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Abstract

Upon transmission to the human host, Plasmodium sporozoites exit the skin, are taken up by the
blood stream, and then travel to the liver where they infect and significantly modify a single hepatocyte.
Low infection rates within the liver have made proteomic studies of infected hepatocytes challenging,
particularly in vivo, and existing studies have been largely unable to consider how protein and
phosphoprotein differences are altered at different spatial locations within the heterogeneous liver. Using
digital spatia profiling, we characterized changesin host signaling during Plasmodium yoelii infection in
vivo without disrupting the liver tissue, and measured variation between infected cells. Moreover, we
measured alterations in protein expression around infected hepatocytes and identified a subset of CD163"
Kupffer cellsthat migrate towards infected cells during infection. These data offer the first insight into the
heterogeneity of the infected hepatocyte in situ and provide insights into how the parasite may alter the

local microenvironment to influenceits survival and modulate immunity.

Introduction
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Upon introduction to the human host by the bite of an infectious mosqguito, Plasmodium parasites
migrate to the liver where they invade a hepatocyte and proceed to develop and replicate. Once parasites
complete their development within the liver, thousands of individual merozoites egress from the host
hepatocyte and migrate to the bloodstream where they invade erythrocytes and initiate the symptomatic
blood stage of infection. The liver is often viewed as a uniform organ, however, factors such as oxygen
and nutrient gradients lead to diverse cellular phenotypes and the formation of niches within thetissue[1,
2]. Plasmodium parasites traverse multiple hepatocytes before invading one [3-5] and preferentially
invade both particular liver zones [6] and hepatocytes with specific phenotypes, such as high ploidy and
particular surface receptor compositions [7, 8]. In addition to selecting particular hepatocytes for invasion,
parasites modify the host cell throughout their devel opment within the liver, including cell size[9],
microtubule and organelle organization [10], and signaling cascades [11, 12].

Theliver stage (LS) is asubstantia bottleneck in Plasmodium infection, making it an attractive
point for intervention. Attrition in parasite numbers occurs between injection at the skin, invasion of
hepatocytes, and completion of devel opment within the liver [13]. Heterogeneity among hepatocytes
within and between individuals can exacerbate this attrition; the ability of hepatocytes to support
Plasmodium falciparum and Plasmodium vivax infection varied extensively between individua human
donors [14]. Experiments with genetically attenuated parasites demonstrated that parasites that
successfully invade but die before completing LS infection can induce immunity and reduce susceptibility
to subseguent infection [15].

Several global studies have been conducted to understand alterations that occur during LS
infection which may be important for the maintenance of infection. Transcriptomic studies have
demonstrated extensive changesin host gene expression that vary over the course of infection, however
concordance among these studies has been low, perhaps due to differences in hepatocyte origin and time
needed to sort infected cells [16, 17]. Protein and post-trans ational modification level screens have been
conducted using reverse phase protein array (RPPA) in an in vitro model of Plasmodium yoelii infection

[12], and to identify proteins that are differentially expressed between hepatocyte populations of
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differential susceptibility to LSinfection [11, 18]. Several proteins and processes that were identified as
altered in infected cells were also found to be important for LS infection (reviewed in [19]). A small
RPPA screen of infected hepatocytes reveal ed a suppression of p53 levels which was then found to be
critical for avoidance of host cell death and maintenance of LS infection in vitro and in vivo [12, 20].
RNA-sequencing of infected hepatocytes revealed upregulated expression of aquaporin-3 (AQP3).
Follow-up studies identified AQP3 as essential for infection and implicated it in nutrient acquisition [21].
Some functional screens have also been done to identify host proteins that are important for LS infection
including siIRNA, CRISPR, and kinase screens [22-24]. However, large-scal e proteomic studies of liver-
stage infection have been hindered by low infection rates, on the order of 1% in vitro and 0.01% in vivo
[25]. Additionally, in vivo studies traditionally involve sorting infected from uninfected cells and pooling
all uninfected cells together, thereby losing the ability to link parasite biology to its microenvironment, or
heterogeneity among uninfected cells to their spatial distribution within the liver and position relative to

the infected cell.

Results

To interrogate differencesin host cell signaling in intact Plasmodium-infected liver tissue we
chose to utilize Digital Spatial Profiling (DSP). DSP interrogates levels of total and phosphorylated
proteins in defined regions of fixed tissue [26], thereby preserving spatial information and limiting sample
processing that could induce artificial changes. To date, DSP has primarily been used to study
heterogeneity within the tumor microenvironment which has been strongly linked to disease progression
and treatment outcomes [27, 28]. Briefly, liver sections are scanned and regions of interest (ROIs) are
selected based on staining with fluorescent markers. Slides are incubated with one of several panels of
antibodies bound with a photocleavabl e linker to unique oligonucleotide barcode tags. UV light is shone
on the defined ROIs, cleaving the oligo tags from bound antibodies which are collected and quantified
using the nCounter system (Figure 1A). Weinfected BALB/c mice with 1 million P. yoelii sporozoites

and allowed the infection to proceed for 44 hours. Liver sections (4 pum thick) from 7 infected and 8
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77  uninfected mice were stained using an antibody directed against parasite protein PyHSP70 that was fused

78  with AlexaFluor 488. In parallel with fluorescent staining, liver sections were aso incubated with a panel

79  of 42 oligo-tagged antibodies against a variety of host proteins and/or post-translational modifications

80 (TableS1). Slides were imaged and pooled ROIs that encompassed five infected cells (50 um diameters)

81  or corresponding uninfected regions were identified (FiglA). Oligos were cleaved and collected from

82 ROIsusing the GeoMx Digital Spatial Profiler for quantification. We observed host proteins/post-

83 trandational modifications that were both up- and down-regulated in infected regions compared to

84  uninfected mice (Fig 1B), some of which have been previously identified as altered upon, or important

85 for, infection (Table S1)[11, 12, 23, 29-32]. Because we conducted multiple DSP runs with tissues on

86  multiple slides, we wanted to compare the reproducibility of our results and identify the contribution of

87  run-to-run variation to the observed variability. Liver sections from infected and uninfected mice were

88  evenly distributed across slides and runs. Comparisons of the fold change in protein levels (infected over

89  uninfected) between two runs (Fig S1A), as well as between two slides within asingle run (Fig S1B), all

90 gave strong linear correl ations, suggesting the data from multiple experiments are comparable.

91 Interestingly, the slope of the line between two separate runs (Fig S1A) was greater than one, suggesting

92  that comparisons of the magnitude of change between runs should be interpreted with caution.

93 We next asked if we could reliably detect changes in host protein levelsin single infected cells by

94  DSP. We hypothesized that the enlarged size of infected hepatocytes at 44hpi (approximately 50um in

95  diameter) might allow usto reliably detect changes in host proteins at the single cell level. The same

96 panel of antibodies (Table S1) was used to detect host protein levelsin single infected-cell ROIs from a

97 singleinfected mouse and in identical sized ROIs encompassing roughly 10 uninfected cells from asingle

98  uninfected mouse. Plotting the average of multiple infected single ROIs against the infected pooled ROI,

99 for each antibody, gave a strong linear correlation (Fig S1C). The same was found for the comparable
100 uninfected ROIs (Fig S1D), suggesting we have sufficient resolution to detect changes in host protein
101 levelswithin single infected cellsfor these enlarged, infected cells. Upon examining the fold change

102  between infected and uninfected single ROIs we observed a high degree of similarity between our pooled
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103 andsingle ROIs (Fig 2A). The same top four proteins were seen in both pooled and single ROIs,

104  suggesting that the increase detected in the pooled ROIs was not due to a small population of high-

105  expressing cells but may in fact be a feature of multiple infected hepatocytes. As an orthologous

106  approach, we used immunofluorescent microscopy to evaluate severa proteins that exhibited differential
107 levelsininfected and uninfected cells. Patterns of changes in protein levels between infected and

108  uninfected ROIs were comparable as measured by DSP and by single fluorescent antibody staining (Fig
109 2B-C). We cannot currently rule out nonspecific binding to parasite proteins, however we hypothesize
110 that thelocalization of several host proteins within the parasitophorous vacuol e is due to uptake of host
111  cell cytosol by the parasite, as has been described in blood stage parasites [33, 34].

112 We used the ability to measure host protein levelsin single infected cells to ask how host protein
113  levelsvaried in single infected cells when compared to uninfected ROIs (Fig 2D, Table S2). We reasoned
114  that proteins that exhibited substantially |ess variation between infected cells might represent features that
115 areselected or tuned by the parasite to facilitate its survival and/or devel opment. When examining the
116 distribution of the differencein variation between infected and uninfected ROIs for our panel of

117  antibodies, we observed atrend towards increased variation in infected ROIs (Fig 2D). Thisislikely

118  explained by the masking of single cell variation within the uninfected ROI, which encompasses roughly
119 10 cells. Despite the skewedness of the distribution, several total and phosphorylated proteins (p-Src, NF-
120 kB, IKKb, and p-Stat5) exhibited more variation in the uninfected ROI than in single infected cells (> 90"
121  percentile) (Fig 2D). To investigate whether or not these proteins might act as part of a connected

122  network, we reconstructed a phosphosignaling network using a database of known kinase target

123  sequences (Fig 2E). Network reconstruction revealed that proteins with lower variation in infected cells
124  candirectly interact with each other via phosphorylation, suggesting it could be atarget of parasite

125  selection and/or manipulation. Increased variation in infected cells could be due to host cell and/or

126  parasite-intrinsic heterogeneity, or due to the influence of different local microenvironments within the

127 liver.
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We next investigated how areas surrounding infected cells varied with distance from the parasite.
Using concentric ring ROIs matched with each LS parasite, we measured protein levelsin infected cells,
proximal uninfected cells (Ringl), and distal uninfected cells (Ring2) surrounding each parasite (Fig 3A).
In addition to the original antibody panel, we included a second panel encompassing proteins expressed
on various immune cells (Table S1). Protein levelsin Ringl and Ring2 were compared to those in their
paired infected ROI and fell into clusters based on spatial patterns of relative expression (Fig 3B-C, Table
S3). We were particularly interested in proteins with higher levelsin Ringl compared to Ring2 (Table $4)
and theorized that these might be indicative of either (1) immune cell infiltration towards the infected
hepatocyte, (2) selection of a cellular niche on avery fine scale, or (3) neighboring cells responding to
signals emanating out from the infected cell. Of the proteins with significantly higher levelsin Ringl
compared to Ring2, several immune cell surface markers, al of which have been described on
macrophages (PD-L1, B7-H3, CD68, CD163) [35-37], were the most heavily upregulated (Table $4),
leading us to investigate the distribution of macrophages around the parasite.

Macrophages within the liver can be resident macrophages or monocyte-derived macrophages.
Kupffer cells, the resident liver macrophage, are the most prevalent non-parenchymal cell in the liver,
making up about 35% of total cells[38]. To investigate the distribution of Kupffer cells around infected
hepatocytes, we stained liver sections with the Kupffer cell marker CLECAF [37, 39, 40] and visuaized
liver stage parasites using DAPI (Fig 4A-C). We observed an increasein CLECA4F" cells surrounding the
parasite, with elevated density in Ring 1 compared to Ring 2, bystander cells within the same liver, and an
identical area of tissue within uninfected animals (Fig. 4D). Interestingly, CLEC4F" Kupffer cells often
appear to wrap themselves around the LS-infected hepatocyte (Fig. 4B). We then asked if high Kupffer
cell density around infected cells at 44 hpi could be due to selection of an existing microenvironment at
the time of hepatocyte invasion, or due to cells migrating to the site after infection had been established.
Although often referred to as “resident”, Kupffer cells have been shown to migrate along sinusoids within
the liver (mean of 4.6pm/min) [41]. When we quantified Kupffer cellsaround P. yoelii parasitesin livers

collected 24 hpi, we observed no statistically significant difference between the number of cellsin Ringl
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and Ring2 (Fig 4E). Because parasites are much smaller at 24hpi than 44hpi, with average diameters of
10pm and 45pum respectively, we also measured Kupffer cell distance from the parasite membrane. The
most notabl e difference in distribution between 24 and 44hpi was the increase in Kupffer cell density
within 40um of the parasite membrane (Fig 4F). To further explore the hypothesis that the parasiteis
surrounded by Kupffer cells that have migrated to Ring 1 between 24 and 44hpi, rather than a shifting of
cells dueto the increase in hepatocyte mass that occurs as aresult of LS growth, we compared the average
number of Kupffer cells within 5um from the membrane of the 44h parasite and 22.5um from the
membrane of the 24h parasite (55um diameter ROIs) (Fig S3). Despite the increased potential areathat
could be occupied by Kupffer cells within the 24h ROI due to the smaller volume occupied by the
parasite, there were ~4.4x more Kupffer cells within the 44h ROI. This difference was maintained when
the ROI diameter was expanded to 65um (Fig S3), indicating that the increase in Kupffer cell density at
44hpi is not due to the expansion of the parasite towards pre-existing cells within close proximity.

Finally, to evaluate if a Kupffer cell dense region was selected as part of the sporozoite traversal
process that occurs prior to hepatocyte entry, we utilized the spect2- parasite strain. Wild type parasites
enter the liver through a hepatocyte, Kupffer cell, or liver endothelia cell, and then traverse through
severa hepatocytes using atransient vacuole before finally invading a final hepatocyte within a
parasitophorous vacuole [3, 42, 43]. Spect2 parasites that do not successfully invade are phagocytosed by
Kupffer cellsor fail to egress from their transient vacuole and are eliminated by host cell lysosomes [44-
46]. Thisinability to traverse multiple hepatocytes limits their ability to travel through many cellsin order
to select a particular local microenvironment. Additionally, it limits the number of cellswithin the liver
that come into direct contact with sporozoites. We infected mice with the spect2” parasite strain and
measured Kupffer cell density at 44hpi. The pattern of Kupffer cell density around infected hepatocytes
was maintained in the context of spect2” parasite infection (Fig 4F), indicating that cell traversal does not
contribute to the Kupffer cell density around the infected cell.

We next sought to investigate the molecular characteristics of parasite-surrounding Kupffer cells.

Werevisited the DSP data (Fig. 3, Table $4), and calculated pairwise Pearson’s correlation coefficients
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between area normalized signal in Ringl for al antibodies that were upregulated in Ringl when
compared to Ring2. We reasoned that if levels of two or more of these proteins correlated strongly with
each other it could be because they are present within the same cells. Using Pearson’s correlation
coefficients, we identified subsets of proteins that correlated with each other (Fig. S2). The strongest
correl ations were between B7H3, CD163, and Src, all of which are expressed by Kupffer cells and have
been linked to tolerogenic M2 polarization of macrophages, particularly within the tumor
microenvironment [35, 47-49].

We asked if the correlated proteins were expressed in overlapping populations of cellsin Ringl
and Ring2. We found that CD163 was exclusively, and B7H3 almost exclusively, expressed on CLECAF
cells (Fig 5A-B). We also stained for PD-L1, which was part of both antibody panels and consistently
upregulated in Ringl compared to Ring2 but did not correlate with B7H3 and CD163. PD-L1 was found
on both CLECF4" and CLECA4F cellswithin Ring 1, with over 60% of PD-L1" cells not expressing
CLECAF (Fig 5A-B). Thisis consistent with itslack of correlation with CD163 and B7H3, aswell as
published studies demonstrating PD-L 1 expression on a variety of immune cell types[50]. B7H3" and
PD-L1" Kupffer cells were very rare, 1.6% and 2.9% of all CLECA4F" cells, respectively, however
CD163" cells were abundant and represented a majority of CLEC4F" cells (Fig 5C).

Quantification of CD163" Kupffer cells reveaed that more CD163"CLEC4F", but not CD163°
CLECA4F, cells were present in in Ringl compared to Ring2, bystander, and uninfected tissue regions at
44hpi (FigsD-E). We investigated the distribution of CD163" Kupffer cells around P. yoelii parasitesin
livers collected 24 hpi and found no difference in CLEC4F CD163" cell density between Ringl and
Ring2 (Fig 5F). Interestingly, at 24 h CLEC4F'CD163 cells were dlightly elevated in Ringl compared to
Ring2 (Fig 5G). Finaly, we compared CD163 expression in Ringl and Ring2 around WT and Spec2-
parasites. CLEC4F'CD163" cells were present at a higher density in Ringl compared to Ring2 in both
contexts, with no difference between parasite strains (Fig 5H). CLEC4F CD163' cell levels were not

significantly different between rings or between parasite strains (Figol).
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Discussion

In this study we utilized digital spatial profiling to characterize host total and phosphorylated
proteins in and around Plasmodiuntinfected hepatocytesin vivo. Doing these analyses while preserving
the tissue architecture allowed us to link a specific microenvironment to infected cells. Probing alarge
panel of proteins simultaneously in the same tissue regions allowed us to investigate the molecular
characteristics of parasite-surrounding cells. Importantly, thisis challenging to do with conventional
approaches as it requires candidate-based investigation into specific candidate markers that may or may
not be relevant for the cell type of interest. By measuring changes in host proteins in concentric rings
around infected hepatocytes and correl ations between these proteins we identified an influx of Kupffer
cells towards the parasite and an increase in CD163 expression in these cells.

Kupffer cells originate from fetal liver erythromyel oid progenitors and in the adult liver, under
resting conditions, their populations are self-renewing independent of bone marrow-derived cells [51].
Upon Kupffer cell depletion, infiltrating circulating monocytes differentiate into Kupffer cells starting 96
hours post-depl etion [40]. Notably, monocyte-derived Kupffer cells do not begin expressing CLECA4F
until between 72-96 hours post-depletion [40], indicating that the increase in CLEC4F" cells we observed
near the parasite between 24 and 44hpi cannot be due to differentiation of infiltrating monocytes and that
it isalmost certainly resident CLEC4F" cells that have migrated towards the parasite.

Macrophages exist along a continuum of states that are often described as ranging from pro-
inflammatory (M 1) to tolerogenic (M2)[39]. Alterations of Kupffer cells upon sporozoite exposure have
led to the hypothesis that parasites manipulate Kupffer cells to produce atolerogenic environment for
their development within the liver. Kupffer cell exposure to sporozoites has been shown to suppress
respiratory burst [52], suppress antigen presentation [53], and skew cytokine production upon pro-
inflammatory stimulation towards an anti-inflammatory response [54]. Co-culture of CD8" T cells with
sporozoite-stimulated monocyte-derived macrophages also produced less IFNy [55]. Most of these studies
were conducted with prolonged co-incubation of sporozoites and macrophagesin vitro. Several functional

studies have been conducted in which Kupffer cells are depleted before sporozoite infection [56, 57], but
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the importance of these cells for infection maintenance are confounded by the effects of depletion on
hepatocyte invasion.

CD163 is commonly utilized as a tolerogenic macrophage marker [39], however it may aso play
afunctional role in maintenance of LS infection. CD163 is a scavenger receptor expressed on monocytes
and macrophages that binds and facilitates the internalization and clearance of hemogl obin-haptoglobin
(HbHp) complexes, thereby protecting the liver from oxidative damage [58]. Binding of HbHp complexes
promotes the expression of heme oxygenase-1 (HO-1) which degrades the Hb heme subunit, producing
biliverdin, iron, and carbon dioxide. Although not part of our DSP antibody panel, HO-1 has been shown
to be upregulated in macrophages and hepatocytes during Plasmodium LS infection and to be essentia for
infection maintenance [59]. Of particular interest, HO-1 was not found to be essential for Plasmodium LS
infection when hepatocytes are cultured alone ex vivo, suggesting its effect on nonparenchymal cells
influences infection. Higher expression of CD163 on Kupffer cells has also been linked to greater
phagocytic activity [60]. Merozoite forms of the parasite exit the infected hepatocyte and enter the blood
stream between 50-52 hpi. It isintriguing to speculate that the wrapping of Kupffer cells around infected
hepatocytes (Fig 4C) could suggest arole for Kupffer cellsin clean-up of the infected cell post-parasite
exit. By regulating antigen presentation and inflammation around the infected cell microenvironment,
Kupffer cells could be influencing the development of subsequent immunity. This could have long-
reaching consegquences not only for infection, but also for the development of whole parasite vaccines.

We are unable to determine from our dataif CD163" Kupffer cells are infiltrating in towards the
parasite, or if they begin expressing CD163 upon gaining their location near the infected cell, however the
small increase in CD163 CLECA4F cellsin Ringl compared to Ring2 at 24 hpi (Fig. 5G) supports the
latter hypothesis. PD-L1 expression, which isincreased in Ringl compared to Ring2, has been shown to
be induced in monocyte-derived macrophages in the skin upon exposure to Plasmodium sporozoites [55].
A portion of sporozoites are thought to cross and interact with Kupffer cells as they are entering the liver

[43], however, as no difference in CD163" Kupffer cell density was observed between WT parasites and

10
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Spec? parasites, which are traversal deficient, we hypothesize that the increase in CD163 expression is
unlikely to be triggered by pre-invasion events.

By utilizing DSP we were able to measure host protein on alarge scale in single infected
hepatocytes in vivo without sorting cells and without dissociating cells from their microenvironment.
While we cannot rule out non-specific binding of antibodies to parasite proteins, the minimal sample
processing may better preserve the host cell condition compared to experiments that require hours of cell
sorting, particularly in the case of post-translational modifications. Several of the proteins up-regulated in
infected cells were phosphorylated, indicating increased activity: p-IK-Ba, p-S6, and p-Erk. Consistent
with our results, Erk (MAPK1) activity was previously identified by our lab as important for maintenance
of P. yodlii infection in vitro using akinase inhibitor screen combined with a machine learning algorithm
[23]. Additionally, levels of p-S6 are higher in hepatocytes that are more susceptible to Plasmodium
infection and in infected hepatocytes in vitro, athough in the context of infection S6 phosphorylation is
dysregulated from classical upstream activator p-Akt [11]. One surprising result was the increase seen in
p53 levelsin infected cells. P53 is suppressed in infected hepatocytes and this suppression is essential for
maintenance of infection in vitro and in vivo, however, in these studies p53 level s were not measured past
24hpi [12]. We hypothesize that the increase in p53 seen here at 44hpi could be indicative of aloss of
regulation by the parasite as it shifts towards merozoite production and preparation for egress.

A very small number of parasites successfully invade hepatocytes and complete LS infection.
This, and the extensive remodeling of infected hepatocytes, suggest Plasmodium parasites have
substantial requirements of their host cells. By identifying proteins/post-translational modifications that
show very little variation among infected compared to uninfected cells, we may be able to identify
specific targets or signaling nodes that are maintained within, or selected for, very narrow limits by the
parasite. These factors could represent promising drug targets, as even small perturbations of these factors
could have dire consequences for the developing LS parasite. While thiswork is entirely focused on the
rodent parasite Plasmodium yoelii, DSP is readily adaptable to the study of human-infectious species

Plasmodium fal ciparum and Plasmodium vivax in the recently devel oped humanized mouse model [61,
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62]. Evaluating the spatially resolved host transcriptomic and proteomic responses that occur after
infection, particularly in the context of the dormant P. vivax hypnozoite, may reveal novel biology

regulating infection maintenance and development of immunity.

Methods
M osquito rearing and spor ozoite production

Female 6-8-week-old Swiss Webster mice (Harlan) were injected with blood stage Plasmodium
yoelii 17XNL parasites. Infected mice were used to feed female Anophel es stephensi mosquitoes after
gametocyte exflagellation was observed. Salivary gland sporozoites were isolated according to the
standard procedures at days 14 or 15 post blood meal. Animal handling was conducted according to the
Institutional Animal Care and Use Committee-approved protocols.
M ouse infections

6-8-week-old female Balb/cAnN mice were purchased from Envigo. All mice were maintained in
accordance with protocols approved by Seattle Children’s Research Institute Institutional Animal Care
and Use Committee (IACUC). Mice were infected by retro orbital injection with 100,000 or 1 million P.
yoelii sporozoites. Livers from infected, or uninfected age-matched, mice were harvested at 24 or 44 hpi
and fixed in 4% paraformal dehyde for 24 hours. Tissues were then paraffin embedded, cut into 4mm
sections, and mounted on positively charged glass slides. Mounted liver dices were then used for digital
spatia profiling or immunofluorescence staining.
Digital spatial profiling

Digital spatial profiling (DSP) was performed by NanoString Technol ogies using the GeoMx
Digital Spatial profiler. For selecting regions of interest, dides were stained with DAPI and a fluorescent
conjugated antibody against PyHSP70. Slides were simultaneously incubated with one of two pre-
validated panels of 42-43 oligo-tagged antibodies (Table S1). Counts were normalized to an internal
control (ERCC) and to ROI area. Data were analyzed by ANOV A with paired or unpaired multiple

comparisons as appropriate. Our single infected-cell ROIs may encompass a portion of neighboring cells.
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Immunofluor escence staining

Slide-mounted liver slices were washed twice in xylene for 3 minutes followed by washesin
100%, 95%, 70% and 50% ethanol for 3 minutes each. Slides were then washed with DI water and heated
to 90C for 30 minutesin 1% citrate-based antigen unmasking solution (Vector Laboratories) using a
Biocare Medical Decloaking Chamber. Slides were washed with TBS-0.025% Tween (TBST) and then
blocked for 4 hoursin TBST containing 1.5% BSA and 15% goat serum (Sigma Aldrich). Slides were
incubated in primary antibodies at 4C overnight. Following primary antibody staining, slides were
washed with TBST and incubated with secondary antibodies and DAPI (1:3,000) for 1 hour at room
temperature. Slides were washed with TBST and autofluorescence quenched using Vector TrueView
(Vector Labs). Fluoromount G mounting media was used to preserve fluorescence signal. Primary
antibodies were used at the following concentrations: PyHsp70 1:1,000, PyCSP-488 1:500, p-p44/42
1:200 (Cell Signaing 4370), p-1IK-Ba 1:200 (Cell Signaling 2850), p-Akt 1:100 (Cell Signaling 9271),
CD163 1:500 (Proteintech 16646-1-AP), CLEC4F-647 1:100 (BioLegend 156804), PD-L1 1:200 (Cell
Signaling 64988), B7H3 1:200 (Novus Bio NB600-1441). Secondary antibodies anti-mouse AlexaFluor-
488, anti-rabbit AlexaFluor-594, and anti-rabbit AlexaFluor-647 (Invitrogen) were used at a 1:1,000
dilution.
Imaging and quantification

Images (40X) were acquired using a DeltaVision Elite High Resolution Microscope. Z-stacks of
0.3um thickness were taken for images encompassing infected and uninfected cells. For cell
guantification within Ring ROIs 3x3 image panels were taken with a 60-pixel overlap. Images were
stitched and deconvolved using the DeltaVision Softworx software and were visualized using Imaris
software. ImageJ was used to quantify fluorescence intensity within defined ROIs. Distances from
parasites to Kupffer cells were measured between nucleus centers, or from the parasite membrane to the
Kupffer cell nucleus, using Imaris software. Only Kupffer cells with avisible, stained nucleus (DAPI)

were included in counts.
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The phosphosignaling network was reconstructed using PhosphoSitePlus®, a curated
knowledgebase dedicated to mammalian post-translational modifications (https://www.phosphosite.org)

[63].
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Figure legends

Figure 1. Digital Spatial Profiling facilitations evaluation of proteinsand post-trandational
modificationsin Plasmodium yoelii infected tissue. (A) Schematic of DSP methodology. (B)
Representative images of fluorescent staining of liver sections from uninfected or P. yoelii-infected mice
at 44hpi. Parasites are stained with PyHSP70 in green and DAPI is shown in blue. Data were pooled from
regions of interest indicated by white circles. (C) Signal from P. yoelii-infected mice normalized to ROI
area and to the average signal from uninfected mice. Error bars indicate standard deviation. n = 7-8 mice
per group.

Figure 2. Singleinfected hepatocytes produce sufficient signal for detection by DSP. (A) Signa from
9 infected cells from a single P. yoelii-infected mouse normalized to region of interest (ROI) areaand to
the average signal from 6 uninfected cell regions from a single uninfected mouse. Error bars indicate
standard deviation. (B) ROIl-area-normalized signal from single infected and uninfected ROIs as
measured by DSP (n = 6-9) and single antibody staining fluorescent microscopy (n = 6). (C)
Representative images of infected cells were taken at a total magnification of 400x at 44hpi. (D)
Difference in coefficient of variation between uninfected and single infected ROIs (9 infected cells) and 6
ROls of identical size from asingle mouse, for each antibody. Box plot encompasses 10-90" percentile.

Antibodies within the 90™ percentile which showed less variation in infected (Py) than in uninfected ROIs

14


https://doi.org/10.1101/2021.09.22.461346
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.09.22.461346; this version posted September 22, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384

available under aCC-BY-NC-ND 4.0 International license.

are boxed in blue. (E) Phosphosignaling network constructed from proteins with lower variation in
infected ROIs. Arrows indicate direct phosphorylation events.

Figure 3. Signalsare altered in rings surrounding Plasmodium-infected hepatocytes. (A)
Representative images of fluorescent staining of liver sections and region of interest (ROI) masks. (B)
Heat maps showing fold change in protein levels between in ring ROIs. Signal was normalized to ROI
area and to the infected cell ROI, set at 1. Proteins showing similar relative patterns of expression across
rings are grouped together and outlined in black. (C) Areanormalized signal of two antibodiesillustrative
of delimited and gradual spatial patterns. Lines connect matched infected cell and ring ROIS. n= 6
Figure 4. A high density of macrophages surrounds Plasmodium infected hepatocytes. (A)
Representative image of CLEC4F" staining within an infected liver. Nuclear DAPI staining is shown in
blue, CLECA4F in green. Ringl and Ring2 outer boundaries are indicated by dashed white circles. (B)
CLECA4F staining of asingle cell within Ring2 (C) Representative image of a CLEC4F" cell in close
proximity to a parasite at 44hpi. (D) Number of CLEC4F" cells normalized by areain Ringl, Ring2,
bystander (By) tissue, and uninfected (UI) tissue at 44hpi. 3-6 region of interest (ROI)s were counted
from each of three mice. (E) Number of CLECA4F" cells normalized by areain Ringl and Ring2 at 24hpi.
(F) Violin plot showing distribution of CLEC4F" cells binned by distance from parasite edge at 24 and
44hpi. (F) Levels of CLECAF' cellsin Ringl and Ring2 around wild type (WT) and Spect2” parasites at
44hpi.

Figure5. Tolerogenic macr ophages migrate to surround Plasmodium infected hepatocytes. (A)
Representative images of fluorescent staining of infected tissue for B7H3, PD-L1, and CD163. (B)
Proportion of PD-L1", B7H3", and CD163" cells within rings around infected cells that were CLEC4F" or
CLECA4F. (C) Proportion of CLEC4F+ cells within rings around infected cells that were PD-L1", B7H3",
or CD163". (D) Number of CD163"CLECA4F" and (E) CD163 CLECAF" cells normalized by areain
Ringl, Ring2, bystander (By) tissue, and uninfected (Ul) tissue at 44hpi. 3-6 regions of interest (ROIS)

were counted from each of three mice. (F) Number of CD163"CLECA4F" and (G) CD163 CLECA4F" cells
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normalized by area at 24hpi. (H) Number of CD163"CLEC4F" and (1) CD163 CLEC4F" cells normalized
by area, in Ringl and Ring2 around wild type (WT) and Spect2” parasites at 44hpi.

Fig S1. DSP resultsarereproducible across runs and between pooled and single ROl s. Average fold
change between infected and uninfected ROIs for each antibody from (A) two independent DSP runs, and
(B) two dlides run at the same time. Data were analyzed by linear regression. (C) For each antibody the
average area-normalized signal 9 single infected ROIs was plotted against that of one pooled infected

ROI. (D) For each antibody the average area-normalized signal 9 single uninfected ROIs was plotted
against that of one pooled uninfected ROI. Data were analyzed by linear regression.

Fig S2. A subset of upregulated (phospho)proteinsin proximity to Plasmodium-infected hepatocytes
arecorrelated. (A) Heat map indicating the Pearson correlation coefficient for each pair of antibodies for
those significantly upregulated in Ringl compared to Ring2. n = 6.

Fig S3. Growth of Plasmodium infected hepatocyte does not account for increased K upffer cell
density around cell. Kupffer cell density within circular ROIs of 55um and 65um around parasites at
24hpi and 44hpi. Parasites are shown as green circles. Length of linesisindicated in microns. Circles and
rings are shown to scale. Kupffer cell density is shown as the mean from 3-4 parasites per mouse from 3

mice per time point.
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