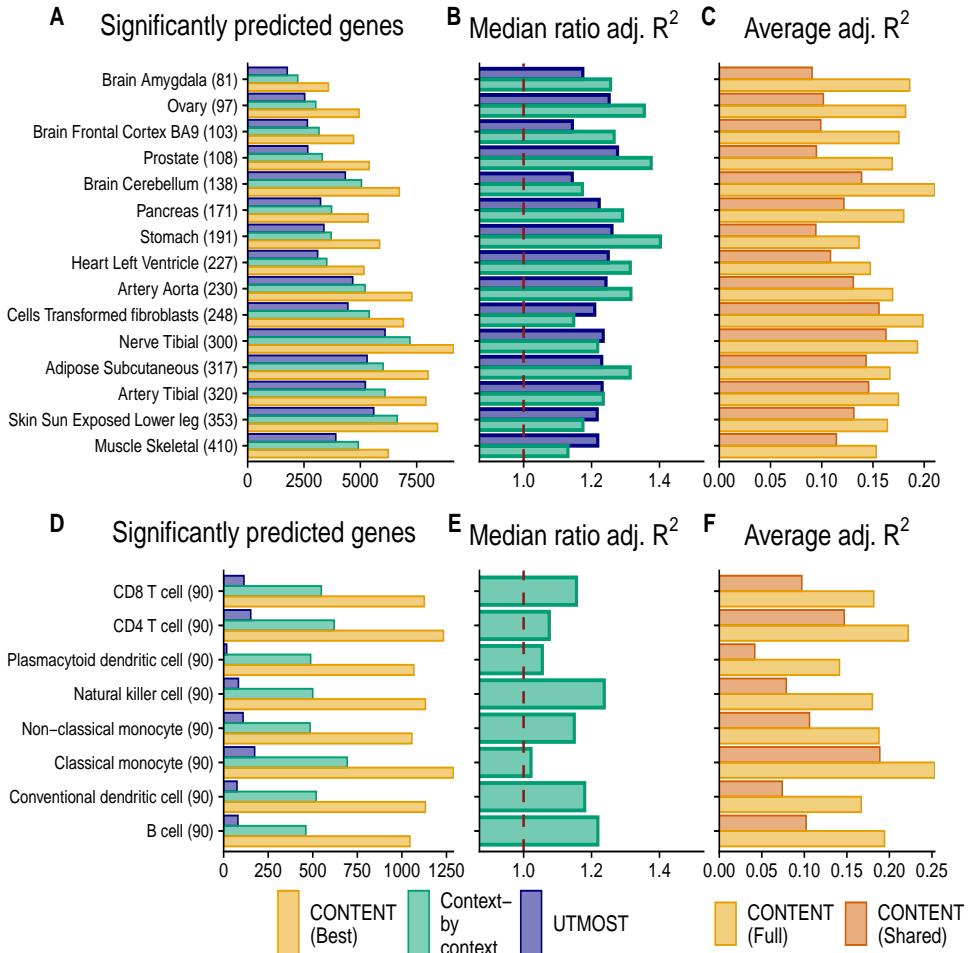


Figure 3. CONTENT outperforms existing approaches in the GTEx and scRNA-seq CLUES datasets. (A,D) Number of genes with a significantly predictable component ($hFDR \leq 5\%$) in GTEx (A) and CLUES (D); the sample sizes for each context are included in parentheses. (B,E) Ratio of expression prediction accuracy (adjusted R^2) of the best-performing cross-validated CONTENT model over the context-by-context (green) and UTMOST (blue) approaches (median across all genes significantly predicted by at least either method). Numbers above one indicate higher adjusted R^2 and thus prediction accuracy for CONTENT. (C,F) Prediction accuracy of CONTENT(Full) and CONTENT(Shared) when a gene-tissue has a significant shared, specific, and full model.

Within the single-cell CLUES data set, CONTENT again outperformed the context-by-context (in this case, cell type-by-cell type) and UTMOST approaches, discovering 9,080 heritable gene-cell type pairs (5,067 genes) whereas the context-by-context model and UTMOST found 4,314 (2,355 genes) and 804 (288 genes) respectively. The average improvement in adjusted R^2 of CONTENT over the context-by-context model was 13.6%. In gene-cell type pairs with significant CONTENT(Full), CONTENT(Specific), and CONTENT(Shared) models, CONTENT(Full) improved the adjusted R^2 over CONTENT(Shared) by

150 104.09%. Once more, the improvement in variability explained when including both the cell type-specific
 151 and cell type-shared components highlights the need to consider both components simultaneously when
 152 building a predictor.

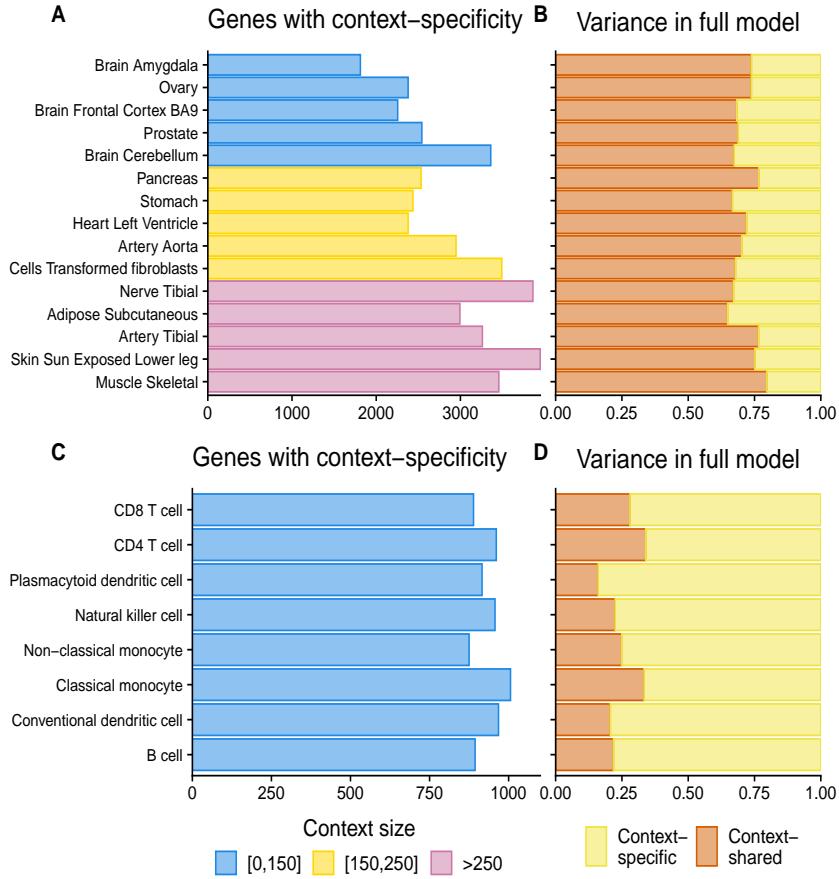


Figure 4. Contribution of context-specific genetic regulation in GTEx and CLUES. (A,C) Number of genes with a significant (FDR $\leq 5\%$) CONTENT(Specific) model of expression in GTEx (A) and CLUES (C). Color indicates sample size of context. (B,D) Proportion of expression variance of CONTENT(Full) explained by CONTENT(Specific) and CONTENT(Shared) for genes with a significant CONTENT(Full) model.

153 **CONTENT discovers significant context-specific components of expression in bulk multi-**
 154 **-tissue and single-cell datasets.** Given the ability of CONTENT to disentangle context-shared and
 155 context-specific variability, we examined the context-specific components of expression in GTEx and
 156 CLUES. In GTEx, CONTENT discovered 128,985 gene-tissue pairs (19,765 genes) with a significant
 157 context-specific genetic component of expression (Figures 4, S11). As with previous reports [16, 25], we
 158 found that testis was the tissue with the greatest number of tissue-specific genetic components. Nonethe-

159 less, we observe that the tissues with larger sample sizes more frequently had significant context-specific
160 components. Consistent with previous works that have discovered extensive eQTL sharing across tissues
161 [2, 25, 26], we found that in gene-tissue pairs with a CONTENT(Full) model, the variability explained
162 was dominated by CONTENT(Shared) model—across tissues, the context-shared component explained
163 on average 70% of the variability explained by CONTENT(Full).

164 In the CLUES data set, CONTENT discovered 7,466 gene-cell type pairs (4,658 genes) with a
165 significant cell type-specific component of expression ($hFDR \leq 5\%$). We found that all cell types had
166 a similar number of cell type-specific components, and emphasize that the sample size across all cell
167 types was equivalent. Interestingly, in genes with a CONTENT(Full) model, the variability was often
168 dominated by the cell type-specific variability (average 75% of the explained variability), unlike GTEx, in
169 which the average tissue-specific variability explained only 30% of total variance. Consequently, we found
170 that within the 20,433 genes in GTEx with any genetic component, 51.50% (10,522) had a significant
171 shared component, whereas of the 5,067 genes in CLUES with a genetic component, only 14.25% (722)
172 had a shared component. This is consistent with complex cell type heterogeneity in bulk tissues [27] since
173 there is more power to discover eQTLs with pleiotropy across the underlying cell types.

174 **CONTENT more accurately distinguishes disease-relevant genes than traditional TWAS
175 approaches in simulated data.** We performed a simulation study in which we evaluated the sensi-
176 tivity, specificity, and power of CONTENT, UTMOST, and context-by-context to implicate the correct
177 gene in TWAS. In our experiments, we simulated a phenotype in which 20% of the variability was com-
178 posed of the genetically regulated expression of 300 randomly selected gene-context pairs (100 genes and
179 3 contexts each). We simulated gene expression for 1,000 genes across 20 contexts as before, however,
180 to capture a range of genetic architectures in the simulation, for each gene, we sampled from a standard
181 uniform distribution to determine the proportion of shared variability. We varied the heritability of gene
182 expression and considered power as a method's ability to discover the correct genes associated with a
183 phenotype. To compare power, we calculated the area under receiver-operating curve (AUC) using the
184 maximum association statistic for a given gene across contexts.

185 Across simulations, CONTENT(Full) was the highest powered in terms of gene discovery (Figure
186 5). CONTENT(Shared) performed very similarly to CONTENT(Full) in the setting with the lowest heri-
187 tability, however, our simulations show the necessity for CONTENT(Full) as it substantially outperforms
188 both CONTENT(Specific) and CONTENT(Shared) across a range of heritabilities. Moreover, CON-

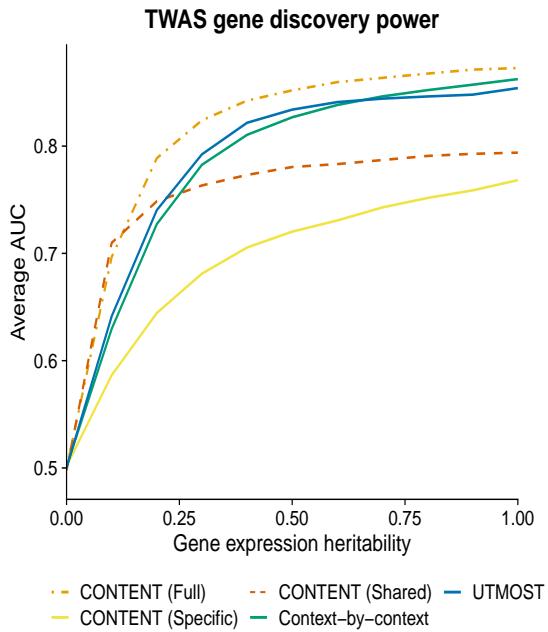


Figure 5. CONTENT(Full) is powerful, sensitive, and specific in simulated TWAS data. Average AUC from 1,000 TWAS simulations while varying the overall heritability of gene expression. Each phenotype (1,000 per proportion of heritability) was generated from 300 (100 genes and 3 contexts each) randomly selected gene-context pairs' genetically regulated gene expression, and the 300 gene-context pairs' genetically regulated expression accounted for 20% of the variability in the phenotype. In genes with low heritability, CONTENT(Shared) performed similarly to CONTENT (Full), however CONTENT(Full) was the most powerful method in discovering the correct genes for TWAS across the range of heritability. CONTENT(Full) was significantly more powerful than UTMOST and the context-by-context approach at all levels of heritability.

189 TENT(Full) significantly outperformed both the context-by-context approach and UTMOST. Specifically, the range of percent change in AUC of CONTENT(Full) over previous methods was as follows:
190 CONTENT(Shared) 1.9%-9.9%; CONTENT(Specific) 13.6%-22.4%; UTMOST 2.2%-8.6%; context-by-
191 context 1.2%-10.6%. Generally, we observed that CONTENT(Full) was its most powerful for genes in
192 which there was both shared and specific effects, UTMOST was its most powerful in settings with high
193 sharing, and the context-by-context approach was its most powerful in settings with low sharing and high
194 specificity of genetic effects within contexts.
195

196 As with previous methods [9], we performed simulations in which the causal context(s) has been
197 observed. In real data applications, this may not occur, and in such cases, further complexities may arise
198 due to genetic correlation. We report a brief set of experiments evaluating fine-mapping gene-context
199 pairs in TWAS when all contexts are observed (see Supplementary; Figures S12, S13), however, the

²⁰⁰ complexities posed by missing tissues and cell types are beyond the scope of this manuscript, and we
²⁰¹ therefore leave the development of relevant methodology as future work.

²⁰² **Application of CONTENT to TWAS yields novel discoveries over previous methods.** We
²⁰³ performed TWAS across 22 complex traits and diseases collected from a variety of GWAS [28–41] using
²⁰⁴ weights trained by CONTENT, UTMOST and the context-by-context approach on GTEx and CLUES.
²⁰⁵ We passed forward weights to FUSION-TWAS[3]—a software that performs TWAS using GWAS sum-
²⁰⁶ mary statistics and user-specified gene expression weights—for a gene-context pair if the pair’s expression
²⁰⁷ was predicted at a nominal p-value less than .1 (See Methods; Figure S14).

²⁰⁸ Across all traits at an hFDR of 5%, CONTENT discovered 47% and 234% more associations
²⁰⁹ (unique TWAS genes) than the context-by-context approach and UTMOST respectively with GTEx
²¹⁰ weights, and 160% and 459% more associations than the context-by-context approach and UTMOST
²¹¹ respectively with weights built from the CLUES dataset (Table 1). We find that, with GTEx weights,
²¹² the associations implicated by the context-by-context approach had more overlap with the associations
²¹³ implicated by CONTENT(Specific) (median Jaccard similarity (JS) across traits =.406) than CON-
²¹⁴ TENT(Shared) (JS=.177). This is consistent with our simulation results in which the context-by-context
²¹⁵ approach was most powerful in cases of high context-specificity and low context-sharing (Figures S12,
²¹⁶ S13). The associations discovered by UTMOST, which leverages pleiotropy, had similar overlap with
²¹⁷ CONTENT(Shared) (JS=.175) as well as CONTENT(Specific) (JS=.182). With CLUES weights, the
²¹⁸ context-by-context approach again had greater similarity with CONTENT(Specific) (JS=.242) than
²¹⁹ CONTENT(Shared) (JS=.078), whereas UTMOST discovered TWAS genes that overlapped more with
²²⁰ CONTENT(Shared) (JS=.100) than CONTENT(Specific) (JS=.085). As UTMOST, CONTENT, and
²²¹ the context-by-context approach discovered both overlapping and unique associations, we suggest that
²²² the approaches complement—rather than replace—one another.

²²³ We next compared the different CONTENT models to understand their properties in real data.
²²⁴ With GTEx weights, CONTENT(Full) replicated an average of 99.0% and 66.8% of the associations dis-
²²⁵ covered by CONTENT(Shared) and CONTENT(Specific) respectively (hFDR \leq 5%). CONTENT(Full)
²²⁶ replicated an average of 78.4% and 63.9% of the associations discovered by CONTENT(Shared) and CON-
²²⁷ TENT(Specific) respectively with the CLUES weights. Notably, CONTENT(Full) is the best predictor
²²⁸ out of all the CONTENT models on average, and particularly when there exist both shared and specific
²²⁹ effects. Consequently, across all traits, the inclusion of CONTENT(Full) with CONTENT(Shared) and

²³⁰ CONTENT(Specific) led to an average increase of 15% and 19% in the number of genes with significant
²³¹ TWAS associations with GTEx weights and CLUES weights respectively.

Table 1. CONTENT outperforms existing methods in TWAS across 22 complex traits and diseases. TWAS results (unique loci, merging genes within 1MB) across 22 complex traits and diseases using weights output by CONTENT, UTMOST, and the context-by-context method. CONTENT(All) refers to the collection of all loci output by at least one CONTENT model. CONTENT(Full) added an average of 15% and 19% of gene-trait discoveries over the CONTENT(Shared) and CONTENT(Specific) approaches together at an hFDR of 5% in GTEx and CLUES respectively. See Supplementary Table S1 for GWAS trait information.

Trait	GTEx						CLUES					
	Tissue-by-tissue	UTMOST	CONTENT (All)	CONTENT (Full)	CONTENT (Specific)	CONTENT (Shared)	Tissue-by-tissue	UTMOST	CONTENT (All)	CONTENT (Full)	CONTENT (Specific)	CONTENT (Shared)
AD	18	14	25	20	14	10	8	4	10	6	9	2
Asthma	145	135	229	181	185	81	57	52	101	75	88	19
Bipolar	34	59	83	68	59	30	3	12	31	21	24	8
CAD	8	12	16	13	13	4	6	2	8	6	5	2
CKD	24	24	39	28	28	15	5	6	14	8	12	1
Crohn's	80	66	104	74	92	42	30	28	54	45	39	12
Eczema	21	19	42	35	28	10	9	2	18	14	13	1
FastGlu	19	15	16	13	14	7	7	6	10	7	10	3
HDL	58	51	83	70	72	38	24	14	28	23	24	8
IBS	2	7	8	8	3	1	1	1	1	1	1	1
LDL	94	72	125	111	104	62	28	21	62	49	50	13
Lupus	100	66	148	107	118	46	32	19	59	43	44	12
MDD	92	93	150	111	121	55	28	20	46	33	35	11
MS	17	10	31	28	18	5	6	4	12	9	9	4
PBC	52	39	66	57	56	29	18	20	21	16	18	3
Psoriasis	35	25	54	41	38	15	16	9	23	18	20	6
RA	85	61	102	81	86	40	41	24	47	34	39	11
Sarcoidosis	8	12	24	17	16	7	4	3	7	6	5	1
Sjogren	9	8	9	8	6	2	2	1	5	3	5	1
T1D	78	57	109	82	97	40	33	25	54	41	44	14
T2D	170	144	231	203	191	108	59	43	82	59	71	15
Ulc colitis	9	8	16	13	10	3	1	2	9	8	8	1

²³² We investigated the genes implicated by CONTENT(Full) that were not significant in CONTENT(Shared) or CONTENT(Specific) and found that many of the discoveries replicated known gene-
²³³ trait associations. Using weights built from GTEx for example, CONTENT(Full) discovered a significant
²³⁴ association of coronary artery disease (CAD) and VEGFC ($p=8.67e-07$, artery aorta), a gene whose
²³⁵ serum levels have been significantly associated with cardiovascular outcomes [42]. Furthermore, CETP,
²³⁶ which is thought to be involved in atherogenesis and HDL levels [43, 44], was not implicated by either
²³⁷ CONTENT(Shared) or CONTENT(Specific), but was implicated in the TWAS of HDL with CON-
²³⁸ TENT(Full) ($p=1.26e-170$, whole blood). CONTENT(Full) also discovered a significant association of
²³⁹ myelin oligodendrocyte glycoprotein (MOG) and rheumatoid arthritis (RA) (minimum p value across
²⁴⁰ 239 genes)

241 tissues; $p=2.55e-11$, brain amygdala), whereas CONTENT(Shared) and CONTENT(Specific) did not.
242 RA patients have been shown to have significantly higher levels of anti-MOG IgG than controls [45].

243 Using weights built from CLUES, CONTENT(Full) also led to increased power over CONTENT(Shared)
244 and CONTENT(Specific). Namely, CONTENT(Full) replicated an association between asthma and
245 RHOA (B cell, $p=1.22e-04$), which is involved in smooth airway contraction possibly through inflamma-
246 tion [46, 47]. Moreover, we also discovered a significant association of Type 2 Diabetes (T2D) and SIRT5
247 (CD4 T cell, $p=2.23e-04$) using CONTENT(Full), and note that SIRT5 has previously been indicated
248 to play roles in metabolism and beta-cell functionality [48, 49]. Finally, CONTENT(Full) indicated an
249 association of APH1A with eczema (conventional dendritic cell, $p=3.49e-07$). APH1A is involved with
250 Notch signaling, which when disrupted in the skin, contributes to abnormalities such as eczema [50].

251 Moreover, the genes implicated by CONTENT but neither UTMOST nor the context-by-context
252 approach replicated previously associated genes-trait pairs, several of which with known biological rela-
253 tionships to the trait of interest. Within Alzheimer's disease, these genes included CBLC[51, 52], MS4A4A
254 [53], and MADD [54] with the GTEx weights, as well as VASP[55, 56], RELB[51], TRAPPC6A[57,
255 58] with CLUES weights. Additionally, in Crohn's disease, CONTENT implicated the following genes,
256 whereas previous methods did not: LRRC26[59] and RASSF1A[60] with GTEx weights, as well as CARD6
257 (an inhibitor of NOD)[61, 62] using CLUES weights. For major depression disorder (MDD), CONTENT
258 implicated CAMP[63] using GTEx weights, and FLOT1 [64, 65] using CLUES weights.

259 3 Discussion

260 In this work, we introduce CONTENT, a computationally efficient and powerful method to estimate the
261 genetic contribution to expression in multi-context studies. CONTENT can distinguish the context-
262 shared and context-specific components of genetic variability and can account for correlated intra-
263 individual noise across contexts. Using a range of simulation and real studies, we showed that CON-
264 TENT outperforms previous methods in terms of prediction accuracy of the total genetic contribution
265 to expression variability in each context. Interestingly, we also found that when there exists a gene with
266 a genetic component of expression, the heritability is often dominated by the context-specific effects at
267 the single-cell level, but at the tissue level, the heritability is dominated by the context-shared effects.
268 Finally, CONTENT was more powerful, specific, and sensitive than previous approaches in applications
269 to TWAS.

270 Using weights trained by CONTENT, UTMOST and the context-by-context approach, we dis-
271 covered 12,150 unique gene-trait associations through TWAS. To our knowledge, we present the first
272 application of TWAS trained on a single-cell RNAseq dataset for a collection of 90 individuals' PBMCs.
273 For both the weights generated by GTEx and CLUES, CONTENT was largely more powerful than UT-
274 MOST and the context-by-context approach in TWAS. However, we emphasize that the approaches often
275 capture genes unique to each approach. Each method may therefore complement each other and may be
276 combined in TWAS to maximize the number of discoveries made as different methods are likely favorable
277 under different genetic architectures. Though we show that CONTENT may be useful in fine-mapping
278 the specific tissue relevant for a TWAS association in simulations, we note that fine-mapping to the
279 correct tissue in real data is a particularly difficult task. For example, throughout this manuscript, we
280 assume that the causal tissue is included in the measured tissues, however, when this is not the case,
281 CONTENT and all TWAS approaches may associate an incorrect, correlated tissue. For example, in the
282 case of chronic kidney disease, CONTENT implicated GATM—a gene thought to be involved with kidney
283 disease and GFR levels [66–68]—however, there were significant associations with many tissues including
284 the tissue-shared component. This may be due to the fact that kidney expression is not measured in this
285 version of the GTEx dataset. Future work may explore using the CONTENT-trained weights and jointly
286 fitting all TWAS Z scores, or otherwise accounting for missingness.

287 We also leveraged recently developed methodology for controlling the false discovery rate when
288 summarizing significantly predicted genes, gene-contexts, and TWAS associations [17, 18]. This approach
289 has been shown to effectively control the FDR across contexts in eQTL studies, and to our knowledge, it is
290 the first time such an approach has been used to effectively control the FDR when predicting expression
291 values and when making discoveries using TWAS. While our analyses focused on the comparison of
292 CONTENT, UTMOST, and the context-by-context approach, we emphasize that by using this type of
293 false discovery correction, all methods can be used in combination with one another, rather than in
294 replacement of one another. For downstream analysis, combining all prediction methods is crucial, as
295 certain genes or gene-context pairs may be (better) predicted by one method and not others. In the GTEx
296 data for example, when we included models built by UTMOST and the context-by-context approach to
297 the correction scheme for CONTENT, the number of genes for which there was a significant model for a
298 given tissue increased on average by 7.56%.

299 Importantly, neither UTMOST nor the context-by-context method distinguishes the context-
300 specific and context-shared components of genetic effects on expression. Implicitly, by modeling all

301 contexts independently, the context-by-context fit is best-suited for cases in which there is no effect-
302 sharing across contexts. As UTMOST considers all contexts simultaneously, its power is maximized in
303 cases where the genetic effects are mostly shared. Additionally, these methods do not account for the
304 shared correlated residuals between samples, thus they do not maximize their predictive power.

305 While a previous approach proposed by Wheeler et al. [14] does model the correlated intra-
306 individual noise, CONTENT offers several advantages. The previous decomposition does not include an
307 option to leverage both the context-shared and context-specific components of expression to form a final
308 predictor of the observed expression for a given context. We show that this is especially crucial in the
309 context of single-cell data wherein the prediction accuracy for a given gene-context increases drastically
310 when using both components (Figure 3). Further, without properly combining both components (e.g.
311 via regression), the context-specific genotype-expression weights produced by the previous decomposition
312 may have the incorrect sign, as they are considered residuals of the context-shared component and are
313 not properly re-calibrated to the observed expression. Unlike the novel decomposition proposed by
314 CONTENT, this previous approach also does not intuitively allow for additional sources of pleiotropy
315 or effects-sharing (see Supplementary Text for discussion of brain level sharing in GTEx). Finally, the
316 decomposition used in the previous method is based on a linear mixed model fit on a per-gene basis, and
317 is therefore much less computationally efficient.

318 In this manuscript we focused on prediction of the total genetic contribution to expression as well
319 as the context-shared and context-specific components of expression. Nonetheless, future work using the
320 methodology presented here can be extended to a wide variety of problems. Primarily, the decomposition
321 can be used to efficiently estimate Gene \times Context heritability using existing software for heritability
322 estimation, e.g. *GCTA* [69], on the decomposed components offering computational speed up over existing
323 methods for cross-context heritability estimation [26]. Additionally, the decomposed components from
324 CONTENT may also be included in previous approaches, e.g. UTMOST, to gain further power. Further,
325 by training each method on the single-cell level data, we offer researchers the means to pursue their own
326 association analyses at a lower level of granularity than was previously available. The finding that single-
327 cell data may have lower levels of effects-sharing than tissue-level data may also spark investigations
328 into the biological mechanisms (e.g. more specific regulation) and statistical mechanisms (e.g. sample
329 heterogeneity confounding) by which this can occur.

330 In conclusion, the increased prediction accuracy, specificity, computational speed, and hierarchical
331 testing framework of CONTENT will be paramount to unveiling context-specific effects on disease as well

332 as uncovering the mechanisms of context-specific genetic regulation.

333 **Code and data availability** Trained weights for the GTEx V7 dataset and our in-house single-
334 cell RNAseq are available at TWASHub (<http://twas-hub.org/>). The CONTENT software is freely
335 available at <https://github.com/cozygene/CONTENT>. We provide TWAS summary statistics for all three
336 methods on both datasets (as well as an indicator of whether the association was hierarchical FDR-
337 adjusted significant) at doi.org/10.5281/zenodo.5209239.

338 **Author contributions** NZ and BB conceived of the project and developed the statistical methods with
339 MT. MT implemented the comparisons with simulated data with contributions from AT. MT, AL, and
340 MGG, performed the analyses of the GTEx and CLUES data and additional analyses. MT implemented
341 the software. MT, NZ, and BB wrote the manuscript, with significant input from EH, CJY, AG, MGG.
342 AG prepared the online data resources.

343 **Conflicts of interest** CJY is a Scientific Advisory Board member for and holds equity in Related
344 Sciences and ImmunAI. CJY is a consultant for and holds equity in Maze Therapeutics. CJY is a
345 consultant for TReX Bio. CJY has received research support from Chan Zuckerberg Initiative, Chan
346 Zuckerberg Biohub, and Genentech.

347 4 Methods

348 **An overview of the CONTENT model** In this section, we detail the assumed generative model
349 and objectives of CONTENT. CONTENT is based on the methodology and decomposition of a previous
350 work by Lu et al., FastGxC [16]. In brief, like FastGxC, we assume that the expression of an individual
351 in a given gene and context is a combination of a context-shared genetic component that is shared across
352 different contexts and a context-specific genetic component that is specific to a context, that is

$$353 E_c = E_G^{\text{Shared}} + E_{G,c}^{\text{Specific}} + \varepsilon_c$$

$$354 E_G^{\text{Shared}} = \mathbf{g}\beta$$

$$355 356 E_{G,c}^{\text{Specific}} = \mathbf{g}\gamma_c$$

357 where E_c denotes the expression of the individual at the gene in context c , E_G^{Shared} and $E_{G,c}^{\text{Shared}}$
358 denote the components of the expression due to context-shared and context-specific genetic effects re-
359 spectively, β and γ_c represent the context-shared and context-specific cis-genetic effects respectively, \mathbf{g}
360 the individual's cis-genotypes and $\varepsilon_c \sim N(0, \sigma_c^2)$ represents the environmental effects (and non-cis-genetic
361 effects) on the individual's gene expression.

362 The objective of CONTENT is to build a genetic predictor of context-specific phenotypes. While
363 previous work has focused on building powerful genetic models for E_c , we aim to build unbiased models
364 that partition and estimate the context-shared $\mathbf{g}\beta$ and context-specific terms $\mathbf{g}\gamma_t$. Specifically, we aim to
365 maximize the power to detect the context-specific terms, allowing some leniency in the accuracy of context-
366 shared terms, as we are interested in context-specific effects. Moreover, as a context-specific predictor
367 can be used in downstream analyses to identify the specific context(s) through which genetic variation
368 manifests its effect on the phenotype and disease risk, we also aim to minimize the correlation between
369 the predicted context-specific component and the true context-shared component. Finally, our method
370 must account for the correlated intra-individual noise across contexts, and do so in a computationally
371 efficient manner.

372 **Decomposing multilevel data** Many genomic datasets, such as those of GTEx, have a multilevel
373 nature; first the individuals are sampled, and second an individual is measured in each context. To take
374 the multilevel structure of the data into account, the observed expression on gene j can be decomposed
375 into an offset term, a between-individual component and a within-individual component [70]. That is,
376 if E_{ijc} denotes the observed expression level for individual i ($i = 1, \dots, I$) on gene j ($j = 1, \dots, J$) and
377 context c ($c = 1, \dots, C$), E_{ijc} can be decomposed as

$$378 \quad E_{ijc} = E_{.j.} + (E_{ij.} - E_{.j.}) + (E_{ijc} - E_{ij.}) \quad (1)$$

379 where $E_{.j.} = \frac{1}{I \times C} \sum_{i=1}^I \sum_{c=1}^C E_{ijc}$ the mean expression of gene j computed over all (I) individuals and
380 all (C) contexts, and $E_{ij.} = \frac{1}{C} \sum_{c=1}^C E_{ijc}$ the mean expression of individual i on gene j , computed over all
381 contexts. In (1), $E_{.j.}$ is a term that is constant across individuals and contexts for each gene, $(E_{ij.} - E_{.j.})$
382 is the between-individuals deviation, and $(E_{ijc} - E_{ij.})$ is the within-individual deviation of the expression
383 on gene j in context c .

384 Variables that differ between but not within individuals, e.g. sex and genotype, will have an effect

385 on $(E_{ij.} - E_{.j.})$ but not on $(E_{ijc} - E_{ij.})$. On the other hand, variables that change within individuals
386 but are the same between individuals, e.g. the genetic effect on a specific context, will have an effect on
387 $(E_{ijc} - E_{ij.})$ but not on $(E_{ij.} - E_{.j.})$.

388 In the context of estimation, we first center and scale the expression of gene j in each context c ,
389 i.e. $\frac{1}{I} \sum_{i=1}^I E_{ijc} = 0$ and $\frac{1}{I} \sum_{i=1}^I E_{ijc}^2 = 1$. Therefore, $E_{.j.} = \frac{1}{I \times C} \sum_{i=1}^I \sum_{c=1}^C E_{ijc} = 0$, and equation (1)
390 simplifies to:

$$391 \quad E_{ijc} = \underbrace{E_{ij.}}_{E_{ij}^{\text{Shared}}} + \underbrace{(E_{ijc} - E_{ij.})}_{E_{ijc}^{\text{Specific}}} \quad (2)$$

392 **A formal description of CONTENT** We use the simplified decomposition in equation (5) to build
393 genetic predictors of context-specific effects while accounting for the correlated intra-individual noise
394 across contexts. Intuitively, the between-individuals variability serves as the component of expression
395 that is shared across contexts, E^{Shared} , and the deviance from this shared component (i.e. the within-
396 individual variability) serves as the context-specific component of expression, E^{Specific} . Moreover, treating
397 the context-specific component as a deviance from the context-shared component leads the decomposition
398 to have the property that as the correlation of intra-individual noise across contexts increases, the power
399 to detect context-specificity also increases. In addition, the decomposition generates context-shared and
400 context-specific components of expression that are orthogonal to each other. Further rationale for using
401 the decomposed expression is included Supplementary Section 1 and the text by Lu et al. [16]. Lu et al.
402 also include a description of the decomposition's equivalence to a linear mixed model.

403 For a single gene j , CONTENT takes as input centered, scaled, and residualized (over a set of
404 covariates) expression measured across I individuals in C contexts and an $I \times m$ genotype matrix G_j
405 with m measured cis-SNPs for gene j . CONTENT then decomposes the expression vectors into C
406 context-specific components and a single context-shared component by simply calculating the mean of
407 expression for each individual across contexts, and setting the context-specific expression for context c as
408 the difference between the observed expression of context c and the calculated context-shared expression.
409 As it has been observed that cis-genetic effects may be sparse and that the elastic net may perform best
410 relative to other penalized linear models in the context of genetically regulated gene-expression [4, 14],
411 CONTENT fits $C + 1$ penalized linear models for the $C + 1$ expression components using an elastic net.
412 Lastly, CONTENT generates a final genetic predictor of expression by combining the context-shared
413 and context-specific components. Importantly, as the context-specific component is a deviance from the

414 context-shared component, the sign of the context-specific component must be properly realigned when
 415 combining both components of expression to make a final predictor. We refer to this linear combination
 416 of expression components as the “full” model of CONTENT and fit it using a simple linear regression:

417 1. Obtain E_j^{Shared} and E_{jc}^{Specific} from the decomposition.
 418 2. Generate cis-genetic predictors of each component using cross-validated elastic net:
 419 (a) Fit cross-validated elastic net regressions for the shared and specific components:

420
$$E_j^{\text{Shared}} = \alpha^{\text{Shared}} + G_j \beta + \varepsilon^{\text{Shared}} \quad (3)$$

421
$$E_{jc}^{\text{Specific}} = \alpha_c^{\text{Specific}} + G_j \gamma_c + \varepsilon_c^{\text{Specific}} \quad (4)$$

422 (b) Use the estimates to generate genetic predictors of each component:

423
$$\hat{E}_{jG}^{\text{Shared}} = \hat{\alpha}^{\text{Shared}} + G_j \hat{\beta} \quad (5)$$

424
$$\hat{E}_{jcG}^{\text{Specific}} = \hat{\alpha}_c^{\text{Specific}} + G_j \hat{\gamma}_c \quad (6)$$

425 3. Regress the expression of context c onto the context-shared and context-specific components:

426
$$E_{jc} = \alpha_c^{\text{Full}} + \hat{E}_{jG}^{\text{Sh.}} w_{jc}^{\text{Sh.}} + \hat{E}_{jcG}^{\text{Sp.}} w_{jc}^{\text{Sp.}} + \varepsilon_{jc} \quad (7)$$

427 Within each regression, α represents the offset and we assume that all ε are from a normal distri-
 428 bution with mean 0 and standard deviation that is a function of the given outcome.

429 We save for each gene the set of estimated regression weights $\hat{w}_{jc}^{\text{Shared}}$ and $\hat{w}_{jc}^{\text{Specific}}$ from equation
 430 (4) for use in downstream analyses. Namely, in TWAS, each context receives a single vector of weights,
 431 and to test the association of a gene-context’s full model to a trait, we simply use a weighted sum of the
 432 predictors learned from equation (3), $\hat{w}_{jc}^{\text{Sh.}} \hat{\beta} + \hat{w}_{jc}^{\text{Sp.}} \hat{\gamma}_c$. We also use the same procedure for the context-
 433 specific weight to ensure the correct directionality. To test for significance of genetic effects (i.e. to call an
 434 eGene or eAssociation), we correlate each component of expression—the context-shared, context-specific,
 435 and full—to its corresponding genetically predicted value.

436 **Controlling the false discovery rate across contexts** Generally, methods for building genetic
 437 predictors of expression or TWAS predictors leverage either Bonferroni correction or false discovery rate

438 (FDR). Nonetheless, using a Bonferroni correction may be too stringent (for example, as tests across
439 contexts may be correlated), and using FDR within each context or across all contexts simultaneously
440 may lead to an inflation or deflation to the false discovery proportion within certain contexts [17]. To
441 simultaneously control the FDR across all contexts at once, a hierarchical false discovery correction—
442 treeQTL—was developed [17]. The treeQTL procedure leverages the hierarchical structure of a collection
443 of tests (e.g. gene level and gene-context level) to properly control the FDR across an arbitrary number
444 of contexts and levels in the hierarchy as well as boost power in cases where a gene has a significant
445 association in multiple contexts [6, 17, 18]. (See Supplementary Methods for further intuition.)

446 Notably, using CONTENT, our testing hierarchy contains 3 levels; (1) at the level of the gene,
447 (2) at the level of the context, and (3) at the level of the method or model (Figure S3). Intuitively, a
448 gene may contain a genetic component that is shared across all contexts, or a given context may have
449 its own genetic architecture. In CONTENT, a given context may have its own genetic predictor from
450 either the context-specific component or the full model. Using treeQTL with this structure is robust
451 across multiple contexts, and since the tree is structured such that a specific method/model is at the final
452 level of testing for a context, it enables incorporation of additional models trained from other approaches
453 (such as those fit on a context-by-context basis or by UTMOST). Moreover, we can add to the shared
454 leaf an additional level of tests to account for additional components of effects-sharing, such as a brain
455 tissue-shared component.

456 **Comparison to other methods** We compared the prediction accuracy of CONTENT to a context-
457 by-context TWAS model [3, 4] in which the expression of each context is modeled separately, and to
458 UTMOST [9], a method that jointly learns the genetic effects on all contexts simultaneously. Specifically
459 the model based on TWAS fits a penalized linear model for each context. UTMOST, on the other hand,
460 employs a group LASSO penalty across all contexts simultaneously, allowing it to gain power over the
461 context-by-context approach by considering all individuals and contexts in a study at once. As we were
462 we able to use a fast R package for penalized regression[71], we used 10-fold cross-validation to fit the
463 context-by-context model. Owing to UTMOST’s computational intensity, we used its default value of 5
464 folds for cross-validation.

465 We also compared CONTENT to a previous approach by Wheeler et al., orthogonal tissue decom-
466 position (OTD)[14]. OTD is a direct correlate of CONTENT(Shared) and CONTENT(Specific), and is
467 generated by fitting a mixed effects model across all contexts for a given individual. Namely, a mixed

468 effects model is fit as follows: an individual's expression across all tissues is set as the outcome, the
469 shared expression is modeled as a random individual-level intercept and is estimated using the posterior
470 mean, and the specific expression is treated as the residuals from the fit model (after adjusting for covari-
471 ates). Under infinite sample sizes, the components of OTD are equivalent to CONTENT(Shared) and
472 CONTENT(Specific).

473 **Evaluations on GTEx and CLUES** We residualized the expression of each gene in each context
474 over their corresponding covariates (e.g. PEER factors, age, sex, batch information) prior to fitting
475 UTMOST and an elastic-net model for each context in the context-by-context approach. We did the same
476 residualization before decomposing and then fitting the context-shared and context-specific components
477 with an elastic net for CONTENT. After generating cross-validated predictors for each method, we
478 examined the number of significantly predicted genes as well as the prediction accuracy (in terms of
479 adjusted R^2) between the cross-validation-predicted and true gene expression per gene-context pair.

480 To properly control the false discovery proportion at .05 across-contexts and within-methods, we
481 employed a hierarchical FDR correction [17, 18] separately for CONTENT, UTMOST, and the context-
482 by-context approaches. Notably, using this correction for all methods provides a generous comparison to
483 previous methods, as when there exists at least one significantly heritable gene-context association for a
484 given gene, there is a relative gain in power over the context-by-context FDR for other contexts tested
485 within this gene [17, 18].

486 **Application to TWAS** We performed transcription-wide association studies across 24 phenotypes us-
487 ing FUSION-TWAS[3]. FUSION-TWAS uses GWAS summary statistics and user-specified gene expres-
488 sion weights with an LD reference panel to perform the test of association between genetically predicted
489 gene expression and a phenotype of interest. We tested a gene-context pair for association if the pair's
490 expression was predicted at a nominal p-value of .1, and note that this threshold does not substantially
491 alter the number of TWAS discoveries (Figure S14). Notably, previous methods may use their own test
492 of gene-context-trait association or leverage set tests (e.g. Berk Jones[9]) to combine their associations
493 across all contexts for a given gene and therefore increase power. In this comparison, we report the asso-
494 ciation as output by FUSION (a single gene-context-trait association) and corrected by hierarchical false
495 discovery without any sort of set test for the sake of equality in the comparison. We ran FUSION-TWAS
496 using the default recommended settings, with reference data from the 1000 genomes project [72]. TWAS

497 weights were trained on the GTEx v7 dataset[2] as well as the CLUES[20] single-cell RNAseq dataset of
 498 PBMCs.

499 **Simulations to evaluate prediction accuracy** To evaluate the properties of our method relative
 500 to other methods we perform a series of simulation experiments. We first simulate genotypes for each
 501 individual, where each individual i and each locus m ($m = 1 : M$) is independent, and there are no rare
 502 SNPs:

$$503 \quad G_{im} \sim \text{Bin}(2, \text{Unif}[.05, .50]) \\ 504$$

505 We then draw both context-shared ($\beta_{j.}$) and context-specific (β_{jc}) effect sizes for each SNP from
 506 a normal distribution with a Bernoulli random variable I_m controlling the probability that the m^{th} SNP
 507 is causal (i.e. induce sparsity of genetic effects)..:

$$508 \quad I^m \sim \text{Bernoulli}(.05), \quad \beta_{j.}^m \sim N\left(0, \frac{h^2}{M * \pi}\right) \times I^m, \quad \text{and} \quad \beta_{jc}^m \sim N\left(0, \frac{h_c^2}{\lambda * M * \pi}\right) \times I_\lambda^m \\ 509$$

510 Here, h^2 and h_c^2 are the context-shared and context-specific heritabilities of expression on gene j . In
 511 general, the SNPs with nonzero context-specific effect sizes were subsampled from SNPs with nonzero
 512 context-shared effect sizes. We additionally simulate for a subset of contexts some number of truly
 513 context-specific eQTLs drawn from Poisson($\lambda = 1$) for randomly selected SNPs that were not eQTLs for
 514 the context-shared effects. Finally, we simulate the expression of gene j as follows:

$$515 \quad E_{jc} = G_j \beta_{j.} + G_j \beta_{jc} + \varepsilon_{jc} \quad (8)$$

$$516 \quad \varepsilon \sim \mathcal{N}(0, \Sigma), \quad \Sigma \in \mathbb{R}^{C \times C} = \begin{bmatrix} \sigma_1^2 & \dots & \sigma_{1,C} \\ \vdots & \ddots & \vdots \\ \sigma_{C,1} & \dots & \sigma_C^2 \end{bmatrix} \quad (9) \\ 517$$

518 where $\varepsilon \in \mathbb{R}^I$, represents the correlation of environment or intra-individual noise across contexts, $\sigma_c^2 =$
 519 $1 - h^2 - h_c^2$ is the variances of each context c , and $\sigma_{c_1, c_2} = \rho_{c_1, c_2} \sigma_{c_1} \sigma_{c_2}$ is the covariance of context c_1 and
 520 c_2 . We generated data under varying levels of context-specific heritability, truly context-specific eQTLs,

521 causal SNPs, and correlation of intra-individual noise across contexts. The number of contexts was set to
522 20, and to replicate a setting similar to GTEx, the corresponding sample sizes of each ranged from 75 to
523 410 where individuals were not necessarily measured in every context. In our simulations, we generated
524 one train and one test data set using the above framework. We evaluated the performance of each method
525 by comparing the true and predicted expression in the test data set, using the predictor learned from the
526 training data set.

527 To assess the effect of additional sharing on a subset of contexts, we also set up a simulation
528 framework using the same generative process as above, only that a subset of contexts also received
529 additional genetic effects. More rigorously, for this subset of contexts (acting as brain contexts in GTEx,
530 for example), expression was generated as in equation (6) with an additional term:

$$531 \quad E_{jc} = G_j \beta_j. + G_j \beta_{jc} + G_j \beta_{jb} + \varepsilon_{jc}, \quad \beta_{jb}^m \sim N \left(0, \frac{h_b^2}{\lambda * M * \pi} \right) \times I_\lambda^m \quad (10)$$

532

533 where each variable is simulated as before, β_{jb}^m corresponds to additional genetic effects that are subsam-
534 pled from SNPs that have a context-shared effect, and h_b^2 is the brain-shared heritability.

535 **Simulations of TWAS performance** Using the above generated genotypes and gene expression, we
536 simulated phenotypes to evaluate the performance of each method under the assumed model in TWAS.
537 For a given phenotype, we randomly selected 300 gene-context pairs (100 genes, 3 contexts each) whose
538 expression would comprise a portion of a phenotype. Explicitly, we generated a phenotype as follows:

$$539 \quad 540 \quad y_i = E_i \delta + \varepsilon \quad \delta \sim N(0, \frac{\sigma_{ge}^2}{300}), \quad \varepsilon_i \sim N(0, 1 - \frac{\sigma_{ge}^2}{300})$$

541 Where E_i is the standardized genetic expression of the 300 gene-context pairs for individual i ,
542 δ is the length-300 vector of effect sizes for each gene-contexts' expression, σ_{ge}^2 is the variance in the
543 phenotype y_i due to cis-genetic gene expression, and ε_i corresponds to environmental effects (or noise)
544 as well as trans-genetic effects for individual i . In our simulations, we varied the heritability of gene
545 expression and fixed variability in the phenotype due to genetic gene expression to .2. To simulate a
546 wide range of genetic architectures, the proportion of heritability of gene expression due to the context-
547 shared effects was sampled from a standard uniform distribution, and the proportion of heritability
548 due to context-specific effects was (1- the context-shared proportion). Once we generated a phenotype,

549 we performed a TWAS using weights output from each method by imputing expression into a simulated
550 external, independent set of 10000 genotypes that followed the same generation process as in the previous
551 subsection.

552 References

553 [1] Matthew T. Maurano, Richard Humbert, et al. “Systematic Localization of Common Disease-
554 Associated Variation in Regulatory DNA”. In: *Science* 337.6099 (2012), pp. 1190–1195.

555 [2] GTEx Consortium, François Aguet, et al. “Genetic effects on gene expression across human tissues”.
556 In: *Nature* 550 (Oct. 2017), 204 EP –.

557 [3] Alexander Gusev, Arthur Ko, et al. “Integrative approaches for large-scale transcriptome-wide
558 association studies”. In: *Nature Genetics* 48 (Feb. 2016), 245 EP –.

559 [4] Eric R Gamazon, Heather E Wheeler, et al. “A gene-based association method for mapping traits
560 using reference transcriptome data”. In: *Nature Genetics* 47 (Aug. 2015), 1091 EP –.

561 [5] Michael Wainberg, Nasa Sinnott-Armstrong, et al. “Opportunities and challenges for transcriptome-
562 wide association studies”. In: *Nature Genetics* 51.4 (2019), pp. 592–599.

563 [6] Timothée Flutre, Xiaoquan Wen, et al. “A Statistical Framework for Joint eQTL Analysis in Mul-
564 tiple Tissues”. In: *PLOS Genetics* 9.5 (May 2013), pp. 1–13.

565 [7] Nicholas Mancuso, Huwenbo Shi, et al. “Integrating Gene Expression with Summary Association
566 Statistics to Identify Genes Associated with 30 Complex Traits”. In: *The American Journal of
567 Human Genetics* 100.3 (2017), pp. 473 –487.

568 [8] Dan Zhou, Yi Jiang, et al. “A unified framework for joint-tissue transcriptome-wide association and
569 Mendelian randomization analysis”. In: *Nature Genetics* 52.11 (2020), pp. 1239–1246.

570 [9] Yiming Hu, Mo Li, et al. “A statistical framework for cross-tissue transcriptome-wide association
571 analysis”. In: *Nature Genetics* 51.3 (2019), pp. 568–576.

572 [10] Alvaro N. Barbeira, Milton Pividori, et al. “Integrating predicted transcriptome from multiple
573 tissues improves association detection”. In: *PLOS Genetics* 15.1 (Jan. 2019), pp. 1–20.

574 [11] GTEx Consortium. “The Genotype-Tissue Expression (GTEx) pilot analysis: Multitissue gene reg-
575 ulation in humans”. In: *Science* 348.6235 (2015), pp. 648–660.

576 [12] Helian Feng, Nicholas Mancuso, et al. “Leveraging expression from multiple tissues using sparse
577 canonical correlation analysis and aggregate tests improve the power of transcriptome-wide associ-
578 ation studies”. In: *bioRxiv* (2020).

579 [13] . “The GTEx Consortium atlas of genetic regulatory effects across human tissues”. In: *Science*
580 369.6509 (2020), pp. 1318–1330.

581 [14] Heather E. Wheeler, Kaanan P. Shah, et al. “Survey of the Heritability and Sparse Architecture of
582 Gene Expression Traits across Human Tissues”. In: *PLOS Genetics* 12.11 (Nov. 2016), pp. 1–23.

583 [15] Alvaro N. Barbeira, Scott P. Dickinson, et al. “Exploring the phenotypic consequences of tissue
584 specific gene expression variation inferred from GWAS summary statistics”. In: *Nature Communications* 9.1 (2018), p. 1825.

586 [16] Andrew Lu, Mike Thompson, et al. “Fast and powerful statistical method for context-specific QTL
587 mapping in multi-context genomic studies”. In: *bioRxiv* (2021).

588 [17] C B Peterson, M Bogomolov, et al. “TreeQTL: hierarchical error control for eQTL findings.” In:
589 *Bioinformatics* 32.16 (2016), pp. 2556–2558.

590 [18] Christine B Peterson, Marina Bogomolov, et al. “Many Phenotypes Without Many False Discov-
591 eries: Error Controlling Strategies for Multitrait Association Studies.” In: *Genet Epidemiol* 40.1
592 (2016), pp. 45–56.

593 [19] Cristina M. Lanata, Ishan Paranjpe, et al. “A phenotypic and genomics approach in a multi-ethnic
594 cohort to subtype systemic lupus erythematosus”. In: *Nature Communications* 10.1 (2019), p. 3902.

595 [20] Gaia Andreoletti, Cristina M. Lanata, et al. “Transcriptomic analysis of immune cells in a multi-
596 ethnic cohort of systemic lupus erythematosus patients identifies ethnicity- and disease-specific
597 expression signatures”. In: *Communications Biology* 4.1 (2021), p. 488.

598 [21] Monique G. P. van der Wijst, Harm Brugge, et al. “Single-cell RNA sequencing identifies celltype-
599 specific cis-eQTLs and co-expression QTLs”. In: *Nature Genetics* 50.4 (2018), pp. 493–497.

600 [22] Hyun Min Kang, Meena Subramaniam, et al. “Multiplexed droplet single-cell RNA-sequencing
601 using natural genetic variation”. In: *Nature Biotechnology* 36.1 (2018), pp. 89–94.

602 [23] Maayan Baron, Adrian Veres, et al. “A Single-Cell Transcriptomic Map of the Human and Mouse
603 Pancreas Reveals Inter- and Intra-cell Population Structure”. In: *Cell Systems* 3.4 (2016), 346–
604 360.e4.

605 [24] Brandon Jew, Marcus Alvarez, et al. “Accurate estimation of cell composition in bulk expression
606 through robust integration of single-cell information”. In: *Nature Communications* 11.1 (2020),
607 p. 1971.

608 [25] Sarah M. Urbut, Gao Wang, et al. “Flexible statistical methods for estimating and testing effects
609 in genomic studies with multiple conditions”. In: *Nature Genetics* 51.1 (2019), pp. 187–195.

610 [26] Rachel Moore, Francesco Paolo Casale, et al. “A linear mixed-model approach to study multivariate
611 gene–environment interactions”. In: *Nature Genetics* 51.1 (2019), pp. 180–186.

612 [27] Sarah Kim-Hellmuth, François Aguet, et al. “Cell type–specific genetic regulation of gene expression
613 across human tissues”. In: *Science* 369.6509 (Sept. 11, 2020). ISSN: 0036-8075, 1095-9203. DOI: 10.
614 1126/science.aaz8528. URL: <https://science.sciencemag.org/content/369/6509/eaaz8528>
615 (visited on 04/23/2021).

616 [28] Jean-Charles Lambert, Carla A Ibrahim-Verbaas, et al. “Meta-analysis of 74,046 individuals identi-
617 fies 11 new susceptibility loci for Alzheimer’s disease”. In: *Nature Genetics* 45.12 (2013), pp. 1452–
618 1458.

619 [29] Douglas M. Ruderfer, Stephan Ripke, et al. “Genomic Dissection of Bipolar Disorder and Schizophre-
620 nia, Including 28 Subphenotypes”. In: *Cell* 173.7 (2018), 1705–1715.e16.

621 [30] Heribert Schunkert, Inke R König, et al. “Large-scale association analysis identifies 13 new suscep-
622 tibility loci for coronary artery disease”. In: *Nature Genetics* 43.4 (2011), pp. 333–338.

623 [31] Matthias Wuttke, Yong Li, et al. “A catalog of genetic loci associated with kidney function from
624 analyses of a million individuals”. In: *Nature Genetics* 51.6 (2019), pp. 957–972.

625 [32] Alisa K Manning, Marie-France Hivert, et al. “A genome-wide approach accounting for body mass
626 index identifies genetic variants influencing fasting glycemic traits and insulin resistance”. In: *Nature
627 Genetics* 44.6 (2012), pp. 659–669.

628 [33] Tanya M. Teslovich, Kiran Musunuru, et al. “Biological, clinical and population relevance of 95 loci
629 for blood lipids”. In: *Nature* 466.7307 (2010), pp. 707–713.

630 [34] Po-Ru Loh, Gleb Kichaev, et al. “Mixed-model association for biobank-scale datasets”. In: *Nature
631 Genetics* 50.7 (2018), pp. 906–908.

632 [35] Cristen J Willer, Ellen M Schmidt, et al. “Discovery and refinement of loci associated with lipid
633 levels”. In: *Nature Genetics* 45.11 (2013), pp. 1274–1283.

634 [36] James Bentham, David L Morris, et al. “Genetic association analyses implicate aberrant regulation
635 of innate and adaptive immunity genes in the pathogenesis of systemic lupus erythematosus”. In:
636 *Nature Genetics* 47.12 (2015), pp. 1457–1464.

637 [37] The International Multiple Sclerosis Genetics Consortium (IMSGC). “Evidence for Polygenic Sus-
638ceptibility to Multiple Sclerosis—The Shape of Things to Come”. In: *The American Journal*
639 *of Human Genetics* 86.4 (2010), pp. 621–625.

640 [38] Heather J. Cordell, Younghun Han, et al. “International genome-wide meta-analysis identifies new
641 primary biliary cirrhosis risk loci and targetable pathogenic pathways”. In: *Nature Communications*
642 6.1 (2015), p. 8019.

643 [39] Yukinori Okada, Di Wu, et al. “Genetics of rheumatoid arthritis contributes to biology and drug
644 discovery”. In: *Nature* 506.7488 (2014), pp. 376–381.

645 [40] Jamie R. J. Inshaw, Carlo Sidore, et al. “Analysis of overlapping genetic association in type 1 and
646 type 2 diabetes”. In: *Diabetologia* 64.6 (2021), pp. 1342–1347.

647 [41] Anubha Mahajan, Daniel Taliun, et al. “Fine-mapping type 2 diabetes loci to single-variant resolu-
648 tion using high-density imputation and islet-specific epigenome maps”. In: *Nature Genetics* 50.11
649 (2018), pp. 1505–1513.

650 [42] Hiromichi Wada, Masahiro Suzuki, et al. “VEGF-C and Mortality in Patients With Suspected
651 or Known Coronary Artery Disease”. In: *Journal of the American Heart Association* 7.21 (2018),
652 e010355.

653 [43] Maryanne L. Brown, Akihiro Inazu, et al. “Molecular basis of lipid transfer protein deficiency in a
654 family with increased high-density lipoproteins”. In: *Nature* 342.6248 (1989), pp. 448–451.

655 [44] Philip J. Barter, H. Bryan Brewer, et al. “Cholesteryl Ester Transfer Protein”. In: *Arteriosclerosis,*
656 *Thrombosis, and Vascular Biology* 23.2 (2003), pp. 160–167.

657 [45] Talita Siara Almeida Baptista, Laura Esteves Petersen, et al. “Autoantibodies against myelin sheath
658 and S100 are associated with cognitive dysfunction in patients with rheumatoid arthritis.” In: *Clin*
659 *Rheumatol* 36.9 (2017), pp. 1959–1968.

660 [46] Yan Zhang, Arjun Saradna, et al. “RhoA/Rho-kinases in asthma: from pathogenesis to therapeutic
661 targets”. In: *Clinical & Translational Immunology* 9.5 (2020), e1134.

662 [47] Yoshihiko Chiba, Kimihiko Matsusue, and Miwa Misawa. “RhoA, a possible target for treatment of
663 airway hyperresponsiveness in bronchial asthma.” In: *J Pharmacol Sci* 114.3 (2010), pp. 239–247.

664 [48] Yipeng Du, Hao Hu, et al. “SIRT5 deacylates metabolism-related proteins and attenuates hepatic
665 steatosis in ob/ob mice.” In: *EBioMedicine* 36 (2018), pp. 347–357.

666 [49] Yongmei Ma and Xiaoqiang Fei. “SIRT5 regulates pancreatic -cell proliferation and insulin secretion
667 in type 2 diabetes”. In: *Experimental and therapeutic medicine* 16.2 (Aug. 2018), pp. 1417–1425.

668 [50] Rossella Gratton, Paola Maura Tricarico, et al. “Pleiotropic Role of Notch Signaling in Human Skin
669 Diseases”. In: *International journal of molecular sciences* 21.12 (June 2020), p. 4214.

670 [51] Kwangsik Nho, Sungeun Kim, et al. “Association analysis of rare variants near the APOE re-
671 gion with CSF and neuroimaging biomarkers of Alzheimer’s disease”. In: *BMC medical genomics*
672 10. Suppl 1 (May 2017), pp. 29–29.

673 [52] Joshua C. Bis, Xueqiu Jian, et al. “Whole exome sequencing study identifies novel rare and common
674 Alzheimer’s-Associated variants involved in immune response and transcriptional regulation”. In:
675 *Molecular Psychiatry* 25.8 (2020), pp. 1859–1875.

676 [53] Yuetiva Deming, Fabia Filipello, et al. “The MS4A gene cluster is a key modulator of soluble
677 TREM2 and Alzheimer’s disease risk”. In: *Science Translational Medicine* 11.505 (2019).

678 [54] Keith Del Villar and Carol A Miller. “Down-regulation of DENN/MADD, a TNF receptor binding
679 protein, correlates with neuronal cell death in Alzheimer’s disease brain and hippocampal neurons.”
680 In: *Proc Natl Acad Sci U S A* 101.12 (2004), pp. 4210–4215.

681 [55] Joachim Herz and Uwe Beffert. “Apolipoprotein E receptors: linking brain development and Alzheimer’s
682 disease”. In: *Nature reviews. Neuroscience* 1 (Nov. 2000), pp. 51–8.

683 [56] Ellis Patrick, Marta Olah, et al. “A cortical immune network map identifies distinct microglial tran-
684 scriptional programs associated with -amyloid and Tau pathologies”. In: *Translational Psychiatry*
685 11.1 (2021), p. 50.

686 [57] Hussein Sheikh Mohamoud, Saleem Ahmed, et al. “A missense mutation in TRAPPC6A leads to
687 build-up of the protein, in patients with a neurodevelopmental syndrome and dysmorphic features”.
688 In: *Scientific Reports* 8.1 (2018), p. 2053.

689 [58] Jean-Yun Chang, Ming-Hui Lee, et al. “Trafficking protein particle complex 6A delta (TRAPPC6A)
690 is an extracellular plaque-forming protein in the brain”. In: *Oncotarget* 6.6 (Feb. 2015), pp. 3578–
691 3589.

692 [59] Vivian Gonzalez-Perez, Pedro L. Martinez-Espinosa, et al. “Goblet cell LRRC26 regulates BK
693 channel activation and protects against colitis in mice”. In: *Proceedings of the National Academy
694 of Sciences* 118.3 (2021).

695 [60] Pinelopi Nterma, Eleni Panopoulou, et al. “Immunohistochemical Profile of Tumor Suppressor
696 Proteins RASSF1A and LATS1/2 in Relation to p73 and YAP Expression, of Human Inflammatory
697 Bowel Disease and Normal Intestine.” In: *Pathol Oncol Res* 26.1 (2020), pp. 567–574.

698 [61] Alexandra Zhernakova, Eleanora M Festen, et al. “Genetic analysis of innate immunity in Crohn’s
699 disease and ulcerative colitis identifies two susceptibility loci harboring CARD9 and IL18RAP”. In:
700 *American journal of human genetics* 82.5 (May 2008), pp. 1202–1210.

701 [62] Christian Stehlik, Hideki Hayashi, et al. “CARD6 Is a Modulator of NF-κB Activation
702 by Nod1- and Cardiak-mediated Pathways *”. In: *Journal of Biological Chemistry* 278.34 (2003),
703 pp. 31941–31949.

704 [63] M Fujita, E M Richards, et al. “cAMP signaling in brain is decreased in unmedicated depressed pa-
705 tients and increased by treatment with a selective serotonin reuptake inhibitor.” In: *Mol Psychiatry*
706 22.5 (2017), pp. 754–759.

707 [64] S N Reisinger, E Kong, et al. “Flotillin-1 interacts with the serotonin transporter and modulates
708 chronic corticosterone response”. In: *Genes, brain, and behavior* 18.2 (Feb. 2019), e12482–e12482.

709 [65] Jingmei Zhong, Shiwu Li, et al. “Integration of GWAS and brain eQTL identifies FLOT1 as a risk
710 gene for major depressive disorder”. In: *Neuropsychopharmacology* 44.9 (2019), pp. 1542–1551.

711 [66] Andrew S. Levey, Kai-Uwe Eckardt, et al. “Definition and classification of chronic kidney disease:
712 A position statement from Kidney Disease: Improving Global Outcomes (KDIGO)”. In: *Kidney
713 International* 67.6 (2005), pp. 2089–2100.

714 [67] Anna Köttgen, Nicole L Glazer, et al. “Multiple loci associated with indices of renal function and
715 chronic kidney disease.” In: *Nat Genet* 41.6 (2009), pp. 712–717.

716 [68] Matthias Wuttke, Yong Li, et al. “A catalog of genetic loci associated with kidney function from
717 analyses of a million individuals”. In: *Nature Genetics* 51.6 (2019), pp. 957–972.

718 [69] Jian Yang, S. Hong Lee, et al. “GCTA: A Tool for Genome-wide Complex Trait Analysis”. In: *The
719 American Journal of Human Genetics* 88.1 (2011), pp. 76–82.

720 [70] Lee Joseph Cronbach and Noreen M. Webb. “Between-Class and Within-Class Effects in a Reported
721 Aptitude X Treatment Interaction: Reanalysis of a Study by G. L. Anderson.” In: 1975.

722 [71] Florian Prive, Hugues Aschard, et al. “Efficient analysis of large-scale genome-wide data with two
723 R packages: bigstatsr and bigsnpr.” In: *Bioinformatics* 34.16 (2018), pp. 2781–2787.

724 [72] Adam Auton, Gonçalo R. Abecasis, et al. “A global reference for human genetic variation”. In:
725 *Nature* 526.7571 (2015), pp. 68–74.

726 [73] S H Lee, J Yang, et al. “Estimation of pleiotropy between complex diseases using single-nucleotide
727 polymorphism-derived genomic relationships and restricted maximum likelihood.” In: *Bioinformatics*
728 28.19 (2012), pp. 2540–2542.

729 [74] Sandip Mukherjee, Ritesh Kumar, et al. “Deubiquitination of NLRP6 inflammasome by Cyld crit-
730 ically regulates intestinal inflammation”. In: *Nature Immunology* 21.6 (2020), pp. 626–635.

731 [75] R Guerra, J Wang, et al. “A hepatic lipase (LIPC) allele associated with high plasma concentrations
732 of high density lipoprotein cholesterol.” In: *Proc Natl Acad Sci U S A* 94.9 (1997), pp. 4532–4537.

733 [76] Alanna Strong, Kevin Patel, and Daniel J Rader. “Sortilin and lipoprotein metabolism: making
734 sense out of complexity”. In: *Current opinion in lipidology* 25.5 (Oct. 2014), pp. 350–357.

735 [77] Kiran Musunuru, Alanna Strong, et al. “From noncoding variant to phenotype via SORT1 at the
736 1p13 cholesterol locus.” In: *Nature* 466.7307 (2010), pp. 714–719.

737 [78] Claudia Goettsch, Mads Kjolby, and Elena Aikawa. “Sortilin and Its Multiple Roles in Cardiovas-
738 cular and Metabolic Diseases.” In: *Arterioscler Thromb Vasc Biol* 38.1 (2018), pp. 19–25.

739 [79] Yuan He, Surya B. Chhetri, et al. “sn-spMF: matrix factorization informs tissue-specific genetic
740 regulation of gene expression”. In: *Genome Biology* 21.1 (2020), p. 235.

741 [80] Xiaopu Zhou, Yu Chen, et al. “Non-coding variability at the APOE locus contributes to the
742 Alzheimer’s risk”. In: *Nature Communications* 10.1 (2019), p. 3310.

743 Supplementary Methods and Information

744 Intuition for using the decomposition to model genomic features

745 The decomposition described in the methods section lays a framework for CONTENT as it directly
746 accounts for the shared noise and generates orthogonal context-shared and context-specific components
747 of genomic features. First, we note that in multi-context data, repeated measurements of one individual
748 will likely have correlated errors; in the context of GTEx data, an individual's environment as well as
749 technical noise is likely to affect their expression in all contexts. The above decomposition exploits this
750 structure, which improves the power to learn the context-specific variability of expression. Put more
751 rigorously, consider the expression of gene j in an individual measured in a baseline context and then
752 again after a stimulation:

$$753 \quad E_{ij1} = \mathbf{g}_i \beta_j + \epsilon_{ij1}$$

$$754 \quad E_{ij2} = \mathbf{g}_i \beta_j + \mathbf{g}_i \gamma_j + \epsilon_{ij2}$$

755 Where E_{ij1} and E_{ij2} denote the observed expression level of individual i at gene j at baseline and
756 stimulation respectively, \mathbf{g}_i represents a vector of the individuals' genotype at some nearby *cis*-SNPs, β_j
757 denotes the baseline genetic effects on expression, γ_j denotes the stimulation-related genetic effects on
758 expression, and ϵ_{ij1} and ϵ_{ij2} represent the environmental effects (or noise) on the individual's expression
759 of gene j in baseline and stimulation respectively. In teasing apart the genetic effects that are different
760 after stimulation, one might examine the difference in the expression between contexts:

$$762 \quad E_{ij2} - E_{ij1} = \mathbf{g}_i \beta_j + \mathbf{g}_i \gamma_j + \epsilon_{ij2} - \mathbf{g}_i \beta_j - \epsilon_{ij1} \\ 763 \quad = \mathbf{g}_i \gamma_j + \epsilon_{ij2} - \epsilon_{ij1} \quad (11)$$

764 which leaves only the difference in expression due to the stimulation-specific, or in other words, context-
765 specific component, and noise. Under the scenario in which the errors are perfectly correlated, (11)
766 simplifies to:

$$768 \quad E_{ij2} - E_{ij1} = \mathbf{g}_i \gamma_j$$

Clearly, this will greatly increase our ability to build a genetic model of the stimulation-specific component. In terms of CONTENT, the baseline genetic effects correspond to the context-shared genetic effects, and the stimulation-specific effects correspond to the context-specific effects. Put simply, we propose the context-shared genetic effects be considered a “baseline” effect, and that the context-shared genetic effects are simply offsets to the context-shared effect. This model is directly related to equation (3):

$$E_{ijt_i} = (E_{ij.}) + (E_{ijt_i} - E_{ij.})$$

770 where $E_{ij.}$ and $(E_{ijt_i} - E_{ij.})$ correspond to the context-shared and context-specific genetic effects respectively.
771 By construction, $E_{ij.}$ and $(E_{ijt_i} - E_{ij.})$ are orthogonal, and thus we have generated orthogonal
772 components for the context-shared and context-specific components of expression.

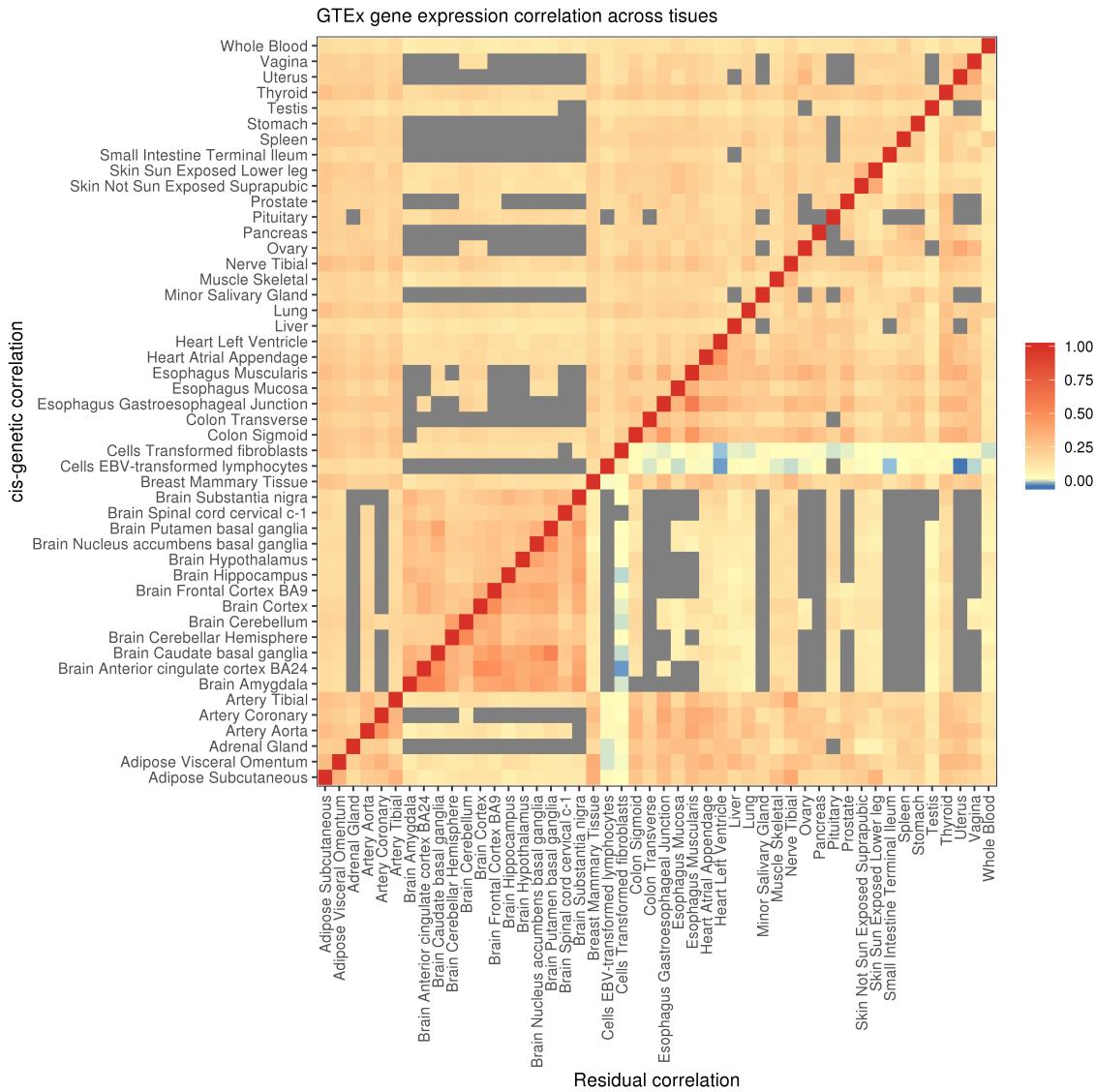


Figure S1. Gene expression correlation across tissues in the GTEx study. Using a linear mixed model with bivariate REML [69, 73], we calculated cis-genetic and residual (which captures variance due to both trans-genetic effects as well as residual effects) variance and covariance components for each gene-tissue pair across GTEx. The gray units indicate tissue pairs with less than 10% sample overlap. In both the genetic (upper) and residual (lower) components, there was widespread cis-genetic and residual correlation, with the brain tissues showing higher correlations compared to other tissues.

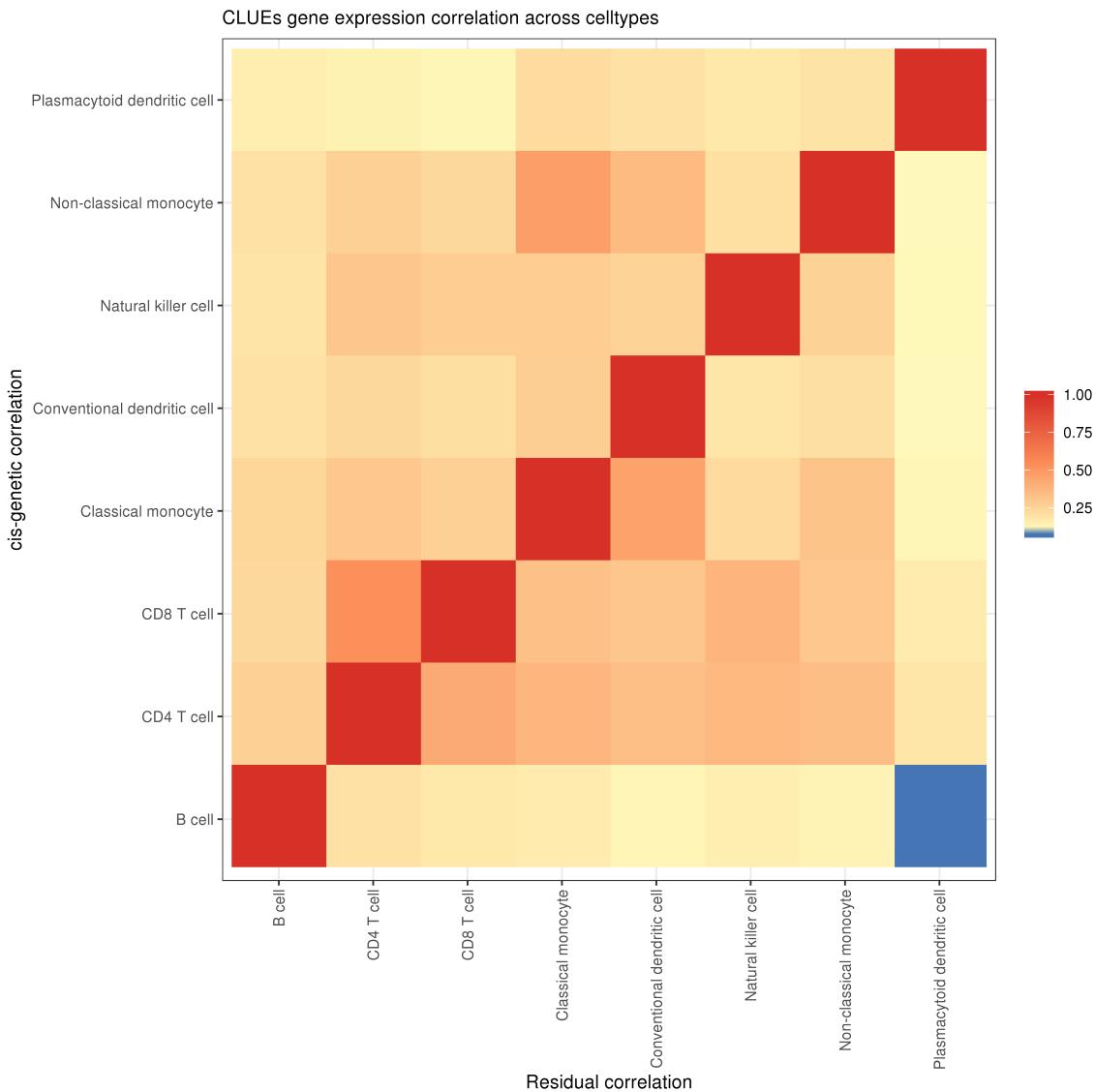


Figure S2. Gene expression correlation across cell types in the CLUEs study. Using a linear mixed model with bivariate REML[69, 73], we calculated cis-genetic and residual (which includes trans-genetic effects) variance and covariance components for each gene-cell type pair across CLUEs.

773 **Hierarchical false discover correction**

774 Multiple hypotheses correction in the context of discovering genes, gene-context pairs, and downstream
775 associations of genetically-regulated gene expression with phenotypes varies across approaches [3, 4, 15].
776 For discovering gene and gene-context associations, previous approaches often leverage a Bonferroni
777 correction when investigating a single context, and may use FDR within a context when investigating
778 multiple contexts [4, 15]. After conducting an association test between a phenotype and genetically regu-
779 lated gene expression, an additional Bonferroni correction is often employed across all tested expression-
780 context-phenotype trios [15]. As this approach across all expression-context-phenotype trios may be too
781 stringent, FDR may also be used. However, adjusting for the FDR within each context or across all
782 contexts simultaneously may lead to an inflation or deflation to the false discovery proportion within
783 certain contexts [17].

784 To simultaneously control the FDR across all contexts at once, a hierarchical false discovery
785 correction—treeQTL—was developed [17]. Though treeQTL was originally developed for use in eQTL
786 studies, its properties hold for any false discovery correction where such a hierarchy (e.g. gene level and
787 gene-context level) exists[18]. Briefly, TreeQTL first combines all gene-context p-values for a given gene
788 simultaneously using Simes's procedure (other related procedures may also be used) to determine if there
789 is an association at this given locus. If there is an association at the locus, FDR is then employed across
790 the contexts within that gene. Importantly, if a gene does not have a significant association as determined
791 by the first step, contexts are not included in the additional correction procedure, thus decreasing the
792 number of tests that need to be accounted for in multiple correction. This approach has been shown to
793 properly control the false discovery rate across an arbitrary number of contexts and levels in the hierarchy,
794 making it an invaluable tool in the context of gene, gene-context, and gene-context-trait discoveries.

795 To properly adjust the FDR for CONTENT, we use a hierarchy of 3 levels; (1) at the level of the
796 gene, (2) at the level of the context, and (3) at the level of the method or model.

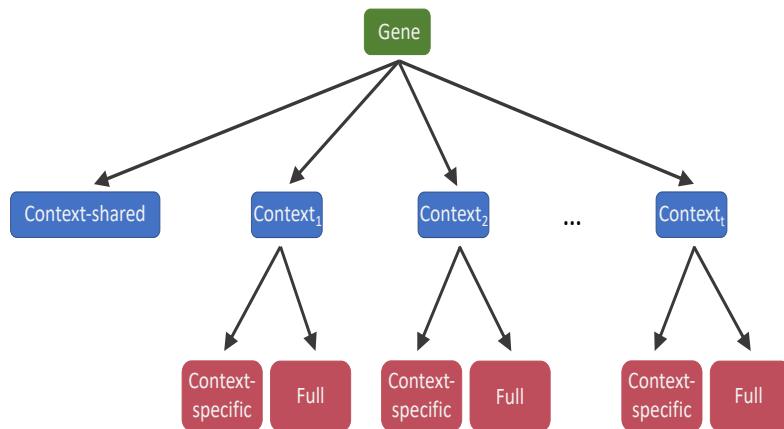


Figure S3. Hierarchical false discovery correction. Here, we show the structure of the hypothesis tests for determining whether a gene has a heritable component. A gene (green, top level) is considered heritable if it has a heritable context-shared component or if it was heritable for a specific context (blue, second level). A given gene-context may be heritable due to either the full or context-specific model of CONTENT (red, third level).

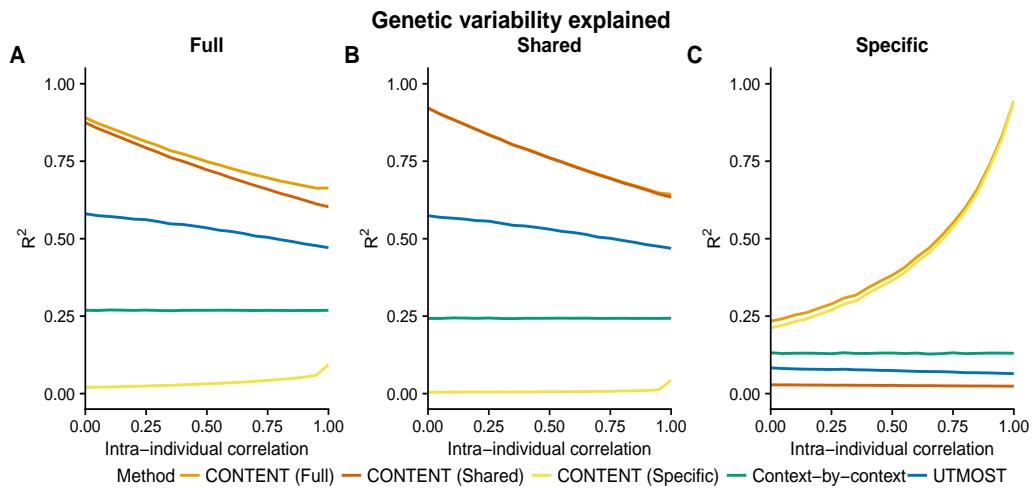


Figure S4. CONTENT is powerful and well-calibrated in simulated data. Accuracy of each method to predict the genetically regulated gene expression of each gene-context pair for different correlations of intra-individual noise across contexts. Mean adjusted R^2 across contexts between the true (A) full, (B) shared, and (C) specific genetic components of expression and the predicted component for each method and for different levels of intra individual correlation. We show here the accuracy for each component and method for all gene-contexts pairs, regardless of whether they had only context-shared or had both context-shared and context-specific effects. Notably, 75% of gene-contexts did not have a context-specific effect, and therefore CONTENT(Shared) captures nearly all of the full variability in these contexts (i.e. the full model is comprised of only shared effects). Further, as only 25% of gene-contexts had context-specific effects, CONTENT(Specific) on average captures very little of the full variability.

797 **Simulations under additional parameter settings**

798 In this section, we evaluate CONTENT, UTMOST, and the context-by-context approach using the same
799 simulations framework as in the main text (Figure 2), however here we show each methods' performance
800 while varying additional parameters (Figure S5). We also show the performance of each method when
801 the heritability of the context-shared and context-specific effects are equal (.2; Figure S6) and where the
802 context-shared heritability is less than the context-specific effects (.1 and .3 respectively; Figure S7)).

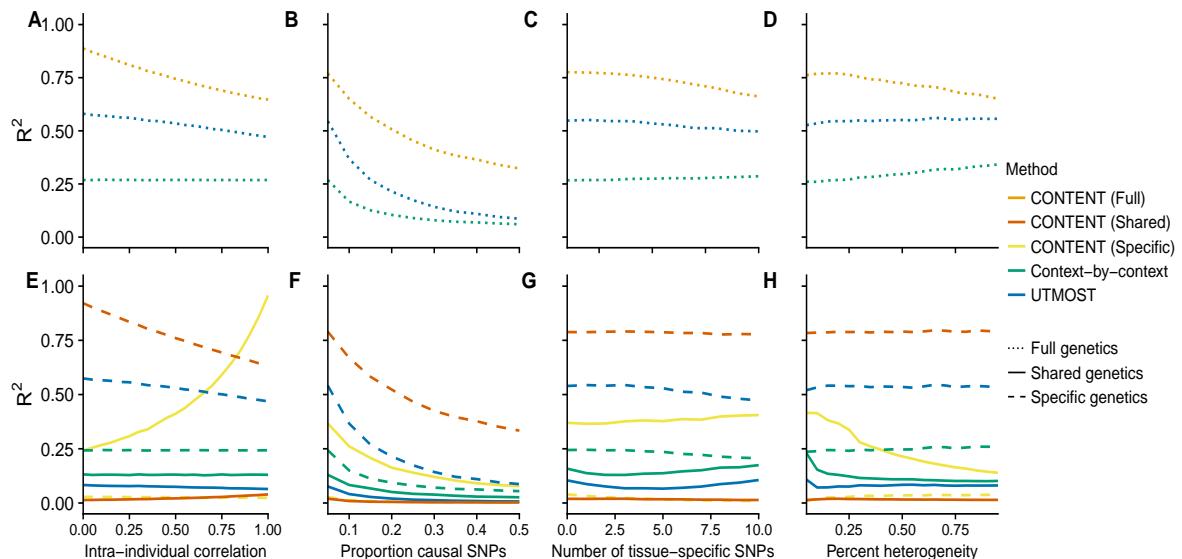


Figure S5. Prediction accuracy across simulated data with higher context-shared than context-specific heritability (.3 and .1 respectively). Under a simulations framework, we evaluated the performance of each method to predict the total expression using the mean adjusted R^2 for each gene-context pair across all iterations for different (A,E) correlation between contexts, (B,F) proportion of causal cis-SNPs, (C,G) number of context-specific SNPs, and (D,H) the percent of contexts with context-specific effects on top of the shared effects. (A-D) show the correlation between the true full (specific + shared) genetic component and the estimated full genetic component of each method, and (E-H) show the correlations of the true genetic shared and specific genetic components of the output of each method (where CONTENT separates the two).

803 For all methods, the baseline of parameters was .3 shared heritability, .1 specific heritability, 500
804 cis-SNPs, 20 contexts, 0 correlation between contexts, .05 percent causal SNPs, 2 context-specific SNPs,
805 and 20% specificity (signifying the overlap with the shared effects, as well as the percent of contexts
806 with a specific effect). CONTENT continued to outperform the previous methods, and UTMOST consist-
807 tently outperformed the context-by-context approach. UTMOST consistently performed better than the
808 context-by-context approach, likely as this simulation framework better fits the model's assumptions. We

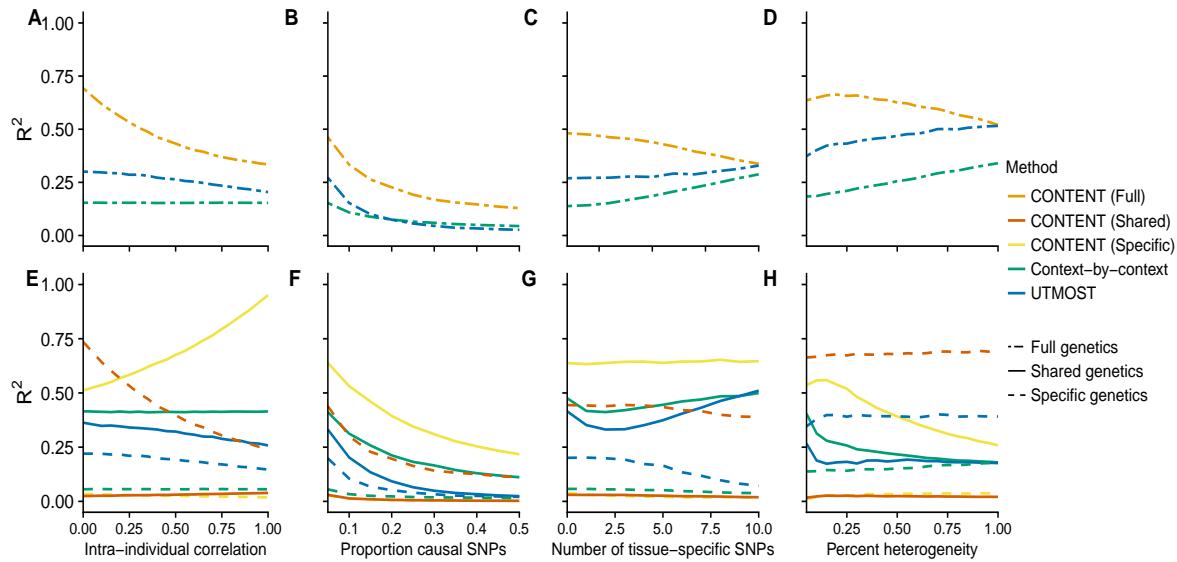


Figure S6. Prediction accuracy across simulated data with equal context-shared and context-specific heritability (.2). Under a simulations framework, we evaluated the performance of each method to predict the total expression using the mean adjusted R^2 for each gene-context pair across all iterations for different (A,E) correlation between contexts, (B,F) proportion of causal cis-SNPs, (C,G) number of context-specific SNPs, and (D,H) the percent of contexts with context-specific effects on top of the shared effects. (A-D) show the correlation between the true full (specific + shared) genetic component and the estimated full genetic component of each method, and (E-H) show the correlations of the true genetic shared and specific genetic components of the output of each method (where CONTENT separates the two).

note that UTMOST performed better than CONTENT when there were context-specific effects across all contexts (and this set of effects lied on top of SNPs with a shared effect) and the heritability of context-specific effects dominated the heritability of context-shared effects (Figure S7). Given our analysis of GTEx data this architecture may not be entirely common, however this provides further evidence that each method may outperform the other under different architectures, and should therefore be used in complement with the others.

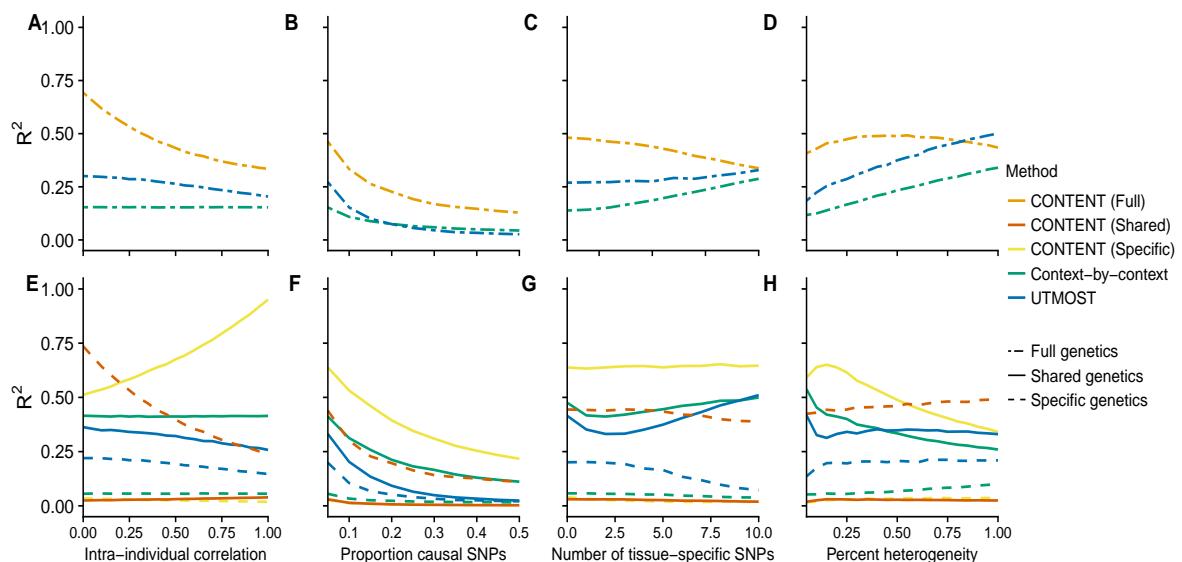


Figure S7. Prediction accuracy across simulated data with lower context-shared than context-specific heritability (.1 and .3 respectively). Under a simulations framework, we evaluated the performance of each method to predict the total expression using the mean adjusted R^2 for each gene-context pair across all iterations for different (A,E) correlation between contexts, (B,F) proportion of causal cis-SNPs, (C,G) number of context-specific SNPs, and (D,H) the percent of contexts with context-specific effects on top of the shared effects. (A-D) show the correlation between the true full (specific + shared) genetic component and the estimated full genetic component of each method, and (E-H) show the correlations of the true genetic shared and specific genetic components of the output of each method (where CONTENT separates the two).

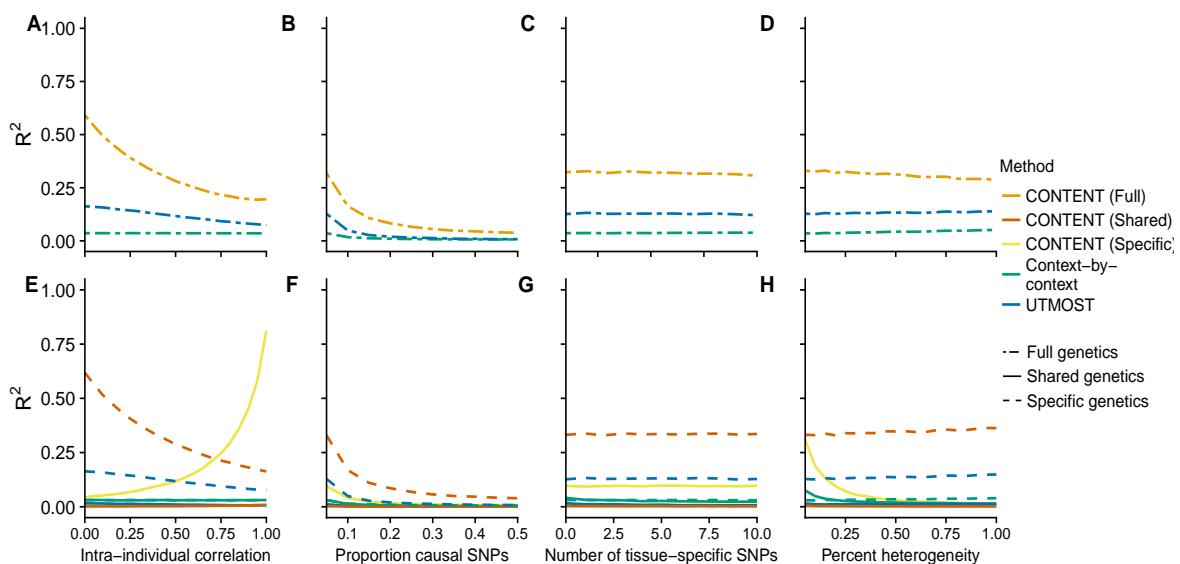


Figure S8. Prediction accuracy across simulated data (2,000 cis-SNPs). Under a simulations framework, we evaluated the performance of each method to predict the total expression using the mean adjusted R^2 for each gene-context pair across all iterations for different (A,E) correlation between contexts, (B,F) proportion of causal cis-SNPs, (C,G) number of context-specific SNPs, and (D,H) the percent of contexts with context-specific effects on top of the shared effects. (A-D) show the correlation between the true full (specific + shared) genetic component and the estimated full genetic component of each method, and (E-H) show the correlations of the true genetic shared and specific genetic components of the output of each method (where CONTENT separates the two).

815 **Runtimes of methods** We compared the runtimes and memory requirements of our software that
816 fits both CONTENT and the context-by-context approach (10-fold cross-validation) to UTMOST (5-fold
817 cross-validation). Our software takes advantage of the memory-mapped, fast penalized linear regression
818 framework implemented by R package `bigstatsr` [71]. When we tested both approaches on 100 randomly-
819 selected GTEx genes, not only was the runtime of UTMOST—while running half as many cross-validation
820 folds as our method—on average over 3x the runtime of running our software, but the average memory
821 required by UTMOST was also over 10x the memory required by our software.

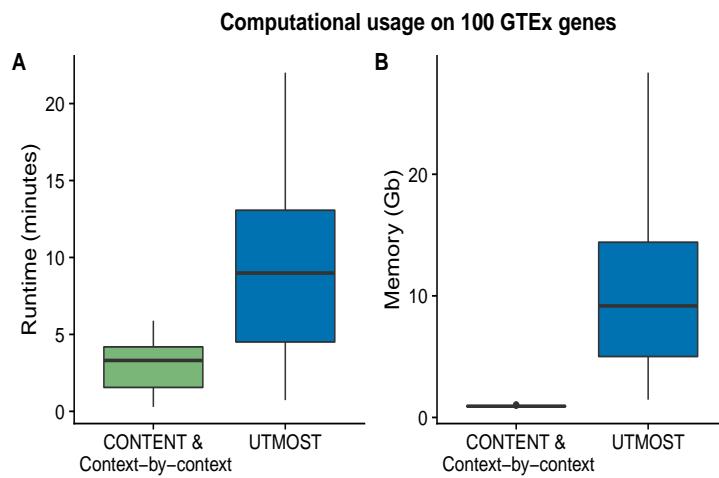


Figure S9. Runtime and memory usage of CONTENT and the context-by-context approach compared to UTMOST. We saved the runtime and memory usage for UTMOST and our software that fits both CONTENT and the context-by-context approach on 100 randomly-selected GTEx genes. The average runtime and memory usage of running UTMOST was over 3x and 10x the runtime and memory usage of running our software that fits both CONTENT and the context-by-context approach.

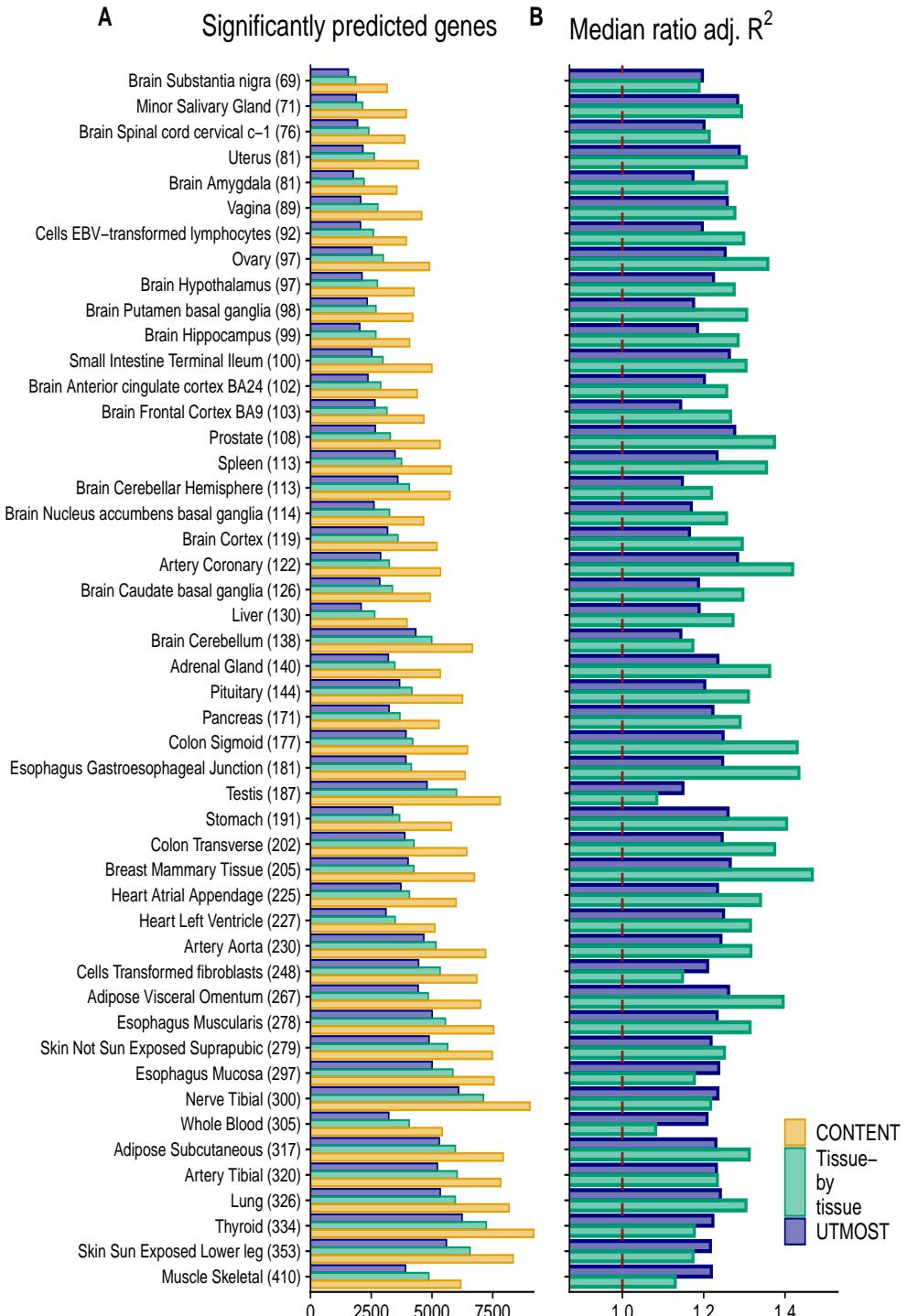


Figure S10. Power of CONTENT, UTMOST and the context-by-context model across GTEx on genes run by UTMOST. (A) The number genes of genes with a significantly predictable component across each context with sample size included in parentheses (B) The median ratio of adjusted R^2 (CONTENT/context-by-context,CONTENT/UTMOST) across the union of genes significantly predicted by CONTENT and either the context-by-context model or UTMOST.

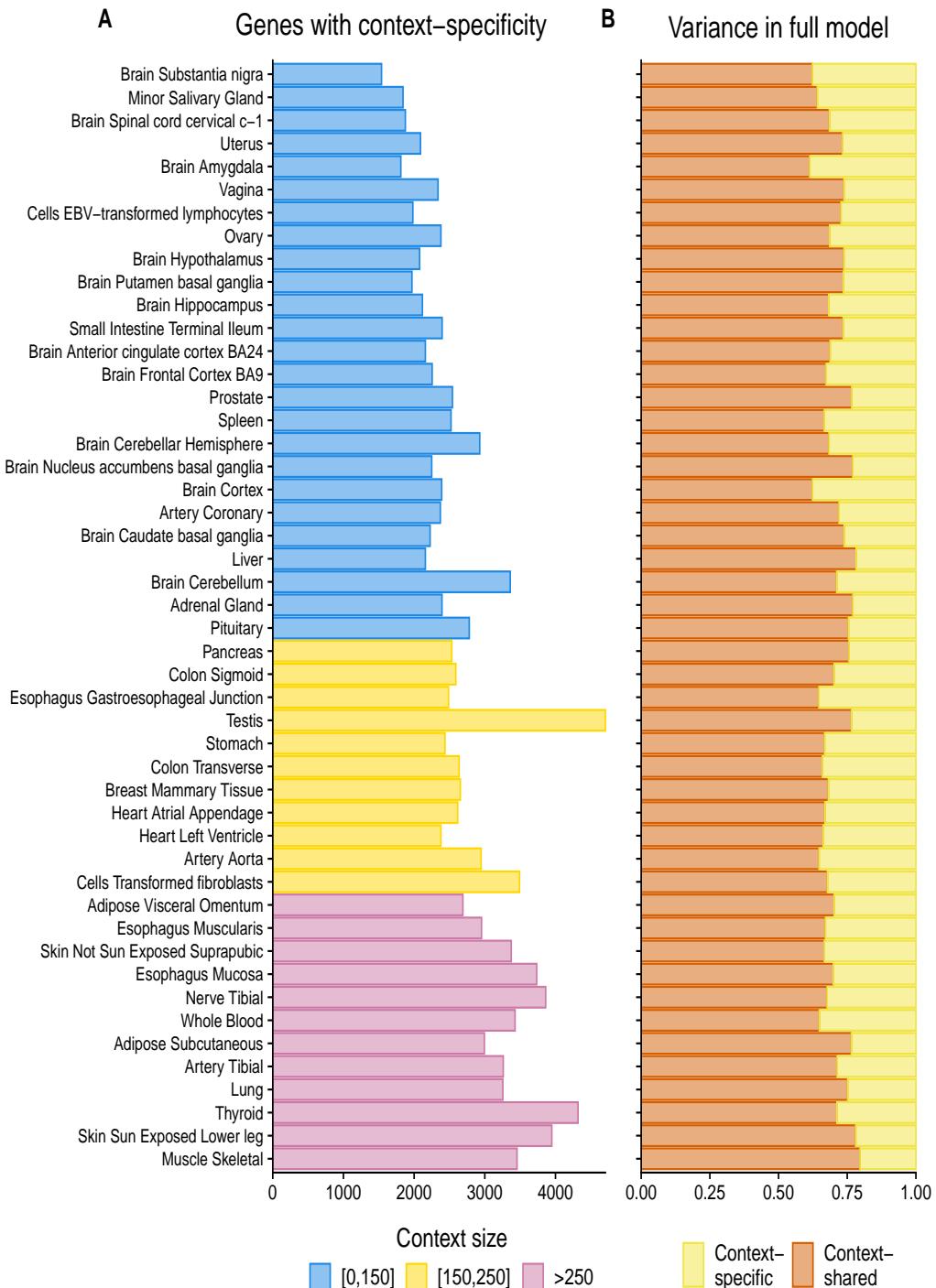


Figure S11. PContribution of context-specific genetic regulation in GTEx. (A) The number of genes with a significant (FDR $\leq 5\%$) CONTENT(Specific) model of expression in GTEx. (B) Proportion of expression variance of CONTENT(Full) explained by CONTENT(Specific) and CONTENT(Shared) for genes with a significant CONTENT(Full) model.

822 **Evaluation TWAS simulations and fine-mapping**

823 In this section, we explore the ability of each method to correctly determine the gene-context pair re-
824 sponsible for the association with the phenotype in TWAS. Notably, in these simulations we limited our
825 analyses to situations in which the causal context(s) has been observed. In real data applications, this
826 may not occur, and in such cases, further complexities may arise due to genetic correlation. In these
827 situations, it is likely that all methods will produce false-positive gene-context associations since the true
828 causal context is missing. The complexities posed by missing contexts and cell-types are beyond the
829 scope of this manuscript, and we leave the development of relevant methodology as future work.

830 Importantly, the models built by CONTENT(Full) can be explained by either the context-shared
831 component, the context-specific component, or both. To implicate a genuine CONTENT(Full) gene-
832 context association (i.e., to elucidate whether a specific context's expression is more strongly associated
833 than the context-shared expression), we propose using only gene-context pairs whose CONTENT(Full)
834 TWAS test statistic is greater in magnitude than the context-shared TWAS test statistic—termed “CON-
835 TENT(Fine).” In our simulations we used a test statistics threshold of .5 and found that this heuristic
836 controlled the false positive rate of the CONTENT(Fine) model's associations as well as enriched for
837 correctly-associated contexts.

838 We evaluated the ability of each method to implicate the correct eAssociation in simulated TWAS
839 data. Across a range of heritability and heterogeneity (percent of contexts with context-specific genetic
840 effects in addition to the main effects), we simulated 1000 genes for 20 contexts, 100 of which had 3
841 contexts whose genetic component of expression was associated with the phenotype. We considered
842 sensitivity and specificity as the ability of each method to implicate the correct context for an associated
843 gene. To evaluate sensitivity and specificity, we examined which gene-context pairs were significantly
844 associated with the phenotype after employing the hierarchical false discovery correction [17] as the
845 gene-based false positive rate was well-controlled across methods using this approach.

846 In the absence of context-shared genetic effects, all methods showed high specificity and sensitiv-
847 ity (Figure S13). However, as the genetic variability became more context-shared, the specificity and
848 sensitivity of the context-by-context approach and UTMOST dropped substantially (Figure S13). As
849 neither the context-by-context approach nor UTMOST attempt to deconvolve the context-shared and context-
850 specific effect sizes, their weights for a given context contain both context-shared and context-
851 specific signal. Thus when the context-shared effects dominate the heritability, both methods are likely

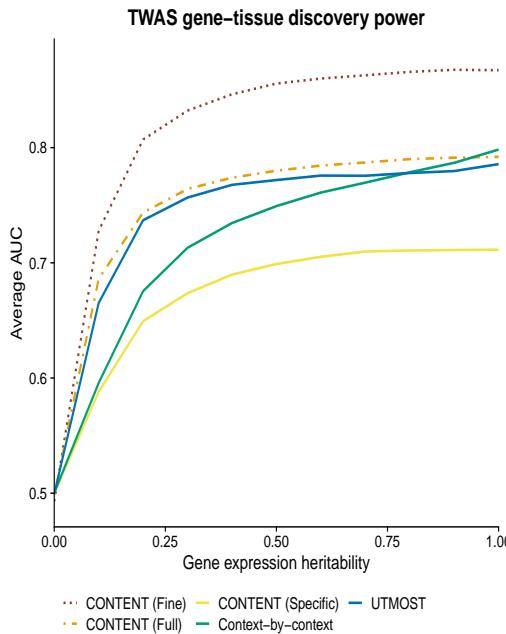


Figure S12. Using a heuristic to fine-map CONTENT(Full) associations. Average AUC from 1000 TWAS simulations while varying the overall heritability of gene expression. Each phenotype (1000 per proportion of heritability) was generated from 300 (100 genes and 3 contexts each) randomly selected gene-context pairs' genetically regulated gene expression, and the 300 gene-context pairs' genetically regulated expression accounted for 20% of the variability in the phenotype.

852 to suggest context-specific associations across all contexts that express an associated gene. The specificity of CONTENT's context-specific component, as well as the full model's weighting of each expression 853 component are paramount to its specificity and sensitivity, as shown by its robust performance across 854 various mixtures of genetic effects (Figure S13).

855 In the GTEx dataset, the fine-mapping TWAS associations produced by our heuristic for the 856 CONTENT(Full) model produced broad associations across many tissues. Though we observed many 857 correct fine-mapping associations for several known gene-trait etiologies (e.g. CYLD and esophagus 858 mucosa in Crohn's [74], LIPC and liver in HDL [75], SORT1 in liver in LDL and HDL [76–78]), there 859 was not consistent enrichment of a specific tissue known to be relevant for a given trait (for example, the 860 pancreas was not over-represented in associations of Type 2 Diabetes). This could be because the correct 861 tissue or context is missing from the data, horizontal or vertical pleiotropy, or other unknown reasons. 862 As the fine-mapping heuristic performed well in simulated data under a known architecture and where 863 all contexts are observed, we are hopeful that the context-specific estimates will be useful in downstream 864 tissue fine-mapping methods.

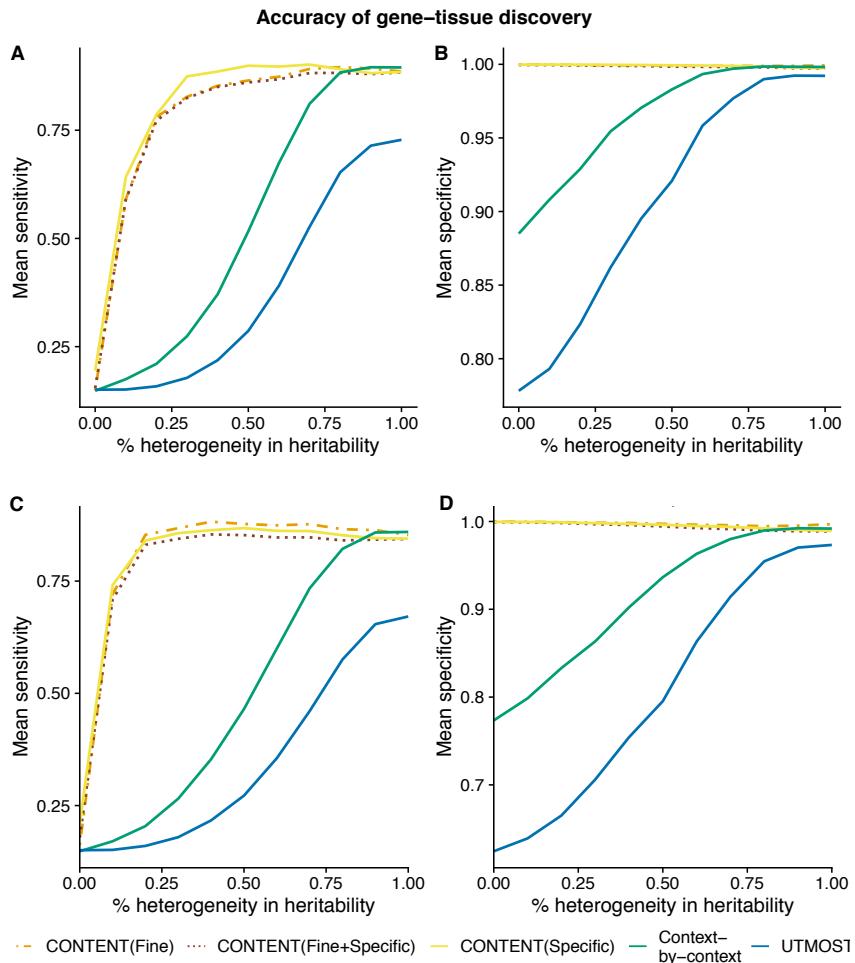


Figure S13. CONTENT is sensitive and specific. We simulated 1000 phenotypes from 300 randomly selected gene-tissue pairs' expression while varying the percent heterogeneity and performed a TWAS using the weights output by each method. (A,B) When the total proportion of variability in the phenotype due to the genetically regulated gene expression is .5 and (C,D) when the proportion is .2. The full model of CONTENT was the most sensitive when finding the correct gene-context pair, and is most powerful when there is non-negligible context-specific heritability in addition to the tissue-shared heritability.

Table S1. GWAS summary statistics used as input for TWAS. Abbreviation used for each trait as well as and its respective study and sample size. The collection of traits from the UKBiobank were self-reported and measured on the same set of individuals across traits. .

Symbol	Trait	Study	Sample Size
AD	Alzheimer's disease	Lambert et al. Nat Genet. 2013	74,046
Asthma	Asthma (self-reported)	UKBB Loh et al. 2018 Nat Genet	361,141.00
Bipolar	Bipolar Disorder	PGC Cell 2018	73,684
CAD	Coronary Artery Disease	CARDIoGRAM Nat Genet. 2011	86,995
CKD	Chronic Kidney Disease	Wuttke et al. Nat Genet. 2019	1,046,070
Crohn's	Crohn's Disease	IIBDGC Europeans Nat Genet. 2015	13,974
Eczema	Eczema (self-reported)	UKBB Loh et al. 2018 Nat Genet	361,141
FastGlu	Fasting Glucose	MAGIC Nat Genet. 2012	96,496
HDL	High-density Lipoprotein	Teslovich et al. Nature 2010	99,900
IBS	Irritable bowel syndrome (self-reported)	UKBB Loh et al. 2018 Nat Genet	361,141
LDL	Low-density lipoprotein	Global lipids genetics consortium Nat Genet 2013	188,577
Lupus	Systemic Lupus Erythemous	Bentham et al. Nat Genet 2015	23,210
MDD	Major Depression Disorder	PGC; Howard et al. Nat Neuro 2019	807,553
MS	Multiple Sclerosis (self-reported)	UKBB Loh et al. 2018 Nat Genet	361,141
PBC	Primary biliary cirrhosis	Cordell et all. Nat Comm 2015	13,239
Psoriasis	Psoriasis (self-reported)	UKBB Loh et al. 2018 Nat Genet	361,141
RA	Rheumatoid Arthritis	Okada et al. Nature 2013	103,638
Sarcoidosis	Sarcoidosis (self-reported)	UKBB Loh et al. 2018 Nat Genet	361,141
Sjogren	Sjogren's Syndrome (self-reported)	UKBB Loh et al. 2018 Nat Genet	361,141
T1D	Type 1 Diabetes	Inshaw et al. Diabetologia 2021	17,685
T2D	Type 2 Diabetes	DIAGRAM Nat Genet 2018	898,130
Ulc colitis	Ulcerative Colitis (self-reported)	UKBB Loh et al. 2018 Nat Genet	361,141

866 **TWAS discoveries as a function of heritability thresholding.** In the main text, we put forth all
867 gene-context pairs that were genetically predicted with a nominal pvalue of .1. As the procedure we use
868 for false discovery adjustment was robust across contexts, we evaluated the number of discoveries that
869 are potentially made when raising the threshold for the nominal pvalue. Our results suggest that there
870 may be minimal correlation between genetic-predictability and strength of TWAS association.

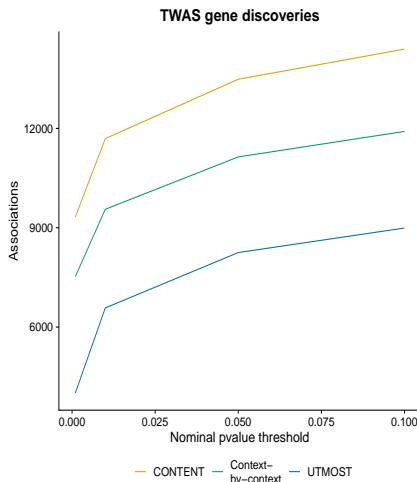


Figure S14. TWAS discoveries across predictability thresholds. The number of hierarchical-FDR-corrected TWAS discoveries as a function of the nominal pvalue cutoff for a given gene-tissue's cross-validation expression prediction.

871 **CONTENT can accommodate additional levels of pleiotropy among contexts** While the
872 original model of CONTENT enables a simple decomposition into a component that is shared across
873 all contexts and another that is specific to a single context, there may be cases in which additional
874 sharing exists across a subset of contexts. For example, the group of brain tissues measured in the
875 GTEx consortium have shown similar patterns in terms of cis-genetic variability [2, 25, 79] as well as
876 intra-individual residual correlations (Figure S1). To further disentangle the shared and tissue-specific
877 genetic components of expression in the brain tissues, we added an additional term to the CONTENT
878 decomposition which accounts for genetic effects that are only shared across the brain tissues. In more
879 detail, we decompose the original context-shared component of expression into a new context-shared
880 component that is shared across all tissues and a brain-shared component that is shared across only the
881 brain tissues:

882
$$E_{j.} = E'_{j.} + E_{jb} \quad (12)$$

883 Here, $E'_{j.}$ (the new context-shared term) is an intercept, E_{jb} (the brain-shared term) is the effect size on
884 an indicator variable for brain tissues, and estimates of both terms are generated for each individual using
885 a simple linear regression. While introducing an additional term for the shared component will increase
886 the resolution of the model, i.e. the novel model may discover new components of brain-sharing that
887 were miscategorized as tissue-specific in multiple brain tissues, there may be a significant loss in power
888 as this decomposition is only possible for individuals who have been sampled in both multiple brain and
889 non-brain tissues. Additionally, under this decomposition, the full model for brain tissues contains three
890 terms—the context-specific, brain-shared, and globally shared—resulting in a loss of a degree of freedom
891 relative to the original model.

892 To evaluate the effect of an additional source of effects-sharing on the performance of CONTENT,
893 we simulated an additional genetic effect that lied on top of a subset of SNPs with a main, overall context-
894 sharing effect in 25% of the contexts. As the heritability of this additional source of sharing grew, the
895 context-specific component of CONTENT began to capture variability due to both the context-specific
896 and secondary context-shared effects (Figure S15). When we used CONTENT brain, the context-specific
897 component of CONTENT no longer produced predictors that captured variability due to the additional
898 source of effects-sharing (mean R^2 of true brain effects and predicted tissue-specific effects dropped from
899 0.127 to 0.004 across simulations), and the component responsible for capturing the additional source
900 of effects-sharing—CONTENT(Brain)—was robust (average R^2 between true and predicted brain-shared

901 effects 0.49).

902 We applied the CONTENT brain model to GTEx, but note that such a component is only identi-
903 fiable for individuals who have been sampled in both multiple brain and multiple non-brain tissues. For
904 our analysis of the GTEx data, our sample size decreased to 12,904 genes, 26 tissues, and 150 individuals
905 when using CONTENT brain. In general, using this model, the number of genetic tissue-specific com-
906 ponents in the brain tissues decreased (Figure S16). Of the genes that were implicated in the original
907 CONTENT model as having a tissue-specific component but were no longer captured in the CONTENT
908 brain model with a tissue-specific component, roughly 12% overlapped with the genes implicated by the
909 additional brain-shared component. The CONTENT brain model discovered 4,811 genes with an overall
910 tissue-shared component as well as 1,960 genes with a brain-shared components (of which 66% also had
911 an overall tissue-shared component). The prediction accuracy was similar in both the original and brain
912 models of CONTENT (Figure S17).

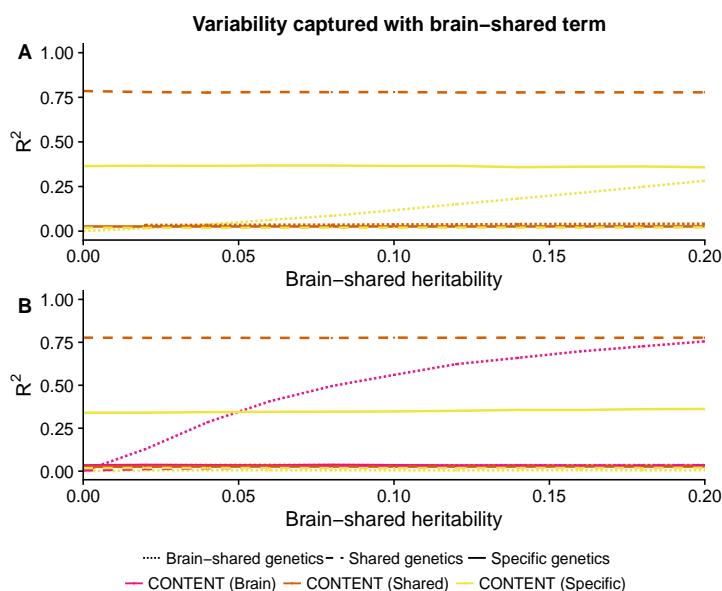


Figure S15. Additional sources of tissue-sharing may confound the tissue-specific component. (A) The original CONTENT model without accounting for the additional source of shared genetic effects when such a component exists. (B) When we introduce an additional shared component to the CONTENT model, CONTENT(Brain), the specific component does not capture this additional component, and the additional component is recovered.

913 We next compared the performance of the original CONTENT model to the CONTENT brain
914 model in TWAS using simulated data (generated as aforementioned) as well as GTEx. While the mean
915 AUC between both methods was similar in the simulated data, CONTENT brain was more sensitive

916 than the original CONTENT model when shared brain effects existed (Figure S18). Further, despite
917 the fact that the sample size and number of tissues in GTEx data subsetted for the brain model is
918 smaller, CONTENT discovered a non-trivial additional number of TWAS associations (Figure S19).
919 In several neurological disorders, the number of context-specific genes decreased when using the brain
920 model, however the brain model discovered genes whose genetics were shared across only the brain-shared
921 component (Figure S19). When we examined previous TWAS associations, such as APOC1 and AD, the
922 original CONTENT approach showed association with the thyroid. However, this signal was removed
923 using the brain-pleiotropy approach and the brain pleiotropic component showed significant association
924 ($p=2.20e-23$). We observed a similar trend with APOE, where the original CONTENT model implicated
925 several brain tissue associations but no significant shared association. The brain pleiotropy model in turn
926 discovered a brain-tissue-shared component with significant evidence of association ($p=2.47e-29$). Both
927 genes are known to have neuronal roles in Alzheimer's disease [80].

928 **Performance in GTEx when using the brain component** We ran the original and brain versions
929 of the CONTENT model on 12904 genes in 26 tissues and 150 individuals in the GTEx dataset. These
930 individuals were measured in at least 3 brain and non-brain tissues. Interestingly, each model discovered
931 eGenes that were not discovered by their counterpart. The amount of variability was roughly the same in
932 both versions of the model, but the adjusted R^2 was slightly higher in non-brain tissues and slightly lower
933 in brain tissues in the brain model. Importantly, the brain tissues in the brain model have 3 explanatory
934 variables and therefore suffer a larger penalty in the adjusted R^2 relative to the original CONTENT
935 model. The adjusted R^2 improved in the non-brain tissues however, suggesting that the context-shared
936 and context-specific components may be less confounded by the brain tissues in the brain model than in
937 the original model.

Specific and brain eGenes

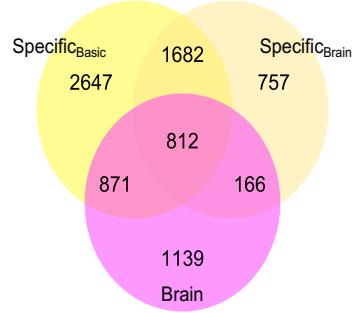


Figure S16. Additionally sources of effects-sharing may confound the context-specific component. When we run the original CONTENT model and the CONTENT model with the brain-sharing on GTEx genes that are expressed in at least 3 brain and 3 non-brain tissues, many of the previous genetic context-specific components in the brain tissues are absorbed by the additional brain-sharing across brain tissues.

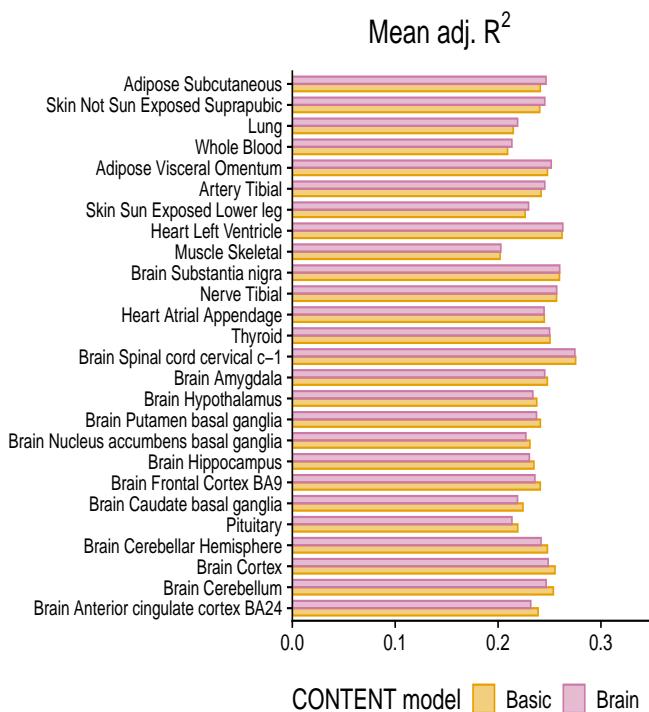


Figure S17. Prediction accuracy across tissues in the brain and original CONTENT model. The difference in adjusted R^2 in the brain and original CONTENT(Full) models. While the variability explained is markedly similar in both versions of the model, the adjusted R^2 generally increased in non-brain tissues, and decreased in the brain tissues in the brain model.

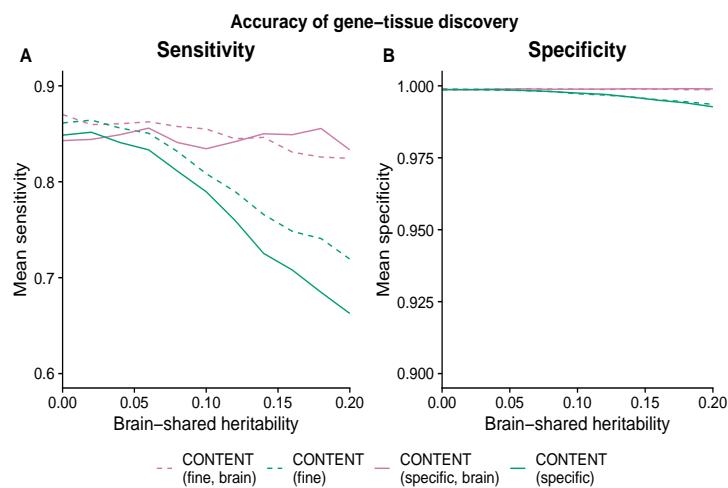


Figure S18. Simulated TWAS with brain-shared genetic effects. While the AUC and specificity of the original CONTENT model (green) and the CONTENT model that accounts for brain-shared effects (pink) were nearly the same, the sensitivity was improved when using the brain version of CONTENT in simulated TWAS where there exists brain-shared effects.

938 **TWAS eGenes discovered using the brain version of CONTENT** We performed TWAS using
939 weights trained by the original and brain versions of the CONTENT model on 26 tissues, 12,094 genes,
940 and 150 individuals in the GTEx dataset for 17. These individuals were measured in at least 3 brain and
941 non-brain tissues, leading the sample size to be smaller than when using the total GTEx data without any
942 such constraint. While the brain version of the CONTENT model discovered more TWAS eGenes than
the original model, the brain model discovered fewer context-specific eGenes than the original model.

Trait	CONTENT original				CONTENT brain				
	CONTENT (All)	CONTENT (Full)	CONTENT (Specific)	CONTENT (Shared)	CONTENT (All)	CONTENT (Full)	CONTENT (Specific)	CONTENT (Shared)	CONTENT (Brain)
AD	76	62	64	19	67	51	59	10	8
Asthma	594	415	487	74	545	386	412	81	39
Bipolar	75	49	47	18	78	43	47	14	8
CAD	13	11	7	2	14	9	11	2	1
CKD	58	39	47	14	51	34	29	15	2
Crohn's	279	205	231	48	265	177	190	46	20
Eczema	109	66	84	4	78	53	61	7	5
FastGlu	65	44	58	5	65	45	45	10	8
GFR	1721	1243	1428	357	1550	1087	1167	313	168
HDL	247	175	217	37	228	116	170	45	19
IBS	14	10	5	2	12	9	3	1	0
LDL	506	380	437	77	477	331	391	74	45
Lupus	356	268	309	73	315	249	245	59	42
MDD	250	155	182	44	189	121	109	43	18
MS	114	94	98	19	114	91	100	21	6
PBC	204	147	170	32	194	137	147	36	23
Psoriasis	180	158	163	39	183	153	152	39	23
RA	286	230	251	85	274	212	231	82	44
Sarcoidosis	90	69	75	10	90	57	73	6	7
Sjogren	24	13	18	2	19	8	14	1	1
T1D	359	303	323	92	311	255	272	101	59
T2D	514	352	422	91	451	310	327	94	32
TG	3251	2429	2791	641	3079	2169	2452	624	299
Ulc colitis	35	28	27	3	16	12	10	2	0

943 **Figure S19. eGenes discovered by each component of CONTENT model in the brain and original models.** In total, there were fewer genes discovered using the brain model of CONTENT, however our simulations show that the brain model of CONTENT may improve the resolution of associations.