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Abstract

Background: Secretion of the metabolites citrate and spermine into prostate lumen is a unique
hallmark for normal prostate epithelial cells. However, the identity of the genes controlling citrate
and spermine secretion remains mostly unknown despite their obvious relevance for progression to
aggressive prostate cancer.

Materials & Methods: In this study, we have correlated simultaneous measurement of
citrate/spermine and transcriptomics data. We have refined these gene correlations in 12 prostate
cancer cohorts containing 2915 tissue samples to create a novel gene signature of 150 genes
connected with citrate and spermine secretion. We further explored the signature in public data,
interrogating over 18 000 samples from various tissues and model systems, including 3826 samples
from prostate and prostate cancer.

Results: In prostate cancer, the expression of this gene signature is gradually lost in tissue from
normal epithelial cells through PIN, low grade (Gleason <= 7), high grade cancer (Gleason >= 8) and
metastatic lesions. The accuracy of the signature is validated by its unique enrichment in prostate
compared to other tissues, and its strong enrichment in epithelial tissue compartments compared to
stroma. Several zinc-binding proteins that are not previously investigated in the prostate are present
in the gene signature, suggesting new mechanisms for controlling zinc homeostasis in
citrate/spermine secretion. However, the absence of the gene signature in all common prostate
normal and cancer cell-lines, as well as prostate organoids, underlines the challenge to study the
role of these genes during prostate cancer progression in model systems.

Conclusions: A large collection of transcriptomics data integrated with metabolomics identifies the
genes related to citrate and spermine secretion in the prostate, and show that the expression of
these genes gradually decreases on the path towards aggressive prostate cancer. In addition, the
study questions the relevance of currently available model systems to study metabolism in prostate
cancer development.
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Introduction

A unique hallmark for normal prostate epithelial cells is their ability to secrete large amounts of the
metabolites citrate. While cells from other human organs convert citrate to isocitrate for oxidation
and energy production in the TCA cycle, citrate conversion in the prostate epithelium is partly blocked,
leading to accumulation of citrate [1]. It has been reported that citrate/isocitrate ratios in the prostate
are 40/1, compared to 10/1 in other normal organs [2]. In the prostate, excess citrate is secreted out
of the cell into the prostate lumen of the prostatic glands, where it is a major constituent of the
prostatic fluid and essential for normal prostate organ function.

Almost all types of prostate cancer originates from prostate epithelial cells, and nearly all prostate
cancer cells lose their ability to secrete citrate during the development of malignant phenotypes [1].
A reduced level of citrate has therefore been suggested as a biomarker, both for cancer detection and
for identification of cancers with more aggressive phenotypes [3-5]. Even with these demonstrations
of importance for normal prostate function and prostate cancer progression, the research in this field
has been markedly neglected, and thus the molecular mechanisms controlling these functions remain
mostly unknown. Nevertheless, a few dedicated research groups have managed to gain some insights:
First, high mitochondrial levels of zinc in the prostate block citrate conversion, and the regulation of
zinc transporter genes, in particular ZIP1 (SLC39A1), have been suggested to play a role in regulating
prostate zinc levels [6, 7]. Second, the metabolite aspartate is a possible source of increased citrate in
prostate cells [8, 9]. Aspartate is a precursor for oxaloacetate, which again is a precursor of citrate
synthesis, and works as a carrier of the carbon groups oxidized stepwise in the mitochondria during
the TCA cycle. Increased levels of aspartate could thus lead to increased levels of citrate when the
citrate/isocitrate conversion is blocked. Third, metabolites synthesized in the polyamine pathway are
regulated differently in the prostate [10-12]. Some interest has been directed to the polyamine
spermine, due to its extremely high correlation with citrate [13]. Spermine and citrate have opposite
polarity, and it has been speculated as to whether they may form a complex which is secreted into the
prostate lumen [13, 14].

These presented mechanisms, though intriguing, represent only small steps on the way to a widened
perspective of this unique prostate function which is not completely understood. This includes the
genes and proteins involved, as well as the connections between them. Most mechanisms suggested
so far have been studied in cell-lines and animal models, which are not able to fully capture the
complex interplay within human prostate tissue. However, a large amount of genome-wide —omics
data on prostate tissue, as well as their model systems, has accumulated since the introduction of the
genomic era more than 20 years ago. These data resources have yet to be fully exploited for research
on citrate and spermine secretion in the prostate. In this study we address this hallmark property of
the prostate by performing extensive bioinformatic analysis on data resources from the public
domain. We do this by first creating and a robust gene signature representing citrate and spermine
secretion in the prostate. We then explore and validate this gene signature in multiple datasets,
cohorts and public resources. In total we analyzed 32 datasets [15-42] with 18020 samples, of which
3826 were prostate samples including normal/normal-adjacent (epithelium and stroma) tissue,
high/low-grade cancer tissue, metastatic samples and model systems. Our study identifies genes
strongly associated with citrate and spermine secretion in the prostate and explore their behavior
during cancer progression and in model systems. Our results validate previously suggested
mechanisms, but also discover new central genes and mechanisms related to citrate and spermine
with potential importance for this unique and intriguing prostate hallmark.
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Results

All datasets used in this study are listed in Supplementary File 1. It includes dataset ID and abbreviation
used in the main text, sample description, dataset accession and references.

Metabolite concentrations between citrate and spermine are highly correlated across tissue
samples

Our research group has previously generated a dataset with 129 normal and cancer tissue samples
from the prostate, where concentrations from 23 metabolites and the expression of 14161 unique
genes were measured on the exact same samples (Bertilsson, dataset ID 1). Similar to a previous report
[12], we observed a strong correlation (r=0.95) between concentrations of the metabolites citrate and
spermine across the samples (Figure 1A and B). To simplify calculations, we will use the average
concentration profile for citrate and spermine throughout the rest of this study. (Figure 1C). We use
the abbreviation CS (Citrate and Spermine) to denote all our results based on this average
concentration profile.
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Figure 1: Correlations between metabolites citrate and spermine. A) Correlations between all 23
metabolite measurements across 129 prostate normal and cancer samples from the Bertilsson
dataset (Dataset ID 1). The correlation is particularly strong for metabolites citrate and spermine. B)
Correlations between citrate and spermine across 129 prostate normal and cancer samples from
Bertilsson. The correlation is high also when extreme values are excluded (highlighted inside the
green boundary). C) Similarity between the citrate, spermine and the average citrate/spermine
metabolite profiles across 129 prostate normal and cancer samples from Bertilsson.
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A gene signature associated with the CS concentrations is validated in 12 datasets of prostate
cancer and normal samples.

We identified genes associated with the average CS levels in the prostate by calculating the Pearson
correlations between the CS concentration profile and each of the 14161 unique genes measured in
Bertilsson (dataset ID 1). The correlation analyses were performed on the 95 cancer samples in the
dataset. We selected the 150 genes with the highest positive correlation which we termed the initial
gene module. We further assessed the integrity of this gene module by creating a Correlation Module
Score (CMS, see methods) where a high CMS means that strong intra-correlation is present between
the genes in the module, resulting in a high module integrity. On the contrary, a low CMS indicates
that there is low correlation between the genes in the module, and that the module integrity is lost.
Moreover, if the gene module has a significantly high CMS in a dataset, it indicates that the biological
process(es) which this module represents is functionally active for the samples in this dataset.

To test for significance, we generated 100 random CMSs by shuffling the CS metabolite levels between
the respective samples in Bertilsson (dataset ID 1). The resulting CMS was statistically significant when
compared to CMSs from random gene modules (CMS=0.34, p=0.007, lognormal distribution) (Figure
2A).

We then validated whether the integrity of the initial gene module was significantly preserved in 11
additional datasets (dataset ID 2-12), including a total of 2638 tissue samples from normal prostate
and prostate cancer (ref dataset list). We calculated and compared the CMSs for the initial module, as
well as the 100 random modules in all 11 datasets. The CMS from the initial gene module was validated
in all 11 cancer datasets, and 7 out of 8 datasets with normal samples (lognormal test) (Figure 2B,
Supplementary Table 1 and 2). We thus defined the initial module as our initial gene signature
associated with CS concentrations in the prostate. We used this initial CS signature as a starting point
for further refinement.

We also performed the above procedure using the 40 normal samples in Bertilsson, however the
resulting gene module was not significant (CMS=0.37, p=0.14, lognormal distribution), and could not
be validated in any of the additional datasets (Supplementary Figure 1, Supplementary Table 3 and 4).
The reason for this is probably due to an insufficient number of normal samples in Bertilsson to
perform a robust correlation analysis.

Refinement across 12 datasets produce a CS gene signature with improved integrity.

Corresponding gene expression and metabolite measurements are available only for Bertilsson
(dataset ID 1). We thus implemented a bioinformatics strategy to identify a refined CS gene signature
with improved integrity across all 12 datasets (2794 samples). We used the initial CS signature from
Bertilsson as a starting point, and then used results from cancer samples across the other 11 datasets
to nominate better gene candidates to replace genes from the initial CS signature (see Methods).
When evaluating the new top 150 candidate genes, we found that 74 of the 150 genes in the initial CS
signature had been replaced by new genes to improve integrity across all datasets (Figure 2C). Of note,
the refined CS signature improved CMS for in both cancer and normal samples in all 11 additional
datasets. This consistent improvement in normal samples (including normal samples from Bertilsson)
affirms the relevance of the signature, since these samples were not used to generate or refine the CS
signature. In addition, only a marginal reduction in CMS was observed for the cancer samples in
Bertilsson (Figure 2D). We thus conclude that the refined CS signature (referred to as the CS signature
from now) represents a more robust signature with improved integrity compared to the initial CS
signature.
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Figure 2: Integrity of initial and refined citrate — spermine (CS) gene signatures. A) CMS (Correlation
Module Scores) for the 150 genes most positively correlated with the CS metabolite profile for cancer
samples in the Bertilsson dataset (Dataset ID 1). The CMS for was statistically significant when
compared to CMSs using random metabolite profiles (lognorm test) B) CMS for the initial cancer CS
gene module from Bertilsson (red dots) evaluated in prostate cancer (red circles) and normal (blue
circles) samples from 11 additional datasets. The CMS was statistically significant in all datasets
(lognorm test, Supplementary Table T1 and T2). C) Fraction of new genes in the refined CS gene
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signature that replaced genes in the initial CS gene signature. The genes is sorted by importance
(rank) on the bottom axis. Of the 150 top ranked genes in the initial CS signature, 74 were replaced
in the refined CS signature. D) Increase in CMS after refinement of the initial CS signature for prostate
normal and cancer samples in 11 datasets. The CMS increased in the normal samples, even though
the normal samples were not used to create or refine the signature. Cohort ID 4, 5 and 8 did not
include normal samples.

The CS signature displays unique enrichment in prostate samples and negative correlation to
stromal tissue compartments.

Having established a CS signature of 150 genes associated with citrate and spermine secretion in the
previous sections, we expanded our validation to additional datasets and sample types. For this
analysis we used single samples Gene Set Enrichment Analysis (ssGSEA) [43], which is a method used
to assess whether a specific gene signature is enriched or depleted in a single sample. Since citrate
and spermine secretion is a highly specific function associated with prostate epithelium, higher ssGSEA
scores in tissue samples from prostate compared to samples from other tissue types would confirm
its functional relevance. Further, since prostate cancer samples are a heterogeneous tissue mixture
of normal prostate epithelium, cancer and stroma, ssGSEA scores should be inversely proportional to
the content of stroma tissue in the samples, since stromal cells are unable to secrete citrate or
spermine.

We first compared ssGSEA scores for cancer and normal samples in the prostate specific TCGA dataset
(dataset ID 5) to all cancer and normal samples profiled in the TCGA-complete resource (11093
samples from 33 cancer types, dataset ID 21). We observed strongly elevated ssGSEA scores for both
prostate cancer and normal samples compared to cancer and normal tissues from other tissues (Figure
3A). We also tested the CS signature on average expression profiles for 53 normal tissues from the
GTEXx portal (dataset ID 22) (Figure 3B) and 1829 CAGE expression profiles from cell-lines and tissues
in the FANTOM Consortium (dataset ID 23) (Figure 3C) where one tissue profile was from adult normal
prostate. In both datasets, normal prostate tissue showed the highest ssGSEA scores.

We next correlated the CS signature ssGSEA scores to a previously identified gene signature for stroma
content in prostate tissue [44] in datasets 1-12. We observed a strong reverse correlation between CS
and stroma signatures for normal samples in all datasets (Figure 3D) (with an exception for Mortensen
(dataset ID 9) which contained laser dissected epithelium/cancer with minimal amounts of stroma).
The correlation was weaker in cancer samples. This is expected, since prostate cancers vary in their
ability to secrete citrate and spermine. The negative association between CS signature and stroma was
also confirmed using spatial transcriptomics data from Berglund (dataset ID 20), where pixels with
high and low ssGSEA scores overlaid regions with epithelium/lumen and stroma respectively (Figure
3E, Supplementary Figure 2).
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In summary, the CS signature shows strong associations with expected properties of the prostate

epithelium, which strengthens the biologically validity of the genes in the signature.
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Figure 3: Validation of citrate — spermine (CS) gene signature. A) CS signature ssGSEA scores for
11093 cancer and normal samples in 33 tumor types from the TCGA-complete dataset. We have used
standard TCGA cancer type abbreviations [https.//qgdc.cancer.gov/resources-tcga-users/tcga-code-
tables/tcga-study-abbreviations] where PRAD is the abbreviation for prostate cancer. B) CS signature
SSGSEA scores for 53 averaged human normal tissue profiles from the GTex dataset. C) CS ssGSEA
signature scores for 1829 human cell-line and tissue samples, including one prostate adult tissue
sample, from the FANTOM dataset. D) Correlations between CS signature and stroma signature
SSGSEA scores for cancer and normal samples in prostate cancer tissue datasets 1-12. The negative
correlations in the normal samples are stronger due to less confounding from cancer tissue. Data
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from Mortensen (dataset ID 9) contains laser dissected prostate normal epithelium and cancer, which
probably lack significant amounts of stroma. E) CS signature ssGSEA scores on spatial
transcriptomics data from tissue slice 3.2 in Berglund (dataset ID 20). The colorbar indicates
enrichment of the ssGSEA score in each pixel. The corresponding pathological tissue image can be
found for image 3.2 in Supplementary Information — Supplementary Figure 1b from Berglund et al.
[33], and comparison shows a strong overlap of high and low CS signature scores with
epithelial/lumen and stroma tissue compartments, respectively. Results from all 12 images in
Berglund are shown in Supplementary Figure 2.

The CS gene signature is gradually lost from normal samples through low grade, high grade and
metastatic lesions.

Having established the relevance of the CS signature to prostate citrate and spermine secretion, we
next investigated how this signature associates with the various stages of prostate cancer
aggressiveness. Low citrate concentrations have previously been associated with high-grade prostate
cancer [4]. We identified nine datasets (1779 prostate cancer samples) where cancer samples had
been classified as either high-grade or low-grade, or assigned a Gleason score - the standard form of
prostate cancer grading. We found significant changes in CS signature ssGSEA scores between high-
and low-grade cancers in all eight datasets where samples where Gleason score 4+3 was classified as
high-grade (613 high and 737 low-grade samples), and six out of eight datasets where samples with
Gleason score 4+3 was classified as low-grade (578 high- and 1258 low-grade samples) (Figure 4A,
Table 1). The reduction in CS signature scores were not due to increased tumor fraction in high-grade
samples (shown in Table 1. These results support the previous findings and suggest that the changes
previously observed for citrate at metabolite level are accompanied by changes in gene expression. A
further significant reduction in CS signature scores were observed in metastatic compared to cancer
and normal samples in 8 datasets (157 metastatic samples) (Figure 4B, Table 2). Note that the lower
CS-signature scores in normal samples compared to cancer samples is due to the high level of stromal
tissue in normal prostate samples [8, 44] (Supplementary Figure 3). Overall, our results indicate that
the genes associated with citrate and spermine secretion is upregulated in the normal epithelium, and
then gradually downregulated with tumor progression from early low-grade lesions, through high-
grade cancers and finally metastatic tumors. This trajectory is nicely illustrated by the results from
Tomlins (dataset ID 18) (Figure 4C), where laser dissection has been used to purify stroma, normal
epithelium, Prostate Intreapeithelial Neoplasia (PIN, an early pre-cancerous prostate lesion) cancer
and metastatic tissues. In line with this trajectory, the PIN lesions show an average CS signature score
level between the levels of normal epithelium and cancer. Though the ability of cells to secret citrate
and spermine seems to be lost in metastatic samples, metastatic tissue from prostate cancer still
contains traces of the CS gene profile compared to metastatic tissue originating from other organs
(Hsu, dataset ID 19) (Figure 4D).
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1 Table 1: P-values from differential CS signature ssGSEA score analysis between high grade (HG)
2 andlow grade (LG) cancer samples in 9 datasets. Two comparisons are made: First HG1 vs LG1,
3 where HG1 is classified as samples with Gleason score 4+3 or higher, and LG1 as samples with
4  Gleason score 3+4 or lower. Second HG2 vs LG2, where HG2 is classified as samples with Gleason
5  score 8 or higher, and LG2 as samples with Gleason score 7 or lower. The correlation of CS signature
6 GSEA score to tumor content is also included when available, and show, in general, that decreased CS
7  scores in high-grade samples is not due to increased tumor content in these samples.
Dataset | Dataset Number | Number | Number | Number | P- p- Correlation
ID abbreviation | of HG1 | of LG1 of HG2 | of LG2 value | value | totumor
samples | samples | samples | samples | HG1 HG2 content
vs LG1 | vs LG2
1 Bertilsson 56 60 36 80 4.7e- 3.6e-5 | -0.13
10
2 Chen 15 50 11 54 0.0040 | 0.0011 | 0.14
3 Taylor 36 94 15 115 0.015 0.010 NA
4 Sboner 119 162 81 200 3.7e-7 | 1.7e-4 | -0.30
5 Erho NA NA 211 334 NA 0.060 | NA
6 TCGA 296 200 200 296 2.5e- |5.3e- |-0.04
10 13
7 CMBR 30 82 9 103 0.014 | 0.09 0.11
8 STCK 34 57 15 76 0.021 | 0.007 | NA
12 Kuner 27 32 NA NA 0.021 NA NA
8

9 Table 2: P-values from comparing CS signature ssGSEA scores from metastatic prostate cancer
10  samples to cancer and normal samples and in 8 datasets.

11

12

13

Dataset ID | Dataset Number of | Number of | Number of | P-value P-value

abbreviation | metastatic | cancer normal metastatic | metastatic
samples samples samples Vs cancer vs normal

3 Taylor 19 131 29 7.4e-15 2.8e-7

10 Prensner 12 78 38 3.4e-11 2.9e-10

13 Aryee 18 NA 21 NA 0.024

14 Chandran 25 65 81 8.8e-6 6.9e-6

15 Cai 29 22 NA 5.8e-13 NA

16 Poisson 13 12 16 1.5e-4 0.09

17 Monzon 21 10 NA 7.4e-11 NA

18 Tomlins 20 32 27 0.007 1.2e-10
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Figure 4: Citrate — spermine (CS) signature, tumor grade and metastasis. A) CS signature ssGSEA
scores for high-grade (Gleason higher or equal to 4+3) and low-grade (Gleason less than or equal to
3+4) cancers in 9 datasets. The samples compared corresponds to the HG1 and LG1 groups in Table
1. The scores were centered in each cohort before plotting to visualize similarities between datasets
better. B) CS signature ssGSEA scores for metastatic, cancer and normal samples in 7 datasets. The
scores were centered and normalized to range 0-1 before plotting to visualize similarities between
datasets better. The low scores in normal samples is due to the higher content of stroma in normal
samples (Supplementary Figure 3). C) CS signature ssGSEA scores from five laser dissected prostate
and prostate cancer tissue types from Tomlins (datasets Id 18). The GSEA scores illustrates the loss in
CS secretion from normal epithelium through PIN, Cancer and finally Metastasis. The CS signature
scores from metastatic samples are comparable to the non-secreting stroma tissue. D) CS signature
sSGSEA scores in 96 metastatic samples (9 from prostate and 87 from other organs) from the Hsu
(dataset ID 19). Metastatic samples from prostate origin are more enriched for the CS signature than
metastatic samples originating from other sites.
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CS signature genes are enriched for genes with zinc-binding, mitochondrial and secretory
functions.

Gene Ontology analysis anchored the genes in the CS gene signature to the citrate secretory pathways
from mitochondria towards the cell exterior via the ER and golgi. The analysis also highlighted several
genes related to zinc-binding, in particular several metallothionines, and a role of branched chain fatty
acid catabolism in upholding the normal prostate secretory function.

When examining gene functions on gene-by-gene basis using the NCBI-gene resource
[ncbi.nlm.nih.gov/gene] (Supplementary File 3) we found that several genes in the CS signature were
related to zinc-binding. Among these, six were Metallothioneins (MT1G, MTIM, MT1F, MT1X, MT1E
and MT2A), one zinc-transporter (SLC39A10) and the two genes AZGP1 (alpha-2-glycoprotein 1, zinc-
binding) and ANPEP (alanyl aminopeptidase, membrane), the latter containing a consensus sequence
known from zinc-binding metalloproteinases.

We then used DAVID [45, 46] and Enrichr [47, 48] to perform Gene Ontology (GO) analysis on the CS
signature (Supplementary Figure 4). For both GO tools the most significant terms were related to
zinc/metal-ion binding and branched chain amino acid (Leucine, Isoleucine and Valine) degradation.
When inspecting the CS signature genes at NCBI, we noticed that many genes did not have any
associated functional description, while at the same time having high prostate specific expression. A
potential challenge for our GO analysis is that the prostate specific function of many of the genes in
our CS signature is not known. We therefore applied GAPGOM, an alternative GO analysis tool where
each gene is associated with functions based on consensus ontology terms for genes it is correlated
with [49] (methods, Supplementary File 4). This analysis revealed strong gene ontology terms related
to mitochondria, ER (endoplasmic reticulum), golgi, lysosome and exosome cellular components,
which would fit well with a secretory path of citrate. When we performed Principal Component
Analysis (PCA) to group genes according to their GO terms (see methods), the six metallothioneins
formed a distinct cluster related strongly to zinc/metal-ion binding (Figure 5A, Supplementary File 4).
In addition, the metallothioneins also showed strong associations with the mitochondrial respiratory
complex and electron transport chain.

We also performed network analysis on the 150 genes in the CS signature (Supplementary Figure 5),
where the genes (ALOX15B, RAB27A, ENDOD1, SLC45A3, NCAPD3, EHHADH, ACADS8, AFF3, NANS and
YIPF1) were identified as the top 10 hubs in the network. These hub-genes were all ranked among the
top 20 in the CS-signature and had significant GO terms associated with branched chain fatty acid
catabolism/degradation. Finally, we compared CS signature ssGSEA scores with cell-types specific
gene signatures from a single-cell RNA-Seq study on normal prostate tissue [50]. The CS signature
scores showed high correlation with prostate luminal cells (the cells mainly responsible for secretion),
but not basal cells, and a negative correlation to stromal fibroblasts and smooth muscle cells (Figure
5B). Moreover, the luminal gene signature also included several of the metallothionein genes,
corroborating the potential importance of these genes.
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Figure 5: Genes and ontologies. A) Principal Component Analysis (PCA) for Gene Ontology terms
associated with CS signature genes. The GO terms are based on a consensus analysis over datasets 1-
12 (see methods). The only observable cluster is formed by the six Metallothioneins from the CS
signature. B) Correlation of ssGSEA signature with four gene signatures from distinct cell types in a
single cell sequencing dataset (basal and luminal from the prostate epithelium, fibroblasts and
smooth muscle cells from stroma) [50] in 9 datasets with normal prostate samples. The CS gene
signature correlates with luminal epithelial cells (the cell-type mainly responsible for secreting citrate
and spermine), while the correlation to stroma tissue types is negative. Dataset 9 is from laser
dissected epithelium, which lack stroma tissue.
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The CS signature is depleted in prostate model systems

To reveal detailed function of the genes highlighted in the previous section will need further wetlab
experiments. We therefore wanted to identify suitable model-systems where the possible role of
these genes and their mechanisms could be further studied. Unfortunately, we found the
identification of model systems to be a challenge.

We tested the CS signature on publicly available gene expression datasets from various model systems
for prostate cancer using ssGSEA. In the Prensner (dataset ID 10), 58 expression profiles from cell-lines
were analyzed together with tissue and metastatic samples, including the four most common prostate
cancer cell-lines PC3, DU145, LNCaP, VCaP, and the normal prostate cell lines RWPE and PrEC. This
unique collection of sample types makes the Prensner dataset an excellent reference for comparisons.

CS signature ssGSEA scores from the Prensner cell-lines were consistently at the low end, compared
to both tissue and metastatic samples (Figure 6A), indicating that cell-lines derived from prostate do
not secrete citrate and spermine. This observation was confirmed in Taylor (dataset ID 3), which also
contained four cell-line samples (Supplementary Figure 6). When comparing different cell-lines,
androgen responsive cell-lines (LNCaP and VCaP) generally have higher CS signature ssGSEA scores
then androgen resistant (DU145 and PC3) cell-lines (Figure 6B). The overall highest CS scoring cell-line
is MDA-Pca-2b (an androgen responsive cancer cell-line). Interestingly, normal prostate cell-lines
(RWPE and PrEC) do not score higher than the cancer cell-lines. The relative differences in CS ssGSEA
scores between the different cell-lines were highly stable, which was confirmed when assessing
additional cell-line samples in CCLE (Cancer Cell Line Encyclopedia, dataset ID 24) (Figure 6C), Sdgaard
(Dataset ID 26) and E-MTAB-2706 (dataset ID 25). (Supplementary Figure 7 and 8, respectively).
Additionally, results from cohort CCLE and E-MTAB-2706 show that androgen resistant prostate cancer
cell-lines (DU145 and PC3) do not separate from cell-lines of other cancer origin in terms of CS
signature GSEA scores (Figure 6C, Supplementary Figure 8).

To enable the comparison of ssGSEA scores between datasets, we implemented a method to adapt
ssGSEA scores from different datasets to the Prensner dataset (see Methods). To demonstrate the
utility of this implementation, we first adapted the CS ssGSEA scores from Taylor to Prensner, since
both datasets included tissue samples (normal and cancer), metastatic samples as well as cell-lines.
The CS ssGSEA scores where highly concordant down to the level of different cell-types between the
two cohorts after adaptation (Supplementary Figure 9). We then used the adaptation strategy to
compare datasets from organoids and mouse models (dataset IDs 27-31) to the Prensner dataset to
investigate whether they would resemble tissue or cell-lines. None of the model-systems analyzed
seemed to produce CS ssGSEA scores at levels similar to prostate epithelial tissue or low-grade primary
cancer tissue. Instead their CS scoring range typically compare to the cell-lines from Prensner (Figure
6D). Overall, these results call attention to the research challenge for current prostate model systems
to recapitulate the function of normal prostate epithelium in terms of citrate and spermine secretion.

Figure 6: Model systems. A) CS signature ssGSEA scores for all sample types in Prensner (dataset ID
10), including 58 prostate normal and cancer cell-line samples. Cell-line samples, in general, have
very low CS signatures scores. B) Average CS signature ssGSEA scores for different cell-types in
Prensner. The ssGSEA scores were highly reproducable within samples from the same cell-type.
Androgen responsive cell-types (MDA-Pca-2b, LNCaP and VCaP) have somewhat higher ssGSEA
scores than androgen resistant cell-types (DU145 and PC3). Prostate normal cell-types are similar to
cancer cell-types. Number of samples of each cell-type are: MDA-Pca-2b (1), DU145(10), PC3(2),
LNCaP(7), VCaP(10), RWPE(9), PrEC(4). C) CS signature ssGSEA scores in 1019 cancer cell-types from
CCLE (dataset ID 24). Androgen responsive prostate cancer cell-types score higher than cancer cell-
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types from other cancers, while androgen resistant cell-lines score similar to cell-types from other
cancers. D) : CS Signature ssGSEA scores in four datasets with prostate and prostate cancer derived
organoids and model systems (dataset IDs 27-30) and one dataset with prostate tumors from mouse
models (Aytes, dataset ID 31). The ssGSEA scores were adapted and normalized to CS signature GSEA
scores from Prensner. All model systems have consistently low GSEA scores, similar to prostate
cancer cell-lines. In total 64 model system samples and 384 mouse tumor samples were analyzed.
Dataset descriptions: 27: 2D and 3D cultures derived from prostate cancer cell-line LNCaP (9 samples)
and normal cell-line RWPE (9 samples), in total 18 samples. 28: Organoids from primary prostate
epithelial cells in mono and co-culture with stromal cells (7 samples), stromal cells in co-culture (4
samples) and macrodissected tumor tissue (2 samples), in total 13 samples.29: Cells from benign
prostatic bulk (3+3 samples), basal (3+3 samples) and luminal (3+3 samples) tissue cultured in two
different media, in total 18 samples. 30: Mouse prostate organoids with WT (6 samples) and mutated
(6 samples) gene SPOP, in total 12 samples. 31: Prostate tumor tissue from mouse models with
different genetic modifications, in total 384 samples. (See also Supplementary Figures 6-9).

Discussion
Expanding the view of zinc-binding proteins and zinc-transporters in the prostate

Six metallothioneins were identified as part of the CS gene signature in this study and constituted a
functionally distinct cluster particularly associated with zinc-binding. Metallothioneins are low
molecular weight, metal binding proteins localized to the Golgi, and have different expression in
normal prostate and prostate cancer [51, 52] . In addition, expression levels can change in response
to zinc-stimuli in prostate cell-lines [53]. It has also been speculated that metallothioneins can affect
mitochondrial function, since they are small enough to enter the mitochondrial membrane bilayer
carrying zinc [54]. This suggestion fits with the GO associations of metallothioneins to mitochondria,
respiratory complex and the electron transport chain. Otherwise, the other potential zinc-binding
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genes discovered in this study have not been studied previously in the context of citrate accumulation
and secretion in the prostate.

The zinc-transporter SLC39A1 (ZIP1) was not a part of the CS-signature, though this gene has
previously been shown to be important for zinc-homeostasis in prostate cells. There could be several
reasons for this discrepancy. First, this study only measures genes at the transcript level, while it is
possible that SLC39A1 is regulated at the protein level [6]. However, expression levels from genes
displayed in NCBI-gene resource show that SLC39A1 is not prostate specific, but expressed in most
tissues. Though SLC39A1 has the ability to transport zinc within prostate tissue, it may not be the main
determinant of prostate specific zinc regulation in vivo. In this context is should also be noted that
none of the metallothioneins displayed prostate specific expression in the NCBI-gene database. Of the
zinc transporters, most prostate specific expression is observed for SLC39A2, SLC39A6, SLC39A7 and
SLC39A10, where SLC39A10 was part of the CS signature. SLC39A6 and SLC39A7 (though not part of
the signature) were also positively correlated with citrate in our analysis, while SCL39A1 and SLC39A2
showed no correlation. Of the potential zinc-binders, AZGP1 show the most prostate-biased
expression, but the function of this gene is unknown. Overall, more targeted research experiments
are needed to identify the genes that control zinc-levels in the prostate, and how they perform their
function.

Previous studies have shown that prostate epithelial cells can utilize glucose and aspartate as the
carbon sources for citrate production. The gene GOT2 (glutamic-oxaloacetic transaminase 2, also
named mAAT-mitochondrial aspartate aminotransferase in previous reports) was shown to be
responsible for the conversion of aspartate to oxaloacetate and citrate in the mitochondria. GOT2 was
a part of the CS signature, in addition to SMS (spermine synthase), and both GOT2 and SMS showed
high tissue-expression in prostate according to NCBI-Gene. For these two genes our results fit with
previous mechanistic knowledge [9, 55].

Very little is known about the role of branched chain amino acid catabolism for normal prostate
function. All of the three amino acids leucine, isoleucine and valine are upregulated in prostate cancer
[12], indicating their relevance for cancer transformation, and this fits with our finding that the
degradation of these amino acids is important to maintain normal prostate function. Branched chain
amino acids can possibly work as precursors for citrate production [56], and leucine can act as a sensor
for mTOR-pathway activation [57], which is generally regarded as an important pathway in prostate
cancer development [58].

Expression of CS signature genes are with prostate cancer progression

There has been a discussion on whether the reduced citrate levels observed in prostate cancer are
merely a result of a reduction in luminal glands leading to reduced amounts of prostatic fluid [59].
However, our results clearly show that changes in citrate and spermine levels are accompanied by
changes at the gene expression level, and this study supports the hypothesis that changes in genes
responsible for citrate and spermine secretion are important for the cell transformations leading to
cancer. Further research into these mechanisms can lead to new discoveries and treatment targets in
the management of prostate cancer.

The challenge of finding a model system for normal prostate

We could not find CS signature enrichment comparable to tissue samples in any of the cell-lines and
model systems we investigated. Androgen responsive cell-lines seem to maintain some traces of

prostate specific functions compared to other model systems, but their CS signature enrichments are
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far below that of in vivo tissue and indicate that most parts of the prostate-lineage specificity is lost.
Thus, these observations question the relevance of these model systems for studying normal prostate
function and transitions from normal cells to prostate cancer cells. The secretory function can possibly
be triggered by proper stimuli like dihydrotestosterone (DHT), testosterone or prolactin [60-62]. For
example, LNCaP (but not PC3) cells were able to secrete citrate when stimulated by DHT [61].
However, it was also observed that the rate of citrate consumption by the TCA cycle increased
proportionally in the same experiment [61]. Since these experiments were performed before the era
of transcriptomics, it would be interesting to repeat these experiments with accompanying

transcriptomics analysis to identify the genes that change during such stimuli.
Signature refinement produces more robust gene signatures with improved integrity

In this manuscript, we have argued that improved gene signhature integrity (assessed by CMS) can be
achieved by integrating data from multiple prostate cancer datasets. The aim was to remove noise
and produce better and more robust gene signatures in terms of biological interpretation. We found
several evidences that more robust signatures were achieved by integration of datasets. First, we
observed that the refined signature improved CMS scores compared to the initial signature in
independent normal prostate samples (Figure 2D). Second, when we used the initial gene signature
for ssGSEA in the Hsu dataset, we observed no clear separation between prostate and other
metastatic samples (Figure 4D, Supplementary Figure 10). Third, in the FANTOM dataset, the one
Prostate Adult Tissue sample were only ranked as the highest scoring sample after signature
refinement, but not when the initial signature was used (Figure3D, Supplementary Figure 11).

The refinement procedure generated an improved CS signature ssGSEA scores which was particularly
pronounced for prostate samples. We also tested the effect of refinement ion gene expression data
from other tissue types in the TCGA-complete dataset (33 cancer and 22 normal tissue types). Other
cancer types showed both elevated and decreased GSEA scores after refinement, and elevations were
consistently lower than in prostate samples (Supplementary Figure 12).

The best CS signature ssGSEA score improvement after refinement were also observed particularly for
the metabolites citrate and spermine. For this test, we redid the procedure to create initial and refined
signatures for all metabolites and lipids in the metabolite data from Bertilsson (23 metabolites and 17
lipid signals). We then calculated ssGSEA scores in all cancer and normal tissue types in the TCGA-
complete dataset for each metabolite/lipid signature (Supplementary Figures 13-16). The most
elevated ssGSEA scores were for citrate and spermine in prostate compared to other tissue types,
while other metabolites showed both elevated and decreased ssGSEA score for other tissue types
compared to prostate. This observation was similar for both cancer and normal tissue samples. Thus,
the effect of refinement was highest for citrate and spermine specifically in the prostate. Interestingly,
we noted that other metabolites/lipid signatures were elevated in prostate, particularly putrescine (a
precursor for spermine in the polyamine pathway) a few lipid signals and glucose, indicating prostate
specific regulation of other metabolites than just citrate and spermine. These observations were
confirmed in the FANTOM dataset (dataset ID 23) (Supplementary Figure 17).

In summary, we conclude that the identification followed by refinement procedure used in this study
created a robust and unbiased gene signature biologically relevant for in vivo spermine and citrate
secretion in the prostate. In a wider perspective, the module approach may represent a general
strategy to find robust genesets related to other —omics data (for example metabolomics, proteomics
or lipidomics), as long as these -omics data are accompanied with gene expression data.
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Conclusion

The genes and mechanisms governing normal prostate function, in particular the ability to accumulate
and secrete large amounts of citrate and spermine, are mostly unknown. We have used bioinformatics
on an extensive collection on prostate datasets to discover genes relevant for secretion of citrate and
spermine in the prostate. Based on this we have created a 150 gene signature which can be used to
assess the degree of citrate and spermine secretion in a single sample. The bioinformatics approach
enabled us to validate and explore the gene signature in a large number of contexts based on public
data, including normal vs cancer enrichment, spatial colocalization on tissue, tumor grade, metastasis
and different model systems. The employed approach is generalizable to other types of data when
measured together with gene expression. The signature showed an inverse association to cancer
progression from normal through low and high grade to metastasis. The genes in the signature were
enriched for zinc-binding, mitochondrial function, respiratory complex, secretion through the ER —
golgi - lysosome — exosome pathway and branched chain amino acid catabolism, pointing to known,
suggested and novel mechanisms for normal prostate function. The lack of suitable model systems is
a challenge, and need to be established to study these findings further.

Methods

Datasets

A list of all datasets with description and references are given in Supplementary File 1
Module refinement procedure

A schematic representation of the procedure with stages 1-3 is shown in Figure 7A. The procedure
make use of the following abbreviations: M=Module, G=several genes, g=single gene, D=Dataset,
P=gene expression Profile, TB=Table, av=average, in=initial, rf=refined, c=candidate, m=missing,
cr=correlation, ic=intra-correlation, CMS = Correlation Module Score (CMS), MGCR = Module Gene
Contribution Score (MGCR).
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Figure 7: Module refinement procedure and Correlation Module Score (CMS) A) Flowchart of the
module refinement procedure. Each stage 1-3 are explained in the main text. B) Example of a
correlation table used to calculate the Correlation Module Score (CMS). This gene module has four
genes (G1-G4) and a CMS of 0.32.

Correlation Module Score (CMS)

To assess how well the correlations between genes in a module (or geneset) is preserved for all (or a
subset of) samples in a particular dataset, we created the Correlation Module Score (abbreviated
CMS). The CMS for a module in a dataset is calculated by first creating a table of intra-correlations
between expression profiles for all genes in the module for that dataset (Figure 7B). Here the
expression profile for a gene is the vector consisting of gene expression values over all samples in that
dataset. For a 150-gene module, this will create a table with 150*150 = 22500 correlation values (a
table for a hypothetical 4-gene module is shown in Figure 7B). The CMS is then calculated as the
average over all correlations included the table (but excluding self-correlations). A high CMS
represents a high integrity of the gene module in the dataset, indicating the preservation of strong
correlations between the module-genes in the datasets. Likewise, a low CMS would indicate weak
relations between the genes in the module, and the loss of gene module integrity. We further assume
if a gene module has a high CMS in a dataset, it would indicate that the biological process the module
represents is important or active for samples in this dataset. In this study the datasets are patient
cohorts with normal and cancer tissue samples from the prostate.

Refinement Procedure - Stage 1

The purpose of Stage 1 in the module refinement procedure is to find the contribution of each gene
in the initial CS module from Bertilsson to the overall CMS for the module. To represent this
contribution we introduce the Module Gene Contribution Score (MGCS), which is the average over all
correlations between that gene and each of the other genes in the module (or, the overall contribution
of that gene to the overall CMS for the module). In Figure 7B this will be the average of the rows
(excluding the diagonal), where each average value represent the MGCS score for a gene. A high MGCS
score will indicate that the expression profile of the gene fits better with expression profile of other
genes in the module, while a low MGCS score indicates a gene expression profile that deviates from
other genes in the module.

Procedure:
S1: For each dataset D (dataset ID 1-12 with normal and cancer tissue samples from the prostate):
Find the genes from the initial CS module, in-M-G, present in the dataset D, in-M-G-D

Calculate the intra-correlation table, ic-TB-D, for the initial CS module gene profiles, in-M-G-P-D, in
dataset D

Calculate the corresponding CMS score, CMS-D, from the intra-correlation table, ic-TB-D, in dataset
D

Calculate the MGCS score for each initial CS gene in-g in CMS-D, in-g-MGSC-D

For missing initial CS module genes, m-in-M-G-D, in dataset D: Set the in-g-MGSC-D to a dataset
specific missing gene constant equal to the CMS-D multiplied by 0.5

19


https://doi.org/10.1101/2021.09.21.461176
http://creativecommons.org/licenses/by/4.0/

O 00 N O U

10

11

12

13

14
15

16

17
18

19
20

21

22

23
24
25
26
27
28
29
30

31

32

33
34

35

36

37

bioRxiv preprint doi: https://doi.org/10.1101/2021.09.21.461176; this version posted September 24, 2021. The copyright holder for this

preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY 4.0 International license.

Store the in-g-MGCS-D for each initial CS module gene in each dataset D in an Initial MGSC table, in-
MGCS-TB for comparison in Stage 3.

Store MGSC for missing genes in each cohort, m-MGSC, for Stage 2.
Refinement Procedure - Stage 2

The purpose of Stage 2 is to calculate, for all candidate genes c-g present in any one of the 12 datasets
D, a score which describes how well each candidate gene expression profile fit with the expression
profiles of genes in the initial CS module. This is done by comparing each candidate gene expression
profile c-g-P-D to the average expression profile, in-M-G-P-D-av, of the genes in the initial CS module
for each dataset D. We regard any gene present in any of the 12 datasets D as candidate genes.

Procedure:

Define candidate genes, c-G, by the union of all genes present in any dataset D
For each dataset D:

Find the genes from the initial CS module, in-M-G, present in dataset D

Calculate the average expression profile, in-M-G-P-D-av, over expression profiles for all initial
module genes in-M-G-P-D in dataset D

For each gene g present in dataset D:

Calculate the correlation between the expression profile of gene g and the average profile in-M-G-P-
D-av for dataset D

For genes not present in this dataset, the correlation is set to the cohort specific missing gene
constant in m-MGSC from Stage 1

Store all correlations in a table, cr-TB ,for evaluation in Stage 3
Refinement Procedure - Stage 3

The purpose of Stage 3 is to identify the genes that correlates best with genes in the initial CS module
over all 12 datasets, but that were not a part of the initial CS module to begin with. From this analysis
we select the 150 best candidates, and compare their MGCS to the MGSC for the genes in the initial
CS module from Stage 1. If the MGSC for a new candidate gene is higher than the MGSC for an initial
CS module gene, the initial gene is replaced by the candidate gene. The final output is a refined CS
module, where the robustness of gene correlations across all 12 prostate cancer datasets are taken
into consideration in the selection of genes for the module. This refined module is defined as the CS
gene signature.

Procedure:
Exclude initial CS module genes in-M-G from the correlation table cr-TB from Stage 2

Calculate the average correlation, c-g-cr-av, for each of the remaining candidate genes over all 12
datasets in cr-TB.

Sort genes in correlation table cr-TB by average correlation c-gr-cr-av.
Select 150 candidate genes, c-g-150, with the highest average correlation, c-gr-cr-av

For each dataset D:
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For each of the top 150 candidate genes, c-g-150:

Calculate the average correlation of gene c¢-g-150 to all genes from the initial CS module, in-M-G-D,
and use the average correlation as the candidate gene MGSC, c-g-MGSC-D. This is a measure of the
fit for the candidate gene, c-g-150, to the initial CS module in dataset D.

For candidate genes not present in dataset D, the MGSC is set to the cohort specific missing gene
constant in m-MGSC from Stage 1

Combine the candidate MGSC table c-g-MGSC-D with the initial MGSC table in-g-MGSC-D from Stage
1. The combined table , comb-TB, will contain 300 genes, 150 from the initial CS module and 150
new candidates.

Calculate the average MGSC score, g-MGSC-av, for each gene over all 12 datasets for the combined
table comb-TB.

Sort genes by average MGSC score, g-MGSC-av.

Select the 150 genes with the highest average MGSC score, g-MGSC-av, as genes for the refined CS
module, rf-G-M.

The number of genes from the initial CS module present in each of the 12 datasets are shown in
Supplementary Table 1.

Single sample Gene Set Enrichment Analysis (ssGSEA)

Single sample Gene Set Enrichment Analysis (ssGSEA) was performed by sorting the genes in each
sample according to their expression level in descending order. Then a ssGSEA score was calculated
for each sample implementing a previously published algorithm [43]. We did not perform centering
and normalization of the expression values for ssGSEA in this study. This is because citrate and
spermine secretion, as well as the content of stroma tissue in the sample, are dominating biological
features of these samples where differences should be visible at absolute expression level. However,
we observed good correlations (0.86 — 0.97) for ssGSEA scores based on normalized and absolute
expression values. A few of the datasets were only presented with centered expression values in the
public resource, and for these we used centered values for ssGSEA. For the spatial transcriptomics
data from Berglund (dataset ID 20), we did use centered and normalized expression for ssGSEA in each
pixel. This was necessary due to many pixels with a high number of unexpressed genes, and/or very
few genes with abundant expression.

Adapted and normalized ssGSEA

The magnitude of GSEA scores depend on both the size of the gene set used, and the number of total
genes in the ranked list input to the GSEA calculations. To be able to compare ssGSEA scores from
Prensner to other datasets, we adapted the ssGSEA by only using the genes shared between the
datasets in each comparison. In this way, both the number and identity of genes, as well as the size of
the geneset will be identical for both datasets. For the comparison of several datasets in Figure 4D,
we also normalized the GSEA scores in Prensner to 0-1 scale for each comparison. The adapted and
normalized score calculated in each comparison were highly correlated (average 0.99), and had a small
standard deviation of the mean (0.004), and we conclude that they are comparable between the
datasets.

GO analysis
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The GO analysis was based on gene annotation generated with the GAPGOM tool [49] [PMID:
30567492, GAPGOM in Bioconductor]. GAPGOM will predict gene annotation for a target gene by
identification of well-annotated genes showing correlated expression pattern with the target gene
across several experiments, and then estimate a predicted annotation for the target gene as a
consensus over the co-expressed genes, based on the hypothesis that co-expressed genes may be
involved in similar or related processes. This prediction of annotation terms may facilitate a richer
functional annotation of genes, in particular for genes where there is a lack of experimental
annotation data.

Since GAPGOM only allows us to do annotation prediction one gene at a time, GAPGOM was used in
conjunction with Snakemake
[https://snakemake.readthedocs.io/en/stable/project info/citations.html] to create a software
pipeline. This pipeline was used to predict GO term annotation for all 150 genes in the CS-signature
on each of dataset 1-12. Since GO annotation consists of three different ontologies (MF, BP, CC), each
prediction is done separately for each. This then outputs a list for each gene in each dataset for each
GO ontology, in total 1800 lists. Each list contains one or multiple GO-term predictions, with the
following information for each prediction; GO-ID, Ontology, P-value, FDR/g-value (Bonferoni
normalized P-value), The description of the GO term, and the used correlation method for the
prediction. For each list, only GO terms with a g-value > 0.05 were selected. This generated a total of
21080 GO terms for all lists, where 5354 GO terms were unique. A table was created with the number
of genes as rows and the number of unique GO-terms as columns. For each gene and GO-term, we
summed —log10 g-values from all datasets, producing an overall score for each GO-term and gene. We
made three tables, one for all 150 genes, one for the six Metallothioneins, and one for the 10 network
Hub-genes.

Network analysis

Correlation-based networks of the CS signature genes for each dataset are created as follows: The 150
genes are represented as nodes in the network and the pairwise Pearson correlation between genes
represents the interactions between nodes. To reduce the complexity and highlight the most powerful
interactions, only the 20 strongest outgoing links (in absolute Pearson correlation) from each node are
kept. In this way, the most central nodes will have 20 outgoing links and up to 130 ingoing links from
other nodes, while some of the non-central nodes will only have 20 links. By calculating the node-
degree (number of links to other nodes) for each node, genes with high node-degree reflects central
genes for driving the biological processes [63]. This network construction is performed on cancer
samples for all 12 datasets, and the 10 genes with the highest mean degree across the datasets are
considered as the top 10 hub genes.

Supplementary Material

Supplementary File 1: Overview of datasets with references used in this study.
Supplementary File 2: Supplementary tables and figures

Supplementary File 3: CS signature genes and manually curated functional annotation

Supplementary File 4: Top 20 GO terms for all CS signature genes, six Metallothioneins and 10
network Hub-genes in the categories Biological Process (BP), Molecular Function (MF) and Cellular
Component (CC).
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