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Abstract1

A majority of the variants identified in genome-wide association studies fall in non-coding regions of the2

genome, indicating their mechanism of impact is mediated via gene expression. Leveraging this hypothe-3

sis, transcriptome-wide association studies (TWAS) have assisted in both the interpretation and discovery4

of additional genes associated with complex traits. However, existing methods for conducting TWAS do5

not take full advantage of the intra-individual correlation inherently present in multi-context expression6

studies and do not properly adjust for multiple testing across contexts. We developed CONTENT—7

a computationally efficient method with proper cross-context false discovery correction that leverages8

correlation structure across contexts to improve power and generate context-specific and context-shared9

components of expression. We applied CONTENT to bulk multi-tissue and single-cell RNA-seq data10

sets and show that CONTENT leads to a 42% (bulk) and 110% (single cell) increase in the number of11

genetically predicted genes relative to previous approaches. Interestingly, we find the context-specific12

component of expression comprises 30% of heritability in tissue-level bulk data and 75% in single-cell13

data, consistent with cell type heterogeneity in bulk tissue. In the context of TWAS, CONTENT in-14

creased the number of gene-phenotype associations discovered by over 47% relative to previous methods15

across 22 complex traits.16

1 Introduction17

A large portion of the signal discovered in genome-wide associations studies (GWAS) has been localized to18

non-coding regions [1]. In light of this, researchers have developed post-GWAS approaches to elucidate the19

functional consequences of variants and their impact on the etiology of traits [2]. One notable approach20

has been to generate genetic predictors of gene expression and leverage these predictors with GWAS data21

to associate genes with traits of interest[3, 4]. These transcriptome-wide association studies (TWAS)22

have not only shown great promise in terms of discovery and interpretation of association signals but23

have also helped prioritize potentially causal genes for complex diseases [5]. Nonetheless, methods like24

TWAS are limited by the accuracy and power of the genetic predictors generated in training datasets25

[6–11].26

The original TWAS methodology builds genetic predictors of expression on a context-by-context27

basis. For example, in a study with RNA-seq and genotypes collected across multiple tissues, the ex-28
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pression of each tissue would be modeled independently [3, 4]. More recent methods model multiple29

contexts simultaneously and leverage the sharing of genetic effects across contexts [8–10, 12]. However,30

these approaches do not maximize predictive power because they ignore the intra-individual correlation31

of gene expression across contexts inherent to studies with repeated sampling, e.g., the Genotype-Tissue32

Expression (GTEx) project [13] (Figure S1) or single-cell RNA-Sequencing (scRNA-Seq) experiments33

(Figure S2). Moreover, they build predictors which are mixtures of both context-specific and context-34

shared (pleiotropic) genetic effects, making it difficult to distinguish the relevant contexts for a disease35

gene, and are often computationally inefficient [9]. A recent approach by Wheeler et al. [14] does model36

correlated intra-individual noise with a linear-mixed model, but does not produce combined predictions37

of expression, reducing overall power. Finally, existing methods employ multiple testing strategies that38

either fail to control for all tests performed, (e.g., by controlling the false discovery rate (FDR) within39

each context separately [4, 15]), or act too stringently (e.g., by using Bonferroni adjustment across all40

contexts [15]). Together, these shortcomings reduce power and interpretability of TWAS.41

Here, we introduce CONTENT—CONtexT spEcific geNeTics— a novel method that leverages the42

correlation structure of multi-context studies to efficiently and powerfully generate genetic predictors of43

gene expression. Briefly, CONTENT decomposes the gene expression of each individual across contexts44

into context-shared and context-specific components [16], builds genetic predictors for each component45

separately, and creates a final predictor using both components. To identify genes with significant disease46

associations, CONTENT employs a hierarchical testing procedure (termed “hFDR”; see Figure S3) [17,47

18]. CONTENT has several advantages over existing methods. First, it explicitly accounts for intra-48

individual correlation across contexts, boosting prediction performance. Second, by building specific and49

shared predictors, it can distinguish context-shared from context-specific genetic components of gene50

expression and disease. Third, it employs a recently developed hierarchical testing procedure [18] to not51

only adequately control the FDR across and within contexts, but boost power in cases where a gene52

has a significant association to disease in multiple contexts. Fourth, this adjustment procedure allows53

for inclusion of other TWAS predictors [3, 4, 8–10, 12], enabling approaches to be complementary in54

discovering associations. Finally, CONTENT is orders of magnitude more computationally efficient than55

several previous approaches.56

We evaluated the performance of CONTENT over simulated data sets, GTEx[2, 11, 13], and57

a single-cell RNA-Seq data set[19, 20]. We show in simulations that CONTENT captures a greater58

proportion of the heritable component of expression than previous methods (at minimum over 22% more),59
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and that CONTENT successfully distinguishes the specific and shared components of genetic variability60

on expression. In applications to GTEx, CONTENT improved over previous context-by-context methods61

both in the number of genes with a significant heritable component (average 42% increase in significant62

gene-tissue pairs discovered) as well as the proportion of variability explained by the heritable component63

(average increase of 28%) [3, 4]. Consistent with complex cell type heterogeneity within tissues [21–24], we64

find that in applications to the single-cell data, genetic predictors at the cell type level have substantially65

more context-specific heritability than the tissue-level models. We then performed TWAS across 2266

phenotypes using weights trained on GTEx and scRNA and found that CONTENT discovered over 47%67

additional significantly associated genes. We provide CONTENT gene expression weights for both GTEx68

and the single-cell dataset at TWAShub (http://twas-hub.org/).69

2 Results70

Figure 1. An overview of the CONTENT approach. CONTENT first decomposes the observed
expression for each individual into context-specific and context-shared components following [16]. Then,
CONTENT fits predictors for the context-shared component of expression as well as each context-specific
component of expression (e.g., liver). Finally, for a given context, CONTENT combines the genetically
predicted components into the full model using a simple regression.

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 23, 2021. ; https://doi.org/10.1101/2021.09.23.461579doi: bioRxiv preprint 

http://twas-hub.org/
https://doi.org/10.1101/2021.09.23.461579
http://creativecommons.org/licenses/by-nc-nd/4.0/


5

Methods overview We developed CONTENT, a method for generating genetic predictors of gene71

expression across contexts for use in downstream applications such as TWAS. Briefly, for each individual,72

CONTENT leverages our recently developed FastGxC method [16] to decompose the gene expression73

across C contexts into one context-shared component and C context-specific components. Next, CON-74

TENT builds genetic predictors for the shared component and each of the C context-specific components75

of expression using penalized regression. We refer to these predictors as the CONTENT(Shared) and76

CONTENT(Specific) models. In addition, CONTENT generates genetic predictors of the total expres-77

sion in each context by combining the context-shared and context-specific genetic predictors with linear78

regression. We refer to these predictors as the CONTENT(Full) models. A given gene may have CON-79

TENT(Specific), CONTENT(Shared), and/or CONTENT(Full) models depending on the architecture of80

genetic effects.81

We residualized the expression of each gene in each context over their corresponding covariates82

(e.g. PEER factors, age, sex, batch information) prior to decomposing and then fitting an elastic net with83

double ten-fold cross-validation for both CONTENT(Shared) and CONTENT(Specific). We examined84

the number of significantly predicted genes as well as the prediction accuracy (in terms of adjusted85

R2) between the cross-validation-predicted and true gene expression per gene-context pair. To properly86

control the FDR for each method across contexts and genes, we employed a hierarchical FDR correction87

[17, 18] (Figure S3 and Methods). We note that groups of contexts may comprise additional sources of88

pleiotropy (e.g. in GTEx the group of brain tissues may have their own shared effects in addition to89

the overall tissue-shared effects). The decomposition of CONTENT is flexible and can account for both90

levels of pleiotropy among contexts (see Supplementary Methods).91

CONTENT is powerful and well-calibrated in simulated data. We evaluate the prediction92

accuracy of CONTENT in a series of simulations and compare its performance to the context-by-context93

approach[3, 4], which builds predictors by fitting an elastic net in each context separately, as well as94

UTMOST[9], which builds predictors over all contexts simultaneously using a group LASSO penalty.95

Implicitly, we compare to the method from [14] which decomposes expression into orthogonal context-96

shared and context-specific components, as the CONTENT(Shared) and CONTENT(Specific) models97

are related to these components (See Methods). We omit comparison to other TWAS methods as many98

of them are built on the same framework as the context-by-context approach, or require external data,99

such as curated DNase I hypersensitivity measurements [8, 10, 12].100
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Figure 2. CONTENT is powerful and well-calibrated in simulated data. Accuracy of each
method to predict the genetically regulated gene expression of each gene-context pair for different corre-
lations of intra-individual noise across contexts. Mean adjusted R2 across contexts between the true (A)
full (context-specific + context-shared), (B) shared, and (C) specific genetic components of expression
and the predicted component for each method and for different levels of intra individual correlation. The
context-by-context approach and UTMOST output only a single predictor, and we show the variability
captured by this predictor for each component of expression. CONTENT, however, generates predic-
tors for all three components of expression, and notably, CONTENT(Specific) and CONTENT(Shared)
capture their intended component of expression without capturing the opposite (i.e. the predictor for
CONTENT(Specific) is uncorrelated with the true shared component of expression and vice versa). We
show here the accuracy for each component and method on gene-contexts with both context-shared and
context-specific effects, but show in Figure S4 the accuracy for all gene-contexts pairs.

We used simulation parameters from GTEx, the largest multi-context eQTL study to-date, as101

a guideline. Specifically, we generated gene expression and genotype data such that context-specific102

genetic effects mostly lie on the same loci as context-shared eQTLs, and context-specific eQTLs without103

context-shared effects are rare [2, 16]. Intuitively, this framework assumes that, most often, SNPs affect104

expression of a gene in all contexts, but to a different extent in each context (rather than, for example,105

acting as an eQTL in only a single context). We varied the proportion of contexts with context-specific106

heritability, the number of context-specific eQTLs without a context-shared effect, the number of causal107

SNPs, and the intra-individual residual correlation while keeping the number of genes (1000), contexts108

(20), cis-SNPs (500) and the proportion of context-shared and context-specific heritability constant (.3109

and .1 respectively).110

Throughout our simulations, CONTENT significantly outperformed the context-by-context and111

UTMOST approaches in terms of prediction accuracy of the total genetic contribution to expression112

variability (Figures 2A, S4). The average increase in adjusted R2 between the true genetic component of113
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expression and the CONTENT(Full) predictor was .22 over UTMOST (p<2e-16 paired two-way t-test)114

and .48 over the context-by-context approach (p<2e-16 paired two-way t-test). Across nearly the entirety115

of parameter settings, CONTENT generated context-specific components that were uncorrelated with116

the true context-shared components (mean adjusted R2=.023, and vice versa .026; Figure 2B,C). This117

property is central to the objective as it reduces confounding from pleiotropy in downstream applications118

such as context fine-mapping. As expected, the previous methods failed to disentangle the context-specific119

and context-shared components (Figure 2B,C), since they were not developed with this property in mind.120

Our results were consistent under different values of the simulation parameters (Figures S5, S6, S7, S8).121

CONTENT improves prediction accuracy over previous methods in the GTEx and CLUES122

datasets We next evaluated CONTENT, the context-by-context approach, and UTMOST in terms of123

prediction accuracy and power across 22,447 genes measured in 48 tissues of 519 European individuals124

in the bulk RNA-seq GTEx data set [2, 11, 13]. Due to computational issues (Figure S9), UTMOST was125

examined only on 22,307 genes rather than the entire data set of 22,447 genes. We show a comparison126

on this smaller set of genes in Figure S10. We also examined, for the first time in a large-scale TWAS127

context, a single-cell RNAseq data set from the California Lupus Epidemiology Study (CLUES) [19,128

20]. The CLUES data set contained 9,592 genes measured in 9 cell types in peripheral blood from 90129

individuals.130

In GTEx, CONTENT identified more gene-tissue pairs with a significantly predictable genetic131

component of expression (278,101 over 20,506 genes) than the context-by-context approach (195,607 over132

17,723 genes) and UTMOST (167,865 over 11,442 genes) at an hFDR of 5%. We also compared the133

performance of each method on the union of genes that were significantly predicted (hFDR ≤ 5%) by at134

least one method. As CONTENT can generate up to three models (Shared, Specific, Full) for a given135

gene-tissue pair, and because each gene may have its own unique architecture (i.e. different proportions of136

specific or shared heritability), we selected the model that achieved the greatest cross-validated adjusted137

R2. CONTENT greatly outperformed the context-by-context and UTMOST approaches across all tissues138

(average 28% and 22% increase in adjusted R2 across tissues and genes; Figures 3, S10). Further, for genes139

with significant CONTENT(Shared), CONTENT(Specific), and CONTENT(Full) predictors, prediction140

accuracy increases substantially with the addition of the context-specific component to the context-shared141

component (average gain of CONTENT(Full) over CONTENT(Shared) adj. R2 of 55.92%), emphasizing142

the need to extend previous approaches[14] with CONTENT(Full) to build a powerful predictor.143
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Figure 3. CONTENT outperforms existing approaches in the GTEx and scRNA-seq CLUES
datasets. (A,D) Number of genes with a significantly predictable component (hFDR ≤ 5%) in GTEx
(A) and CLUES (D); the sample sizes for each context are included in parentheses. (B,E) Ratio of
expression prediction accuracy (adjusted R2) of the best-performing cross-validated CONTENT model
over the context-by-context (green) and UTMOST (blue) approaches (median across all genes significantly
predicted by at least either method). Numbers above one indicate higher adjusted R2 and thus prediction
accuracy for CONTENT. (C,F) Prediction accuracy of CONTENT(Full) and CONTENT(Shared) when
a gene-tissue has a significant shared, specific, and full model.

Within the single-cell CLUES data set, CONTENT again outperformed the context-by-context (in144

this case, cell type-by-cell type) and UTMOST approaches, discovering 9,080 heritable gene-cell type pairs145

(5,067 genes) whereas the context-by-context model and UTMOST found 4,314 (2,355 genes) and 804 (288146

genes) respectively. The average improvement in adjusted R2 of CONTENT over the context-by-context147

model was 13.6%. In gene-cell type pairs with significant CONTENT(Full), CONTENT(Specific), and148

CONTENT(Shared) models, CONTENT(Full) improved the adjusted R2 over CONTENT(Shared) by149
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104.09%. Once more, the improvement in variability explained when including both the cell type-specific150

and cell type-shared components highlights the need to consider both components simultaneously when151

building a predictor.152

Muscle Skeletal
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Figure 4. Contribution of context-specific genetic regulation in GTEx and CLUES. (A,C)
Number of genes with a significant (FDR≤ 5%) CONTENT(Specific) model of expression in GTEx
(A) and CLUES (C). Color indicates sample size of context. (B,D) Proportion of expression variance of
CONTENT(Full) explained by CONTENT(Specific) and CONTENT(Shared) for genes with a significant
CONTENT(Full) model.

CONTENT discovers significant context-specific components of expression in bulk multi-153

-tissue and single-cell datasets. Given the ability of CONTENT to disentangle context-shared and154

context-specific variability, we examined the context-specific components of expression in GTEx and155

CLUES. In GTEx, CONTENT discovered 128,985 gene-tissue pairs (19,765 genes) with a significant156

context-specific genetic component of expression (Figures 4, S11). As with previous reports [16, 25], we157

found that testis was the tissue with the greatest number of tissue-specific genetic components. Nonethe-158
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less, we observe that the tissues with larger sample sizes more frequently had significant context-specific159

components. Consistent with previous works that have discovered extensive eQTL sharing across tissues160

[2, 25, 26], we found that in gene-tissue pairs with a CONTENT(Full) model, the variability explained161

was dominated by CONTENT(Shared) model—across tissues, the context-shared component explained162

on average 70% of the variability explained by CONTENT(Full).163

In the CLUES data set, CONTENT discovered 7,466 gene-cell type pairs (4,658 genes) with a164

significant cell type-specific component of expression (hFDR ≤ 5%). We found that all cell types had165

a similar number of cell type-specific components, and emphasize that the sample size across all cell166

types was equivalent. Interestingly, in genes with a CONTENT(Full) model, the variability was often167

dominated by the cell type-specific variability (average 75% of the explained variability), unlike GTEx, in168

which the average tissue-specific variability explained only 30% of total variance. Consequently, we found169

that within the 20,433 genes in GTEx with any genetic component, 51.50% (10,522) had a significant170

shared component, whereas of the 5,067 genes in CLUES with a genetic component, only 14.25% (722)171

had a shared component. This is consistent with complex cell type heterogeneity in bulk tissues [27] since172

there is more power to discover eQTLs with pleiotropy across the underlying cell types.173

CONTENT more accurately distinguishes disease-relevant genes than traditional TWAS174

approaches in simulated data. We performed a simulation study in which we evaluated the sensi-175

tivity, specificity, and power of CONTENT, UTMOST, and context-by-context to implicate the correct176

gene in TWAS. In our experiments, we simulated a phenotype in which 20% of the variability was com-177

posed of the genetically regulated expression of 300 randomly selected gene-context pairs (100 genes and178

3 contexts each). We simulated gene expression for 1,000 genes across 20 contexts as before, however,179

to capture a range of genetic architectures in the simulation, for each gene, we sampled from a standard180

uniform distribution to determine the proportion of shared variability. We varied the heritability of gene181

expression and considered power as a method’s ability to discover the correct genes associated with a182

phenotype. To compare power, we calculated the area under receiver-operating curve (AUC) using the183

maximum association statistic for a given gene across contexts.184

Across simulations, CONTENT(Full) was the highest powered in terms of gene discovery (Figure185

5). CONTENT(Shared) performed very similarly to CONTENT(Full) in the setting with the lowest heri-186

tability, however, our simulations show the necessity for CONTENT(Full) as it substantially outperforms187

both CONTENT(Specific) and CONTENT(Shared) across a range of heritabilities. Moreover, CON-188
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Figure 5. CONTENT(Full) is powerful, sensitive, and specific in simulated TWAS data.
Average AUC from 1,000 TWAS simulations while varying the overall heritability of gene expression.
Each phenotype (1,000 per proportion of heritability) was generated from 300 (100 genes and 3 contexts
each) randomly selected gene-context pairs’ genetically regulated gene expression, and the 300 gene-
context pairs’ genetically regulated expression accounted for 20% of the variability in the phenotype.
In genes with low heritability, CONTENT(Shared) performed similarly to CONTENT (Full), however
CONTENT(Full) was the most powerful method in discovering the correct genes for TWAS across the
range of heritability. CONTENT(Full) was significantly more powerful than UTMOST and the context-
by-context approach at all levels of heritability.

TENT(Full) significantly outperformed both the context-by-context approach and UTMOST. Specifi-189

cally, the range of percent change in AUC of CONTENT(Full) over previous methods was as follows:190

CONTENT(Shared) 1.9%-9.9%; CONTENT(Specific) 13.6%-22.4%; UTMOST 2.2%-8.6%; context-by-191

context 1.2%-10.6%. Generally, we observed that CONTENT(Full) was its most powerful for genes in192

which there was both shared and specific effects, UTMOST was its most powerful in settings with high193

sharing, and the context-by-context approach was its most powerful in settings with low sharing and high194

specificity of genetic effects within contexts.195

As with previous methods [9], we performed simulations in which the causal context(s) has been196

observed. In real data applications, this may not occur, and in such cases, further complexities may arise197

due to genetic correlation. We report a brief set of experiments evaluating fine-mapping gene-context198

pairs in TWAS when all contexts are observed (see Supplementary; Figures S12, S13), however, the199
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complexities posed by missing tissues and cell types are beyond the scope of this manuscript, and we200

therefore leave the development of relevant methodology as future work.201

Application of CONTENT to TWAS yields novel discoveries over previous methods. We202

performed TWAS across 22 complex traits and diseases collected from a variety of GWAS [28–41] using203

weights trained by CONTENT, UTMOST and the context-by-context approach on GTEx and CLUES.204

We passed forward weights to FUSION-TWAS[3]—a software that performs TWAS using GWAS sum-205

mary statistics and user-specified gene expression weights—for a gene-context pair if the pair’s expression206

was predicted at a nominal p-value less than .1 (See Methods; Figure S14).207

Across all traits at an hFDR of 5%, CONTENT discovered 47% and 234% more associations208

(unique TWAS genes) than the context-by-context approach and UTMOST respectively with GTEx209

weights, and 160% and 459% more associations than the context-by-context approach and UTMOST210

respectively with weights built from the CLUES dataset (Table 1). We find that, with GTEx weights,211

the associations implicated by the context-by-context approach had more overlap with the associations212

implicated by CONTENT(Specific) (median Jaccard similarity (JS) across traits =.406) than CON-213

TENT(Shared) (JS=.177). This is consistent with our simulation results in which the context-by-context214

approach was most powerful in cases of high context-specificity and low context-sharing (Figures S12,215

S13). The associations discovered by UTMOST, which leverages pleiotropy, had similar overlap with216

CONTENT(Shared) (JS=.175) as well as CONTENT(Specific) (JS=.182). With CLUES weights, the217

context-by-context approach again had greater similarity with CONTENT(Specific) (JS=.242) than218

CONTENT(Shared) (JS=.078), whereas UTMOST discovered TWAS genes that overlapped more with219

CONTENT(Shared) (JS=.100) than CONTENT(Specific) (JS=.085). As UTMOST, CONTENT, and220

the context-by-context approach discovered both overlapping and unique associations, we suggest that221

the approaches complement—rather than replace—one another.222

We next compared the different CONTENT models to understand their properties in real data.223

With GTEx weights, CONTENT(Full) replicated an average of 99.0% and 66.8% of the associations dis-224

covered by CONTENT(Shared) and CONTENT(Specific) respectively (hFDR ≤ 5%). CONTENT(Full)225

replicated an average of 78.4% and 63.9% of the associations discovered by CONTENT(Shared) and CON-226

TENT(Specific) respectively with the CLUES weights. Notably, CONTENT(Full) is the best predictor227

out of all the CONTENT models on average, and particularly when there exist both shared and specific228

effects. Consequently, across all traits, the inclusion of CONTENT(Full) with CONTENT(Shared) and229
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CONTENT(Specific) led to an average increase of 15% and 19% in the number of genes with significant230

TWAS associations with GTEx weights and CLUES weights respectively.231

Table 1. CONTENT outperforms existing methods in TWAS across 22 complex traits and
diseases. TWAS results (unique loci, merging genes within 1MB) across 22 complex traits and diseases
using weights output by CONTENT, UTMOST, and the context-by-context method. CONTENT(All)
refers to the collection of all loci output by at least one CONTENT model. CONTENT(Full) added an
average of 15% and 19% of gene-trait discoveries over the CONTENT(Shared) and CONTENT(Specific)
approaches together at an hFDR of 5% in GTEx and CLUES respectively. See Supplementary Table S1
for GWAS trait information.

Trait Tissue-
by-tissue

UTMOST CONTENT 
(All)

CONTENT 
(Full)

CONTENT 
(Specific)

CONTENT 
(Shared)

Tissue-
by-tissue

UTMOST CONTENT 
(All)

CONTENT 
(Full)

CONTENT 
(Specific)

CONTENT 
(Shared)

AD 18 14 25 20 14 10 8 4 10 6 9 2
Asthma 145 135 229 181 185 81 57 52 101 75 88 19
Bipolar 34 59 83 68 59 30 3 12 31 21 24 8
CAD 8 12 16 13 13 4 6 2 8 6 5 2
CKD 24 24 39 28 28 15 5 6 14 8 12 1

Crohn’s 80 66 104 74 92 42 30 28 54 45 39 12
Eczema 21 19 42 35 28 10 9 2 18 14 13 1
FastGlu 19 15 16 13 14 7 7 6 10 7 10 3

HDL 58 51 83 70 72 38 24 14 28 23 24 8
IBS 2 7 8 8 3 1 1 1 1 1 1 1
LDL 94 72 125 111 104 62 28 21 62 49 50 13
Lupus 100 66 148 107 118 46 32 19 59 43 44 12
MDD 92 93 150 111 121 55 28 20 46 33 35 11
MS 17 10 31 28 18 5 6 4 12 9 9 4
PBC 52 39 66 57 56 29 18 20 21 16 18 3

Psoriasis 35 25 54 41 38 15 16 9 23 18 20 6
RA 85 61 102 81 86 40 41 24 47 34 39 11

Sarcoidosis 8 12 24 17 16 7 4 3 7 6 5 1
Sjogren 9 8 9 8 6 2 2 1 5 3 5 1
T1D 78 57 109 82 97 40 33 25 54 41 44 14
T2D 170 144 231 203 191 108 59 43 82 59 71 15

Ulc colitis 9 8 16 13 10 3 1 2 9 8 8 1

GTEx CLUES

We investigated the genes implicated by CONTENT(Full) that were not significant in CON-232

TENT(Shared) or CONTENT(Specific) and found that many of the discoveries replicated known gene-233

trait associations. Using weights built from GTEx for example, CONTENT(Full) discovered a significant234

association of coronary artery disease (CAD) and VEGFC (p=8.67e-07, artery aorta), a gene whose235

serum levels have been significantly associated with cardiovascular outcomes [42]. Furthermore, CETP,236

which is thought to be involved in atherogenesis and HDL levels [43, 44], was not implicated by either237

CONTENT(Shared) or CONTENT(Specific), but was implicated in the TWAS of HDL with CON-238

TENT(Full) (p=1.26e-170, whole blood). CONTENT(Full) also discovered a significant association of239

myelin oligodendrocyte glycoprotein (MOG) and rheumatoid arthritis (RA) (minimum p value across240
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tissues; p=2.55e-11, brain amygdala), whereas CONTENT(Shared) and CONTENT(Specific) did not.241

RA patients have been shown to have significantly higher levels of anti-MOG IgG than controls [45].242

Using weights built from CLUES, CONTENT(Full) also led to increased power over CONTENT(Shared)243

and CONTENT(Specific). Namely, CONTENT(Full) replicated an association between asthma and244

RHOA (B cell, p=1.22e-04), which is involved in smooth airway contraction possibly through inflamma-245

tion [46, 47]. Moreover, we also discovered a significant association of Type 2 Diabetes (T2D) and SIRT5246

(CD4 T cell, p=2.23e-04) using CONTENT(Full), and note that SIRT5 has previously been indicated247

to play roles in metabolism and beta-cell functionality [48, 49]. Finally, CONTENT(Full) indicated an248

association of APH1A with eczema (conventional dendritic cell, p=3.49e-07). APH1A is involved with249

Notch signaling, which when disrupted in the skin, contributes to abnormalities such as eczema [50].250

Moreover, the genes implicated by CONTENT but neither UTMOST nor the context-by-context251

approach replicated previously associated genes-trait pairs, several of which with known biological rela-252

tionships to the trait of interest. Within Alzheimer’s disease, these genes included CBLC[51, 52], MS4A4A253

[53], and MADD [54] with the GTEx weights, as well as VASP[55, 56], RELB[51], TRAPPC6A[57,254

58] with CLUES weights. Additionally, in Crohn’s disease, CONTENT implicated the following genes,255

whereas previous methods did not: LRRC26[59] and RASSF1A[60] with GTEx weights, as well as CARD6256

(an inhibitor of NOD)[61, 62] using CLUES weights. For major depression disorder (MDD), CONTENT257

implicated CAMP[63] using GTEx weights, and FLOT1 [64, 65] using CLUES weights.258

3 Discussion259

In this work, we introduce CONTENT, a computationally efficient and powerful method to estimate the260

genetic contribution to expression in multi-context studies. CONTENT can distinguish the context-261

shared and context-specific components of genetic variability and can account for correlated intra-262

individual noise across contexts. Using a range of simulation and real studies, we showed that CON-263

TENT outperforms previous methods in terms of prediction accuracy of the total genetic contribution264

to expression variability in each context. Interestingly, we also found that when there exists a gene with265

a genetic component of expression, the heritability is often dominated by the context-specific effects at266

the single-cell level, but at the tissue level, the heritability is dominated by the context-shared effects.267

Finally, CONTENT was more powerful, specific, and sensitive than previous approaches in applications268

to TWAS.269
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Using weights trained by CONTENT, UTMOST and the context-by-context approach, we dis-270

covered 12,150 unique gene-trait associations through TWAS. To our knowledge, we present the first271

application of TWAS trained on a single-cell RNAseq dataset for a collection of 90 individuals’ PBMCs.272

For both the weights generated by GTEx and CLUES, CONTENT was largely more powerful than UT-273

MOST and the context-by-context approach in TWAS. However, we emphasize that the approaches often274

capture genes unique to each approach. Each method may therefore complement each other and may be275

combined in TWAS to maximize the number of discoveries made as different methods are likely favorable276

under different genetic architectures. Though we show that CONTENT may be useful in fine-mapping277

the specific tissue relevant for a TWAS association in simulations, we note that fine-mapping to the278

correct tissue in real data is a particularly difficult task. For example, throughout this manuscript, we279

assume that the causal tissue is included in the measured tissues, however, when this is not the case,280

CONTENT and all TWAS approaches may associate an incorrect, correlated tissue. For example, in the281

case of chronic kidney disease, CONTENT implicated GATM–a gene thought to be involved with kidney282

disease and GFR levels [66–68]–however, there were significant associations with many tissues including283

the tissue-shared component. This may be due to the fact that kidney expression is not measured in this284

version of the GTEx dataset. Future work may explore using the CONTENT-trained weights and jointly285

fitting all TWAS Z scores, or otherwise accounting for missingness.286

We also leveraged recently developed methodology for controlling the false discovery rate when287

summarizing significantly predicted genes, gene-contexts, and TWAS associations [17, 18]. This approach288

has been shown to effectively control the FDR across contexts in eQTL studies, and to our knowledge, it is289

the first time such an approach has been used to effectively control the FDR when predicting expression290

values and when making discoveries using TWAS. While our analyses focused on the comparison of291

CONTENT, UTMOST, and the context-by-context approach, we emphasize that by using this type of292

false discovery correction, all methods can be used in combination with one another, rather than in293

replacement of one another. For downstream analysis, combining all prediction methods is crucial, as294

certain genes or gene-context pairs may be (better) predicted by one method and not others. In the GTEx295

data for example, when we included models built by UTMOST and the context-by-context approach to296

the correction scheme for CONTENT, the number of genes for which there was a significant model for a297

given tissue increased on average by 7.56%.298

Importantly, neither UTMOST nor the context-by-context method distinguishes the context-299

specific and context-shared components of genetic effects on expression. Implicitly, by modeling all300
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contexts independently, the context-by-context fit is best-suited for cases in which there is no effect-301

sharing across contexts. As UTMOST considers all contexts simultaneously, its power is maximized in302

cases where the genetic effects are mostly shared. Additionally, these methods do not account for the303

shared correlated residuals between samples, thus they do not maximize their predictive power.304

While a previous approach proposed by Wheeler et al. [14] does model the correlated intra-305

individual noise, CONTENT offers several advantages. The previous decomposition does not include an306

option to leverage both the context-shared and context-specific components of expression to form a final307

predictor of the observed expression for a given context. We show that this is especially crucial in the308

context of single-cell data wherein the prediction accuracy for a given gene-context increases drastically309

when using both components (Figure 3). Further, without properly combining both components (e.g.310

via regression), the context-specific genotype-expression weights produced by the previous decomposition311

may have the incorrect sign, as they are considered residuals of the context-shared component and are312

not properly re-calibrated to the observed expression. Unlike the novel decomposition proposed by313

CONTENT, this previous approach also does not intuitively allow for additional sources of pleiotropy314

or effects-sharing (see Supplementary Text for discussion of brain level sharing in GTEx). Finally, the315

decomposition used in the previous method is based on a linear mixed model fit on a per-gene basis, and316

is therefore much less computationally efficient.317

In this manuscript we focused on prediction of the total genetic contribution to expression as well318

as the context-shared and context-specific components of expression. Nonetheless, future work using the319

methodology presented here can be extended to a wide variety of problems. Primarily, the decomposition320

can be used to efficiently estimate Gene×Context heritability using existing software for heritability321

estimation, e.g. GCTA [69], on the decomposed components offering computational speed up over existing322

methods for cross-context heritability estimation [26]. Additionally, the decomposed components from323

CONTENT may also be included in previous approaches, e.g. UTMOST, to gain further power. Further,324

by training each method on the single-cell level data, we offer researchers the means to pursue their own325

association analyses at a lower level of granularity than was previously available. The finding that single-326

cell data may have lower levels of effects-sharing than tissue-level data may also spark investigations327

into the biological mechanisms (e.g. more specific regulation) and statistical mechanisms (e.g. sample328

heterogeneity confounding) by which this can occur.329

In conclusion, the increased prediction accuracy, specificity, computational speed, and hierarchical330

testing framework of CONTENT will be paramount to unveiling context-specific effects on disease as well331
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as uncovering the mechanisms of context-specific genetic regulation.332

Code and data availability Trained weights for the GTEx V7 dataset and our in-house single-333

cell RNAseq are available at TWAShub (http://twas-hub.org/). The CONTENT software is freely334

available at https://github.com/cozygene/CONTENT. We provide TWAS summary statistics for all three335

methods on both datasets (as well as an indicator of whether the association was hierarchical FDR-336

adjusted significant) at doi.org/10.5281/zenodo.5209239.337
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MGG, performed the analyses of the GTEx and CLUES data and additional analyses. MT implemented340

the software. MT, NZ, and BB wrote the manuscript, with significant input from EH, CJY, AG, MGG.341
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4 Methods347

An overview of the CONTENT model In this section, we detail the assumed generative model348

and objectives of CONTENT. CONTENT is based on the methodology and decomposition of a previous349

work by Lu et al., FastGxC [16]. In brief, like FastGxC, we assume that the expression of an individual350

in a given gene and context is a combination of a context-shared genetic component that is shared across351

different contexts and a context-specific genetic component that is specific to a context, that is352

Ec = EShared
G + ESpecific

G,c + εc353

EShared
G = gβ354

ESpecific
G,c = gγc355

356
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where Ec denotes the expression of the individual at the gene in context c, EShared
G and EShared

G,c357

denote the components of the expression due to context-shared and context-specific genetic effects re-358

spectively, β and γc represent the context-shared and context-specific cis-genetic effects respectively, g359

the individual’s cis-genotypes and εc ∼ N(0, σ2
c ) represents the environmental effects (and non-cis-genetic360

effects) on the individual’s gene expression.361

The objective of CONTENT is to build a genetic predictor of context-specific phenotypes. While362

previous work has focused on building powerful genetic models for Ec, we aim to build unbiased models363

that partition and estimate the context-shared gβ and context-specific terms gγt. Specifically, we aim to364

maximize the power to detect the context-specific terms, allowing some leniency in the accuracy of context-365

shared terms, as we are interested in context-specific effects. Moreover, as a context-specific predictor366

can be used in downstream analyses to identify the specific context(s) through which genetic variation367

manifests its effect on the phenotype and disease risk, we also aim to minimize the correlation between368

the predicted context-specific component and the true context-shared component. Finally, our method369

must account for the correlated intra-individual noise across contexts, and do so in a computationally370

efficient manner.371

Decomposing multilevel data Many genomic datasets, such as those of GTEx, have a multilevel372

nature; first the individuals are sampled, and second an individual is measured in each context. To take373

the multilevel structure of the data into account, the observed expression on gene j can be decomposed374

into an offset term, a between-individual component and a within-individual component [70]. That is,375

if Eijc denotes the observed expression level for individual i (i = 1, . . . , I) on gene j (j = 1, . . . , J) and376

context c (c = 1, . . . , C), Eijc can be decomposed as377

Eijc = E.j. + (Eij. − E.j.) + (Eijc − Eij.) (1)378

where E.j. = 1
I×C

∑I
i=1

∑C
c=1Eijc the mean expression of gene j computed over all (I) individuals and379

all (C) contexts, and Eij. = 1
C

∑C
c=1Eijc the mean expression of individual i on gene j, computed over all380

contexts. In (1), E.j. is a term that is constant across individuals and contexts for each gene, (Eij.−E.j.)381

is the between-individuals deviation, and (Eijc−Eij.) is the within-individual deviation of the expression382

on gene j in context c.383

Variables that differ between but not within individuals, e.g. sex and genotype, will have an effect384
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on (Eij. − E.j.) but not on (Eijc − Eij.). On the other hand, variables that change within individuals385

but are the same between individuals, e.g. the genetic effect on a specific context, will have an effect on386

(Eijc − Eij.) but not on (Eij. − E.j.).387

In the context of estimation, we first center and scale the expression of gene j in each context c,388

i.e. 1
I

∑I
i=1Eijc = 0 and 1

I

∑I
i=1E

2
ijc = 1. Therefore, E.j. = 1

I×C
∑I
i=1

∑C
c=1Eijc = 0, and equation (1)389

simplifies to:390

Eijc = Eij.︸︷︷︸
EShared

ij

+ (Eijc − Eij.)︸ ︷︷ ︸
ESpecific

ijc

(2)391

A formal description of CONTENT We use the simplified decomposition in equation (5) to build392

genetic predictors of context-specific effects while accounting for the correlated intra-individual noise393

across contexts. Intuitively, the between-individuals variability serves as the component of expression394

that is shared across contexts, EShared, and the deviance from this shared component (i.e. the within-395

individual variability) serves as the context-specific component of expression, ESpecific. Moreover, treating396

the context-specific component as a deviance from the context-shared component leads the decomposition397

to have the property that as the correlation of intra-individual noise across contexts increases, the power398

to detect context-specificity also increases. In addition, the decomposition generates context-shared and399

context-specific components of expression that are orthogonal to each other. Further rationale for using400

the decomposed expression is included Supplementary Section 1 and the text by Lu et al. [16]. Lu et al.401

also include a description of the decomposition’s equivalence to a linear mixed model.402

For a single gene j, CONTENT takes as input centered, scaled, and residualized (over a set of403

covariates) expression measured across I individuals in C contexts and an I × m genotype matrix Gj404

with m measured cis-SNPs for gene j. CONTENT then decomposes the expression vectors into C405

context-specific components and a single context-shared component by simply calculating the mean of406

expression for each individual across contexts, and setting the context-specific expression for context c as407

the difference between the observed expression of context c and the calculated context-shared expression.408

As it has been observed that cis-genetic effects may be sparse and that the elastic net may perform best409

relative to other penalized linear models in the context of genetically regulated gene-expression [4, 14],410

CONTENT fits C + 1 penalized linear models for the C + 1 expression components using an elastic net.411

Lastly, CONTENT generates a final genetic predictor of expression by combining the context-shared412

and context-specific components. Importantly, as the context-specific component is a deviance from the413
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context-shared component, the sign of the context-specific component must be properly realigned when414

combining both components of expression to make a final predictor. We refer to this linear combination415

of expression components as the “full” model of CONTENT and fit it using a simple linear regression:416

1. Obtain EShared
j and ESpecific

jc from the decomposition.417

2. Generate cis-genetic predictors of each component using cross-validated elastic net:418

(a) Fit cross-validated elastic net regressions for the shared and specific components:419

EShared
j = αShared +Gjβ + εShared (3)420

ESpecific
jc = αSpecific

c +Gjγc + εSpecific
c (4)421

(b) Use the estimates to generate genetic predictors of each component:422

Êj
Shared
G = α̂Shared +Gj β̂ (5)423

Êjc
Specific
G = α̂Specific

c +Gj γ̂c (6)424

3. Regress the expression of context c onto the context-shared and context-specific components:425

Ejc = αFull
c + Êj

Sh.
G wSh.

jc + Êjc
Sp.
G wSp.

jc + εjc (7)426

Within each regression, α represents the offset and we assume that all ε are from a normal distri-427

bution with mean 0 and standard deviation that is a function of the given outcome.428

We save for each gene the set of estimated regression weights ŵShared
jc and ŵSpecific

jc from equation429

(4) for use in downstream analyses. Namely, in TWAS, each context receives a single vector of weights,430

and to test the association of a gene-context’s full model to a trait, we simply use a weighted sum of the431

predictors learned from equation (3), ŵSh.
jc β̂ + ŵSp.

jc γ̂c. We also use the same procedure for the context-432

specific weight to ensure the correct directionality. To test for significance of genetic effects (i.e. to call an433

eGene or eAssociation), we correlate each component of expression—the context-shared, context-specific,434

and full—to its corresponding genetically predicted value.435

Controlling the false discovery rate across contexts Generally, methods for building genetic436

predictors of expression or TWAS predictors leverage either Bonferroni correction or false discovery rate437
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(FDR). Nonetheless, using a Bonferroni correction may be too stringent (for example, as tests across438

contexts may be correlated), and using FDR within each context or across all contexts simultaneously439

may lead to an inflation or deflation to the false disovery proportion within certain contexts [17]. To440

simultaneously control the FDR across all contexts at once, a hierarchical false discovery correction—441

treeQTL—was developed [17]. The treeQTL procedure leverages the hierarchical structure of a collection442

of tests (e.g. gene level and gene-context level) to properly control the FDR across an arbitrary number443

of contexts and levels in the hierarchy as well as boost power in cases where a gene has a significant444

association in multiple contexts [6, 17, 18]. (See Supplementary Methods for further intuition.)445

Notably, using CONTENT, our testing hierarchy contains 3 levels; (1) at the level of the gene,446

(2) at the level of the context, and (3) at the level of the method or model (Figure S3). Intuitively, a447

gene may contain a genetic component that is shared across all contexts, or a given context may have448

its own genetic architecture. In CONTENT, a given context may have its own genetic predictor from449

either the context-specific component or the full model. Using treeQTL with this structure is robust450

across multiple contexts, and since the tree is structured such that a specific method/model is at the final451

level of testing for a context, it enables incorporation of additional models trained from other approaches452

(such as those fit on a context-by-context basis or by UTMOST). Moreover, we can add to the shared453

leaf an additional level of tests to account for additional components of effects-sharing, such as a brain454

tissue-shared component.455

Comparison to other methods We compared the prediction accuracy of CONTENT to a context-456

by-context TWAS model [3, 4] in which the expression of each context is modeled separately, and to457

UTMOST [9], a method that jointly learns the genetic effects on all contexts simultaneously. Specifically458

the model based on TWAS fits a penalized linear model for each context. UTMOST, on the other hand,459

employs a group LASSO penalty across all contexts simultaneously, allowing it to gain power over the460

context-by-context approach by considering all individuals and contexts in a study at once. As we were461

we able to use a fast R package for penalized regression[71], we used 10-fold cross-validation to fit the462

context-by-context model. Owing to UTMOST’s computational intensity, we used its default value of 5463

folds for cross-validation.464

We also compared CONTENT to a previous approach by Wheeler et al., orthogonal tissue decom-465

position (OTD)[14]. OTD is a direct correlate of CONTENT(Shared) and CONTENT(Specific), and is466

generated by fitting a mixed effects model across all contexts for a given individual. Namely, a mixed467
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effects model is fit as follows: an individual’s expression across all tissues is set as the outcome, the468

shared expression is modeled as a random individual-level intercept and is estimated using the posterior469

mean, and the specific expression is treated as the residuals from the fit model (after adjusting for covari-470

ates). Under infinite sample sizes, the components of OTD are equivalent to CONTENT(Shared) and471

CONTENT(Specific).472

Evaluations on GTEx and CLUES We residualized the expression of each gene in each context473

over their corresponding covariates (e.g. PEER factors, age, sex, batch information) prior to fitting474

UTMOST and an elastic-net model for each context in the context-by-context approach. We did the same475

residualization before decomposing and then fitting the context-shared and context-specific components476

with an elastic net for CONTENT. After generating cross-validated predictors for each method, we477

examined the number of significantly predicted genes as well as the prediction accuracy (in terms of478

adjusted R2) between the cross-validation-predicted and true gene expression per gene-context pair.479

To properly control the false discovery proportion at .05 across-contexts and within-methods, we480

employed a hierarchical FDR correction [17, 18] separately for CONTENT, UTMOST, and the context-481

by-context approaches. Notably, using this correction for all methods provides a generous comparison to482

previous methods, as when there exists at least one significantly heritable gene-context association for a483

given gene, there is a relative gain in power over the context-by-context FDR for other contexts tested484

within this gene [17, 18].485

Application to TWAS We performed transcription-wide association studies across 24 phenotypes us-486

ing FUSION-TWAS[3]. FUSION-TWAS uses GWAS summary statistics and user-specified gene expres-487

sion weights with an LD reference panel to perform the test of association between genetically predicted488

gene expression and a phenotype of interest. We tested a gene-context pair for association if the pair’s489

expression was predicted at a nominal p-value of .1, and note that this threshold does not substantially490

alter the number of TWAS discoveries (Figure S14). Notably, previous methods may use their own test491

of gene-context-trait association or leverage set tests (e.g. Berk Jones[9]) to combine their associations492

across all contexts for a given gene and therefore increase power. In this comparison, we report the asso-493

ciation as output by FUSION (a single gene-context-trait association) and corrected by hierarchical false494

discovery without any sort of set test for the sake of equality in the comparison. We ran FUSION-TWAS495

using the default recommended settings, with reference data from the 1000 genomes project [72]. TWAS496
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weights were trained on the GTEx v7 dataset[2] as well as the CLUES[20] single-cell RNAseq dataset of497

PBMCs.498

Simulations to evaluate prediction accuracy To evaluate the properties of our method relative499

to other methods we perform a series of simulation experiments. We first simulate genotypes for each500

individual, where each individual i and each locus m (m = 1 : M) is independent, and there are no rare501

SNPs:502

Gim ∼ Bin(2,Unif[.05, .50])503
504

We then draw both context-shared (βj.) and context-specific (βjc) effect sizes for each SNP from505

a normal distribution with a Bernoulli random variable Im controlling the probability that the mth SNP506

is causal (i.e. induce sparsity of genetic effects).:507

Im ∼ Bernoulli(.05), βmj. ∼ N

(
0,

h2

M ∗ π

)
× Im, and βmjc ∼ N

(
0,

h2
c

λ ∗M ∗ π

)
× Imλ508

509

Here, h2 and h2
c are the context-shared and context-specific heritabilities of expression on gene j. In510

general, the SNPs with nonzero context-specific effect sizes were subsampled from SNPs with nonzero511

context-shared effect sizes. We additionally simulate for a subset of contexts some number of truly512

context-specific eQTLs drawn from Poisson(λ = 1) for randomly selected SNPs that were not eQTLs for513

the context-shared effects. Finally, we simulate the expression of gene j as follows:514

Ejc = Gjβj. +Gjβjc + εjc (8)515

ε ∼ N (0,Σ), Σ ∈ RC×C =


σ2

1 . . . σ1,C

...
. . .

...

σC,1 . . . σ2
C

 (9)516

517

where ε ∈ RI , represents the correlation of environment or intra-individual noise across contexts, σ2
c =518

1−h2−h2
c is the variances of each context c, and σc1,c2 = ρc1,c2σc1σc2 is the covariance of context c1 and519

c2. We generated data under varying levels of context-specific heritability, truly context-specific eQTLs,520
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causal SNPs, and correlation of intra-individual noise across contexts. The number of contexts was set to521

20, and to replicate a setting similar to GTEx, the corresponding sample sizes of each ranged from 75 to522

410 where individuals were not necessarily measured in every context. In our simulations, we generated523

one train and one test data set using the above framework. We evaluated the performance of each method524

by comparing the true and predicted expression in the test data set, using the predictor learned from the525

training data set.526

To assess the effect of additional sharing on a subset of contexts, we also set up a simulation527

framework using the same generative process as above, only that a subset of contexts also received528

additional genetic effects. More rigorously, for this subset of contexts (acting as brain contexts in GTEx,529

for example), expression was generated as in equation (6) with an additional term:530

Ejc = Gjβj. +Gjβjc +Gjβjḃ + εjc, βm
jḃ
∼ N

(
0,

h2
ḃ

λ ∗M ∗ π

)
× Imλ (10)531

532

where each variable is simulated as before, βm
jḃ

corresponds to additional genetic effects that are subsam-533

pled from SNPs that have a context-shared effect, and h2
ḃ

is the brain-shared heritability.534

Simulations of TWAS performance Using the above generated genotypes and gene expression, we535

simulated phenotypes to evaluate the performance of each method under the assumed model in TWAS.536

For a given phenotype, we randomly selected 300 gene-context pairs (100 genes, 3 contexts each) whose537

expression would comprise a portion of a phenotype. Explicitly, we generated a phenotype as follows:538

yi = Eiδ + ε δ ∼ N(0,
σ2
ge

300
), εi ∼ N(0, 1−

σ2
ge

300
)539

540

Where Ei is the standardized genetic expression of the 300 gene-context pairs for individual i,541

δ is the length-300 vector of effect sizes for each gene-contexts’ expression, σ2
ge is the variance in the542

phenotype yi due to cis-genetic gene expression, and εi corresponds to environmental effects (or noise)543

as well as trans-genetic effects for individual i. In our simulations, we varied the heritability of gene544

expression and fixed variability in the phenotype due to genetic gene expression to .2. To simulate a545

wide range of genetic architectures, the proportion of heritability of gene expression due to the context-546

shared effects was sampled from a standard uniform distribution, and the proportion of heritability547

due to context-specific effects was (1- the context-shared proportion). Once we generated a phenotype,548
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we performed a TWAS using weights output from each method by imputing expression into a simulated549

external, independent set of 10000 genotypes that followed the same generation process as in the previous550

subsection.551
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Supplementary Methods and Information743

Intuition for using the decomposition to model genomic features744

The decomposition described in the methods section lays a framework for CONTENT as it directly745

accounts for the shared noise and generates orthogonal context-shared and context-specific components746

of genomic features. First, we note that in multi-context data, repeated measurements of one individual747

will likely have correlated errors; in the context of GTEx data, an individual’s environment as well as748

technical noise is likely to affect their expression in all contexts. The above decomposition exploits this749

structure, which improves the power to learn the context-specific variability of expression. Put more750

rigorously, consider the expression of gene j in an individual measured in a baseline context and then751

again after a stimulation:752

Eij1 = giβj + εij1753

Eij2 = giβj + giγj + εij2754
755

Where Eij1 and Eij2 denote the observed expression level of individual i at gene j at baseline and756

stimulation respectively, gi represents a vector of the individuals’ genotype at some nearby cis-SNPs, βj757

denotes the baseline genetic effects on expression, γj denotes the stimulation-related genetic effects on758

expression, and εij1 and εij2 represent the environmental effects (or noise) on the individual’s expression759

of gene j in baseline and stimulation respectively. In teasing apart the genetic effects that are different760

after stimulation, one might examine the difference in the expression between contexts:761

Eij2 − Eij1 =giβj + giγj + εij2 − giβj − εij1762

=giγj + εij2 − εij1 (11)763
764

which leaves only the difference in expression due to the stimulation-specific, or in other words, context-765

specific component, and noise. Under the scenario in which the errors are perfectly correlated, (11)766

simplifies to:767

Eij2 − Eij1 =giγj768
769

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 23, 2021. ; https://doi.org/10.1101/2021.09.23.461579doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.23.461579
http://creativecommons.org/licenses/by-nc-nd/4.0/


2

Clearly, this will greatly increase our ability to build a genetic model of the stimulation-specific com-

ponent. In terms of CONTENT, the baseline genetic effects correspond to the context-shared genetic

effects, and the stimulation-specific effects correspond to the context-specific effects. Put simply, we

propose the context-shared genetic effects be considered a “baseline” effect, and that the context-shared

genetic effects are simply offsets to the context-shared effect. This model is directly related to equation

(3):

Eijti = (Eij.) + (Eijti − Eij.)

where Eij. and (Eijti −Eij.) correspond to the context-shared and context-specific genetic effects respec-770

tively. By construction, Eij. and (Eijti − Eij.) are orthogonal, and thus we have generated orthogonal771

components for the context-shared and context-specific components of expression.772
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Figure S1. Gene expression correlation across tissues in the GTEx study. Using a linear mixed
model with bivariate REML [69, 73], we calculated cis-genetic and residual (which captures variance due
to both trans-genetic effects as well as residual effects) variance and covariance components for each
gene-tissue pair across GTEx. The gray units indicate tissue pairs with less than 10% sample overlap. In
both the genetic (upper) and residual (lower) components, there was widespread cis-genetic and residual
correlation, with the brain tissues showing higher correlations compared to other tissues.
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Figure S2. Gene expression correlation across cell types in the CLUEs study. Using a
linear mixed model with bivariate REML[69, 73], we calculated cis-genetic and residual (which includes
trans-genetic effects) variance and covariance components for each gene-cell type pair across CLUEs.
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Hierarchical false discover correction773

Multiple hypotheses correction in the context of discovering genes, gene-context pairs, and downstream774

associations of genetically-regulated gene expression with phenotypes varies across approaches [3, 4, 15].775

For discovering gene and gene-context associations, previous approaches often leverage a Bonferroni776

correction when investigating a single context, and may use FDR within a context when investigating777

multiple contexts [4, 15]. After conducting an association test between a phenotype and genetically regu-778

lated gene expression, an additional Bonferroni correction is often employed across all tested expression-779

context-phenotype trios [15]. As this approach across all expression-context-phenotype trios may be too780

stringent, FDR may also be used. However, adjusting for the FDR within each context or across all781

contexts simultaneously may lead to an inflation or deflation to the false discovery proportion within782

certain contexts [17].783

To simultaneously control the FDR across all contexts at once, a hierarchical false discovery784

correction—treeQTL—was developed [17]. Though treeQTL was originally developed for use in eQTL785

studies, its properties hold for any false discovery correction where such a hierarchy (e.g. gene level and786

gene-context level) exists[18]. Briefly, TreeQTL first combines all gene-context p-values for a given gene787

simultaneously using Simes’s procedure (other related procedures may also be used) to determine if there788

is an association at this given locus. If there is an association at the locus, FDR is then employed across789

the contexts within that gene. Importantly, if a gene does not have a significant association as determined790

by the first step, contexts are not included in the additional correction procedure, thus decreasing the791

number of tests that need to be accounted for in multiple correction. This approach has been shown to792

properly control the false discovery rate across an arbitrary number of contexts and levels in the hierarchy,793

making it an invaluable tool in the context of gene, gene-context, and gene-context-trait discoveries.794

To properly adjust the FDR for CONTENT, we use a hierarchy of 3 levels; (1) at the level of the795

gene, (2) at the level of the context, and (3) at the level of the method or model.796
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Figure S3. Hierarchical false discovery correction. Here, we show the structure of the hypothesis
tests for determining whether a gene has a heritable component. A gene (green, top level) is considered
heritable if it has a heritable context-shared component or if it was heritable for a specific context (blue,
second level). A given gene-context may be heritable due to either the full or context-specific model of
CONTENT (red, third level).
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Figure S4. CONTENT is powerful and well-calibrated in simulated data. Accuracy of
each method to predict the genetically regulated gene expression of each gene-context pair for different
correlations of intra-individual noise across contexts. Mean adjusted R2 across contexts between the true
(A) full, (B) shared, and (C) specific genetic components of expression and the predicted component for
each method and for different levels of intra individual correlation. We show here the accuracy for each
component and method for all gene-contexts pairs, regardless of whether they had only context-shared
or had both context-shared and context-specific effects. Notably, 75% of gene-contexts did not have a
context-specific effect, and therefore CONTENT(Shared) captures nearly all of the full variability in these
contexts (i.e. the full model is comprised of only shared effects). Further, as only 25% of gene-contexts
had context-specific effects, CONTENT(Specific) on average captures very little of the full variability.
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Simulations under additional parameter settings797

In this section, we evaluate CONTENT, UTMOST, and the context-by-context approach using the same798

simulations framework as in the main text (Figure 2), however here we show each methods’ performance799

while varying additional parameters (Figure S5). We also show the performance of each method when800

the heritability of the context-shared and context-specific effects are equal (.2; Figure S6) and where the801

context-shared heritability is less than the context-specific effects (.1 and .3 respectively; Figure S7)).802
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Figure S5. Prediction accuracy across simulated data with higher context-shared than
context-specific heritability (.3 and .1 respectively). Under a simulations framework, we evaluated
the performance of each method to predict the total expression using the mean adjusted R2 for each gene-
context pair across all iterations for different (A,E) correlation between contexts, (B,F) proportion of
causal cis-SNPs, (C,G) number of context-specific SNPs, and (D,H) the percent of contexts with context-
specific effects on top of the shared effects. (A-D) show the correlation between the true full (specific +
shared) genetic component and the estimated full genetic component of each method, and (E-H) show
the correlations of the true genetic shared and specific genetic components of the output of each method
(where CONTENT separates the two).

For all methods, the baseline of parameters was .3 shared heritability, .1 specific heritability, 500803

cis-SNPs, 20 contexts, 0 correlation between contexts, .05 percent causal SNPs, 2 context-specific SNPs,804

and 20% specificity (signifying the overlap with the shared effects, as well as the percent of contexts805

with a specific effect). CONTENT continued to outperform the previous methods, and UTMOST consis-806

tently outperformed the context-by-context approach. UTMOST consistently performed better than the807

context-by-context approach, likely as this simulation framework better fits the model’s assumptions. We808
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Figure S6. Prediction accuracy across simulated data with equal context-shared and
context-specific heritability (.2). Under a simulations framework, we evaluated the performance
of each method to predict the total expression using the mean adjusted R2 for each gene-context pair
across all iterations for different (A,E) correlation between contexts, (B,F) proportion of causal cis-SNPs,
(C,G) number of context-specific SNPs, and (D,H) the percent of contexts with context-specific effects
on top of the shared effects. (A-D) show the correlation between the true full (specific + shared) genetic
component and the estimated full genetic component of each method, and (E-H) show the correlations of
the true genetic shared and specific genetic components of the output of each method (where CONTENT
separates the two).

note that UTMOST performed better than CONTENT when there were context-specific effects across all809

contexts (and this set of effects lied on top of SNPs with a shared effect) and the heritability of context-810

specific effects dominated the heritability of context-shared effects (Figure S7). Given our analysis of811

GTEx data this architecture may not be entirely common, however this provides further evidence that812

each method may outperform the other under different architectures, and should therefore be used in813

complement with the others.814
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Figure S7. Prediction accuracy across simulated data with lower context-shared than
context-specific heritability (.1 and .3 respectively). Under a simulations framework, we eval-
uated the performance of each method to predict the total expression using the mean adjusted R2 for
each gene-context pair across all iterations for different (A,E) correlation between contexts, (B,F) pro-
portion of causal cis-SNPs, (C,G) number of context-specific SNPs, and (D,H) the percent of contexts
with context-specific effects on top of the shared effects. (A-D) show the correlation between the true
full (specific + shared) genetic component and the estimated full genetic component of each method, and
(E-H) show the correlations of the true genetic shared and specific genetic components of the output of
each method (where CONTENT separates the two).
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Figure S8. Prediction accuracy across simulated data (2,000 cis-SNPs). Under a simulations
framework, we evaluated the performance of each method to predict the total expression using the
mean adjusted R2 for each gene-context pair across all iterations for different (A,E) correlation between
contexts, (B,F) proportion of causal cis-SNPs, (C,G) number of context-specific SNPs, and (D,H) the
percent of contexts with context-specific effects on top of the shared effects. (A-D) show the correlation
between the true full (specific + shared) genetic component and the estimated full genetic component of
each method, and (E-H) show the correlations of the true genetic shared and specific genetic components
of the output of each method (where CONTENT separates the two).

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 23, 2021. ; https://doi.org/10.1101/2021.09.23.461579doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.23.461579
http://creativecommons.org/licenses/by-nc-nd/4.0/


12

Runtimes of methods We compared the runtimes and memory requirements of our software that815

fits both CONTENT and the context-by-context approach (10-fold cross-validation) to UTMOST (5-fold816

cross-validation). Our software takes advantage of the memory-mapped,fast penalized linear regression817

framework implemented by R package bigstatsr [71]. When we tested both approaches on 100 randomly-818

selected GTEx genes, not only was the runtime of UTMOST—while running half as many cross-validation819

folds as our method—on average over 3x the runtime of running our software, but the average memory820

required by UTMOST was also over 10x the memory required by our software.821
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Figure S9. Runtime and memory usage of CONTENT and the context-by-context approach
compared to UTMOST. We saved the runtime and memory usage for UTMOST and our software that
fits both CONTENT and the context-by-context approach on 100 randomly-selected GTEx genes. The
average runtime and memory usage of running UTMOST was over 3x and 10x the runtime and memory
usage of running our software that fits both CONTENT and the context-by-context approach.
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Figure S10. Power of CONTENT, UTMOST and the context-by-context model across
GTEx on genes run by UTMOST. (A) The number genes of genes with a significantly predictable
component across each context with sample size included in parentheses (B) The median ratio of adjusted
R2 (CONTENT/context-by-context,CONTENT/UTMOST) across the union of genes significantly pre-
dicted by CONTENT and either the context-by-context model or UTMOST.
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Figure S11. PContribution of context-specific genetic regulation in GTEx. (A) The number of
genes with a significant (FDR≤ 5%) CONTENT(Specific) model of expression in GTEx. (B) Proportion
of expression variance of CONTENT(Full) explained by CONTENT(Specific) and CONTENT(Shared)
for genes with a significant CONTENT(Full) model.
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Evaluation TWAS simulations and fine-mapping822

In this section, we explore the ability of each method to correctly determine the gene-context pair re-823

sponsible for the association with the phenotype in TWAS. Notably, in these simulations we limited our824

analyses to situations in which the causal context(s) has been observed. In real data applications, this825

may not occur, and in such cases, further complexities may arise due to genetic correlation. In these826

situations, it is likely that all methods will produce false-positive gene-context associations since the true827

causal context is missing. The complexities posed by missing contexts and cell-types are beyond the828

scope of this manuscript, and we leave the development of relevant methodology as future work.829

Importantly, the models built by CONTENT(Full) can be explained by either the context-shared830

component, the context-specific component, or both. To implicate a genuine CONTENT(Full) gene-831

context association (i.e., to elucidate whether a specific context’s expression is more strongly associated832

than the context-shared expression), we propose using only gene-context pairs whose CONTENT(Full)833

TWAS test statistic is greater in magnitude than the context-shared TWAS test statistic—termed “CON-834

TENT(Fine).” In our simulations we used a test statistics threshold of .5 and found that this heuristic835

controlled the false positive rate of the CONTENT(Fine) model’s associations as well as enriched for836

correctly-associated contexts.837

We evaluated the ability of each method to implicate the correct eAssociation in simulated TWAS838

data. Across a range of heritability and hetereogeneity (percent of contexts with context-specific genetic839

effects in addition to the main effects), we simulated 1000 genes for 20 contexts, 100 of which had 3840

contexts whose genetic component of expression was associated with the phenotype. We considered841

sensitivity and specificity as the ability of each method to implicate the correct context for an associated842

gene. To evaluate sensitivity and specificity, we examined which gene-context pairs were significantly843

associated with the phenotype after employing the hierarchical false discovery correction [17] as the844

gene-based false positive rate was well-controlled across methods using this approach.845

In the absence of context-shared genetic effects, all methods showed high specificity and sensitiv-846

ity (Figure S13). However, as the genetic variability became more context-shared, the specificity and847

sensitivity of the context-by-context approach and UTMOST dropped substantially (Figure S13). As848

neither the context-by-context approach nor UTMOST attempt to deconvolve the context-shared and849

context-specific effect sizes, their weights for a given context contain both context-shared and context-850

specific signal. Thus when the context-shared effects dominate the heritability, both methods are likely851
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Figure S12. Using a heuristic to fine-map CONTENT(Full) associations. Average AUC from
1000 TWAS simulations while varying the overall heritability of gene expression. Each phenotype (1000
per proportion of heritability) was generated from 300 (100 genes and 3 contexts each) randomly selected
gene-context pairs’ genetically regulated gene expression, and the 300 gene-context pairs’ genetically
regulated expression accounted for 20% of the variability in the phenotype.

to suggest context-specific associations across all contexts that express an associated gene. The speci-852

ficity of CONTENT’s context-specific component, as well as the full model’s weighting of each expression853

component are paramount to its specificity and sensitivity, as shown by its robust performance across854

various mixtures of genetic effects (Figure S13).855

In the GTEx dataset, the fine-mapping TWAS associations produced by our heuristic for the856

CONTENT(Full) model produced broad associations across many tissues. Though we observed many857

correct fine-mapping associations for several known gene-trait etiologies (e.g. CYLD and esophagus858

mucosa in Crohn’s [74], LIPC and liver in HDL [75], SORT1 in liver in LDL and HDL [76–78]), there859

was not consistent enrichment of a specific tissue known to be relevant for a given trait (for example, the860

pancreas was not over-represented in associations of Type 2 Diabetes). This could be because the correct861

tissue or context is missing from the data, horizontal or vertical pleiotropy, or other unknown reasons.862

As the fine-mapping heuristic performed well in simulated data under a known architecture and where863

all contexts are observed, we are hopeful that the context-specific estimates will be useful in downstream864

tissue fine-mapping methods.865
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Figure S13. CONTENT is sensitive and specific. We simulated 1000 phenotypes from 300 ran-
domly selected gene-tisue pairs’ expression while varying the percent heterogeneity and performed a
TWAS using the weights output by each method. (A,B) When the total proportion of variability in the
phenotype due to the genetically regulated gene expression is .5 and (C,D) when the proportion is .2.
The full model of CONTENT was the most sensitive when finding the correct gene-context pair, and is
most powerful when there is non-negligible context-specific heritability in addition to the tissue-shared
heritability.
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Table S1. GWAS summary statistics used as input for TWAS. Abbreviation used for each trait
as well as and its respective study and sample size. The collection of traits from the UKBiobank were
self-reported and measured on the same set of individuals across traits. .

Symbol Trait Study Sample Size
AD Alzheimer’s disease Lambert et al. Nat Genet. 2013 74,046
Asthma Asthma (self-reported) UKBB Loh et al. 2018 Nat Genet 361141.00
Bipolar Bipolar Disorder PGC Cell 2018 73,684
CAD Coronary Artery Disease CARDIoGRAM Nat Genet. 2011 86,995
CKD Chronic Kidney Disease Wuttke et al. Nat Genet. 2019 1,046,070
Crohn’s Crohn’s Disease IIBDGC Europeans Nat Genet. 2015 13,974
Eczema Eczema (self-reported) UKBB Loh et al. 2018 Nat Genet 361,141
FastGlu Fasting Glucose MAGIC Nat Genet. 2012 96,496
HDL High-density Lipoprotein Teslovich et al. Nature 2010 99,900
IBS Irritible bowel syndrome (self-reported) UKBB Loh et al. 2018 Nat Genet 361,141
LDL Low-density lipoprotein Global lipids genetics consotrium Nat Genet 2013 188,577
Lupus Systemic Lupus Erythromous Bentham et al. Nat Genet 2015 23,210
MDD Major Depression Disorder PGC; Howard et al. Nat Neuro 2019 807,553
MS Multiple Sclerosis (self-reported) UKBB Loh et al. 2018 Nat Genet 361,141
PBC Primary biliary cirrhosis Cordell et all. Nat Comm 2015 13,239
Psoriasis Psoriasis (self-reported) UKBB Loh et al. 2018 Nat Genet 361,141
RA Rheumatoid Arthritis Okada et al. Nature 2013 103,638
Sarcoidosis Sarcoidosis (self-reported) UKBB Loh et al. 2018 Nat Genet 361,141
Sjogren Sjogren’s Syndrome (self-reported) UKBB Loh et al. 2018 Nat Genet 361,141
T1D Type 1 Diabetes Inshaw et al. Diabetologia 2021 17,685
T2D Type 2 Diabetes DIAGRAM Nat Genet 2018 898,130
Ulc colitis Ulcerative Colitis (self-reported) UKBB Loh et al. 2018 Nat Genet 361,141
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TWAS discoveries as a function of heritability thresholding. In the main text, we put forth all866

gene-context pairs that were genetically predicted with a nominal pvalue of .1. As the procedure we use867

for false discovery adjustment was robust across contexts, we evaluated the number of discoveries that868

are potentially made when raising the threshold for the nominal pvalue. Our results suggest that there869

may be minimal correlation between genetic-predictability and strength of TWAS association.870
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Figure S14. TWAS discoveries across predictability thresholds. The number of hierarchical-
FDR-corrected TWAS discoveries as a function of the nominal pvalue cutoff for a given gene-tissue’s
cross-validation expression prediction.
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CONTENT can accommodate additional levels of pleiotropy among contexts While the871

original model of CONTENT enables a simple decomposition into a component that is shared across872

all contexts and another that is specific to a single context, there may be cases in which additional873

sharing exists across a subset of contexts. For example, the group of brain tissues measured in the874

GTEx consortium have shown similar patterns in terms of cis-genetic variability [2, 25, 79] as well as875

intra-individual residual correlations (Figure S1). To further disentangle the shared and tissue-specific876

genetic components of expression in the brain tissues, we added an additional term to the CONTENT877

decomposition which accounts for genetic effects that are only shared across the brain tissues. In more878

detail, we decompose the original context-shared component of expression into a new context-shared879

component that is shared across all tissues and a brain-shared component that is shared across only the880

brain tissues:881

Ej. = E′j. + Ejḃ (12)882

Here, E′j. (the new context-shared term) is an intercept, Ejḃ (the brain-shared term) is the effect size on883

an indicator variable for brain tissues, and estimates of both terms are generated for each individual using884

a simple linear regression. While introducing an additional term for the shared component will increase885

the resolution of the model, i.e. the novel model may discover new components of brain-sharing that886

were miscategorized as tissue-specific in multiple brain tissues, there may be a significant loss in power887

as this decomposition is only possible for individuals who have been sampled in both multiple brain and888

non-brain tissues. Additionally, under this decomposition, the full model for brain tissues contains three889

terms—the context-specific, brain-shared, and globally shared—resulting in a loss of a degree of freedom890

relative to the original model.891

To evaluate the effect of an additional source of effects-sharing on the performance of CONTENT,892

we simulated an additional genetic effect that lied on top of a subset of SNPs with a main, overall context-893

sharing effect in 25% of the contexts. As the heritability of this additional source of sharing grew, the894

context-specific component of CONTENT began to capture variability due to both the context-specific895

and secondary context-shared effects (Figure S15). When we used CONTENT brain, the context-specific896

component of CONTENT no longer produced predictors that captured variability due to the additional897

source of effects-sharing (mean R2 of true brain effects and predicted tissue-specific effects dropped from898

0.127 to 0.004 across simulations), and the component responsible for capturing the additional source899

of effects-sharing–CONTENT(Brain)– was robust (average R2 between true and predicted brain-shared900
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effects 0.49).901

We applied the CONTENT brain model to GTEx, but note that such a component is only identi-902

fiable for individuals who have been sampled in both multiple brain and multiple non-brain tissues. For903

our analysis of the GTEx data, our sample size decreased to 12,904 genes, 26 tissues, and 150 individuals904

when using CONTENT brain. In general, using this model, the number of genetic tissue-specific com-905

ponents in the brain tissues decreased (Figure S16). Of the genes that were implicated in the original906

CONTENT model as having a tissue-specific component but were no longer captured in the CONTENT907

brain model with a tissue-specific component, roughly 12% overlapped with the genes implicated by the908

additional brain-shared component. The CONTENT brain model discovered 4,811 genes with an overall909

tissue-shared component as well as 1,960 genes with a brain-shared components (of which 66% also had910

an overall tissue-shared component). The prediction accuracy was similar in both the original and brain911

models of CONTENT (Figure S17).912
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Figure S15. Additional sources of tissue-sharing may confound the tissue-specific com-
ponent. (A) The original CONTENT model without accounting for the additional source of shared
genetic effects when such a component exists. (B) When we introduce an additional shared component
to the CONTENT model, CONTENT(Brain), the specific component does not capture this additional
component, and the additional component is recovered.

We next compared the performance of the original CONTENT model to the CONTENT brain913

model in TWAS using simulated data (generated as aforementioned) as well as GTEx. While the mean914

AUC between both methods was similar in the simulated data, CONTENT brain was more sensitive915
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than the original CONTENT model when shared brain effects existed (Figure S18). Further, despite916

the fact that the sample size and number of tissues in GTEx data subsetted for the brain model is917

smaller, CONTENT discovered a non-trivial additional number of TWAS associations (Figure S19).918

In several neurological disorders, the number of context-specific genes decreased when using the brain919

model, however the brain model discovered genes whose genetics were shared across only the brain-shared920

component (Figure S19). When we examined previous TWAS associations, such as APOC1 and AD, the921

original CONTENT approach showed association with the thyroid. However, this signal was removed922

using the brain-pleiotropy approach and the brain pleiotropic component showed significant association923

(p=2.20e-23). We observed a similar trend with APOE, where the original CONTENT model implicated924

several brain tissue associations but no significant shared association. The brain pleiotropy model in turn925

discovered a brain-tissue-shared component with significant evidence of association (p=2.47e-29). Both926

genes are known to have neuronal roles in Alzheimer’s disease [80].927

Performance in GTEx when using the brain component We ran the original and brain versions928

of the CONTENT model on 12904 genes in 26 tissues and 150 individuals in the GTEx dataset. These929

individuals were measured in at least 3 brain and non-brain tissues. Interestingly, each model discovered930

eGenes that were not discovered by their counterpart. The amount of variability was roughly the same in931

both versions of the model, but the adjusted R2 was slightly higher in non-brain tissues and slightly lower932

in brain tissues in the brain model. Importantly, the brain tissues in the brain model have 3 explanatory933

variables and therefore suffer a larger penalty in the adjusted R2 relative to the original CONTENT934

model. The adjusted R2 improved in the non-brain tissues however, suggesting that the context-shared935

and context-specific components may be less confounded by the brain tissues in the brain model than in936

the original model.937
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Figure S16. Additionally sources of effects-sharing may confound the context-specific com-
ponent. When we run the original CONTENT model and the CONTENT model with the brain-sharing
on GTEx genes that are expressed in at least 3 brain and 3 non-brain tissues, many of the previous
genetic context-specific components in the brain tissues are absorbed by the additional brain-sharing
across brain tissues.
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Figure S17. Prediction accuracy across tissues in the brain and original CONTENT model.
The difference in adjusted R2 in the brain and original CONTENT(Full) models. While the variability
explained is markedly similar in both versions of the model, the adjusted R2 generally increased in
non-brain tissues, and decreased in the brain tissues in the brain model.
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Figure S18. Simulated TWAS with brain-shared genetic effects. While the AUC and specificity
of the original CONTENT model (green) and the CONTENT model that accounts for brain-shared effects
(pink) were nearly the same, the sensitivity was improved when using the brain version of CONTENT in
simulated TWAS where there exists brain-shared effects.
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TWAS eGenes discovered using the brain version of CONTENT We performed TWAS using938

weights trained by the original and brain versions of the CONTENT model on 26 tissues, 12,094 genes,939

and 150 individuals in the GTEx dataset for 17. These individuals were measured in at least 3 brain and940

non-brain tissues, leading the sample size to be smaller than when using the total GTEx data without any941

such constraint. While the brain version of the CONTENT model discovered more TWAS eGenes than942

the original model, the brain model discovered fewer context-specific eGenes than the original model.

Trait CONTENT 
(All)

CONTENT 
(Full)

CONTENT 
(Specific)

CONTENT 
(Shared)

CONTENT 
(All)

CONTENT 
(Full)

CONTENT 
(Specific)

CONTENT 
(Shared)

CONTENT
(Brain)

AD 76 62 64 19 67 51 59 10 8
Asthma 594 415 487 74 545 386 412 81 39
Bipolar 75 49 47 18 78 43 47 14 8
CAD 13 11 7 2 14 9 11 2 1
CKD 58 39 47 14 51 34 29 15 2
Crohn’s 279 205 231 48 265 177 190 46 20
Eczema 109 66 84 4 78 53 61 7 5
FastGlu 65 44 58 5 65 45 45 10 8

GFR 1721 1243 1428 357 1550 1087 1167 313 168
HDL 247 175 217 37 228 116 170 45 19
IBS 14 10 5 2 12 9 3 1 0
LDL 506 380 437 77 477 331 391 74 45
Lupus 356 268 309 73 315 249 245 59 42
MDD 250 155 182 44 189 121 109 43 18
MS 114 94 98 19 114 91 100 21 6
PBC 204 147 170 32 194 137 147 36 23

Psoriasis 180 158 163 39 183 153 152 39 23
RA 286 230 251 85 274 212 231 82 44

Sarcoidosis 90 69 75 10 90 57 73 6 7
Sjogren 24 13 18 2 19 8 14 1 1
T1D 359 303 323 92 311 255 272 101 59
T2D 514 352 422 91 451 310 327 94 32
TG 3251 2429 2791 641 3079 2169 2452 624 299

Ulc colitis 35 28 27 3 16 12 10 2 0

CONTENT original CONTENT brain

Figure S19. eGenes discovered by each component of CONTENT model in the brain and
original models. In total, there were fewer genes discovered using the brain model of CONTENT, how-
ever our simulations show that the brain model of CONTENT may improve the resolution of associations.
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