

1 **A phylogenetically-restricted essential cell cycle progression factor in the**
2 **human pathogen *Candida albicans***
3
4

5 Priya Jaityl¹, Mélanie Legrand², Abhijit Das^{1†}, Tejas Patel^{1†}, Murielle Chauvel², Christophe
6 d'Enfert^{2*} and Kaustuv Sanyal^{1, 3*}
7
8

9 ¹Molecular Mycology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru
10 Centre for Advanced Scientific Research, Bangalore, India.

11 ² Institut Pasteur, Université de Paris, INRAE, USC2019, Unité Biologie et Pathogénicité
12 Fongiques, F-75015 Paris, France.

13 ³Osaka University, Suita, Osaka, Japan.

14
15
16 * Corresponding authors. Email: christophe.denfert@pasteur.fr, sanyal@jncasr.ac.in
17 † These authors contributed equally to this work.

33 **Abstract**

34

35 Chromosomal instability in fungal pathogens caused by cell division errors is associated with
36 antifungal drug resistance. To identify mechanisms underlying such instability and to uncover
37 new potential antifungal targets, we conducted an overexpression screen monitoring chromosomal
38 stability in the human fungal pathogen *Candida albicans*. Analysis of ~1000 genes uncovered six
39 chromosomal stability (*CSA*) genes, five of which are related to cell division genes in other
40 organisms. The sixth gene, *CSA6*, is selectively present in the CUG-Ser clade species that
41 includes *C. albicans* and other human fungal pathogens. The protein encoded by *CSA6* localizes
42 to the spindle pole bodies, is required for exit from mitosis, and induces a checkpoint-dependent
43 metaphase arrest upon overexpression. Together, Csa6 defines an essential CUG-Ser fungal
44 clade-specific cell cycle progression factor, highlighting the existence of phylogenetically-
45 restricted cell division genes which may serve as potential unique therapeutic targets.

46

47 **Teaser**

48

49 Csa6 is essential for mitotic progression and mitotic exit in the human fungal pathogen *Candida*
50 *albicans*.

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67 **Introduction**

68

69 Cell division is a fundamental aspect of all living organisms, required to support growth,
70 reproduction and replenishment of dead or damaged cells. The primary objective of cell division
71 is to ensure genome stability by preserving and transferring the genetic material with high-fidelity
72 into progeny. Genome stability is achieved by proper execution of key cell cycle events such as
73 chromosome duplication at the S phase followed by equal segregation of the duplicated
74 chromosomes at the M phase. In addition, various cell cycle checkpoints monitor the integrity and
75 fidelity of cell cycle events in response to an error or any damage until rectified or repaired.
76 Failure of any of the error-correcting mechanisms can introduce genetic alterations, causing
77 genomic instability in progeny. Genome instability can occur as a consequence of either point
78 mutations, insertions or deletions of bases in specific genes and/or gain, loss or rearrangements of
79 chromosomes, collectively referred to as chromosome instability (CIN) (1). CIN has been
80 intimately associated with aneuploidy (2) and is one of the potential drivers of human genetic and
81 neurodegenerative disorders (3, 4), aging (5) and several cancers (6). While considered harmful
82 for a cell or an organism, CIN may also contribute to generating variations and help in driving
83 evolution, especially in unicellular primarily asexual eukaryotes (7, 8).

84

85 The current understanding of the mechanisms underlying genome stability has evolved through
86 studies in a range of biological systems from unicellular yeasts to more complex metazoa
87 including humans. These studies highlighted concerted actions of genes involved in (a) high-
88 fidelity DNA replication and DNA damage repair, (b) efficient segregation of chromosomes and
89 (c) error-correcting cellular surveillance machinery (9, 10) in maintenance and inheritance of a
90 stable genome. In recent years, large-scale screenings of loss-of-function (11), reduction-of-
91 function (12) and overexpression (13-16) mutant collections in the budding yeast *Saccharomyces*
92 *cerevisiae* have appended the list of genome stability-regulators by identifying uncharacterized
93 proteins as well as known proteins with functions in other cellular processes. However,
94 considering the vast diversity of the chromosomal segregation mechanisms in eukaryotes, it is
95 conceivable that many genes involved in genome maintenance are yet to be discovered and
96 require additional screens in a wide range of organisms for their identification. While perturbation
97 of a candidate gene's function to decipher its role in a cellular pathway has been a classical
98 strategy in biological research, screening of strain collections aids in uncovering molecular
99 players and cellular pathways in an unbiased manner.

100

101 The ascomycetous yeast *Candida albicans* is emerging as an attractive unicellular model for
102 studying eukaryotic genome biology (17). *C. albicans*, a commensal of both the gastrointestinal
103 and genital tracts, remains the most frequently isolated fungal species worldwide from the
104 patients diagnosed with candidemia or other nosocomial *Candida* infections (18, 19). The diploid
105 genome of *C. albicans* shows remarkable plasticity in terms of ploidy, single nucleotide
106 polymorphism (SNP), loss of heterozygosity (LOH), copy number variations, and CIN events (17,
107 20). Although LOH can be detected on all the chromosomes of *C. albicans*, the presence of
108 recessive lethal or deleterious alleles on some haplotypes (17), prevents one of the haplotypes or
109 even a part of it from existing in the homozygous state. In particular, this homozygous bias has
110 been observed for chromosomes R (ChR), 2 (Ch2), 4 (Ch4), 6 (Ch6) and 7 (Ch7) (21, 22). LOH
111 and aneuploidy-driven CIN has serious phenotypic consequences in *C. albicans* such as
112 conferring resistance to antifungals (23-28) or help *C. albicans* adapt to different host niches (29-
113 31). Whether genome plasticity is contributing to the success of *C. albicans* as a commensal
114 or/and a dreaded pathogen of humans, remains an enigma (17). Nevertheless, with increasing
115 instances of *Candida* infections and emerging antifungal resistance, there is an immediate need to
116 identify novel fungus-specific molecular targets that may aid the development of antifungal
117 therapies. In addition, the remarkable ability of *C. albicans* to tolerate CIN in the form of whole
118 chromosome loss, isochromosome formation, chromosome truncation, or mitotic crossing-over
119 (17, 20, 32) raises intriguing questions on the functioning of genome stability-regulators in this
120 fungal pathogen.

121
122 Of utmost importance to maintain genomic integrity, is the efficient and error-free segregation of
123 the replicated chromosomes. In most eukaryotes including *C. albicans*, the assembly of a
124 macromolecular protein complex, called the kinetochore (KT), on CENP-A (Cse4 in budding
125 yeasts) containing centromeric chromatin mediates chromosome segregation during mitosis (33-
126 35). The KT acts as a bridge between a chromosome and the connecting microtubules (MTs),
127 emanating from the spindle pole bodies (SPBs), the functional homolog of centrosomes in
128 mammals (36). The subsequent attachment of sister KTs to opposite spindle poles then promotes
129 the formation of a bipolar mitotic spindle that drives the separation of the duplicated
130 chromosomes during anaphase (37), after which cells exit mitosis and undergo cytokinesis (38-
131 40). In *C. albicans*, KT proteins remain clustered throughout the cell cycle and are shown to be
132 essential for viability and mitotic progression (33, 41, 42). In addition, genes involved in
133 homologous recombination, such as *MRE11* and *RAD50*, and DNA damage checkpoint pathway,
134 including *MEC1*, *RAD53* and *DUN1*, are required to prevent genome instability in *C. albicans*

135 (43-45). Strikingly, aberrant expression of proteins involved in DNA damage response or cell
136 division triggers morphological transition to a unique polarized, filamentous growth in *C.*
137 *albicans* (17). A recent screen, using a collection of 124 over-expression strains, has identified
138 three additional genes, namely, *CDC20*, *BIM1*, and *RAD51*, with a role in genome maintenance as
139 indicated by increased LOH-driven CIN upon overexpression in *C. albicans* (46). Currently, only
140 a minor fraction of the *C. albicans* gene armamentarium has been evaluated for their roles in
141 genome stability. Systematic approaches are thus needed to exhaustively define the drivers of *C.*
142 *albicans* genome maintenance and outline species-specific processes as well as commonalities
143 with other eukaryotes.

144
145 Here, we describe a large-scale screen aimed at identifying regulators of genome stability in a
146 clinically relevant fungal model system. Our screen, involving ~20% of the *C. albicans*
147 ORFeome, has identified Csa6, a yet unknown player of genome stability, as a critical regulator
148 of cell cycle progression in *C. albicans*. Overall, this is the first-ever report of such a screen at this
149 scale in *C. albicans* and provides a framework for identifying regulators of eukaryotic genome
150 stability, some of which may serve as new targets for therapeutic interventions of fungal
151 infections.

152
153 **Results**

154
155 **A reporter system for monitoring chromosome stability in *C. albicans***

156
157 To understand the molecular mechanisms underlying genome instability in a fungal pathogen, we
158 developed a reporter system in *C. albicans* in which whole chromosome loss can be distinguished
159 from other events such as break-induced replication, gene conversion, chromosome truncation or
160 mitotic crossing over (22, 46). In our prior work, a loss-of-heterozygosity (LOH) reporter strain
161 was developed for use in *C. albicans* (22, 46). In this strain *GFP* and *BFP* genes, linked to *ARG4*
162 and *HIS1* auxotrophic markers, respectively, are integrated at the same intergenic locus on the left
163 arms of chromosome 4A (Ch4A) and chromosome 4B (Ch4B), respectively (Fig. 1A, S1A) (22).
164 Consequently, cells express both *GFP* and *BFP* as analyzed by flow cytometry and are
165 prototrophic for *ARG4* and *HIS1* genes, unless a chromosome instability (CIN) event causes loss
166 of one of the two loci (Fig. 1A, B) (22). To differentiate whole chromosome loss from other
167 events that may lead to loss of one of the two reporter loci, we modified the LOH reporter strain
168 by integrating a red fluorescent protein (RFP) reporter gene, associated with the hygromycin B

169 (hyg B) resistance marker, on the right arm of Ch4B (Fig. 1A, S1A). The RFP reporter insertion is
170 sufficiently distant from the BFP locus that loss of both BFP and RFP signal (and of their linked
171 auxotrophic/resistance markers) is indicative of loss of Ch4B, rather than a localized event
172 causing loss of the *BFP-HIS1* reporter insertion (Fig. 1A, S1A). Notably, while loss of Ch4A
173 cannot be tolerated due to the presence of recessive lethal alleles on Ch4B (22), loss of Ch4B
174 leads to formation of small colonies that mature into larger colonies following duplication of
175 Ch4A (46). Thus, the absence of both *BFP-HIS1* and *RFP-HYG B* but continued presence of
176 *GFP-ARG4* in the modified reporter strain, which we named as chromosome stability (CSA)
177 reporter, enables us monitor loss of Ch4B in a population. The fluorescence intensity profile of
178 GFP, BFP and RFP in the CSA reporter was validated by flow cytometry (Fig. S1B). To
179 functionally validate the CSA reporter system, we employed overexpression of *CDC20*, a gene
180 important for anaphase onset, activation of spindle assembly checkpoint and whose
181 overexpression is known to cause whole chromosome loss in *C. albicans* (46). We analyzed the
182 BFP/GFP density plots in various control strains (Fig. S1C) and monitored the loss of BFP/GFP
183 signal in cells overexpressing *CDC20* (*CDC20^{OE}*) by flow cytometry. As reported earlier (46), the
184 *CDC20^{OE}* strain displayed a higher population of BFP⁺GFP⁻ and BFP⁻GFP⁺ cells as compared to
185 the empty vector (EV) control indicating increased CIN in the *CDC20^{OE}* mutant (Fig. S1D, E).
186 Next, we isolated BFP⁻GFP⁺ cells of EV and *CDC20^{OE}* using flow cytometry and plated them for
187 subsequent analysis of auxotrophic/resistance markers (Fig. S1F). As noted above, upon
188 incubation of the sorted BFP⁻GFP⁺ cells, we observed the appearance of both small and large
189 colonies (Fig. S1F). Small colonies have been previously shown to be the result of loss of Chr4B
190 homolog and are predicted to be a consequence of Ch4A monosomy, eventually yielding large
191 colonies upon reduplication of Ch4A (46). We, therefore, performed the marker analysis on large
192 colonies and found that 85% of the BFP⁻GFP⁺ derived colonies of *CDC20^{OE}* mutant
193 concomitantly lost both *HIS1* and *HYG B* but retained *ARG4* (Fig. S1G) suggesting the loss of
194 Ch4B homolog; flow cytometry analysis further confirmed the loss of BFP and RFP signals in
195 these colonies. The remaining 15% of colonies retained *GFP-ARG4* and *RFP-HYG B* but not
196 *BFP-HIS1* (Fig. S1G) indicating that more localized events including gene conversion, rather
197 than whole chromosome loss, were responsible for loss of the BFP signals in these cells. The
198 above data indicate that the CSA reporter system that we engineered enables precise monitoring
199 of the whole chromosome loss event in a population and enables large-scale screening of this
200 phenotype.

202 **Medium-throughput screening of *C. albicans* overexpression strains identifies regulators of**
203 **genome stability**

204
205 Systematic gene overexpression is an attractive approach for performing large-scale functional
206 genomic analysis in *C. albicans*, a diploid ascomycete. Using a recently developed collection of
207 *C. albicans* inducible overexpression plasmids (Chauvel et al., manuscript in preparation) and the
208 CSA reporter strain described above, we generated a library of 1067 *C. albicans* inducible
209 overexpression strains. Each of these strains, carrying a unique ORF under control of the *P_{TET}*
210 promoter, could be induced for overexpression after anhydrotetracycline (Atc) or doxycycline
211 (Dox) addition (Fig. 1C) (46, 47). To identify regulators of genome stability, we carried out a
212 primary screen with these 1067 overexpression strains by individually analyzing them for the loss
213 of BFP/GFP signals by flow cytometry (Fig. 1C, S2A, **Dataset 1**). Our primary screening
214 identified 23 candidate genes (out of 1067) whose overexpression resulted in ≥ 2 -fold increase in
215 the BFP⁺GFP⁻ and BFP⁻GFP⁺ population relative to the EV (**Table S1, S2**). Next, we carried out a
216 secondary screen with these 23 overexpression strains to revalidate the loss of BFP/GFP markers
217 by flow cytometry (Fig. 1C, S2B). As genotoxic stress is intimately linked with polarized growth
218 in *C. albicans* (17, 48), we microscopically examined the overexpression strains exhibiting higher
219 instability at the BFP/GFP locus during secondary screening for any morphological transition
220 (Fig. 1C, S2B). While overexpression of 17 genes (out of 23) could not reproduce the BFP/GFP
221 loss phenotype, overexpression of the six genes resulted in ≥ 2 -fold increase in the BFP⁺GFP⁻ or
222 BFP⁻GFP⁺ population as compared to the EV, with three genes (out of 6) inducing polarized
223 growth upon overexpression (Fig. S3A, B). These six genes, which we referred to as *CSA* genes,
224 include *CSA1* (*CLB4*), *CSA2* (*ASE1*), *CSA3* (*KIP2*), *CSA4* (*MCM7*), *CSA5* (*BFA1*) and *CSA6*
225 coded by *ORF19.1447* of unknown function (Fig. 1D).

226
227 **Molecular mechanisms underlying CIN in *CSA* overexpression mutants**

228
229 Out of the six *CSA* genes, overexpression of three genes, namely, *CSA1^{CLB4}*, *CSA2^{ASE1}* and
230 *CSA3^{KIP2}* caused little or no change in the morphology of *C. albicans* (Fig. S3A), but triggered
231 CIN at the BFP/GFP locus, indicated by an expansion of the BFP⁺GFP⁻ and BFP⁻GFP⁺ population
232 in the flow cytometry density plots (Fig. S3B, C). To further dissect the molecular mechanisms
233 leading to the loss of BFP/GFP signals in these mutants, we sorted BFP⁻GFP⁺ cells of these
234 mutants and plated them for *GFP-ARG4*, *BFP-HIS1* and *RFP-HYG B* analysis, as described
235 previously for the *CDC20^{OE}* mutant. We observed that a majority of the large BFP⁻GFP⁺ derived

236 colonies of $CSA1^{CLB4}$, $CSA2^{ASE1}$ and $CSA3^{KIP2}$ overexpression mutants lost $BFP-HIS1$ but retained
237 $RFP-HYG B$ and $GFP-ARG4$ (Fig. S3D), suggesting that localized genome instability events,
238 rather than whole chromosome loss events, contributed to the high percentage of BFP^+GFP^+ cells
239 in these mutants.

240

241 Overexpression of the remaining three genes, namely $CSA4^{MCM7}$, $CSA5^{BFA1}$ and $CSA6$, drastically
242 altered the morphology of the *C. albicans* cells by inducing polarized/filamentous growth (Fig.
243 S3A). A connection between morphological switches and genotoxic stresses has been established
244 in the polymorphic fungus *C. albicans*, wherein polarized growth is triggered in response to
245 improper cell cycle regulation (41, 42, 48-50). Flow cytometric analysis of cell cycle progression
246 revealed that overexpression of $CSA4^{MCM7}$, $CSA5^{BFA1}$ and $CSA6$ shifted cells towards the 4N DNA
247 content (Fig. S3E). To further determine the cell cycle phase associated with the 4N shift, we
248 compared nuclear segregation patterns (Hoechst staining for DNA and CENP-A/Cse4 localization
249 for KT) and spindle dynamics (separation of Tub4 foci) in these overexpression mutants with
250 those of the EV control (Fig. S3F). Our results suggested the 4N shift in $CSA4^{MCM7}$ and $CSA6$
251 overexpression mutants was a result of G2/M arrest, indicated by a high percentage of large-
252 budded cells with unsegregated DNA mass and improperly separated SPBs (Fig. S3F). In
253 contrast, the 4N shift upon $CSA5^{BFA1}$ overexpression was a consequence of late anaphase/telophase
254 arrest, shown by an increased number of large-budded cells with segregated nuclei and SPBs (Fig.
255 S3F). Taken together, our results indicate that the polarized growth in each of $CSA4^{MCM7}$,
256 $CSA5^{BFA1}$ and $CSA6$ overexpression mutants is a probable outcome of improper cell cycle
257 progression.

258

259 Two *CSA* genes, namely $CSA2^{ASE1}$ and $CSA5^{BFA1}$, gave rise to similar overexpression phenotypes
260 in both *S. cerevisiae* and *C. albicans* (Table 1). While phenotypes related to $CSA4^{MCM7}$ and $CSA6$
261 overexpression in *S. cerevisiae* or other related organisms remained unreported, the
262 overexpression phenotypes of the remaining *CSA* genes were along the lines of their roles in cell
263 cycle functioning, as reported in *S. cerevisiae* (Table 1, Fig. 1D). Altogether, our results validated
264 the role of *CSA* genes in regulating genome stability in *C. albicans*. While overexpression of
265 either $CSA1^{CLB4}$, $CSA2^{ASE1}$ or $CSA3^{KIP2}$ induced CIN mostly through non-chromosomal loss
266 events, the effect of overexpression of either $CSA4^{MCM7}$, $CSA5^{BFA1}$ or $CSA6$ was so drastic that the
267 *C. albicans* mutants were arrested at different cell cycle phases with G2/M equivalent DNA
268 content (4N) and thus were unable to complete the mitotic cell cycle.

269

270 **Csa6 is an SPB-localizing protein, present across a subset of CUG-Ser clade fungal species**

271

272 Among the genes identified in the screen, Csa6 was the only protein without any detectable
273 homolog in *S. cerevisiae* (Fig. 1D). This intrigued us to examine its presence across various other
274 fungi. Phylogenetic analysis using high confidence protein homology searches and synteny-based
275 analysis indicated that Csa6 is exclusively present in a subset of fungal species belonging to the
276 CUG-Ser clade (Fig. 2A). Strikingly, in all these species, Csa6 was predicted to have a central
277 coiled-coil domain (Fig. 2B). Epitope tagging of Csa6 with a fluorescent marker (mCherry)
278 localized it close to the KT throughout the cell cycle in *C. albicans* (Fig. 2C). In most unicellular
279 fungi, often found proximal to the clustered KTs, are the SPB complexes (33, 35, 51, 52).
280 Although neither the SPB structure nor its composition is well characterized in *C. albicans*, the
281 majority of the SPB proteins exhibit high sequence and structural conservation from yeast to
282 humans (53). Hence, we re-examined Csa6 localization with two of the evolutionarily conserved
283 SPB proteins, Tub4 and Spc110, in *C. albicans* (53, 54) (Fig. 2D, E). These results showed that
284 Csa6 constitutively localizes to the SPBs, close to the KTs, in cycling yeast cells of *C. albicans*
285 (Fig. 2D, E).

286

287 **Csa6, a previously uncharacterized protein, as a key regulator of mitotic progression in *C. albicans***

288

289 While roles of Csa6 have not been investigated before, based on our findings thus far (Fig. S3E,
290 F), we hypothesized that Csa6 plays an important function in cell cycle regulation and genome
291 stability in *C. albicans*. We sought to identify the molecular pathways by which Csa6 performed
292 its functions in *C. albicans*. We again made use of the inducible P_{TET} promoter system to generate
293 a $CSA6^{OE}$ strain (CaPJ176, $P_{TET}CSA6$) in the wild-type (SN148) background of *C. albicans* (Fig.
294 3A). Conditional overexpression of TAP-tagged Csa6 (CaPJ181, $P_{TET}CSA6-TAP$), in presence of
295 Atc, was confirmed by western blot analysis (Fig. 3B). The effect of $CSA6^{OE}$ (CaPJ176,
296 $P_{TET}CSA6$) on cell cycle functioning was then investigated by flow cytometric cell cycle analysis
297 (Fig. 3C) and microscopic examination of the nuclear division (Fig. 3D). As observed previously
298 (Fig. S3E, F), $CSA6^{OE}$ inhibited cell cycle progression in *C. albicans* by arresting cells in the
299 G2/M phase, evidenced by the gradual accumulation of large-budded cells with unsegregated
300 nuclei (Fig. 3D), possessing 4N DNA content (Fig. 3C). Some of these large-budded cells also
301 underwent a morphological transition to an elongated bud or other complex multi-budded
302 phenotypes (Fig. 3D), indicating cell cycle arrest-mediated morphological switching (48) due to

304 *CSA6*^{OE}. Strikingly, continuous upregulation of Csa6 was toxic to the cells (Fig. **S4A**) as nuclei
305 failed to segregate in this mutant (Fig. **3D**).
306

307 Nuclear segregation during mitosis is facilitated by the formation of the mitotic spindle and its
308 dynamic interactions with chromosomes via KTs. Thus, we sought to examine both the KT
309 integrity and the mitotic spindle morphology in the *CSA6*^{OE} mutants. In *C. albicans*, the structural
310 stability of the KT is a determinant of CENP-A/Cse4 stability wherein depletion of any of the
311 essential KT proteins results in delocalization and degradation of the CENP-A/Cse4 by ubiquitin-
312 mediated proteolysis (50). Fluorescence microscopy and western blot analysis confirmed that
313 Cse4 was neither delocalized (Fig. **S4B**) nor degraded from centromeric chromatin (Fig. **S4C**)
314 upon *CSA6*^{OE}. Next, we analyzed the spindle integrity in *CSA6*^{OE} mutants by tagging Tub4 (SPB)
315 and Tub1 (MTs) with fluorescent proteins. Fluorescence microscopy analysis revealed that a large
316 proportion (~73%) of the large-budded cells formed an unconventional rudimentary mitotic
317 spindle structure upon *CSA6*^{OE}, wherein it had a dot-like appearance as opposed to an elongated
318 bipolar rod-like spindle structure in EV or uninduced (-Atc) strains (Fig. **3E**). This suggests that
319 nuclear segregation defects in *CSA6*^{OE} mutant cells are an attribute of aberrant mitotic spindle
320 formation that might have led to the mitotic arrest.
321

322 During mitosis, surveillance mechanisms, including spindle assembly checkpoint (SAC) (55, 56)
323 and spindle positioning checkpoint (SPOC) (57, 58) operate to maintain genome stability by
324 delaying the metaphase-anaphase transition in response to improper chromosome-spindle
325 attachments and spindle misorientation, respectively. We posit that the G2/M cell cycle arrest due
326 to *CSA6*^{OE} in *C. albicans* could be a result of either SAC or SPOC activation. Hence, we decided
327 to inactivate SAC and SPOC, individually, in the *CSA6*^{OE} strain by deleting the key spindle
328 checkpoint genes *MAD2* (41) and *BUB2* (48), respectively. SAC inactivation in *CSA6*^{OE} mutant
329 cells (Fig. **4A**) led to the emergence of unbudded cells with 2N DNA content (Fig. **4B, C**),
330 indicating a bypass of the G2/M arrest caused by *CSA6*^{OE}. Consequently, we also observed a
331 partial rescue of the growth defect in *CSA6*^{OE} mutant cells (Fig. **S5A**). Next, we sought to
332 characterize the effect of SAC inactivation on the spindle integrity in *CSA6*^{OE} mutants. *CSA6*^{OE}
333 resulted in the formation of an unconventional mitotic spindle (Fig. **3E**) wherein it displayed a
334 single focus of SPB (Tub4-GFP), colocalizing with a single focus of MTs (Tub1-mCherry). We
335 speculated two possibilities that may lead to the single focus of Tub4: a) a defect in the process of
336 SPB duplication or b) a delay in the separation of duplicated SPBs. Fluorescence microscopy
337 analysis revealed that SAC inactivation in *CSA6*^{OE} mutant drastically increased the percentage of

338 large-budded cells (from ~30% to ~68%) with two separated SPB foci (Tub4-GFP) (Fig. S5B).
339 These results ruled out the possibility of an unduplicated SPB in *CSA6^{OE}* mutant cells and hinted
340 at the importance of cellular Csa6 levels for proper SPB separation and chromosome segregation
341 in *C. albicans*.

342
343 We next determined the effect of inactivating SPOC in the cells overexpressing Csa6. For this, we
344 generated a *CSA6^{OE}* strain (CaPJ200) using the *bub2* null mutant (CaPJ110) as the parent strain
345 and monitored nuclear division following Hoechst staining. Strikingly, we did not observe a
346 bypass of G2/M arrest in *CSA6^{OE}* mutant upon SPOC inactivation, indicated by a persistent
347 population of large-budded cells with unsegregated nuclei (Fig. S5C). Altogether, our results
348 demonstrate that overexpression of Csa6 leads to a Mad2-mediated metaphase arrest due to a
349 malformed spindle in *C. albicans*.

350
351 **Csa6 regulates mitotic exit network and is essential for viability in *C. albicans***
352
353 To further gain insights into the biological function of Csa6, we sought to generate a promoter
354 shut-down mutant of *csa6* (*CSA6^{PSD}*). For this, we deleted one of its alleles and placed the
355 remaining one under the control of the *MET3* promoter (59) which gets repressed in presence of
356 methionine (Met/M) and cysteine (Cys/C) (Fig. 5A). Western blot analysis confirmed the
357 depletion of TAP-tagged Csa6 in *CSA6^{PSD}* mutant within 6 h of growth under repressive
358 conditions (Fig. 5B). The inability of *CSA6^{PSD}* mutant to grow in non-permissive conditions
359 confirmed the essentiality of Csa6 for viability in *C. albicans* (Fig. 5C). Subsequently, we
360 analyzed the cell cycle profile (Fig. 5D) and nuclear division dynamics (Fig. 5E) in the *CSA6^{PSD}*
361 strain after a specific period of incubation in either permissive or non-permissive conditions.
362 Strikingly, Csa6 depletion, as opposed to its overexpression, resulted in cell cycle arrest at the late
363 anaphase/telophase stage, indicated by an increasing proportion of large-budded cells, possessing
364 segregated nuclei and 4N DNA content (Fig. 5D, E). Additionally, we observed cells with more
365 than two nuclei, elongated-budded cells and other complex phenotypes upon Csa6 depletion (Fig.
366 5E). While CENP-A/Cse4 remained localized to centromeres in *CSA6^{PSD}* mutant as revealed by
367 the fluorescence microscopy (Fig. S6A), an increase in the cellular levels of Cse4 was observed in
368 *CSA6^{PSD}* mutant by western blot analysis (Fig. S6B). The increase in Cse4 levels could be an
369 outcome of Cse4 loading at anaphase in *C. albicans* (60, 61). Finally, we analyzed the integrity of
370 the mitotic spindle, as mentioned previously, in *CSA6^{PSD}* mutant. We noticed the mean length of
371 the anaphase mitotic spindle in Csa6-depleted cells was significantly higher (~11 μ m) than that of

372 the cells grown under permissive conditions (~6 μ m), indicating a spindle disassembly defect in
373 $CSA6^{PSD}$ mutant (Fig. 5F).

374
375 A close link between anaphase arrest, hyper-elongated mitotic spindle and inactive mitotic exit
376 network (MEN) have been established before (40, 62, 63). Localized at the SPB, the MEN is a
377 signaling cascade in *S. cerevisiae* that triggers cells to come out of mitosis and proceed to
378 cytokinesis (Fig. 6A) (64). We speculated the anaphase arrest in $CSA6^{PSD}$ mutant could be a result
379 of an inactive MEN signaling. To determine this, we sought to bypass the anaphase arrest
380 associated with Csa6 depletion by overexpressing *SOL1*, the CDK inhibitor and Sic1 homolog in
381 *C. albicans* (65) (Fig. 6B), using the inducible P_{TET} system mentioned previously (Fig. 6C). The
382 conditional overexpression of Protein A-tagged Sol1 upon addition of Atc was verified by
383 western blot analysis (Fig. 6D). Strikingly, *SOL1^{OE}* in association with Csa6 depletion allowed
384 cells to exit mitosis but not cytokinesis, as evidenced by the formation of chains of cells with >4N
385 DNA content (Fig. 6E, F). To further examine the role of Csa6 in mitotic exit, we analyzed the
386 localization of a MEN component, Tem1, a GTPase that is known to initiate MEN signaling (39,
387 66-68). In *C. albicans*, Tem1 localizes to SPBs in a cell-cycle-regulated manner and is essential
388 for viability (39). Fluorescence microscopy revealed that while Tem1 is localized to both the
389 SPBs in anaphase under permissive conditions (Fig. 6G) as observed earlier (39), a high
390 percentage of Csa6-depleted cells (~78%) had Tem1 localized to only one of the two SPBs (Fig.
391 6G), suggesting an important role of Csa6 in regulating mitotic exit in *C. albicans*. Altogether,
392 our results demonstrate that Csa6 is required for mitotic exit and thus essential for viability in *C.*
393 *albicans*.

394
395 **Csa6 of *Candida dubliniensis* functionally complements Csa6 of *C. albicans***
396
397 To further elucidate the intra-species function and localization of Csa6, we decided to ectopically
398 express Csa6 of another CUG-Ser clade species, *Candida dubliniensis* (CdCsa6) in *C. albicans*.
399 *C. dubliniensis* is a human pathogenic budding yeast that shares a high degree of DNA sequence
400 homology with *C. albicans*, and possesses unique and different centromere DNA sequences on
401 each of its eight chromosomes (69, 70). Upon protein sequence alignment, we found that CdCsa6
402 (ORF Cd36_16290) is 79% identical to Csa6 of *C. albicans* (CaCsa6) (Fig. 7A). The ectopic
403 expression of GFP-tagged CdCsa6 in *C. albicans* was carried out using the replicative plasmid
404 pCdCsa6-GFP-ARS2 (Fig. 7B), which contains the autonomously replicating sequence (ARS) of
405 *C. albicans* (71). Although unstable when present in an episomal form, ARS plasmids, upon

406 spontaneous integration into the genome, can propagate stably over generations (72).
407 Fluorescence microscopy of integrated pCdCsa6-GFP-ARS2 revealed that similar to CaCsa6,
408 CdCsa6 localizes constitutively to the SPBs in *C. albicans* (Fig. 7C), further supporting Csa6's
409 evolutionarily conserved role in regulating mitotic spindle and mitotic exit in *C. albicans*. We
410 next asked if CdCsa6 can functionally complement CaCsa6. For this, we ectopically expressed
411 CdCsa6 in *CSA6*^{PSD} strain. Strikingly, the ectopic expression of CdCsa6 rescued the growth defect
412 associated with *CSA6*^{PSD} mutant under non-permissive conditions, indicating CdCsa6 can
413 functionally complement CaCsa6 (Fig. 7D). This suggests functional conservation of Csa6 among
414 related *Candida* species belonging to the CUG-Ser clade.
415

416 Discussion

417
418 In this study, we carried out an extensive screen to identify genes that contribute to genome
419 stability in *C. albicans* by generating and analyzing a library of more than a thousand
420 overexpression strains. Our screen identified six regulators of chromosome stability including
421 Csa6, a protein of unknown function. Molecular dissection of Csa6 function revealed its
422 importance in cell cycle progression at least in two critical stages, metaphase-anaphase transition
423 and mitotic exit. We further demonstrated that Csa6 is constitutively localized to the SPBs,
424 essential for viability, and alterations of its cellular level leads to cell cycle arrest in *C. albicans*.
425 Finally, subcellular localization and complementation analysis revealed functional conservation
426 of Csa6 across the pathogenic *Candida* species.
427

428 The identification of two *CSA* genes, *CSA2*^{ASE1} and *CSA5*^{BFA1}, that were earlier reported as CIN
429 genes (13, 14), further validates the power of the screening approach and the methods presented
430 in this study. The respective overexpression phenotypes of these two genes in *C. albicans* were
431 found to be similar to those in *S. cerevisiae*, suggesting that their functions might be conserved in
432 these distantly related yeast species. In *S. cerevisiae*, Ase1 acts as an MT-bundling protein,
433 required for spindle elongation and stabilization during anaphase (73, 74) (Fig. 8A). Hence,
434 increased CIN upon *ASE1* overexpression might be an outcome of premature spindle elongation
435 and improper KT-microtubule attachments (74, 75). Bfa1, on the other hand, is a key component
436 of the Bub2-Bfa1 complex, involved in SPOC activation (57), and a negative regulator of mitotic
437 exit (76) (Fig. 8A). In *S. cerevisiae*, *BFA1* overexpression prevents Tem1 from interacting with its
438 downstream effector protein Cdc15, thus inhibiting MEN signaling and arresting cells at the
439 anaphase (77). In our screen, a B-type mitotic cyclin Clb4 (*CSA1*), and a kinesin-related motor

440 protein Kip2 (*CSA3*) (Fig. 8A), were found to increase CIN upon overexpression, primarily via
441 non-chromosomal loss events. *C. albicans* Clb4 acts as a negative regulator of polarized growth
442 (49) and is the functional homolog of *S. cerevisiae* Clb5 (78), required for the entry into the S-
443 phase (79). Increased CIN upon *CSA1^{CLB4}* overexpression, is thus consistent with its role in S-
444 phase initiation. The function of Kip2, however, is yet to be characterized in *C. albicans*. In *S.*
445 *cerevisiae*, Kip2 functions as an MT polymerase (80), with its overexpression leading to
446 hyperextended MTs and defects in SPB separation (81). The associated CIN observed upon
447 *CSA3^{KIP2}* overexpression in *C. albicans* is in line with its function in nuclear segregation.
448

449 *Mcm7*, another *CSA* gene (*CSA4*) identified in this study, is a component of the highly conserved
450 Mcm2-7 helicase complex, essential for eukaryotic DNA replication initiation and elongation (82)
451 (Fig. 8A). While *Mcm7* depletion arrests cells at S phase (83), the effect of *MCM7*
452 overexpression on genomic integrity is comparatively less explored. Especially, several cancerous
453 cells have been shown to overexpress *Mcm7* (84-86), with its elevated levels increasing the
454 chances of relapse and local invasions (84). In this study, we found that overexpression of *MCM7*,
455 in contrast to *Mcm7* depletion, arrested cells at the G2/M stage. One possibility is increased
456 *Mcm7* levels interfered with DNA replication during the S phase, resulting in DNA damage or
457 accumulation of single-stranded DNA, thus activating the *RAD9*-dependent cell cycle arrest at the
458 G2/M stage (87, 88). In a recent study from our laboratory, *Mcm7* has been identified as a subunit
459 of the kinetochore interactome in a basidiomycete yeast *Cryptococcus neoformans* (89). Another
460 subunit of the Mcm2-7 complex, *Mcm2*, is involved in regulating the stability of centromeric
461 chromatin in *C. albicans* (61). Considering the growing evidence of the role of Mcm2-7 subunits
462 beyond their canonical, well-established roles in DNA replication, the serendipitous identification
463 of *Mcm7* as a regulator of genome stability in our screen is striking.
464

465 We performed an in-depth analysis of *Csa6*, a novel regulator of cell cycle progression identified
466 from our screen (Fig. 8B, C). Our results revealed that overexpression of *CSA6* leads to an
467 unconventional mitotic spindle formation and SAC-dependent G2/M cell cycle arrest (Fig. 8C) in
468 *C. albicans*. While *mad2* deletion indicated that SPB duplication and separation of duplicated
469 SPBs is unperturbed in *CSA6* overexpressing cells, what exactly triggered the activation of SAC
470 in these cells remains to be determined. Recent studies on human cell lines have shown that
471 failure in the timely separation of the centrosomes promotes defective chromosome-MT
472 attachments and may lead to chromosome lagging if left uncorrected by the cellular surveillance
473 machinery (90-92). Along the same lines, we posit that a delay in SPB separation, mediated by

474 overexpression of Csa6, leads to increased instances of improper chromosome-MT attachments,
475 leading to SAC activation and an indefinite arrest at the metaphase stage. Future studies on the
476 SPB structure-function and composition in *C. albicans* should reveal how Csa6 regulates SPB
477 dynamics in this organism.

478

479 In contrast to its overexpression, Csa6 depleted cells failed to exit mitosis and remained arrested
480 at the late anaphase/telophase stage (Fig. 8C). We further linked the mitotic exit failure in Csa6
481 depleted cells with the defective localization of Tem1, an upstream MEN protein. While the
482 hierarchy of MEN components, starting from the MEN scaffold Nud1, an SPB protein, to its
483 ultimate effector Cdc14 is well established in *S. cerevisiae* (64), the existence of a similar
484 hierarchy in *C. albicans* needs to be investigated. In addition, several lines of evidence suggest
485 that MEN in *C. albicans* may function differently from *S. cerevisiae*: (a) Unlike *S. cerevisiae*, *C.*
486 *albicans* Cdc14 is non-essential for viability with its deletion affecting cell separation (93). (b)
487 Cdc14 is present in the nucleoplasm for the majority of the cell cycle in contrast to its nucleolar
488 localization in *S. cerevisiae* (93). (c) *C. albicans* Dbf2 is required for proper nuclear segregation,
489 actomyosin ring contraction, and cytokinesis (38). A recent study involving the identification of
490 Cdc14 interactome in *C. albicans* (94) found only a subset of proteins (0.2%) as physical or
491 genetic interactors in *S. cerevisiae*, suggesting the divergence of Cdc14 functions in *C. albicans*.
492 Hence, further investigations of MEN functioning in *C. albicans* are required to understand its
493 divergence from *S. cerevisiae* and the mechanism by which Csa6 regulates mitotic exit in *C.*
494 *albicans* and related species. Altogether, our results indicate that Csa6 has dual functions during
495 cell cycle progression wherein it is first required during the G2/M phase for proper assembly of
496 the mitotic spindle and then later during anaphase to exit the cells from mitosis. In addition, the
497 constitutive localization of Csa6 to the SPBs strengthens the link between SPB-related functions
498 and Csa6 in *C. albicans* (Fig. 8B, C).

499

500 The phylogenetic analysis of Csa6 revealed that it is only present in a group of fungal species,
501 belonging to the CUG-Ser clade. Combined with its essential cell-cycle-related functions, it is
502 intriguing to determine whether emergence of Csa6 is required to keep the pace of functional
503 divergence in the regulatory mechanisms of cell cycle progression in these *Candida* species.
504 While we demonstrated Csa6 of *C. dubliniensis* functionally complements Csa6 of *C. albicans*,
505 whether Csa6 of distant species can also functionally complement CaCsa6 remains to be
506 investigated. A recent study shows that around 50 essential genes, including Csa6, are only
507 present in a group of *Candida* species (see Dataset 5 in (95)). Identification and functional

508 characterization of these genes in the future will aid in developing clade-specific antifungal
509 therapies (95). In this study, we have analyzed only a part of the *C. albicans* ORFeome for their
510 roles in genome maintenance. Further screening of the remaining overexpression ORFs will
511 provide a complete network of the molecular pathways regulating genome stability in human
512 fungal pathogens.

513

514 Materials and Methods

515

516 **1. Strains, plasmids and primers.** Information related to strains, plasmids and primers used in
517 this study is available in the supplementary material.

518

519 **2. Media and growth conditions.** *C. albicans* strains were routinely grown at 30°C in YPD (1%
520 yeast extract, 2% peptone, 2% dextrose) medium supplemented with uridine (0.1 µg/ml) or
521 complete medium (CM, 2% dextrose, 1% yeast nitrogen base and auxotrophic supplements) with
522 or without uridine (0.1 µg/ml) and amino acids such as histidine, arginine, leucine (0.1 µg/ml).
523 Solid media were prepared by adding 2% agar. For the selection of transformants, nourseothricin
524 and hygromycin B (hyg B) were used at a final concentration of 100 µg/ml and 800 µg/ml,
525 respectively, in the YPDU medium.

526

527 Overexpression of genes from the tetracycline inducible promoter (P_{TET}) was achieved by the
528 addition of anhydrotetracycline (Atc, 3 µg/ml) or doxycycline (Dox, 50 µg/ml) in YPDU medium
529 at 30°C (47) in the dark as Atc and Dox are light-sensitive. The *CSA6^{PSD}* strains were grown at
530 30°C either in permissive (YPDU) or nonpermissive (YPDU + 5mM methionine (M) + 5mM
531 cysteine (C)) conditions of the *MET3* promoter (59, 61). *E. coli* strains were cultured at 30°C or
532 37°C in Luria-Bertani (LB) medium or 2YT supplemented with ampicillin (50 µg/ml or 100
533 µg/ml), chloramphenicol (34 µg/ml), kanamycin (50 µg/ml) and tetracycline (10 µg/ml). Solid
534 media were prepared by adding 2% agar. Chemically competent *E. coli* cells were prepared
535 according to Chung *et al* (96).

536

537 **3. Flow cytometry analysis.** Cultures of overexpression strains following 8 h of induction in
538 YPDU+Atc and overnight recovery in the YPDU medium alone, were diluted in 1x phosphate-
539 buffered saline (PBS) and analyzed ($\sim 10^6$ cells) for the BFP/GFP marker by flow cytometry
540 (FACSAria III, BD Biosciences) at a rate of 7000-10,000 events/s. We used 405- and 488-nm

541 lasers to excite the BFP and GFP fluorophores and 450/40 and 530/30 filters to detect the BFP
542 and GFP emission signals, respectively.

543

544 **4. Primary and secondary overexpression screening.** To detect CIN at the BFP/GFP locus
545 upon P_{TET} activation, overnight grown cultures of *C. albicans* overexpression strains were
546 reinoculated in CM-His-Arg to ensure all cells contained *BFP-HIS1* or *GFP-ARG4*. To measure
547 the loss of BFP/GFP signals in 96-well plates, a *CDC20^{OE}* mutant was used as a positive control.
548 The primary selection of the overexpression mutants with increased BFP⁺GFP⁻ and BFP⁻GFP⁺
549 cells was done by determining the BFP/GFP loss frequency in EV. For this, we analyzed the flow
550 cytometry density plots for 22 independent cultures of EV using the FlowJo software (FlowJo X
551 10.0.7r2). We observed a similar profile for all the cultures. We then defined gates for the
552 BFP⁺GFP⁻ and BFP⁻GFP⁺ fractions of cell population in one of the EV samples and applied these
553 gates to the rest of EV samples. The mean frequency of BFP⁺GFP⁻ and BFP⁻GFP⁺ cells in EV was
554 calculated (Table S1). Similar gates were applied to all 1067 overexpression strains analyzed for
555 BFP/GFP markers and the frequency of BFP⁺GFP⁻ and BFP⁻GFP⁺ cells for each strain was
556 determined (Dataset 1). The overexpression mutants, in which the BFP/GFP loss frequency was
557 ≥ 2 -fold than EV, were selected for further analysis (Table S2).

558

559 For secondary screening, the overexpression plasmids present in each of the overexpression
560 strains, identified from the primary screen (23 out of 1067), were used to retransform the CSA
561 reporter strain (CEC5201). The overexpression strains (23) were analyzed by flow cytometry to
562 revalidate the loss of BFP/GFP signals. Overexpression strains displaying ≥ 2 -fold higher
563 frequency of BFP⁺GFP⁻/BFP⁻GFP⁺ population than EV (6 out of 23) were monitored for any
564 morphological transition by microscopy. As filamentous morphotype could distort the BFP/GFP
565 loss analysis (46), we characterized the overexpression mutants exhibiting increased CIN at the
566 BFP/GFP locus and filamentous growth (3 out of 6) by monitoring cell cycle progression. For
567 this, we transformed the overexpression plasmids in CaPJ159 and analyzed the overexpression
568 strains (*CSA4^{MCM7}*, *CSA5^{BFA1}* and *CSA6*) for DNA content, nuclear segregation and SPB
569 separation. The 6 genes identified from the secondary screen were verified for the correct *C.*
570 *albicans* ORF by Sanger sequencing using a common primer PJ90. During the secondary
571 screening, we also cultured overexpression mutants in YPDU without Atc and observed no
572 differences between EV and uninduced (-Atc) cultures in terms of morphology and the BFP/GFP
573 loss frequency.

574

575 **5. Cell sorting and marker analysis following a CIN event.** Overnight grown cultures of EV
576 and overexpression mutants (*CDC20*, *CSA1^{CLB4}*, *CSA2^{ASE1}* and *CSA3^{KIP2}*) were reinoculated in
577 YPDU+Atc for 8 h and allowed to recover overnight in YPDU-Atc. The cultures were analyzed
578 for BFP/GFP loss by flow cytometry followed by fluorescence-activated cell sorting (FACS)
579 using a cell sorter (FACSAria III, BD Biosciences) at a rate of 10,000 events/s. Approximately
580 1500 cells from the BFP⁻GFP⁺ population were collected into 1.5-ml tubes containing 400 μ l
581 YPDU and immediately plated onto YPDU agar plates. Upon incubation at 30°C for 2 days, both
582 small and large colonies appeared, as reported earlier (46). As most small colonies are expected to
583 have undergone loss of the Ch4B haplotype (46), we analyzed auxotrophic/resistance markers of
584 large colonies to characterize the molecular mechanisms underlying CIN in the overexpression
585 mutants.

586
587 For marker analysis, we replica plated the large colonies along with the appropriate control strains
588 on CM-Arg, CM-His and YPDU+hyg B (800 μ g/ml) and incubated the plates at 30°C for 2 days.
589 The colonies from CM-Arg plates were then analyzed for BFP, GFP and RFP markers by flow
590 cytometry. For this, overnight grown cultures in YPDU were diluted in 1x PBS and 5000-10,000
591 cells were analyzed (FACSAria III, BD Biosciences). We used 405-, 488- and 561 nm lasers to
592 excite the BFP, GFP and RFP fluorophores and 450/40, 530/30, 582/15 filters to detect the BFP,
593 GFP and RFP emission signals, respectively.

594
595 **6. Cell cycle analysis.** Overnight grown cultures of *C. albicans* were reinoculated at an OD₆₀₀ of
596 0.2 in different media (as described previously) and harvested at various time intervals post-
597 inoculation (as mentioned previously). The overnight grown culture itself was taken as a control
598 sample (0 h) for all the experiments. Harvested samples were processed for propidium iodide (PI)
599 staining as described before (33). Stained cells were diluted to the desired cell density in 1x PBS
600 and analyzed (\geq 30,000 cells) by flow cytometry (FACSAria III, BD Biosciences) at a rate of
601 250-1000 events/s. The output was analyzed using the FLOWJO software. We used 561-nm laser
602 to excite PI and 610/20 filter to detect its emission signals.

603
604 **7. Fluorescence microscopy.** For nuclear division analysis in untagged strains, the *C. albicans*
605 cells were grown overnight. The next day, the cells were transferred into different media (as
606 mentioned previously) with a starting O.D.₆₀₀ of 0.2, collected at various time intervals (as
607 described previously) and fixed with formaldehyde (3.7%). Cells were pelleted and washed thrice
608 with 1x PBS, and Hoechst dye (50 ng/ml) was added to the cell suspension before imaging.

609 Nuclear division in Cse4-and Tub4-tagged strains was analyzed as described above, except the
610 cells were not fixed with formaldehyde. For Tem1 and mitotic spindle localization, overnight
611 grown cultures were transferred to different media (as mentioned previously) with a starting
612 O.D.₆₀₀ of 0.2 and were grown for 6 h or 8 h. Cells were then washed, resuspended in 1x PBS and
613 imaged on a glass slide. Localization studies of each, CaCsa6, Tub4, Spc110 and CdCsa6 was
614 carried out by washing the log phase grown cultures with 1x PBS (three times) followed by image
615 acquisition.

616

617 The microscopy images were acquired using fluorescence microscope (Zeiss Axio Observer 7
618 equipped with Colibri 7 as the LED light source), 100x Plan APOCHROMAT 1.4 NA objective, pco.
619 edge 4.2 sCMOS. We used Zen 2.3 (blue edition) for image acquisition and controlling all
620 hardware components. Filter set 92 HE with excitation 455–483 and 583–600 nm for GFP and
621 mCherry, respectively, and corresponding emission was captured at 501–547 and 617–758 nm. Z
622 sections were obtained at an interval of 300 nm. All the images were displayed after the maximum
623 intensity projection using ImageJ. Image processing was done using ImageJ. We used the cell
624 counter plugin of ImageJ to count various cell morphologies in different mutant strains. Images
625 acquired in the mCherry channel were processed using the subtract background plugin of ImageJ
626 for better visualization.

627

628 **8. Protein preparation and western blotting.** Approximately 3 O.D.₆₀₀ equivalent cells were
629 taken, washed with water once and resuspended in 12.5% TCA (trichloroacetic acid) and
630 incubated at -20°C overnight for precipitation. The cells were pelleted down and washed twice
631 with ice-cold 80% acetone. The pellet was then allowed to air dry and finally resuspended in lysis
632 buffer (0.1N NaOH and 1% SDS and 5xprotein loading dye). Samples were boiled at 95°C for 5–
633 10 min and electrophoresed on a 10% SDS polyacrylamide gel. Gels were transferred to a
634 nitrocellulose membrane by semi-dry method for 30 min at 25V and blocked for an hour in 5%
635 non-fat milk in 1x PBS. Membranes were incubated with a 1:5000 dilution of rabbit anti-Protein
636 A or mouse anti-PSTAIRE in 2.5% non-fat milk in 1x PBS. Membranes were washed three times
637 in 1x PBS-Tween (0.05%) and then exposed to a 1:10,000 dilution of either anti-mouse- or anti-
638 rabbit-IgG horseradish peroxidase antibody in 2.5% non-fat milk in 1x PBS. Membranes were
639 washed three times in 1x PBS-Tween (0.05%) and developed using chemiluminescence method.

640

641 **9. Statistical analysis.** Statistical significance of differences was calculated as mentioned in the
642 figure legends with unpaired one-tailed *t*-test, paired one-tailed *t*-test, paired two-tailed *t*-test or

643 one-way ANOVA with Bonferroni posttest. P -values ≥ 0.05 were considered as nonsignificant
644 (n.s.). P -values of the corresponding figures are mentioned, if significant. All analyses were
645 conducted using GraphPad Prism version Windows v5.00.

646

647 References

648

- 649 1. A. Aguilera, B. Gomez-Gonzalez, Genome instability: a mechanistic view of its causes
650 and consequences. *Nat. Rev. Genet.* **9**, 204-217 (2008).
- 651 2. T. A. Potapova, J. Zhu, R. Li, Aneuploidy and chromosomal instability: a vicious cycle
652 driving cellular evolution and cancer genome chaos. *Cancer Metastasis Rev.* **32**, 377-389
653 (2013).
- 654 3. Y. B. Yurov, S. G. Vorsanova, I. Y. Iourov, Chromosome Instability in the
655 Neurodegenerating Brain. *Front. Genet.* **10**, 892 (2019).
- 656 4. A. M. R. Taylor, C. Rothblum-Oviatt, N. A. Ellis, I. D. Hickson, S. Meyer, T. O.
657 Crawford, A. Smogorzewska, B. Pietrucha, C. Weemaes, G. S. Stewart, Chromosome
658 instability syndromes. *Nat. Rev. Dis. Primers* **5**, 64 (2019).
- 659 5. M. A. Petr, T. Tulika, L. M. Carmona-Marin, M. Scheibye-Knudsen, Protecting the Aging
660 Genome. *Trends Cell Biol.* **30**, 117-132 (2020).
- 661 6. S. Negrini, V. G. Gorgoulis, T. D. Halazonetis, Genomic instability--an evolving hallmark
662 of cancer. *Nat. Rev. Mol. Cell Biol.* **11**, 220-228 (2010).
- 663 7. K. Guin, Y. Chen, R. Mishra, S. R. B. Muzaki, B. C. Thimmappa, C. E. O'Brien, G.
664 Butler, A. Sanyal, K. Sanyal, Spatial inter-centromeric interactions facilitated the
665 emergence of evolutionary new centromeres. *Elife* **9**, (2020).
- 666 8. S. R. Sankaranarayanan, G. Ianiri, M. A. Coelho, M. H. Reza, B. C. Thimmappa, P.
667 Ganguly, R. N. Vadnala, S. Sun, R. Siddharthan, C. Tellgren-Roth, T. L. J. Dawson, J.
668 Heitman, K. Sanyal, Loss of centromere function drives karyotype evolution in closely
669 related *Malassezia* species. *Elife* **9**, (2020).
- 670 9. A. Aguilera, T. Garcia-Muse, Causes of genome instability. *Annu. Rev. Genet.* **47**, 1-32
671 (2013).
- 672 10. M. S. Levine, A. J. Holland, The impact of mitotic errors on cell proliferation and
673 tumorigenesis. *Genes Dev.* **32**, 620-638 (2018).
- 674 11. K. W. Yuen, C. D. Warren, O. Chen, T. Kwok, P. Hieter, F. A. Spencer, Systematic
675 genome instability screens in yeast and their potential relevance to cancer. *Proc. Natl.
676 Acad. Sci. U S A* **104**, 3925-3930 (2007).

677 12. P. C. Stirling, M. S. Bloom, T. Solanki-Patil, S. Smith, P. Sipahimalani, Z. Li, M. Kofoed,
678 S. Ben-Aroya, K. Myung, P. Hieter, The complete spectrum of yeast chromosome
679 instability genes identifies candidate CIN cancer genes and functional roles for ASTRA
680 complex components. *PLoS Genet.* **7**, e1002057 (2011).

681 13. L. F. Stevenson, B. K. Kennedy, E. Harlow, A large-scale overexpression screen in
682 *Saccharomyces cerevisiae* identifies previously uncharacterized cell cycle genes. *Proc.*
683 *Natl. Acad. Sci. U S A* **98**, 3946-3951 (2001).

684 14. S. Duffy, H. K. Fam, Y. K. Wang, E. B. Styles, J. H. Kim, J. S. Ang, T. Singh, V.
685 Larionov, S. P. Shah, B. Andrews, C. F. Boerkoel, P. Hieter, Overexpression screens
686 identify conserved dosage chromosome instability genes in yeast and human cancer. *Proc.*
687 *Natl. Acad. Sci. U S A* **113**, 9967-9976 (2016).

688 15. C. Espinet, M. A. de la Torre, M. Aldea, E. Herrero, An efficient method to isolate yeast
689 genes causing overexpression-mediated growth arrest. *Yeast* **11**, 25-32 (1995).

690 16. R. Akada, J. Yamamoto, I. Yamashita, Screening and identification of yeast sequences
691 that cause growth inhibition when overexpressed. *Mol. Gen. Genet.* **254**, 267-274 (1997).

692 17. M. Legrand, P. Jaitly, A. Feri, C. d'Enfert, K. Sanyal, *Candida albicans*: An Emerging
693 Yeast Model to Study Eukaryotic Genome Plasticity. *Trends Genet.* **35**, 292-307 (2019).

694 18. G. D. Brown, D. W. Denning, N. A. Gow, S. M. Levitz, M. G. Netea, T. C. White, Hidden
695 killers: human fungal infections. *Sci. Transl. Med.* **4**, 165rv113 (2012).

696 19. D. Z. P. Friedman, I. S. Schwartz, Emerging Fungal Infections: New Patients, New
697 Patterns, and New Pathogens. *J. Fungi (Basel)* **5**, (2019).

698 20. A. Selmecki, A. Forche, J. Berman, Genomic plasticity of the human fungal pathogen
699 *Candida albicans*. *Eukaryot. Cell* **9**, 991-1008 (2010).

700 21. A. Forche, K. Alby, D. Schaefer, A. D. Johnson, J. Berman, R. J. Bennett, The parasexual
701 cycle in *Candida albicans* provides an alternative pathway to meiosis for the formation of
702 recombinant strains. *PLoS Biol.* **6**, e110 (2008).

703 22. A. Feri, R. Loll-Krippleber, P. H. Commere, C. Maufrais, N. Sertour, K. Schwartz, G.
704 Sherlock, M. E. Bougnoux, C. d'Enfert, M. Legrand, Analysis of Repair Mechanisms
705 following an Induced Double-Strand Break Uncovers Recessive Deleterious Alleles in the
706 *Candida albicans* Diploid Genome. *mBio* **7**, (2016).

707 23. A. Selmecki, M. Gerami-Nejad, C. Paulson, A. Forche, J. Berman, An isochromosome
708 confers drug resistance in vivo by amplification of two genes, ERG11 and TAC1. *Mol.*
709 *Microbiol.* **68**, 624-641 (2008).

710 24. N. Dunkel, J. Blass, P. D. Rogers, J. Morschhauser, Mutations in the multi-drug resistance
711 regulator MRR1, followed by loss of heterozygosity, are the main cause of MDR1
712 overexpression in fluconazole-resistant *Candida albicans* strains. *Mol. Microbiol.* **69**, 827-
713 840 (2008).

714 25. A. M. Selmecki, K. Dulmage, L. E. Cowen, J. B. Anderson, J. Berman, Acquisition of
715 aneuploidy provides increased fitness during the evolution of antifungal drug resistance.
716 *PLoS Genet.* **5**, e1000705 (2009).

717 26. C. B. Ford, J. M. Funt, D. Abbey, L. Issi, C. Guiducci, D. A. Martinez, T. Delorey, B. Y.
718 Li, T. C. White, C. Cuomo, R. P. Rao, J. Berman, D. A. Thompson, A. Regev, The
719 evolution of drug resistance in clinical isolates of *Candida albicans*. *Elife* **4**, e00662
720 (2015).

721 27. A. Selmecki, A. Forche, J. Berman, Aneuploidy and isochromosome formation in drug-
722 resistant *Candida albicans*. *Science* **313**, 367-370 (2006).

723 28. A. Coste, V. Turner, F. Ischer, J. Morschhauser, A. Forche, A. Selmecki, J. Berman, J.
724 Bille, D. Sanglard, A mutation in Tac1p, a transcription factor regulating CDR1 and
725 CDR2, is coupled with loss of heterozygosity at chromosome 5 to mediate antifungal
726 resistance in *Candida albicans*. *Genetics* **172**, 2139-2156 (2006).

727 29. A. Forche, G. Cromie, A. C. Gerstein, N. V. Solis, T. Pisithkul, W. Srifa, E. Jeffery, D.
728 Abbey, S. G. Filler, A. M. Dudley, J. Berman, Rapid Phenotypic and Genotypic
729 Diversification After Exposure to the Oral Host Niche in *Candida albicans*. *Genetics* **209**,
730 725-741 (2018).

731 30. G. H. W. Tso, J. A. Reales-Calderon, A. S. M. Tan, X. Sem, G. T. T. Le, T. G. Tan, G. C.
732 Lai, K. G. Srinivasan, M. Yurieva, W. Liao, M. Poidinger, F. Zolezzi, G. Rancati, N.
733 Pavelka, Experimental evolution of a fungal pathogen into a gut symbiont. *Science* **362**,
734 589-595 (2018).

735 31. A. Forche, P. T. Magee, A. Selmecki, J. Berman, G. May, Evolution in *Candida albicans*
736 populations during a single passage through a mouse host. *Genetics* **182**, 799-811 (2009).

737 32. R. J. Bennett, A. Forche, J. Berman, Rapid mechanisms for generating genome diversity:
738 whole ploidy shifts, aneuploidy, and loss of heterozygosity. *Cold Spring Harb. Perspect.
739 Med.* **4**, (2014).

740 33. K. Sanyal, J. Carbon, The CENP-A homolog CaCse4p in the pathogenic yeast *Candida*
741 *albicans* is a centromere protein essential for chromosome transmission. *Proc. Natl. Acad.
742 Sci. U S A* **99**, 12969-12974 (2002).

743 34. K. Sanyal, M. Baum, J. Carbon, Centromeric DNA sequences in the pathogenic yeast
744 *Candida albicans* are all different and unique. *Proc. Natl. Acad. Sci. U S A* **101**, 11374-
745 11379 (2004).

746 35. K. Guin, L. Sreekumar, K. Sanyal, Implications of the Evolutionary Trajectory of
747 Centromeres in the Fungal Kingdom. *Annu. Rev. Microbiol.* **74**, 835-853 (2020).

748 36. A. Musacchio, A. Desai, A Molecular View of Kinetochore Assembly and Function.
749 *Biology (Basel)* **6**, (2017).

750 37. N. Varshney, K. Sanyal, Nuclear migration in budding yeasts: position before division.
751 *Curr. Genet.* **65**, 1341-1346 (2019).

752 38. A. Gonzalez-Novo, L. Labrador, M. E. Pablo-Hernando, J. Correa-Bordes, M. Sanchez, J.
753 Jimenez, C. R. Vazquez de Aldana, Dbf2 is essential for cytokinesis and correct mitotic
754 spindle formation in *Candida albicans*. *Mol. Microbiol.* **72**, 1364-1378 (2009).

755 39. S. W. Milne, J. Cheetham, D. Lloyd, S. Shaw, K. Moore, K. H. Paszkiewicz, S. J. Aves, S.
756 Bates, Role of *Candida albicans* Tem1 in mitotic exit and cytokinesis. *Fungal Genet. Biol.*
757 **69**, 84-95 (2014).

758 40. S. Bates, *Candida albicans* Cdc15 is essential for mitotic exit and cytokinesis. *Sci. Rep.* **8**,
759 8899 (2018).

760 41. J. Thakur, K. Sanyal, The essentiality of the fungus-specific Dam1 complex is correlated
761 with a one-kinetochore-one-microtubule interaction present throughout the cell cycle,
762 independent of the nature of a centromere. *Eukaryot. Cell* **10**, 1295-1305 (2011).

763 42. B. Roy, L. S. Burrack, M. A. Lone, J. Berman, K. Sanyal, CaMtw1, a member of the
764 evolutionarily conserved Mis12 kinetochore protein family, is required for efficient inner
765 kinetochore assembly in the pathogenic yeast *Candida albicans*. *Mol. Microbiol.* **80**, 14-
766 32 (2011).

767 43. M. Legrand, C. L. Chan, P. A. Jauert, D. T. Kirkpatrick, Role of DNA mismatch repair
768 and double-strand break repair in genome stability and antifungal drug resistance in
769 *Candida albicans*. *Eukaryot. Cell* **6**, 2194-2205 (2007).

770 44. M. Legrand, C. L. Chan, P. A. Jauert, D. T. Kirkpatrick, The contribution of the S-phase
771 checkpoint genes MEC1 and SGS1 to genome stability maintenance in *Candida albicans*.
772 *Fungal Genet. Biol.* **48**, 823-830 (2011).

773 45. R. Loll-Krippleber, C. d'Enfert, A. Feri, D. Diogo, A. Perin, M. Marcet-Houben, M. E.
774 Bougnoux, M. Legrand, A study of the DNA damage checkpoint in *Candida albicans*:
775 uncoupling of the functions of Rad53 in DNA repair, cell cycle regulation and genotoxic
776 stress-induced polarized growth. *Mol. Microbiol.* **91**, 452-471 (2014).

777 46. R. Loll-Krippleber, A. Feri, M. Nguyen, C. Maufrais, J. Yansouni, C. d'Enfert, M.
778 Legrand, A FACS-optimized screen identifies regulators of genome stability in *Candida*
779 *albicans*. *Eukaryot. Cell* **14**, 311-322 (2015).

780 47. M. Chauvel, A. Nesseir, V. Cabral, S. Znaidi, S. Goyard, S. Bachellier-Bassi, A. Firon, M.
781 Legrand, D. Diogo, C. Naulleau, T. Rossignol, C. d'Enfert, A versatile overexpression
782 strategy in the pathogenic yeast *Candida albicans*: identification of regulators of
783 morphogenesis and fitness. *PLoS One* **7**, e45912 (2012).

784 48. C. Bachewich, A. Nantel, M. Whiteway, Cell cycle arrest during S or M phase generates
785 polarized growth via distinct signals in *Candida albicans*. *Mol. Microbiol.* **57**, 942-959
786 (2005).

787 49. E. S. Bensen, A. Clemente-Blanco, K. R. Finley, J. Correa-Bordes, J. Berman, The mitotic
788 cyclins Clb2p and Clb4p affect morphogenesis in *Candida albicans*. *Mol. Biol. Cell* **16**,
789 3387-3400 (2005).

790 50. J. Thakur, K. Sanyal, A coordinated interdependent protein circuitry stabilizes the
791 kinetochore ensemble to protect CENP-A in the human pathogenic yeast *Candida*
792 *albicans*. *PLoS Genet.* **8**, e1002661 (2012).

793 51. E. Kitamura, K. Tanaka, Y. Kitamura, T. U. Tanaka, Kinetochore microtubule interaction
794 during S phase in *Saccharomyces cerevisiae*. *Genes Dev* **21**, 3319-3330 (2007).

795 52. Q. W. Jin, J. Fuchs, J. Loidl, Centromere clustering is a major determinant of yeast
796 interphase nuclear organization. *J. Cell Sci.* **113** (Pt 11), 1903-1912 (2000).

797 53. T. C. Lin, A. Neuner, E. Schiebel, Targeting of gamma-tubulin complexes to microtubule
798 organizing centers: conservation and divergence. *Trends Cell Biol.* **25**, 296-307 (2015).

799 54. T. C. Lin, A. Neuner, D. Flemming, P. Liu, T. Chinen, U. Jakle, R. Arkowitz, E. Schiebel,
800 MOZART1 and gamma-tubulin complex receptors are both required to turn gamma-TuSC
801 into an active microtubule nucleation template. *J. Cell Biol* **215**, 823-840 (2016).

802 55. A. Musacchio, E. D. Salmon, The spindle-assembly checkpoint in space and time. *Nat Rev
803 Mol Cell Biol* **8**, 379-393 (2007).

804 56. G. Kops, B. Snel, E. C. Tromer, Evolutionary Dynamics of the Spindle Assembly
805 Checkpoint in Eukaryotes. *Curr. Biol.* **30**, R589-R602 (2020).

806 57. A. K. Caydası, G. Pereira, SPOC alert--when chromosomes get the wrong direction. *Exp.
807 Cell Res.* **318**, 1421-1427 (2012).

808 58. I. Scarfone, S. Piatti, Coupling spindle position with mitotic exit in budding yeast: The
809 multifaceted role of the small GTPase Tem1. *Small GTPases* **6**, 196-201 (2015).

810 59. R. S. Care, J. Trevethick, K. M. Binley, P. E. Sudbery, The MET3 promoter: a new tool
811 for *Candida albicans* molecular genetics. *Mol. Microbiol.* **34**, 792-798 (1999).

812 60. M. Shivaraju, J. R. Unruh, B. D. Slaughter, M. Mattingly, J. Berman, J. L. Gerton, Cell-
813 cycle-coupled structural oscillation of centromeric nucleosomes in yeast. *Cell* **150**, 304-
814 316 (2012).

815 61. L. Sreekumar, K. Kumari, K. Guin, A. Bakshi, N. Varshney, B. C. Thimmappa, L.
816 Narlikar, R. Padinhateeri, R. Siddharthan, K. Sanyal, Orc4 spatiotemporally stabilizes
817 centromeric chromatin. *Genome Res.* **31**, 607-621 (2021).

818 62. H. Y. Liu, J. H. Toyn, Y. C. Chiang, M. P. Draper, L. H. Johnston, C. L. Denis, DBF2, a
819 cell cycle-regulated protein kinase, is physically and functionally associated with the
820 CCR4 transcriptional regulatory complex. *EMBO J.* **16**, 5289-5298 (1997).

821 63. U. Surana, A. Amon, C. Dowzer, J. McGrew, B. Byers, K. Nasmyth, Destruction of the
822 CDC28/CLB mitotic kinase is not required for the metaphase to anaphase transition in
823 budding yeast. *EMBO J.* **12**, 1969-1978 (1993).

824 64. M. Hotz, Y. Barral, The Mitotic Exit Network: new turns on old pathways. *Trends Cell
825 Biol.* **24**, 145-152 (2014).

826 65. A. Atir-Lande, T. Gildor, D. Kornitzer, Role for the SCFCDC4 ubiquitin ligase in
827 *Candida albicans* morphogenesis. *Mol. Biol. Cell* **16**, 2772-2785 (2005).

828 66. M. Shirayama, Y. Matsui, E. A. Toh, The yeast TEM1 gene, which encodes a GTP-
829 binding protein, is involved in termination of M phase. *Mol. Cell Biol.* **14**, 7476-7482
830 (1994).

831 67. M. Valerio-Santiago, F. Monje-Casas, Tem1 localization to the spindle pole bodies is
832 essential for mitotic exit and impairs spindle checkpoint function. *J. Cell Biol.* **192**, 599-
833 614 (2011).

834 68. S. E. Lee, L. M. Frenz, N. J. Wells, A. L. Johnson, L. H. Johnston, Order of function of
835 the budding-yeast mitotic exit-network proteins Tem1, Cdc15, Mob1, Dbf2, and Cdc5.
836 *Curr. Biol.* **11**, 784-788 (2001).

837 69. A. P. Jackson, J. A. Gamble, T. Yeomans, G. P. Moran, D. Saunders, D. Harris, M. Aslett,
838 J. F. Barrell, G. Butler, F. Citiulo, D. C. Coleman, P. W. de Groot, T. J. Goodwin, M. A.
839 Quail, J. McQuillan, C. A. Munro, A. Pain, R. T. Poulter, M. A. Rajandream, H. Renauld,
840 M. J. Spiering, A. Tivey, N. A. Gow, B. Barrell, D. J. Sullivan, M. Berriman, Comparative
841 genomics of the fungal pathogens *Candida dubliniensis* and *Candida albicans*. *Genome
842 Res.* **19**, 2231-2244 (2009).

843 70. S. Padmanabhan, J. Thakur, R. Siddharthan, K. Sanyal, Rapid evolution of Cse4p-rich
844 centromeric DNA sequences in closely related pathogenic yeasts, *Candida albicans* and
845 *Candida dubliniensis*. *Proc. Natl. Acad. Sci. U S A* **105**, 19797-19802 (2008).

846 71. G. Chatterjee, S. R. Sankaranarayanan, K. Guin, Y. Thattikota, S. Padmanabhan, R.
847 Siddharthan, K. Sanyal, Repeat-Associated Fission Yeast-Like Regional Centromeres in
848 the Ascomycetous Budding Yeast *Candida tropicalis*. *PLoS Genet.* **12**, e1005839 (2016).

849 72. S. Bijlani, M. A. Thevandavakkam, H. J. Tsai, J. Berman, Autonomously Replicating
850 Linear Plasmids That Facilitate the Analysis of Replication Origin Function in *Candida*
851 *albicans*. *mSphere* **4**, (2019).

852 73. D. Pellman, M. Bagget, Y. H. Tu, G. R. Fink, H. Tu, Two microtubule-associated proteins
853 required for anaphase spindle movement in *Saccharomyces cerevisiae*. *J. Cell Biol.* **130**,
854 1373-1385 (1995).

855 74. S. C. Schuyler, J. Y. Liu, D. Pellman, The molecular function of Ase1p: evidence for a
856 MAP-dependent midzone-specific spindle matrix. Microtubule-associated proteins. *J. Cell*
857 *Biol.* **160**, 517-528 (2003).

858 75. H. Liu, F. Liang, F. Jin, Y. Wang, The coordination of centromere replication, spindle
859 formation, and kinetochore-microtubule interaction in budding yeast. *PLoS Genet.* **4**,
860 e1000262 (2008).

861 76. Y. Wang, F. Hu, S. J. Elledge, The Bfa1/Bub2 GAP complex comprises a universal
862 checkpoint required to prevent mitotic exit. *Curr. Biol.* **10**, 1379-1382 (2000).

863 77. H. S. Ro, S. Song, K. S. Lee, Bfa1 can regulate Tem1 function independently of Bub2 in
864 the mitotic exit network of *Saccharomyces cerevisiae*. *Proc. Natl. Acad. Sci. U S A* **99**,
865 5436-5441 (2002).

866 78. A. Ofir, D. Kornitzer, *Candida albicans* cyclin Clb4 carries S-phase cyclin activity.
867 *Eukaryot. Cell* **9**, 1311-1319 (2010).

868 79. E. Schwob, K. Nasmyth, CLB5 and CLB6, a new pair of B cyclins involved in DNA
869 replication in *Saccharomyces cerevisiae*. *Genes Dev.* **7**, 1160-1175 (1993).

870 80. A. Hibbel, A. Bogdanova, M. Mahamdeh, A. Jannasch, M. Storch, E. Schaffer, D.
871 Liakopoulos, J. Howard, Kinesin Kip2 enhances microtubule growth in vitro through
872 length-dependent feedback on polymerization and catastrophe. *Elife* **4**, (2015).

873 81. B. Augustine, C. F. Chin, F. M. Yeong, Role of Kip2 during early mitosis - impact on
874 spindle pole body separation and chromosome capture. *J. Cell Sci.* **131**, (2018).

875 82. A. Riera, M. Barbon, Y. Noguchi, L. M. Reuter, S. Schneider, C. Speck, From structure to
876 mechanism-understanding initiation of DNA replication. *Genes Dev.* **31**, 1073-1088
877 (2017).

878 83. K. Labib, J. A. Tercero, J. F. Diffley, Uninterrupted MCM2-7 function required for DNA
879 replication fork progression. *Science* **288**, 1643-1647 (2000).

880 84. B. Ren, G. Yu, G. C. Tseng, K. Cieply, T. Gavel, J. Nelson, G. Michalopoulos, Y. P. Yu,
881 J. H. Luo, MCM7 amplification and overexpression are associated with prostate cancer
882 progression. *Oncogene* **25**, 1090-1098 (2006).

883 85. G. Toyokawa, K. Masuda, Y. Daigo, H. S. Cho, M. Yoshimatsu, M. Takawa, S. Hayami,
884 K. Maejima, M. Chino, H. I. Field, D. E. Neal, E. Tsuchiya, B. A. Ponder, Y. Maehara, Y.
885 Nakamura, R. Hamamoto, Minichromosome Maintenance Protein 7 is a potential
886 therapeutic target in human cancer and a novel prognostic marker of non-small cell lung
887 cancer. *Mol. Cancer* **10**, 65 (2011).

888 86. Y. T. Qiu, W. J. Wang, B. Zhang, L. L. Mei, Z. Z. Shi, MCM7 amplification and
889 overexpression promote cell proliferation, colony formation and migration in esophageal
890 squamous cell carcinoma by activating the AKT1/mTOR signaling pathway. *Oncol. Rep.*
891 **37**, 3590-3596 (2017).

892 87. T. A. Weinert, L. H. Hartwell, The RAD9 gene controls the cell cycle response to DNA
893 damage in *Saccharomyces cerevisiae*. *Science* **241**, 317-322 (1988).

894 88. D. P. Waterman, J. E. Haber, M. B. Smolka, Checkpoint Responses to DNA Double-
895 Strand Breaks. *Annu. Rev. Biochem.* **89**, 103-133 (2020).

896 89. S. Sridhar, T. Hori, R. Nakagawa, T. Fukagawa, K. Sanyal, Bridgin connects the outer
897 kinetochore to centromeric chromatin. *Nat. Commun.* **12**, 146 (2021).

898 90. Y. Zhang, O. Foreman, D. A. Wigle, F. Kosari, G. Vasmatzis, J. L. Salisbury, J. van
899 Deursen, P. J. Galardy, USP44 regulates centrosome positioning to prevent aneuploidy
900 and suppress tumorigenesis. *J. Clin. Invest.* **122**, 4362-4374 (2012).

901 91. W. T. Silkworth, I. K. Nardi, R. Paul, A. Mogilner, D. Cimini, Timing of centrosome
902 separation is important for accurate chromosome segregation. *Mol. Biol. Cell* **23**, 401-411
903 (2012).

904 92. H. J. Nam, R. M. Naylor, J. M. van Deursen, Centrosome dynamics as a source of
905 chromosomal instability. *Trends Cell Biol.* **25**, 65-73 (2015).

906 93. A. Clemente-Blanco, A. Gonzalez-Novo, F. Machin, D. Caballero-Lima, L. Aragon, M.
907 Sanchez, C. R. de Aldana, J. Jimenez, J. Correa-Bordes, The Cdc14p phosphatase affects

908 late cell-cycle events and morphogenesis in *Candida albicans*. *J. Cell Sci.* **119**, 1130-1143
909 (2006).

910 94. I. N. Kaneva, I. M. Sudbery, M. J. Dickman, P. E. Sudbery, Proteins that physically
911 interact with the phosphatase Cdc14 in *Candida albicans* have diverse roles in the cell
912 cycle. *Sci. Rep.* **9**, 6258 (2019).

913 95. E. S. Segal, V. Gritsenko, A. Levitan, B. Yadav, N. Dror, J. L. Steenwyk, Y. Silberberg,
914 K. Mielich, A. Rokas, N. A. R. Gow, R. Kunze, R. Sharan, J. Berman, Gene Essentiality
915 Analyzed by In Vivo Transposon Mutagenesis and Machine Learning in a Stable Haploid
916 Isolate of *Candida albicans*. *mBio* **9**, (2018).

917 96. C. T. Chung, S. L. Niemela, R. H. Miller, One-step preparation of competent *Escherichia*
918 *coli*: transformation and storage of bacterial cells in the same solution. *Proc. Natl. Acad.*
919 *Sci. U S A* **86**, 2172-2175 (1989).

920 97. S. C. Potter, A. Luciani, S. R. Eddy, Y. Park, R. Lopez, R. D. Finn, HMMER web server:
921 2018 update. *Nucleic Acids Res.* **46**, W200-W204 (2018).

922 98. F. C. Luca, M. Mody, C. Kurischko, D. M. Roof, T. H. Giddings, M. Winey,
923 *Saccharomyces cerevisiae* Mob1p is required for cytokinesis and mitotic exit. *Mol. Cell*
924 *Biol.* **21**, 6972-6983 (2001).

925 99. D. Tamborrini, M. A. Juanes, S. Ibanes, G. Rancati, S. Piatti, Recruitment of the mitotic
926 exit network to yeast centrosomes couples septin displacement to actomyosin constriction.
927 *Nat. Commun.* **9**, 4308 (2018).

928 100. R. Sopko, D. Huang, N. Preston, G. Chua, B. Papp, K. Kafadar, M. Snyder, S. G. Oliver,
929 M. Cyert, T. R. Hughes, C. Boone, B. Andrews, Mapping pathways and phenotypes by
930 systematic gene overexpression. *Mol. Cell* **21**, 319-330 (2006).

931 101. R. Li, Bifurcation of the mitotic checkpoint pathway in budding yeast. *Proc. Natl. Acad.*
932 *Sci. U S A* **96**, 4989-4994 (1999).

933

934 **Acknowledgments**

935

936 We thank members of the Sanyal and d'Enfert laboratories for their valuable suggestions and
937 constructive criticism. We thank the Munro group at University of Aberdeen and Mazel group at
938 Institut Pasteur for their contribution to the establishment of overexpression plasmids that were
939 used in this study, a work that will be reported elsewhere. We thank Dr. Arshad Desai for critical
940 reading of the manuscript. We thank N. Varshney for constructing the plasmid pCse4-TAP-Leu.
941 We thank L. Sreekumar for constructing pTub4-GFP-His cassette. Special thanks to K. Guin for

sharing the raw files to generate the phylogenetic tree. We thank V. Sood and A. Das for generating the plasmid pCdCsa6-GFP-ARS2. We thank A.S. Amrutha for generating the strains CaPJ300 and CaPJ301. We acknowledge N. Nala at the flow cytometry facility, JNCASR, for assisting flow cytometry and cell sorting experiments. The establishment of overexpression plasmids was supported by the Wellcome Trust [088858/Z/09/Z to CD]. This work was supported by a grant from the Indo French Centre for the promotion of Advanced Research (CEFIPRA, Project no. 5703-2). CEFIPRA also aided in the travel of PJ, KS and CD between the Sanyal and d'Enfert laboratories. PJ acknowledges intramural funding from JNCASR. AD and TP were supported by the CEFIPRA grant. K.S. acknowledges the financial support of JC Bose National Fellowship (Science and Engineering Research Board, Govt. of India, JCB/2020/000021) and intramural funding from JNCASR.

953

954 **Funding**

955

956 Indo French Centre for the promotion of Advanced Research (CEFIPRA, Project no. 5703-2).

957 Jawaharlal Nehru Centre for Advanced Scientific Research.

958 JC Bose National Fellowship (Science and Engineering Research Board, Govt. of India,

959 JCB/2020/000021).

960 The Wellcome Trust (088858/Z/09/Z).

961 Institut Pasteur.

962 Institut national de la recherche pour l'agriculture, l'alimentation et l'environnement (INRAE).

963

964 **Author contributions:**

965 Conceptualization: KS, CD, PJ, ML

966 Methodology: ML, PJ, AD, TP, MC

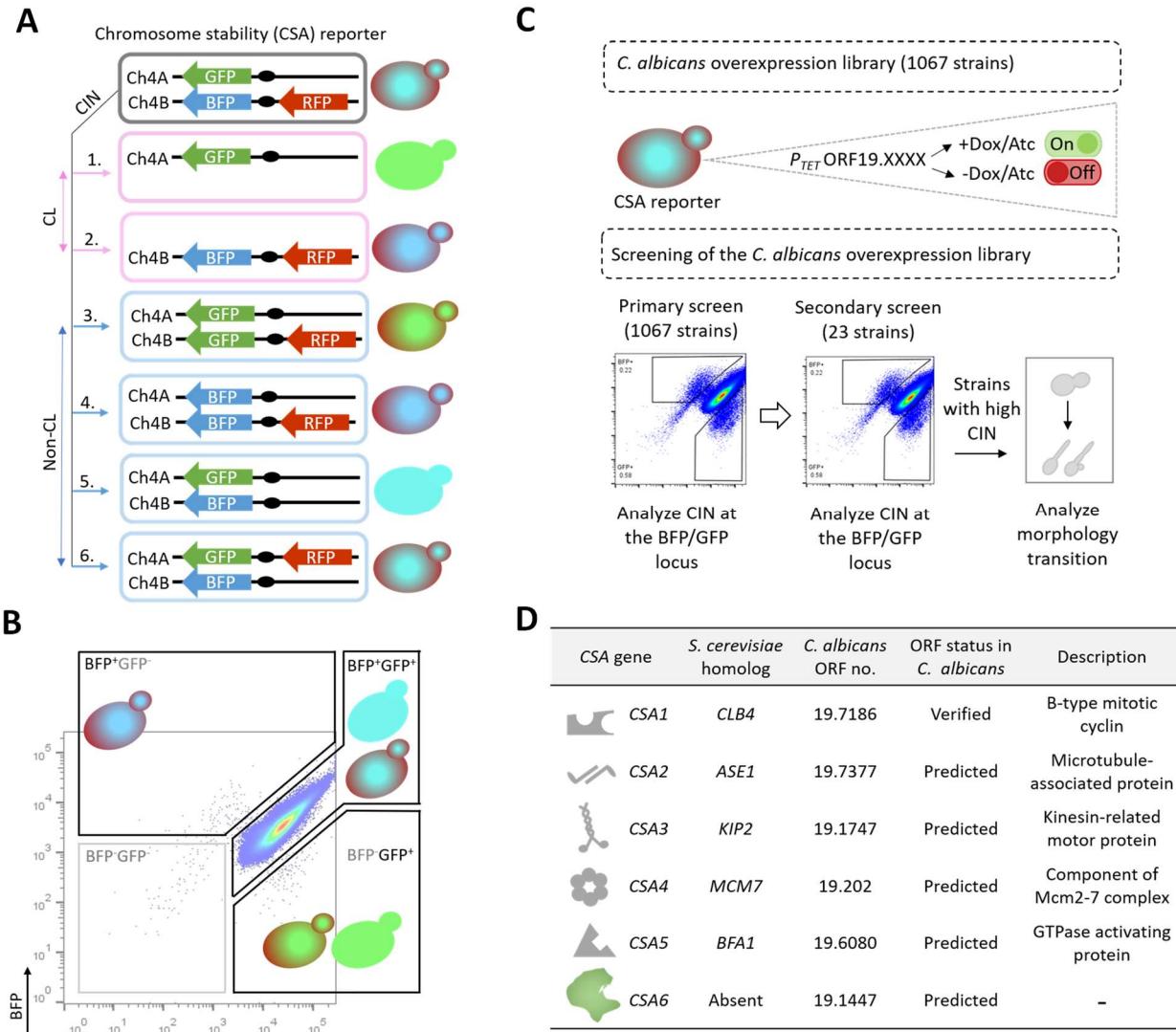
967 Investigation: PJ, AD, TP, ML

968 Supervision: KS, CD, ML

969 Writing—original draft: PJ, KS

970 Writing—review & editing: PJ, KS, CD, ML

971


972 **Competing interests:** The authors declare no competing interests.

973

974 **Data and materials availability:** All data are available in the main text or supplementary materials.

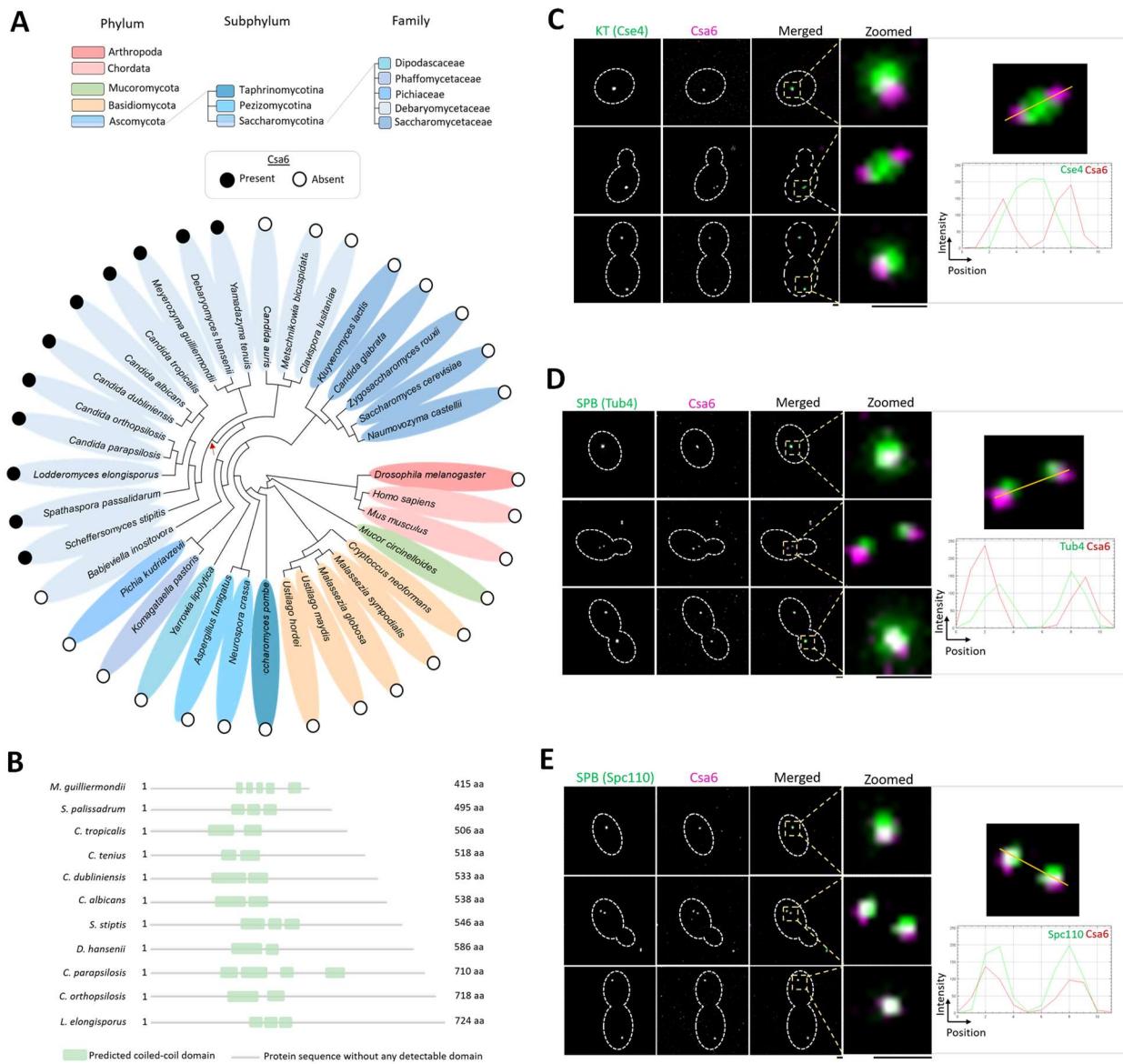
976 **Figure 1**

977

978

979

980 **Fig. 1. A medium-throughput protein overexpression screen identifies a set of CSA genes in**
 981 ***C. albicans*. (A)** Possible outcomes of CIN at the BFP/GFP and RFP loci. *1-4*, CIN at the BFP or
 982 GFP locus, because of either chromosome loss (CL) or non-CL events such as break-induced
 983 replication, gene conversion, chromosome truncation or mitotic crossing over, will lead to the
 984 expression of either GFP or BFP expressing genes. CIN due to CL can be specifically identified
 985 by the concomitant loss of BFP and RFP, as shown in *1*. *5 and 6*, cells undergoing non-CL events
 986 at the RFP locus will continue to express BFP and GFP. **(B)** Flow cytometric analysis of the
 987 BFP/GFP density profile of empty vector (EV) (CaPJ150) containing BFP, GFP and RFP genes.
 988 Majority of the cells are positive for both BFP and GFP (BFP⁺GFP⁺). A minor fraction of the


989 population had lost either one of the markers (BFP^+GFP^- or BFP^-GFP^+) or both the markers (BFP^-
990 GFP^-), indicating spontaneous instability of this locus (46). Approximately 1 million events are
991 displayed. **(C)** Pictorial representation of the screening strategy employed for identifying *CSA*
992 genes in *C. albicans*. Briefly, a library of *C. albicans* overexpression strains (1067), each carrying
993 a unique ORF under the tetracycline-inducible promoter, P_{TET} , was generated using the CSA
994 reporter (CEC5201) as the parent strain. The library was then analyzed by primary and secondary
995 screening methods to identify *CSA* genes. In the primary screen, CIN frequency at the BFP/GFP
996 locus in the individual 1067 overexpression strains was determined using flow cytometry.
997 Overexpression strains exhibiting increased CIN (23 out of 1067) were taken forward for
998 secondary screening. The secondary screen involved revalidation of the primary hits for increased
999 CIN at the BFP/GFP locus by flow cytometry. Strains which reproduced the increased CIN
1000 phenotype were further examined for yeast to filamentous transition by microscopy. **(D)** A brief
1001 overview of the *CSA* genes identified from the overexpression screen (6 out of 1067). Functional
1002 annotation of genes is based on the information available either in *Candida Genome Database*
1003 (www.candidagenome.org) or in *Saccharomyces Genome Database* (www.yeastgenome.org) on
1004 August 1, 2021.

1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022

1023

Figure 2

1024

1025

1026

1027 **Fig. 2. Csa6 has a selective existence across fungal phylogeny and is constitutively localized**
 1028 **to the SPBs in *C. albicans*. (A)** Phylogenetic tree showing the conservation of Csa6 across the
 1029 mentioned species. The presence (filled circles) or absence (empty circles) of Csa6 in every
 1030 species is marked. Each taxonomic rank is color-coded. The species mentioned under the family
 1031 Debaryomycetaceae belong to the CUG-Ser clade in which the CUG codon is often translated as
 1032 serine instead of leucine. The red arrow points to the CUG-Ser clade lineage that acquired Csa6.
 1033 Searches for Csa6 homologs ($E \leq 10^{-2}$) were carried out either in the *Candida Genome*
 1034 *Database* (www.candidagenome.org) or NCBI nonredundant protein database. **(B)** Schematic
 1035 illustrating the protein domain architecture alignment of Csa6 in the indicated fungal species.

1036 Length of the protein is mentioned as amino acids (aa). Approximate positions of the predicted
1037 coiled-coil domain, identified using HMMER (97) phmmer searches, is shown. **(C-E)** *Left*,
1038 micrographs comparing the sub-cellular localization of Csa6 with KT (Cse4) and SPB (Tub4 and
1039 Spc110) at various cell cycle stages. *Top*, Csa6-mCherry and Cse4-GFP (CaPJ119); *middle*, Csa6-
1040 mCherry and Tub4-GFP (CaPJ120), and *bottom*, Csa6m-Cherry and Spc110-GFP (CaPJ121).
1041 Scale bar, 1 μ m. *Right*, histogram plots showing the fluorescence intensity profile of Csa6-
1042 mCherry with Cse4-GFP (*top*), Tub4-GFP (*middle*) and Spc110-GFP (*bottom*) across the
1043 indicated lines.

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

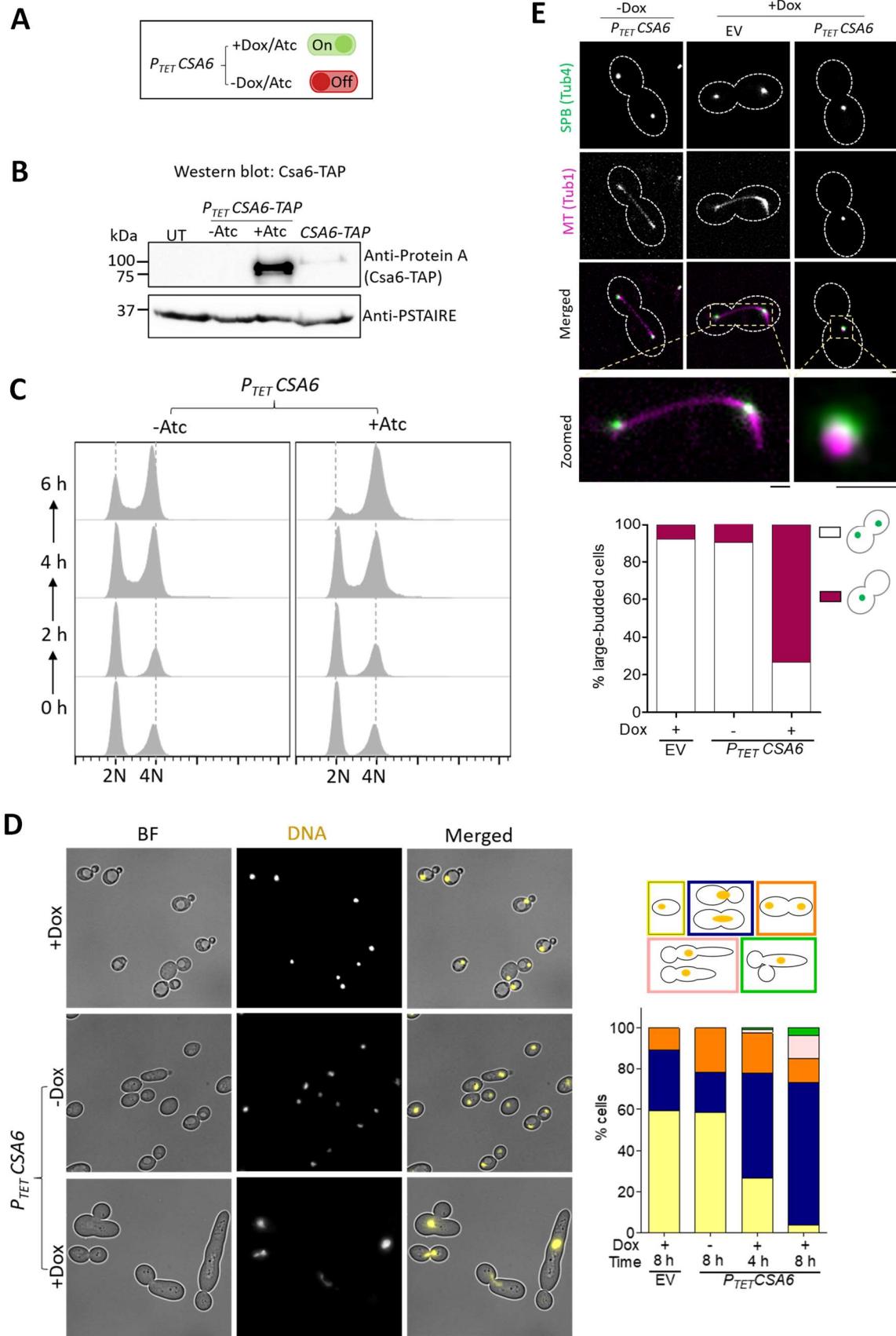
1058

1059

1060

1061

1062

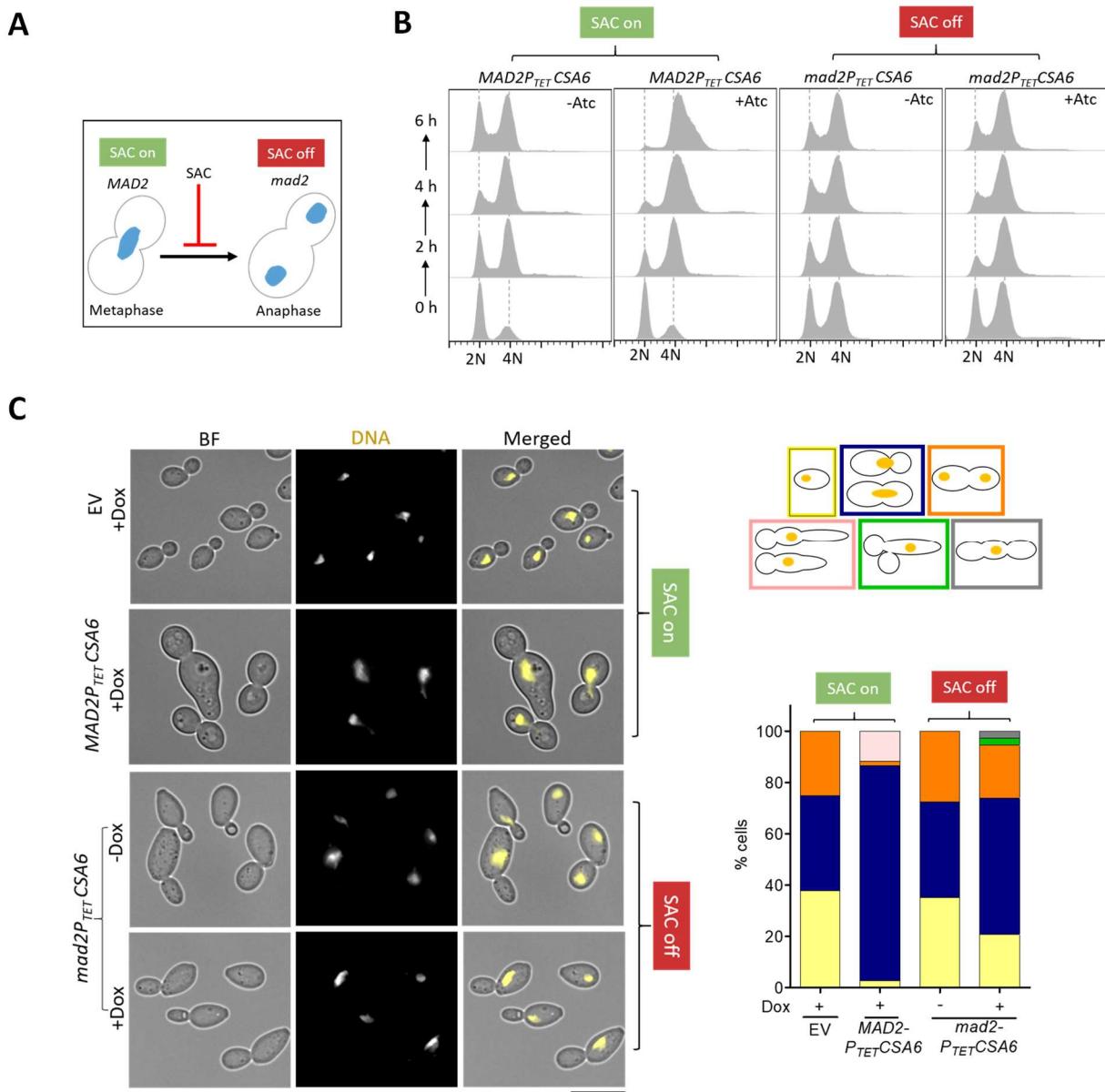

1063

1064

1065

1066

Figure 3

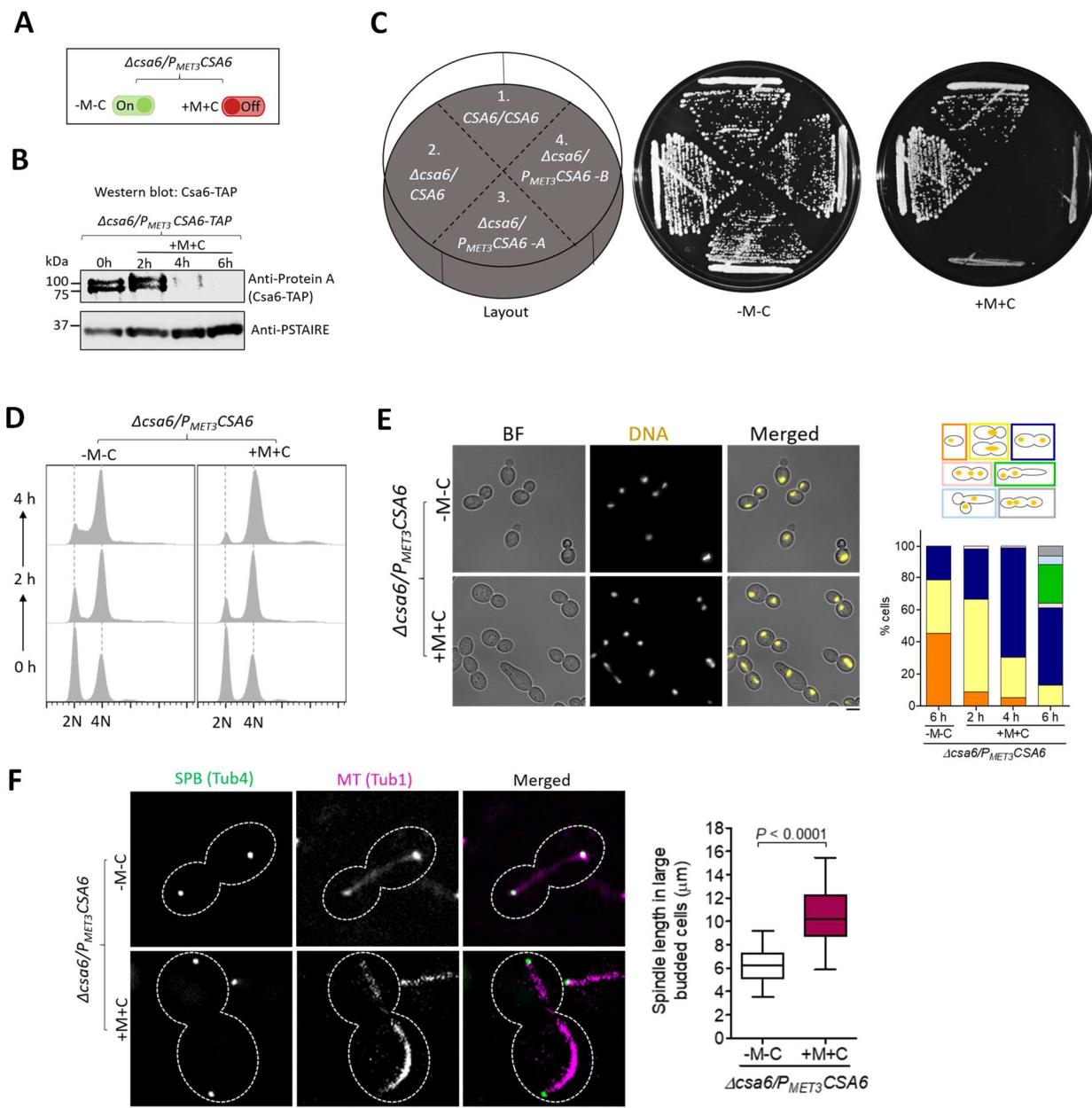

1069 **Fig. 3. Overexpression of Csa6 alters the morphology of the mitotic spindle and leads to**
1070 **G2/M arrest in *C. albicans*. (A)** Atc/Dox-dependent functioning of the P_{TET} promoter system for
1071 conditional overexpression of *CSA6*. **(B)** Western blot analysis using anti-Protein A antibodies
1072 confirmed overexpression of *CSA6-TAP* from the P_{TET} promoter (CaPJ181), after 8 h induction in
1073 presence of Atc (3 μ g/ml), in comparison to the uninduced culture (-Atc) or *CSA6-TAP*
1074 expression from its native promoter (CaPJ180); $N=2$. PSTAIRE was used as a loading control.
1075 UT, untagged control (SN148). **(C)** Flow cytometric analysis of cell cycle displaying the cellular
1076 DNA content of *CSA6^{OE}* strain (CaPJ176) in presence or absence of Atc (3 μ g/ml) at the
1077 indicated time intervals; $N=3$. **(D)** *Left*, microscopic images of Hoechst-stained EV (CaPJ170)
1078 and *CSA6^{OE}* strain (CaPJ176) after 8 h of growth under indicated conditions of Dox (50 μ g/ml).
1079 BF, bright-field. Scale bar, 10 μ m. *Right*, quantitation of different cell types at the indicated time-
1080 points; $n \geq 100$ cells. **(E)** *Top*, representative micrographs of spindle morphology in the large-
1081 budded cells of EV (CaPJ172) and *CSA6^{OE}* strain (CaPJ178) after 8 h of growth under indicated
1082 conditions of Dox (50 μ g/ml). SPBs and MTs are marked by Tub4-GFP and Tub1-mCherry,
1083 respectively. Scale bar, 1 μ m. *Bottom*, the proportion of the large-budded cells with indicated SPB
1084 phenotypes; $n \geq 100$ cells.

1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102

1103

Figure 4

1104

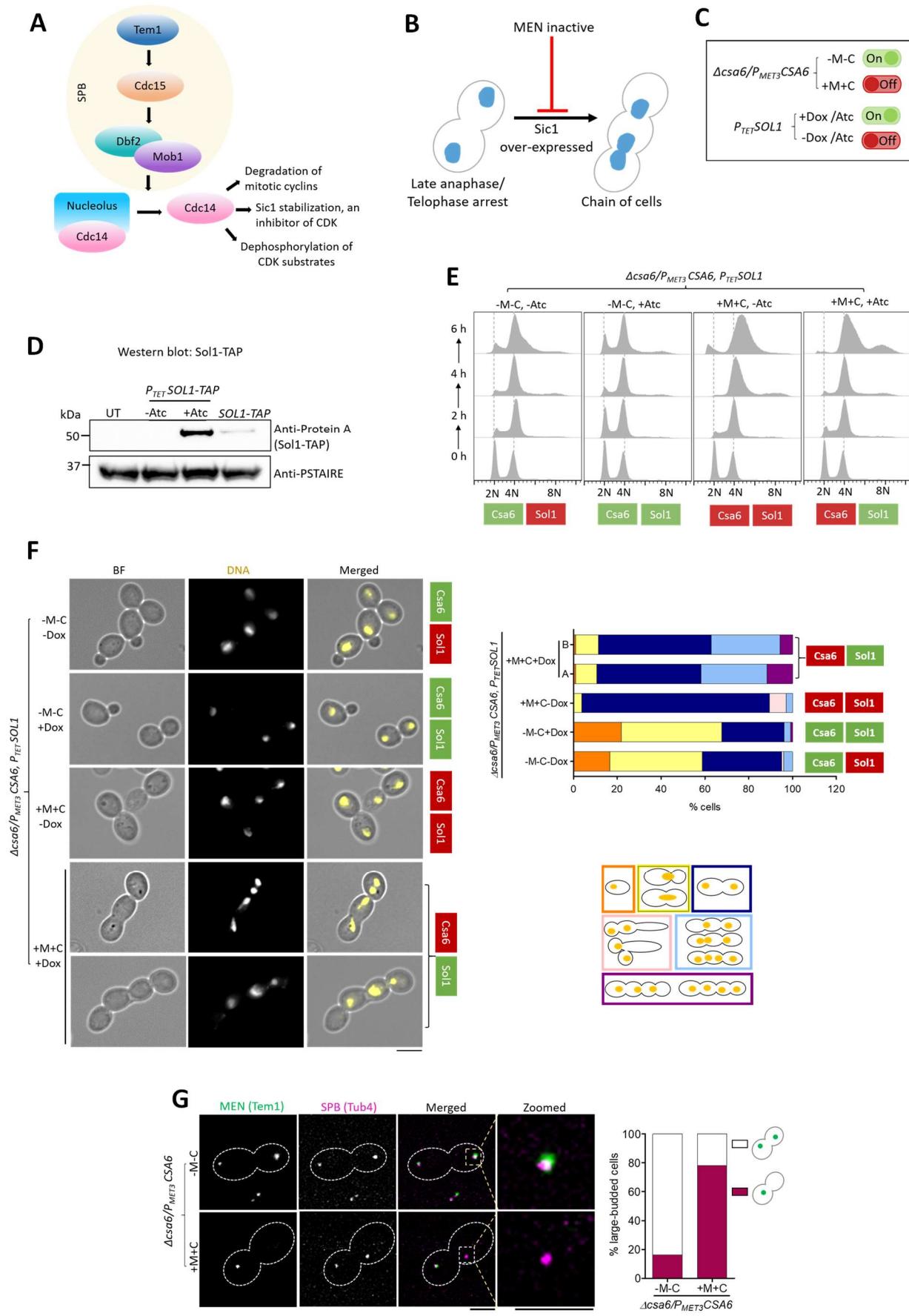

1105

1106

1107 **Fig. 4. The G2/M cell cycle arrest in the *CSA6^{OE}* mutant is mediated by Mad2.** (A) The
1108 G2/M arrest posed by SAC in response to an improper chromosome-spindle attachment is
1109 relieved in the absence of Mad2, allowing cells to transit from metaphase to anaphase. (B) Flow
1110 cytometric DNA content analysis in CaPJ176 (*MAD2CSA6^{OE}*) and CaPJ197 (*mad2CSA6^{OE}*) at
1111 the indicated times, in presence or absence of Atc (3 μ g/ml); $N=3$. (C) *Left*, microscopic images
1112 of CaPJ170 (EV), CaPJ176 (*MAD2CSA6^{OE}*) and CaPJ197 (*mad2CSA6^{OE}*) following Hoechst
1113 staining, after 8 h of growth under indicated conditions of Dox (50 μ g/ml). Scale bar, 10 μ m.
1114 *Right*, quantitation of the indicated cell types; $n \geq 100$ cells.

1115
1116

Figure 5


1117
1118

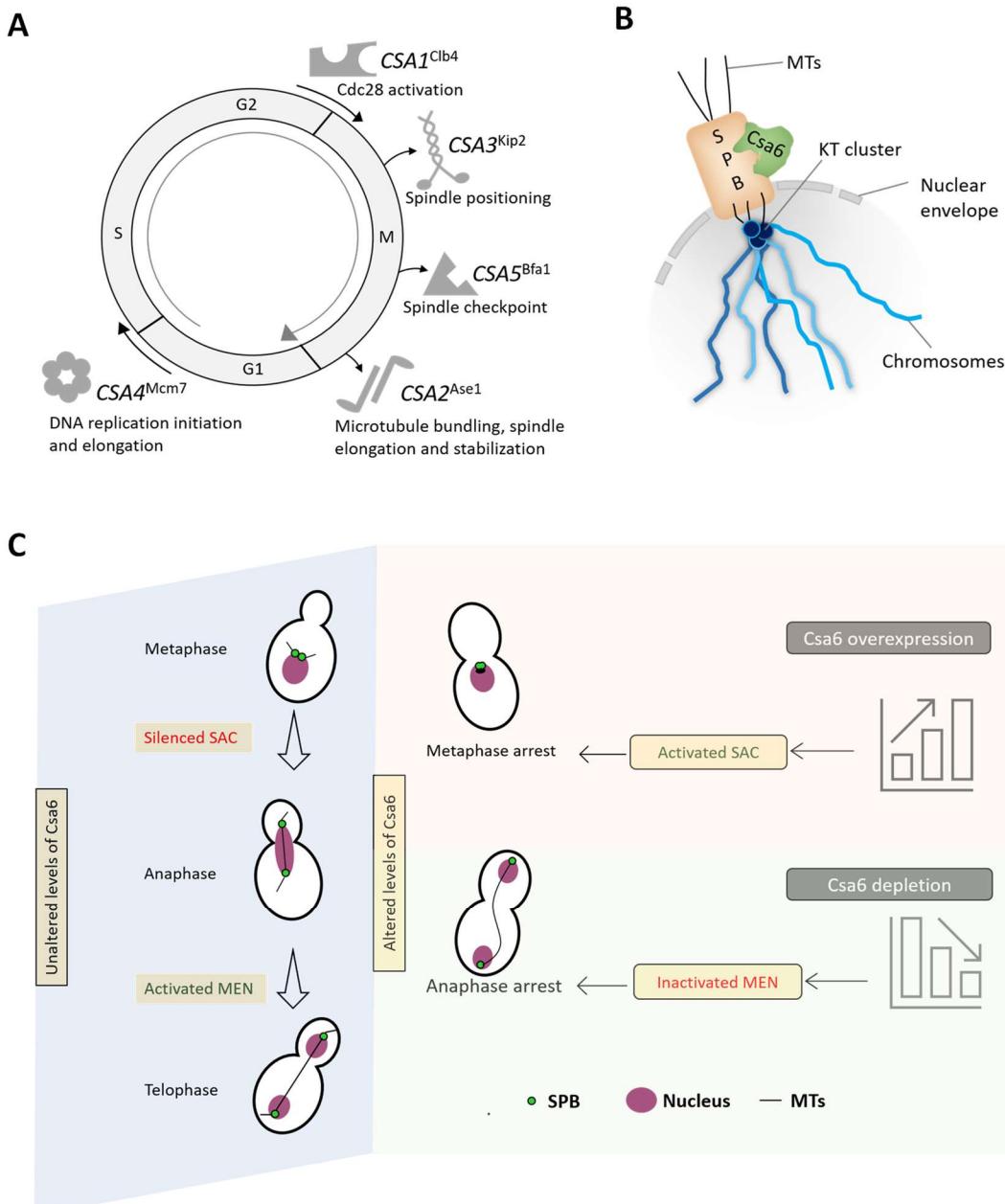
1119 **Fig. 5. Csa6 depletion causes late anaphase/telophase arrest with a hyper-extended mitotic**
1120 **spindle in *C. albicans*. (A)** The *MET3* promoter system for depleting cellular levels of Csa6. The
1121 *MET3* promoter can be conditionally repressed in presence of methionine (Met/M) and cysteine
1122 (Cys/C). **(B)** Western blot analysis using anti-Protein A antibodies revealed time dependent
1123 depletion of Csa6-TAP in *CSA6^{PSD}* strain (CaPJ212), grown under repressive conditions (YPD
1124 + 5 mM Met and 5 mM Cys) for indicated time interval; $N=2$. **(C)** Csa6 is essential for viability in
1125 *C. albicans*. Strains with indicated genotypes, (1) SN148, (2) CaPJ209, (3 and 4) CaPJ210 (two

1126 transformants) were streaked on agar plates with permissive (YPDU-Met-Cys) or repressive
1127 (YPDU + 5 mM Met and 5 mM Cys) media and incubated at 30°C for two days. **(D)** Cell cycle
1128 analysis of CaPJ210 ($CSA6^{PSD}$) by flow cytometry under permissive (YPDU-Met-Cys) and
1129 repressive conditions (YPDU + 5 mM Met and 5 mM Cys) at the indicated time intervals; $N=3$.
1130 **(E)** *Left*, microscopic images of Hoechst stained CaPJ210 ($CSA6^{PSD}$) cells grown under
1131 permissive (YPDU-Met-Cys) or repressive (YPDU + 5 mM Met and 5 mM Cys) conditions for 6
1132 h. BF bright-field. Scale bar, 5 μ m. *Right*, quantitation of different cell types at the indicated time-
1133 points; $n \geq 100$ cells. **(F)** *Left*, micrograph showing Tub4-GFP and Tub1-mCherry (representing
1134 mitotic spindle) in the large-budded cells of CaPJ211 ($CSA6^{PSD}$) after 6 h of growth under
1135 permissive (YPDU-Met-Cys) or repressive (YPDU + 5 mM Met and 5 mM Cys) conditions.
1136 Scale bar, 3 μ m. *Right*, quantitation of the distance between the two SPBs, along the length of the
1137 MT (representing spindle length), in large-budded cells of CaPJ211 ($CSA6^{PSD}$) under permissive
1138 ($n=32$) or repressive ($n=52$) conditions. Paired *t*-test, one-tailed, *P*-value shows a significant
1139 difference.

1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159

Figure 6

1162 **Fig. 6. Csa6 is required for mitotic exit in *C. albicans*.** **(A)** The MEN components in *S.*
1163 *cerevisiae*. At SPB, Nud1 acts as a scaffold. The ultimate target of the MEN is to activate Cdc14
1164 phosphatase, which remains entrapped in the nucleolus in an inactive state until anaphase. Cdc14
1165 release brings about mitotic exit and cytokinesis by promoting degradation of mitotic cyclins,
1166 inactivation of mitotic CDKs through Sic1 accumulation and dephosphorylation of the CDK
1167 substrates (64). **(B)** Inhibition of the MEN signaling prevents cells from exiting mitosis and
1168 arrests them at late anaphase/telophase. Bypass of cell cycle arrest due to the inactive MEN, viz.
1169 by overexpression of Sic1-a CDK inhibitor, results in the chain of cells with multiple nuclei (98,
1170 99). **(C)** A combination of two regulatable promoters, P_{TET} and P_{MET3} , was used to overexpress *C.*
1171 *albicans* homolog of Sic1, called *SOL1* (Sic one-like), in Csa6-depleted cells. The resulting strain,
1172 CaPJ215, can be conditionally induced for both *SOL1* overexpression upon Atc/Dox addition and
1173 Csa6 depletion upon Met (M)/Cys (C) addition. **(D)** Protein A western blot analysis showed
1174 increased levels of Sol1 (TAP-tagged) in the *SOL1^{OE}* mutant (CaP217, $P_{TET}SOL1$ -TAP) after 6 h
1175 induction in presence of Atc (3 μ g/ml) in comparison to the uninduced culture (-Atc) or *SOL1*
1176 expression from its native promoter (CaPJ216, *SOL1*-TAP); $N=2$. PSTAIRE was used as a
1177 loading control. UT, untagged control (SN148). **(E)** Flow cytometric analysis of cell cycle
1178 progression in CaPJ215 at indicated time intervals under various growth conditions, as indicated;
1179 $N=3$. Dox: 50 μ g/ml, Met: 5 mM, Cys: 5 mM. **(F)** *Left*, Hoechst staining of CaPJ215 after 6 h of
1180 growth under indicated conditions of Dox (50 μ g/ml), Met (5 mM) and Cys (5 mM); $n \geq 100$ cells.
1181 BF bright-field. Scale bar, 5 μ m. *Right*, percent distribution of the indicated cell phenotypes; n
1182 ≥ 100 cells. **(G)** *Left*, co-localization analysis of Tem1-GFP and Tub4-mCherry in large-budded
1183 cells of CaPJ218 (*CSA6^{PSD}*) under permissive (YPD-Met-Cys) or repressive conditions (YPD
1184 + 5 mM Met and 5 mM Cys). Scale bar, 3 μ m. *Right*, the proportion of the large-budded cells
1185 with indicated Tem1 phenotypes; $n \geq 100$ cells.


1186
1187
1188
1189
1190
1191
1192
1193
1194
1195

1216

Figure 8

1217

1220

Fig. 8. Csa6 levels are fine-tuned at various stages of the cell cycle to ensure both mitotic

1221

progression and mitotic exit in *C. albicans*. (A) A diagram illustrating the functions of the

1222

identified *CSA* genes except *CSA6* in various phases and phase transitions of the cell cycle. (B)

1223

Schematic depicting the approximate position of Csa6 with respect to SPB and KT. In *C.*

1224

albicans, SPBs and clustered KTs remain in close proximity throughout the cell cycle, while Csa6

1225

remains constitutively localized to the SPBs. (C) A model summarizing the effects of

1226

overexpression or depletion of Csa6 in *C. albicans*. A wild-type cell with unperturbed Csa6 levels

1227 progresses through the mitotic cell cycle. Overexpression of *CSA6* alters the mitotic spindle
1228 dynamics which might lead to improper KT-MT attachments, prompting SAC activation and
1229 G2/M arrest. In contrast, decreased levels of Csa6 inhibit the MEN signaling pathway, probably
1230 by affecting Tem1 recruitment to the SPBs, resulting in cell cycle arrest at the anaphase stage.

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

Table 1. Overexpression phenotypes of *CSA* genes in *C. albicans* and *S. cerevisiae*

1255

<i>CSA</i> gene	<i>C. albicans</i> ORF no.	<i>S. cerevisiae</i> homolog	Overexpression phenotype (<i>C. albicans</i>)	Overexpression phenotype (<i>S. cerevisiae</i>)	Reference
<i>CSA1</i>	19.7186	<i>CLB4</i>	Increased CIN involving non-CL events	Shift towards 2N (diploid) DNA content	(100)
<i>CSA2</i>	19.7377	<i>ASE1</i>	Increased CIN involving non-CL events	i) CIN involving loss of an artificial chromosome fragment or rearrangements/gene conversion events. ii) Spindle checkpoint dependent delay in entering anaphase upon HU treatment	(14, 75)
<i>CSA3</i>	19.1747	<i>KIP2</i>	Increased CIN involving non-CL events	Shift towards 2N (diploid) DNA content	(81, 100)
<i>CSA4</i>	19.202	<i>MCM7</i>	Shift towards 4N (diploid) DNA content, G2/M arrest	NA	NA
<i>CSA5</i>	19.608	<i>BFA1</i>	Shift towards 4N (diploid) DNA content, anaphase arrest	Shift towards 2N (diploid) DNA content, Anaphase arrest	(101)
<i>CSA6</i>	19.1447	NA	Shift towards 4N (diploid) DNA content, G2/M arrest	NA	NA

1256

NA, not available

1257

1258

1259

1260

1261

1262

1263

1264

1265