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Abstract

Understanding changes in gene expression under the effects of a perturbation is
a key goal of systems biology. A powerful approach to address this goal uses gene
networks and describes the perturbation’s effects as a rewiring of each gene’s
connections. This approach is known as differential network (DN) analysis.
Here, we used DNs to analyze RNA-sequencing time series datasets, focusing
on expression changes: (i) In the saliva of a human subject after vaccination
with a pneumococcal vaccine (PPSV23), and (ii) in B cells treated ex vivo with
a monoclonal antibody drug (Rituximab). Using network community detection,
we revealed the collective behavior of clusters of genes, and detected communi-
ties of genes based on their longitudinal behavior, and corresponding pathway
activations. We identified biological pathways consistent with the mechanism of
action of the vaccine and with Rituximab’s targets. The approach may be useful
in drug development by providing an effective analysis of expressing changes in
response to a drug.
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1. Introduction

Recent advances in RNA-sequencing (RNA-seq) technologies have enabled
researchers to incorporate time in the analysis of large-scale gene expression
data from biological systems. These time course (TC) experiments can generate

s longitudinal RNA-seq data as time series, with time-steps ranging from hours to
weeks. This not only permits capturing the transcriptome’s dynamic regulation
over time, but also generates large amounts of expression data that need to be
analyzed and interpreted. While TC experiments can measure time-dependent
gene expression changes, a good data analysis scheme is key for translating the

1 experimental observations into meaningful information about the underlying
biological dynamics [11, 2], 3] 4 [5] [6].

There are currently a wide variety of well-established data analysis meth-
ods for RNA-seq data. However, this is not the case for TC RNA-seq, as in
this case another dimension, time, is present. Some methods originally devel-

15 oped for microarray sequencing have been adapted to RNA-seq time series data
[3, 6 [7, ]]. Network-based analysis and, in particular, Differential Network
(DN) analysis methods, have been shown to be very useful in the analysis of
the dynamics of gene expression under the effect of an external perturbation [9]
and could provide insightful interpretations of the RNA-seq data. DN analysis

2 is a method based on the subtraction of one network from another, and has
been adopted in many genomics studies in the past decade [10, 11, 12]. In a
gene-gene correlation network (co-expression network), vertices represent genes
while edges represent the correlation coefficient of the expression of two genes.
Typically, these co-expression networks are weighted by the strength and the

»s  sign of the correlation between two genes. The DN analysis method uses a pair-
wise cancellation of nodes and edges common to two networks that describe the
expression data before and after a given perturbation. In doing so, the process

leaves behind interaction variations that describe the network rewiring induced
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by the perturbation. For instance, in gene expression studies, the DN analysis

s method successfully separated gene expressions under specific drug responses

from generic stress responses [I3]. It also aided researchers in investigating dys-

functional regulatory networks in unhealthy states, providing insights into the

genetic basis of diseases [I4]. By focusing on the structural difference between

two networks, the DN analysis method has demonstrated its effectiveness in

55 identifying biological activities in different states. In addition, this graph-based

model offers an advantage in representing the architecture of a gene network’s

overall changes where the emphasis is on the nature of interactions rather than
the quantitative predictions in time.

In the present study, we applied a DN approach to RNA-seq time series

w datasets retrieved from two longitudinal TC RNA-seq experiments: (i) The

first dataset (GSE108664) was generated from saliva samples from a healthy

individual before and after the administration of the Pneumococcal Polysac-

charide Vaccine (PPSV23) [15]. The primary goal of this study was to gain

insights on the adaptive immune responses to PPSV23 through saliva profiling.

s Due to its convenience in processing relative to blood samples, saliva draws

much interest for diagnostics as well as health monitoring applications. Saliva

analysis can produce results in a timely manner, its collection is minimally in-

vasive, and little training is required for saliva sampling, even for non-medically

trained professionals. (ii) The second dataset (GSE100441) was generated from

s a time course experiment on primary B cells, where one set was treated with

Rituximab and another used as an untreated control. Rituximab is known for

its therapeutic use in targeting B cells [16] to treat cancers such as lymphomas

and leukemias. This drug has a history of safe and effective usage since 1997

[I7], and the World Health Organization (WHO) place Rituximab on their list

55 of essential medicines [I§]. Rituximab binds with CD20, expressed on pre-B

and mature B cells, but not on stem cells [I9]. The binding causes perturba-

tions to intracellular signaling and membrane structure [20], mediating the cell

depletion. It is worthwhile to mention that the B cell pathways of Rituximab

activation have been experimentally validated [21, 22} 23] 24], which facilitates
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o0 the evaluation of the effectiveness of the DN method we utilize in this work.
Both the saliva and primary B cell experiments involve drug-treated samples
(treatment sets) and untreated samples (control sets) monitored over time.

For both datasets, we started with building gene networks, one for each of
the control and the treatment sets. We used gene-gene correlations between

s time series signals, over 24 hours in saliva and 15 hours in B cells, to evaluate
pairwise gene connections. Graphically, the time series correlation networks
built from the treatment sets summarized a system-wide pathway activation
due to the perturbation, whereas the networks from the controls sets acted as
the baseline. Within the DN analysis framework, we subtracted the baseline

7 network from the one obtained using the treatment data, arriving at the final
differential network.

The presence of modules, also known as communities, describes a topological
property of networks [25 26 27, 28]. One community is a group of densely
connected nodes. In the context of a biological system, nodes in the same

75 community are assumed to be close in biological functions [29] [30, BT, 32, [33].
We exploited this property of the differential network to observe fine details
of gene groups affected by the perturbation. Specifically, we employed one of
the most established module detection algorithms, the Louvain method [34],
to identify communities in our final differential network. We then performed

9o Reactome [35] pathway enrichment analysis on individual communities, and

finally examined the corresponding heatmaps for each community.

2. Results

Our RNA-seq time series raw data were retrieved from the Gene Expression
Omnibus database under accessions GSE108664 and GSE100441 for the saliva

s and B cell experiments, respectively. The study of the immune response to
the PPSV23 vaccine in saliva probed the expression of a potential 84647 gene
identifiers (GENCODE annotation[36]) at 24 time points [I5]. The other study

of drug activation by Rituximab in B cells provided a dataset for 6 time points.
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Since gene co-expression networks rely on correlations, our network analysis
o0 could be prone to spurious correlations, which we removed as described in the
STAR Methods.

We constructed our saliva DN by subtracting the saliva network without
vaccine from the network obtained using post-vaccine data. The B cell DN in
response to Rituximab was generated in a similar manner. Next, we clustered

s the DNs into communities using the Louvain community detection method [34].
We then conducted a Reactome Enrichment Analysis [35] using PyIOmica [37],
on each community to identify significant pathways and associated genes. We
also visualized the heatmaps of relative gene expression as a function of time
for each community. Finally, we plotted the DNs and their major individual

w0 communities. The workflow is summarized in Figure I, and additional details

are provided in the STAR Methods.

2.1. Saliva DN

Our saliva DN contains 1144 nodes (i.e., genes) and 13,775 edges. The
Louvain algorithm identified 48 communities (modules) in total. 15 of the com-

s munities have a size of at least 4 nodes, while the remaining 33 are pairs or
triplets. In the global saliva DN visualization, we excluded the communities
with pairs or triplets, as none of them belonged to the three major connected
components of the DN network. We also filtered the network to remove con-
nected components with less than 4 genes. The global saliva DN is presented in

w  Fig. [Zh, where communities are visualized using different colors and encircled
in loops. Furthermore, community labels are based on their size (largest to

smallest, with CO being the largest community, and C14 the smallest).

2.2. Pathway Enrichment of Saliva Communities

In our pathway analysis, we queried individual communities to investigate
us  how their highly co-expressed genes are functionally related. Our analysis is

based on the Reactome pathway database [35] [38] [39].
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Statistically significant enrichment of pathways (with False Discovery Rate
(FDR) < 0.05) was identified in 6 communities, C0, C1, C2, C4, C8 and C9.
The majority of statistically significant Reactome pathways were related to re-

120 sponse to stimulus, immune response, and inflammatory response. Among the
six communities, CO and C1 are the two largest communities. CO comprises of
248 genes, colored in red in the global DN shown in Fig. [2h, whereas C1 con-
tains 198 genes, colored in yellow in the same panel. We display the C0 and C1
in Fig. as representative communities. Genes that belong to the statistically

125 significant biological pathways are highlighted in red in Fig. [2p.

In the CO community, the Reactome enrichment analysis identified 15 sta-
tistically significant pathways (FDR < 0.05): (i) three pathways for interferon
signaling, (ii) three related to the immune system, (iii) four related to anti-
gen presentation, (iv) one associated with ER-Phagosomes, (v) one lymphoid-

1w related, and (vi) three pertaining to interleukin-12 signaling. In particular, the
alpha, beta, and gamma signaling pathways all appear in the interferon sig-
naling pathways. The immune system pathways include one cytokine signaling
and one related to the adaptive immune system. Among the four antigen-related
pathways, two are explicitly associated to the dependence of Class I MHC. The

155 Endosomal / Vacuolar pathway implies the involvement of the Class I MHC
and of the Antigen processing-Cross presentation. Lastly, interleukin-12 plays
a crucial role in the coordination of innate and adaptive immunity [40].

In the C1 community, the Reactome analysis identified 9 statistically signif-
icant pathways (FDR < 0.05). Two of these pathways are broadly related to

1o the immune system and cytokine signaling. Another two pathways, the NGF-
stimulated transcription and the FOXO-mediated transcription pathways, mod-
ulate cell survival, growth, and differentiation. In Table [I| we have listed all the
results of the Reactome pathway enrichment analysis for CO and C1 with FDR
< 0.05.

15 Of the communities we observed, the CO community exhibits the strongest
response to the stimulus and immune system, which is evidenced by the very low

FDRs ~ O(1074). The complete pathway enrichment analysis for all commu-
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nities in saliva is provided in the online data files (ODF's), available on Zenodo,

in the ”Results/SLV _results/reactome_analysis” folder.

0 2.8, Saliva Communities Temporal Visualization

We further visualized each community’s change over time with heatmaps
within the DN network. This is shown for CO and C1 in Figk. Here, each
row denotes a gene, while each column corresponds to a time point of post-
treatment. The values plotted in the heatmaps are rescaled gene expression

155 differences between the treated data and the control, and indicate the expression
at the particular time point relative to the first time point of the experiment,
with rows normalized using Euclidean norm. Red indicates up-regulated genes,
blue down-regulated genes, and white indicates unchanged expression. The
hierarchical clustering dendrograms revealed relationships among genes at each

1o time point based on the similarity of the gene expressions. The prominent
red columns show that genes are upregulated together at these time points.
Note that the CO has a pronounced peak at time point 6, making it an early
responding module, while C1 is a late responding cluster, with a pronounced
peak at time point 19, as illustrated in Fig. [2k.

165 Here we only show heatmaps for CO and C1 as representative communi-
ties. However, we provide the other communities’ heatmaps and with their
corresponding Reactome pathway analysis in the ODFs in the folder named
"Results/SLV results/network_plots”. Our saliva DN has a clear pattern of
mostly discrete punctuated gene expression response times for each community.

wo  As these punctuated response times, save for one exception (both C0O and C11
show maximized response at t5), are specific to each community, they reflect
the biological signatures for individual groups. Most of our saliva DN commu-
nities have only one punctuated activation time, although C5 in the saliva DN
has 3 up-regulation events at time points 15, 20, and 22 that do not overlap

s with those of other communities. Between the communities, we observed strong
temporally-specific relationships. Our heatmaps are suggestive of the presence

of directional signaling between early-activation communities and subsequent
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groups, with a potential sequential activation pattern as follows: C6, C9, C8,
C2, CO and C1, C3, C4, C10, C5, C1, and finally C5. At time points from t6

180 to t10, t14, and from t16 to t18, no communities activated.

2.4. B Cell DN

Our B cell DN consists of 1,759 nodes (genes) and 10,421 edges that we clas-
sified into 145 communities using the Louvain algorithm. Similar to the saliva
DN, most of these communities are small clusters on small components. Due

15 to its larger size relative to the saliva DN and larger number of communities,
our cutoff for plotting was increased to 8 nodes both for community and com-
ponent size. The global B cell DN is presented in Fig. [Bp, with 5 components
and 14 communities. Here, we omitted the remaining 130 communities since
they neither belong to any of the 5 main components, nor are they large enough

1o for Reactome enrichment analysis. Like in the saliva DN, communities were
ordered in descending size (largest to smallest, from CO to C13 respectively),
designated with different colors, and encircled by loops. Fig. 3| has the same
format of Fig.[2l In this case, C2 and C4 are displayed in panel b, as magnified
representations of the purple cluster and the green cluster, respectively, in panel

15 a. Panel b’s magnified perspective provides details about the communities’ in-
ternal structures. In Fig [Bp, for example, we observe that some of the genes

highlighted in red form a clique.

2.5. Pathway Enrichment of B Cell Communities

As for the saliva DN, we conducted a community-wise Reactome enrichment

20 analysis for communities with at least 8 genes. 14 communities in the B cell
DN were analyzed. This analysis found 9 communities with statistically signif-
icant pathway enrichment (FDR < 0.05.): C2, C4, C5, C6, C7, C9, C10, C12,
and C13. Most of the pathways associated with genes in these communities
centered around transcriptional regulation, protein metabolism, DNA binding

2s ability, and signaling. Among its 111 statistically significant pathways, C4 was
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found to be strongly enriched with genes in the FCERI-mediated NF-xB ac-
tivation pathway, the B cell receptor (BCR) signaling pathway, and the Fc
epsilon receptor (FCERI) signaling pathway. These pathways and others rel-
evant to Rituximab mechanism of action, are listed in Table The NF-«B

a0 pathway activation by FCERI leads to the production of cytokines during mast
cell activation, making it important in allergic inflammatory diseases [41]. C4
also contained a significant number of genes in the B cell receptor pathway,
an important pathway related to B cells. The Fc epsilon gene is expressed on
antigen-presenting cells, and its signaling occurs on the plasma membrane. A

25 comprehensive list of statistically significant pathways can be found in the ODFs
in the ”Results/Bcell_results/reactome_analysis” folder.

In summary, C4 contains the highest number of responsive pathways which
are relevant to the B cell response to Rituximab. As our representative com-
munities, we display the C2 and C4 in Fig. [3| b, our two largest among the 9

20 communities with significant pathways. Our top 10 pathways based on p-values

from the Reactome enrichment analysis for C2 and C4 are listed in Table 2.

2.6. B Cell Communities Temporal Visualization

The heatmaps for the temporal behavior for the C2 and C4 communities

of the B cell data are shown in Fig. . The formatting of the heamaps is
2»s the same as that of the saliva heatmaps; all values in the heatmaps refer to

gene expression relative to time 0 in the treated dataset. The C4’s blue column

at time point 2 and the less prominent blue column for C2 at time point 15

identify patterns of down-regulation in the two community. While C2 shows

a trend of initial up-regulation followed by a gradual diffusion, C4 exhibits an
20 initial down-regulation, followed by later up-regulation.

Though C2 and C4 are our representative communities, we carried out
heatmap visualization for all our 9 communities that demonstrated significant
pathway enrichment. These heatmaps are available to view in the ODFs in the
”Resuls/Bceell_results/network _plots/heatmaps” folder. Overall, in the B cell

235 community heatmaps, we recognized three types of time patterns in terms of
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collective behavior within an individual community. In the first pattern group,
the majority of genes started with a moderate degree of down-regulation. By 7
hours, most instead displayed slight or moderate up-regulation. However, each
of these timepoints contained a significant minority of genes with a small level of
a0 fluctuation, with the size of the deviating group differing in each heatmap. The
second observed time pattern operated in reverse, with most genes beginning
upregulated and shifting towards downregulation by the 15-hour mark. Finally,
a third group remained consistent in its behavior, with genes trending one way

or remaining unchanged across the entire time period.

x5 3. Discussion

Our goal was to determine whether the DN method can identify the ac-
tivation of biological processes caused by a perturbation. This study applied
DN analysis, community identification and Reactome pathway analysis of the
DN communities, and identified communities with highly statistically signifi-

0 cant enrichment. We analyzed the DNs of two gene expression datasets where
a perturbation was applied: (i) Saliva dataset ( PPSV23 vaccination as pertur-
bation; 24 time points), (ii) Primary B-Cells dataset (ex-vivo Rituximab drug
treatment as perturbation; 6 time points). In summary, our results from the
saliva DN revealed pathway activation in immunological and inflammatory re-

»s  sponses. In the B cell DN, significant pathways were activated in the regulation
of transcription, immune cell survival, activation and differentiation, and in-
flammatory response. By using the DN method on two separate data sets and
comparing our results to known mechanisms of action and target pathways, we
can assess the approach’s strengths and limitations. These are discussed further

200 below.

8.1. PPSV28 Pathway Activations Following Perturbation in Saliva

Streptococcus Pneumoniae’s virulence and associated host immunity have

been extensively studied [42]. The PPSV23 is an inactivated vaccine that uses

10
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purified capsular polysaccharides, and is typically administered to older adults

265 (65+) and susceptible younger individuals [43] 44, 45l [46]. In our assessment

we focused on the vaccine’s potential pathways of action. Our initial saliva in-

vestigation in PPSV23 established that an immune response to the vaccination

can be detected utilizing non-invasive saliva monitoring at the molecular level

[15]. Since aggregate saliva was sampled, we expected that multiple the mul-

a0 tiple immune cells contained therein are involved in the observed patterns and

associated immune responses. Based on our previous findings and general vac-

cine responses, we anticipated the activation of pathways involved with antigen

presentation and processing, regulation of IgM and B/T cells, Lymphoid cells,

MHC molecules, and phagocytosis. We also expected the activation of pathways

s of general immune response to stimuli or inflammation. To evaluate whether

the DN method was as effective as previous studies, we focused on identifying
the specific pathways involved.

In our results, a number of expected pathways emerged. These included

pathways associated with antigen presentation and processing, Class I MHC

20  mediated antigen processing and presentation, and ER-phagocytosis, and path-

ways governing the immunoregulation of interactions between Lymphoid and

non-Lymphoid cells [38]. Further results indicative of the participation of im-

mune cells, included the CLEC inflammasome pathway in C4. This pathway

is associated with enabling host immune system to mount a fungal/bacterial

o5 defense using T-Helper 17 cells (TH17) [47, [48]. Interferon signaling, cytokine

signaling, immune/adaptive immune and interleukin stimulation and signaling

are all part of a generalized immune response [49]. We found these more general

pathways in the pathway enrichment analysis of C0, C1, C2, C9, and C10. In-

terferon signaling is crucial in antiviral defense, cell regulation and growth, and

20 immune response modulation [50]. Our Reactome pathway analysis results are

consistent with the results of our saliva multi-omics study [I5], which observed

that vaccination activates various immune response and regulation pathways,

which are also identified in our present results, including ER-Phagosome path-

way, Interferon alpha/beta and gamma signaling, cytokine signaling, and MHC

11
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205 antigen presentation.

8.2. Riturimab Pathway Activations Following Perturbation in Primary B Cells

Regarding our primary B cell results, previous work [51] has established both
the biological pathways and the mechanisms of action associated with Ritux-
imab. These previous studies have demonstrated Rituximab’s ability to cause

w0 antibody-dependent and complement-dependent cellular cytotoxicity, growth in-
hibition and apoptosis, and regulation of the cell cycle. We also expected to
observe Rituximab regulations of the B cell receptor (BCR) based on prior re-
search. Particularly significant among our findings was the enrichment of the
nuclear factor kKB (NF-xB) pathways. According to Jazirehi et al. (2005) [23]

w5 and Bonavida (2005, 2007) [52), 53], treating NHL B cell lines with Rituximab
inhibits NF-xB’s signaling pathways by up-regulating RKIP and Raf-1 kinase
inhibitors. RKIP has been found to antagonize signal transduction pathways
that mediate the NF-xB activation [54].

Following NF-xB’s down-regulation due to RKIP’s up-regulation, the Bcl-

s X1 expression is also down-regulated. As a result, tumor cells become more
chemosensitive. Rituximab also decreased the activity of NF-xB-inducing ki-
nase, IkB kinase, and IkB-a phosphorylation. Finally, the introduction of Rit-
uximab also decreased the activity of the IKK kinase and NF-xB binding to
DNA from 3 to 6 hours after treatment [23].

315 Among the more general enriched pathways observed are signaling pathways
that play a role in the molecular mechanisms of chemosensitization, which are
also impacted by Rituximab. In line with those effects, we anticipate impacts in
the MAPK signaling pathway, the interleukin cytokine regulatory loop, and the
Bcl-2 expression. Concerning the expression of genes involved in the healing pro-

m0  cess, research has uncovered Rituximab’s role in affecting pathways associated
with immunoglobulin production, chemotaxis, immune response, cell develop-
ment, and wound healing. Rituximab can also increase existing drug-induced

apoptosis [51].

12
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In our community of C4, for example, our Reactome analysis found 5 NF-
»s kB related pathways with FDR < 0.05. Of these 5 pathways, one is shown in
Table 1; the remaining are displayed in the comprehensive table in the ”Re-
sults/Bceell_results/reactome_analysis” folder on Zenodo. Alongside these NF-
kB pathways in C4 is the BCR pathway. Our results indicate that the C4
community response is highly relevant because of the activation of both NF-xB

s and BCR pathways.

Our C2 community appears to be involved with the metabolism of proteins
and cellular responses to external stimuli. Rituximab targets the CD20 B cell
transmembrane protein that is involved in B-cell development, activation and
proliferation [51]. The C2 community captures cell development pathways which

15 were included in our expectations of more generalized responses.

We also observed relevant responses in other communities. For example, the
C8 community showed activity in the RAF/MAP kinase cascade pathway. In
a similar fashion, C10 demonstrated CD22 mediated BCR regulation, classical
antibody-mediated complement activation, FCGR activation, antigen activation

a0 of the BCR, and initial complement triggering, etc. The pathways that emerged
in our results are thus consistent and highly overlap with established pathways

from previous studies. This suggests the effectiveness of our DN method.

8.8. Perturbation Induces Temporal Responses

Communities aid in defining the genes’ collective behavior, and observing

aus  the collective behavior of communities in the entire network can clarify rela-
tive trends between these collective behaviors. The generated heatmaps for
each community depicted gene regulation for individual time points, and also
displayed trends over time within the identified communities. The trends we ob-
served in our saliva data were consistent with a time-dependent regulation. The

30 results suggest a sequence of communities activations (up- and down-regulation)
at individual timepoints, indicative of sequential immune system responses due

to the PPSV23 vaccination. In the primary B cell data were less clear, as fewer

time points were monitored, and also the network was more densely connected.

13


https://doi.org/10.1101/2021.09.21.461277
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.09.21.461277; this version posted September 24, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

The B-cell heatmaps still indicate overall trends associated with Rituximab ac-
35 tivation (both up- and down-regulation) within the first 7 hrs of the treatment.
Our future work will focus on the possibility of establishing a causal chained

signaling response, and associated pathways across these communities.

3.4. Conclusion
Our analysis confirmed the applicability of a DN approach in evaluating
w0 time course RNA-seq data. Specifically, the DN method showed results in the
saliva experiment data consistent with our previous work on profiling PPSV23
vaccination responses [I5]. For the primary B cell responses to Rituximab,
the DN has found the same signaling pathway as numerous prior experimental
results, thus helping with our validation from a computational perspective. The
s DN approach complements prior studies by offering a systems-level network
perspective of aggregate temporal changes due to drug activation. In future
work we plan to address the identification of sequential activation of network

communities, as well determining directionality/causality in such activations.

4. Limitations of the Study

s Though our analysis identified multiple pathways relevant to Rituximab activa-
tion in the primary B cell data, heatmaps trends were not as distinct as those
obtained from the saliva experiment, with weaker and less structured signals
from the B cells. One major factor that may be contributing to these somewhat
diffuse responses could be the nature of the ex-vivo experiment from which the

ss  data were obtained. Isolation in an ex wivo environment curtails interactions
between Rituximab and aspects of the immune system that are difficult to mea-
sure efficiently using existing methods. This is in contrast to in vivo settings
in which B cells have the ability to interact with those immune system factors.
A key difference between the B cell data and the saliva data is that the latter

0 were obtained under in vivo conditions , and thus reflect biological reality. In
general, ex vivo experimental data are less accurate in summarizing the effects

than those of in vivo experiments.
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In addition, while the saliva experiment covered 24 time points over as many
hours, the B cell experiment covered 6 time points over 15 hours. The sampling

;s for the B cell dataset was both less frequent compared to the saliva dataset and
unevenly spaced, thereby not accounting for the longer intervals during which
no data were recorded.

Regarding the results from the saliva experiment, the data describes a bulk
behavior from a tissue containing a mixture of different cell types instead of
s0 a single cell type. In principle, single cell RNA-seq data may provide better
representation of dynamics and pathways involved in the response compared
to a bulk RNA-seq dataset, and elucidate the temporal behavior of different
individual cells involved (though currently such studies would also be limited to

a pseudotime approach as each cell is only sampled once).

305 Finally, our DN method did not use the time information embedded in our
time series dataset. Correlation based approached do not respect time ordering.
Other methods like the Bayesian method and the causality inference method
and may be helpful in determining the directionality of the edges in the gene
network. As discussed above, we anticipate future work utilizing such methods

w0 may enable us to provide deeper information on the causal rewiring of the gene

signaling network.
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Figure 1: Workflow Overview. Our methodology, starts with time course experimental

data, followed by network construction, differential network determination, community de-
tection, pathway analyses of individual communities, and final results including analyses and

temporal trend visualizations.
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Figure 2: Differential network analysis for the saliva experiment. a) Differential
network with community structure found by the Louvain community detection method. b)
Isolated visualizations of CO (top) and C1 (bottom) communities with red highlights corre-
sponding to genes found in significant Reactome pathways. c) Heatmaps of CO (top) and
C1 (bottom) over 24 hours. Columns represent time points while rows denote gene identi-
fiers. These row data demonstrate the difference in each entry’s expression relative to time
0. The relative values were determined by subtracting the individual time points from time
point 0 and then normalized using a Euclidean norm, so that each row ranges from -1 (down-
regulation) to 1 (up-regulation). For the dendrogram clustering we used the complete-linkage

method (also known as the Farthest Point Algorithm) [55] 56].
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Figure 3: Differential network analysis for the B cell experiment. a) Differential
network with community structure found by the Louvain community detection method. b)
Isolated visualizations of C2 (top) and C4 (bottom) communities with red highlights corre-
sponding to significant nodes (genes) and their edges (correlations). ¢) Heatmaps of C2 (top)
and C4 (bottom) over 15 hours (6 time points). Columns represent time points while rows
denote genes. These row data demonstrate the difference in each entry’s expression relative
to time 0. The relative values were determined by subtracting the individual time points
from time point 0 and then normalized using a Euclidean norm, so that each row ranges
from -1 (down-regulation) to 1 (up-regulation). For the dendrogram clustering we used the

complete-linkage method (Farthest Point Algorithm) [55] 56].
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9. Tables and legends

Saliva DN: CO
Pathway name Entities FDR Submitted entities found
Antigen Presentation: Folding, assembly and peptide loading of class | MHC 1.2E-14 HLA-B;NAA15
Endosomal/Vacuolar pathway 1.2E-14 HLA-B
Interferon gamma signaling 1.2E-14 STAT1;IRF1;HLA-B;PTPN6
Class | MHC mediated antigen processing & presentation 1.2E-14 PSMDE;TLRL;CDHL;RPNL;GBFLHLA-
B;UBR4;CYBA;NAA1S5;ELOC;FBX032;FBXO11
ER-Phagosome pathway 1.2E-14 PSMD8;TLR1;RPN1;HLA-B
Interferon alpha/beta signaling 1.2E-14 STATZ1;IRF1;HLA-B;PTPN6
Interferon Signaling 1.2E-14 EIF4A1;STAT1;IRF1;HLA-B;PTPN6;ARIH1
Antigen processing-Cross presentation 1.2E-14 PSMD8;TLR1;RPN1;HLA-B;CYBA
Immunoregulatory interactions between a Lymphoid and a non-Lymphoid cell 1.2E-14 CDH1;CD81;HLA-B;FCGR2B
Cytokine Signaling in Immune system 1.1E-11 EIF4A1;STAT1;IRF1;HLA-B;PTPN6;ARIH1
CD81;TCF25;RPN1;GBF1;HLA-
Adaptive Immune System 2.1E-09 B;UBR4;CYBA;PPP2R5D;FBX032;FBXO11;ANKRD9;TL

R1;PSMD8;CDH1;AKT2;PTPN6;ELOC;NAALS;FCGR2B
;SIPAL;ARFS
CCDC71L;DDX3Y;EIF4AL;ASAHL;ILIRN;SERPINALTC
F25;CD81;RPN1;RPLPO;UBR4; TNFAIP3;CSF2RA;PLD2
;PSMD8;ANKRD9;CDH1;AKT2;0LRL;ELOC;ARIH1;SER
Immune System 1.3€-05 PINB2;TNFSF14;GSTO1;STAT1;GBF1;HLA-
B;CYBA;PPP2RSD;FBX032;FBXO11;FGR;CEACAM3;C
LECAA;TLRL;IRF1;TCPL;TXNIP;PTPN6;CYSTM1;NAAL
5;FCGR2B;SIPAL;BIRC2;ARF5;TRIMS6

Gene and protein expression by JAK-STAT signaling after Interleukin-12 stimulation 3.2E-03 SERPINB2;GSTO1;TCP1;RPLPO;ARF5
Interleukin-12 family signaling 4.6E-03 SERPINB2;GSTO1;STAT1;TCP1;RPLPO;ARFS
Interleukin-12 signaling 8.0E-03 SERPINB2;GSTO1;TCP1;RPLPO;ARFS
Saliva DN: C1

Pathway name Entities FDR Submitted entities found
Insulin-like Growth Factor-2 mRNA Binding Proteins (IGF2BPs/IMPs/VICKZs) bind RNA 0.003 CD44
Nuclear Events (kinase and transcription factor activation) 0.018 PPP2CB;TF;ID2;CHD4;FOS;DUSP6;DNM2
FOXO-mediated transcription of cell death genes 0.018 BCL2L11;BCL6;NFYC

PPP2CB;RALA;TF;ID2;CLTA;FURIN;CHD4;FOS;DUSP6;
Signaling by NTRKs 0.024

DNM2
Signaling by NTRK1 (TRKA) 0.026 PPP2CB;RALA;TF;ID2;CLTA;CHD4;FOS;DUSP6;DNM2

NAPA;RALA;CIITA;AHCYLL;RPN2;UNC93B1;JADEL;CL
TA;BCLLO;CFP; TANK;GNS;FCAR;STK10;PPP2CB;BCL2
L11;TRIM29;ALOXS;NLRP3;FLNA;SIRPA;SLC12A6;IL6
Immune System 0.029 R;GBP4;RAP1GAP2;DDX17;CR1;WSBL;CISH;SH2D3C;
KLHL21;FNDC3A;FOS;LILRB3;MTOR;DUSP6;VEGFA;D
NM2;TF;ZNFX1;NASP;BCL6;MAN2B1;TACC2;CD300C
;CALM1;CD44;LGMN
RALA;CIITA;CISH;RPN2;SH2D3C;FNDC3A;FOS;MTOR;

Cytokine Signaling in Immune system 0.036 DUSP6;VEGFA;PPP2CB;ZNFX1;BCL2L11;NASP;BCL6;T
RIM29;ALOXS5;FLNA;IL6R;GBP4;CD44

trans-Golgi Network Vesicle Budding 0.039 NAPA;CPD;CLTA;GNS;CLINT1;DNM2

NGF-stimulated transcription 0.039 TF;1D2;CHD4;FOS;DNM2

Table 1: Reactome pathway enrichment analysis. Statistically significant pathways are sum-
marized for saliva DN community CO and C1. In the full analysis, we omitted small commu-
nities with fewer than 8 genes [57], and 12 communities (CO to C11) qualified for the pathway

analysis.
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B cell DN: C2
Pathway name Entities FDR Submitted entities found
EEF1A1;RPL4;RPL7A;RPL27A;RPS6;RPL36;RPL14;RPS2
Peptide chain elongation 1.31462E-06
O;RPL15;FAU;UBA52;RPL28
RPL4;RPL7A;RPL27A;RPS6;RPL36;RPL14;RPS20;FAU;R
Response of EIF2AK4 (GCN2) to amino acid deficiency 1.31462E-06
PL15;UBA52;RPL28;ATF3
EEF1A1;RPL4;RPL7A;RPL27A;RPS6;RPL36;RPL14;RPS2
Euk tic T lation El ti 1. 7E-06 ’ ’ ! ’ ’ ! ’
ukaryotic Translation Elongation 58667E-0 0;RPLI5;FAU;UBAS2;RPL28
RPL4;EIF4A1;RPL7A;RPL27A;RPS6;RPL36;RPL14;RPS20
TP h ysi ioining of th } | ) 88845E- ] ; ; ; H ; ]
G ydrolysis and joining of the 60S ribosomal subunit 5.88845E-06 \RPL1S;FAU;UBAS2,RPL2S
L13a-mediated translational silencing of Ceruloplasmin 5.88845E-06 RPL4;EIF4A1;RPL7A;RPL27A;RPS6;RPL36;RPL14;RPS20
expression : ;RPL15;FAU;UBA52;RPL28
Nonsense Mediated Decay (NMD) independent of the Exon 5.88845E-06 RPL4;RPL7A;RPL27A;RPS6;RPL36;RPL14;RPS20;RPL15;
Junction Complex (EJC) : FAU;UBA52;RPL28
RPL4;RPL7A;RPL27A;RPS6;RPL36;RPL14;RPS20;RPL15;
i i .65112E-
Formation of a pool of free 40S subunits 7.65 06 FAU:UBAS2:RPL28
Eukaryotic Translation Termination 7.65112E-06 RPL4;RPL7ARPL27A;RPS6;RPLI6,RPLLARPS20,RPLLS;
v ’ FAU;UBA52;RPL28
Cap-dependent Translation Initiation 9.21986E-06 RPL4;EIF4A1;RPL7A;RPL27A;RPS6;RPL36;RPL14;RPS20
p-dep : ;RPL15;FAU;UBAS2;RPL28
RPL4;EIFAA1;RPL7A;RPL27A;RPS6;RPL36;RPL14;RPS20
Euk tic T lation Initiati .21986E-06 ’ ’ g ’ ! ! ’
ukaryotic Translation Initiation 9.21986E-0f -RPL15;FAU;UBAS2,RPL28
B cell DN: C4
Pathway name Entities FDR Submitted entities found
SF3B4;MT-
, ND6;NUP205;UTP3;POP1;DDX23;CSTF2;PHAX;PLRG1;
Metabolism of RNA 0.014280864 ) -y b 7FP36L1,FTSI3;CHERP;PSMDS;EFTUD2;PSMDS;
PSMC4;PSME3;NUP35;SKIV2L2
Mitotic Anaphase 0.014280864 PSMD8;PSMD9;NUP205;CCNB1;SPAST;PSMC4;PSME3
P ’ ;NUP35;SMC1A;EMD;KPNB1
Mitotic Metaphase and Ananhase 0014280860 "SMD8iPSMD9;NUP205;CCNBI;SPAST;PSMC4;PSME3
P P : ;NUP35;SMCLA;EMD;KPNB1
FCERI mediated NF-kB activation 0.014280864  C-V2-1LPSMD8;PSMDI;IGKV2-29;1GKV1-
) 16;PSMC4;PSME3;IGKV4-1
signaling by the B Cell Receptor (BCR) 0014280864  O-V2-1LPSMD8;PSMDI;IGKV2-29;1GKV1-
gnaling by P - 16;PSMC4;PSME3;IGKV4-1;PIK3AP1
Fc epsilon receptor (FCERI) signalin 0.014280864  C-V2-1LPSMD8;PSMDI;IGKV2-29;1GKV1-
P P gnaling " 16;PSMC4;PSME3;IGKV4-1
PSMD8;PSMD9;NUP205;PSMC4;PSME3;NUP35;KPNB
Host Interactions of HIV factors 0.014280864 15 8;PSMDI;NUP205;PSMC4;PSMES;NUP3S;
G1/S Transition 0.014280864 PSMD8;PSMD9;CCNB1;MCM7;PSMC4;PSME3;KPNB1
ABC-family proteins mediated transport 0.014280864 PSMD8;PSMD9;PSMC4;PSME3;CSTF2;EIF2S1
Assembly of the pre-replicative complex 0.014280864 PSMD8;PSMD9;MCM7;PSMC4;PSME3

Table 2: Reactome pathway enrichment analysis. Statistically significant pathways are sum-
marized for primary B cell DN community C2 and C4. In the full analysis, we omitted small
communities with fewer than 8 genes [57], and 12 communities (CO to C11) qualified for the

pathway analysis.
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10. STAR Methods
20 RESOURCE AVAILABILITY

Lead contact

e Further information and requests for resources should be directed to and

will be fulfilled by the lead contact, Shuyue Xue (xueshuyl@msu.edu)

Materials availability

25 e This study did not generate new unique reagents.

Data and code availability
e This paper analyzes existing, publicly available data. These accession

numbers for the datasets are listed in the key resources table.

e Mapped RNA-seq data have been deposited at Zenodo and are publicly
430 available as of the date of publication. DOIs are listed in the key resources

table.

e All original code has been deposited on Zenodo as of the date of publica-

tion. DOI is listed in the key resources table.

e All results files have been deposited on Zenodo as of the date of publication
a3 together with the code files. These files are referred to as Online Data Files
(ODFs) in the manuscript. DOI is listed in the key resources table.

e Any additional information required to reanalyze the data reported in this

paper is available from the lead contact upon request.

METHOD DETAILS

wo  Data acquisition
Data for this investigation were obtained from Gene Expression Omnibus
(GEO) for two time series studies using RNA-seq experiments, on Saliva (ac-
cession GSE108664) and Rituximab (GSE100441). Both sets of data are fur-
ther described below. The raw RNA-seq data were mapped using Kallisto [58],
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ws  with bootstrap sample parameter, -b, was set to 100. GENCODE|36] v28 tran-
scripts and genome built GRCh38.p12 were used for annotation. We used Sleuth
[59](with DESeq[60] adjustment of Transcripts per Million) to compile results
across timepoints.

The saliva dataset was obtained from our previous study of immune re-

w0 sponses to the PPSV23 vaccine (GSE108664) [I5]. In this study, hourly saliva
samples were collected from a healthy individual over two 24 hour periods and
profiled with RNA-seq every hour. The first 24 hour period provides a base-
line RNA expression dataset, which we call untreated data. In the second 24
hour period, the same individual was monitored after receiving the PPSV23

5 vaccine. Saliva samples were again collected hourly over 24 hours and profiled
by RNA-seq. This second step yielded the RNA expression dataset after the
PPSV23 vaccination. We call these data the treated dataset. Both treated and
untreated datasets have 24 time points of 84,647 possible expression signals
using GENCODE annotation [30].

460 The perturbation in the primary B cell experiment was Rituximab, a mono-
clonal antibody drug used in the treatment of different types of lymphomas and
leukemias. The experimental study (data from GSE100441) began by culturing
in parallel primary B cells with and without Rituximab. During the 15 hours of
Rituximab treatment, the treated and untreated primary B cells were both sam-

w5 pled at the same 6 time points simultaneously and profiled by RNA-seq. The
untreated group provided a baseline, which we call untreated data, whereas the
treated experiment produced the treated dataset. Since this study included a
replicated experiment, each of the first and second duplicates was processed to

generate a separate network.

a0 Data Preprocessing
For quality control, we pre-processed the experimental data and filtered
sparse gene signals right after importing the published data files. We coded
all the data analysis in Python in this study. Using Python’s pandas package

[61, [62], we checked for missing values for each gene’s expression, removing
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a5 duplicate records and eliminating genes with constant values across all the 24
time points for the saliva dataset (6 time points for the B cell datasets).

We replaced missing signals with zero and also set values less than 1 to

1. Genes with zero variance in their time series were excluded in our analysis.

Moreover, we considered a gene signal as sparse and removed it if its time series

w0 had missing values for more than 1/8 of the time points. The same quality

control procedure was used for both the saliva and primary B cell datasets.

Gene Selection

After quality control, we further processed the data to pre-screen and identify

a pool of candidate genes that showed a significant response to the perturbations

a5 (vaccine in the saliva and Rituximab in the B cell). We selected genes that are
significantly expressed in both untreated and treated cases. For each of these
genes, we calculated the the time averaged relative difference between treated

and untreated normalized intensities, Apy:

T, - U,
Ti + Uz time

This calculation yielded a Apy distribution curve, from which we computed

Ary = ( (1)

w0 the lower and upper quartiles. Genes were assumed to either be down-regulated
or upregulated if their Apys were within the bottom 25% or top 25% of the
Ay distribution respectively. The Python Pandas package was used for all the

above computations [61] 62].

Correlation Networks Construction

405 After gene selection, we calculated their pairwise Pearson correlation coeffi-
cients and built the co-expression networks. Genes were represented as nodes
and were joined by edges if there was a non-zero correlation between them.
We used the correlation coefficient as a weight for each edge. In the layout
representation of the networks, the node-node distance reflects their correlation

so0 coefficients. Two genes are nearby if they have a high positive correlation. They

are far apart when they have a low positive correlation or remote if negatively
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correlated. We used Python’s open source Networkx package [63] for network
visualization and calculation of the network metrics.

To keep only the most significant signals, we kept edges only in the 99.5%

sos quantile of the correlation distribution. This process removed many links on

the network, detaching some nodes from others. We excluded those isolated

nodes from the network. For the saliva data, we built one treated and one

untreated network. Since we have data from two repeated experiments for B-

cells, we built two networks for the Rituximab treatment and two networks for

si0  the untreated control. Then, we took the intersections between the two networks

corresponding to the repeats to obtain a single Rituximab-treated network and

one single control network.

Differential Networks Construction

We defined the DN as the control network subtracted from the treated net-

sis works both for the saliva and B cell case. The subtraction removed edges exist-

ing in both treated and untreated networks and preserved those only present in

the treated network. This operation generates some isolated nodes, that were
discarded.

We analyzed the DN’s structure using modularity [25] 26], as complex bio-

s0 logical networks usually display a high degree of modularity [29]. Specifically, we

employed the Louvain community detection method [34], one of the best-known

algorithms for its efficiency, to partition the entire DN into smaller clusters,

also known as communities. The Louvain method has been integrated into a

published Python package [64], and we used this existing implementation. This

s graph clustering algorithm is not deterministic, and can therefore result in dif-

ferent partitions for the same graph.

Enrichment Analysis and Heatmaps

We conducted Reactome Enrichment Analysis [35] on each community to
identify over-represented biological pathways within each community. Reactome

s Enrichment Analysis was performed using the Python package PyIOmica [37].
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As the majority of communities with low number of genes yield no enrichment,
we focused on results for communities with 8 or more genes. Furthermore, we
plotted the heatmaps for individual communities to visualize gene expression
levels as time series, exploring the communities’ collective behavior as a function
s35 of time. On the heatmaps, we plotted differences in gene expression relative
to time 0 (first time point). We computed these values by subtracting each
gene’s individual time points from time 0. Each time series in our heatmaps
was normalized using the Euclidean norm. For dendrogram clustering of rows
(genes), we applied the complete-linkage method (Farthest Point Algorithm)
s [55, [56].

Results formatting and visualization

We stored the DN nodes and edges, communities, and pathway enrichment
analyses into spreadsheets that are provided in the ODFs both for the saliva
and B cell data. Using Mathematica [65], we visualized the saliva and B cell

sss  DNs with their major connected components and communities.

QUANTIFICATION AND STATISTICAL ANALYSIS

The data were quantified as discussed in the Method Details section above.
Statistical considerations included: (i) selection of a correlation cutoff in network
edge construction, based on a 0.995 quantile of the correlation distribution. (ii)

sso An FDR < 0.05 cutoff was used to assess statistical significance of Reactome
pathway enrichment analysis, generate through the use of the Reactome API in

PyIOmical[35), 37].
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