

Oligomerization of the FliF domains suggests a coordinated assembly of the bacterial flagellum MS ring

1 Giuseppina Mariano^{1,2#}, Raquel Faba-Rodriguez^{2£}, Soi Bui¹, Weilong Zhao¹, James Ross³,
2 Svetomir Tsokov² and Julien Bergeron^{1,2*}

3 ¹ Randall division of Cell and Molecular Biophysics, King's College London, London, United
4 Kingdom

5 ² Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, United
6 Kingdom

7 ³ Department of Biochemistry, University of British Columbia, Vancouver, Canada

8 # Current address: Microbes in Health and Disease Theme, Newcastle University Biosciences Institute,
9 Newcastle University, Newcastle upon Tyne, United Kingdom

10 £ Current address: Peak Proteins Ltd, Alderley Park, Mereside, Macclesfield SK10 4TG, United
11 Kingdom

12

13

14 * Correspondence: Julien Bergeron julien.bergeron@kcl.ac.uk

15 Keywords: bacteria, flagellum, salmonella, cryo-EM, structure.

16

17 Abstract

18 The bacterial flagellum is a complex, self-assembling macromolecular machine that powers bacterial
19 motility. It plays diverse roles in bacterial virulence, including aiding in colonization and dissemination
20 during infection. The flagellum consists of a filamentous structure protruding from the cell, and the
21 basal body, a large assembly that spans the cell envelope. The basal body is comprised of over 10
22 different proteins, forming several concentric ring structures, termed the M- S- L- P- and C-rings,
23 respectively. In particular, the MS rings are formed by a single protein FliF, which consists of two
24 trans-membrane helices anchoring it to the inner membrane and surrounding a large periplasmic
25 domain. Assembly of the MS ring, through oligomerization of FliF, is one of the first steps of basal
26 body assembly.

27 Previous computational analysis had shown that the periplasmic region of FliF consists of three
28 structurally similar domains, termed Ring-Building Motif (RBM)1, RBM2 and RBM3. The structure
29 of the MS-ring has been reported recently, and unexpectedly shown that these three domains adopt
30 different symmetries, with RBM3 having a 34-mer stoichiometry, while RBM2 adopts two distinct
31 positions in the complex, including a 23-mer ring. This observation raises some important question on
32 the assembly of the MS ring, and the formation of this symmetry mis-match within a single protein.
33 In this study, we analyze the oligomerization of the individual RBM domains in isolation, in the
34 *Salmonella typhimurium* FliF orthologue. We demonstrate that the periplasmic domain of FliF
35 assembles into the MS ring, in the absence of the trans-membrane helices. We also report that the
36 RBM2 and RBM3 domains oligomerize into ring structures, but not RBM1. Intriguingly, we observe
37 that a construct encompassing RBM1 and RBM2 is monomeric, suggesting that RBM1 interacts with
38 RBM2, and inhibits its oligomerization. However, this inhibition is lifted by the addition of RBM3.
39 Collectively, this data suggests a mechanism for the controlled assembly of the MS ring.

40

41

42 1 Introduction

43 The flagellum is a complex macromolecular motor, whose role is to allow swimming motility, through
44 the rotation of a long filament at the bacterium cell surface. The flagellum is employed by many
45 bacteria to swim in liquid environments (Minamino and Imada, 2015), but it also represents an
46 important virulence factor, playing central roles in cell adhesion and invasion, secretion of other
47 virulence factors and biofilm formation (Duan et al., 2013). The bacterial flagellum can be divided in
48 four major regions: On the cytosolic side, the rotor and stators are responsible for inducing filament
49 rotation, using the proton motor force or sodium gradient (depending on the bacterial species)(Berg,
50 2003; Li et al., 2011). The basal body is the region that spans the cell envelope, and includes
51 consecutive ring-like structures, termed M-, S-, L-, and P-rings; the hook is a bended structure that
52 protrudes from the basal body on the cell surface; and the filament is a long (up to several μm) tubular
53 structure of $> 10,000$ s copies of a singular protein, the flagellin (Nakamura and Minamino, 2019).

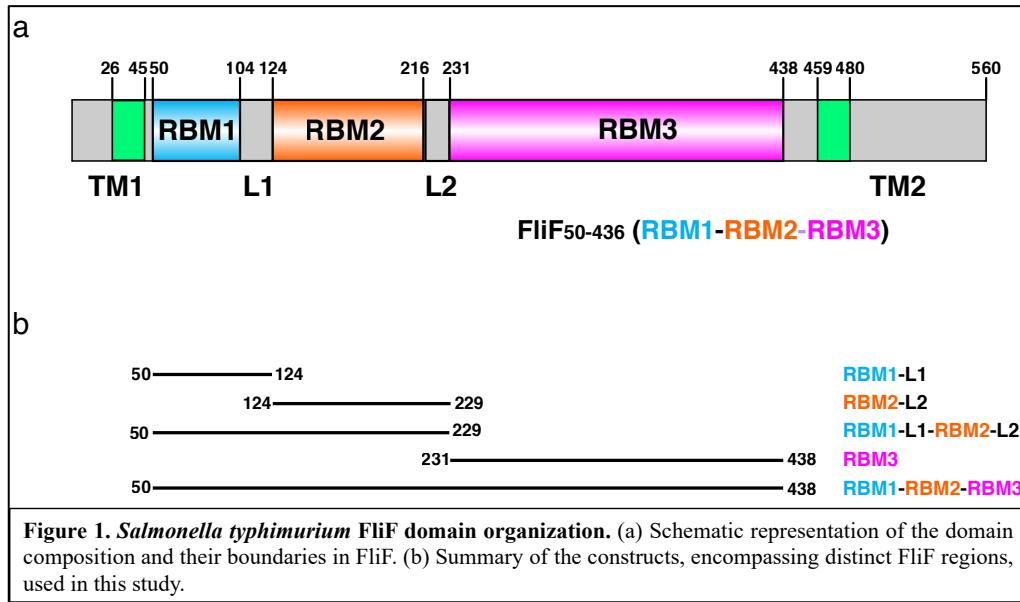
54 The M and S rings are formed by the protein FliF, a 60 kDa protein, embedded in the cytoplasmic
55 membrane through two trans-membrane helices (Figure 1a). It oligomerizes into a circular membrane-
56 spanning complex, forming the fundamental scaffold for flagellar structure and assembly (Minamino
57 et al., 2008). In-between the two transmembrane helices, FliF possesses a large periplasmic region
58 consisting of three globular domains termed Ring-Building Domains (RBM1, RBM2 and RBM3
59 respectively) (Figure 1a) (Bergeron, 2016). Those RBMs possess a common fold (Spreter et al., 2009),
60 and possess structural homology with components of the Type III Secretion System (T3SS)
61 injectosome, and in particular RBM1 and RBM2 have sequence similarity with the T3SS protein SctJ
62 (Yip et al., 2005; Bergeron et al., 2015; Bergeron, 2016). Conversely, RBM3 shows homology to the
63 SpoIIAG protein (Bergeron, 2016; Zeytuni et al., 2017), a macromolecular complex involved in spore
64 formation.

65

66 On the cytosolic side, FliF binds to the protein FliG, part of the C-ring (Kubori et al., 1992; Levenson
67 et al., 2012), via its C-terminus. This interaction is necessary for flagellum assembly (Li and Sourjik,
68 2011; Morimoto et al., 2014). FliG, together with FliM and FliN, form the C-ring, and are responsible
69 for switching of the rotation between clockwise and counterclockwise (Morimoto and Minamino,
70 2014; Minamino and Imada, 2015).

71 The assembly of the flagellar motor has been mainly investigated in the model systems *E. coli* and *S.*
72 *tiphymurium*. In these peritrichous bacteria, the initial component to form is the MS-ring, followed by
73 the C-, P-and L-rings. A T3SS-like export apparatus is recruited by interaction with the MS-ring and

74 is responsible for secretion of the single components of the rod, hook and filament, which are then
75 assembled outside the cell (Minamino et al., 2008; Minamino and Imada, 2015; Nakamura and
76 Minamino, 2019).


77 Whilst the MS-ring is recruited first to initiate flagellar biogenesis, it remains unclear which factors
78 are needed for its recruitment and assembly. In *Salmonella typhimurium* it was observed that FliF
79 overexpression leads to spontaneous assembly of MS-ring structures (Suzuki et al., 2004; Kawamoto
80 and Namba, 2017; Kawamoto et al., 2020; Johnson et al., 2021) whereas in *Vibrio alginolyticus* the
81 same behavior was not observed (Terashima et al., 2020). Furthermore, co-expression of FlhF and FliG
82 promotes formation of MS-rings in *Vibrio* species (Terashima et al., 2020). These findings are in
83 agreement with previous studies where it was highlighted that FlhF and FlhG are involved in regulation
84 of flagellar localization and assembly in species with polar flagella and in some peritrichous species
85 such as *Bacillus subtilis* (Kazmierczak and Hendrixson, 2013). FlhG is a MinD-like ATPase, and
86 interacts with components of the C-ring, FliM, FliN and FliY (Schuhmacher et al., 2015a, 2015b).
87 Upon interaction with these proteins, FlhG promotes their interaction and assembly with FliG
88 (Schuhmacher et al., 2015a, 2015b). FlhF is a SRP-type GTPase that localizes at the cell pole to
89 positively regulate the localization and formation of the flagellum by recruiting FliF (Green et al.,
90 2009; Terashima et al., 2020), whereas FlhG was shown to act as a negative regulator of flagellar
91 assembly through interaction with FlhF (Kusumoto et al., 2008; Kojima et al., 2020).

92 The structure of FliF in isolation was recently determined, and revealed that the RBM3 has a symmetry
93 that can vary from C32 to C35, with the majority of particles displaying a C33 symmetry (Johnson et
94 al., 2020). Astonishingly, this study showed that RBM2 forms rings with a 21-fold or 22-fold
95 symmetry, localized at the inner part of the M-ring (Johnson et al., 2020), revealing a symmetry mis-
96 match between the domains. RBM1 was not resolved in these structures. Subsequently it was shown
97 that the prevalent symmetry for the basal body is C34 and that the RBM2 adopts preferentially a C23
98 symmetry at the internal face of the M-ring (Kawamoto et al., 2020). The cryoEM structure of the
99 intact basal body has further confirmed that the RBM3 unambiguously displays a C34 symmetry
100 (Kawamoto et al., 2020; Johnson et al., 2021). Nonetheless, these structures raised the question of how
101 this protein can form an oligomeric assembly with different symmetries in different domains, and how
102 their assembly is coordinated.

103

104 Here, we studied the oligomerization of the different FliF domains in isolation. We show that a
105 construct encompassing RBM1, RBM2 and RBM3, but lacking the two trans-membrane helices, is still
106 able to form the proper MS ring assembly, in the *Salmonella* orthologue (but not the *helicobacter* one).

107 We demonstrate that the RBM2 and RBM3 domains oligomerize in isolation, and form ring-like
108 structures, with symmetry corresponding to that of these domains within the basal body. In contrast,
109 RBM1 in isolation is strictly monomeric. Intriguingly, we also report that a construct encompassing
110 both RBM1 and RBM2 is monomeric, suggesting that within this construct, RBM1 prevents RBM2's
111 oligomerization. Finally, ectopic addition of RBM3 promotes the oligomerization of the RBM1-RBM2
112 construct, reversing the inhibition of RBM2 oligomerization by RBM1. Taken together, these results
113 suggest that the oligomerization of FliF is coordinated and allow us to propose a model for the regulated
114 formation of the MS ring to the final, correct assembly. This might play a role to prevent the premature
115 formation and/or mislocalization of the flagellum basal body complex.

116

117

118 2 Results

119 Oligomerization of individual domains of FliF

120 Previous studies have shown that when purified in isolation, the *S. typhimurium* FliF adopts its
121 oligomeric state, including an unusual symmetry mis-match between RBM2 and RBM3 (Johnson et
122 al., 2020; Kawamoto et al., 2020), suggesting a complex folding and assembly pathway for the MS
123 ring. This observation prompted us to investigate if the individual RBMs could oligomerize on their
124 own.

125 To this end, we engineered a series of constructs that encompass one or several RBMs (Figure 1b,
126 Table 1). For each construct, the correspondent protein was purified, and its oligomerization propensity
127 was analyzed by size exclusion chromatography (SEC) (Table 1, Figure 2a).

128

129 As shown on Figure 2a, a construct encompassing RBM1, RBM2 and RBM3 (FliF₅₀₋₄₃₈) forms a high-
130 order oligomer, stable by SEC. Negative-stain analysis revealed that the protein possesses ring-like
131 features (Figure 2c), similar to that of the full-length protein. This demonstrates that the TM helices of
132 FliF are dispensable for its oligomeric assembly. We however note that the protein is prone to
133 aggregation, with multiple MS rings assembling from the side opposing the collar region, suggesting
134 that some hydrophobic surfaces, possibly facing the membrane, are exposed in the absence of the TM
135 helices. Indeed, SEC-MALS analysis confirmed that whilst FliF from *S. typhimurium* (StFliF₅₀₋₄₃₈)
136 self-oligomerizes in a complex with an apparent mass of ~10 MDa (Figure S1a), significantly larger
137 than the FliF 34-mer.

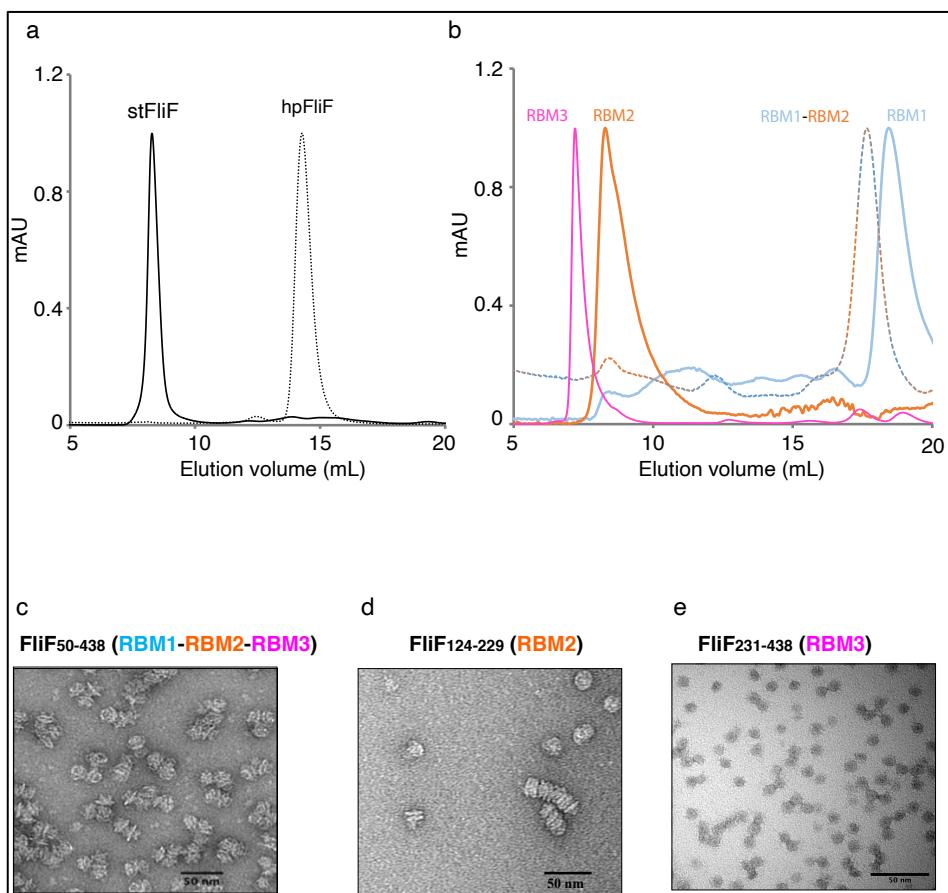


Figure 2. Oligomerization of the FliF domains. (a) Size exclusion chromatography UV trace of constructs encompassing the entire periplasmic regions of *S. typhimurium* FliF and *H. pylori* FliF. (b) Size exclusion chromatography UV trace of constructs encompassing the individual domains of *S. typhimurium* FliF (c-e) Negative stain analysis of (c) RBM1-RBM2-RBM3 (FliF₅₀₋₄₃₈), (d) RBM2 (FliF₁₂₄₋₂₂₉) and (e) RBM3 (FliF₂₃₁₋₄₃₈). RBM1-RBM2-RBM3 and RBM2 shows mostly side views, whilst RBM3 mainly displays top views.

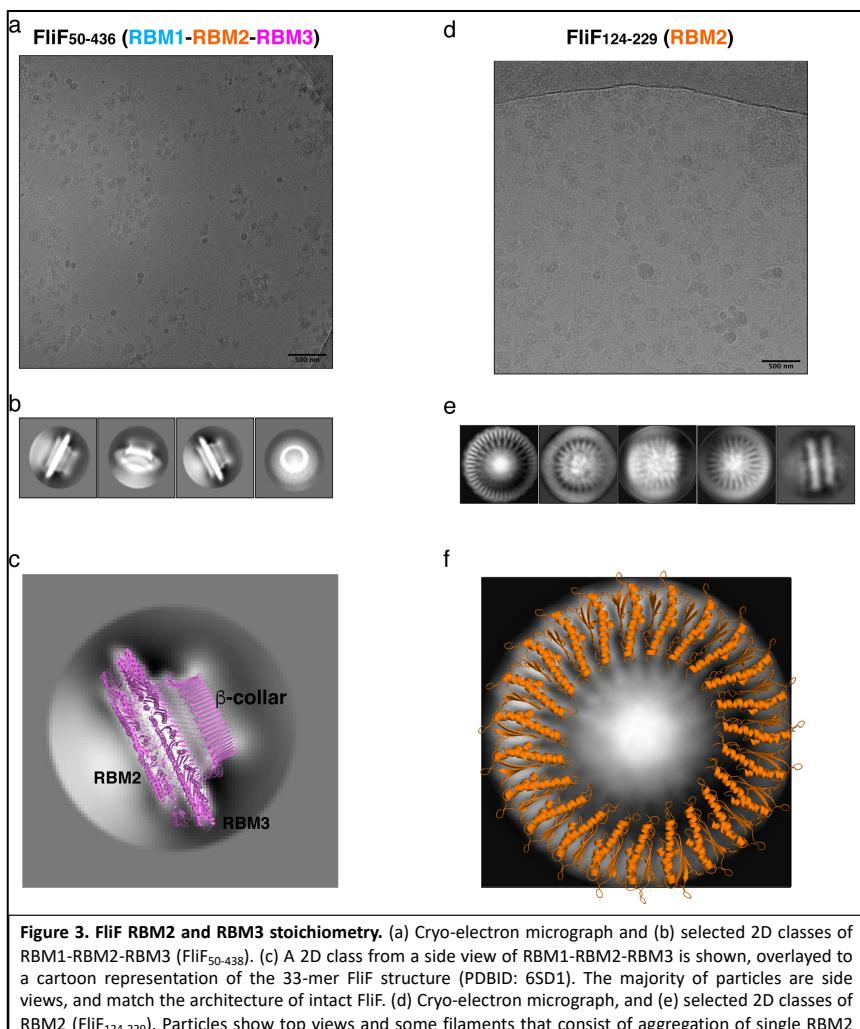
138

139 Next, we observed that constructs encompassing RBM2 (FliF₁₂₄₋₂₂₉) or RBM3 (FliF₂₃₁₋₄₃₈) also formed
140 higher-order oligomers in isolation (Figure 2b). Negative-stain EM analysis confirmed that they form
141 ring-like structures (Figure 2d, 2e), consistent with their architecture within the native MS ring. In the
142 instance of RBM2 (FliF₁₂₄₋₂₂₉), we note that the ring-like structures exhibited a tendency to cluster
143 together, forming lines of discs (Figure 2d). It is noteworthy that in the T3SS FliF homologue SctJ,
144 previous biochemical studies have shown that RBM2 is monomeric, and requires the L1 linker to
145 oligomerize in isolation (Bergeron et al., 2015). This might suggest functional differences between the
146 assembly of the T3SS and flagellum basal body.

147 In contrast to RBM2 (FliF₁₂₄₋₂₂₉) and RBM3 (FliF₂₃₁₋₄₃₈), we observed that the construct encompassing
148 RBM1 (FliF₅₀₋₁₂₄) is strictly monomeric in isolation (Figure 2b, Table 1). Collectively, these results
149 demonstrate that in *S. typhimurium*, the TM helices of FliF are dispensable for its oligomeric assembly,
150 and that RBM2 and RBM3, but not RBM1, can form oligomeric rings in isolation.

151

152 Whilst we observed that RBM1-RBM2-RBM3 (FliF₅₀₋₄₃₈) in *S. typhimurium* spontaneously
153 oligomerizes, previous studies have shown that in other non-peritrichous organisms, such as *Aquifex*
154 *aeolicus*, RBM1-RBM2-RBM3 is strictly monomeric (Takekawa et al., 2021). For this reason, we
155 investigated the oligomeric state of FliF in another non-peritrichous organism, *Helicobacter pylori*.
156 We observed that *H. pylori* RBM1-RBM2-RBM3 (HpFliF₅₁₋₄₂₇) elutes from the gel filtration column
157 much later than StFliF₅₀₋₄₃₈, consistent with a monomeric protein (Figure 2a). SEC-MALS analysis
158 showed that the molecular weight of this purified protein is 41 kDa, in agreement with the predicted
159 molecular weight of a single monomer. This result suggests that in non-peritrichous organisms, FliF
160 might require additional factors to trigger oligomerization (Dasgupta et al., 2003; Hendrixson and
161 DiRita, 2003).


162

163 **Cryo-EM analysis of the FliF RBM2 and RBM3**

164 The structures of FliF revealed a range of stoichiometries, from 32 to 34 for RBM3, and 21 or 22 for
165 RBM2, with an extra 11-12 RBM2 domains in a distinct orientation relative to RBM3, and facing
166 outward (Johnson et al., 2020). Subsequent structures of this protein in the intact basal body
167 demonstrated that the true stoichiometries are 34 and 23, respectively (Kawamoto et al., 2020; Johnson
168 et al., 2021). This prompted us to use cryo-EM to characterize the oligomeric constructs described
169 above, to confirm that they match the structure of the native FliF oligomer, and determine the
170 stoichiometry of the individual domains.

171 As shown on Figure 3a, the FliF construct encompassing RBM1, RBM2 and RBM3 (FliF₅₀₋₄₃₈) was
172 readily incorporated into ice, which allowed us to collect a cryo-EM dataset. Because of the high level
173 of aggregation (see above), we picked particles from this data manually, and used these to generate 2D
174 classes (Figure 3b). These 2D classes are highly similar to that of the MS ring in isolation, with density
175 for RBM2, RBM3 and the β -collar clearly visible (Figure 3c). Diffuse density below RBM2 is also
176 visible, and was also seen in 2D classes of the MS ring, corresponding to density for dynamic RBM1
177 domains.

178 While most particles were attributed to 2D classes corresponding to side-views of the complex, a subset
179 (~10 %) correspond to top views (Figure 3b, far right). Notably, in this class, we were able to clearly
180 identify a 33-fold symmetry (Figure S2a). This is in agreement with the structure of FliF in isolation,
181 reported previously (Johnson et al., 2020), where RBM3 adopted a 33-mer stoichiometry in the
182 majority of particles. Further work will be required to determine if our construct also adopts a range of
183 stoichiometries.

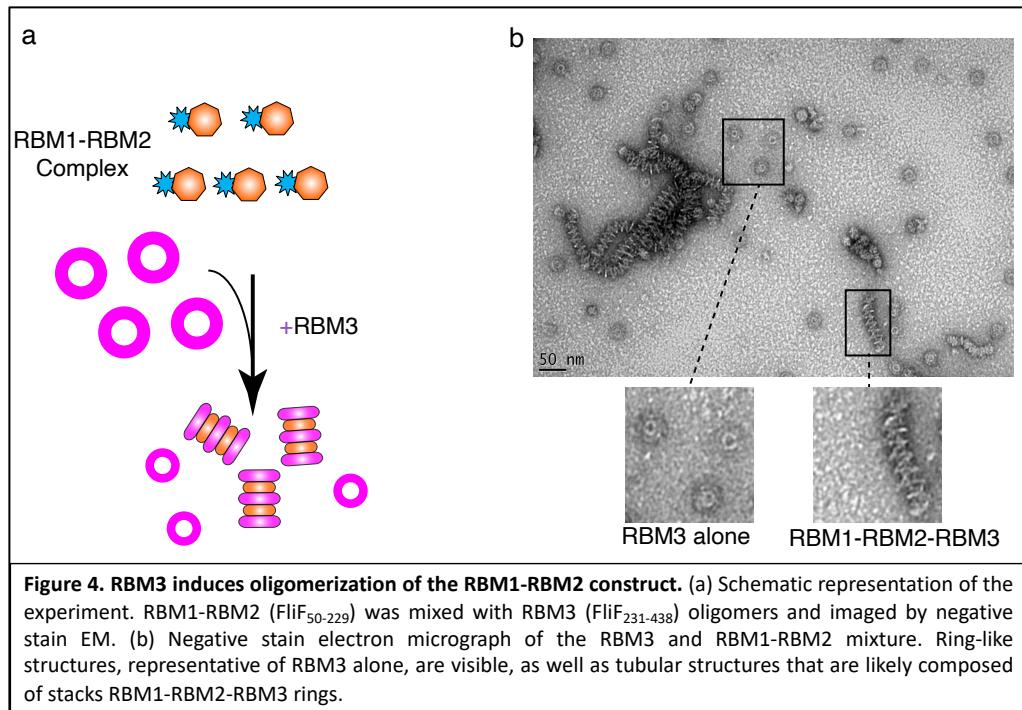
185 Next, we used cryo-EM to characterize the RBM2 (FliF₁₂₄₋₂₂₉) oligomer. This protein was also readily
186 incorporated into ice (Figure 3D), and we were able to collect a cryo-EM dataset. We attempted
187 automated particle picking using a range of tools, but only cryOLO(Wagner et al., 2019), was able to
188 pick both side and top views, in particular as the side views consisted of long aggregation of discs (see
189 above). Using these particles, we generated 2D classes in Relion (Scheres, 2012)(Figure 3e). These
190 confirmed that this protein has a pathological level of preferred orientation, with most particles visible
191 from the top of the ring, and very few tilted or side views, with the side views clustered together, as
192 seen in negative stain (see above). This precluded high-resolution structure determination, but allowed
193 us to exploit the top views to infer the symmetry of the particles.

194 In the intact FliF structure in isolation, RBM2 forms two rings: One inner ring with 21 subunits, and
195 one outer ring with 9 subunits. As shown on Figure 3f we can observe on these 2D classes clear density
196 for the 2 helices of RBM2, notably with a 23-fold symmetry (Figure S2b). Additional classification,
197 using a larger top-view dataset, would be required if this sample is heterogeneous and includes a range
198 of symmetries, as observed for the intact FliF. Nonetheless, this demonstrates that the oligomers
199 obtained for our RBM2 construct (FliF₁₂₄₋₂₂₉) correspond to the inner ring alone, and does not include
200 the outer ring.

201 Finally, we note that in the RBM2 (FliF₁₂₄₋₂₂₉) 2D classes, some density is visible in the centre of the
202 ring, which cannot be interpreted with the current structures of FliF. We propose that this density likely
203 corresponds to some undetermined chemical that was co-purified with the protein. Further work will
204 be necessary to determine the nature of this additional density.

205 Collectively, these observations confirm that the FliF trans-membrane helices are not required for it to
206 adopt its native MS-ring architecture. In addition, we show that the RBM2 of FliF adopts the 23-mer
207 inner ring conformation in isolation.

208
209
210 **RBM1 prevents the oligomerization of RBM2, and this effect is counteracted by RBM3.**
211 Previous work on the T3SS FliF homologue SctJ had shown that RBM2 self-oligomerizes, similarly
212 to FliF, but this oligomerization is repressed in the presence of RBM1 (Bergeron et al., 2015, 2018).
213 We therefore sought to verify if the RBM1 of FliF played a similar role. To that end, we engineered
214 FliF constructs that encompass both RBM1 and RBM2 (FliF₅₀₋₂₂₉). As shown on Figure 2a, size
215 exclusion chromatography analysis showed that the resulting proteins are strictly monomeric (Table
216 1). This suggests that RBM1 prevents RBM2 from oligomerizing on its own.


217 In order to determine how RBM1 could inhibit RBM2 domains to oligomerize, we first performed co-
218 evolution analysis to determine amino-acid residues that are potentially involved into the interaction
219 between RBM1 and RBM2, using RaptorX Complex Contact prediction server (Zeng et al., 2018). As
220 shown in Figure S3a, several regions of the protein, largely corresponding to the β -strand regions,
221 showed significant co-evolution scores. Next, we employed the HADDOCK docking server to model
222 the interaction between the two domains, using these residues as restraints in the docking process. This
223 led to a cluster of models with low energy score, and where the two domains have their β -sheet facing
224 each other (Figure S3b), in agreement with the co-evolution analysis. Furthermore, overlay of this
225 model onto the RBM2 23-mer structure has RBM1 in the position of an adjacent RBM2 molecule
226 (Figure S3c), providing a potential explanation of how the intramolecular contacts between RBM1 and
227 RBM2 sterically obstruct the RBM2 oligomerization. This is consistent with our observation that the
228 RBM2 oligomerization is inhibited in the context of the RBM1-RBM2 construct.

229

230 This effect mentioned above was observed in the context on a RBM1-RBM2 construct. This led to the
231 question of whether the addition of ectopic RBM1(FliF₅₀₋₁₂₄) onto assembled RBM2(FliF₁₂₄₋₂₂₉) rings
232 leads to their dissociation. To verify this, we titrated purified RBM1 (FliF₅₀₋₁₂₄) against oligomeric
233 RBM2 (FliF₁₂₄₋₂₂₉), and used ns-EM to investigate if the ectopic addition of RBM1 disrupts the RBM2
234 oligomers (see above). As shown on Figure S4, we observed no changes in the architecture or density
235 of the RBM2 (FliF₁₂₄₋₂₂₉) oligomers, even in large excess of RBM1 (FliF₅₀₋₁₂₄). This observation
236 demonstrates that once the RBM2 ring is formed, it can no longer be disrupted by RBM1, and suggests
237 that in the context of the RBM1-RBM2 (FliF₅₀₋₂₂₉) construct, RBM1 prevents RBM2 oligomerization
238 by binding to the ring oligomerization interface.

239 Given that RBM1-RBM2 (FliF₅₀₋₂₂₉) was shown to be strictly monomeric, whilst RBM1-RBM2-
240 RBM3 (FliF₅₀₋₄₃₈) assembles into the MS ring (Figure 2, Table 1), we further investigated whether
241 addition to RBM3 (FliF₂₃₁₋₄₃₈) would prompt RBM1-RBM2 (FliF₅₀₋₂₂₉) to oligomerize. To this end,
242 purified RBM1-RBM2 (FliF₅₀₋₂₂₉) and RBM3 (FliF₂₃₁₋₄₃₈) were mixed (Figure 4a), and ns-EM was
243 employed to test the formation of the intact MS ring. Surprisingly, while we observed presence of ring-
244 like structures formed by RBM3 (FliF₂₃₁₋₄₃₈) alone, we also observed the presence of long tubular
245 structures. These are distinct in appearance from the lines of discs observed for our RBM2 construct
246 (see Figure 2c), but also to the RBM1-RBM2-RBM3 oligomers (See Figure 2b). We therefore propose
247 that these tubular structures correspond to stacks of RBM1-RBM2 oligomers, induced and possibly
248 capped by RBM3. This would however require to be experimentally verified. Nonetheless, this

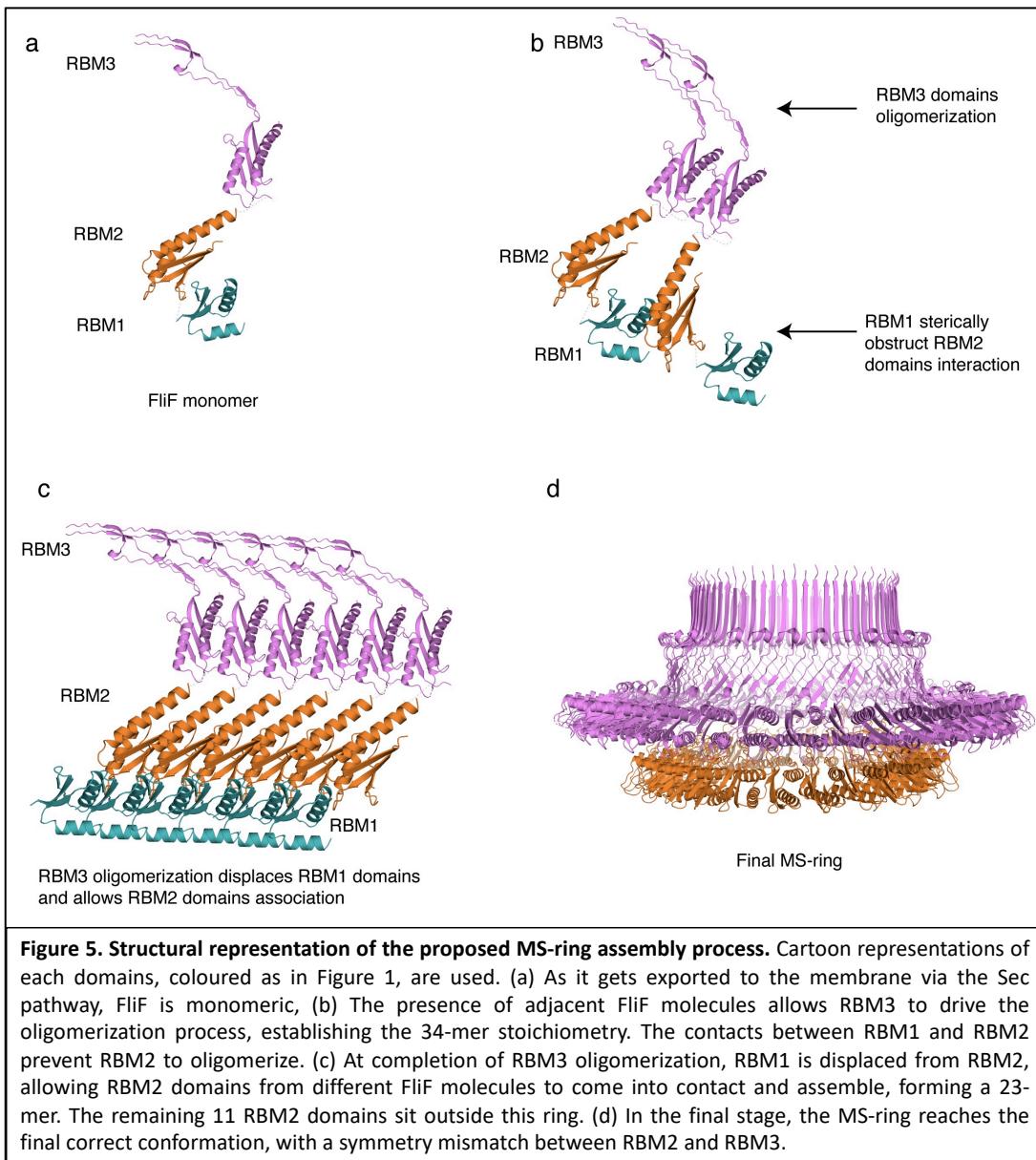
249 observation suggests that while RBM1-RBM2 exists as a monomer, addition of RBM3 is the
250 determinant factor that pushes towards assembly of FliF into an oligomeric state.
251 Collectively, these results suggest an intricate set of interactions between the different FliF domains,
252 with RBM1 binding to RBM2 to prevents its oligomerization, and RBM3 acting to prevent this
253 interaction.

254
255

256 3 Discussion:

257 The MS-ring assembly is one of the first steps that occur during biogenesis of the flagellum (Minamino
258 et al., 2008). The MS-ring then functions as a scaffold to recruit the C-ring through the interaction of
259 FliF with FliG (Li and Sourjik, 2011; Morimoto et al., 2014) and the export apparatus (Minamino et
260 al., 2008; Minamino and Imada, 2015; Nakamura and Minamino, 2019). Despite this central role, the
261 process and regulation underlying the MS-ring folding remain unknown. A deeper understanding of
262 FliF folding process has become increasingly important in light of the recent structural studies that
263 have reported the existence of distinct symmetries within the MS-ring, which could serve multiple
264 functions (Johnson et al., 2020, 2021; Kawamoto et al., 2020; Takekawa et al., 2021)

265 Indeed recent structural analyses have highlighted that the MS-ring symmetry can adopt a range of
266 oligomeric states, with a mis-matched symmetry between RBM2 and RBM3 (Johnson et al., 2020).
267 Whilst initially this had shown that RBM3 adopts a range of stoichiometries that range from 32 to 34


268 subunits, and that RBM2 forms either 21 or 22-mers (Johnson et al., 2020), in subsequent studies it
269 was consistently observed that RBM3 is a 34-mer and RBM2 is a 23-mer (Kawamoto et al., 2020;
270 Johnson et al., 2021). The symmetry mis-match between RBM2 and RBM3, together with the different
271 symmetries detected in the existing studies suggests the existence of a complex process that regulates
272 the folding and biogenesis of the MS-ring. In this study we aimed to determine the mechanism
273 underlining the complex folding of FliF, by analysis the oligomeric state of the different domains of
274 FliF.

275 Here we showed that in a construct encompassing FliF RBM1, RBM2 and RBM3 is able to assemble
276 to form MS-rings, wherein RBM3 displays a 33-mer stoichiometry. Additionally, our data showed that
277 RBM2 is able to form rings with a 23-mer stoichiometry. These correspond to the main stoichiometry
278 observed for FliF in isolation. Conversely, we observed that a construct encompassing RBM1-RBM2-
279 RBM3 (HpFliF₅₁₋₄₂₇) from *H. pylori* yields a monomeric protein. These findings are in agreement with
280 what was observed for FliF in *A. aeolicus* and suggest the existence of a different regulation of the MS-
281 ring assembly for non-peritrichous organisms (Takekawa et al., 2021).

282

283 Indeed, our data demonstrates that constructs encompassing RBM1 and RBM2 are monomeric,
284 conversely to what consisting of only RBM2. Since the addition of RBM1 to already formed RBM2
285 rings did not show any changes, we propose that RBM1 prevents the RBM2 oligomerization by binding
286 to, and thus occluding, its oligomerization interface. Additionally, we also have shown that addition of
287 RBM3 to monomeric RBM1-RBM2 caused formation of tubular structures, which we attributed to
288 stacked rings formed by RBM1-RBM2-RBM3. This in turns suggests that RBM3 interacts with the
289 RBM1-RBM2 construct in a way that dislodges RBM1, and allows RBM2 to oligomerize.

290 Based on this, we propose the following mechanism for MS ring assembly: Upon membrane insertion
291 by the SEC pathway, FliF is a monomer; the interaction between RBM1 and the oligomerization
292 interface on RBM2 retains FliF in a monomeric state (Figure 5a). Next, while RBM1 still prevents
293 RBM2 molecules from associating, RBM3 oligomerization initiates (Figure 5b), imposing an overall
294 34-mer to the complex. Assembled RBM3 rings can subsequently disrupt RBM1 from RBM2
295 oligomerization interface, and RBM2 rings start forming (Figure 5c). These form 23-mer rings, but
296 because the overall stoichiometry is imposed by the initial RBM3 oligomerization, 11 RBM2 domains
297 are left on the outside. Therefore, we propose that the role of RBM1-mediated inhibition of RBM2
298 oligomerization in the FliF assembly process allows RBM3 rings to form and drive the MS-ring
299 biogenesis process, determining the right stoichiometry for all the sub-assemblies. This leads to the
300 formation of the intact MS-ring, with its symmetry mis-match between RBM2 and RBM3.

301

302

303 The concept that the three periplasmic domains RBM1-RBM2-RBM3 of FliF might provide regulation
304 of its oligomerization, thus guaranteeing the right stoichiometry of the MS-ring and the consequent
305 correct assembly of the basal body is not foreign. Indeed a similar regulation has been proposed in the
306 evolutionarily-related T3SS secretion apparatus (Yip et al., 2005; Bergeron et al., 2015, 2018;
307 Bergeron, 2016). There, the proposed model suggests that the SctJ linker between RBM1 and RBM2
308 interacts with RBM1 with hydrophobic interaction, keeping SctJ in a monomeric state (Bergeron et al.,
309 2015, 2018). Upon dissociation of the linker region from RBM1, SctJ subunits can associate establish
310 a series of interactions between their respective RBM1-RBM2 domains, as well as the linker region
311 state (Bergeron et al., 2015, 2018). SctD molecules subsequently insert between two adjacent SctJ

312 subunits, and SctJ-SctD heterodimers can finally oligomerize to form the finalized rings (Bergeron et
313 al., 2015, 2018). Our data show that whilst RBM1 and RBM3 can provide regulation of RBM2
314 oligomerization, it appears that the process is opposite to what observed in SctJ.

315 It is worth to note that while for SctJ the regulation role was pin-pointed to the linker region, in our
316 case the FliF RBM1 region we used in our study encompassed both RBM1 and the linker between
317 RBM1 and RBM2 and thus, further work will be needed to determine whether the inhibition of RBM2
318 oligomerization is determined by RBM1 or its linker. Nevertheless our data demonstrate that the initial
319 RBM1-RBM2 interaction and the timely formation of RBM3 rings are fundamental steps that lead to
320 the correct assembly of the MS-ring.

321

322 The biogenesis of the flagellum is a hierarchical process that initiated with the insertion of the Type III
323 export apparatus and the assembly of the MS-ring. The remaining flagellar components are then
324 secreted through the export apparatus to build up the final flagellar structure (Yonekura et al., 2002;
325 Macnab, 2003). The levels of regulation of this process are complex, relying on the hierarchical and
326 timely transcription of the distinct components of the flagellum, which are transcribed in different
327 groups according to their role in the flagellar structure (Kutsukake et al., 1990; Dasgupta et al., 2003).
328 In a similar fashion, it is possible to speculate that RBM1 and RBM3 -mediated control over the
329 oligomerization and assembly of the MS-ring will provide an additional level of complexity to the
330 flagellum biogenesis.

331 Several studies have shown that the regulation process involves different factors between peritrichous
332 and polar flagella. Namely, FlhF and FlhG are not present in *E. coli* and *S. typhimurium* but are
333 necessary for flagellar synthesis and localisation in a number of species (Pandza et al., 2000;
334 Hendrixson and DiRita, 2003; Niehus et al., 2004; Kusumoto et al., 2008; Schuhmacher et al., 2015a).
335 Interestingly, FlhF and FlhG were found to antagonistically influence the levels of expression of the
336 distinct groups of genes involved in flagellum synthesis (Dasgupta et al., 2003; Hendrixson and DiRita,
337 2003). It is also noteworthy that in some species carrying FlhF and FlhG, FliF was found to remain in
338 a monomeric state *in vitro* and oligomerization occurred only in presence of FlhF and FliG (Terashima
339 et al., 2020). In this study we reported that FliF in *H.pylori* exists in a monomeric state *in vitro*, in
340 accordance to what also observed for FliF in *A. aeolicus* (Takekawa et al., 2021). Given the non-
341 peritrichous nature of the flagella of these two organisms, it is possible to speculate that they may also
342 require FlhF and FlhG to trigger FliF oligomerization and it will require further investigation.

343 Conversely, in *S. typhimurium* it has been shown that FliF can oligomerize spontaneously (Minamino
344 et al., 2008; Johnson et al., 2020). These observations underline that different, multi-faceted

345 mechanisms of regulations exist for correct assembly of the flagellar machinery between species and
346 that control of FliF oligomerization in *S. tiphymurium*, provided by FliF own domains, adds a new
347 level of complexity to the modulation of the flagellum biosynthesis. Ultimately, characterization of
348 the differences in the assembly of the flagellum between species will provide a better understanding of
349 the molecular elements that determine regulation of the flagellum

350

351

352 **4 Material and Methods**

353 **Protein expression and purification**

354 The gene coding for *FliF* encompassing RBM1, RBM2 and RBM3 (*FliF*₅₀₋₄₃₈) was synthesized (Bio
355 Basic), and cloned into the pET-28a vector, to include with a Thrombin-cleavable N-terminal His₆ tag.
356 Other *FliF* constructs (see figure 1b) were generated by site-directed mutagenesis, using the
357 aforementioned construct as a template.

358 For protein over-expression, the corresponding plasmids were transformed into *Escherichia coli* BL21
359 DE3 cells and grown at 25°C at 160 rpm overnight in ZYM-5052 auto-induction media (1% Tryptone,
360 0.5%Yeast Extract, 25 mM Na₂HPO₄, 25 mM KH₂PO₄, 50 mM NH₄Cl, 5 mM Na₂SO₄, 2 mM MgSO₄,
361 0.5% glycerol, 0.05% glucose, 0.2% α-lactose) for 16h. Following induction, cells were centrifuged at
362 5000 x g and pellets resuspended in buffer A containing 50 mM Hepes pH 8.0, 500 mM NaCl, 20 mM
363 imidazole. Cells were lysed by sonication following addition of cOmplete™ EDTA-free protease
364 inhibitor (Sigma) and debris removed by centrifugation at 14,000 x g for 45 min. The cleared
365 supernatant was applied onto a 5 ml ml HisPure™ Ni-NTA resin (Thermo Scientific) gravity-based
366 column equilibrated with 10 column volumes of buffer A. Proteins were eluted with a 2 step-gradient
367 elution containing 50 mM and 500 mM imidazole, respectively. Fractions containing purified *FliF*
368 RBM2 (*FliF*₁₂₄₋₂₂₉) were further purified by size exclusion chromatography using a Superdex 200
369 10/300 column (GE Healthcare) in a buffer containing 50 mM Hepes pH 9.0, 500 mM NaCl. Purified
370 *FliF* RBM1-RBM2 (*FliF*₅₀₋₂₂₉) and RBM3 (*FliF*₂₃₁₋₄₃₈) were applied to a Superdex 200 10/300 column
371 and to a Superose 6 10/300 column (GE Healthcare), respectively, in a buffer containing 50 mM Hepes
372 pH 8.0, 500 mM NaCl.

373

374 **SEC-MALS analysis**

375 Sample were run through a standard bore, 5 μ 300 \AA SEC column (Wyatt), using an infinityII HPLC
376 (Agilent), in buffer containing 20 mM HEPES pH 7.0, 150 mM NaCl, 1 mM DTT. MALS and DRI
377 data were obtained using the DAWN and Optilab detectors, respectively (Wyatt), and analyzed with
378 the Dynamics software (Wyatt) to determine the molecular mass.

379

380 **Negative-stain grid preparation and EM data acquisition**

381 For negative-stain EM experiment, 5 μ l of purified protein, at a concentration of 0.2 mg/mL were
382 applied onto glow-discharged carbon-coated copper grids, and incubated at 20C for 2 min. The grids
383 were then washed in deionized water, and incubated with 1% Uranyl Formate for 30 sec. For the
384 titration experiment in Figure 4, FliF RBM1-RBM2 (FliF₅₀₋₂₂₉) and RBM3(FliF₂₃₁₋₄₃₈) were mixed at
385 1:1 ratio. For the titration experiment in Figure S2, RBM2 (FliF₁₂₄₋₂₂₉) was kept at a constant
386 concentration of 0.2 mg/mL, while RBM1(FliF₅₀₋₁₂₄) was added at different ratios.

387 Images were acquired on a Technai T12 Spirit TEM (Thermo Fisher) equipped with an Orius SC-1000
388 camera (Gatan). For FliF RBM2 (FliF₁₂₄₋₂₂₉) domain, images were acquired at a 49k magnification
389 with a defocus range of $-0.5 \mu\text{m}$ to $-1.0 \mu\text{m}$. For FliF RBM3 (FliF₂₃₁₋₄₃₈) domain, images were acquired
390 at a 30k magnification with a defocus range of $-0.5 \mu\text{m}$ to $-1.0 \mu\text{m}$.

391

392 **Cryo-EM grid preparation, data collection and data processing**

393 5 μ l of protein at a concentration of 10 mg/mL, in 50 mM Hepes (pH 9.0), 150 mM NaCl, was applied
394 onto glow-discharged 300 mesh Quantifoil R1.2/1.3 grids. Grids were then blotted for 10 s at 80%
395 humidity ,and plunged into liquid ethane, using a Leica EM-GP plunge freezer.

396 For RBM2 (FliF₁₂₄₋₂₂₉), micrographs were collected on a 300 kV Titan Krios microscope equipped
397 with a Gatan K3 camera. 10053 movies were recorded with a pixel size of 0.85 \AA with an exposure of
398 1 $\text{e}^-/\text{\AA}^2/\text{frame}$ for 40-50 frames. For RBM1-RBM2-RBM3(FliF₅₀₋₄₃₈), micrographs were collected on
399 a 200 kV Tecnai Arctica equipped with a Falcon 3 camera. A total of 2540 movies were collected using
400 a pixel size of 2.03 \AA and an exposure of 0.8 $\text{e}^-/\text{\AA}^2/\text{frame}$ over 50 frames.

401 Data processing was performed in RELION 3.1(Scheres, 2020). Motion correction was performed with
402 MotionCor2 (Zheng et al., 2017). CTF parameters were estimated with CTFFIND4(Rohou and
403 Grigorieff, 2015). For RBM2 (FliF₁₂₄₋₂₂₉), 2000 micrographs were manually picked and used for
404 training a model for particle picking in crYOLO 1.5 (Wagner et al., 2019). Trained model was then
405 used for automated particle picking for the whole dataset and box files were imported on RELION 3.1
406 for particle extraction. A total of ~ 2000000 particles were extracted with a 230 pixels box. Extracted
407 particle were subjected to multiple rounds of 2D classification to filter top views that allowed

408 evaluation of symmetry. For RBM1-RBM2-RBM3 (FliF₅₀₋₄₃₈), automated picking was instead
409 performed within RELION 3.1 and a total of 129.000 particles were extracted with a box size of 220
410 pixel.

411 **Sequence analysis and model docking**

412 The co-evolution analysis between RBM1 (FliF₅₀₋₁₂₄), and RBM2 (FliF₁₂₄₋₂₂₉) was performed with the
413 RaptorX Complex Contact prediction server (Zeng et al., 2018), using default parameters. To model
414 the interaction between RBM1 (FliF₅₀₋₁₂₄), and RBM2 (FliF₁₂₄₋₂₂₉) based on the co-evolution data, we
415 first generated a homology model of the *S. typhimurium* RBM1, based on the *A. aeolicus* RBM1-RBM2
416 crystal structure (PDB ID: 7CIK). We then employed the HADDOCK 2.4 server to predict the structure
417 of a complex formed between this homology model and the RBM2 structure (from PDB ID 6SD4),
418 with all the co-evolving residues with a score above 0.4 included as active residues in the interaction.
419 200 decoys were modelled, which could be classified in 10 clusters, three of which were very similar,
420 with identical interaction interfaces and RMSD < 4A. These included the lowest-energy model, and
421 combined represented 55 decoys, suggesting that it is likely close to the real complex structure.

422

423

424 **Acknowledgements:**

425 This work was funded by a UBC Centre for Blood Research Post-doctoral transition award, and by a
426 UK Biotechnology and Biological Sciences Research Council (BBSRC) grant (BB/R009759/1), both
427 to JRCB. Cryo-EM data was collected at the UK national Electron Bio-Imaging centre (eBIC), proposal
428 EM19709-1, and at the University of Sheffield FoS Electron Microscopy Facility. We are grateful to
429 Prof. Natalie Strynadka for use of her laboratory at the initial stage of the project, and to Prof. Susan
430 Lea, Dr Emily Furlong and Dr Steven Johnson for useful discussion on the FliF symmetry. We thank
431 John Hall (Wyatt) for assistance with the SEC-MALS data collection and analysis.

432

433

434 **Author contribution:**

435 RFR and JR cloned the various constructs; GM, RFR, SB, WZ, and JR purified the proteins; GM and
436 RFR performed the negative-stain EM and cryo-EM analyses, and processed the cryo-EM data, with
437 help from ST; JRCB conceptualized the project. GM and JB wrote the manuscript, with contributions
438 from all authors.

439 Berg, H. C. (2003). The Rotary Motor of Bacterial Flagella. *Annu. Rev. Biochem.* 72, 19–54.
440 doi:10.1146/annurev.biochem.72.121801.161737.

441 Bergeron, J. R. (2016). Structural modeling of the flagellum MS ring protein FliF reveals similarities
442 to the type III secretion system and sporulation complex. *PeerJ* 4. doi:10.7717/peerj.1718.

443 Bergeron, J. R. C., Brockerman, J. A., Vuckovic, M., Deng, W., Okon, M., Finlay, B. B., et al. (2018).
444 Characterization of the two conformations adopted by the T3SS inner-membrane protein PrgK.
445 *Protein Sci. Publ. Protein Soc.* 27, 1680–1691. doi:10.1002/pro.3447.

446 Bergeron, J. R. C., Worrall, L. J., De, S., Sgourakis, N. G., Cheung, A. H., Lameignere, E., et al. (2015).
447 The Modular Structure of the Inner-Membrane Ring Component PrgK Facilitates Assembly of
448 the Type III Secretion System Basal Body. *Structure* 23, 161–172.
449 doi:10.1016/j.str.2014.10.021.

450 Dasgupta, N., Wolfgang, M. C., Goodman, A. L., Arora, S. K., Jyot, J., Lory, S., et al. (2003). A four-
451 tiered transcriptional regulatory circuit controls flagellar biogenesis in *Pseudomonas*
452 *aeruginosa*. *Mol. Microbiol.* 50, 809–824. doi:10.1046/j.1365-2958.2003.03740.x.

453 Duan, Q., Zhou, M., Zhu, L., and Zhu, G. (2013). Flagella and bacterial pathogenicity. *J. Basic*
454 *Microbiol.* 53, 1–8. doi:<https://doi.org/10.1002/jobm.201100335>.

455 Green, J. C. D., Kahramanoglou, C., Rahman, A., Pender, A. M. C., Charbonnel, N., and Fraser, G. M.
456 (2009). Recruitment of the Earliest Component of the Bacterial Flagellum to the Old Cell
457 Division Pole by a Membrane-Associated Signal Recognition Particle Family GTP-Binding
458 Protein. *J. Mol. Biol.* 391, 679–690. doi:10.1016/j.jmb.2009.05.075.

459 Hendrixson, D. R., and DiRita, V. J. (2003). Transcription of sigma54-dependent but not sigma28-
460 dependent flagellar genes in *Campylobacter jejuni* is associated with formation of the flagellar
461 secretory apparatus. *Mol. Microbiol.* 50, 687–702. doi:10.1046/j.1365-2958.2003.03731.x.

462 Johnson, S., Fong, Y. H., Deme, J. C., Furlong, E. J., Kuhlen, L., and Lea, S. M. (2020). Symmetry
463 mismatch in the MS-ring of the bacterial flagellar rotor explains the structural coordination of
464 secretion and rotation. *Nat. Microbiol.* 5, 966–975. doi:10.1038/s41564-020-0703-3.

465 Johnson, S., Furlong, E. J., Deme, J. C., Nord, A. L., Caesar, J. J. E., Chevance, F. F. V., et al. (2021).
466 Molecular structure of the intact bacterial flagellar basal body. *Nat. Microbiol.* 6, 712–721.
467 doi:10.1038/s41564-021-00895-y.

468 Kawamoto, A., Miyata, T., Makino, F., Kinoshita, M., Minamino, T., Imada, K., et al. (2020). Native
469 structure of flagellar MS ring is formed by 34 subunits with 23-fold and 11-fold subsymmetries.
470 *bioRxiv*, 2020.10.11.334888. doi:10.1101/2020.10.11.334888.

471 Kawamoto, A., and Namba, K. (2017). Structural Study of the Bacterial Flagellar Basal Body by
472 Electron Cryomicroscopy and Image Analysis. *Methods Mol. Biol. Clifton NJ* 1593, 119–131.
473 doi:10.1007/978-1-4939-6927-2_9.

474 Kazmierczak, B. I., and Hendrixson, D. R. (2013). Spatial and numerical regulation of flagellar
475 biosynthesis in polarly flagellated bacteria. *Mol. Microbiol.* 88, 655–663.
476 doi:10.1111/mmi.12221.

477 Kojima, S., Terashima, H., and Homma, M. (2020). Regulation of the Single Polar Flagellar
478 Biogenesis. *Biomolecules* 10. doi:10.3390/biom10040533.

479 Kubori, T., Shimamoto, N., Yamaguchi, S., Namba, K., and Aizawa, S. (1992). Morphological
480 pathway of flagellar assembly in *Salmonella typhimurium*. *J. Mol. Biol.* 226, 433–446.
481 doi:10.1016/0022-2836(92)90958-m.

482 Kusumoto, A., Shinohara, A., Terashima, H., Kojima, S., Yakushi, T., and Homma, M. (2008).
483 Collaboration of FlhF and FlhG to regulate polar-flagella number and localization in *Vibrio*
484 *alginolyticus*. *Microbiol. Read. Engl.* 154, 1390–1399. doi:10.1099/mic.0.2007/012641-0.

485 Kutsukake, K., Ohya, Y., and Iino, T. (1990). Transcriptional analysis of the flagellar regulon of
486 *Salmonella typhimurium*. *J. Bacteriol.* 172, 741–747. doi:10.1128/jb.172.2.741-747.1990.

487 Levenson, R., Zhou, H., and Dahlquist, F. W. (2012). Structural insights into the interaction between
488 the bacterial flagellar motor proteins FliF and FliG. *Biochemistry* 51, 5052–5060.
489 doi:10.1021/bi3004582.

490 Li, H., and Sourjik, V. (2011). Assembly and stability of flagellar motor in *Escherichia coli*. *Mol.*
491 *Microbiol.* 80, 886–899. doi:10.1111/j.1365-2958.2011.07557.x.

492 Li, N., Kojima, S., and Homma, M. (2011). Sodium-driven motor of the polar flagellum in marine
493 bacteria *Vibrio*. *Genes Cells* 16, 985–999. doi:<https://doi.org/10.1111/j.1365-2443.2011.01545.x>.

495 Macnab, R. M. (2003). How bacteria assemble flagella. *Annu. Rev. Microbiol.* 57, 77–100.
496 doi:[10.1146/annurev.micro.57.030502.090832](https://doi.org/10.1146/annurev.micro.57.030502.090832).

497 Minamino, T., and Imada, K. (2015). The bacterial flagellar motor and its structural diversity. *Trends
498 Microbiol.* 23, 267–274. doi:[10.1016/j.tim.2014.12.011](https://doi.org/10.1016/j.tim.2014.12.011).

499 Minamino, T., Imada, K., and Namba, K. (2008). Molecular motors of the bacterial flagella. *Curr.
500 Opin. Struct. Biol.* 18, 693–701. doi:[10.1016/j.sbi.2008.09.006](https://doi.org/10.1016/j.sbi.2008.09.006).

501 Morimoto, Y. V., Ito, M., Hiraoka, K. D., Che, Y.-S., Bai, F., Kami-Ike, N., et al. (2014). Assembly
502 and stoichiometry of FliF and FlhA in *Salmonella* flagellar basal body. *Mol. Microbiol.* 91,
503 1214–1226. doi:[10.1111/mmi.12529](https://doi.org/10.1111/mmi.12529).

504 Morimoto, Y. V., and Minamino, T. (2014). Structure and function of the bi-directional bacterial
505 flagellar motor. *Biomolecules* 4, 217–234. doi:[10.3390/biom4010217](https://doi.org/10.3390/biom4010217).

506 Nakamura, S., and Minamino, T. (2019). Flagella-Driven Motility of Bacteria. *Biomolecules* 9.
507 doi:[10.3390/biom9070279](https://doi.org/10.3390/biom9070279).

508 Niehus, E., Gressmann, H., Ye, F., Schlapbach, R., Dehio, M., Dehio, C., et al. (2004). Genome-wide
509 analysis of transcriptional hierarchy and feedback regulation in the flagellar system of
510 *Helicobacter pylori*. *Mol. Microbiol.* 52, 947–961. doi:[10.1111/j.1365-2958.2004.04006.x](https://doi.org/10.1111/j.1365-2958.2004.04006.x).

511 Pandza, S., Baetens, M., Park, C. H., Au, T., Keyhan, M., and Matin, A. (2000). The G-protein FlhF
512 has a role in polar flagellar placement and general stress response induction in *Pseudomonas
513 putida*. *Mol. Microbiol.* 36, 414–423. doi:[10.1046/j.1365-2958.2000.01859.x](https://doi.org/10.1046/j.1365-2958.2000.01859.x).

514 Rohou, A., and Grigorieff, N. (2015). CTFFIND4: Fast and accurate defocus estimation from electron
515 micrographs. *J. Struct. Biol.* 192, 216–221. doi:[10.1016/j.jsb.2015.08.008](https://doi.org/10.1016/j.jsb.2015.08.008).

516 Scheres, S. H. W. (2012). RELION: Implementation of a Bayesian approach to cryo-EM structure
517 determination. *J. Struct. Biol.* 180, 519–530. doi:[10.1016/j.jsb.2012.09.006](https://doi.org/10.1016/j.jsb.2012.09.006).

518 Scheres, S. H. W. (2020). Amyloid structure determination in RELION-3.1. *Acta Crystallogr. Sect.
519 Struct. Biol.* 76, 94–101. doi:10.1107/S2059798319016577.

520 Schuhmacher, J. S., Rossmann, F., Dempwolff, F., Knauer, C., Altegoer, F., Steinchen, W., et al.
521 (2015a). MinD-like ATPase FlhG effects location and number of bacterial flagella during C-
522 ring assembly. *Proc. Natl. Acad. Sci.* 112, 3092–3097. doi:10.1073/pnas.1419388112.

523 Schuhmacher, J. S., Thormann, K. M., and Bange, G. (2015b). How bacteria maintain location and
524 number of flagella? *FEMS Microbiol. Rev.* 39, 812–822. doi:10.1093/femsre/fuv034.

525 Spreter, T., Yip, C. K., Sanowar, S., André, I., Kimbrough, T. G., Vuckovic, M., et al. (2009). A
526 conserved structural motif mediates formation of the periplasmic rings in the Type III Secretion
527 System. *Nat. Struct. Mol. Biol.* 16, 468–476. doi:10.1038/nsmb.1603.

528 Suzuki, H., Yonekura, K., and Namba, K. (2004). Structure of the rotor of the bacterial flagellar motor
529 revealed by electron cryomicroscopy and single-particle image analysis. *J. Mol. Biol.* 337, 105–
530 113. doi:10.1016/j.jmb.2004.01.034.

531 Takekawa, N., Kawamoto, A., Sakuma, M., Kato, T., Kojima, S., Kinoshita, M., et al. (2021). Two
532 Distinct Conformations in 34 FliF Subunits Generate Three Different Symmetries within the
533 Flagellar MS-Ring. *mBio* 12. doi:10.1128/mBio.03199-20.

534 Terashima, H., Hirano, K., Inoue, Y., Tokano, T., Kawamoto, A., Kato, T., et al. (2020). Assembly
535 mechanism of a supramolecular MS-ring complex to initiate bacterial flagellar biogenesis in
536 Vibrio species. *J. Bacteriol.* doi:10.1128/JB.00236-20.

537 Wagner, T., Merino, F., Stabrin, M., Moriya, T., Antoni, C., Apelbaum, A., et al. (2019). SPHIRE-
538 crYOLO is a fast and accurate fully automated particle picker for cryo-EM. *Commun. Biol.* 2,
539 1–13. doi:10.1038/s42003-019-0437-z.

540 Yip, C. K., Kimbrough, T. G., Felise, H. B., Vuckovic, M., Thomas, N. A., Pfuetzner, R. A., et al.
541 (2005). Structural characterization of the molecular platform for type III secretion system
542 assembly. *Nature* 435, 702–707. doi:10.1038/nature03554.

543 Yonekura, K., Maki-Yonekura, S., and Namba, K. (2002). Growth mechanism of the bacterial flagellar
544 filament. *Res. Microbiol.* 153, 191–197. doi:10.1016/s0923-2508(02)01308-6.

545 Zeng, H., Wang, S., Zhou, T., Zhao, F., Li, X., Wu, Q., et al. (2018). ComplexContact: a web server
546 for inter-protein contact prediction using deep learning. *Nucleic Acids Res.* 46, W432–W437.
547 doi:10.1093/nar/gky420.

548 Zeytuni, N., Hong, C., Flanagan, K. A., Worrall, L. J., Theiltges, K. A., Vuckovic, M., et al. (2017).
549 Near-atomic resolution cryoelectron microscopy structure of the 30-fold homooligomeric
550 SpoIIIAG channel essential to spore formation in *Bacillus subtilis*. *Proc. Natl. Acad. Sci. U. S.*
551 *A.* 114, E7073–E7081. doi:10.1073/pnas.1704310114.

552 Zheng, S. Q., Palovcak, E., Armache, J.-P., Verba, K. A., Cheng, Y., and Agard, D. A. (2017).
553 MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron
554 microscopy. *Nat. Methods* 14, 331–332. doi:10.1038/nmeth.4193.

555