

1 Elucidating spatially-resolved changes in host signaling during *Plasmodium* liver-stage infection
2 Elizabeth K.K. Glennon¹, Tinotenda Tongogara^{1,2}, Veronica I. Primavera¹, Sophia M. Reeder¹, Ling Wei¹,
3 Alexis Kaushansky^{1,3,4,5}

4

5 ¹ Seattle Children's Research Institute, Center for Global Infectious Disease Research, Seattle, WA

6 ² Grinnell College, Grinnell, IA

7 ³ Department of Global Health, University of Washington, Seattle, WA

8 ⁴ Department of Pediatrics, University of Washington, Seattle, WA

9 ⁵ Brotman Baty Institute for Precision Medicine, Seattle, WA

10

11 **Abstract**

12 Upon transmission to the human host, *Plasmodium* sporozoites exit the skin, are taken up by the
13 blood stream, and then travel to the liver where they infect and significantly modify a single hepatocyte.
14 Low infection rates within the liver have made proteomic studies of infected hepatocytes challenging,
15 particularly *in vivo*, and existing studies have been largely unable to consider how protein and
16 phosphoprotein differences are altered at different spatial locations within the heterogeneous liver. Using
17 digital spatial profiling, we characterized changes in host signaling during *Plasmodium yoelii* infection *in*
18 *vivo* without disrupting the liver tissue, and measured variation between infected cells. Moreover, we
19 measured alterations in protein expression around infected hepatocytes and identified a subset of CD163⁺
20 Kupffer cells that migrate towards infected cells during infection. These data offer the first insight into the
21 heterogeneity of the infected hepatocyte *in situ* and provide insights into how the parasite may alter the
22 local microenvironment to influence its survival and modulate immunity.

23

24 **Introduction**

25 Upon introduction to the human host by the bite of an infectious mosquito, *Plasmodium* parasites
26 migrate to the liver where they invade a hepatocyte and proceed to develop and replicate. Once parasites
27 complete their development within the liver, thousands of individual merozoites egress from the host
28 hepatocyte and migrate to the bloodstream where they invade erythrocytes and initiate the symptomatic
29 blood stage of infection. The liver is often viewed as a uniform organ, however, factors such as oxygen
30 and nutrient gradients lead to diverse cellular phenotypes and the formation of niches within the tissue [1,
31 2]. *Plasmodium* parasites traverse multiple hepatocytes before invading one [3-5] and preferentially
32 invade both particular liver zones [6] and hepatocytes with specific phenotypes, such as high ploidy and
33 particular surface receptor compositions [7, 8]. In addition to selecting particular hepatocytes for invasion,
34 parasites modify the host cell throughout their development within the liver, including cell size [9],
35 microtubule and organelle organization [10], and signaling cascades [11, 12].

36 The liver stage (LS) is a substantial bottleneck in *Plasmodium* infection, making it an attractive
37 point for intervention. Attrition in parasite numbers occurs between injection at the skin, invasion of
38 hepatocytes, and completion of development within the liver [13]. Heterogeneity among hepatocytes
39 within and between individuals can exacerbate this attrition; the ability of hepatocytes to support
40 *Plasmodium falciparum* and *Plasmodium vivax* infection varied extensively between individual human
41 donors [14]. Experiments with genetically attenuated parasites demonstrated that parasites that
42 successfully invade but die before completing LS infection can induce immunity and reduce susceptibility
43 to subsequent infection [15].

44 Several global studies have been conducted to understand alterations that occur during LS
45 infection which may be important for the maintenance of infection. Transcriptomic studies have
46 demonstrated extensive changes in host gene expression that vary over the course of infection, however
47 concordance among these studies has been low, perhaps due to differences in hepatocyte origin and time
48 needed to sort infected cells [16, 17]. Protein and post-translational modification level screens have been
49 conducted using reverse phase protein array (RPPA) in an *in vitro* model of *Plasmodium yoelii* infection
50 [12], and to identify proteins that are differentially expressed between hepatocyte populations of

51 differential susceptibility to LS infection [11, 18]. Several proteins and processes that were identified as
52 altered in infected cells were also found to be important for LS infection (reviewed in [19]). A small
53 RPPA screen of infected hepatocytes revealed a suppression of p53 levels which was then found to be
54 critical for avoidance of host cell death and maintenance of LS infection *in vitro* and *in vivo* [12, 20].
55 RNA-sequencing of infected hepatocytes revealed upregulated expression of aquaporin-3 (AQP3).
56 Follow-up studies identified AQP3 as essential for infection and implicated it in nutrient acquisition [21].
57 Some functional screens have also been done to identify host proteins that are important for LS infection
58 including siRNA, CRISPR, and kinase screens [22-24]. However, large-scale proteomic studies of liver-
59 stage infection have been hindered by low infection rates, on the order of 1% *in vitro* and 0.01% *in vivo*
60 [25]. Additionally, *in vivo* studies traditionally involve sorting infected from uninfected cells and pooling
61 all uninfected cells together, thereby losing the ability to link parasite biology to its microenvironment, or
62 heterogeneity among uninfected cells to their spatial distribution within the liver and position relative to
63 the infected cell.

64

65 Results

66 To interrogate differences in host cell signaling in intact *Plasmodium*-infected liver tissue we
67 chose to utilize Digital Spatial Profiling (DSP). DSP interrogates levels of total and phosphorylated
68 proteins in defined regions of fixed tissue [26], thereby preserving spatial information and limiting sample
69 processing that could induce artificial changes. To date, DSP has primarily been used to study
70 heterogeneity within the tumor microenvironment which has been strongly linked to disease progression
71 and treatment outcomes [27, 28]. Briefly, liver sections are scanned and regions of interest (ROIs) are
72 selected based on staining with fluorescent markers. Slides are incubated with one of several panels of
73 antibodies bound with a photocleavable linker to unique oligonucleotide barcode tags. UV light is shone
74 on the defined ROIs, cleaving the oligo tags from bound antibodies which are collected and quantified
75 using the nCounter system (Figure 1A). We infected BALB/c mice with 1 million *P. yoelii* sporozoites
76 and allowed the infection to proceed for 44 hours. Liver sections (4 μ m thick) from 7 infected and 8

77 uninfected mice were stained using an antibody directed against parasite protein *PyHSP70* that was fused
78 with Alexa Fluor 488. In parallel with fluorescent staining, liver sections were also incubated with a panel
79 of 42 oligo-tagged antibodies against a variety of host proteins and/or post-translational modifications
80 (Table S1). Slides were imaged and pooled ROIs that encompassed five infected cells (50 μ m diameters)
81 or corresponding uninfected regions were identified (Fig 1A). Oligos were cleaved and collected from
82 ROIs using the GeoMx Digital Spatial Profiler for quantification. We observed host proteins/post-
83 translational modifications that were both up- and down-regulated in infected regions compared to
84 uninfected mice (Fig 1B), some of which have been previously identified as altered upon, or important
85 for, infection (Table S1)[11, 12, 23, 29-32]. Because we conducted multiple DSP runs with tissues on
86 multiple slides, we wanted to compare the reproducibility of our results and identify the contribution of
87 run-to-run variation to the observed variability. Liver sections from infected and uninfected mice were
88 evenly distributed across slides and runs. Comparisons of the fold change in protein levels (infected over
89 uninfected) between two runs (Fig S1A), as well as between two slides within a single run (Fig S1B), all
90 gave strong linear correlations, suggesting the data from multiple experiments are comparable.

91 Interestingly, the slope of the line between two separate runs (Fig S1A) was greater than one, suggesting
92 that comparisons of the magnitude of change between runs should be interpreted with caution.

93 We next asked if we could reliably detect changes in host protein levels in single infected cells by
94 DSP. We hypothesized that the enlarged size of infected hepatocytes at 44hpi (approximately 50 μ m in
95 diameter) might allow us to reliably detect changes in host proteins at the single cell level. The same
96 panel of antibodies (Table S1) was used to detect host protein levels in single infected-cell ROIs from a
97 single infected mouse and in identical sized ROIs encompassing roughly 10 uninfected cells from a single
98 uninfected mouse. Plotting the average of multiple infected single ROIs against the infected pooled ROI,
99 for each antibody, gave a strong linear correlation (Fig S1C). The same was found for the comparable
100 uninfected ROIs (Fig S1D), suggesting we have sufficient resolution to detect changes in host protein
101 levels within single infected cells for these enlarged, infected cells. Upon examining the fold change
102 between infected and uninfected single ROIs we observed a high degree of similarity between our pooled

103 and single ROIs (Fig 2A). The same top four proteins were seen in both pooled and single ROIs,
104 suggesting that the increase detected in the pooled ROIs was not due to a small population of high-
105 expressing cells but may in fact be a feature of multiple infected hepatocytes. As an orthologous
106 approach, we used immunofluorescent microscopy to evaluate several proteins that exhibited differential
107 levels in infected and uninfected cells. Patterns of changes in protein levels between infected and
108 uninfected ROIs were comparable as measured by DSP and by single fluorescent antibody staining (Fig
109 2B-C). We cannot currently rule out nonspecific binding to parasite proteins, however we hypothesize
110 that the localization of several host proteins within the parasitophorous vacuole is due to uptake of host
111 cell cytosol by the parasite, as has been described in blood stage parasites [33, 34].

112 We used the ability to measure host protein levels in single infected cells to ask how host protein
113 levels varied in single infected cells when compared to uninfected ROIs (Fig 2D, Table S2). We reasoned
114 that proteins that exhibited substantially less variation between infected cells might represent features that
115 are selected or tuned by the parasite to facilitate its survival and/or development. When examining the
116 distribution of the difference in variation between infected and uninfected ROIs for our panel of
117 antibodies, we observed a trend towards increased variation in infected ROIs (Fig 2D). This is likely
118 explained by the masking of single cell variation within the uninfected ROI, which encompasses roughly
119 10 cells. Despite the skewedness of the distribution, several total and phosphorylated proteins (p-Src, NF-
120 kB, IKK β , and p-Stat5) exhibited more variation in the uninfected ROI than in single infected cells (> 90th
121 percentile) (Fig 2D). To investigate whether or not these proteins might act as part of a connected
122 network, we reconstructed a phosphosignaling network using a database of known kinase target
123 sequences (Fig 2E). Network reconstruction revealed that proteins with lower variation in infected cells
124 can directly interact with each other via phosphorylation, suggesting it could be a target of parasite
125 selection and/or manipulation. Increased variation in infected cells could be due to host cell and/or
126 parasite-intrinsic heterogeneity, or due to the influence of different local microenvironments within the
127 liver.

128 We next investigated how areas surrounding infected cells varied with distance from the parasite.
129 Using concentric ring ROIs matched with each LS parasite, we measured protein levels in infected cells,
130 proximal uninfected cells (Ring1), and distal uninfected cells (Ring2) surrounding each parasite (Fig 3A).
131 In addition to the original antibody panel, we included a second panel encompassing proteins expressed
132 on various immune cells (Table S1). Protein levels in Ring1 and Ring2 were compared to those in their
133 paired infected ROI and fell into clusters based on spatial patterns of relative expression (Fig 3B-C, Table
134 S3). We were particularly interested in proteins with higher levels in Ring1 compared to Ring2 (Table S4)
135 and theorized that these might be indicative of either (1) immune cell infiltration towards the infected
136 hepatocyte, (2) selection of a cellular niche on a very fine scale, or (3) neighboring cells responding to
137 signals emanating out from the infected cell. Of the proteins with significantly higher levels in Ring1
138 compared to Ring2, several immune cell surface markers, all of which have been described on
139 macrophages (PD-L1, B7-H3, CD68, CD163) [35-37], were the most heavily upregulated (Table S4),
140 leading us to investigate the distribution of macrophages around the parasite.

141 Macrophages within the liver can be resident macrophages or monocyte-derived macrophages.
142 Kupffer cells, the resident liver macrophage, are the most prevalent non-parenchymal cell in the liver,
143 making up about 35% of total cells [38]. To investigate the distribution of Kupffer cells around infected
144 hepatocytes, we stained liver sections with the Kupffer cell marker CLEC4F [37, 39, 40] and visualized
145 liver stage parasites using DAPI (Fig 4A-C). We observed an increase in CLEC4F⁺ cells surrounding the
146 parasite, with elevated density in Ring 1 compared to Ring 2, bystander cells within the same liver, and an
147 identical area of tissue within uninfected animals (Fig. 4D). Interestingly, CLEC4F⁺ Kupffer cells often
148 appear to wrap themselves around the LS-infected hepatocyte (Fig. 4B). We then asked if high Kupffer
149 cell density around infected cells at 44 hpi could be due to selection of an existing microenvironment at
150 the time of hepatocyte invasion, or due to cells migrating to the site after infection had been established.
151 Although often referred to as “resident”, Kupffer cells have been shown to migrate along sinusoids within
152 the liver (mean of 4.6 μ m/min) [41]. When we quantified Kupffer cells around *P. yoelii* parasites in livers
153 collected 24 hpi, we observed no statistically significant difference between the number of cells in Ring1

154 and Ring2 (Fig 4E). Because parasites are much smaller at 24hpi than 44hpi, with average diameters of
155 10 μ m and 45 μ m respectively, we also measured Kupffer cell distance from the parasite membrane. The
156 most notable difference in distribution between 24 and 44hpi was the increase in Kupffer cell density
157 within 40 μ m of the parasite membrane (Fig 4F). To further explore the hypothesis that the parasite is
158 surrounded by Kupffer cells that have migrated to Ring 1 between 24 and 44hpi, rather than a shifting of
159 cells due to the increase in hepatocyte mass that occurs as a result of LS growth, we compared the average
160 number of Kupffer cells within 5 μ m from the membrane of the 44h parasite and 22.5 μ m from the
161 membrane of the 24h parasite (55 μ m diameter ROIs) (Fig S3). Despite the increased potential area that
162 could be occupied by Kupffer cells within the 24h ROI due to the smaller volume occupied by the
163 parasite, there were ~4.4x more Kupffer cells within the 44h ROI. This difference was maintained when
164 the ROI diameter was expanded to 65 μ m (Fig S3), indicating that the increase in Kupffer cell density at
165 44hpi is not due to the expansion of the parasite towards pre-existing cells within close proximity.

166 Finally, to evaluate if a Kupffer cell dense region was selected as part of the sporozoite traversal
167 process that occurs prior to hepatocyte entry, we utilized the spect2- parasite strain. Wild type parasites
168 enter the liver through a hepatocyte, Kupffer cell, or liver endothelial cell, and then traverse through
169 several hepatocytes using a transient vacuole before finally invading a final hepatocyte within a
170 parasitophorous vacuole [3, 42, 43]. Spect2- parasites that do not successfully invade are phagocytosed by
171 Kupffer cells or fail to egress from their transient vacuole and are eliminated by host cell lysosomes [44-
172 46]. This inability to traverse multiple hepatocytes limits their ability to travel through many cells in order
173 to select a particular local microenvironment. Additionally, it limits the number of cells within the liver
174 that come into direct contact with sporozoites. We infected mice with the spect2- parasite strain and
175 measured Kupffer cell density at 44hpi. The pattern of Kupffer cell density around infected hepatocytes
176 was maintained in the context of spect2- parasite infection (Fig 4F), indicating that cell traversal does not
177 contribute to the Kupffer cell density around the infected cell.

178 We next sought to investigate the molecular characteristics of parasite-surrounding Kupffer cells.
179 We revisited the DSP data (Fig. 3, Table S4), and calculated pairwise Pearson's correlation coefficients

180 between area normalized signal in Ring1 for all antibodies that were upregulated in Ring1 when
181 compared to Ring2. We reasoned that if levels of two or more of these proteins correlated strongly with
182 each other it could be because they are present within the same cells. Using Pearson's correlation
183 coefficients, we identified subsets of proteins that correlated with each other (Fig. S2). The strongest
184 correlations were between B7H3, CD163, and Src, all of which are expressed by Kupffer cells and have
185 been linked to tolerogenic M2 polarization of macrophages, particularly within the tumor
186 microenvironment [35, 47-49].

187 We asked if the correlated proteins were expressed in overlapping populations of cells in Ring1
188 and Ring2. We found that CD163 was exclusively, and B7H3 almost exclusively, expressed on CLEC4F⁺
189 cells (Fig 5A-B). We also stained for PD-L1, which was part of both antibody panels and consistently
190 upregulated in Ring1 compared to Ring2 but did not correlate with B7H3 and CD163. PD-L1 was found
191 on both CLECF4⁺ and CLEC4F⁻ cells within Ring 1, with over 60% of PD-L1⁺ cells not expressing
192 CLEC4F (Fig 5A-B). This is consistent with its lack of correlation with CD163 and B7H3, as well as
193 published studies demonstrating PD-L1 expression on a variety of immune cell types [50]. B7H3⁺ and
194 PD-L1⁺ Kupffer cells were very rare, 1.6% and 2.9% of all CLEC4F⁺ cells, respectively, however
195 CD163⁺ cells were abundant and represented a majority of CLEC4F⁺ cells (Fig 5C).

196 Quantification of CD163⁺ Kupffer cells revealed that more CD163⁺CLEC4F⁺, but not CD163⁻
197 CLEC4F⁺, cells were present in in Ring1 compared to Ring2, bystander, and uninfected tissue regions at
198 44hpi (Fig5D-E). We investigated the distribution of CD163⁺ Kupffer cells around *P. yoelii* parasites in
199 livers collected 24 hpi and found no difference in CLEC4F⁺CD163⁺ cell density between Ring1 and
200 Ring2 (Fig 5F). Interestingly, at 24 h CLEC4F⁺CD163⁻ cells were slightly elevated in Ring1 compared to
201 Ring2 (Fig 5G). Finally, we compared CD163 expression in Ring1 and Ring2 around WT and Spec2-
202 parasites. CLEC4F⁺CD163⁺ cells were present at a higher density in Ring1 compared to Ring2 in both
203 contexts, with no difference between parasite strains (Fig 5H). CLEC4F⁺CD163⁻ cell levels were not
204 significantly different between rings or between parasite strains (Fig5I).

205

206 Discussion

207 In this study we utilized digital spatial profiling to characterize host total and phosphorylated
208 proteins in and around *Plasmodium*-infected hepatocytes *in vivo*. Doing these analyses while preserving
209 the tissue architecture allowed us to link a specific microenvironment to infected cells. Probing a large
210 panel of proteins simultaneously in the same tissue regions allowed us to investigate the molecular
211 characteristics of parasite-surrounding cells. Importantly, this is challenging to do with conventional
212 approaches as it requires candidate-based investigation into specific candidate markers that may or may
213 not be relevant for the cell type of interest. By measuring changes in host proteins in concentric rings
214 around infected hepatocytes and correlations between these proteins we identified an influx of Kupffer
215 cells towards the parasite and an increase in CD163 expression in these cells.

216 Kupffer cells originate from fetal liver erythromyeloid progenitors and in the adult liver, under
217 resting conditions, their populations are self-renewing independent of bone marrow-derived cells [51].
218 Upon Kupffer cell depletion, infiltrating circulating monocytes differentiate into Kupffer cells starting 96
219 hours post-depletion [40]. Notably, monocyte-derived Kupffer cells do not begin expressing CLEC4F
220 until between 72-96 hours post-depletion [40], indicating that the increase in CLEC4F⁺ cells we observed
221 near the parasite between 24 and 44hpi cannot be due to differentiation of infiltrating monocytes and that
222 it is almost certainly resident CLEC4F⁺ cells that have migrated towards the parasite.

223 Macrophages exist along a continuum of states that are often described as ranging from pro-
224 inflammatory (M1) to tolerogenic (M2)[39]. Alterations of Kupffer cells upon sporozoite exposure have
225 led to the hypothesis that parasites manipulate Kupffer cells to produce a tolerogenic environment for
226 their development within the liver. Kupffer cell exposure to sporozoites has been shown to suppress
227 respiratory burst [52], suppress antigen presentation [53], and skew cytokine production upon pro-
228 inflammatory stimulation towards an anti-inflammatory response [54]. Co-culture of CD8⁺ T cells with
229 sporozoite-stimulated monocyte-derived macrophages also produced less IFN γ [55]. Most of these studies
230 were conducted with prolonged co-incubation of sporozoites and macrophages *in vitro*. Several functional
231 studies have been conducted in which Kupffer cells are depleted before sporozoite infection [56, 57], but

232 the importance of these cells for infection maintenance are confounded by the effects of depletion on
233 hepatocyte invasion.

234 CD163 is commonly utilized as a tolerogenic macrophage marker [39], however it may also play
235 a functional role in maintenance of LS infection. CD163 is a scavenger receptor expressed on monocytes
236 and macrophages that binds and facilitates the internalization and clearance of hemoglobin-haptoglobin
237 (HbHp) complexes, thereby protecting the liver from oxidative damage [58]. Binding of HbHp complexes
238 promotes the expression of heme oxygenase-1 (HO-1) which degrades the Hb heme subunit, producing
239 biliverdin, iron, and carbon dioxide. Although not part of our DSP antibody panel, HO-1 has been shown
240 to be upregulated in macrophages and hepatocytes during *Plasmodium* LS infection and to be essential for
241 infection maintenance [59]. Of particular interest, HO-1 was not found to be essential for *Plasmodium* LS
242 infection when hepatocytes are cultured alone *ex vivo*, suggesting its effect on nonparenchymal cells
243 influences infection. Higher expression of CD163 on Kupffer cells has also been linked to greater
244 phagocytic activity [60]. Merozoite forms of the parasite exit the infected hepatocyte and enter the blood
245 stream between 50-52 hpi. It is intriguing to speculate that the wrapping of Kupffer cells around infected
246 hepatocytes (Fig 4C) could suggest a role for Kupffer cells in clean-up of the infected cell post-parasite
247 exit. By regulating antigen presentation and inflammation around the infected cell microenvironment,
248 Kupffer cells could be influencing the development of subsequent immunity. This could have long-
249 reaching consequences not only for infection, but also for the development of whole parasite vaccines.

250 We are unable to determine from our data if CD163⁺ Kupffer cells are infiltrating in towards the
251 parasite, or if they begin expressing CD163 upon gaining their location near the infected cell, however the
252 small increase in CD163⁺CLEC4F⁺ cells in Ring1 compared to Ring2 at 24 hpi (Fig. 5G) supports the
253 latter hypothesis. PD-L1 expression, which is increased in Ring1 compared to Ring2, has been shown to
254 be induced in monocyte-derived macrophages in the skin upon exposure to *Plasmodium* sporozoites [55].
255 A portion of sporozoites are thought to cross and interact with Kupffer cells as they are entering the liver
256 [43], however, as no difference in CD163⁺ Kupffer cell density was observed between WT parasites and

257 Spec2⁻ parasites, which are traversal deficient, we hypothesize that the increase in CD163 expression is
258 unlikely to be triggered by pre-invasion events.

259 By utilizing DSP we were able to measure host protein on a large scale in single infected
260 hepatocytes *in vivo* without sorting cells and without dissociating cells from their microenvironment.
261 While we cannot rule out non-specific binding of antibodies to parasite proteins, the minimal sample
262 processing may better preserve the host cell condition compared to experiments that require hours of cell
263 sorting, particularly in the case of post-translational modifications. Several of the proteins up-regulated in
264 infected cells were phosphorylated, indicating increased activity: p-IK-B α , p-S6, and p-Erk. Consistent
265 with our results, Erk (MAPK1) activity was previously identified by our lab as important for maintenance
266 of *P. yoelii* infection *in vitro* using a kinase inhibitor screen combined with a machine learning algorithm
267 [23]. Additionally, levels of p-S6 are higher in hepatocytes that are more susceptible to *Plasmodium*
268 infection and in infected hepatocytes *in vitro*, although in the context of infection S6 phosphorylation is
269 dysregulated from classical upstream activator p-Akt [11]. One surprising result was the increase seen in
270 p53 levels in infected cells. P53 is suppressed in infected hepatocytes and this suppression is essential for
271 maintenance of infection *in vitro* and *in vivo*, however, in these studies p53 levels were not measured past
272 24hpi [12]. We hypothesize that the increase in p53 seen here at 44hpi could be indicative of a loss of
273 regulation by the parasite as it shifts towards merozoite production and preparation for egress.

274 A very small number of parasites successfully invade hepatocytes and complete LS infection.
275 This, and the extensive remodeling of infected hepatocytes, suggest *Plasmodium* parasites have
276 substantial requirements of their host cells. By identifying proteins/post-translational modifications that
277 show very little variation among infected compared to uninfected cells, we may be able to identify
278 specific targets or signaling nodes that are maintained within, or selected for, very narrow limits by the
279 parasite. These factors could represent promising drug targets, as even small perturbations of these factors
280 could have dire consequences for the developing LS parasite. While this work is entirely focused on the
281 rodent parasite *Plasmodium yoelii*, DSP is readily adaptable to the study of human-infectious species
282 *Plasmodium falciparum* and *Plasmodium vivax* in the recently developed humanized mouse model [61,

283 62]. Evaluating the spatially resolved host transcriptomic and proteomic responses that occur after
284 infection, particularly in the context of the dormant *P. vivax* hypnozoite, may reveal novel biology
285 regulating infection maintenance and development of immunity.

286

287 **Methods**

288 **Mosquito rearing and sporozoite production**

289 Female 6–8-week-old Swiss Webster mice (Harlan) were injected with blood stage *Plasmodium*
290 *yoelii* 17XNL parasites. Infected mice were used to feed female *Anopheles stephensi* mosquitoes after
291 gametocyte exflagellation was observed. Salivary gland sporozoites were isolated according to the
292 standard procedures at days 14 or 15 post blood meal. Animal handling was conducted according to the
293 Institutional Animal Care and Use Committee-approved protocols.

294 **Mouse infections**

295 6-8-week-old female Balb/cAnN mice were purchased from Envigo. All mice were maintained in
296 accordance with protocols approved by Seattle Children's Research Institute Institutional Animal Care
297 and Use Committee (IACUC). Mice were infected by retro orbital injection with 100,000 or 1 million *P.*
298 *yoelii* sporozoites. Livers from infected, or uninfected age-matched, mice were harvested at 24 or 44 hpi
299 and fixed in 4% paraformaldehyde for 24 hours. Tissues were then paraffin embedded, cut into 4mm
300 sections, and mounted on positively charged glass slides. Mounted liver slices were then used for digital
301 spatial profiling or immunofluorescence staining.

302 **Digital spatial profiling**

303 Digital spatial profiling (DSP) was performed by NanoString Technologies using the GeoMx
304 Digital Spatial profiler. For selecting regions of interest, slides were stained with DAPI and a fluorescent
305 conjugated antibody against *PyHSP70*. Slides were simultaneously incubated with one of two pre-
306 validated panels of 42-43 oligo-tagged antibodies (Table S1). Counts were normalized to an internal
307 control (ERCC) and to ROI area. Data were analyzed by ANOVA with paired or unpaired multiple
308 comparisons as appropriate. Our single infected-cell ROIs may encompass a portion of neighboring cells.

309 **Immunofluorescence staining**

310 Slide-mounted liver slices were washed twice in xylene for 3 minutes followed by washes in
311 100%, 95%, 70% and 50% ethanol for 3 minutes each. Slides were then washed with DI water and heated
312 to 90C for 30 minutes in 1% citrate-based antigen unmasking solution (Vector Laboratories) using a
313 Biocare Medical Decloaking Chamber. Slides were washed with TBS-0.025% Tween (TBST) and then
314 blocked for 4 hours in TBST containing 1.5% BSA and 15% goat serum (Sigma Aldrich). Slides were
315 incubated in primary antibodies at 4C overnight. Following primary antibody staining, slides were
316 washed with TBST and incubated with secondary antibodies and DAPI (1:3,000) for 1 hour at room
317 temperature. Slides were washed with TBST and autofluorescence quenched using Vector TrueView
318 (Vector Labs). Fluoromount G mounting media was used to preserve fluorescence signal. Primary
319 antibodies were used at the following concentrations: *PyHsp70* 1:1,000, *PyCSP-488* 1:500, p-p44/42
320 1:200 (Cell Signaling 4370), p-IK-Ba 1:200 (Cell Signaling 2850), p-Akt 1:100 (Cell Signaling 9271),
321 CD163 1:500 (Proteintech 16646-1-AP), CLEC4F-647 1:100 (BioLegend 156804), PD-L1 1:200 (Cell
322 Signaling 64988), B7H3 1:200 (Novus Bio NB600-1441). Secondary antibodies anti-mouse AlexaFluor-
323 488, anti-rabbit AlexaFluor-594, and anti-rabbit AlexaFluor-647 (Invitrogen) were used at a 1:1,000
324 dilution.

325 **Imaging and quantification**

326 Images (40X) were acquired using a DeltaVision Elite High Resolution Microscope. Z-stacks of
327 0.3 μ m thickness were taken for images encompassing infected and uninfected cells. For cell
328 quantification within Ring ROIs 3x3 image panels were taken with a 60-pixel overlap. Images were
329 stitched and deconvolved using the DeltaVision Softworx software and were visualized using Imaris
330 software. ImageJ was used to quantify fluorescence intensity within defined ROIs. Distances from
331 parasites to Kupffer cells were measured between nucleus centers, or from the parasite membrane to the
332 Kupffer cell nucleus, using Imaris software. Only Kupffer cells with a visible, stained nucleus (DAPI)
333 were included in counts.

334 The phosphosignaling network was reconstructed using PhosphoSitePlus®, a curated
335 knowledgebase dedicated to mammalian post-translational modifications (<https://www.phosphosite.org>)
336 [63].

337

338 Acknowledgments

339 We would like to acknowledge Liiliu Pan and Yan Liang at NanoString Technologies for their assistance
340 with our DSP runs. This work was funded by R01GM101183 from the National Institutes of Health to
341 AK. SR is the recipient of T32 training grant 5T32HD007233-39 from the University of Washington.

342

343 Figure legends

344 **Figure 1. Digital Spatial Profiling facilitates evaluation of proteins and post-translational**
345 **modifications in *Plasmodium yoelii* infected tissue.** (A) Schematic of DSP methodology. (B)
346 Representative images of fluorescent staining of liver sections from uninfected or *P. yoelii*-infected mice
347 at 44hpi. Parasites are stained with PyHSP70 in green and DAPI is shown in blue. Data were pooled from
348 regions of interest indicated by white circles. (C) Signal from *P. yoelii*-infected mice normalized to ROI
349 area and to the average signal from uninfected mice. Error bars indicate standard deviation. n = 7-8 mice
350 per group.

351 **Figure 2. Single infected hepatocytes produce sufficient signal for detection by DSP.** (A) Signal from
352 9 infected cells from a single *P. yoelii*-infected mouse normalized to region of interest (ROI) area and to
353 the average signal from 6 uninfected cell regions from a single uninfected mouse. Error bars indicate
354 standard deviation. (B) ROI-area-normalized signal from single infected and uninfected ROIs as
355 measured by DSP (n = 6-9) and single antibody staining fluorescent microscopy (n = 6). (C)
356 Representative images of infected cells were taken at a total magnification of 400x at 44hpi. (D)
357 Difference in coefficient of variation between uninfected and single infected ROIs (9 infected cells) and 6
358 ROIs of identical size from a single mouse, for each antibody. Box plot encompasses 10-90th percentile.
359 Antibodies within the 90th percentile which showed less variation in infected (Py) than in uninfected ROIs

360 are boxed in blue. (E) Phosphosignaling network constructed from proteins with lower variation in
361 infected ROIs. Arrows indicate direct phosphorylation events.

362 **Figure 3. Signals are altered in rings surrounding *Plasmodium*-infected hepatocytes.** (A)
363 Representative images of fluorescent staining of liver sections and region of interest (ROI) masks. (B)
364 Heat maps showing fold change in protein levels between in ring ROIs. Signal was normalized to ROI
365 area and to the infected cell ROI, set at 1. Proteins showing similar relative patterns of expression across
366 rings are grouped together and outlined in black. (C) Area normalized signal of two antibodies illustrative
367 of delimited and gradual spatial patterns. Lines connect matched infected cell and ring ROIs. n=6

368 **Figure 4. A high density of macrophages surrounds *Plasmodium* infected hepatocytes.** (A)
369 Representative image of CLEC4F⁺ staining within an infected liver. Nuclear DAPI staining is shown in
370 blue, CLEC4F in green. Ring1 and Ring2 outer boundaries are indicated by dashed white circles. (B)
371 CLEC4F staining of a single cell within Ring2 (C) Representative image of a CLEC4F⁺ cell in close
372 proximity to a parasite at 44hpi. (D) Number of CLEC4F⁺ cells normalized by area in Ring1, Ring2,
373 bystander (By) tissue, and uninfected (UI) tissue at 44hpi. 3-6 region of interest (ROI)s were counted
374 from each of three mice. (E) Number of CLEC4F⁺ cells normalized by area in Ring1 and Ring2 at 24hpi.
375 (F) Violin plot showing distribution of CLEC4F⁺ cells binned by distance from parasite edge at 24 and
376 44hpi. (F) Levels of CLEC4F⁺ cells in Ring1 and Ring2 around wild type (WT) and Spect2^{-/-} parasites at
377 44hpi.

378 **Figure 5. Tolerogenic macrophages migrate to surround *Plasmodium* infected hepatocytes.** (A)
379 Representative images of fluorescent staining of infected tissue for B7H3, PD-L1, and CD163. (B)
380 Proportion of PD-L1⁺, B7H3⁺, and CD163⁺ cells within rings around infected cells that were CLEC4F⁺ or
381 CLEC4F. (C) Proportion of CLEC4F+ cells within rings around infected cells that were PD-L1⁺, B7H3⁺,
382 or CD163⁺. (D) Number of CD163⁺CLEC4F⁺ and (E) CD163⁻CLEC4F⁺ cells normalized by area in
383 Ring1, Ring2, bystander (By) tissue, and uninfected (UI) tissue at 44hpi. 3-6 regions of interest (ROIs)
384 were counted from each of three mice. (F) Number of CD163⁺CLEC4F⁺ and (G) CD163⁻CLEC4F⁺ cells

385 normalized by area at 24hpi. (H) Number of CD163⁺CLEC4F⁺ and (I) CD163⁺CLEC4F⁺ cells normalized
386 by area, in Ring1 and Ring2 around wild type (WT) and Spect2^{-/-} parasites at 44hpi.

387 **Fig S1. DSP results are reproducible across runs and between pooled and single ROIs.** Average fold
388 change between infected and uninfected ROIs for each antibody from (A) two independent DSP runs, and
389 (B) two slides run at the same time. Data were analyzed by linear regression. (C) For each antibody the
390 average area-normalized signal 9 single infected ROIs was plotted against that of one pooled infected
391 ROI. (D) For each antibody the average area-normalized signal 9 single uninfected ROIs was plotted
392 against that of one pooled uninfected ROI. Data were analyzed by linear regression.

393 **Fig S2. A subset of upregulated (phospho)proteins in proximity to *Plasmodium*-infected hepatocytes
394 are correlated.** (A) Heat map indicating the Pearson correlation coefficient for each pair of antibodies for
395 those significantly upregulated in Ring1 compared to Ring2. n = 6.

396 **Fig S3. Growth of *Plasmodium* infected hepatocyte does not account for increased Kupffer cell
397 density around cell.** Kupffer cell density within circular ROIs of 55um and 65um around parasites at
398 24hpi and 44hpi. Parasites are shown as green circles. Length of lines is indicated in microns. Circles and
399 rings are shown to scale. Kupffer cell density is shown as the mean from 3-4 parasites per mouse from 3
400 mice per time point.

401

402 References

- 403 1. Gola, A., et al., *Commensal-driven immune zonation of the liver promotes host defence*.
404 *Nature*, 2021. **589**(7840): p. 131-136.
- 405 2. Kietzmann, T., *Metabolic zonation of the liver: The oxygen gradient revisited*. *Redox Biol*,
406 2017. **11**: p. 622-630.
- 407 3. Mota, M.M., et al., *Migration of Plasmodium sporozoites through cells before infection*.
408 *Science*, 2001. **291**(5501): p. 141-4.
- 409 4. Loubens, M., et al., *Plasmodium sporozoites on the move: Switching from cell traversal
410 to productive invasion of hepatocytes*. *Mol Microbiol*, 2021. **115**(5): p. 870-881.
- 411 5. Coppi, A., et al., *Heparan sulfate proteoglycans provide a signal to Plasmodium
412 sporozoites to stop migrating and productively invade host cells*. *Cell Host Microbe*,
413 2007. **2**(5): p. 316-27.
- 414 6. Yang, A.S.P., et al., *Zonal human hepatocytes are differentially permissive to Plasmodium
415 falciparum malaria parasites*. *EMBO J*, 2021. **40**(6): p. e106583.

416 7. Austin, L.S., A. Kaushansky, and S.H. Kappe, *Susceptibility to Plasmodium liver stage*
417 *infection is altered by hepatocyte polyploidy*. *Cell Microbiol*, 2014. **16**(5): p. 784-95.

418 8. Kaushansky, A., et al., *Malaria parasites target the hepatocyte receptor EphA2 for*
419 *successful host infection*. *Science*, 2015. **350**(6264): p. 1089-92.

420 9. Balasubramanian, L., et al., *Association of Plasmodium berghei With the Apical Domain*
421 *of Hepatocytes Is Necessary for the Parasite's Liver Stage Development*. *Front Cell Infect*
422 *Microbiol*, 2019. **9**: p. 451.

423 10. Vijayan, K., et al., *A Genome-wide CRISPR-Cas9 Screen Identifies Host Factors Essential*
424 *for Optimal Plasmodium Liver Stage Development*. *bioRxiv*, 2020: p.
425 2020.08.31.275867.

426 11. Glennon, E.K.K., et al., *Alterations in Phosphorylation of Hepatocyte Ribosomal Protein*
427 *S6 Control Plasmodium Liver Stage Infection*. *Cell Rep*, 2019. **26**(12): p. 3391-3399 e4.

428 12. Kaushansky, A., et al., *Suppression of host p53 is critical for Plasmodium liver-stage*
429 *infection*. *Cell Rep*, 2013. **3**(3): p. 630-7.

430 13. Amino, R., et al., *Quantitative imaging of Plasmodium transmission from mosquito to*
431 *mammal*. *Nat Med*, 2006. **12**(2): p. 220-4.

432 14. Roth, A., et al., *A comprehensive model for assessment of liver stage therapies targeting*
433 *Plasmodium vivax and Plasmodium falciparum*. *Nat Commun*, 2018. **9**(1): p. 1837.

434 15. Vaughan, A.M. and S.H.I. Kappe, *Genetically attenuated malaria parasites as vaccines*.
435 *Expert Rev Vaccines*, 2017. **16**(8): p. 765-767.

436 16. Albuquerque, S.S., et al., *Host cell transcriptional profiling during malaria liver stage*
437 *infection reveals a coordinated and sequential set of biological events*. *BMC Genomics*,
438 2009. **10**: p. 270.

439 17. LaMonte, G.M., et al., *Dual RNA-seq identifies human mucosal immunity protein Mucin-*
440 *13 as a hallmark of Plasmodium exoerythrocytic infection*. *Nat Commun*, 2019. **10**(1): p.
441 488.

442 18. Dembele, L., et al., *Quantitative Proteomic Analysis of Simian Primary Hepatocytes*
443 *Reveals Candidate Molecular Markers for Permissiveness to Relapsing Malaria*
444 *Plasmodium cynomolgi*. *Proteomics*, 2019. **19**(19): p. e1900021.

445 19. Glennon, E.K.K., et al., *Opportunities for Host-targeted Therapies for Malaria*. *Trends*
446 *Parasitol*, 2018. **34**(10): p. 843-860.

447 20. Kain, H.S., et al., *Liver stage malaria infection is controlled by host regulators of lipid*
448 *peroxidation*. *Cell Death Differ*, 2020. **27**(1): p. 44-54.

449 21. Posfai, D., et al., *Plasmodium parasite exploits host aquaporin-3 during liver stage*
450 *malaria infection*. *PLoS Pathog*, 2018. **14**(5): p. e1007057.

451 22. Prudencio, M., et al., *Kinome-wide RNAi screen implicates at least 5 host hepatocyte*
452 *kinases in Plasmodium sporozoite infection*. *PLoS Pathog*, 2008. **4**(11): p. e1000201.

453 23. Arang, N., et al., *Identifying host regulators and inhibitors of liver stage malaria infection*
454 *using kinase activity profiles*. *Nat Commun*, 2017. **8**(1): p. 1232.

455 24. Raphemot, R., et al., *Discovery of Druggable Host Factors Critical to Plasmodium Liver-*
456 *Stage Infection*. *Cell Chem Biol*, 2019. **26**(9): p. 1253-1262 e5.

457 25. Prudencio, M., M.M. Mota, and A.M. Mendes, *A toolbox to study liver stage malaria*.
458 *Trends Parasitol*, 2011. **27**(12): p. 565-74.

459 26. Beechem, J.M., *High-Plex Spatially Resolved RNA and Protein Detection Using Digital*
460 *Spatial Profiling: A Technology Designed for Immuno-oncology Biomarker Discovery and*
461 *Translational Research.* Methods Mol Biol, 2020. **2055**: p. 563-583.

462 27. Wang, N., et al., *Spatial transcriptomics and proteomics technologies for deconvoluting*
463 *the tumor microenvironment.* Biotechnol J, 2021: p. e2100041.

464 28. Stewart, R.L., et al., *Spatially-resolved quantification of proteins in triple negative breast*
465 *cancers reveals differences in the immune microenvironment associated with prognosis.*
466 Sci Rep, 2020. **10**(1): p. 6598.

467 29. Douglass, A.N., et al., *Host-based Prophylaxis Successfully Targets Liver Stage Malaria*
468 *Parasites.* Mol Ther, 2015. **23**(5): p. 857-865.

469 30. Sharma, P.K., et al., *STK35L1 regulates host cell cycle-related genes and is essential for*
470 *Plasmodium infection during the liver stage of malaria.* Exp Cell Res, 2021. **406**(2): p.
471 112764.

472 31. Boonhok, R., et al., *LAP-like process as an immune mechanism downstream of IFN-*
473 *gamma in control of the human malaria Plasmodium vivax liver stage.* Proc Natl Acad Sci
474 U S A, 2016. **113**(25): p. E3519-28.

475 32. Kaushansky, A., et al., *Malaria parasite liver stages render host hepatocytes susceptible*
476 *to mitochondria-initiated apoptosis.* Cell Death Dis, 2013. **4**: p. e762.

477 33. Hanssen, E., et al., *Soft X-ray microscopy analysis of cell volume and hemoglobin content*
478 *in erythrocytes infected with asexual and sexual stages of Plasmodium falciparum.* J
479 Struct Biol, 2012. **177**(2): p. 224-32.

480 34. Jonscher, E., et al., *PfVPS45 Is Required for Host Cell Cytosol Uptake by Malaria Blood*
481 *Stage Parasites.* Cell Host Microbe, 2019. **25**(1): p. 166-173 e5.

482 35. Mao, Y., et al., *Cancer cell-expressed B7-H3 regulates the differentiation of tumor-*
483 *associated macrophages in human colorectal carcinoma.* Oncol Lett, 2017. **14**(5): p.
484 6177-6183.

485 36. Sun, C., R. Mezzadra, and T.N. Schumacher, *Regulation and Function of the PD-L1*
486 *Checkpoint.* Immunity, 2018. **48**(3): p. 434-452.

487 37. Krenkel, O. and F. Tacke, *Liver macrophages in tissue homeostasis and disease.* Nat Rev
488 Immunol, 2017. **17**(5): p. 306-321.

489 38. Wake, K., et al., *Cell biology and kinetics of Kupffer cells in the liver.* Int Rev Cytol, 1989.
490 **118**: p. 173-229.

491 39. Guillot, A. and F. Tacke, *Liver Macrophages: Old Dogmas and New Insights.* Hepatol
492 Commun, 2019. **3**(6): p. 730-743.

493 40. Scott, C.L., et al., *Bone marrow-derived monocytes give rise to self-renewing and fully*
494 *differentiated Kupffer cells.* Nat Commun, 2016. **7**: p. 10321.

495 41. MacPhee, P.J., E.E. Schmidt, and A.C. Groom, *Evidence for Kupffer cell migration along*
496 *liver sinusoids, from high-resolution *in vivo* microscopy.* Am J Physiol, 1992. **263**(1 Pt 1):
497 p. G17-23.

498 42. Frevert, U., et al., *Intravital observation of Plasmodium berghei sporozoite infection of*
499 *the liver.* PLoS Biol, 2005. **3**(6): p. e192.

500 43. Tavares, J., et al., *Role of host cell traversal by the malaria sporozoite during liver*
501 *infection.* J Exp Med, 2013. **210**(5): p. 905-15.

502 44. Ishino, T., Y. Chinzei, and M. Yuda, *A Plasmodium sporozoite protein with a membrane*
503 *attack complex domain is required for breaching the liver sinusoidal cell layer prior to*
504 *hepatocyte infection.* *Cell Microbiol*, 2005. **7**(2): p. 199-208.

505 45. Yang, A.S.P., et al., *Cell Traversal Activity Is Important for Plasmodium falciparum Liver*
506 *Infection in Humanized Mice.* *Cell Rep*, 2017. **18**(13): p. 3105-3116.

507 46. Risco-Castillo, V., et al., *Malaria Sporozoites Traverse Host Cells within Transient*
508 *Vacuoles.* *Cell Host Microbe*, 2015. **18**(5): p. 593-603.

509 47. Ge, Z. and S. Ding, *The Crosstalk Between Tumor-Associated Macrophages (TAMs) and*
510 *Tumor Cells and the Corresponding Targeted Therapy.* *Front Oncol*, 2020. **10**: p. 590941.

511 48. Kang, F.B., et al., *Hepatocellular carcinomas promote tumor-associated macrophage*
512 *M2-polarization via increased B7-H3 expression.* *Oncol Rep*, 2015. **33**(1): p. 274-82.

513 49. Sun, T.W., et al., *B7-H3 is expressed in human hepatocellular carcinoma and is*
514 *associated with tumor aggressiveness and postoperative recurrence.* *Cancer Immunol*
515 *Immunother*, 2012. **61**(11): p. 2171-82.

516 50. Wu, Y., et al., *PD-L1 Distribution and Perspective for Cancer Immunotherapy-Blockade,*
517 *Knockdown, or Inhibition.* *Front Immunol*, 2019. **10**: p. 2022.

518 51. Gomez Perdiguero, E., et al., *Tissue-resident macrophages originate from yolk-sac-*
519 *derived erythro-myeloid progenitors.* *Nature*, 2015. **518**(7540): p. 547-51.

520 52. Usynin, I., C. Klotz, and U. Frevert, *Malaria circumsporozoite protein inhibits the*
521 *respiratory burst in Kupffer cells.* *Cell Microbiol*, 2007. **9**(11): p. 2610-28.

522 53. Steers, N., et al., *The immune status of Kupffer cells profoundly influences their*
523 *responses to infectious Plasmodium berghei sporozoites.* *Eur J Immunol*, 2005. **35**(8): p.
524 2335-46.

525 54. Klotz, C. and U. Frevert, *Plasmodium yoelii sporozoites modulate cytokine profile and*
526 *induce apoptosis in murine Kupffer cells.* *Int J Parasitol*, 2008. **38**(14): p. 1639-50.

527 55. Winkel, B.M.F., et al., *Plasmodium sporozoites induce regulatory macrophages.* *PLoS*
528 *Pathog*, 2020. **16**(9): p. e1008799.

529 56. Baer, K., et al., *Kupffer cells are obligatory for Plasmodium yoelii sporozoite infection of*
530 *the liver.* *Cell Microbiol*, 2007. **9**(2): p. 397-412.

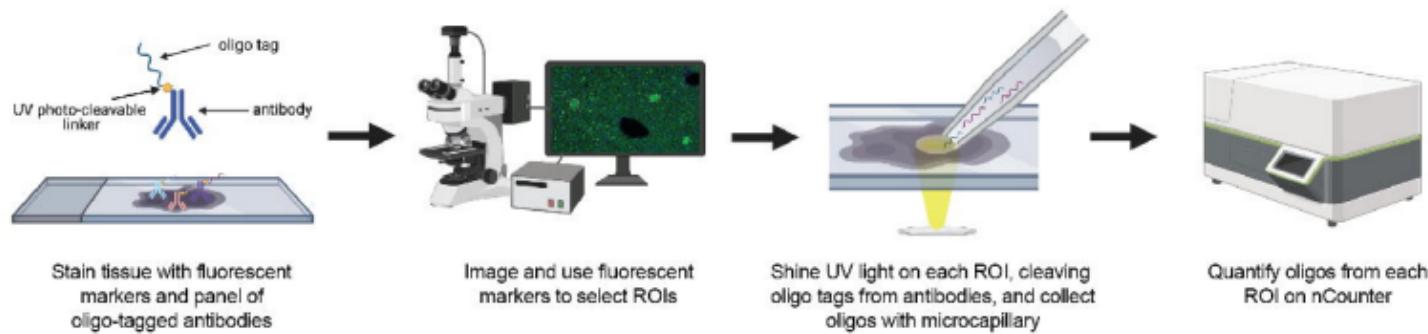
531 57. Vreden, S.G., et al., *Kupffer cell elimination enhances development of liver schizonts of*
532 *Plasmodium berghei in rats.* *Infect Immun*, 1993. **61**(5): p. 1936-9.

533 58. Van Gorp, H., P.L. Delputte, and H.J. Nauwynck, *Scavenger receptor CD163, a Jack-of-all-*
534 *trades and potential target for cell-directed therapy.* *Mol Immunol*, 2010. **47**(7-8): p.
535 1650-60.

536 59. Epiphanio, S., et al., *Heme oxygenase-1 is an anti-inflammatory host factor that*
537 *promotes murine plasmodium liver infection.* *Cell Host Microbe*, 2008. **3**(5): p. 331-8.

538 60. He, Y., et al., *Flow cytometric isolation and phenotypic characterization of two subsets of*
539 *ED2(+) (CD163) hepatic macrophages in rats.* *Hepatol Res*, 2009. **39**(12): p. 1208-18.

540 61. Vaughan, A.M., et al., *Complete Plasmodium falciparum liver-stage development in liver-*
541 *chimeric mice.* *J Clin Invest*, 2012. **122**(10): p. 3618-28.


542 62. Mikolajczak, S.A., et al., *Plasmodium vivax liver stage development and hypnozoite*
543 *persistence in human liver-chimeric mice.* *Cell Host Microbe*, 2015. **17**(4): p. 526-35.

544 63. Hornbeck, P.V., et al., *PhosphoSitePlus, 2014: mutations, PTMs and recalibrations.*
545 *Nucleic Acids Res*, 2015. **43**(Database issue): p. D512-20.

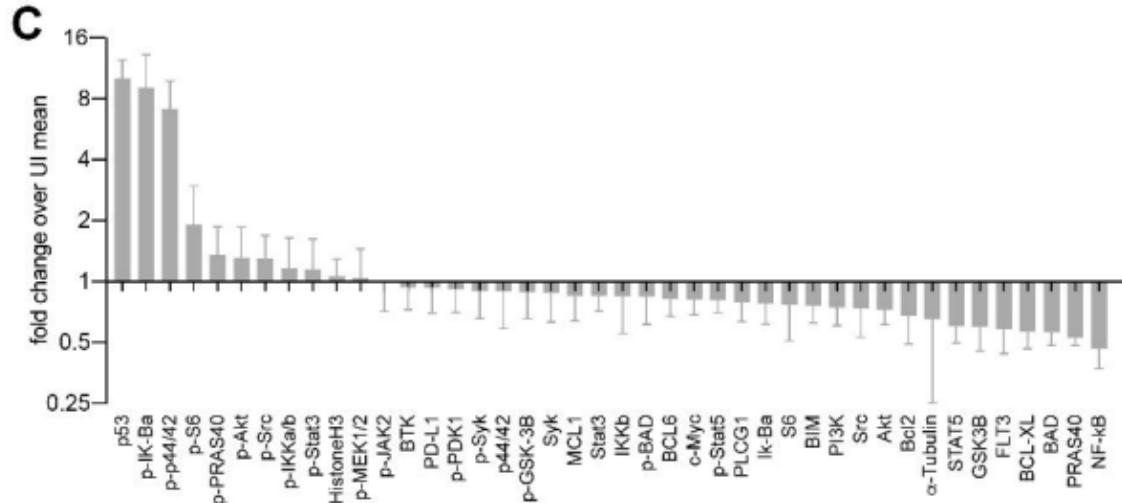
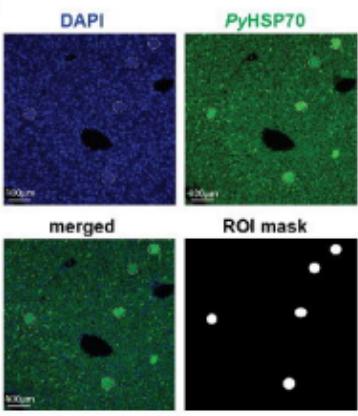
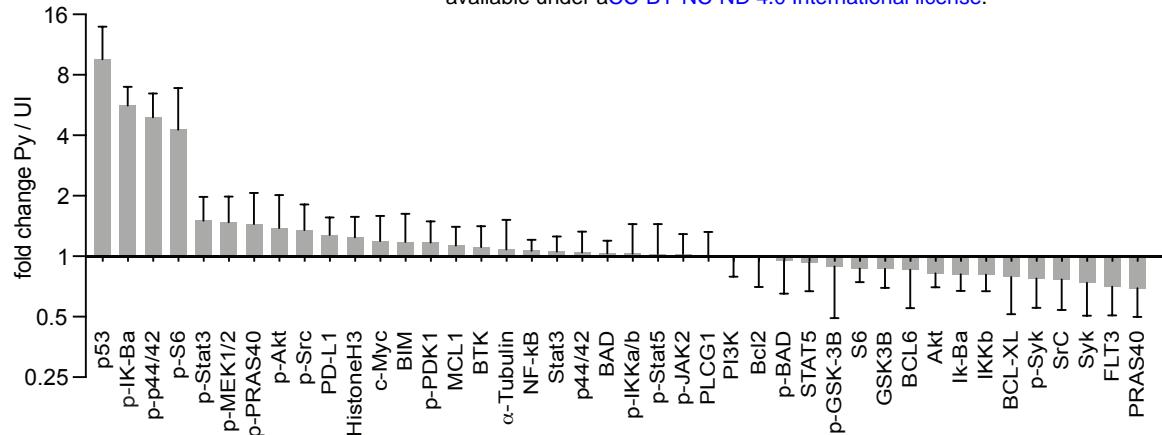
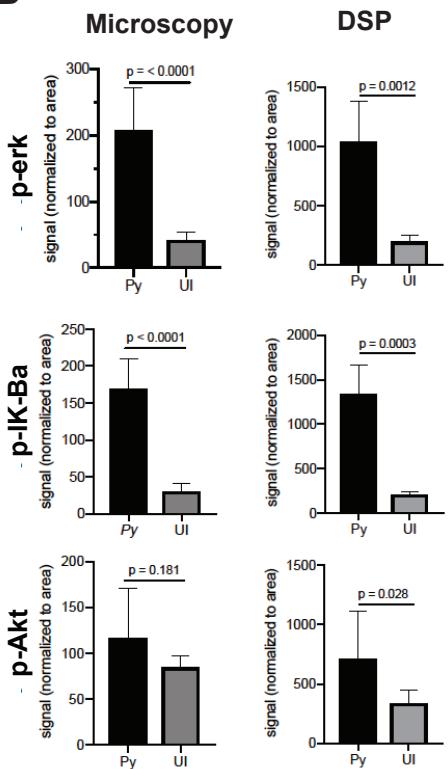
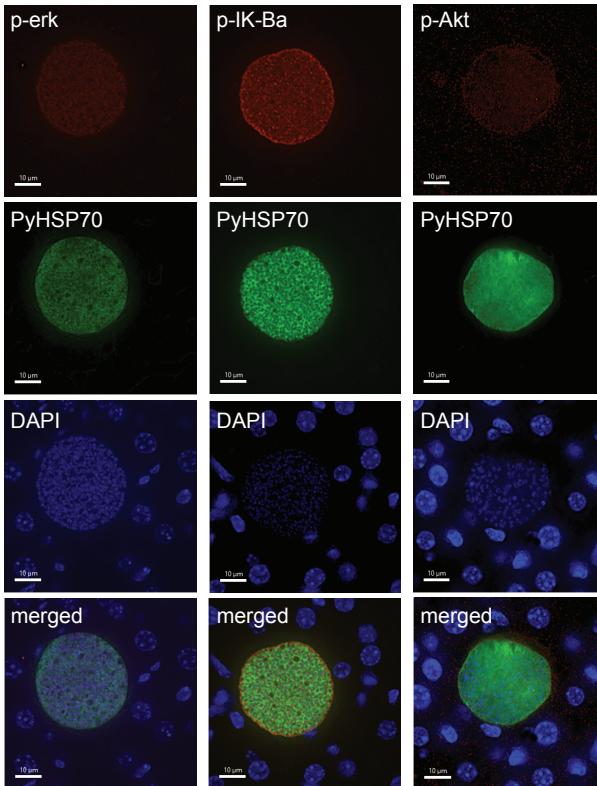
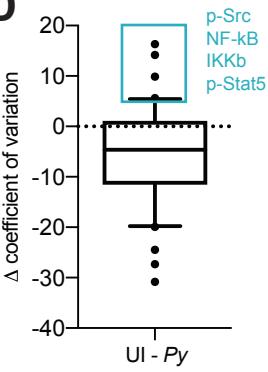



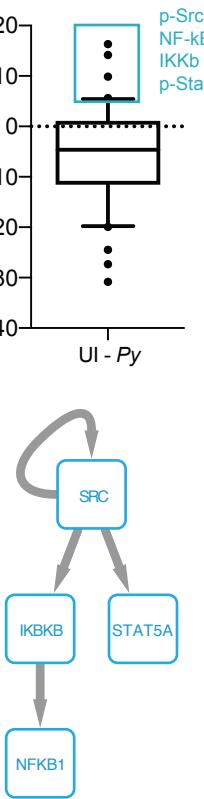
Figure 1

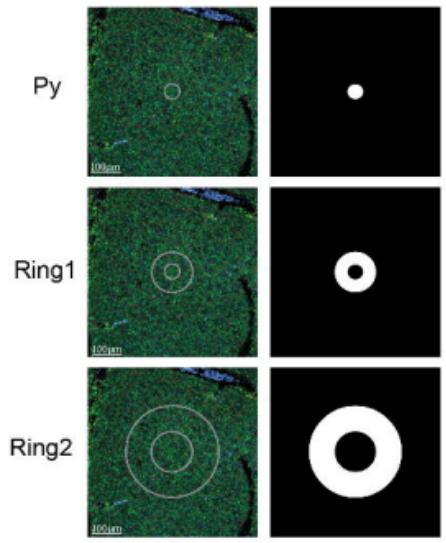
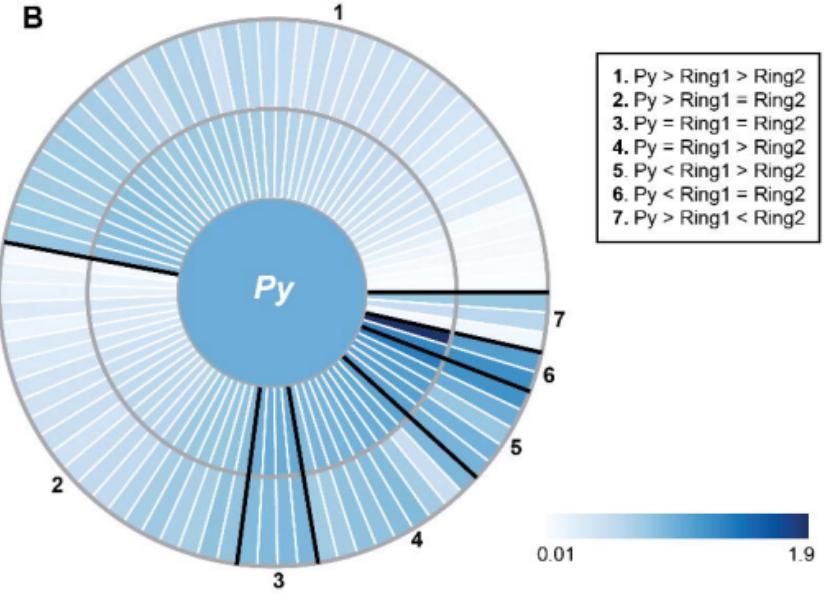
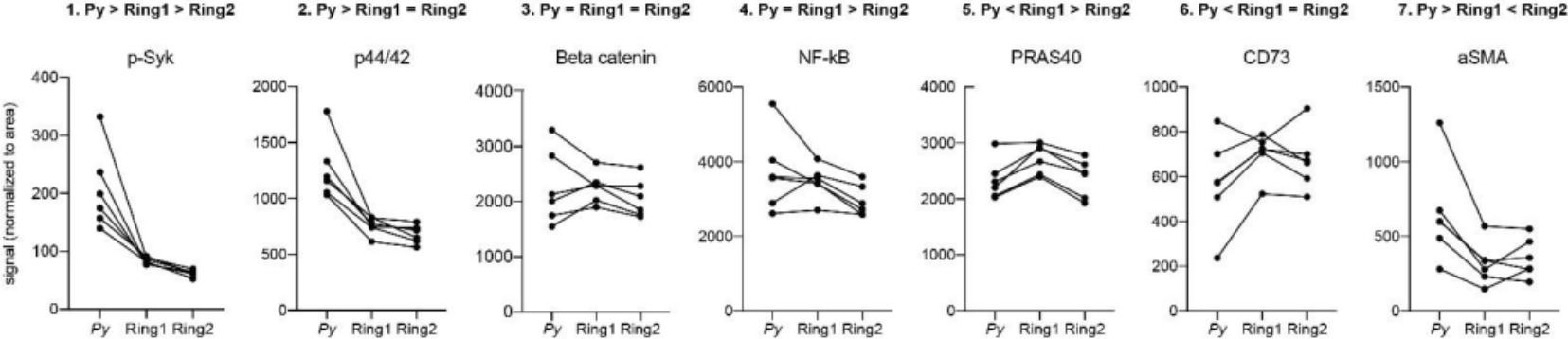

A

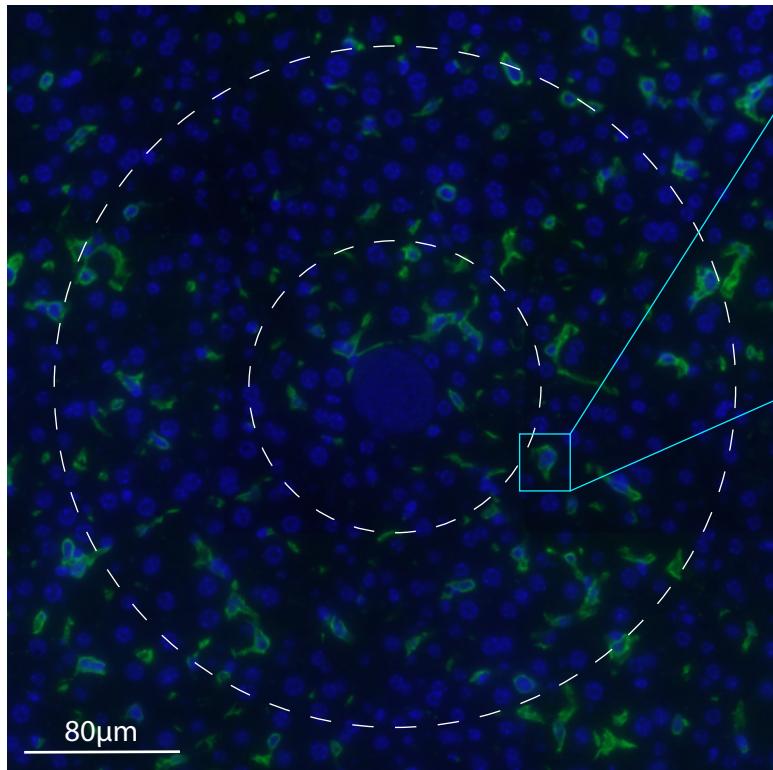
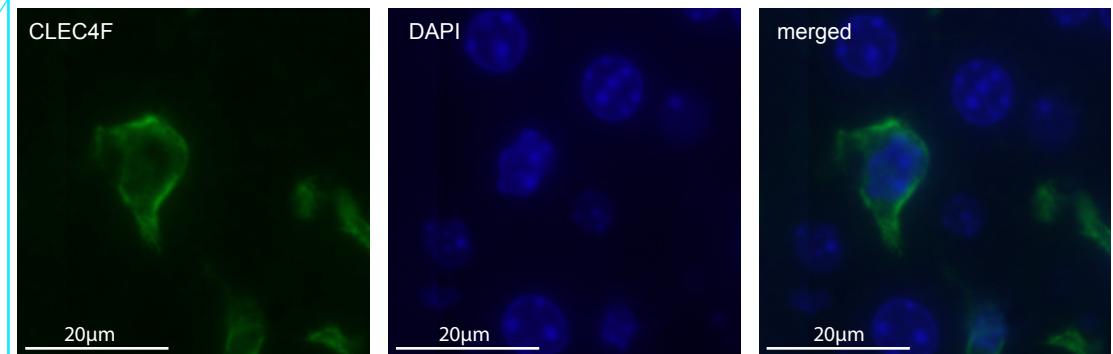
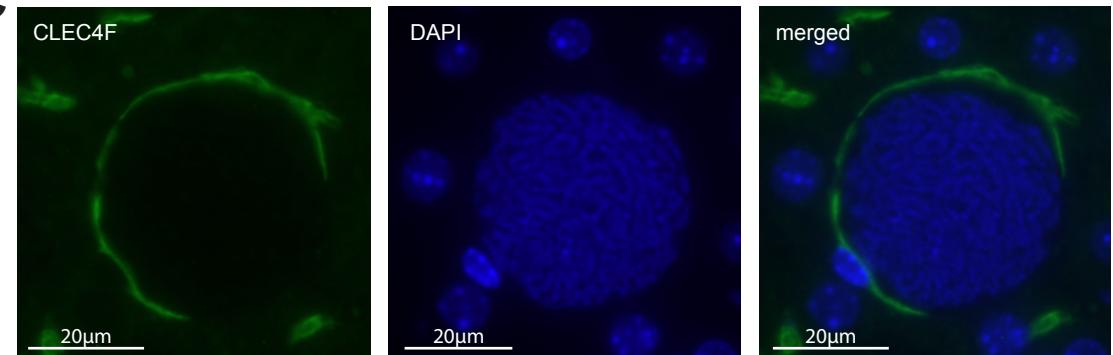
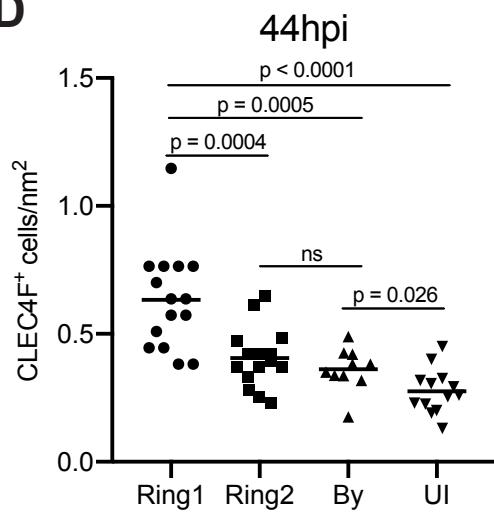
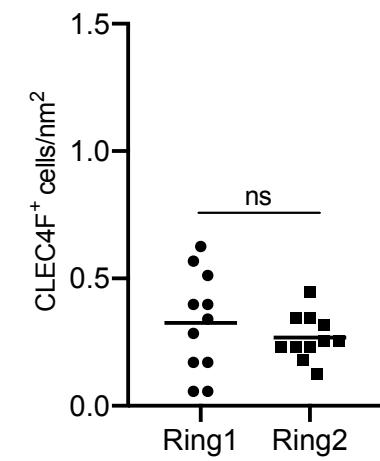
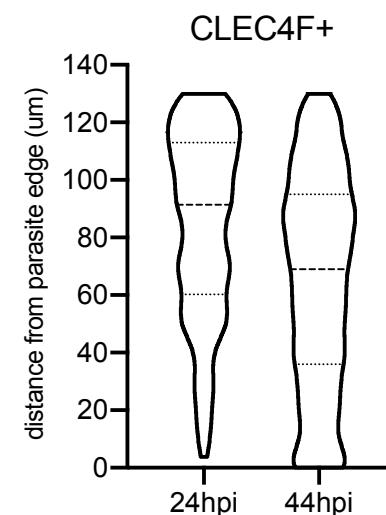
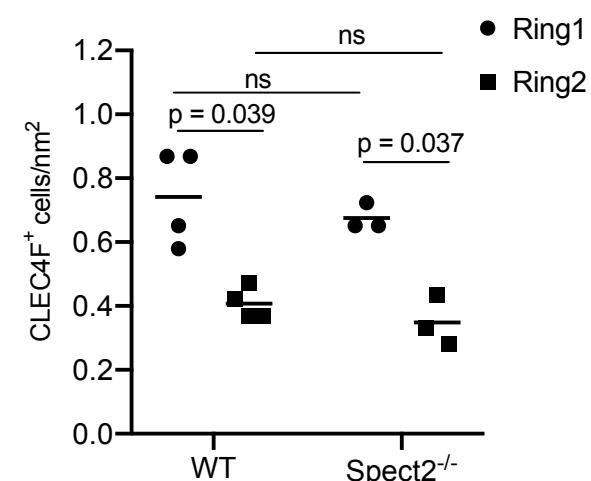

B

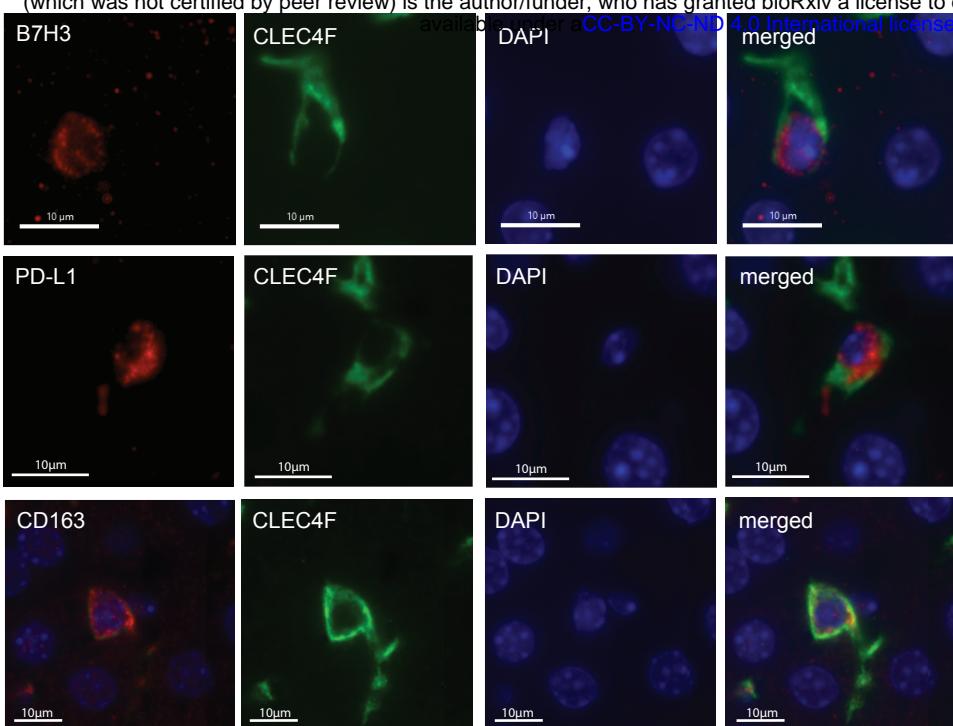

A

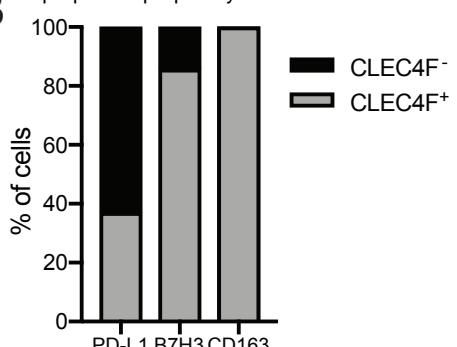

B


C

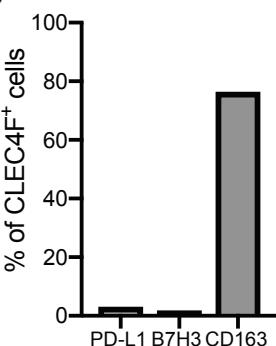




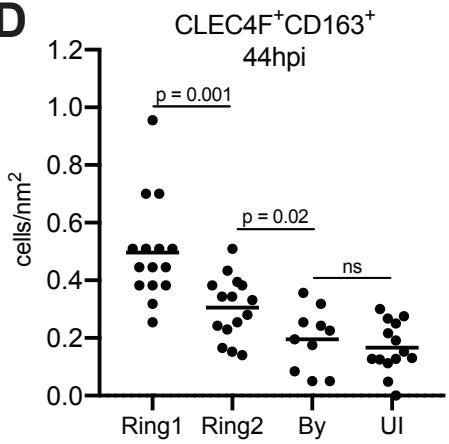







D

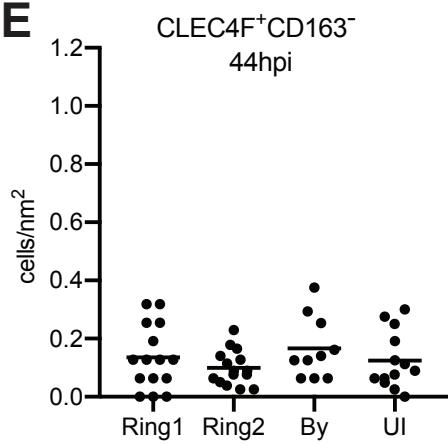

E

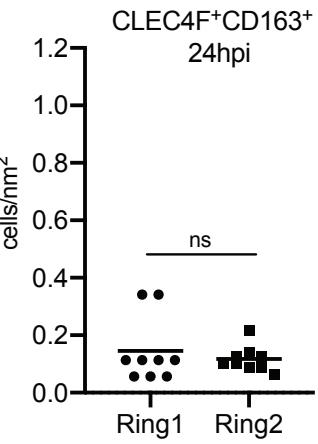

A**B****C**

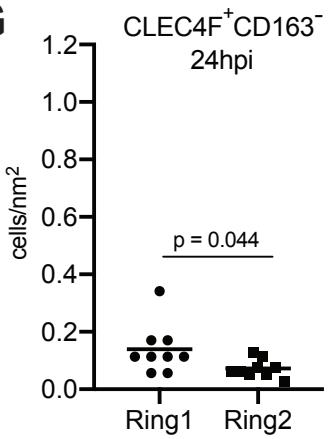
A**B****C****D****E** 24hpi**F****G**

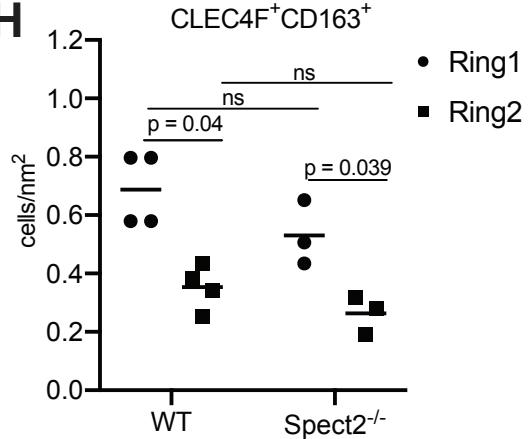

A

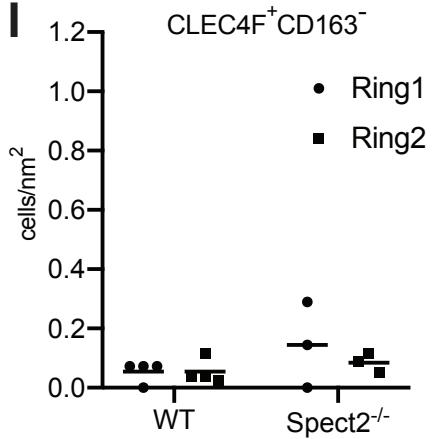

B


C


D


E


F


G

H

I

