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Abstract

Understanding changes in gene expression under the effects of a perturbation is

a key goal of systems biology. A powerful approach to address this goal uses gene

networks and describes the perturbation’s effects as a rewiring of each gene’s

connections. This approach is known as differential network (DN) analysis.

Here, we used DNs to analyze RNA-sequencing time series datasets, focusing

on expression changes: (i) In the saliva of a human subject after vaccination

with a pneumococcal vaccine (PPSV23), and (ii) in B cells treated ex vivo with

a monoclonal antibody drug (Rituximab). Using network community detection,

we revealed the collective behavior of clusters of genes, and detected communi-

ties of genes based on their longitudinal behavior, and corresponding pathway

activations. We identified biological pathways consistent with the mechanism of

action of the vaccine and with Rituximab’s targets. The approach may be useful

in drug development by providing an effective analysis of expressing changes in

response to a drug.
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1. Introduction

Recent advances in RNA-sequencing (RNA-seq) technologies have enabled

researchers to incorporate time in the analysis of large-scale gene expression

data from biological systems. These time course (TC) experiments can generate

longitudinal RNA-seq data as time series, with time-steps ranging from hours to5

weeks. This not only permits capturing the transcriptome’s dynamic regulation

over time, but also generates large amounts of expression data that need to be

analyzed and interpreted. While TC experiments can measure time-dependent

gene expression changes, a good data analysis scheme is key for translating the

experimental observations into meaningful information about the underlying10

biological dynamics [1, 2, 3, 4, 5, 6].

There are currently a wide variety of well-established data analysis meth-

ods for RNA-seq data. However, this is not the case for TC RNA-seq, as in

this case another dimension, time, is present. Some methods originally devel-

oped for microarray sequencing have been adapted to RNA-seq time series data15

[3, 6, 7, 8]. Network-based analysis and, in particular, Differential Network

(DN) analysis methods, have been shown to be very useful in the analysis of

the dynamics of gene expression under the effect of an external perturbation [9]

and could provide insightful interpretations of the RNA-seq data. DN analysis

is a method based on the subtraction of one network from another, and has20

been adopted in many genomics studies in the past decade [10, 11, 12]. In a

gene-gene correlation network (co-expression network), vertices represent genes

while edges represent the correlation coefficient of the expression of two genes.

Typically, these co-expression networks are weighted by the strength and the

sign of the correlation between two genes. The DN analysis method uses a pair-25

wise cancellation of nodes and edges common to two networks that describe the

expression data before and after a given perturbation. In doing so, the process

leaves behind interaction variations that describe the network rewiring induced
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by the perturbation. For instance, in gene expression studies, the DN analysis

method successfully separated gene expressions under specific drug responses30

from generic stress responses [13]. It also aided researchers in investigating dys-

functional regulatory networks in unhealthy states, providing insights into the

genetic basis of diseases [14]. By focusing on the structural difference between

two networks, the DN analysis method has demonstrated its effectiveness in

identifying biological activities in different states. In addition, this graph-based35

model offers an advantage in representing the architecture of a gene network’s

overall changes where the emphasis is on the nature of interactions rather than

the quantitative predictions in time.

In the present study, we applied a DN approach to RNA-seq time series

datasets retrieved from two longitudinal TC RNA-seq experiments: (i) The40

first dataset (GSE108664) was generated from saliva samples from a healthy

individual before and after the administration of the Pneumococcal Polysac-

charide Vaccine (PPSV23) [15]. The primary goal of this study was to gain

insights on the adaptive immune responses to PPSV23 through saliva profiling.

Due to its convenience in processing relative to blood samples, saliva draws45

much interest for diagnostics as well as health monitoring applications. Saliva

analysis can produce results in a timely manner, its collection is minimally in-

vasive, and little training is required for saliva sampling, even for non-medically

trained professionals. (ii) The second dataset (GSE100441) was generated from

a time course experiment on primary B cells, where one set was treated with50

Rituximab and another used as an untreated control. Rituximab is known for

its therapeutic use in targeting B cells [16] to treat cancers such as lymphomas

and leukemias. This drug has a history of safe and effective usage since 1997

[17], and the World Health Organization (WHO) place Rituximab on their list

of essential medicines [18]. Rituximab binds with CD20, expressed on pre-B55

and mature B cells, but not on stem cells [19]. The binding causes perturba-

tions to intracellular signaling and membrane structure [20], mediating the cell

depletion. It is worthwhile to mention that the B cell pathways of Rituximab

activation have been experimentally validated [21, 22, 23, 24], which facilitates
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the evaluation of the effectiveness of the DN method we utilize in this work.60

Both the saliva and primary B cell experiments involve drug-treated samples

(treatment sets) and untreated samples (control sets) monitored over time.

For both datasets, we started with building gene networks, one for each of

the control and the treatment sets. We used gene-gene correlations between

time series signals, over 24 hours in saliva and 15 hours in B cells, to evaluate65

pairwise gene connections. Graphically, the time series correlation networks

built from the treatment sets summarized a system-wide pathway activation

due to the perturbation, whereas the networks from the controls sets acted as

the baseline. Within the DN analysis framework, we subtracted the baseline

network from the one obtained using the treatment data, arriving at the final70

differential network.

The presence of modules, also known as communities, describes a topological

property of networks [25, 26, 27, 28]. One community is a group of densely

connected nodes. In the context of a biological system, nodes in the same

community are assumed to be close in biological functions [29, 30, 31, 32, 33].75

We exploited this property of the differential network to observe fine details

of gene groups affected by the perturbation. Specifically, we employed one of

the most established module detection algorithms, the Louvain method [34],

to identify communities in our final differential network. We then performed

Reactome [35] pathway enrichment analysis on individual communities, and80

finally examined the corresponding heatmaps for each community.

2. Results

Our RNA-seq time series raw data were retrieved from the Gene Expression

Omnibus database under accessions GSE108664 and GSE100441 for the saliva

and B cell experiments, respectively. The study of the immune response to85

the PPSV23 vaccine in saliva probed the expression of a potential 84647 gene

identifiers (GENCODE annotation[36]) at 24 time points [15]. The other study

of drug activation by Rituximab in B cells provided a dataset for 6 time points.
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Since gene co-expression networks rely on correlations, our network analysis

could be prone to spurious correlations, which we removed as described in the90

STAR Methods.

We constructed our saliva DN by subtracting the saliva network without

vaccine from the network obtained using post-vaccine data. The B cell DN in

response to Rituximab was generated in a similar manner. Next, we clustered

the DNs into communities using the Louvain community detection method [34].95

We then conducted a Reactome Enrichment Analysis [35] using PyIOmica [37],

on each community to identify significant pathways and associated genes. We

also visualized the heatmaps of relative gene expression as a function of time

for each community. Finally, we plotted the DNs and their major individual

communities. The workflow is summarized in Figure 1, and additional details100

are provided in the STAR Methods.

2.1. Saliva DN

Our saliva DN contains 1144 nodes (i.e., genes) and 13,775 edges. The

Louvain algorithm identified 48 communities (modules) in total. 15 of the com-

munities have a size of at least 4 nodes, while the remaining 33 are pairs or105

triplets. In the global saliva DN visualization, we excluded the communities

with pairs or triplets, as none of them belonged to the three major connected

components of the DN network. We also filtered the network to remove con-

nected components with less than 4 genes. The global saliva DN is presented in

Fig. 2a, where communities are visualized using different colors and encircled110

in loops. Furthermore, community labels are based on their size (largest to

smallest, with C0 being the largest community, and C14 the smallest).

2.2. Pathway Enrichment of Saliva Communities

In our pathway analysis, we queried individual communities to investigate

how their highly co-expressed genes are functionally related. Our analysis is115

based on the Reactome pathway database [35, 38, 39].
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Statistically significant enrichment of pathways (with False Discovery Rate

(FDR) < 0.05) was identified in 6 communities, C0, C1, C2, C4, C8 and C9.

The majority of statistically significant Reactome pathways were related to re-

sponse to stimulus, immune response, and inflammatory response. Among the120

six communities, C0 and C1 are the two largest communities. C0 comprises of

248 genes, colored in red in the global DN shown in Fig. 2a, whereas C1 con-

tains 198 genes, colored in yellow in the same panel. We display the C0 and C1

in Fig. 2b as representative communities. Genes that belong to the statistically

significant biological pathways are highlighted in red in Fig. 2b.125

In the C0 community, the Reactome enrichment analysis identified 15 sta-

tistically significant pathways (FDR < 0.05): (i) three pathways for interferon

signaling, (ii) three related to the immune system, (iii) four related to anti-

gen presentation, (iv) one associated with ER-Phagosomes, (v) one lymphoid-

related, and (vi) three pertaining to interleukin-12 signaling. In particular, the130

alpha, beta, and gamma signaling pathways all appear in the interferon sig-

naling pathways. The immune system pathways include one cytokine signaling

and one related to the adaptive immune system. Among the four antigen-related

pathways, two are explicitly associated to the dependence of Class I MHC. The

Endosomal / Vacuolar pathway implies the involvement of the Class I MHC135

and of the Antigen processing-Cross presentation. Lastly, interleukin-12 plays

a crucial role in the coordination of innate and adaptive immunity [40].

In the C1 community, the Reactome analysis identified 9 statistically signif-

icant pathways (FDR < 0.05). Two of these pathways are broadly related to

the immune system and cytokine signaling. Another two pathways, the NGF-140

stimulated transcription and the FOXO-mediated transcription pathways, mod-

ulate cell survival, growth, and differentiation. In Table 1 we have listed all the

results of the Reactome pathway enrichment analysis for C0 and C1 with FDR

< 0.05.

Of the communities we observed, the C0 community exhibits the strongest145

response to the stimulus and immune system, which is evidenced by the very low

FDRs ∼ O(10−14). The complete pathway enrichment analysis for all commu-
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nities in saliva is provided in the online data files (ODFs), available on Zenodo,

in the ”Results/SLV results/reactome analysis” folder.

2.3. Saliva Communities Temporal Visualization150

We further visualized each community’s change over time with heatmaps

within the DN network. This is shown for C0 and C1 in Fig.2c. Here, each

row denotes a gene, while each column corresponds to a time point of post-

treatment. The values plotted in the heatmaps are rescaled gene expression

differences between the treated data and the control, and indicate the expression155

at the particular time point relative to the first time point of the experiment,

with rows normalized using Euclidean norm. Red indicates up-regulated genes,

blue down-regulated genes, and white indicates unchanged expression. The

hierarchical clustering dendrograms revealed relationships among genes at each

time point based on the similarity of the gene expressions. The prominent160

red columns show that genes are upregulated together at these time points.

Note that the C0 has a pronounced peak at time point 6, making it an early

responding module, while C1 is a late responding cluster, with a pronounced

peak at time point 19, as illustrated in Fig. 2c.

Here we only show heatmaps for C0 and C1 as representative communi-165

ties. However, we provide the other communities’ heatmaps and with their

corresponding Reactome pathway analysis in the ODFs in the folder named

”Results/SLV results/network plots”. Our saliva DN has a clear pattern of

mostly discrete punctuated gene expression response times for each community.

As these punctuated response times, save for one exception (both C0 and C11170

show maximized response at t5), are specific to each community, they reflect

the biological signatures for individual groups. Most of our saliva DN commu-

nities have only one punctuated activation time, although C5 in the saliva DN

has 3 up-regulation events at time points 15, 20, and 22 that do not overlap

with those of other communities. Between the communities, we observed strong175

temporally-specific relationships. Our heatmaps are suggestive of the presence

of directional signaling between early-activation communities and subsequent
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groups, with a potential sequential activation pattern as follows: C6, C9, C8,

C2, C0 and C1, C3, C4, C10, C5, C1, and finally C5. At time points from t6

to t10, t14, and from t16 to t18, no communities activated.180

2.4. B Cell DN

Our B cell DN consists of 1,759 nodes (genes) and 10,421 edges that we clas-

sified into 145 communities using the Louvain algorithm. Similar to the saliva

DN, most of these communities are small clusters on small components. Due

to its larger size relative to the saliva DN and larger number of communities,185

our cutoff for plotting was increased to 8 nodes both for community and com-

ponent size. The global B cell DN is presented in Fig. 3a, with 5 components

and 14 communities. Here, we omitted the remaining 130 communities since

they neither belong to any of the 5 main components, nor are they large enough

for Reactome enrichment analysis. Like in the saliva DN, communities were190

ordered in descending size (largest to smallest, from C0 to C13 respectively),

designated with different colors, and encircled by loops. Fig. 3 has the same

format of Fig. 2. In this case, C2 and C4 are displayed in panel b, as magnified

representations of the purple cluster and the green cluster, respectively, in panel

a. Panel b’s magnified perspective provides details about the communities’ in-195

ternal structures. In Fig 3b, for example, we observe that some of the genes

highlighted in red form a clique.

2.5. Pathway Enrichment of B Cell Communities

As for the saliva DN, we conducted a community-wise Reactome enrichment

analysis for communities with at least 8 genes. 14 communities in the B cell200

DN were analyzed. This analysis found 9 communities with statistically signif-

icant pathway enrichment (FDR < 0.05.): C2, C4, C5, C6, C7, C9, C10, C12,

and C13. Most of the pathways associated with genes in these communities

centered around transcriptional regulation, protein metabolism, DNA binding

ability, and signaling. Among its 111 statistically significant pathways, C4 was205
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found to be strongly enriched with genes in the FCERI-mediated NF-κB ac-

tivation pathway, the B cell receptor (BCR) signaling pathway, and the Fc

epsilon receptor (FCERI) signaling pathway. These pathways and others rel-

evant to Rituximab mechanism of action, are listed in Table 2. The NF-κB

pathway activation by FCERI leads to the production of cytokines during mast210

cell activation, making it important in allergic inflammatory diseases [41]. C4

also contained a significant number of genes in the B cell receptor pathway,

an important pathway related to B cells. The Fc epsilon gene is expressed on

antigen-presenting cells, and its signaling occurs on the plasma membrane. A

comprehensive list of statistically significant pathways can be found in the ODFs215

in the ”Results/Bcell results/reactome analysis” folder.

In summary, C4 contains the highest number of responsive pathways which

are relevant to the B cell response to Rituximab. As our representative com-

munities, we display the C2 and C4 in Fig. 3 b, our two largest among the 9

communities with significant pathways. Our top 10 pathways based on p-values220

from the Reactome enrichment analysis for C2 and C4 are listed in Table 2.

2.6. B Cell Communities Temporal Visualization

The heatmaps for the temporal behavior for the C2 and C4 communities

of the B cell data are shown in Fig. 3c . The formatting of the heamaps is

the same as that of the saliva heatmaps; all values in the heatmaps refer to225

gene expression relative to time 0 in the treated dataset. The C4’s blue column

at time point 2 and the less prominent blue column for C2 at time point 15

identify patterns of down-regulation in the two community. While C2 shows

a trend of initial up-regulation followed by a gradual diffusion, C4 exhibits an

initial down-regulation, followed by later up-regulation.230

Though C2 and C4 are our representative communities, we carried out

heatmap visualization for all our 9 communities that demonstrated significant

pathway enrichment. These heatmaps are available to view in the ODFs in the

”Resuls/Bcell results/network plots/heatmaps” folder. Overall, in the B cell

community heatmaps, we recognized three types of time patterns in terms of235
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collective behavior within an individual community. In the first pattern group,

the majority of genes started with a moderate degree of down-regulation. By 7

hours, most instead displayed slight or moderate up-regulation. However, each

of these timepoints contained a significant minority of genes with a small level of

fluctuation, with the size of the deviating group differing in each heatmap. The240

second observed time pattern operated in reverse, with most genes beginning

upregulated and shifting towards downregulation by the 15-hour mark. Finally,

a third group remained consistent in its behavior, with genes trending one way

or remaining unchanged across the entire time period.

3. Discussion245

Our goal was to determine whether the DN method can identify the ac-

tivation of biological processes caused by a perturbation. This study applied

DN analysis, community identification and Reactome pathway analysis of the

DN communities, and identified communities with highly statistically signifi-

cant enrichment. We analyzed the DNs of two gene expression datasets where250

a perturbation was applied: (i) Saliva dataset ( PPSV23 vaccination as pertur-

bation; 24 time points), (ii) Primary B-Cells dataset (ex-vivo Rituximab drug

treatment as perturbation; 6 time points). In summary, our results from the

saliva DN revealed pathway activation in immunological and inflammatory re-

sponses. In the B cell DN, significant pathways were activated in the regulation255

of transcription, immune cell survival, activation and differentiation, and in-

flammatory response. By using the DN method on two separate data sets and

comparing our results to known mechanisms of action and target pathways, we

can assess the approach’s strengths and limitations. These are discussed further

below.260

3.1. PPSV23 Pathway Activations Following Perturbation in Saliva

Streptococcus Pneumoniae’s virulence and associated host immunity have

been extensively studied [42]. The PPSV23 is an inactivated vaccine that uses

10

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 24, 2021. ; https://doi.org/10.1101/2021.09.21.461277doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.21.461277
http://creativecommons.org/licenses/by-nc/4.0/


purified capsular polysaccharides, and is typically administered to older adults

(65+) and susceptible younger individuals [43, 44, 45, 46]. In our assessment265

we focused on the vaccine’s potential pathways of action. Our initial saliva in-

vestigation in PPSV23 established that an immune response to the vaccination

can be detected utilizing non-invasive saliva monitoring at the molecular level

[15]. Since aggregate saliva was sampled, we expected that multiple the mul-

tiple immune cells contained therein are involved in the observed patterns and270

associated immune responses. Based on our previous findings and general vac-

cine responses, we anticipated the activation of pathways involved with antigen

presentation and processing, regulation of IgM and B/T cells, Lymphoid cells,

MHC molecules, and phagocytosis. We also expected the activation of pathways

of general immune response to stimuli or inflammation. To evaluate whether275

the DN method was as effective as previous studies, we focused on identifying

the specific pathways involved.

In our results, a number of expected pathways emerged. These included

pathways associated with antigen presentation and processing, Class I MHC

mediated antigen processing and presentation, and ER-phagocytosis, and path-280

ways governing the immunoregulation of interactions between Lymphoid and

non-Lymphoid cells [38]. Further results indicative of the participation of im-

mune cells, included the CLEC inflammasome pathway in C4. This pathway

is associated with enabling host immune system to mount a fungal/bacterial

defense using T-Helper 17 cells (TH17) [47, 48]. Interferon signaling, cytokine285

signaling, immune/adaptive immune and interleukin stimulation and signaling

are all part of a generalized immune response [49]. We found these more general

pathways in the pathway enrichment analysis of C0, C1, C2, C9, and C10. In-

terferon signaling is crucial in antiviral defense, cell regulation and growth, and

immune response modulation [50]. Our Reactome pathway analysis results are290

consistent with the results of our saliva multi-omics study [15], which observed

that vaccination activates various immune response and regulation pathways,

which are also identified in our present results, including ER-Phagosome path-

way, Interferon alpha/beta and gamma signaling, cytokine signaling, and MHC

11
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antigen presentation.295

3.2. Rituximab Pathway Activations Following Perturbation in Primary B Cells

Regarding our primary B cell results, previous work [51] has established both

the biological pathways and the mechanisms of action associated with Ritux-

imab. These previous studies have demonstrated Rituximab’s ability to cause

antibody-dependent and complement-dependent cellular cytotoxicity, growth in-300

hibition and apoptosis, and regulation of the cell cycle. We also expected to

observe Rituximab regulations of the B cell receptor (BCR) based on prior re-

search. Particularly significant among our findings was the enrichment of the

nuclear factor κB (NF-κB) pathways. According to Jazirehi et al. (2005) [23]

and Bonavida (2005, 2007) [52, 53], treating NHL B cell lines with Rituximab305

inhibits NF-κB’s signaling pathways by up-regulating RKIP and Raf-1 kinase

inhibitors. RKIP has been found to antagonize signal transduction pathways

that mediate the NF-κB activation [54].

Following NF-κB’s down-regulation due to RKIP’s up-regulation, the Bcl-

xl expression is also down-regulated. As a result, tumor cells become more310

chemosensitive. Rituximab also decreased the activity of NF-κB-inducing ki-

nase, IkB kinase, and IkB-a phosphorylation. Finally, the introduction of Rit-

uximab also decreased the activity of the IKK kinase and NF-κB binding to

DNA from 3 to 6 hours after treatment [23].

Among the more general enriched pathways observed are signaling pathways315

that play a role in the molecular mechanisms of chemosensitization, which are

also impacted by Rituximab. In line with those effects, we anticipate impacts in

the MAPK signaling pathway, the interleukin cytokine regulatory loop, and the

Bcl-2 expression. Concerning the expression of genes involved in the healing pro-

cess, research has uncovered Rituximab’s role in affecting pathways associated320

with immunoglobulin production, chemotaxis, immune response, cell develop-

ment, and wound healing. Rituximab can also increase existing drug-induced

apoptosis [51].
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In our community of C4, for example, our Reactome analysis found 5 NF-

κB related pathways with FDR < 0.05. Of these 5 pathways, one is shown in325

Table 1; the remaining are displayed in the comprehensive table in the ”Re-

sults/Bcell results/reactome analysis” folder on Zenodo. Alongside these NF-

κB pathways in C4 is the BCR pathway. Our results indicate that the C4

community response is highly relevant because of the activation of both NF-κB

and BCR pathways.330

Our C2 community appears to be involved with the metabolism of proteins

and cellular responses to external stimuli. Rituximab targets the CD20 B cell

transmembrane protein that is involved in B-cell development, activation and

proliferation [51]. The C2 community captures cell development pathways which

were included in our expectations of more generalized responses.335

We also observed relevant responses in other communities. For example, the

C8 community showed activity in the RAF/MAP kinase cascade pathway. In

a similar fashion, C10 demonstrated CD22 mediated BCR regulation, classical

antibody-mediated complement activation, FCGR activation, antigen activation

of the BCR, and initial complement triggering, etc. The pathways that emerged340

in our results are thus consistent and highly overlap with established pathways

from previous studies. This suggests the effectiveness of our DN method.

3.3. Perturbation Induces Temporal Responses

Communities aid in defining the genes’ collective behavior, and observing

the collective behavior of communities in the entire network can clarify rela-345

tive trends between these collective behaviors. The generated heatmaps for

each community depicted gene regulation for individual time points, and also

displayed trends over time within the identified communities. The trends we ob-

served in our saliva data were consistent with a time-dependent regulation. The

results suggest a sequence of communities activations (up- and down-regulation)350

at individual timepoints, indicative of sequential immune system responses due

to the PPSV23 vaccination. In the primary B cell data were less clear, as fewer

time points were monitored, and also the network was more densely connected.
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The B-cell heatmaps still indicate overall trends associated with Rituximab ac-

tivation (both up- and down-regulation) within the first 7 hrs of the treatment.355

Our future work will focus on the possibility of establishing a causal chained

signaling response, and associated pathways across these communities.

3.4. Conclusion

Our analysis confirmed the applicability of a DN approach in evaluating

time course RNA-seq data. Specifically, the DN method showed results in the360

saliva experiment data consistent with our previous work on profiling PPSV23

vaccination responses [15]. For the primary B cell responses to Rituximab,

the DN has found the same signaling pathway as numerous prior experimental

results, thus helping with our validation from a computational perspective. The

DN approach complements prior studies by offering a systems-level network365

perspective of aggregate temporal changes due to drug activation. In future

work we plan to address the identification of sequential activation of network

communities, as well determining directionality/causality in such activations.

4. Limitations of the Study

Though our analysis identified multiple pathways relevant to Rituximab activa-370

tion in the primary B cell data, heatmaps trends were not as distinct as those

obtained from the saliva experiment, with weaker and less structured signals

from the B cells. One major factor that may be contributing to these somewhat

diffuse responses could be the nature of the ex-vivo experiment from which the

data were obtained. Isolation in an ex vivo environment curtails interactions375

between Rituximab and aspects of the immune system that are difficult to mea-

sure efficiently using existing methods. This is in contrast to in vivo settings

in which B cells have the ability to interact with those immune system factors.

A key difference between the B cell data and the saliva data is that the latter

were obtained under in vivo conditions , and thus reflect biological reality. In380

general, ex vivo experimental data are less accurate in summarizing the effects

than those of in vivo experiments.
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In addition, while the saliva experiment covered 24 time points over as many

hours, the B cell experiment covered 6 time points over 15 hours. The sampling

for the B cell dataset was both less frequent compared to the saliva dataset and385

unevenly spaced, thereby not accounting for the longer intervals during which

no data were recorded.

Regarding the results from the saliva experiment, the data describes a bulk

behavior from a tissue containing a mixture of different cell types instead of

a single cell type. In principle, single cell RNA-seq data may provide better390

representation of dynamics and pathways involved in the response compared

to a bulk RNA-seq dataset, and elucidate the temporal behavior of different

individual cells involved (though currently such studies would also be limited to

a pseudotime approach as each cell is only sampled once).

Finally, our DN method did not use the time information embedded in our395

time series dataset. Correlation based approached do not respect time ordering.

Other methods like the Bayesian method and the causality inference method

and may be helpful in determining the directionality of the edges in the gene

network. As discussed above, we anticipate future work utilizing such methods

may enable us to provide deeper information on the causal rewiring of the gene400

signaling network.
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Preprocess Data 

• Clean raw data

• Check for missing values

• Check for duplicated genes 

• Eliminate genes with constant value

• Filter sparse data:

• Set to 0 the expression value of missing genes

• Set to 1 the expression value of genes with expression in (0,1)

• Remove genes with >= 1/8 of missing time points   

Start

Differentially Expressed Genes after Vaccine / Drug

• Identify common genes in untreated and treated data 

• For each gene, calculate  𝑅 =
𝑇𝑖−𝑈𝑖

𝑇𝑖+𝑈𝑖 𝑡𝑖𝑚𝑒
where 𝑇𝑖 (or 

𝑈𝑖) is the expression at time point  𝑖 in the treated  (or 

untreated) dataset

• Select genes below the 25% and above the 75% quantile 

in the distribution of 𝑅

Correlation Networks  

• Using differentially expressed genes, 

build time-correlationTreated and

Untreated networks respectively, from 

treated and untreated data

• Keep edges corresponding to correlation 

above the  99.5% quantile in the 

correlation distribution

• Remove isolated genes

Differential Networks (DN)

• Define a differential network DN = Treated –
Untreated  by removing edges in the Treated 

network that also present in the Untreated network

• Perform a community detection analysis in DN 
using the Louvain method

Input Data:

Expression RNA-seq Time Series

End 

Pathway Analysis  

• Perform the gene over-representation analysis 

on each of the DN communities with Reactome

Export Data:

• Plots of DN communities 

• Gene lists of communities

• Reactome Analysis results

• Community heatmaps 

Figure 1: Workflow Overview. Our methodology, starts with time course experimental

data, followed by network construction, differential network determination, community de-

tection, pathway analyses of individual communities, and final results including analyses and

temporal trend visualizations.

17

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 24, 2021. ; https://doi.org/10.1101/2021.09.21.461277doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.21.461277
http://creativecommons.org/licenses/by-nc/4.0/


0       3        6       9      12     15     18     21

b)

C0

C1

a)

Time (hours)
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Figure 2: Differential network analysis for the saliva experiment. a) Differential

network with community structure found by the Louvain community detection method. b)

Isolated visualizations of C0 (top) and C1 (bottom) communities with red highlights corre-

sponding to genes found in significant Reactome pathways. c) Heatmaps of C0 (top) and

C1 (bottom) over 24 hours. Columns represent time points while rows denote gene identi-

fiers. These row data demonstrate the difference in each entry’s expression relative to time

0. The relative values were determined by subtracting the individual time points from time

point 0 and then normalized using a Euclidean norm, so that each row ranges from -1 (down-

regulation) to 1 (up-regulation). For the dendrogram clustering we used the complete-linkage

method (also known as the Farthest Point Algorithm) [55, 56].
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c)b)
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C4

a)

C4 0         1          2         4         7         15
Time (hours)

C2

Figure 3: Differential network analysis for the B cell experiment. a) Differential

network with community structure found by the Louvain community detection method. b)

Isolated visualizations of C2 (top) and C4 (bottom) communities with red highlights corre-

sponding to significant nodes (genes) and their edges (correlations). c) Heatmaps of C2 (top)

and C4 (bottom) over 15 hours (6 time points). Columns represent time points while rows

denote genes. These row data demonstrate the difference in each entry’s expression relative

to time 0. The relative values were determined by subtracting the individual time points

from time point 0 and then normalized using a Euclidean norm, so that each row ranges

from -1 (down-regulation) to 1 (up-regulation). For the dendrogram clustering we used the

complete-linkage method (Farthest Point Algorithm) [55, 56].
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9. Tables and legends

Pathway name Entities FDR Submitted entities found
Antigen Presentation: Folding, assembly and peptide loading of class I MHC 1.2E-14 HLA-B;NAA15
Endosomal/Vacuolar pathway 1.2E-14 HLA-B
Interferon gamma signaling 1.2E-14 STAT1;IRF1;HLA-B;PTPN6

Class I MHC mediated antigen processing & presentation 1.2E-14
PSMD8;TLR1;CDH1;RPN1;GBF1;HLA-
B;UBR4;CYBA;NAA15;ELOC;FBXO32;FBXO11

ER-Phagosome pathway 1.2E-14 PSMD8;TLR1;RPN1;HLA-B
Interferon alpha/beta signaling 1.2E-14 STAT1;IRF1;HLA-B;PTPN6
Interferon Signaling 1.2E-14 EIF4A1;STAT1;IRF1;HLA-B;PTPN6;ARIH1
Antigen processing-Cross presentation 1.2E-14 PSMD8;TLR1;RPN1;HLA-B;CYBA
Immunoregulatory interactions between a Lymphoid and a non-Lymphoid cell 1.2E-14 CDH1;CD81;HLA-B;FCGR2B
Cytokine Signaling in Immune system 1.1E-11 EIF4A1;STAT1;IRF1;HLA-B;PTPN6;ARIH1

Adaptive Immune System 4.1E-09

CD81;TCF25;RPN1;GBF1;HLA-
B;UBR4;CYBA;PPP2R5D;FBXO32;FBXO11;ANKRD9;TL
R1;PSMD8;CDH1;AKT2;PTPN6;ELOC;NAA15;FCGR2B
;SIPA1;ARF5

Immune System 1.3E-05

CCDC71L;DDX3Y;EIF4A1;ASAH1;IL1RN;SERPINA1;TC
F25;CD81;RPN1;RPLP0;UBR4;TNFAIP3;CSF2RA;PLD2
;PSMD8;ANKRD9;CDH1;AKT2;OLR1;ELOC;ARIH1;SER
PINB2;TNFSF14;GSTO1;STAT1;GBF1;HLA-
B;CYBA;PPP2R5D;FBXO32;FBXO11;FGR;CEACAM3;C
LEC4A;TLR1;IRF1;TCP1;TXNIP;PTPN6;CYSTM1;NAA1
5;FCGR2B;SIPA1;BIRC2;ARF5;TRIM56

Gene and protein expression by JAK-STAT signaling after Interleukin-12 stimulation 3.2E-03 SERPINB2;GSTO1;TCP1;RPLP0;ARF5
Interleukin-12 family signaling 4.6E-03 SERPINB2;GSTO1;STAT1;TCP1;RPLP0;ARF5
Interleukin-12 signaling 8.0E-03 SERPINB2;GSTO1;TCP1;RPLP0;ARF5

Pathway name Entities FDR Submitted entities found

Insulin-like Growth Factor-2 mRNA Binding Proteins (IGF2BPs/IMPs/VICKZs) bind RNA 0.003 CD44

Nuclear Events (kinase and transcription factor activation) 0.018 PPP2CB;TF;ID2;CHD4;FOS;DUSP6;DNM2
FOXO-mediated transcription of cell death genes 0.018 BCL2L11;BCL6;NFYC

Signaling by NTRKs 0.024
PPP2CB;RALA;TF;ID2;CLTA;FURIN;CHD4;FOS;DUSP6;
DNM2

Signaling by NTRK1 (TRKA) 0.026 PPP2CB;RALA;TF;ID2;CLTA;CHD4;FOS;DUSP6;DNM2

Immune System 0.029

NAPA;RALA;CIITA;AHCYL1;RPN2;UNC93B1;JADE1;CL
TA;BCL10;CFP;TANK;GNS;FCAR;STK10;PPP2CB;BCL2
L11;TRIM29;ALOX5;NLRP3;FLNA;SIRPA;SLC12A6;IL6
R;GBP4;RAP1GAP2;DDX17;CR1;WSB1;CISH;SH2D3C;
KLHL21;FNDC3A;FOS;LILRB3;MTOR;DUSP6;VEGFA;D
NM2;TF;ZNFX1;NASP;BCL6;MAN2B1;TACC2;CD300C
;CALM1;CD44;LGMN

Cytokine Signaling in Immune system 0.036
RALA;CIITA;CISH;RPN2;SH2D3C;FNDC3A;FOS;MTOR;
DUSP6;VEGFA;PPP2CB;ZNFX1;BCL2L11;NASP;BCL6;T
RIM29;ALOX5;FLNA;IL6R;GBP4;CD44

trans-Golgi Network Vesicle Budding 0.039 NAPA;CPD;CLTA;GNS;CLINT1;DNM2
NGF-stimulated transcription 0.039 TF;ID2;CHD4;FOS;DNM2

Saliva DN: C1

Saliva DN: C0

Table 1: Reactome pathway enrichment analysis. Statistically significant pathways are sum-

marized for saliva DN community C0 and C1. In the full analysis, we omitted small commu-

nities with fewer than 8 genes [57], and 12 communities (C0 to C11) qualified for the pathway

analysis.

20

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 24, 2021. ; https://doi.org/10.1101/2021.09.21.461277doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.21.461277
http://creativecommons.org/licenses/by-nc/4.0/


Pathway name Entities FDR Submitted entities found

Peptide chain elongation 1.31462E-06
EEF1A1;RPL4;RPL7A;RPL27A;RPS6;RPL36;RPL14;RPS2
0;RPL15;FAU;UBA52;RPL28

Response of EIF2AK4 (GCN2) to amino acid deficiency 1.31462E-06
RPL4;RPL7A;RPL27A;RPS6;RPL36;RPL14;RPS20;FAU;R
PL15;UBA52;RPL28;ATF3

Eukaryotic Translation Elongation 1.58667E-06
EEF1A1;RPL4;RPL7A;RPL27A;RPS6;RPL36;RPL14;RPS2
0;RPL15;FAU;UBA52;RPL28

GTP hydrolysis and joining of the 60S ribosomal subunit 5.88845E-06
RPL4;EIF4A1;RPL7A;RPL27A;RPS6;RPL36;RPL14;RPS20
;RPL15;FAU;UBA52;RPL28

L13a-mediated translational silencing of Ceruloplasmin 
expression

5.88845E-06
RPL4;EIF4A1;RPL7A;RPL27A;RPS6;RPL36;RPL14;RPS20
;RPL15;FAU;UBA52;RPL28

Nonsense Mediated Decay (NMD) independent of the Exon 
Junction Complex (EJC)

5.88845E-06
RPL4;RPL7A;RPL27A;RPS6;RPL36;RPL14;RPS20;RPL15;
FAU;UBA52;RPL28

Formation of a pool of free 40S subunits 7.65112E-06
RPL4;RPL7A;RPL27A;RPS6;RPL36;RPL14;RPS20;RPL15;
FAU;UBA52;RPL28

Eukaryotic Translation Termination 7.65112E-06
RPL4;RPL7A;RPL27A;RPS6;RPL36;RPL14;RPS20;RPL15;
FAU;UBA52;RPL28

Cap-dependent Translation Initiation 9.21986E-06
RPL4;EIF4A1;RPL7A;RPL27A;RPS6;RPL36;RPL14;RPS20
;RPL15;FAU;UBA52;RPL28

Eukaryotic Translation Initiation 9.21986E-06
RPL4;EIF4A1;RPL7A;RPL27A;RPS6;RPL36;RPL14;RPS20
;RPL15;FAU;UBA52;RPL28

Pathway name Entities FDR Submitted entities found

Metabolism of RNA 0.014280864

SF3B4;MT-
ND6;NUP205;UTP3;POP1;DDX23;CSTF2;PHAX;PLRG1;
DIEXF;ZFP36L1;FTSJ3;CHERP;PSMD8;EFTUD2;PSMD9;
PSMC4;PSME3;NUP35;SKIV2L2

Mitotic Anaphase 0.014280864
PSMD8;PSMD9;NUP205;CCNB1;SPAST;PSMC4;PSME3
;NUP35;SMC1A;EMD;KPNB1

Mitotic Metaphase and Anaphase 0.014280864
PSMD8;PSMD9;NUP205;CCNB1;SPAST;PSMC4;PSME3
;NUP35;SMC1A;EMD;KPNB1

FCERI mediated NF-kB activation 0.014280864
IGLV2-11;PSMD8;PSMD9;IGKV2-29;IGKV1-
16;PSMC4;PSME3;IGKV4-1

Signaling by the B Cell Receptor (BCR) 0.014280864
IGLV2-11;PSMD8;PSMD9;IGKV2-29;IGKV1-
16;PSMC4;PSME3;IGKV4-1;PIK3AP1

Fc epsilon receptor (FCERI) signaling 0.014280864
IGLV2-11;PSMD8;PSMD9;IGKV2-29;IGKV1-
16;PSMC4;PSME3;IGKV4-1

Host Interactions of HIV factors 0.014280864
PSMD8;PSMD9;NUP205;PSMC4;PSME3;NUP35;KPNB
1

G1/S Transition 0.014280864 PSMD8;PSMD9;CCNB1;MCM7;PSMC4;PSME3;KPNB1

ABC-family proteins mediated transport 0.014280864 PSMD8;PSMD9;PSMC4;PSME3;CSTF2;EIF2S1
Assembly of the pre-replicative complex 0.014280864 PSMD8;PSMD9;MCM7;PSMC4;PSME3

B cell DN: C2

B cell DN: C4

Table 2: Reactome pathway enrichment analysis. Statistically significant pathways are sum-

marized for primary B cell DN community C2 and C4. In the full analysis, we omitted small

communities with fewer than 8 genes [57], and 12 communities (C0 to C11) qualified for the

pathway analysis.
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10. STAR Methods

RESOURCE AVAILABILITY420

Lead contact

• Further information and requests for resources should be directed to and

will be fulfilled by the lead contact, Shuyue Xue (xueshuy1@msu.edu)

Materials availability

• This study did not generate new unique reagents.425

Data and code availability

• This paper analyzes existing, publicly available data. These accession

numbers for the datasets are listed in the key resources table.

• Mapped RNA-seq data have been deposited at Zenodo and are publicly

available as of the date of publication. DOIs are listed in the key resources430

table.

• All original code has been deposited on Zenodo as of the date of publica-

tion. DOI is listed in the key resources table.

• All results files have been deposited on Zenodo as of the date of publication

together with the code files. These files are referred to as Online Data Files435

(ODFs) in the manuscript. DOI is listed in the key resources table.

• Any additional information required to reanalyze the data reported in this

paper is available from the lead contact upon request.

METHOD DETAILS

Data acquisition440

Data for this investigation were obtained from Gene Expression Omnibus

(GEO) for two time series studies using RNA-seq experiments, on Saliva (ac-

cession GSE108664) and Rituximab (GSE100441). Both sets of data are fur-

ther described below. The raw RNA-seq data were mapped using Kallisto [58],
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with bootstrap sample parameter, -b, was set to 100. GENCODE[36] v28 tran-445

scripts and genome built GRCh38.p12 were used for annotation. We used Sleuth

[59](with DESeq[60] adjustment of Transcripts per Million) to compile results

across timepoints.

The saliva dataset was obtained from our previous study of immune re-

sponses to the PPSV23 vaccine (GSE108664) [15]. In this study, hourly saliva450

samples were collected from a healthy individual over two 24 hour periods and

profiled with RNA-seq every hour. The first 24 hour period provides a base-

line RNA expression dataset, which we call untreated data. In the second 24

hour period, the same individual was monitored after receiving the PPSV23

vaccine. Saliva samples were again collected hourly over 24 hours and profiled455

by RNA-seq. This second step yielded the RNA expression dataset after the

PPSV23 vaccination. We call these data the treated dataset. Both treated and

untreated datasets have 24 time points of 84,647 possible expression signals

using GENCODE annotation [36].

The perturbation in the primary B cell experiment was Rituximab, a mono-460

clonal antibody drug used in the treatment of different types of lymphomas and

leukemias. The experimental study (data from GSE100441) began by culturing

in parallel primary B cells with and without Rituximab. During the 15 hours of

Rituximab treatment, the treated and untreated primary B cells were both sam-

pled at the same 6 time points simultaneously and profiled by RNA-seq. The465

untreated group provided a baseline, which we call untreated data, whereas the

treated experiment produced the treated dataset. Since this study included a

replicated experiment, each of the first and second duplicates was processed to

generate a separate network.

Data Preprocessing470

For quality control, we pre-processed the experimental data and filtered

sparse gene signals right after importing the published data files. We coded

all the data analysis in Python in this study. Using Python’s pandas package

[61, 62], we checked for missing values for each gene’s expression, removing

23

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 24, 2021. ; https://doi.org/10.1101/2021.09.21.461277doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.21.461277
http://creativecommons.org/licenses/by-nc/4.0/


duplicate records and eliminating genes with constant values across all the 24475

time points for the saliva dataset (6 time points for the B cell datasets).

We replaced missing signals with zero and also set values less than 1 to

1. Genes with zero variance in their time series were excluded in our analysis.

Moreover, we considered a gene signal as sparse and removed it if its time series

had missing values for more than 1/8 of the time points. The same quality480

control procedure was used for both the saliva and primary B cell datasets.

Gene Selection

After quality control, we further processed the data to pre-screen and identify

a pool of candidate genes that showed a significant response to the perturbations

(vaccine in the saliva and Rituximab in the B cell). We selected genes that are485

significantly expressed in both untreated and treated cases. For each of these

genes, we calculated the the time averaged relative difference between treated

and untreated normalized intensities, ∆TU :

∆TU = 〈Ti − Ui

Ti + Ui
〉
time

(1)

This calculation yielded a ∆TU distribution curve, from which we computed

the lower and upper quartiles. Genes were assumed to either be down-regulated490

or upregulated if their ∆TU s were within the bottom 25% or top 25% of the

∆TU distribution respectively. The Python Pandas package was used for all the

above computations [61, 62].

Correlation Networks Construction

After gene selection, we calculated their pairwise Pearson correlation coeffi-495

cients and built the co-expression networks. Genes were represented as nodes

and were joined by edges if there was a non-zero correlation between them.

We used the correlation coefficient as a weight for each edge. In the layout

representation of the networks, the node-node distance reflects their correlation

coefficients. Two genes are nearby if they have a high positive correlation. They500

are far apart when they have a low positive correlation or remote if negatively
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correlated. We used Python’s open source Networkx package [63] for network

visualization and calculation of the network metrics.

To keep only the most significant signals, we kept edges only in the 99.5%

quantile of the correlation distribution. This process removed many links on505

the network, detaching some nodes from others. We excluded those isolated

nodes from the network. For the saliva data, we built one treated and one

untreated network. Since we have data from two repeated experiments for B-

cells, we built two networks for the Rituximab treatment and two networks for

the untreated control. Then, we took the intersections between the two networks510

corresponding to the repeats to obtain a single Rituximab-treated network and

one single control network.

Differential Networks Construction

We defined the DN as the control network subtracted from the treated net-

works both for the saliva and B cell case. The subtraction removed edges exist-515

ing in both treated and untreated networks and preserved those only present in

the treated network. This operation generates some isolated nodes, that were

discarded.

We analyzed the DN’s structure using modularity [25, 26], as complex bio-

logical networks usually display a high degree of modularity [29]. Specifically, we520

employed the Louvain community detection method [34], one of the best-known

algorithms for its efficiency, to partition the entire DN into smaller clusters,

also known as communities. The Louvain method has been integrated into a

published Python package [64], and we used this existing implementation. This

graph clustering algorithm is not deterministic, and can therefore result in dif-525

ferent partitions for the same graph.

Enrichment Analysis and Heatmaps

We conducted Reactome Enrichment Analysis [35] on each community to

identify over-represented biological pathways within each community. Reactome

Enrichment Analysis was performed using the Python package PyIOmica [37].530
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As the majority of communities with low number of genes yield no enrichment,

we focused on results for communities with 8 or more genes. Furthermore, we

plotted the heatmaps for individual communities to visualize gene expression

levels as time series, exploring the communities’ collective behavior as a function

of time. On the heatmaps, we plotted differences in gene expression relative535

to time 0 (first time point). We computed these values by subtracting each

gene’s individual time points from time 0. Each time series in our heatmaps

was normalized using the Euclidean norm. For dendrogram clustering of rows

(genes), we applied the complete-linkage method (Farthest Point Algorithm)

[55, 56].540

Results formatting and visualization

We stored the DN nodes and edges, communities, and pathway enrichment

analyses into spreadsheets that are provided in the ODFs both for the saliva

and B cell data. Using Mathematica [65], we visualized the saliva and B cell

DNs with their major connected components and communities.545

QUANTIFICATION AND STATISTICAL ANALYSIS

The data were quantified as discussed in the Method Details section above.

Statistical considerations included: (i) selection of a correlation cutoff in network

edge construction, based on a 0.995 quantile of the correlation distribution. (ii)

An FDR < 0.05 cutoff was used to assess statistical significance of Reactome550

pathway enrichment analysis, generate through the use of the Reactome API in

PyIOmica[35, 37].
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