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. Abstract

> A majority of the variants identified in genome-wide association studies fall in non-coding regions of the
s genome, indicating their mechanism of impact is mediated via gene expression. Leveraging this hypothe-
4 sis, transcriptome-wide association studies (TWAS) have assisted in both the interpretation and discovery
s of additional genes associated with complex traits. However, existing methods for conducting TWAS do
s not take full advantage of the intra-individual correlation inherently present in multi-context expression
7 studies and do not properly adjust for multiple testing across contexts. We developed CONTENT—
s a computationally efficient method with proper cross-context false discovery correction that leverages
o correlation structure across contexts to improve power and generate context-specific and context-shared
10 components of expression. We applied CONTENT to bulk multi-tissue and single-cell RNA-seq data
u  sets and show that CONTENT leads to a 42% (bulk) and 110% (single cell) increase in the number of
1 genetically predicted genes relative to previous approaches. Interestingly, we find the context-specific
13 component of expression comprises 30% of heritability in tissue-level bulk data and 75% in single-cell
1 data, consistent with cell type heterogeneity in bulk tissue. In the context of TWAS, CONTENT in-
15 creased the number of gene-phenotype associations discovered by over 47% relative to previous methods

16 across 22 complex traits.

+ 1 Introduction

18 A large portion of the signal discovered in genome-wide associations studies (GWAS) has been localized to
1 non-coding regions [1]. In light of this, researchers have developed post-GWAS approaches to elucidate the
20 functional consequences of variants and their impact on the etiology of traits [2]. One notable approach
2 has been to generate genetic predictors of gene expression and leverage these predictors with GWAS data
2 to associate genes with traits of interest[3, 4]. These transcriptome-wide association studies (TWAS)
23 have not only shown great promise in terms of discovery and interpretation of association signals but
2« have also helped prioritize potentially causal genes for complex diseases [5]. Nonetheless, methods like
»s TWAS are limited by the accuracy and power of the genetic predictors generated in training datasets
6 |6(H11].

27 The original TWAS methodology builds genetic predictors of expression on a context-by-context

;s basis. For example, in a study with RNA-seq and genotypes collected across multiple tissues, the ex-
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» pression of each tissue would be modeled independently [3| [4]. More recent methods model multiple
s contexts simultaneously and leverage the sharing of genetic effects across contexts [8H10} [12]. However,
a1 these approaches do not maximize predictive power because they ignore the intra-individual correlation
» of gene expression across contexts inherent to studies with repeated sampling, e.g., the Genotype-Tissue
1 Expression (GTEx) project [13] (Figure or single-cell RNA-Sequencing (scRNA-Seq) experiments
u (Figure . Moreover, they build predictors which are mixtures of both context-specific and context-
55 shared (pleiotropic) genetic effects, making it difficult to distinguish the relevant contexts for a disease
s gene, and are often computationally inefficient [9]. A recent approach by Wheeler et al. [14] does model
37 correlated intra-individual noise with a linear-mixed model, but does not produce combined predictions
3 of expression, reducing overall power. Finally, existing methods employ multiple testing strategies that
3 either fail to control for all tests performed, (e.g., by controlling the false discovery rate (FDR) within
w each context separately |4l [15]), or act too stringently (e.g., by using Bonferroni adjustment across all
o contexts [15]). Together, these shortcomings reduce power and interpretability of TWAS.

P Here, we introduce CONTENT—CONtexT spEcific geNeTics— a novel method that leverages the
»s correlation structure of multi-context studies to efficiently and powerfully generate genetic predictors of
w gene expression. Brieflyy, CONTENT decomposes the gene expression of each individual across contexts
s into context-shared and context-specific components [16], builds genetic predictors for each component
w separately, and creates a final predictor using both components. To identify genes with significant disease
« associations, CONTENT employs a hierarchical testing procedure (termed “hFDR”; see Figure [17,
s |18]. CONTENT has several advantages over existing methods. First, it explicitly accounts for intra-
w0 individual correlation across contexts, boosting prediction performance. Second, by building specific and
so shared predictors, it can distinguish context-shared from context-specific genetic components of gene
si expression and disease. Third, it employs a recently developed hierarchical testing procedure [18| to not
s only adequately control the FDR across and within contexts, but boost power in cases where a gene
53 has a significant association to disease in multiple contexts. Fourth, this adjustment procedure allows
s« for inclusion of other TWAS predictors [3} 4, |8-10, [12], enabling approaches to be complementary in
55 discovering associations. Finally, CONTENT is orders of magnitude more computationally efficient than
s several previous approaches.

57 We evaluated the performance of CONTENT over simulated data sets, GTEx[2, |11 [13], and
s a single-cell RNA-Seq data set|19} 20]. We show in simulations that CONTENT captures a greater

5o proportion of the heritable component of expression than previous methods (at minimum over 22% more),


https://doi.org/10.1101/2021.09.23.461579
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.09.23.461579; this version posted September 23, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

60 and that CONTENT successfully distinguishes the specific and shared components of genetic variability
&1 on expression. In applications to GTEx, CONTENT improved over previous context-by-context methods
& both in the number of genes with a significant heritable component (average 42% increase in significant
&3 gene-tissue pairs discovered) as well as the proportion of variability explained by the heritable component
s (average increase of 28%) . Consistent with complex cell type heterogeneity within tissues , we
e find that in applications to the single-cell data, genetic predictors at the cell type level have substantially
e more context-specific heritability than the tissue-level models. We then performed TWAS across 22
& phenotypes using weights trained on GTEx and scRNA and found that CONTENT discovered over 47%
e additional significantly associated genes. We provide CONTENT gene expression weights for both GTEx

e and the single-cell dataset at TWAShub (http://twas-hub.org/).

» 2 Results
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Figure 1. An overview of the CONTENT approach. CONTENT first decomposes the observed
expression for each individual into context-specific and context-shared components following . Then,
CONTENT fits predictors for the context-shared component of expression as well as each context-specific
component of expression (e.g., liver). Finally, for a given context, CONTENT combines the genetically
predicted components into the full model using a simple regression.
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n  Methods overview We developed CONTENT, a method for generating genetic predictors of gene
7= expression across contexts for use in downstream applications such as TWAS. Briefly, for each individual,
7z CONTENT leverages our recently developed FastGxC method [16] to decompose the gene expression
n across C' contexts into one context-shared component and C' context-specific components. Next, CON-
s TENT builds genetic predictors for the shared component and each of the C' context-specific components
7 of expression using penalized regression. We refer to these predictors as the CONTENT(Shared) and
7 CONTENT(Specific) models. In addition, CONTENT generates genetic predictors of the total expres-
7 sion in each context by combining the context-shared and context-specific genetic predictors with linear
70 regression. We refer to these predictors as the CONTENT(Full) models. A given gene may have CON-
s TENT(Specific), CONTENT(Shared), and/or CONTENT (Full) models depending on the architecture of
a1 genetic effects.

8 We residualized the expression of each gene in each context over their corresponding covariates
s (e.g. PEER factors, age, sex, batch information) prior to decomposing and then fitting an elastic net with
s double ten-fold cross-validation for both CONTENT (Shared) and CONTENT (Specific). We examined
s the number of significantly predicted genes as well as the prediction accuracy (in terms of adjusted
s R2) between the cross-validation-predicted and true gene expression per gene-context pair. To properly
ez control the FDR for each method across contexts and genes, we employed a hierarchical FDR correction
s |17, |18] (Figure [S3|and Methods). We note that groups of contexts may comprise additional sources of
s pleiotropy (e.g. in GTEx the group of brain tissues may have their own shared effects in addition to
o the overall tissue-shared effects). The decomposition of CONTENT is flexible and can account for both

o levels of pleiotropy among contexts (see Supplementary Methods).

o CONTENT is powerful and well-calibrated in simulated data. We evaluate the prediction
o3 accuracy of CONTENT in a series of simulations and compare its performance to the context-by-context
w approach(3, 4], which builds predictors by fitting an elastic net in each context separately, as well as
s UTMOSTI[9], which builds predictors over all contexts simultaneously using a group LASSO penalty.
o Implicitly, we compare to the method from [14] which decomposes expression into orthogonal context-
o shared and context-specific components, as the CONTENT(Shared) and CONTENT (Specific) models
s are related to these components (See Methods). We omit comparison to other TWAS methods as many
9 of them are built on the same framework as the context-by-context approach, or require external data,

wo such as curated DNase I hypersensitivity measurements |8}, |10} [12].
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Figure 2. CONTENT is powerful and well-calibrated in simulated data. Accuracy of each
method to predict the genetically regulated gene expression of each gene-context pair for different corre-
lations of intra-individual noise across contexts. Mean adjusted R? across contexts between the true (A)
full (context-specific + context-shared), (B) shared, and (C) specific genetic components of expression
and the predicted component for each method and for different levels of intra individual correlation. The
context-by-context approach and UTMOST output only a single predictor, and we show the variability
captured by this predictor for each component of expression. CONTENT, however, generates predic-
tors for all three components of expression, and notably, CONTENT(Specific) and CONTENT(Shared)
capture their intended component of expression without capturing the opposite (i.e. the predictor for
CONTENT (Specific) is uncorrelated with the true shared component of expression and vice versa). We
show here the accuracy for each component and method on gene-contexts with both context-shared and
context-specific effects, but show in Figure |[S4| the accuracy for all gene-contexts pairs.

101 We used simulation parameters from GTEx, the largest multi-context eQTL study to-date, as
102 a guideline. Specifically, we generated gene expression and genotype data such that context-specific
103 genetic effects mostly lie on the same loci as context-shared eQTLs, and context-specific eQTLs without
e context-shared effects are rare |2} [16]. Intuitively, this framework assumes that, most often, SNPs affect
s expression of a gene in all contexts, but to a different extent in each context (rather than, for example,
s acting as an eQTL in only a single context). We varied the proportion of contexts with context-specific
w7 heritability, the number of context-specific eQTLs without a context-shared effect, the number of causal
s SNPs, and the intra-individual residual correlation while keeping the number of genes (1000), contexts
w0 (20), ¢is-SNPs (500) and the proportion of context-shared and context-specific heritability constant (.3
uo and .1 respectively).

11 Throughout our simulations, CONTENT significantly outperformed the context-by-context and
2 UTMOST approaches in terms of prediction accuracy of the total genetic contribution to expression

us  variability (Figures , . The average increase in adjusted R? between the true genetic component of


https://doi.org/10.1101/2021.09.23.461579
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.09.23.461579; this version posted September 23, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

us  expression and the CONTENT (Full) predictor was .22 over UTMOST (p<2e-16 paired two-way t-test)
us  and .48 over the context-by-context approach (p<2e-16 paired two-way t-test). Across nearly the entirety
ue of parameter settings, CONTENT generated context-specific components that were uncorrelated with
w7 the true context-shared components (mean adjusted R2=.023, and vice versa .026; Figure ,C). This
us property is central to the objective as it reduces confounding from pleiotropy in downstream applications
19 such as context fine-mapping. As expected, the previous methods failed to disentangle the context-specific
o and context-shared components (Figure 7C), since they were not developed with this property in mind.
1 Our results were consistent under different values of the simulation parameters (Figures .

122 CONTENT improves prediction accuracy over previous methods in the GTEx and CLUES
123 datasets We next evaluated CONTENT, the context-by-context approach, and UTMOST in terms of
124 prediction accuracy and power across 22,447 genes measured in 48 tissues of 519 European individuals
s in the bulk RNA-seq GTEx data set [2| [11}[13]. Due to computational issues (Figure[S9), UTMOST was
126 examined only on 22,307 genes rather than the entire data set of 22,447 genes. We show a comparison
127 on this smaller set of genes in Figure We also examined, for the first time in a large-scale TWAS
s context, a single-cell RNAseq data set from the California Lupus Epidemiology Study (CLUES) |19,
10 [20]. The CLUES data set contained 9,592 genes measured in 9 cell types in peripheral blood from 90
1o individuals.

131 In GTEx, CONTENT identified more gene-tissue pairs with a significantly predictable genetic
132 component of expression (278,101 over 20,506 genes) than the context-by-context approach (195,607 over
17,723 genes) and UTMOST (167,865 over 11,442 genes) at an hFDR of 5%. We also compared the
13 performance of each method on the union of genes that were significantly predicted (hFDR < 5%) by at
135 least one method. As CONTENT can generate up to three models (Shared, Specific, Full) for a given
136 gene-tissue pair, and because each gene may have its own unique architecture (i.e. different proportions of
137 specific or shared heritability), we selected the model that achieved the greatest cross-validated adjusted
1w R2. CONTENT greatly outperformed the context-by-context and UTMOST approaches across all tissues
o (average 28% and 22% increase in adjusted R? across tissues and genes; Figures . Further, for genes
1o with significant CONTENT (Shared), CONTENT (Specific), and CONTENT (Full) predictors, prediction
1w accuracy increases substantially with the addition of the context-specific component to the context-shared
w2 component (average gain of CONTENT (Full) over CONTENT (Shared) adj. R? of 55.92%), emphasizing

13 the need to extend previous approaches|14] with CONTENT (Full) to build a powerful predictor.
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Figure 3. CONTENT outperforms existing approaches in the GTEx and scRNA-seq CLUES
datasets. (A,D) Number of genes with a significantly predictable component (hWFDR < 5%) in GTEx
(A) and CLUES (D); the sample sizes for each context are included in parentheses. (B,E) Ratio of
expression prediction accuracy (adjusted R?) of the best-performing cross-validated CONTENT model
over the context-by-context (green) and UTMOST (blue) approaches (median across all genes significantly
predicted by at least either method). Numbers above one indicate higher adjusted R? and thus prediction
accuracy for CONTENT. (C,F) Prediction accuracy of CONTENT(Full) and CONTENT (Shared) when
a gene-tissue has a significant shared, specific, and full model.

144 Within the single-cell CLUES data set, CONTENT again outperformed the context-by-context (in
us  this case, cell type-by-cell type) and UTMOST approaches, discovering 9,080 heritable gene-cell type pairs
us (5,067 genes) whereas the context-by-context model and UTMOST found 4,314 (2,355 genes) and 804 (288
w7 genes) respectively. The average improvement in adjusted R? of CONTENT over the context-by-context
us  model was 13.6%. In gene-cell type pairs with significant CONTENT (Full), CONTENT(Specific), and
u  CONTENT(Shared) models, CONTENT(Full) improved the adjusted R? over CONTENT (Shared) by
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104.09%. Once more, the improvement in variability explained when including both the cell type-specific
and cell type-shared components highlights the need to consider both components simultaneously when

building a predictor.
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Figure 4. Contribution of context-specific genetic regulation in GTEx and CLUES. (A,C)
Number of genes with a significant (FDR< 5%) CONTENT(Specific) model of expression in GTEx
(A) and CLUES (C). Color indicates sample size of context. (B,D) Proportion of expression variance of
CONTENT (Full) explained by CONTENT(Specific) and CONTENT (Shared) for genes with a significant
CONTENT (Full) model.

CONTENT discovers significant context-specific components of expression in bulk multi-
-tissue and single-cell datasets. Given the ability of CONTENT to disentangle context-shared and
context-specific variability, we examined the context-specific components of expression in GTEx and
CLUES. In GTEx, CONTENT discovered 128,985 gene-tissue pairs (19,765 genes) with a significant
context-specific genetic component of expression (Figures EI, . As with previous reports , we

found that testis was the tissue with the greatest number of tissue-specific genetic components. Nonethe-
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10

19 less, we observe that the tissues with larger sample sizes more frequently had significant context-specific
10 components. Consistent with previous works that have discovered extensive eQTL sharing across tissues
e |2, |25} 26], we found that in gene-tissue pairs with a CONTENT (Full) model, the variability explained
12 was dominated by CONTENT(Shared) model—across tissues, the context-shared component explained
163 on average 70% of the variability explained by CONTENT(Full).

164 In the CLUES data set, CONTENT discovered 7,466 gene-cell type pairs (4,658 genes) with a
165 significant cell type-specific component of expression (hFDR < 5%). We found that all cell types had
166 a similar number of cell type-specific components, and emphasize that the sample size across all cell
7 types was equivalent. Interestingly, in genes with a CONTENT (Full) model, the variability was often
s dominated by the cell type-specific variability (average 75% of the explained variability), unlike GTEx, in
160 which the average tissue-specific variability explained only 30% of total variance. Consequently, we found
wo that within the 20,433 genes in GTEx with any genetic component, 51.50% (10,522) had a significant
i shared component, whereas of the 5,067 genes in CLUES with a genetic component, only 14.25% (722)
w2 had a shared component. This is consistent with complex cell type heterogeneity in bulk tissues [27] since

173 there is more power to discover eQTLs with pleiotropy across the underlying cell types.

wm  CONTENT more accurately distinguishes disease-relevant genes than traditional TWAS
s approaches in simulated data. We performed a simulation study in which we evaluated the sensi-
we  tivity, specificity, and power of CONTENT, UTMOST, and context-by-context to implicate the correct
17 gene in TWAS. In our experiments, we simulated a phenotype in which 20% of the variability was com-
s posed of the genetically regulated expression of 300 randomly selected gene-context pairs (100 genes and
w3 contexts each). We simulated gene expression for 1,000 genes across 20 contexts as before, however,
10 to capture a range of genetic architectures in the simulation, for each gene, we sampled from a standard
1r uniform distribution to determine the proportion of shared variability. We varied the heritability of gene
12 expression and considered power as a method’s ability to discover the correct genes associated with a
13 phenotype. To compare power, we calculated the area under receiver-operating curve (AUC) using the
18« Mmaximum association statistic for a given gene across contexts.

185 Across simulations, CONTENT (Full) was the highest powered in terms of gene discovery (Figure
s  [B). CONTENT (Shared) performed very similarly to CONTENT(Full) in the setting with the lowest heri-
w7 tability, however, our simulations show the necessity for CONTENT (Full) as it substantially outperforms
s both CONTENT (Specific) and CONTENT(Shared) across a range of heritabilities. Moreover, CON-
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Figure 5. CONTENT(Full) is powerful, sensitive, and specific in simulated TWAS data.
Average AUC from 1,000 TWAS simulations while varying the overall heritability of gene expression.
Each phenotype (1,000 per proportion of heritability) was generated from 300 (100 genes and 3 contexts
each) randomly selected gene-context pairs’ genetically regulated gene expression, and the 300 gene-
context pairs’ genetically regulated expression accounted for 20% of the variability in the phenotype.
In genes with low heritability, CONTENT (Shared) performed similarly to CONTENT (Full), however
CONTENT(Full) was the most powerful method in discovering the correct genes for TWAS across the
range of heritability. CONTENT(Full) was significantly more powerful than UTMOST and the context-
by-context approach at all levels of heritability.

10 TENT(Full) significantly outperformed both the context-by-context approach and UTMOST. Specifi-
o cally, the range of percent change in AUC of CONTENT (Full) over previous methods was as follows:
11 CONTENT(Shared) 1.9%-9.9%; CONTENT (Specific) 13.6%-22.4%; UTMOST 2.2%-8.6%; context-by-
102 context 1.2%-10.6%. Generally, we observed that CONTENT(Full) was its most powerful for genes in
13 which there was both shared and specific effects, UTMOST was its most powerful in settings with high
104 sharing, and the context-by-context approach was its most powerful in settings with low sharing and high
105 specificity of genetic effects within contexts.

196 As with previous methods [9], we performed simulations in which the causal context(s) has been
17 observed. In real data applications, this may not occur, and in such cases, further complexities may arise
s due to genetic correlation. We report a brief set of experiments evaluating fine-mapping gene-context

100 pairs in TWAS when all contexts are observed (see Supplementary; Figures , however, the
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200 complexities posed by missing tissues and cell types are beyond the scope of this manuscript, and we

20 therefore leave the development of relevant methodology as future work.

22 Application of CONTENT to TWAS yields novel discoveries over previous methods. We
2: performed TWAS across 22 complex traits and diseases collected from a variety of GWAS [28H41] using
2 weights trained by CONTENT, UTMOST and the context-by-context approach on GTEx and CLUES.
205 We passed forward weights to FUSION-TWAS|3]—a software that performs TWAS using GWAS sum-
206 mary statistics and user-specified gene expression weights—for a gene-context pair if the pair’s expression
2r was predicted at a nominal p-value less than .1 (See Methods; Figure .

208 Across all traits at an hFDR of 5%, CONTENT discovered 47% and 234% more associations
20 (unique TWAS genes) than the context-by-context approach and UTMOST respectively with GTEx
20 weights, and 160% and 459% more associations than the context-by-context approach and UTMOST
au respectively with weights built from the CLUES dataset (Table . We find that, with GTEx weights,
a2 the associations implicated by the context-by-context approach had more overlap with the associations
zs  implicated by CONTENT (Specific) (median Jaccard similarity (JS) across traits =.406) than CON-
ze TENT(Shared) (JS=.177). This is consistent with our simulation results in which the context-by-context
x5 approach was most powerful in cases of high context-specificity and low context-sharing (Figures
26 [S13]). The associations discovered by UTMOST, which leverages pleiotropy, had similar overlap with
2z CONTENT (Shared) (JS=.175) as well as CONTENT (Specific) (JS=.182). With CLUES weights, the
zs  context-by-context approach again had greater similarity with CONTENT(Specific) (JS=.242) than
20 CONTENT (Shared) (JS=.078), whereas UTMOST discovered TWAS genes that overlapped more with
20 CONTENT(Shared) (JS=.100) than CONTENT (Specific) (JS=.085). As UTMOST, CONTENT, and
21 the context-by-context approach discovered both overlapping and unique associations, we suggest that
2 the approaches complement—rather than replace—one another.

23 We next compared the different CONTENT models to understand their properties in real data.
2 With GTEx weights, CONTENT(Full) replicated an average of 99.0% and 66.8% of the associations dis-
25 covered by CONTENT(Shared) and CONTENT (Specific) respectively (WFDR < 5%). CONTENT(Full)
26 replicated an average of 78.4% and 63.9% of the associations discovered by CONTENT (Shared) and CON-
2r - TENT(Specific) respectively with the CLUES weights. Notably, CONTENT (Full) is the best predictor
28 out of all the CONTENT models on average, and particularly when there exist both shared and specific
20 effects. Consequently, across all traits, the inclusion of CONTENT(Full) with CONTENT(Shared) and
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20 CONTENT (Specific) led to an average increase of 15% and 19% in the number of genes with significant
- TWAS associations with GTEx weights and CLUES weights respectively.

Table 1. CONTENT outperforms existing methods in TWAS across 22 complex traits and
diseases. TWAS results (unique loci, merging genes within 1MB) across 22 complex traits and diseases
using weights output by CONTENT, UTMOST, and the context-by-context method. CONTENT(AIll)
refers to the collection of all loci output by at least one CONTENT model. CONTENT (Full) added an
average of 15% and 19% of gene-trait discoveries over the CONTENT (Shared) and CONTENT (Specific)
approaches together at an hFDR of 5% in GTEx and CLUES respectively. See Supplementary Table
for GWAS trait information.

by-tissue (All) (Full) | (Specific) | (Shared) | by-tissue (All) (Full) | (Specific) | (Shared)
AD 18 14 25 20 14 10 8 4 10 6 9 2
Asthma 145 135 229 181 185 81 57 52 101 75 88 19
Bipolar 34 59 83 68 59 30 3 12 31 21 24 8
CAD 8 12 16 13 13 4 6 2 8 6 5 2
CKD 2 2 39 28 28 15 5 6 14 8 12 1
Crohn’s 80 66 104 74 92 42 30 2 54 45 39 12
Eczema 21 19 42 35 28 10 9 2 18 14 13 1
FastGlu 19 15 16 13 14 7 7 6 10 7 10 3
HDL 58 51 83 70 72 38 2% 14 28 23 2% 8
IBS 2 7 8 8 3 1 1 1 1 1 1 1
LDL 94 72 125 11 104 62 28 21 62 49 50 13
Lupus 100 66 148 107 18 46 32 19 59 43 44 12
MDD 92 93 150 11 121 55 28 20 46 33 35 11
Ms 17 10 31 28 18 5 6 4 12 9 9 4
PBC 52 39 66 57 56 29 18 20 21 16 18 3
Psoriasis 35 25 54 41 38 15 16 9 23 18 20 6
RA 85 61 102 81 86 40 4 24 47 34 39 11
Sarcoidosis 8 12 24 17 16 7 4 3 7 6 5 1
Sjogren 9 8 9 8 6 2 2 1 5 3 5 1
TD 78 57 109 82 97 40 33 2% 54 41 44 14
T2D 170 144 231 203 191 108 59 43 82 59 71 15
Ulc colitis 9 8 16 13 10 3 1 2 9 8 8 1
23 We investigated the genes implicated by CONTENT(Full) that were not significant in CON-

a3 TENT(Shared) or CONTENT (Specific) and found that many of the discoveries replicated known gene-
224 trait associations. Using weights built from GTEx for example, CONTENT (Full) discovered a significant
25 association of coronary artery disease (CAD) and VEGFC (p==8.67e-07, artery aorta), a gene whose
26 serum levels have been significantly associated with cardiovascular outcomes . Furthermore, CETP,
237 which is thought to be involved in atherogenesis and HDL levels , was not implicated by either
23 CONTENT(Shared) or CONTENT (Specific), but was implicated in the TWAS of HDL with CON-
20 TENT(Full) (p=1.26e-170, whole blood). CONTENT(Full) also discovered a significant association of

20 myelin oligodendrocyte glycoprotein (MOG) and rheumatoid arthritis (RA) (minimum p value across
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21 tissues; p=2.55e-11, brain amygdala), whereas CONTENT(Shared) and CONTENT (Specific) did not.
22 RA patients have been shown to have significantly higher levels of anti-MOG IgG than controls [45].

243 Using weights built from CLUES, CONTENT (Full) also led to increased power over CONTENT (Shared)
24 and CONTENT(Specific). Namely, CONTENT(Full) replicated an association between asthma and
#s RHOA (B cell, p=1.22e-04), which is involved in smooth airway contraction possibly through inflamma-
2 tion [46, 47]. Moreover, we also discovered a significant association of Type 2 Diabetes (T2D) and SIRT5
wr (CD4 T cell, p=2.23e-04) using CONTENT(Full), and note that SIRT5 has previously been indicated
2 to play roles in metabolism and beta-cell functionality [48| 49]. Finally, CONTENT(Full) indicated an
29 association of APHIA with eczema (conventional dendritic cell, p=3.49e-07). APHIA is involved with
0 Notch signaling, which when disrupted in the skin, contributes to abnormalities such as eczema [50].

251 Moreover, the genes implicated by CONTENT but neither UTMOST nor the context-by-context
»s2 approach replicated previously associated genes-trait pairs, several of which with known biological rela-
253 tionships to the trait of interest. Within Alzheimer’s disease, these genes included CBLC[51},/52], MS4A4A
s [53], and MADD [54] with the GTEx weights, as well as VASP[55| [56], RELB[51], TRAPPC6A[57,
25 58] with CLUES weights. Additionally, in Crohn’s disease, CONTENT implicated the following genes,
25 whereas previous methods did not: LRRC26[59] and RASSF1A[60] with GTEx weights, as well as CARD6
27 (an inhibitor of NOD)[61}|62] using CLUES weights. For major depression disorder (MDD), CONTENT
253 implicated CAMP[63] using GTEx weights, and FLOT1 [64} 65] using CLUES weights.

» & Discussion

»%0 In this work, we introduce CONTENT, a computationally efficient and powerful method to estimate the
1 genetic contribution to expression in multi-context studies. CONTENT can distinguish the context-
»% shared and context-specific components of genetic variability and can account for correlated intra-
%3 individual noise across contexts. Using a range of simulation and real studies, we showed that CON-
% TENT outperforms previous methods in terms of prediction accuracy of the total genetic contribution
25 to expression variability in each context. Interestingly, we also found that when there exists a gene with
26 a genetic component of expression, the heritability is often dominated by the context-specific effects at
»%7  the single-cell level, but at the tissue level, the heritability is dominated by the context-shared effects.
s Finally, CONTENT was more powerful, specific, and sensitive than previous approaches in applications

w0 to TWAS.
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270 Using weights trained by CONTENT, UTMOST and the context-by-context approach, we dis-
on covered 12,150 unique gene-trait associations through TWAS. To our knowledge, we present the first
o application of TWAS trained on a single-cell RNAseq dataset for a collection of 90 individuals’ PBMCs.
oz For both the weights generated by GTEx and CLUES, CONTENT was largely more powerful than UT-
o MOST and the context-by-context approach in TWAS. However, we emphasize that the approaches often
a5 capture genes unique to each approach. Each method may therefore complement each other and may be
2 combined in TWAS to maximize the number of discoveries made as different methods are likely favorable
o under different genetic architectures. Though we show that CONTENT may be useful in fine-mapping
as the specific tissue relevant for a TWAS association in simulations, we note that fine-mapping to the
a9 correct tissue in real data is a particularly difficult task. For example, throughout this manuscript, we
20 assume that the causal tissue is included in the measured tissues, however, when this is not the case,
21 CONTENT and all TWAS approaches may associate an incorrect, correlated tissue. For example, in the
22 case of chronic kidney disease, CONTENT implicated GATM—a gene thought to be involved with kidney
283 disease and GFR levels [66H68]-however, there were significant associations with many tissues including
284 the tissue-shared component. This may be due to the fact that kidney expression is not measured in this
25 version of the GTEx dataset. Future work may explore using the CONTENT-trained weights and jointly
6 fitting all TWAS Z scores, or otherwise accounting for missingness.

287 We also leveraged recently developed methodology for controlling the false discovery rate when
23  summarizing significantly predicted genes, gene-contexts, and TWAS associations |17, 18]. This approach
29 has been shown to effectively control the FDR across contexts in eQTL studies, and to our knowledge, it is
20 the first time such an approach has been used to effectively control the FDR when predicting expression
21 values and when making discoveries using TWAS. While our analyses focused on the comparison of
22 CONTENT, UTMOST, and the context-by-context approach, we emphasize that by using this type of
203 false discovery correction, all methods can be used in combination with one another, rather than in
2 replacement of one another. For downstream analysis, combining all prediction methods is crucial, as
205 certain genes or gene-context pairs may be (better) predicted by one method and not others. In the GTEx
26 data for example, when we included models built by UTMOST and the context-by-context approach to
27 the correction scheme for CONTENT, the number of genes for which there was a significant model for a
28 given tissue increased on average by 7.56%.

200 Importantly, neither UTMOST nor the context-by-context method distinguishes the context-

a0 specific and context-shared components of genetic effects on expression. Implicitly, by modeling all
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s contexts independently, the context-by-context fit is best-suited for cases in which there is no effect-
s sharing across contexts. As UTMOST considers all contexts simultaneously, its power is maximized in
a3 cases where the genetic effects are mostly shared. Additionally, these methods do not account for the
s shared correlated residuals between samples, thus they do not maximize their predictive power.

305 While a previous approach proposed by Wheeler et al. [14] does model the correlated intra-
a5 individual noise, CONTENT offers several advantages. The previous decomposition does not include an
7 option to leverage both the context-shared and context-specific components of expression to form a final
s predictor of the observed expression for a given context. We show that this is especially crucial in the
a0 context of single-cell data wherein the prediction accuracy for a given gene-context increases drastically
s when using both components (Figure [3). Further, without properly combining both components (e.g.
su  via regression), the context-specific genotype-expression weights produced by the previous decomposition
sz may have the incorrect sign, as they are considered residuals of the context-shared component and are
a1z not properly re-calibrated to the observed expression. Unlike the novel decomposition proposed by
su CONTENT, this previous approach also does not intuitively allow for additional sources of pleiotropy
as  or effects-sharing (see Supplementary Text for discussion of brain level sharing in GTEx). Finally, the
316 decomposition used in the previous method is based on a linear mixed model fit on a per-gene basis, and
a1z is therefore much less computationally efficient.

318 In this manuscript we focused on prediction of the total genetic contribution to expression as well
310 as the context-shared and context-specific components of expression. Nonetheless, future work using the
0 methodology presented here can be extended to a wide variety of problems. Primarily, the decomposition
21 can be used to efficiently estimate GenexContext heritability using existing software for heritability
2 estimation, e.g. GCTA [69], on the decomposed components offering computational speed up over existing
23 methods for cross-context heritability estimation [26]. Additionally, the decomposed components from
24  CONTENT may also be included in previous approaches, e.g. UTMOST, to gain further power. Further,
»s by training each method on the single-cell level data, we offer researchers the means to pursue their own
6 association analyses at a lower level of granularity than was previously available. The finding that single-
a7 cell data may have lower levels of effects-sharing than tissue-level data may also spark investigations
»s  into the biological mechanisms (e.g. more specific regulation) and statistical mechanisms (e.g. sample
20 heterogeneity confounding) by which this can occur.

330 In conclusion, the increased prediction accuracy, specificity, computational speed, and hierarchical

s testing framework of CONTENT will be paramount to unveiling context-specific effects on disease as well


https://doi.org/10.1101/2021.09.23.461579
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.09.23.461579; this version posted September 23, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

17

s as uncovering the mechanisms of context-specific genetic regulation.

13 Code and data availability Trained weights for the GTEx V7 dataset and our in-house single-
s cell RNAseq are available at TWAShub (http://twas-hub.org/). The CONTENT software is freely
355 available at https://github. com/cozygene/CONTENT. We provide TWAS summary statistics for all three
s methods on both datasets (as well as an indicator of whether the association was hierarchical FDR-

s adjusted significant) at doi.org/10.5281/zenodo.5209239.

3s  Author contributions NZ and BB conceived of the project and developed the statistical methods with
35 MT. MT implemented the comparisons with simulated data with contributions from AT. MT, AL, and
uw MGG, performed the analyses of the GTEx and CLUES data and additional analyses. MT implemented
s the software. MT, NZ, and BB wrote the manuscript, with significant input from EH, CJY, AG, MGG.

u  AG prepared the online data resources.

a3 Conflicts of interest CJY is a Scientific Advisory Board member for and holds equity in Related
s Sciences and ImmunAl. CJY is a consultant for and holds equity in Maze Therapeutics. CJY is a
aus consultant for TReX Bio. CJY has received research support from Chan Zuckerberg Initiative, Chan

us Zuckerberg Biohub, and Genentech.

« 4 Methods

us  An overview of the CONTENT model In this section, we detail the assumed generative model
uo and objectives of CONTENT. CONTENT is based on the methodology and decomposition of a previous
0 work by Lu et al., FastGxC [16]. In brief, like FastGxC, we assume that the expression of an individual
s in a given gene and context is a combination of a context-shared genetic component that is shared across

s different contexts and a context-specific genetic component that is specific to a context, that is

353 Ec = E%hared + EZpCemﬁc + &c
5 Egharcd — gﬁ

Specific __
355 EG,c =g%c

356
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357 where E, denotes the expression of the individual at the gene in context ¢, Eg"*? and Eghared
s denote the components of the expression due to context-shared and context-specific genetic effects re-
0 spectively, 8 and -, represent the context-shared and context-specific cis-genetic effects respectively, g
s the individual’s cis-genotypes and e, ~ N (0, 02) represents the environmental effects (and non-cis-genetic
s effects) on the individual’s gene expression.

362 The objective of CONTENT is to build a genetic predictor of context-specific phenotypes. While
33 previous work has focused on building powerful genetic models for F., we aim to build unbiased models
s that partition and estimate the context-shared g8 and context-specific terms g;. Specifically, we aim to
s maximize the power to detect the context-specific terms, allowing some leniency in the accuracy of context-
s shared terms, as we are interested in context-specific effects. Moreover, as a context-specific predictor
7 can be used in downstream analyses to identify the specific context(s) through which genetic variation
s manifests its effect on the phenotype and disease risk, we also aim to minimize the correlation between
0 the predicted context-specific component and the true context-shared component. Finally, our method
s must account for the correlated intra-individual noise across contexts, and do so in a computationally

sn efficient manner.

s Decomposing multilevel data Many genomic datasets, such as those of GTEx, have a multilevel
33 nature; first the individuals are sampled, and second an individual is measured in each context. To take
s the multilevel structure of the data into account, the observed expression on gene j can be decomposed

w5 into an offset term, a between-individual component and a within-individual component [70]. That is,

s if Fjj. denotes the observed expression level for individual ¢ (¢ = 1,...,I) on gene j (j =1,...,J) and
s context ¢ (c=1,...,C), E;j. can be decomposed as
s Eije = Ej. + (Eij. — Ej) + (Eije — Eij) (1)

s where Ej = g Zle chzl E;j. the mean expression of gene j computed over all (I) individuals and
s0 all (C) contexts, and E;; = % 25:1 E;j. the mean expression of individual ¢ on gene j, computed over all
s contexts. In (1), F. ;. is a term that is constant across individuals and contexts for each gene, (E;; — E. j.)
sz is the between-individuals deviation, and (F;j. — E;;.) is the within-individual deviation of the expression
33 on gene j in context c.

384 Variables that differ between but not within individuals, e.g. sex and genotype, will have an effect
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s on (E;;. — E ;) but not on (E;jc — E;j.). On the other hand, variables that change within individuals
s but are the same between individuals, e.g. the genetic effect on a specific context, will have an effect on
w1 (Eije — Eyj.) but not on (Ey;;. — E,).

388 In the context of estimation, we first center and scale the expression of gene j in each context c,
w0 le. %Ele FEijc =0 and %Zle E}, = 1. Therefore, E ;. = & Zle 25:1 Eijc = 0, and equation

30 simplifies to:

391 Eijc = EZJ + (Eijc — Eij.) (2)
N————’
Eitharcd Eisjpccclfn;

32 A formal description of CONTENT We use the simplified decomposition in equation (5) to build
a3 genetic predictors of context-specific effects while accounting for the correlated intra-individual noise
s across contexts. Intuitively, the between-individuals variability serves as the component of expression
s that is shared across contexts, E5'@¢d and the deviance from this shared component (i.e. the within-
s individual variability) serves as the context-specific component of expression, ESPecific. Moreover, treating
37 the context-specific component as a deviance from the context-shared component leads the decomposition
s to have the property that as the correlation of intra-individual noise across contexts increases, the power
w0 to detect context-specificity also increases. In addition, the decomposition generates context-shared and
w0 context-specific components of expression that are orthogonal to each other. Further rationale for using
w1 the decomposed expression is included Supplementary Section 1 and the text by Lu et al. [16]. Lu et al.
w2 also include a description of the decomposition’s equivalence to a linear mixed model.

403 For a single gene j, CONTENT takes as input centered, scaled, and residualized (over a set of
as covariates) expression measured across I individuals in C contexts and an I x m genotype matrix G;
ws  with m measured cis-SNPs for gene j. CONTENT then decomposes the expression vectors into C'
w6 context-specific components and a single context-shared component by simply calculating the mean of
w7 expression for each individual across contexts, and setting the context-specific expression for context ¢ as
w8 the difference between the observed expression of context ¢ and the calculated context-shared expression.
wo  As it has been observed that cis-genetic effects may be sparse and that the elastic net may perform best
a0 relative to other penalized linear models in the context of genetically regulated gene-expression [4, |14],
a1 CONTENT fits C' + 1 penalized linear models for the C' 4 1 expression components using an elastic net.
a2 Lastly, CONTENT generates a final genetic predictor of expression by combining the context-shared

a3 and context-specific components. Importantly, as the context-specific component is a deviance from the
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as  context-shared component, the sign of the context-specific component must be properly realigned when
a5 combining both components of expression to make a final predictor. We refer to this linear combination

se  of expression components as the “full” model of CONTENT and fit it using a simple linear regression:

a7 1. Obtain ESh@red and Ejsf °ific fom the decomposition.
a18 2. Generate cis-genetic predictors of each component using cross-validated elastic net:
419 (a) Fit cross-validated elastic net regressions for the shared and specific components:
20 EjShared _ aShared _’_G]B +€Shared (3)
o1 Ejscpeciﬁc — OéEpeCiﬁC + Gj’Yc + 8§peciﬁc (4)
a2 (b) Use the estimates to generate genetic predictors of each component:
3 Ej%hared _ dShared + GJB (5)
24 chz‘pedﬁc = é‘gpedﬁc +Gj%e (6)
a5 3. Regress the expression of context ¢ onto the context-shared and context-specific components:

A~ Sh., Sh. | 7 Sp.. Sp.
426 ch = aE‘ull + Ej%h ’sz? + EjCGp ’chp + €jc (7)
a7 Within each regression, « represents the offset and we assume that all ¢ are from a normal distri-

w28 bution with mean 0 and standard deviation that is a function of the given outcome.

429 We save for each gene the set of estimated regression weights w

jc

. Specifi .
jShared and w]S.CP_’eC‘ ¢ from equation

w0 (4) for use in downstream analyses. Namely, in TWAS, each context receives a single vector of weights,
a1 and to test the association of a gene-context’s full model to a trait, we simply use a weighted sum of the
2 predictors learned from equation (3), uA)ng’ B + fLDJSCp Yo We also use the same procedure for the context-
33 specific weight to ensure the correct directionality. To test for significance of genetic effects (i.e. to call an

¢ eGene or eAssociation), we correlate each component of expression—the context-shared, context-specific,

a5 and full—to its corresponding genetically predicted value.

s Controlling the false discovery rate across contexts Generally, methods for building genetic

a7 predictors of expression or TWAS predictors leverage either Bonferroni correction or false discovery rate
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s (FDR). Nonetheless, using a Bonferroni correction may be too stringent (for example, as tests across
10 contexts may be correlated), and using FDR within each context or across all contexts simultaneously
a0 may lead to an inflation or deflation to the false disovery proportion within certain contexts |17]. To
w  simultaneously control the FDR across all contexts at once, a hierarchical false discovery correction—
w2 treeQTL—was developed [17]. The treeQTL procedure leverages the hierarchical structure of a collection
w3 of tests (e.g. gene level and gene-context level) to properly control the FDR across an arbitrary number
ws of contexts and levels in the hierarchy as well as boost power in cases where a gene has a significant
ws association in multiple contexts [6], 17} [18]. (See Supplementary Methods for further intuition.)

a6 Notably, using CONTENT, our testing hierarchy contains 3 levels; (1) at the level of the gene,
wr (2) at the level of the context, and (3) at the level of the method or model (Figure [S3). Intuitively, a
ws  gene may contain a genetic component that is shared across all contexts, or a given context may have
wmo its own genetic architecture. In CONTENT, a given context may have its own genetic predictor from
w0 either the context-specific component or the full model. Using treeQTL with this structure is robust
1 across multiple contexts, and since the tree is structured such that a specific method/model is at the final
2 level of testing for a context, it enables incorporation of additional models trained from other approaches
3 (such as those fit on a context-by-context basis or by UTMOST). Moreover, we can add to the shared
»ss leaf an additional level of tests to account for additional components of effects-sharing, such as a brain

w5 tissue-shared component.

s Comparison to other methods We compared the prediction accuracy of CONTENT to a context-
s7 by-context TWAS model [3, |4] in which the expression of each context is modeled separately, and to
s UTMOST [9], a method that jointly learns the genetic effects on all contexts simultaneously. Specifically
s the model based on TWAS fits a penalized linear model for each context. UTMOST, on the other hand,
w0 employs a group LASSO penalty across all contexts simultaneously, allowing it to gain power over the
w1 context-by-context approach by considering all individuals and contexts in a study at once. As we were
w2 we able to use a fast R package for penalized regression[71], we used 10-fold cross-validation to fit the
w3 context-by-context model. Owing to UTMOST’s computational intensity, we used its default value of 5
ws  folds for cross-validation.

465 We also compared CONTENT to a previous approach by Wheeler et al., orthogonal tissue decom-
ws position (OTD)[14]. OTD is a direct correlate of CONTENT (Shared) and CONTENT (Specific), and is

w7 generated by fitting a mixed effects model across all contexts for a given individual. Namely, a mixed
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ws  effects model is fit as follows: an individual’s expression across all tissues is set as the outcome, the
w0 shared expression is modeled as a random individual-level intercept and is estimated using the posterior
w0 mean, and the specific expression is treated as the residuals from the fit model (after adjusting for covari-
wm ates). Under infinite sample sizes, the components of OTD are equivalent to CONTENT(Shared) and

m  CONTENT (Specific).

w3 Evaluations on GTEx and CLUES We residualized the expression of each gene in each context
a over their corresponding covariates (e.g. PEER factors, age, sex, batch information) prior to fitting
a5 UTMOST and an elastic-net model for each context in the context-by-context approach. We did the same
a  residualization before decomposing and then fitting the context-shared and context-specific components
a7 with an elastic net for CONTENT. After generating cross-validated predictors for each method, we
ws  examined the number of significantly predicted genes as well as the prediction accuracy (in terms of
mo  adjusted R?) between the cross-validation-predicted and true gene expression per gene-context pair.

480 To properly control the false discovery proportion at .05 across-contexts and within-methods, we
s employed a hierarchical FDR correction |17} 18] separately for CONTENT, UTMOST, and the context-
w2 by-context approaches. Notably, using this correction for all methods provides a generous comparison to
w3 previous methods, as when there exists at least one significantly heritable gene-context association for a
ss  given gene, there is a relative gain in power over the context-by-context FDR for other contexts tested

45 within this gene [17] [L§].

s Application to TWAS We performed transcription-wide association studies across 24 phenotypes us-
w7 ing FUSION-TWAS|3|. FUSION-TWAS uses GWAS summary statistics and user-specified gene expres-
s sion weights with an LD reference panel to perform the test of association between genetically predicted
a0 gene expression and a phenotype of interest. We tested a gene-context pair for association if the pair’s
w0 expression was predicted at a nominal p-value of .1, and note that this threshold does not substantially
s alter the number of TWAS discoveries (Figure . Notably, previous methods may use their own test
w2 of gene-context-trait association or leverage set tests (e.g. Berk Jones[9]) to combine their associations
w3 across all contexts for a given gene and therefore increase power. In this comparison, we report the asso-
w4 clation as output by FUSION (a single gene-context-trait association) and corrected by hierarchical false
w5 discovery without any sort of set test for the sake of equality in the comparison. We ran FUSION-TWAS

w6 using the default recommended settings, with reference data from the 1000 genomes project |72]. TWAS
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w7 weights were trained on the GTEx v7 dataset[2] as well as the CLUES|20] single-cell RNAseq dataset of

498 PBMCb

w0 Simulations to evaluate prediction accuracy To evaluate the properties of our method relative
s to other methods we perform a series of simulation experiments. We first simulate genotypes for each

su  individual, where each individual ¢ and each locus m (m =1 : M) is independent, and there are no rare

sz SNPs:

503 Gim ~ Bil’l(2, Unlf[05, 50})

504

505 We then draw both context-shared (8;.) and context-specific (8;.) effect sizes for each SNP from

s a normal distribution with a Bernoulli random variable I,,, controlling the probability that the m!* SNP

sor 18 causal (i.e. induce sparsity of genetic effects).:

) h? h?
zzz Im ~ Bernoulh(.OS), B;n ~ N (O, W) X Im7 and ;’Z ~ N (O7 m X I/T\n

s Here, h? and h? are the context-shared and context-specific heritabilities of expression on gene j. In
su  general, the SNPs with nonzero context-specific effect sizes were subsampled from SNPs with nonzero
sz context-shared effect sizes. We additionally simulate for a subset of contexts some number of truly
si3  context-specific eQTLs drawn from Poisson(A = 1) for randomly selected SNPs that were not eQTLs for

su the context-shared effects. Finally, we simulate the expression of gene j as follows:

515 Ejc = G;Bj. + GjBjc + €je (8)
U% ... 01,0

s16 e~N(0,Y), TeRC=| + . (9)
oca1 .- O'%«

517

sis where ¢ € RY, represents the correlation of environment or intra-individual noise across contexts, o2 =
2_p2:. : . _ . .
sie 1 —h*—hZ is the variances of each context ¢, and ¢, ¢, = pe;,¢,0¢, 0, is the covariance of context ¢; and

s0 Co. We generated data under varying levels of context-specific heritability, truly context-specific eQTLs,
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s causal SNPs; and correlation of intra-individual noise across contexts. The number of contexts was set to
s 20, and to replicate a setting similar to GTEx, the corresponding sample sizes of each ranged from 75 to
53 410 where individuals were not necessarily measured in every context. In our simulations, we generated
s one train and one test data set using the above framework. We evaluated the performance of each method
s by comparing the true and predicted expression in the test data set, using the predictor learned from the
s6 training data set.

527 To assess the effect of additional sharing on a subset of contexts, we also set up a simulation
s framework using the same generative process as above, only that a subset of contexts also received
s0 additional genetic effects. More rigorously, for this subset of contexts (acting as brain contexts in GTEx,

s0 for example), expression was generated as in equation (6) with an additional term:

h?
531 Ej. =GB +G;Bjc + Gjﬁjin + Eje, 5]"; ~ N (0, )\*]Wb*ﬂ'> x I3 (10)

532

533 where each variable is simulated as before, ﬁj’_’g corresponds to additional genetic effects that are subsam-

s pled from SNPs that have a context-shared effect, and hi is the brain-shared heritability.

s Simulations of TWAS performance Using the above generated genotypes and gene expression, we
s simulated phenotypes to evaluate the performance of each method under the assumed model in TWAS.
s For a given phenotype, we randomly selected 300 gene-context pairs (100 genes, 3 contexts each) whose

s expression would comprise a portion of a phenotype. Explicitly, we generated a phenotype as follows:

2 2

530 yi=F;6+e¢ §~N(0 Uge) 5~~N(01—Uge)
540 ! ! 73007 " ’ 300
541 Where F; is the standardized genetic expression of the 300 gene-context pairs for individual 4,

sz 0 is the length-300 vector of effect sizes for each gene-contexts’ expression, o2

e 18 the variance in the

s2s  phenotype y; due to cis-genetic gene expression, and &; corresponds to environmental effects (or noise)
saa - as well as trans-genetic effects for individual 7. In our simulations, we varied the heritability of gene
sis  expression and fixed variability in the phenotype due to genetic gene expression to .2. To simulate a
s wide range of genetic architectures, the proportion of heritability of gene expression due to the context-
sz shared effects was sampled from a standard uniform distribution, and the proportion of heritability

s due to context-specific effects was (1- the context-shared proportion). Once we generated a phenotype,
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se0 - we performed a TWAS using weights output from each method by imputing expression into a simulated
ss0  external, independent set of 10000 genotypes that followed the same generation process as in the previous

s subsection.
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« Supplementary Methods and Information

na  Intuition for using the decomposition to model genomic features

ns  The decomposition described in the methods section lays a framework for CONTENT as it directly
ns accounts for the shared noise and generates orthogonal context-shared and context-specific components
7 of genomic features. First, we note that in multi-context data, repeated measurements of one individual
ns  will likely have correlated errors; in the context of GTEx data, an individual’s environment as well as
ne  technical noise is likely to affect their expression in all contexts. The above decomposition exploits this
w0 structure, which improves the power to learn the context-specific variability of expression. Put more
1 rigorously, consider the expression of gene j in an individual measured in a baseline context and then

2 again after a stimulation:

753 Eij1 = giBj + €1

754 Eij2 = giBj + gi7; + €ij2

755

6 Where FEj;j; and Ejj» denote the observed expression level of individual i at gene j at baseline and
77 stimulation respectively, g; represents a vector of the individuals’ genotype at some nearby cis-SNPs, f;
s denotes the baseline genetic effects on expression, «; denotes the stimulation-related genetic effects on
70 expression, and €;;1 and €;;o represent the environmental effects (or noise) on the individual’s expression
w0 of gene j in baseline and stimulation respectively. In teasing apart the genetic effects that are different

1 after stimulation, one might examine the difference in the expression between contexts:

762 Eijo — Eij1 =g:Bj + 9ivj + €ij2 — 9iBj — €ij1

763 =g:7j + €ij2 — €ij1 (11)

764

s which leaves only the difference in expression due to the stimulation-specific, or in other words, context-
w6 specific component, and noise. Under the scenario in which the errors are perfectly correlated, (L1
w7 simplifies to:

768 Eij2 — Eij1 =87,

769
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Clearly, this will greatly increase our ability to build a genetic model of the stimulation-specific com-
ponent. In terms of CONTENT, the baseline genetic effects correspond to the context-shared genetic
effects, and the stimulation-specific effects correspond to the context-specific effects. Put simply, we
propose the context-shared genetic effects be considered a “baseline” effect, and that the context-shared
genetic effects are simply offsets to the context-shared effect. This model is directly related to equation
(3):

Eiji, = (Eij.) + (Eiji, — Eij.)

m  where E;; and (E;;, — E;j;.) correspond to the context-shared and context-specific genetic effects respec-
m  tively. By construction, E;; and (E;;;, — E;;.) are orthogonal, and thus we have generated orthogonal

7 components for the context-shared and context-specific components of expression.
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Figure S1. Gene expression correlation across tissues in the GTEx study. Using a linear mixed
model with bivariate REML , we calculated cis-genetic and residual (which captures variance due
to both trans-genetic effects as well as residual effects) variance and covariance components for each
gene-tissue pair across GTEx. The gray units indicate tissue pairs with less than 10% sample overlap. In
both the genetic (upper) and residual (lower) components, there was widespread cis-genetic and residual
correlation, with the brain tissues showing higher correlations compared to other tissues.
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CLUESs gene expression correlation across celltypes
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Figure S2. Gene expression correlation across cell types in the CLUEs study. Using a
linear mixed model with bivariate REML[69, [73], we calculated cis-genetic and residual (which includes
trans-genetic effects) variance and covariance components for each gene-cell type pair across CLUEs.
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s Hierarchical false discover correction

72 Multiple hypotheses correction in the context of discovering genes, gene-context pairs, and downstream
s associations of genetically-regulated gene expression with phenotypes varies across approaches [3| |41 [15].
s For discovering gene and gene-context associations, previous approaches often leverage a Bonferroni
77 correction when investigating a single context, and may use FDR within a context when investigating
7s  multiple contexts 4} [15]. After conducting an association test between a phenotype and genetically regu-
e lated gene expression, an additional Bonferroni correction is often employed across all tested expression-
0 context-phenotype trios [15]. As this approach across all expression-context-phenotype trios may be too
w  stringent, FDR may also be used. However, adjusting for the FDR within each context or across all
w2  contexts simultaneously may lead to an inflation or deflation to the false discovery proportion within
7 certain contexts [17].

784 To simultaneously control the FDR across all contexts at once, a hierarchical false discovery
s correction—treeQTL—was developed [17]. Though treeQTL was originally developed for use in eQTL
6 studies, its properties hold for any false discovery correction where such a hierarchy (e.g. gene level and
. gene-context level) exists[18]. Briefly, TreeQTL first combines all gene-context p-values for a given gene
s simultaneously using Simes’s procedure (other related procedures may also be used) to determine if there
750 1S an association at this given locus. If there is an association at the locus, FDR is then employed across
0 the contexts within that gene. Importantly, if a gene does not have a significant association as determined
1 by the first step, contexts are not included in the additional correction procedure, thus decreasing the
72 number of tests that need to be accounted for in multiple correction. This approach has been shown to
73 properly control the false discovery rate across an arbitrary number of contexts and levels in the hierarchy,
7 making it an invaluable tool in the context of gene, gene-context, and gene-context-trait discoveries.

795 To properly adjust the FDR for CONTENT, we use a hierarchy of 3 levels; (1) at the level of the

w6 gene, (2) at the level of the context, and (3) at the level of the method or model.
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Figure S3. Hierarchical false discovery correction. Here, we show the structure of the hypothesis
tests for determining whether a gene has a heritable component. A gene (green, top level) is considered
heritable if it has a heritable context-shared component or if it was heritable for a specific context (blue,

second level). A given gene-context may be heritable due to either the full or context-specific model of
CONTENT (red, third level).
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Figure S4. CONTENT is powerful and well-calibrated in simulated data. Accuracy of
each method to predict the genetically regulated gene expression of each gene-context pair for different
correlations of intra-individual noise across contexts. Mean adjusted R? across contexts between the true
(A) full, (B) shared, and (C) specific genetic components of expression and the predicted component for
each method and for different levels of intra individual correlation. We show here the accuracy for each
component and method for all gene-contexts pairs, regardless of whether they had only context-shared
or had both context-shared and context-specific effects. Notably, 75% of gene-contexts did not have a
context-specific effect, and therefore CONTENT (Shared) captures nearly all of the full variability in these
contexts (i.e. the full model is comprised of only shared effects). Further, as only 25% of gene-contexts
had context-specific effects, CONTENT(Specific) on average captures very little of the full variability.
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7 Simulations under additional parameter settings

¢ In this section, we evaluate CONTENT, UTMOST, and the context-by-context approach using the same
0 simulations framework as in the main text (Figure , however here we show each methods’ performance
w0 while varying additional parameters (Figure . We also show the performance of each method when
s the heritability of the context-shared and context-specific effects are equal (.2; Figure and where the

w2 context-shared heritability is less than the context-specific effects (.1 and .3 respectively; Figure )
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Figure S5. Prediction accuracy across simulated data with higher context-shared than
context-specific heritability (.3 and .1 respectively). Under a simulations framework, we evaluated
the performance of each method to predict the total expression using the mean adjusted R? for each gene-
context pair across all iterations for different (A,E) correlation between contexts, (B,F) proportion of
causal cis-SNPs, (C,G) number of context-specific SNPs, and (D,H) the percent of contexts with context-
specific effects on top of the shared effects. (A-D) show the correlation between the true full (specific +
shared) genetic component and the estimated full genetic component of each method, and (E-H) show
the correlations of the true genetic shared and specific genetic components of the output of each method
(where CONTENT separates the two).

303 For all methods, the baseline of parameters was .3 shared heritability, .1 specific heritability, 500
soe  Cis-SNPs, 20 contexts, 0 correlation between contexts, .05 percent causal SNPs, 2 context-specific SNPs,
ws and 20% specificity (signifying the overlap with the shared effects, as well as the percent of contexts
ws  with a specific effect). CONTENT continued to outperform the previous methods, and UTMOST consis-
g7 tently outperformed the context-by-context approach. UTMOST consistently performed better than the

ss  context-by-context approach, likely as this simulation framework better fits the model’s assumptions. We
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Figure S6. Prediction accuracy across simulated data with equal context-shared and
context-specific heritability (.2). Under a simulations framework, we evaluated the performance
of each method to predict the total expression using the mean adjusted R? for each gene-context pair
across all iterations for different (A,E) correlation between contexts, (B,F) proportion of causal cis-SNPs,
(C,G) number of context-specific SNPs, and (D,H) the percent of contexts with context-specific effects
on top of the shared effects. (A-D) show the correlation between the true full (specific + shared) genetic
component and the estimated full genetic component of each method, and (E-H) show the correlations of
the true genetic shared and specific genetic components of the output of each method (where CONTENT
separates the two).

note that UTMOST performed better than CONTENT when there were context-specific effects across all
contexts (and this set of effects lied on top of SNPs with a shared effect) and the heritability of context-
specific effects dominated the heritability of context-shared effects (Figure . Given our analysis of
GTEx data this architecture may not be entirely common, however this provides further evidence that
each method may outperform the other under different architectures, and should therefore be used in

complement with the others.
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Figure S7. Prediction accuracy across simulated data with lower context-shared than
context-specific heritability (.1 and .3 respectively). Under a simulations framework, we eval-
uated the performance of each method to predict the total expression using the mean adjusted R? for
each gene-context pair across all iterations for different (A E) correlation between contexts, (B,F) pro-
portion of causal cis-SNPs, (C,G) number of context-specific SNPs, and (D,H) the percent of contexts
with context-specific effects on top of the shared effects. (A-D) show the correlation between the true
full (specific + shared) genetic component and the estimated full genetic component of each method, and
(E-H) show the correlations of the true genetic shared and specific genetic components of the output of
each method (where CONTENT separates the two).
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Figure S8. Prediction accuracy across simulated data (2,000 cis-SNPs). Under a simulations
framework, we evaluated the performance of each method to predict the total expression using the
mean adjusted R? for each gene-context pair across all iterations for different (A,E) correlation between
contexts, (B,F) proportion of causal cis-SNPs, (C,G) number of context-specific SNPs, and (D,H) the
percent of contexts with context-specific effects on top of the shared effects. (A-D) show the correlation
between the true full (specific + shared) genetic component and the estimated full genetic component of
each method, and (E-H) show the correlations of the true genetic shared and specific genetic components
of the output of each method (where CONTENT separates the two).
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a5 Runtimes of methods We compared the runtimes and memory requirements of our software that
a6 fits both CONTENT and the context-by-context approach (10-fold cross-validation) to UTMOST (5-fold
air  cross-validation). Our software takes advantage of the memory-mapped,fast penalized linear regression
ss  framework implemented by R package bigstatsr . When we tested both approaches on 100 randomly-
a0 selected GTEx genes, not only was the runtime of UTMOST—while running half as many cross-validation
a0 folds as our method—on average over 3x the runtime of running our software, but the average memory

g1 required by UTMOST was also over 10x the memory required by our software.

Computational usage on 100 GTEx genes
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Figure S9. Runtime and memory usage of CONTENT and the context-by-context approach
compared to UTMOST. We saved the runtime and memory usage for UTMOST and our software that
fits both CONTENT and the context-by-context approach on 100 randomly-selected GTEx genes. The
average runtime and memory usage of running UTMOST was over 3x and 10x the runtime and memory
usage of running our software that fits both CONTENT and the context-by-context approach.
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Figure S10. Power of CONTENT, UTMOST and the context-by-context model across
GTEx on genes run by UTMOST. (A) The number genes of genes with a significantly predictable
component across each context with sample size included in parentheses (B) The median ratio of adjusted
R? (CONTENT/context-by-context, CONTENT/UTMOST) across the union of genes significantly pre-
dicted by CONTENT and either the context-by-context model or UTMOST.
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Figure S11. PContribution of context-specific genetic regulation in GTEx. (A) The number of
genes with a significant (FDR< 5%) CONTENT(Specific) model of expression in GTEx. (B) Proportion
of expression variance of CONTENT(Full) explained by CONTENT (Specific) and CONTENT(Shared)
for genes with a significant CONTENT(Full) model.
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s Evaluation TWAS simulations and fine-mapping

&3 In this section, we explore the ability of each method to correctly determine the gene-context pair re-
s24  sponsible for the association with the phenotype in TWAS. Notably, in these simulations we limited our
w25 analyses to situations in which the causal context(s) has been observed. In real data applications, this
e may not occur, and in such cases, further complexities may arise due to genetic correlation. In these
s situations, it is likely that all methods will produce false-positive gene-context associations since the true
a8 causal context is missing. The complexities posed by missing contexts and cell-types are beyond the
820 scope of this manuscript, and we leave the development of relevant methodology as future work.

830 Importantly, the models built by CONTENT (Full) can be explained by either the context-shared
s component, the context-specific component, or both. To implicate a genuine CONTENT (Full) gene-
sz context association (i.e., to elucidate whether a specific context’s expression is more strongly associated
e3  than the context-shared expression), we propose using only gene-context pairs whose CONTENT (Full)
se  TWAS test statistic is greater in magnitude than the context-shared TWAS test statistic—termed “CON-
ss TENT(Fine).” In our simulations we used a test statistics threshold of .5 and found that this heuristic
a6 controlled the false positive rate of the CONTENT (Fine) model’s associations as well as enriched for
a7 correctly-associated contexts.

838 We evaluated the ability of each method to implicate the correct eAssociation in simulated TWAS
a0 data. Across a range of heritability and hetereogeneity (percent of contexts with context-specific genetic
so effects in addition to the main effects), we simulated 1000 genes for 20 contexts, 100 of which had 3
g1 contexts whose genetic component of expression was associated with the phenotype. We considered
a2 sensitivity and specificity as the ability of each method to implicate the correct context for an associated
a3 gene. To evaluate sensitivity and specificity, we examined which gene-context pairs were significantly
s associated with the phenotype after employing the hierarchical false discovery correction [17] as the
ws  gene-based false positive rate was well-controlled across methods using this approach.

846 In the absence of context-shared genetic effects, all methods showed high specificity and sensitiv-
wr ity (Figure . However, as the genetic variability became more context-shared, the specificity and
ws  sensitivity of the context-by-context approach and UTMOST dropped substantially (Figure . As
so  mneither the context-by-context approach nor UTMOST attempt to deconvolve the context-shared and
so context-specific effect sizes, their weights for a given context contain both context-shared and context-

es1  specific signal. Thus when the context-shared effects dominate the heritability, both methods are likely
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TWAS gene-tissue discovery power
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Figure S12. Using a heuristic to fine-map CONTENT (Full) associations. Average AUC from
1000 TWAS simulations while varying the overall heritability of gene expression. Each phenotype (1000
per proportion of heritability) was generated from 300 (100 genes and 3 contexts each) randomly selected
gene-context pairs’ genetically regulated gene expression, and the 300 gene-context pairs’ genetically
regulated expression accounted for 20% of the variability in the phenotype.

s2  to suggest context-specific associations across all contexts that express an associated gene. The speci-
es3  ficity of CONTENT’s context-specific component, as well as the full model’s weighting of each expression
ga  component are paramount to its specificity and sensitivity, as shown by its robust performance across
s various mixtures of genetic effects (Figure [S13)).

856 In the GTEx dataset, the fine-mapping TWAS associations produced by our heuristic for the
sz CONTENT (Full) model produced broad associations across many tissues. Though we observed many
ss  correct fine-mapping associations for several known gene-trait etiologies (e.g. CYLD and esophagus
o mucosa in Crohn’s [74], LIPC and liver in HDL [75], SORT1 in liver in LDL and HDL [76H78]), there
so was not consistent enrichment of a specific tissue known to be relevant for a given trait (for example, the
w1 pancreas was not over-represented in associations of Type 2 Diabetes). This could be because the correct
g2 tissue or context is missing from the data, horizontal or vertical pleiotropy, or other unknown reasons.
s3 As the fine-mapping heuristic performed well in simulated data under a known architecture and where
s« all contexts are observed, we are hopeful that the context-specific estimates will be useful in downstream

a5 tissue fine-mapping methods.
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Accuracy of gene-tissue discovery
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Figure S13. CONTENT is sensitive and specific. We simulated 1000 phenotypes from 300 ran-
domly selected gene-tisue pairs’ expression while varying the percent heterogeneity and performed a
TWAS using the weights output by each method. (A,B) When the total proportion of variability in the
phenotype due to the genetically regulated gene expression is .5 and (C,D) when the proportion is .2.
The full model of CONTENT was the most sensitive when finding the correct gene-context pair, and is
most powerful when there is non-negligible context-specific heritability in addition to the tissue-shared
heritability.
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Table S1. GWAS summary statistics used as input for TWAS. Abbreviation used for each trait
as well as and its respective study and sample size. The collection of traits from the UKBiobank were
self-reported and measured on the same set of individuals across traits. .

Symbol Trait Study Sample Size
AD Alzheimer’s disease Lambert et al. Nat Genet. 2013 74,046
Asthma Asthma (self-reported) UKBB Loh et al. 2018 Nat Genet 361141.00
Bipolar Bipolar Disorder PGC Cell 2018 73,684
CAD Coronary Artery Disease CARDIoGRAM Nat Genet. 2011 86,995
CKD Chronic Kidney Disease Wauttke et al. Nat Genet. 2019 1,046,070
Crohn’s Crohn’s Disease IIBDGC Europeans Nat Genet. 2015 13,974
Eczema Eczema (self-reported) UKBB Loh et al. 2018 Nat Genet 361,141
FastGlu Fasting Glucose MAGIC Nat Genet. 2012 96,496
HDL High-density Lipoprotein Teslovich et al. Nature 2010 99,900
IBS Irritible bowel syndrome (self-reported) UKBB Loh et al. 2018 Nat Genet 361,141
LDL Low-density lipoprotein Global lipids genetics consotrium Nat Genet 2013 188,577
Lupus Systemic Lupus Erythromous Bentham et al. Nat Genet 2015 23,210
MDD Major Depression Disorder PGC; Howard et al. Nat Neuro 2019 807,553
MS Multiple Sclerosis (self-reported) UKBB Loh et al. 2018 Nat Genet 361,141
PBC Primary biliary cirrhosis Cordell et all. Nat Comm 2015 13,239
Psoriasis Psoriasis (self-reported) UKBB Loh et al. 2018 Nat Genet 361,141
RA Rheumatoid Arthritis Okada et al. Nature 2013 103,638
Sarcoidosis  Sarcoidosis (self-reported) UKBB Loh et al. 2018 Nat Genet 361,141
Sjogren Sjogren’s Syndrome (self-reported) UKBB Loh et al. 2018 Nat Genet 361,141
T1D Type 1 Diabetes Inshaw et al. Diabetologia 2021 17,685
T2D Type 2 Diabetes DIAGRAM Nat Genet 2018 898,130
Ulc colitis ~ Ulcerative Colitis (self-reported) UKBB Loh et al. 2018 Nat Genet 361,141
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TWAS discoveries as a function of heritability thresholding. In the main text, we put forth all
gene-context pairs that were genetically predicted with a nominal pvalue of .1. As the procedure we use
for false discovery adjustment was robust across contexts, we evaluated the number of discoveries that
are potentially made when raising the threshold for the nominal pvalue. Our results suggest that there
may be minimal correlation between genetic-predictability and strength of TWAS association.

TWAS gene discoveries

12000

9000

Associations

6000

0.000 0.025 0.050 0075 0100
Nominal pvalue threshold

Context-

CONTENT — by-context

— UTMOST

Figure S14. TWAS discoveries across predictability thresholds. The number of hierarchical-
FDR-corrected TWAS discoveries as a function of the nominal pvalue cutoff for a given gene-tissue’s
cross-validation expression prediction.


https://doi.org/10.1101/2021.09.23.461579
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.09.23.461579; this version posted September 23, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

20

gn  CONTENT can accommodate additional levels of pleiotropy among contexts While the
gr2  original model of CONTENT enables a simple decomposition into a component that is shared across
ez all contexts and another that is specific to a single context, there may be cases in which additional
e sharing exists across a subset of contexts. For example, the group of brain tissues measured in the
&5 GTEx consortium have shown similar patterns in terms of cis-genetic variability [2} [25, 79] as well as
es  intra-individual residual correlations (Figure [S1)). To further disentangle the shared and tissue-specific
g7 genetic components of expression in the brain tissues, we added an additional term to the CONTENT
ers  decomposition which accounts for genetic effects that are only shared across the brain tissues. In more
ero  detail, we decompose the original context-shared component of expression into a new context-shared
a0 component that is shared across all tissues and a brain-shared component that is shared across only the
ss1  brain tissues:

882 Ej, = E; + Ejl} (12)

s Here, B} (the new context-shared term) is an intercept, E; (the brain-shared term) is the effect size on
sss  an indicator variable for brain tissues, and estimates of both terms are generated for each individual using
g5 a simple linear regression. While introducing an additional term for the shared component will increase
sss  the resolution of the model, i.e. the novel model may discover new components of brain-sharing that
s7 were miscategorized as tissue-specific in multiple brain tissues, there may be a significant loss in power
ss  as this decomposition is only possible for individuals who have been sampled in both multiple brain and
g0 non-brain tissues. Additionally, under this decomposition, the full model for brain tissues contains three
g0 terms—the context-specific, brain-shared, and globally shared—resulting in a loss of a degree of freedom
s1  relative to the original model.

802 To evaluate the effect of an additional source of effects-sharing on the performance of CONTENT,
s3  we simulated an additional genetic effect that lied on top of a subset of SNPs with a main, overall context-
ss  sharing effect in 25% of the contexts. As the heritability of this additional source of sharing grew, the
a5 context-specific component of CONTENT began to capture variability due to both the context-specific
s and secondary context-shared effects (Figure. When we used CONTENT brain, the context-specific
s7  component of CONTENT no longer produced predictors that captured variability due to the additional
ss  source of effects-sharing (mean R? of true brain effects and predicted tissue-specific effects dropped from
s0  0.127 to 0.004 across simulations), and the component responsible for capturing the additional source

o of effects-sharing-CONTENT(Brain)— was robust (average R? between true and predicted brain-shared
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w  effects 0.49).

902 We applied the CONTENT brain model to GTEx, but note that such a component is only identi-
o3 fiable for individuals who have been sampled in both multiple brain and multiple non-brain tissues. For
oa our analysis of the GTEx data, our sample size decreased to 12,904 genes, 26 tissues, and 150 individuals
os  when using CONTENT brain. In general, using this model, the number of genetic tissue-specific com-
ws ponents in the brain tissues decreased (Figure . Of the genes that were implicated in the original
oor  CONTENT model as having a tissue-specific component but were no longer captured in the CONTENT
ws brain model with a tissue-specific component, roughly 12% overlapped with the genes implicated by the
oo additional brain-shared component. The CONTENT brain model discovered 4,811 genes with an overall
a0 tissue-shared component as well as 1,960 genes with a brain-shared components (of which 66% also had

ou an overall tissue-shared component). The prediction accuracy was similar in both the original and brain

oz models of CONTENT (Figure [S17).

Variability captured with brain—shared term
A 1.00

&x 0.501

0.25 1

000 1 T T T 1
0.00 0.05 0.10 0.15 0.20
Brain—shared heritability

B 1.00 1

075 ~ " T T T T T T T T T T T T T s s s e e LD

T 0.50

0.00 0.05 0.10 0.15 0.20
Brain—shared heritability

----- Brain—shared genetics— - Shared genetics — Specific genetics

— CONTENT (Brain) — CONTENT (Shared) CONTENT (Specific)

Figure S15. Additional sources of tissue-sharing may confound the tissue-specific com-
ponent. (A) The original CONTENT model without accounting for the additional source of shared
genetic effects when such a component exists. (B) When we introduce an additional shared component
to the CONTENT model, CONTENT (Brain), the specific component does not capture this additional
component, and the additional component is recovered.

013 We next compared the performance of the original CONTENT model to the CONTENT brain
aie  model in TWAS using simulated data (generated as aforementioned) as well as GTEx. While the mean

a5 AUC between both methods was similar in the simulated data, CONTENT brain was more sensitive
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s than the original CONTENT model when shared brain effects existed (Figure . Further, despite
o7 the fact that the sample size and number of tissues in GTEx data subsetted for the brain model is
o smaller, CONTENT discovered a non-trivial additional number of TWAS associations (Figure [S19).
oo In several neurological disorders, the number of context-specific genes decreased when using the brain
o0 model, however the brain model discovered genes whose genetics were shared across only the brain-shared
e component (Figure[S19). When we examined previous TWAS associations, such as APOC1 and AD, the
o2 original CONTENT approach showed association with the thyroid. However, this signal was removed
o3 using the brain-pleiotropy approach and the brain pleiotropic component showed significant association
o (p=2.20e-23). We observed a similar trend with APOE, where the original CONTENT model implicated
os  several brain tissue associations but no significant shared association. The brain pleiotropy model in turn
o6 discovered a brain-tissue-shared component with significant evidence of association (p=2.47e-29). Both

or  genes are known to have neuronal roles in Alzheimer’s disease [30].

s  Performance in GTEx when using the brain component We ran the original and brain versions
o9 of the CONTENT model on 12904 genes in 26 tissues and 150 individuals in the GTEx dataset. These
o0 individuals were measured in at least 3 brain and non-brain tissues. Interestingly, each model discovered
o eGenes that were not discovered by their counterpart. The amount of variability was roughly the same in
o2 both versions of the model, but the adjusted R? was slightly higher in non-brain tissues and slightly lower
o33 in brain tissues in the brain model. Importantly, the brain tissues in the brain model have 3 explanatory
s variables and therefore suffer a larger penalty in the adjusted R? relative to the original CONTENT
s model. The adjusted R? improved in the non-brain tissues however, suggesting that the context-shared
036 and context-specific components may be less confounded by the brain tissues in the brain model than in

os the original model.
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Figure S16. Additionally sources of effects-sharing may confound the context-specific com-
ponent. When we run the original CONTENT model and the CONTENT model with the brain-sharing
on GTEx genes that are expressed in at least 3 brain and 3 non-brain tissues, many of the previous
genetic context-specific components in the brain tissues are absorbed by the additional brain-sharing
across brain tissues.
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Figure S17. Prediction accuracy across tissues in the brain and original CONTENT model.
The difference in adjusted R? in the brain and original CONTENT(Full) models. While the variability
explained is markedly similar in both versions of the model, the adjusted R? generally increased in
non-brain tissues, and decreased in the brain tissues in the brain model.
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Accuracy of gene-tissue discovery
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Figure S18. Simulated TWAS with brain-shared genetic effects. While the AUC and specificity
of the original CONTENT model (green) and the CONTENT model that accounts for brain-shared effects
(pink) were nearly the same, the sensitivity was improved when using the brain version of CONTENT in
simulated TWAS where there exists brain-shared effects.
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s TWAS eGenes discovered using the brain version of CONTENT We performed TWAS using
030  weights trained by the original and brain versions of the CONTENT model on 26 tissues, 12,094 genes,
a0 and 150 individuals in the GTEx dataset for 17. These individuals were measured in at least 3 brain and
sa1  non-brain tissues, leading the sample size to be smaller than when using the total GTEx data without any
a2 such constraint. While the brain version of the CONTENT model discovered more TWAS eGenes than

the original model, the brain model discovered fewer context-specific eGenes than the original model.

CONTENT original CONTENT brain
[ . Vo . 1
(AIll) (Full) (Specific) | (Shared) (All) (Full) (Specific) | (Shared) | (Brain)
AD 76 62 64 19 67 51 59 10 8
Asthma 594 415 487 74 545 386 412 81 39
Bipolar 75 49 47 18 78 43 47 14 8
CAD 13 11 7 2 14 9 11 2
CKD 58 39 47 14 51 34 29 15 2
Crohn’s 279 205 231 48 265 177 190 46 20
Eczema 109 66 84 4 78 53 61 7 5
FastGlu 65 44 58 5 65 45 45 10 8
GFR 1721 1243 1428 357 1550 1087 1167 313 168
HDL 247 175 217 37 228 116 170 45 19
IBS 14 10 5) 2 12 9 3 1 0
LDL 506 380 437 77 477 331 391 74 45
Lupus 356 268 309 73 315 249 245 59 42
MDD 250 155 182 44 189 121 109 43 18
MS 114 94 98 19 114 91 100 21 6
PBC 204 147 170 32 194 137 147 36 23
Psoriasis 180 158 163 39 183 153 152 39 23
RA 286 230 251 85 274 212 231 82 44
Sarcoidosis 90 69 75 10 90 57 73 6 7
Sjogren 24 13 18 2 19 8 14 1 1
T1D 359 303 323 92 311 255 272 101 59
T2D 514 352 422 91 451 310 327 94 32
TG 3251 2429 2791 641 3079 2169 2452 624 299
Ulc colitis 35 28 27 & 16 12 10 2 0

Figure S19. eGenes discovered by each component of CONTENT model in the brain and
original models. In total, there were fewer genes discovered using the brain model of CONTENT, how-
ever our simulations show that the brain model of CONTENT may improve the resolution of associations.
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