

1
2 **Cryo-electron tomography reveals structural insights into the membrane**
3 **binding and remodeling activity of dynamin-like EHDs**

4
5
6
7 **Arthur A. Melo^{1,2*}, Thiemo Sprink^{1,3}, Jeffrey K. Noel¹, Elena Vázquez Sarandeses^{1,2}, Chris**
8 **van Hoorn¹, Justus Loerke⁴, Christian M. T. Spahn⁴, Oliver Daumke^{1,2*}**

9
10
11
12
13 ¹Max-Delbrück-Centrum for Molecular Medicine, Crystallography, Robert-Rössle-Straße 10,
14 13125 Berlin, Germany

15
16 ²Freie Universität Berlin, Institute of Chemistry and Biochemistry, Takustraße 6, 14195 Berlin,
17 Germany

18
19 ³Cryo-EM Core Facility, Charité - Universitätsmedizin Berlin at the MDC, Robert-Rössle-Straße
20 10, 13125 Berlin, Germany

21
22 ⁴Institut für Medizinische Physik und Biophysik, Charité - Universitätsmedizin Berlin, 10117
23 Berlin, Germany

24
25 * Correspondence and requests for materials should be addressed to A.A.M.
26 (arthur.melo@ucsf.edu) or O.D. (oliver.daumke@mdc-berlin.de).

27
28
29
30
31
32
33
34
35
36
37
38 **Teaser**

39 Structure determination of an EHD4 ATPase filament on membranes suggests a mechanism for
40 ATP-dependent membrane remodeling

41
42
43 Keywords: EHD ATPases, dynamin family, oligomerization, membrane remodeling, cryo-
44 electron tomography, subtomogram averaging, membrane binding site

45 Abstract

46 Dynamin-related Eps15-homology domain containing proteins (EHDs) oligomerize on
47 membrane surfaces into filaments leading to membrane remodeling. EHD crystal structures in an
48 open and a closed conformation were previously reported, but structural information on the
49 membrane-bound EHD oligomeric structure has remained enigmatic. Consequently, mechanistic
50 insight into EHD-mediated membrane remodeling is lacking. Here, by using cryo-electron
51 tomography and subtomogram averaging, we determined the structure of an EHD4 filament on a
52 tubular membrane template at an average resolution of 7.6 Å. Assembly of EHD4 is mediated
53 via interfaces in the G-domain and the helical domain. The oligomerized EHD4 structure
54 resembles the closed conformation, where the tips of the helical domains protrude into the
55 membrane. The variation in filament geometry and tube radius suggests the AMPPNP-bound
56 filament has a spontaneous curvature of approximately 1/70 nm⁻¹. Combining the available
57 structural and functional data, we propose a model of EHD-mediated membrane remodeling.

58

59 Introduction

60 Eps15-homology domain containing proteins (EHDs) comprise a eukaryotic family of
61 dynamin-related ATPases (1). Mammals contain four closely related EHD homologues (2),
62 while only a single member is present in *Drosophila* (termed PAST-1) and *C. elegans* (Rme-1).
63 Rme-1 mediates the release of cargo receptors from the endocytic recycling compartment (3, 4).
64 A similar function was demonstrated for mammalian EHD1 and EHD3 (5, 6), which also
65 function in the formation of ciliary vesicles (7, 8). Furthermore, a conserved tethering complex
66 including EHD1 was shown to coordinate vesicle scission and fusion at sorting endosomes (9).
67 EHD2 assemble at the neck of caveolae in ring-like oligomers (10-15) that control cellular fatty
68 acid uptake (12, 16). EHD4/Pincher mediates macropinocytosis required for retrograde
69 endosomal Trk signaling (17, 18). EHD4 also recruits EHD1 to sorting endosomes via hetero-
70 dimerization (19). Most recently, a role of an EHD4 complex in the trafficking of vascular
71 endothelial cadherin (VE-cadherin) during angiogenesis was revealed (20).

72 EHDs harbor a dynamin-related GTPase (G) domain that binds to adenine rather than
73 guanine nucleotides (21, 22). EHDs tubulate negatively-charged liposomes in an ATP-dependent
74 fashion by the formation of ring-shaped and helical oligomers on the remodeled membranes (22-
75 24). Similar to other dynamin superfamily members, oligomerization on membranes stimulates

76 nucleotide hydrolysis (22, 25). In reconstitution experiments, ATP hydrolysis in EHD1 induce
77 bulges in tubular membrane templates, leading to membrane scission (25).

78 The crystal structure of the EHD2 dimer in the presence of a non-hydrolyzable ATP
79 analogue revealed a dynamin-related extended G-domain that mediates stable dimerization via
80 an EHD family-specific dimerization interface (interface-1) (22). Residues at the N- and C-
81 terminal ends of the G-domain form a composite helical domain. In the crystal structure of the
82 reported EHD2 dimer, the two helical domains protrude in parallel away from the G-domains.
83 This orientation was termed the ‘closed’ conformation of EHDs. The tip of the helical domain
84 was shown to constitute the primary membrane-binding site (23).

85 The C-terminal EH domains interact with linear peptide sequences containing Asn-Pro-
86 Phe (NPF) motifs (26) that are present in binding partners, such as MICAL-L1 (27, 28),
87 Rabenosyn-5 (9, 29), EHBPI (30) and PACSIN1/2 (13, 15, 31). In the EHD2 dimeric structure,
88 the EH domains bind back to a Gly-Pro-Phe (GPF) motif in the opposing monomer. In this
89 orientation, the C-terminal tails of the EH domains are positioned into the nucleotide-binding site
90 and block the G-interface. The EH domains may thereby auto-inhibit EHD assembly (22).

91 The crystal structure of an N-terminal deletion variant of EHD4 in the presence of a non-
92 hydrolysable ATP analogue revealed a 50° rotation of the helical domains compared to the
93 EHD2 crystal structure (32). In this conformation, the two helical domains in the dimer point
94 away from each other. This arrangement was termed the ‘open’ conformation of EHDs.
95 Spectroscopic experiments indicated that EHD2 binds in the open conformation to flat
96 membrane bilayers (33). Furthermore, the EH domains were displaced from the G-domain in the
97 EHD4 structure, suggesting that the open conformation is not compatible with EH-domain
98 mediated auto-inhibition (32).

99 An N-terminal sequence stretch folds back into a conserved hydrophobic pocket of the G-
100 domain in the EHD2 structure (23). In the presence of membranes, the N-terminal residues were
101 shown to insert into the lipid bilayer. In turn, a flexible loop at the periphery of the G-domain,
102 the ‘KPF loop’, inserts into the hydrophobic pocket of the G-domain and serves as an
103 oligomerization interface. Deletion of N-terminal residues is therefore expected to stabilize the
104 KPF loop in the G-domain pocket and promote oligomerization. Accordingly, enhanced
105 membrane recruitment and oligomerization was observed for EHD2 and EHD4 variants lacking
106 the N-terminal residues (23, 32).

107 Based on the two available crystal structures, a nucleotide-driven activation model of
108 EHDs has been proposed (32). However, since membranes were lacking in any of the reported
109 structures, the detailed conformation of EHDs on membranes and, consequently, their membrane
110 remodeling and oligomerization mode have remained unknown. To address this open issue, we
111 reconstituted an N-terminally truncated EHD4 variant on membrane templates and determined
112 its structure by cryo-electron tomography (cryo-ET) and subtomogram averaging (STA). We
113 thereby clarify the oligomerization mode, reveal how EHD4 interacts with the membrane,
114 demonstrate how the EHD4 oligomer adapts to various membrane curvatures and propose a
115 model for EHD-mediated membrane remodeling.

116

117 **Results**

118 **Cryo-ET and subtomogram averaging reveal the structure of the membrane-bound EHD4 119 oligomer**

120 To understand the molecular mechanisms of EHDs assembly on membranes, EHD4-
121 coated membrane tubules were reconstituted *in vitro*. To this end, we used a previously described
122 N-terminal deletion construct of mouse EHD4 (EHD4^{ΔN}, corresponding to amino acids 22-541)
123 that forms a regular protein coat on membranes and displays enhanced membrane recruitment
124 when expressed in eukaryotic cells compared to full length EHD4 (32). Full-length EHD4 cannot
125 be expressed in a soluble form in bacteria.

126 We previously reported that EHD-mediated membrane remodeling is dependent on the
127 presence of ATP (23, 32) and, therefore, performed the *in vitro* reconstitutions in the presence of
128 the non-hydrolysable ATP analogue, adenylyl-imidodiphosphate (AMPPNP). Liposomes
129 containing 50% Folch extract from bovine brain, 40% phosphatidylethanolamine and 10%
130 cholesterol were chosen as template since they reproducibly yielded densely coated lipid tubules.
131 These tubules were highly heterogeneous, with luminal diameters ranging between 30 to 100 nm
132 (Fig. 1A and Movie S1) and a variety of different shapes (Fig. S1). The protein coat had a
133 thickness of ~12 nm (Fig. 1A).

134 To determine the structure of the EHD4 coat, we used cryo-ET and reference-free
135 subtomogram averaging (STA) (Fig. 1B). For this, we collected 56 tilt-series using dose-
136 symmetric tilt scheme, from -60° to 60° with 3° of increment. We divided the data into two half-
137 datasets, which were processed independently, and the resulting structures were compared by

138 Fourier Shell Correlation and averaged together to generate a final structure from 23,813
139 subtomograms (Table S1, Fig. S2A). The structure was solved at an average resolution of 7.6 Å
140 (Fig. 1C, Fig. S2A, B) and revealed right-handed helical filaments wrapping around lipid tubules
141 (Fig. 1D). The positions of the G-, helical and EH domains could be unambiguously assigned in
142 the density maps by fitting them as rigid bodies, based on the crystal structures (Fig. 1C, Movie
143 S2 and Fig. 2). In the filaments, the EH domains are located furthest from the membrane, the G-
144 domains at the center and the helical domains closest to the membrane (Fig. 1C). An atomic
145 model for the EHD4 filament was obtained using a flexible fitting strategy using the EHD2
146 crystal structure as a guide (see Methods).

147

148 **Architecture of the EHD4 filaments**

149 The unit particle used for subtomogram averaging contained three parallel filaments of
150 oligomeric EHD4^{ΔN}. The center filament (F_i) is composed of three EHD4 homodimers, and the
151 adjacent filaments (F_{i+1} and F_{i-1}) of three EHD4 monomers each (Fig. 2A). As in the previously
152 reported crystal structures, dimerization of EHD4 is mediated by helix α6 in the G-domain. It
153 forms a highly conserved, two-fold symmetric interface, to which we refer as interface-1 (Fig.
154 2B).

155 Each EHD4 dimer interacts in the filament through two additional interfaces (Fig. 2B).
156 Interface-2 is formed between the helical domain of one protomer and the G-domain of the
157 adjacent protomer along the filament. It involves the KPF loop in the G-domain and helices α8
158 and α12 of the adjacent helical domain. Density of the KPF loop at the periphery of the G-
159 domain dimer is consistent with the open EHD4 crystal structure (Fig. 2A, B). Mutations in this
160 loop were shown to disrupt oligomerization (32).

161 Interface-3 is formed between G-domains of two adjacent dimers across the filament
162 (Fig. 2B) and corresponds to the archetypal G-interface that is conserved in all members of the
163 dynamin family. Dimerization via this interface induces nucleotide hydrolysis in dynamin-
164 related proteins (34). Accordingly, mutations in this interface in EHD2 were previously shown to
165 abrogate stimulated ATP hydrolysis (22). Highly conserved residues in switch I, switch II, the
166 EHD signature motif (H195) and the N-terminal part of α6 (D228, Q231) are involved in this
167 contact close to the active site.

168 In the EHD2 crystal structure, the EH domains bind back to the opposing G-domains
169 (22). Similarly to this closed conformation, the EH domains were also located on top of the G-
170 domain in our membrane-bound structure (Fig. S3). However, compared to the EHD2 structure,
171 they were shifted away to the periphery (Fig. S3A, C) and stabilized by contacts with EH
172 domains of adjacent dimers (Fig. S3B, D). Accordingly, in this orientation, the C-terminal auto-
173 inhibitory tail may not reach into the active site so that the G-interface can be formed.

174

175 **Membrane binding mode of EHD4**

176 We compared the EHD4 monomer to the reported crystal structures of EHD2 and EHD4.
177 Membrane-bound EHD4 adopted the closed conformation of the helical domain, akin to the
178 reported EHD2 conformation (Fig. 3A). In this conformation, the long, central helix α 8 from
179 each monomer protrudes towards the membrane.

180 By electron paramagnetic spin resonance experiments, EHD2 residues at the tip of the
181 helical domain were shown to insert into the membrane (23). These findings are consistent with
182 the structure of membrane-bound EHD4. Thus, helices α 8 and α 9 in the helical domain engage
183 with the membrane bilayer by inserting hydrophobic residues at the connecting loop into the
184 membrane outer leaflet (Fig. 3B, C). In the membrane-bound structure, the C α atoms of residues
185 K331 and R332 are 1.5-3 Å above the outer leaflet of the bilayer, whereas residues E328, K330
186 were 0.5-2.5 Å below (Fig. 3C). Residues N323, M324 and F325 at the α 8- α 9 connecting loop
187 deeply insert into the membrane, with their C α atom 4, 6, and 8 Å below the membrane density,
188 respectively (Fig. 3C). Charged residues in helix α 9, such as K327, K330 and E333 were not
189 inserted into the membrane but were close enough for interaction with the polar lipid head
190 groups (Fig. 3C). Residues in the membrane binding region are highly conserved amongst EHD
191 paralogues and across different species (Fig. 3D). However, each EHD parologue has a unique
192 combination of membrane-interacting residues (Fig. 3C, D). Thus, EHD proteins bind to
193 membranes through charged residues at helices α 8 and α 9 and conserved hydrophobic residues at
194 the connecting loop, which likely confer lipid specificity (22, 35).

195

196 **EHD4 oligomer assembles on membranes of different curvature**

197 EHD4 $^{\Delta N}$ coated tubules had a wide range of radii (Fig. 4A). Cryo-ET and STA allowed
198 us to probe the architecture of the EHD4 $^{\Delta N}$ coat on individual tubes, and therefore, allowed the

199 geometry of individual filaments to be discerned. The EHD4^{ΔN} coat was governed by a set of
200 related helical families, which varied in pitch, rise, and subunits per turn (Fig. 4B). By placing
201 the map onto its original position with the refined orientations in the tomograms, we measured a
202 filament's helical angle as a function of the underlying tubule radius (Fig. 4A, B).

203 The helical angle, i.e. the deviation of the helical filament from a simple ring around the
204 tube, tended to increase as the tube radius decreased. This relationship is expected for an elastic
205 filament with a spontaneous curvature less than the curvature of the wrapped tube. Similar
206 behavior is seen for highly constricted dynamin coated tubes (36, 37). A best fit suggests that the
207 spontaneous curvature of the AMPPNP-bound-EHD4^{ΔN} filament is 1/68 nm⁻¹ (Fig. 4A, bottom).
208 Fitting to more complicated elastic models suggests that the twist stiffness of the filament is
209 significantly weaker than the curvature stiffness and that the angle of each EHD4^{ΔN} dimer
210 relative to the tube axis plays little to no role in determining the helical angle (Fig. S4).

211 Since it takes energy to maintain membrane curvature, the ability of EHD4^{ΔN} to generate
212 membrane tubes smaller than its spontaneous curvature means that there is some additional
213 factor(s) promoting curvature. An obvious candidate is the membrane interaction of EHD4^{ΔN}. An
214 alternative is the interaction of helices α1 and α12 from neighboring EHD4 monomers (interface-
215 4), which mediates the packing of neighboring filaments into a continuous coat (Fig. 4C, D).
216 Interface-4 shows variation as the radius of the tube varies, and preferences toward a particular
217 orientation would influence the underlying tube radius.

218

219 Discussion

220 Recent advances in cryo-EM have facilitated the structural analysis of membrane-bound
221 protein scaffolds. Helical reconstructions requiring highly homogeneous samples (reviewed in
222 (38)) have allowed, amongst others, medium to high resolution structural elucidation of the
223 acetylcholine receptor (39), BAR domain proteins (40, 41), ESCRT (42), light-dependent
224 protochlorophyllide oxidoreductase (LPOR) (43) and dynamin (44) assembled on membrane
225 tubes. Structures of highly heterogeneous membrane-bound protein coats cannot be determined
226 by helical reconstructions. However, recent advances in image processing have facilitated
227 structure solution of such specimen by cryo-ET analysis combined with subtomogram averaging.
228 Examples include structure determination of the membrane-bound COPI (45) and COPII coats
229 (46), the N-BAR protein Bin1 (47) and the retromer (48). EHD4 samples bound to membrane

230 tubes were highly heterogeneous (32), necessitating the use of cryo-ET for structural analysis.
231 By projecting the obtained subtomogram averages back to the membrane tubes, this analysis
232 allowed us not only to determine the structure of EHD4 within one filament but also to determine
233 the EHD4 filament structures on various membrane curvatures. Our analysis has important
234 implications for understanding how the ATPase cycle of EHDs is coupled to membrane
235 recruitment, filament assembly and disassembly and how EHD4 generates membrane curvature.
236 A resulting working model for the ATPase-dependent membrane cycle is outlined in the
237 following.

238 Previous X-ray crystallographic analyses identified two conformations of EHDs. In the
239 reported EHD2 crystal structure (22), the protein adopts a closed conformation whereas the
240 crystal structure of EHD4 features an open conformation (32). Spectroscopic studies (33) suggest
241 that EHDs are recruited to flat bilayers in an open conformation. Since the membrane interaction
242 involves mostly polar interactions in the helical domain in the open conformation (32), EHDs
243 may be in a rapid exchange with the cytosol. The G-domain is close towards the membrane in
244 the open conformation so that the N-terminus can easily switch from its hydrophobic G-domain
245 pocket into the membrane bilayer. The release of the N-terminus allows the KPF loop to enter
246 the hydrophobic pocket to create oligomerization interface-2. Furthermore, our previous
247 crystallographic study on EHD4 indicated that the G-interface (interface-3 in this manuscript)
248 cannot be formed between EHD4 dimers in the open conformation due to steric constraints (32).

249 The transition of the open to the closed conformation, as observed in our study in the
250 membrane-bound form, appears to be driven by the assembly of EHD oligomers onto curved
251 membranes (Fig. 5A). By bilayer coupling (49, 50), the insertion of the hydrophobic helical tip
252 region into the membrane is expected to generate positive membrane curvature. Similar to FYVE
253 and ENTH domains (51), EHD membrane binding site is composed of charged residues and a
254 hydrophobic membrane-penetrating protrusion. In turn, curved membranes may promote the
255 transition from the open to the closed conformation in the EHD filament.

256 Upon initial curvature generation by wedging mechanism, EHD filaments then assemble
257 into ring-like or helical oligomers via interfaces-2 and -3 (Fig. 5A), representing our membrane-
258 bound structure. The involvement of the G-interface in this oligomer explains the strict ATP
259 dependence of assembly (23, 25). ATP-binding stabilizes the switch regions which promotes
260 dimerization (34). G-interface formation is associated with the displacement of the EH domain

261 tail from the G-interface by the movement of the EH domains towards the periphery of the EHD
262 filament (Fig. S3). In this orientation, the EH domains may bind to NPF-motif containing partner
263 proteins (Fig. 5A and S3E, F). Formation of the G-interface is accompanied by a stimulation of
264 the slow ATP hydrolysis reaction in EHDs (21, 22). In this way, ATP hydrolysis acts as an
265 intrinsic timer to disassemble the EHD scaffold: In the ADP-bound state, the switch regions are
266 destabilized and the interaction of switch I with the KPF loop is reduced (32) (Fig. 5B).
267 Accordingly, interfaces-2 and -3 are weakened in the ADP-bound state, leading to dissociation of
268 the oligomer (Fig. 5B). The ADP-bound EHD dimer may convert back to the open conformation
269 and eventually dissociate from the membrane, therefore completing the ATPase cycle (Fig. 5B).

270 The EHD4 filament coat differs from the canonical oligomer architecture shared by
271 several dynamin-related proteins, e.g. dynamin, DRP1, and Mgm1/OPA1, where stalk
272 interactions define the interfaces forming the filament and nucleotide-dependent interactions
273 between G-domains stabilize the inter-filament packing. EHDs on the other hand, orient the
274 nucleotide-dependent interface along the filament direction and pack neighboring filaments with
275 a stalk-stalk-like interaction (interface-4). This change in architecture allows the intrinsic
276 filament curvature to be modulated by nucleotide, or perhaps more interesting, nucleotide state to
277 be affected by the geometry of the filament. Additionally, whereas the pitch during active
278 dynamin constriction is essentially fixed by the strong cross-filament interaction (52), EHD4
279 architecture may allow continuous deformation as the underlying membrane curvature changes.

280 As the helix angle of the filament changes, the orientation of the individual EHD4 dimers
281 changes. This orientation has been previously suggested to be meaningful (22) as the membrane
282 binding surface of EHD2 dimers in the closed conformation appears curved. Our structure shows
283 that the dimer curvature is approximately 60° out of phase with the filament, meaning that when
284 the helix angle is 60°, the dimer's curvature is aligned with the tube curvature. In this orientation,
285 any curvature generation by the dimer should be maximized. Interestingly, the maximum helical
286 angles observed are roughly 60°, where the tube radius is about 15 nm. This state, with a large
287 pitch, may represent the maximum curvature that the EHD4 filament can stabilize. In contrast to
288 EHD4, ring-like assemblies were demonstrated for EHD1 (25) and EHD2 (22), likely indicating
289 stronger spontaneous curvature for these oligomers.

290 Taken together, our structural analyses of the membrane-bound EHD4 scaffold elucidates
291 novel insights into the coordination of the ATPase cycle with membrane recruitment, assembly

292 and disassembly of the protein scaffold, and provides experimental insights into how membrane
293 curvature is generated by EHD scaffolds.

294 **References**

295 1. N. Naslavsky, S. Caplan, EHD proteins: key conductors of endocytic transport. *Trends Cell Biol* **21**, 122-131 (2011).

297 2. U. Pohl *et al.*, EHD2, EHD3, and EHD4 encode novel members of a highly conserved 298 family of EH domain-containing proteins. *Genomics* **63**, 255-262 (2000).

299 3. B. Grant *et al.*, Evidence that RME-1, a conserved *C. elegans* EH-domain protein, 300 functions in endocytic recycling. *Nat. Cell Biol* **3**, 573-579 (2001).

301 4. S. X. Lin, B. Grant, D. Hirsh, F. R. Maxfield, Rme-1 regulates the distribution and 302 function of the endocytic recycling compartment in mammalian cells. *Nat. Cell Biol* **3**, 303 567-572 (2001).

304 5. S. Caplan *et al.*, A tubular EHD1-containing compartment involved in the recycling of 305 major histocompatibility complex class I molecules to the plasma membrane. *EMBO J* 306 **21**, 2557-2567 (2002).

307 6. E. Galperin *et al.*, EHD3: a protein that resides in recycling tubular and vesicular 308 membrane structures and interacts with EHD1. *Traffic* **3**, 575-589 (2002).

309 7. Q. Lu *et al.*, Early steps in primary cilium assembly require EHD1/EHD3-dependent 310 ciliary vesicle formation. *Nat Cell Biol* **17**, 228-240 (2015).

311 8. C. Insinna *et al.*, Investigation of F-BAR domain PACSIN proteins uncovers membrane 312 tubulation function in cilia assembly and transport. *Nat Commun* **10**, 428 (2019).

313 9. J. A. Solinger, H. O. Rashid, C. Prescianotto-Baschong, A. Spang, FERARI is required 314 for Rab11-dependent endocytic recycling. *Nat Cell Biol* **22**, 213-224 (2020).

315 10. M. Stoeber *et al.*, Oligomers of the ATPase EHD2 confine caveolae to the plasma 316 membrane through association with actin. *EMBO J* **31**, 2350-2364 (2012).

317 11. B. Moren *et al.*, EHD2 regulates caveolar dynamics via ATP-driven targeting and 318 oligomerization. *Mol. Biol. Cell* **23**, 1316-1329 (2012).

319 12. B. Morén *et al.*, EHD2 regulates adipocyte function and is enriched at cell surface- 320 associated lipid droplets in primary human adipocytes. *Mol Biol Cell* **30**, 1147-1159 321 (2019).

322 13. C. G. Hansen, G. Howard, B. J. Nichols, Pacsin 2 is recruited to caveolae and functions 323 in caveolar biogenesis. *J Cell Sci* **124**, 2777-2785 (2011).

324 14. A. Ludwig *et al.*, Molecular composition and ultrastructure of the caveolar coat complex. 325 *PLoS Biol* **11**, e1001640 (2013).

326 15. Y. Senju *et al.*, Phosphorylation of PACSIN2 by protein kinase C triggers the removal of 327 caveolae from the plasma membrane. *J Cell Sci* **128**, 2766-2780 (2015).

328 16. C. Matthaeus *et al.*, EHD2-mediated restriction of caveolar dynamics regulates cellular
329 fatty acid uptake. *Proc Natl Acad Sci U S A* **117**, 7471-7481 (2020).

330 17. Y. Shao *et al.*, Pincher, a pinocytic chaperone for nerve growth factor/TrkA signaling
331 endosomes. *J. Cell Biol* **157**, 679-691 (2002).

332 18. G. Valdez *et al.*, Pincher-mediated macroendocytosis underlies retrograde signaling by
333 neurotrophin receptors. *J. Neurosci* **25**, 5236-5247 (2005).

334 19. T. Jones, N. Naslavsky, S. Caplan, Eps15 Homology Domain Protein 4 (EHD4) is
335 required for Eps15 Homology Domain Protein 1 (EHD1)-mediated endosomal
336 recruitment and fission. *PLoS One* **15**, e0239657 (2020).

337 20. T. S. Malinova *et al.*, A junctional PACSIN2/EHD4/MICAL-L1 complex coordinates
338 VE-cadherin trafficking for endothelial migration and angiogenesis. *Nat Commun* **12**,
339 2610 (2021).

340 21. D. W. Lee *et al.*, ATP binding regulates oligomerization and endosome association of
341 RME-1 family proteins. *J. Biol. Chem* **280**, 17213-17220 (2005).

342 22. O. Daumke *et al.*, Architectural and mechanistic insights into an EHD ATPase involved
343 in membrane remodelling. *Nature* **449**, 923-927 (2007).

344 23. C. Shah *et al.*, Structural insights into membrane interaction and caveolar targeting of
345 dynamin-like EHD2. *Structure* **22**, 409-420 (2014).

346 24. S. Pant *et al.*, AMPH-1/Amphiphysin/Bin1 functions with RME-1/Ehd1 in endocytic
347 recycling. *Nat Cell Biol* **11**, 1399-1410 (2009).

348 25. R. Deo *et al.*, ATP-dependent membrane remodeling links EHD1 functions to endocytic
349 recycling. *Nat Commun* **9**, 5187 (2018).

350 26. F. Kieken *et al.*, Mechanism for the selective interaction of C-terminal Eps15 homology
351 domain proteins with specific Asn-Pro-Phe-containing partners. *J Biol Chem* **285**, 8687-
352 8694 (2010).

353 27. M. Sharma, S. S. Giridharan, J. Rahajeng, N. Naslavsky, S. Caplan, MICAL-L1 links
354 EHD1 to tubular recycling endosomes and regulates receptor recycling
355 1. *Mol. Biol. Cell* **20**, 5181-5194 (2009).

356 28. J. B. Reinecke, D. Katafiasz, N. Naslavsky, S. Caplan, Regulation of Src trafficking and
357 activation by the endocytic regulatory proteins MICAL-L1 and EHD1. *J Cell Sci* **127**,
358 1684-1698 (2014).

359 29. N. Naslavsky, M. Boehm, P. S. Backlund, Jr., S. Caplan, Rabenosyn-5 and EHD1 interact
360 and sequentially regulate protein recycling to the plasma membrane. *Mol Biol Cell* **15**,
361 2410-2422 (2004).

362 30. A. Guilherme *et al.*, EHD2 and the novel EH domain binding protein EHBP1 couple
363 endocytosis to the actin cytoskeleton. *J Biol Chem* **279**, 10593-10605 (2004).

364 31. A. Braun *et al.*, EHD proteins associate with syndapin I and II and such interactions play
365 a crucial role in endosomal recycling. *Mol. Biol. Cell* **16**, 3642-3658 (2005).

366 32. A. A. Melo *et al.*, Structural insights into the activation mechanism of dynamin-like EHD
367 ATPases. *Proc Natl Acad Sci* **114**, 5629-5634 (2017).

368 33. M. Hoernke *et al.*, EHD2 restrains dynamics of caveolae by an ATP-dependent,
369 membrane-bound, open conformation. *Proc Natl Acad Sci U S A* **114**, E4360-e4369
370 (2017).

371 34. O. Daumke, G. J. K. Praefcke, Invited review: Mechanisms of GTP hydrolysis and
372 conformational transitions in the dynamin superfamily. *Biopolymers* **105**, 580-593
373 (2016).

374 35. J. J. Blume, A. Halbach, D. Behrendt, M. Paulsson, M. Plomann, EHD proteins are
375 associated with tubular and vesicular compartments and interact with specific
376 phospholipids. *Exp Cell Res* **313**, 219-231 (2007).

377 36. J. K. Noel, F. Noé, O. Daumke, A. S. Mikhailov, Polymer-like Model to Study the
378 Dynamics of Dynamin Filaments on Deformable Membrane Tubes. *Biophys J* **117**, 1870-
379 1891 (2019).

380 37. J. Liu, F. J. D. Alvarez, D. K. Clare, J. K. Noel, P. Zhang, CryoEM structure of the super-
381 constricted two-start dynamin 1 filament. *Nat Commun* **12**, 5393 (2021).

382 38. E. H. Egelman, Three-dimensional reconstruction of helical polymers. *Arch Biochem
383 Biophys* **581**, 54-58 (2015).

384 39. A. Miyazawa, Y. Fujiyoshi, N. Unwin, Structure and gating mechanism of the
385 acetylcholine receptor pore. *Nature* **423**, 949-955 (2003).

386 40. A. Frost *et al.*, Structural basis of membrane invagination by F-BAR domains. *Cell* **132**,
387 807-817 (2008).

388 41. C. Mim *et al.*, Structural Basis of Membrane Bending by the N-BAR Protein Endophilin.
389 *Cell* **149**, 137-145 (2012).

390 42. H. C. Nguyen *et al.*, Membrane constriction and thinning by sequential ESCRT-III
391 polymerization. *Nat Struct Mol Biol* **27**, 392-399 (2020).

392 43. H. C. Nguyen, A. A. Melo, J. Kruk, A. Frost, M. Gabruk, Photocatalytic LPOR forms
393 helical lattices that shape membranes for chlorophyll synthesis. *Nat Plants* **7**, 437-444
394 (2021).

395 44. L. Kong *et al.*, Cryo-EM of the dynamin polymer assembled on lipid membrane. *Nature*
396 **560**, 258-262 (2018).

397 45. S. O. Dodonova *et al.*, 9Å structure of the COPI coat reveals that the Arf1 GTPase
398 occupies two contrasting molecular environments. *Elife* **6**, (2017).

399 46. G. Zanetti *et al.*, The structure of the COPII transport-vesicle coat assembled on
400 membranes. *Elife* **2**, e00951 (2013).

401 47. B. Daum *et al.*, Supramolecular organization of the human N-BAR domain in shaping the
402 sarcolemma membrane. *J Struct Biol* **194**, 375-382 (2016).

403 48. O. Kovtun *et al.*, Structure of the membrane-assembled retromer coat determined by
404 cryo-electron tomography. *Nature* **561**, 561-564 (2018).

405 49. M. Giménez-Andrés, A. Čopič, B. Antonny, The Many Faces of Amphipathic Helices.
406 *Biomolecules* **8**, (2018).

407 50. M. M. Kozlov *et al.*, Mechanisms shaping cell membranes. *Curr Opin Cell Biol* **29**, 53-
408 60 (2014).

409 51. J. G. Pemberton, T. Balla, Polyphosphoinositide-Binding Domains: Insights from
410 Peripheral Membrane and Lipid-Transfer Proteins. *Adv Exp Med Biol* **1111**, 77-137
411 (2019).

412 52. O. M. Ganichkin *et al.*, Quantification and demonstration of the collective constriction-
413 by-ratchet mechanism in the dynamin molecular motor. *Proc Natl Acad Sci U S A* **118**,
414 (2021).

415 53. D. N. Mastronarde, Automated electron microscope tomography using robust prediction
416 of specimen movements. *J Struct Biol* **152**, 36-51 (2005).

417 54. W. J. H. Hagen, W. Wan, J. A. G. Briggs, Implementation of a cryo-electron tomography
418 tilt-scheme optimized for high resolution subtomogram averaging. *J Struct Biol* **197**, 191-
419 198 (2017).

420 55. A. Rohou, N. Grigorieff, CTFFIND4: Fast and accurate defocus estimation from electron
421 micrographs. *J Struct Biol* **192**, 216-221 (2015).

422 56. J. R. Kremer, D. N. Mastronarde, J. R. McIntosh, Computer visualization of three-
423 dimensional image data using IMOD. *J Struct Biol* **116**, 71-76 (1996).

424 57. S. H. Scheres, RELION: implementation of a Bayesian approach to cryo-EM structure
425 determination. *J Struct Biol* **180**, 519-530 (2012).

426 58. N. Echols *et al.*, Graphical tools for macromolecular crystallography in PHENIX. *J. Appl.*
427 *Cryst.* **45**, 581-586 (2012).

428 59. P. C. Whitford *et al.*, Excited states of ribosome translocation revealed through
429 integrative molecular modeling. *Proc Natl Acad Sci U S A* **108**, 18943-18948 (2011).

430 60. J. K. Noel *et al.*, SMOG 2: A Versatile Software Package for Generating Structure-Based
431 Models. *PLoS Comput Biol* **12**, e1004794 (2016).

432 61. N. Guex, M. C. Peitsch, SWISS-MODEL and the Swiss-PdbViewer: an environment for
433 comparative protein modeling. *Electrophoresis* **18**, 2714-2723 (1997).

434

435 **Methods**

436 **Protein purification.** Mouse EHD4 (residues 22-541, EHD4^{ΔN}) and the indicated mutants were
437 expressed from modified pET28 vector as N-terminal His6-tag fusions followed by a PreScission
438 protease cleavage site. Expression plasmids were transformed in *E. coli* host strain BL21(DE3)-
439 Rosetta2 (Novagen). Cells were grown at 37 °C in TB medium, and protein expression was
440 induced at an optical density of 0.5 by the addition of 40 μM isopropyl-β-D-
441 thiogalactopyranoside (IPTG), followed by overnight incubation at 18 °C. Upon centrifugation,
442 cells were resuspended in resuspension buffer (50 mM Hepes/NaOH (pH 7.5), 500 mM NaCl, 25
443 mM imidazole, 2 mM MgCl₂, 2.5 mM β-mercaptoethanol (β-ME), 1 mM Pefabloc (Carl Roth), 1
444 μM DNase I (Roche)) and lysed in a microfluidizer. Following centrifugation (30,000 g, 1 h, 4
445 °C), cleared lysates were applied to a NiNTA column. The column was then extensively washed
446 with washing buffer (50 mM Hepes/NaOH (pH 7.5), 700 mM NaCl, 10 mM CaCl₂, 1 mM ATP,
447 10 mM MgCl₂, 10 mM KCl) and afterwards with equilibration buffer (50 mM Hepes/NaOH (pH
448 7.5), 500 mM NaCl, 25 mM imidazole, 2 mM MgCl₂, 2.5 mM β-ME). The protein was eluted
449 with elution buffer I (50 mM Hepes/NaOH (pH 7.5), 500 mM NaCl, 2 mM MgCl₂, 2.5 mM β-
450 ME, and 300 mM imidazole). Following the addition of 150 μg PreScission protease per 5 mg of
451 protein, the protein was dialyzed overnight against dialysis buffer (50 mM Hepes/NaOH (pH
452 7.5), 500 mM NaCl, 1 mM MgCl₂ and 2.5 mM β-ME). Following re-application of the protein to
453 a NiNTA column to remove the His-tag, the protein was eluted with elution buffer II (50 mM
454 Hepes/NaOH (pH 7.5), 500 mM NaCl, 2 mM MgCl₂, 2.5 mM β-ME, and 50 mM imidazole).
455 The uncleaved protein was concentrated using 30 kDa molecular weight cut-off concentrators
456 (Amicon) and applied to a Superdex 200 gel filtration column equilibrated with SEC buffer (50
457 mM Hepes/NaOH (pH 7.5), 500 mM NaCl, 1 mM MgCl₂, and 2.5 mM β-ME). Fractions
458 containing the EHD4 constructs were pooled, concentrated and flash-frozen in liquid nitrogen.
459 The purified protein was nucleotide-free, as judged by HPLC analysis.

460

461 **Liposome preparation.** Liposomes were prepared by mixing 50 μ L of Folch liposomes
462 containing 50% Folch extract from bovine brain fraction I, 40% phosphatidylethanolamine and
463 10% cholesterol to 200 μ L of a chloroform/methanol (1:0.3 v/v) mixture and dried under an
464 argon stream. The liposomes were resuspended in liposome buffer (20 mM Hepes/NaOH (pH
465 7.5), 150 mM NaCl and 2.5 mM β -ME), sonicated in a water bath for 30 sec and extruded to 1
466 μ m filter.

467

468 **Tubulation assay.** For membrane tubulation assays, 10 μ M EHD4 $^{\Delta N}$ in tubulation buffer was
469 incubated at room temperature for 20 min with 1 mg/ml liposomes.

470

471 **Cryo-electron microscopy and image processing.** Complexes formed of EHD4 $^{\Delta N}$ and
472 liposome were diluted with a buffer containing 10 nm colloidal gold. 4 μ l of this mixture was
473 applied on a glow-discharged Quantifoil R2/2 grid (Quantifoil Micro Tools GmbH) and flash-
474 frozen in liquid ethane using a Vitrobot Mark II device (FEI). The grids were stored under liquid
475 nitrogen conditions until usage. Initial data was recorded on an in-house Thermo Fisher
476 Scientific Talos L120C microscope operating at 120 kV on a Ceta Detector. The final set of 56
477 tilt series was imaged on a Thermo Fisher Scientific Titan Krios electron microscope operated at
478 300 kV equipped with a Gatan Quantum energy filter (slit with 20 eV) and a Gatan K2 detector
479 using SerialEM (53). The nominal magnification was 53,000 x resulting in a pixel size of 2.628
480 \AA . The data was acquired at a tilt range from -60 to 60 degrees using a dose-symmetric tilt
481 scheme (54) at 3° increment. Tilt series were recorded as movies of 12 frames in counting mode
482 and a dose rate of 2.3 e $^-$ / \AA^2 at defocus range of -3 um to -6 um resulting in a total dose of 94 e $^-$
483 / \AA^2 per tilt series. The initial contrast transfer function defocus value for each image of the tilt
484 series was estimated using CTFFind4 (55). CTF correction was carried out by phase flipping
485 using the program 'ctf phase flip' of the IMOD software package (56). Two copies of each
486 tomogram were reconstructed using weighted back projection and SIRT in IMOD (56).

487

488 **Subtomogram averaging.** The workflow described uses a combination of Dynamo and bespoke
489 Matlab scripts. Initial particle picking was done using filament tracer by assigning the center of
490 each tube. First round of alignments was performed using SIRT-filtered reconstructed

491 tomograms binned 3 times (7.884 Å/pix). Particles for each tube were extracted using a box size
492 of 128 pixels, randomized along its azimuth, averaged and low-pass filtered to 40 Å to generate
493 the initial template for 3 rounds of coarse alignments. Oversampled particles converging onto the
494 same coordinate were removed using Dynamo's separation in tomogram parameter. Each tube
495 was aligned individually and sub-boxed along the membrane to generate a section of the tube
496 (Fig. 1B). Averaged sections were merged, aligned to the template and low-pass filtered to 40 Å.
497 Multi-reference analysis (MRA) was used to eliminate bad particles from the dataset. Next, CTF
498 corrected subtomograms were extracted and aligned to low-pass filtered references. Iterations
499 were carried out starting from binned 3X data, using a low-pass filter of 20 Å, angular sampling
500 of 12°, allowing shifts of 47 Å, and refinements were gradually improved by decreasing the
501 binning factor, using less stringent low-pass filters and finer angular sampling. Final refinement
502 steps were carried out on unbinned data extracted in 128 voxel boxes, using a low-pass filter set
503 at 8 Å, angular sampling of 4°, and shift limits of 10 Å. A total of 23,813 subtomograms
504 contributed to the final average. Mask-corrected resolution assessment was carried out within the
505 RELION (57) post-processing framework using a soft-edged mask around the central EHD4
506 tetramer (Fig. S2), yielding a resolution of 7.6 Å at the 0.143 FSC cut-off. Local resolution
507 estimation and local filtering were applied using Phenix Local anisotropic sharpening and Phenix
508 Local resolution map (58).

509
510 **Flexible fitting.** The fitting procedure is summarized in Movie S2. An atomic model consistent
511 with the cryo-EM map was generated using MDfit (59). MDfit uses the cryo-EM map as an
512 umbrella potential to bias (i.e. deform) an underlying structure-based model (SBM) (60) in order
513 to maximize the cross-correlation between the experimental density and the simulated electron
514 density. An SBM is a molecular force field that is explicitly, albeit not rigidly, biased toward a
515 certain native structure. The SBM for fitting was the EHD2 crystal structure (4CID) with the
516 sequence homology modeled by Swiss-Model (61) to that of EHD4 (residues 22-535). The
517 portion of the SBM for the KPF loop (residue 114-137), which is missing from the EHD2
518 structure, is based on the EHD4 crystal structure (5MVF). Building the SBM from the crystal
519 structure ensured that the resulting model was maximally consistent with the crystal
520 conformation. This entailed no significant changes in structure as the sequences are highly
521 similar and included a missing loop in the crystal structure (residues 424-442). A preprocessing

522 step was then necessary to move the EH domains within the dimer into a *cis* positioning because
523 4CID placed the EH domains *in trans*. This involved only reorientation of the 424-442 loop, no
524 other residue positions were changed. We refer to this dimeric structure as EHD4-init. Since the
525 EH domain is missing, the SBM for the EH domain is generated from the EHD2 crystal structure
526 (residues 443-538). An SBM using EHD4-init as the input structure was then generated using
527 SMOGv2.3beta (60) with the template “SBM_AA” meaning all non-hydrogen atoms were
528 explicitly represented.

529 The density corresponding to the central two dimers within the cryo-EM map was chosen as the
530 constraint for MDfit, since this region had the best resolution. Relaxation of the SBM under the
531 influence of the cryo-EM map is performed by molecular dynamics (MD), and, thus, requires an
532 initial condition. Two EHD4-init were rigid body fit into the map using the “Fit in Map” tool of
533 Chimera. In order to compensate for the missing neighbors on either side of two dimers, the
534 translational symmetry of the filament was exploited. Two additional copies of EHD4-init were
535 added, positioned on either side, placed such that each dimer-dimer interface was identical.
536 Technically, this was performed by 1) measuring the transformation X between the two central
537 dimers in VMD, 2) duplicating the central dimers, and 3) applying X or -X to the duplicates.
538 This four-dimer system served as the initial condition for MD. During MD, the duplicates were
539 given strong position restraints, while the only constraint on the central dimers was the MDfit
540 umbrella potential based on the cryo-EM map. Every 10^4 MD steps, the duplicate dimers were
541 repositioned. Through this iterative process, the structure converged within 3×10^5 steps. The
542 middle two dimers were taken as the atomic model. Note that even though the filament’s local
543 C2 rotational symmetry was not explicitly enforced by us during MD, the fact that the SBM was
544 based on a C2 symmetric structure ensured that this symmetry was included.

545

546 **Elastic model fitting**

547 The fitted helical angle as a function of radius was defined by

$$\theta(r) \equiv \min [k_\kappa(\kappa - \kappa_0)^2 + k_\tau(\tau - \tau_0)^2 + k_\eta(\eta - 90^\circ)^2]$$

548 where the bit in brackets is an elastic energy and the min returns θ such that the radius is r and
549 elastic energy is minimized. κ is the curvature, τ is the twist, η is the dimer orientation with
550 respect to the tube axis, θ is the helix angle, and r is the radius of the tube. κ_0 and τ_0 are the
551 spontaneous curvature and twist. Fig. 4 shows the case for $k_\kappa = 1$, $k_\tau = k_\eta = 0$, where the

552 twist elasticity and the dimer orientation are both negligible compared to filament curvature. Fig.
553 S4 shows two alternatives, the first with $\kappa = \kappa_\tau = 1$, $\kappa_\eta = 0$, which is typical for continuous
554 filaments, and the second with $\kappa = 1$, $\kappa_\tau = 0$, $\kappa_\eta = 0.2$, which accounts for a preference for
555 the dimer curvature to align perpendicular to the tube axis. For a constant helix, $\kappa = \frac{r}{r^2+h^2}$, and
556 $\tau = \frac{h}{r^2+h^2}$, and $\theta = \tan^{-1} \frac{h}{r}$, where r is the radius and $2\pi h$ is the pitch. In our EHD4 filament,
557 the dimer is oriented approximately 30° relative to the helix angle, defining $\eta = \theta + 30^\circ$.
558 Therefore, when $\eta = 90^\circ \equiv \theta = 60^\circ$, the dimer's footprint curvature is optimally oriented with
559 respect to the membrane tube. The two best fits with $\kappa_\eta = 0$ are performed using the Python
560 library `scipy.optimize.least_squares` with κ_0 and τ_0 as fitting parameters. The curve with
561 $\kappa_\eta = 0.2$ uses $\kappa_0 = \frac{1}{68}$ nm⁻¹ and has no free parameters to be fitted. Note that there is an
562 analytic form for the minimum energy line with $\kappa = 1$, $\kappa_\tau = \kappa_\eta = 0$, which is given by
563 $\theta(r) = \sqrt{(r\kappa_0)^{-1} - 1}$.

564

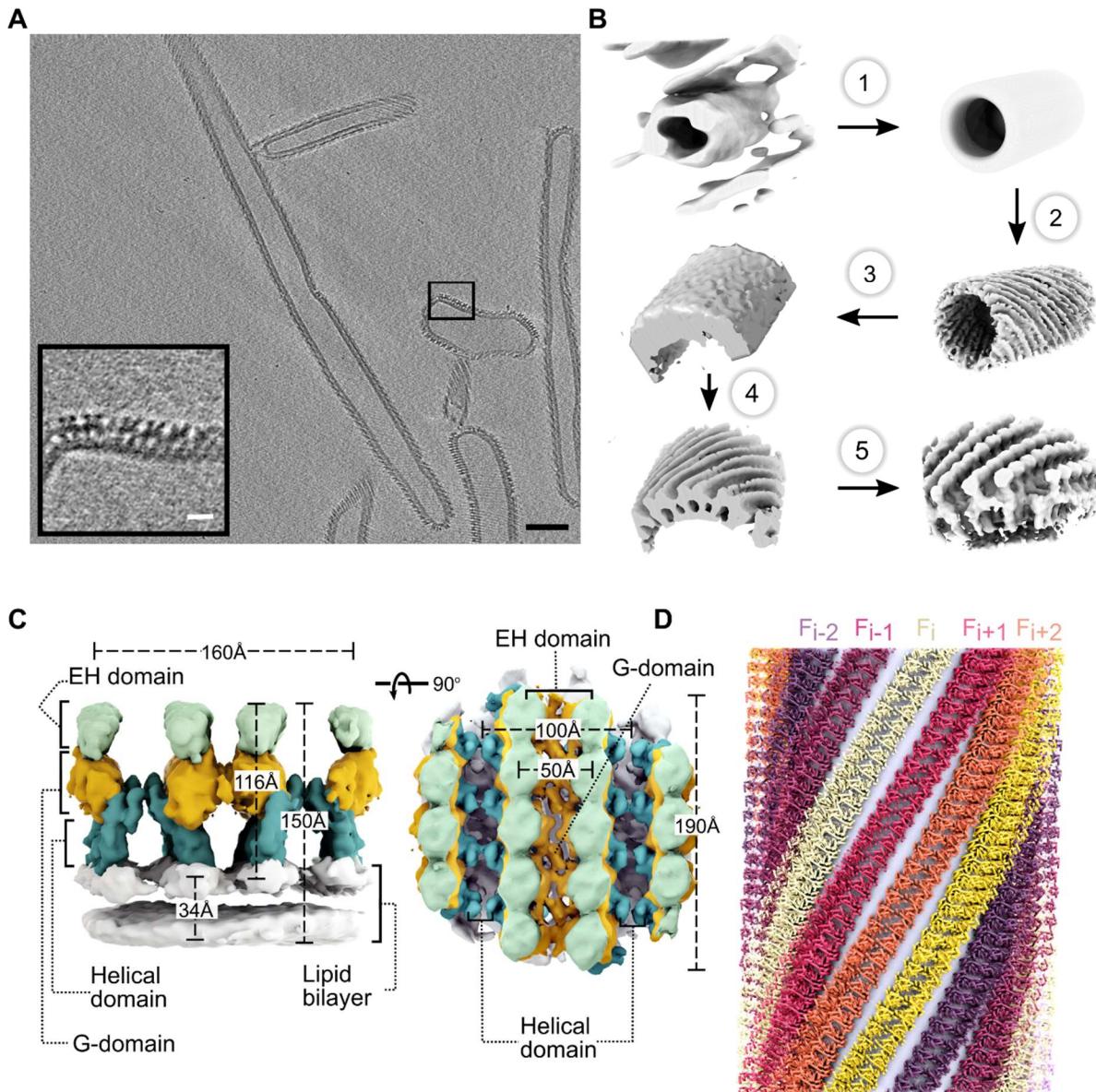
565 **Code availability.** Ad hoc scripts are available on Github: <https://github.com/aamelo>

566

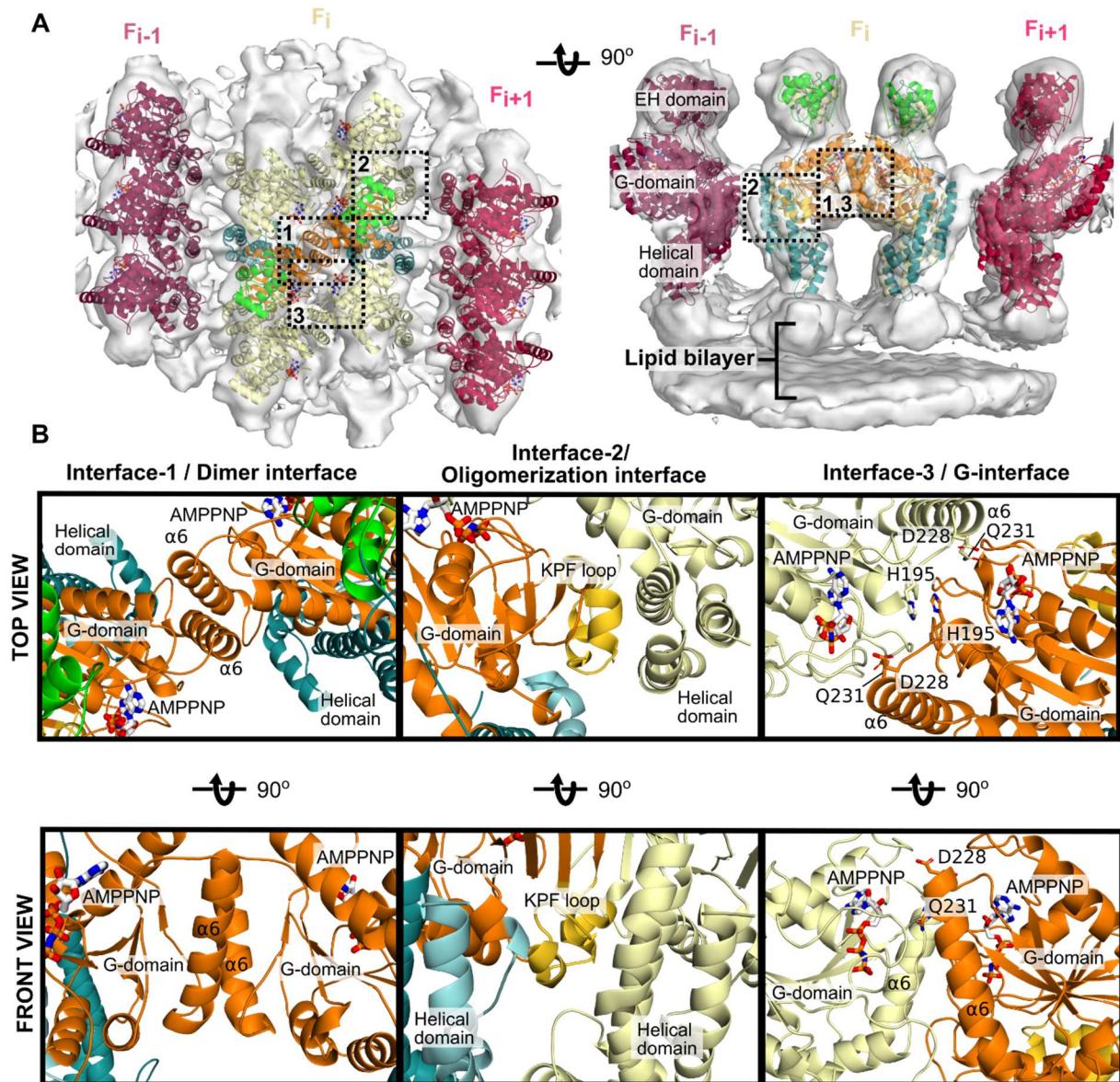
567 **Acknowledgements**

568 This work was supported by grants from the Deutsche Forschungsgemeinschaft (SFB 958/A12 to
569 O.D. and Z3 to C.S.), the ERC grant MitoShape (ERC-2013-CoG-616024 to O.D.), a Humboldt
570 fellowship to J.K.N. and the iNEXT grant PID3536 VID5570. We would like to thank Wim
571 Hagen for support during cryo-ET data collection.

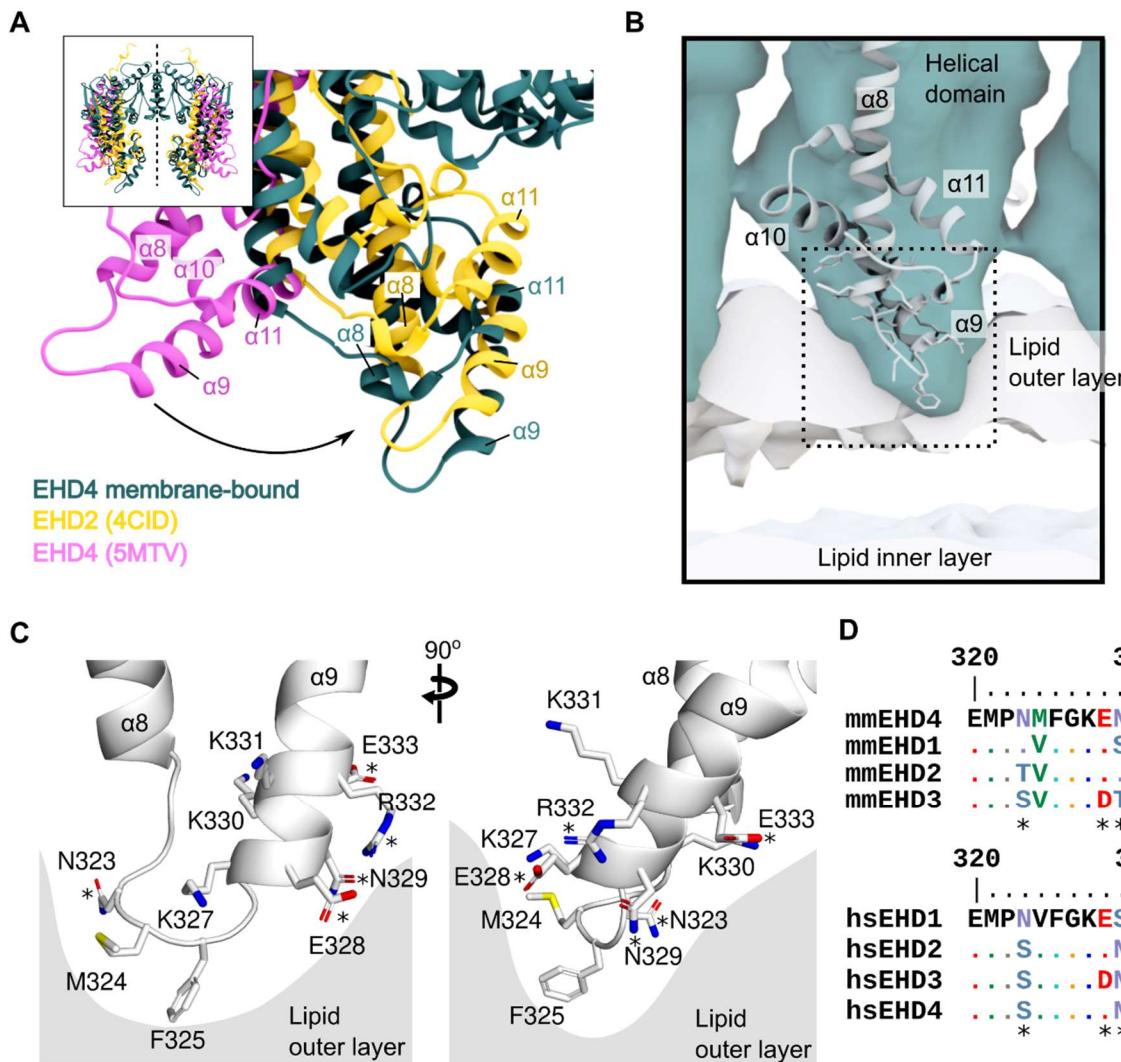
572


573 **Contributions**

574 AM purified protein constructs, performed reconstitution of protein on membranes, optimized
575 cryo-EM samples, processed data, determined the cryo-ET structure and analyzed the models.
576 TS screened cryo-EM samples and preprocessed data. JN performed model fittings and analyses.
577 JL assisted in data preprocessing. EVS and CH cloned, purified protein constructs, and
578 performed membrane-binding assays. CS and OD supervised the project. AM, JN and OD wrote
579 the article, with input from all authors.


580

581 **Competing interests**


582 The authors declare no competing interests.

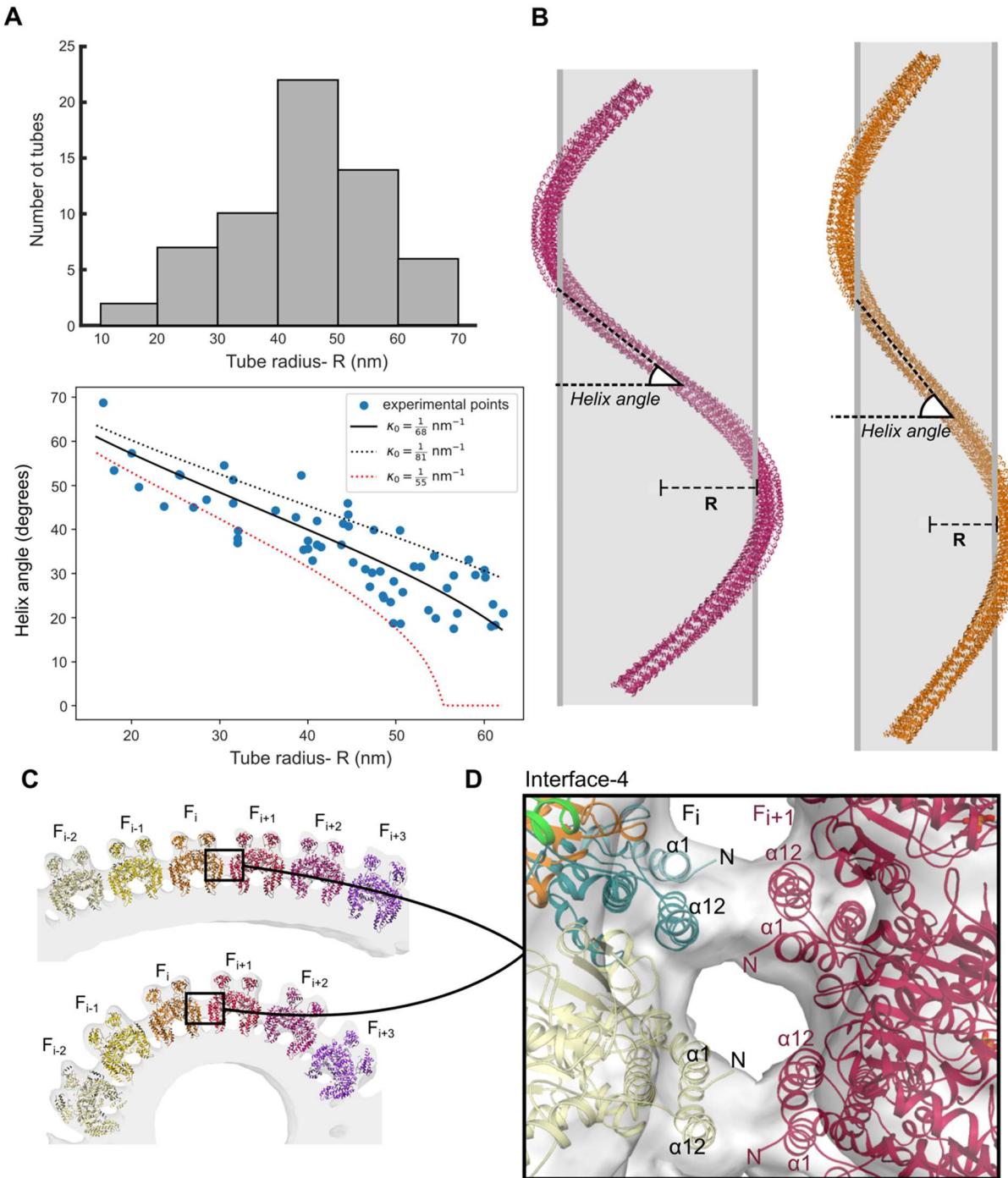

Figure 1: Structure determination of membrane-bound EHD4. **A.** Tomogram reconstruction of EHD4-covered membrane tubules. The boxed area is magnified in the left bottom corner. Scale bars: white 10 nm; black 100 nm. **B.** Subtomogram averaging workflow. Each tubule was individually cropped and averaged (top left). A single tubule shares the same missing wedge with other particles within the same tubule. 1) Random rotation along the particle azimuth to generate the initial template. 2) Subtomogram averaging of individual tubules using Dynamo (see methods for more detail). 3) Subboxing along the tube walls and averaging. 4) Alignment of sub-particles to the template 5) Cropping sub-particles in unbinned tomograms and perform subtomogram averaging. **C.** Subtomogram average of the membrane-bound EHD4^{ΔN} complexed with AMPPNP at 7.6 Å resolution. Domain organization of EHD4 in the filaments in two orientations are shown. EH domains (light green), G-domains (orange), helical domains (teal) and the lipid bilayer (white) are colored individually. **D.** Reconstructed EHD4 right-handed helical filaments wrapping around a membrane tubule. Each filament is indicated in a different color.

Figure 2: Architecture of the EHD4 filament. **A.** Asymmetric unit of the cryo-ET reconstruction. In the central EHD4 dimer, the domains are colored according to the domain architecture. The cryo-ET density is indicated as grey surface. **B.** The filament is formed by three contacts. Interface-1 comprises a dimer interface in the G-domain, interface-2 is built by a contact between G-domain and helical domain whereas interface-3 represents the G-interface and involves the nucleotide.

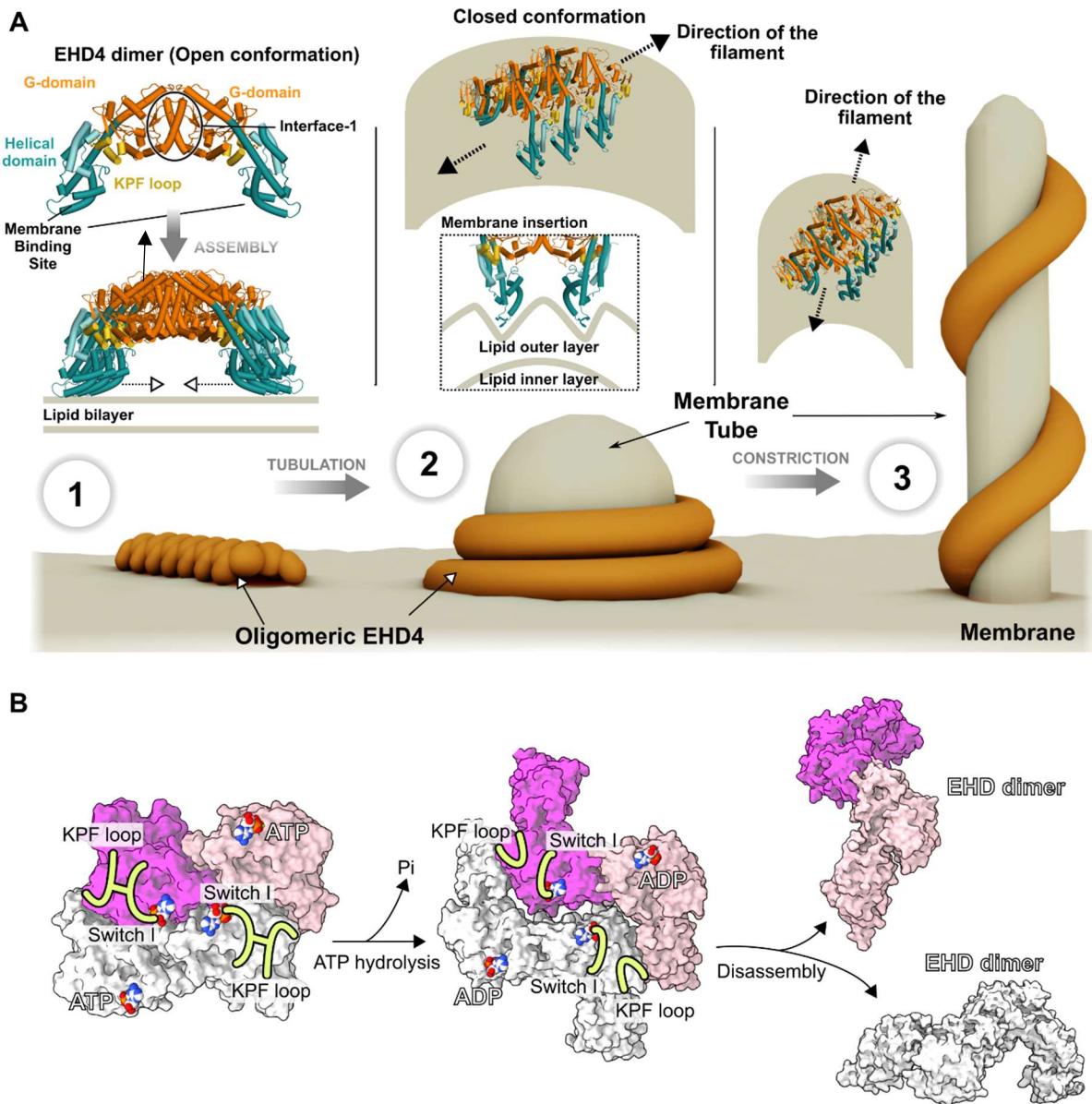


Figure 3: Membrane binding mode of EHD4. **A.** The cryo-ET model of EHD4 (teal) was superimposed with the G-domain on the crystal structures of EHD2 (yellow; pdb 4CID) and EHD4 (pink; pdb 5MTV). The comparison reveals that the membrane-bound structure adopts a closed conformation akin to EHD2. **B.** Membrane binding site of EHD4 insertion into the membrane. **C.** Membrane binding site of EHD4 based on the fittings shown in **A** and **B**. Side chains were modelled based on the EHD4 crystal structure. **D.** Sequence alignment of EHD proteins in mouse (mm - *Mus musculus*) and humans (hs - *Homo sapiens*) reveals a high conservation of the membrane binding site. Conserved residues in all 4 EHD proteins are shown in the sequence alignment are shown as dots (.). Residues that differ in EHDs are highlighted (*).

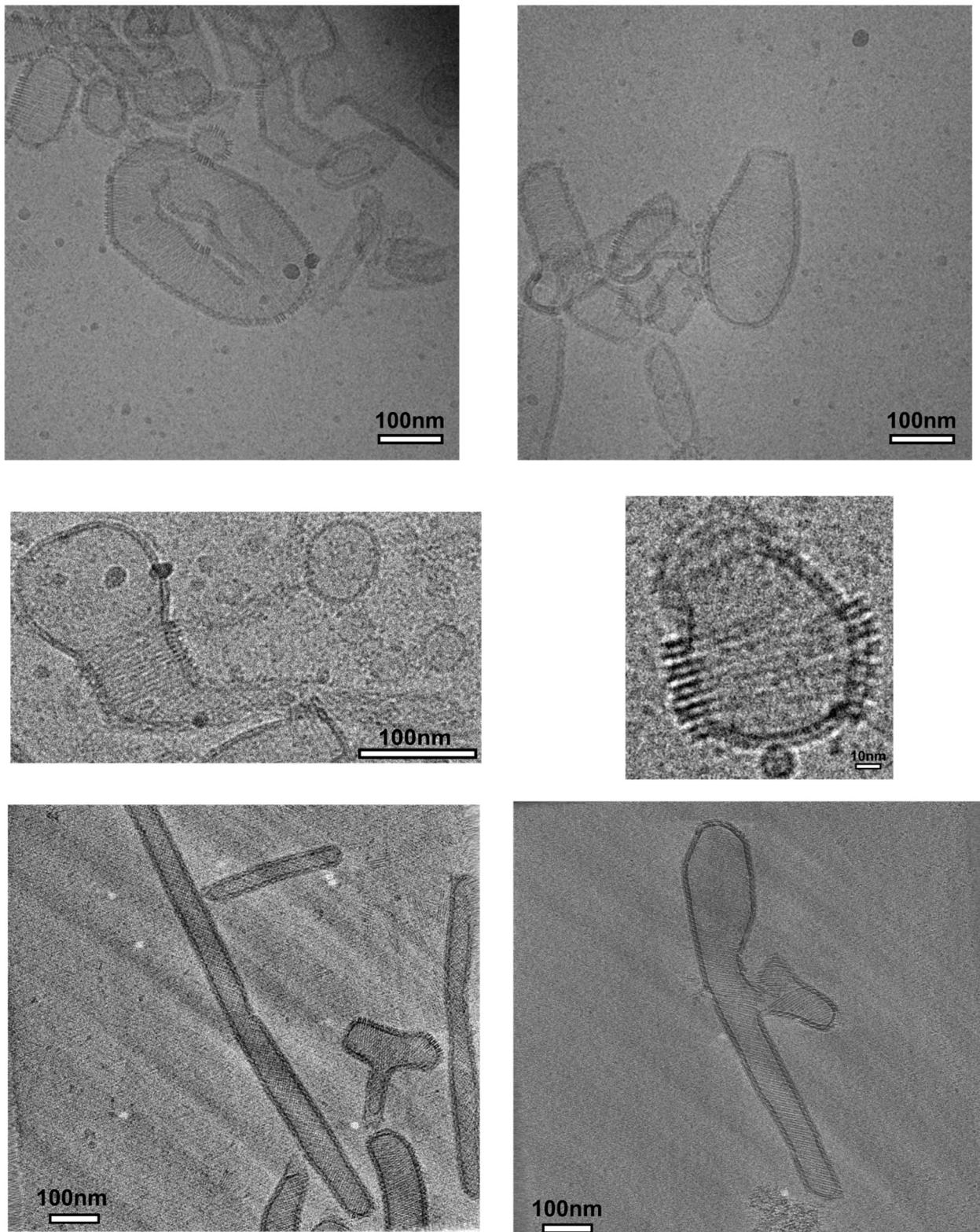
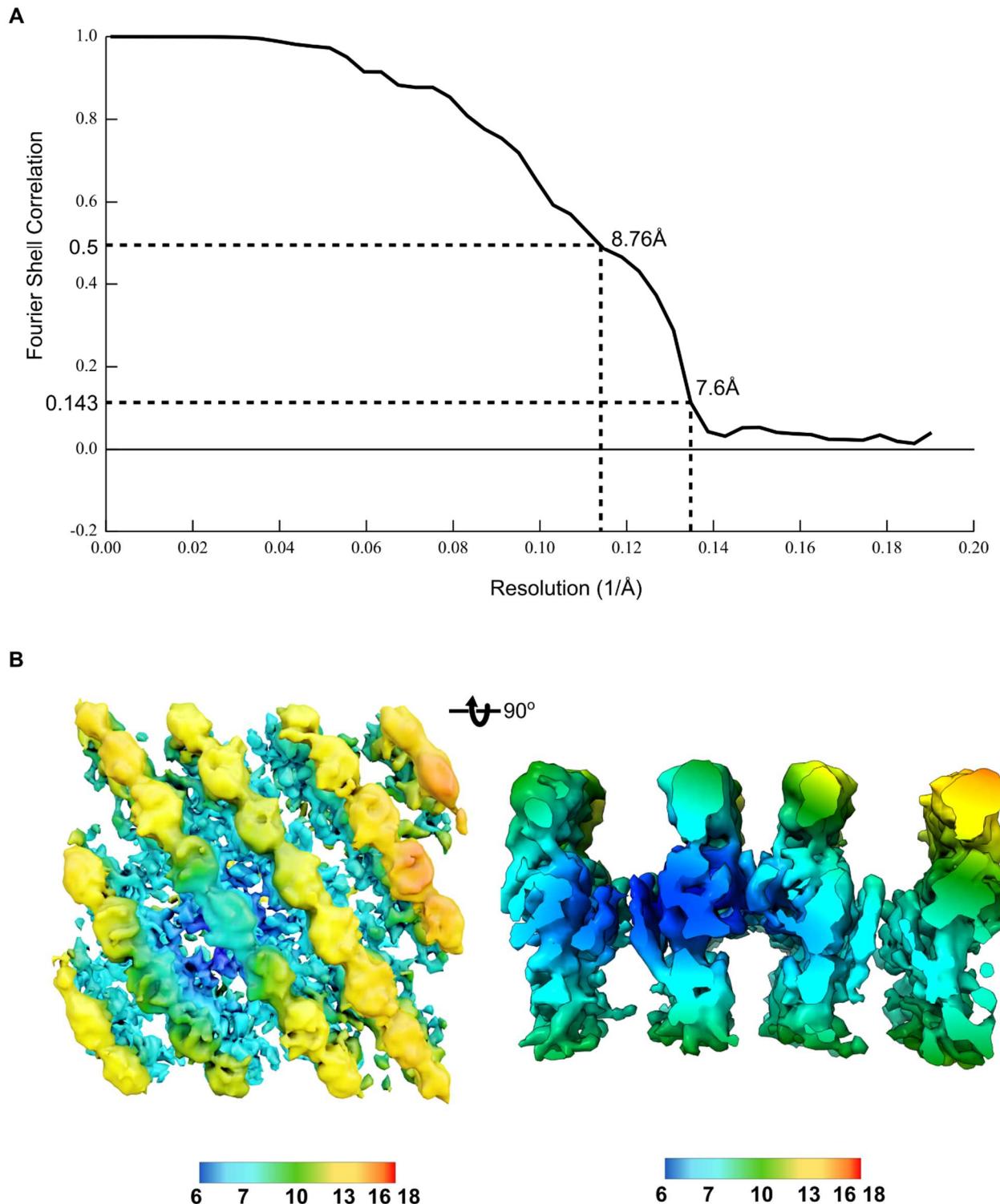
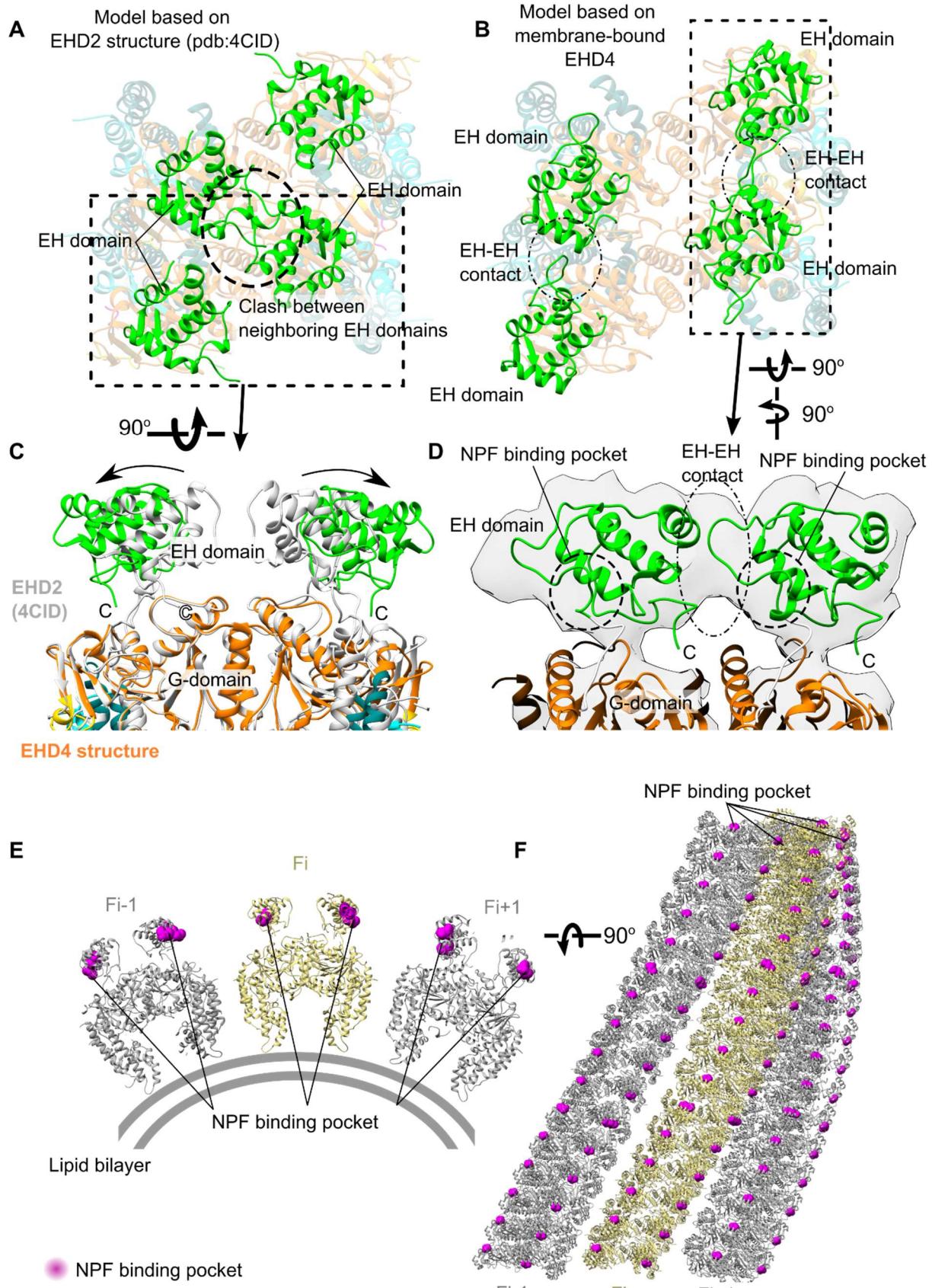


Figure 4: EHD4 filaments adapt to the curvature of membrane tubules. **A.** Distribution of tube radius (top) and the relation of tube diameter and orientation of the filament along the tube axis (bottom). Solid line shows the best fitting spontaneous curvature (see Methods). Dotted lines show the limiting range to illustrate the confidence in predicted κ_0 . **B.** EHD4-covered membrane tubes show a wide range of assemblies. A single filament is depicted around the lipid tubule (gray). The average helical assembly of the membrane-bound EHD4 structure is represented on the left and the tube with the smallest diameter is depicted on the right. Both filaments have 42 EHD4 dimers. **C.** EHD4 filaments adopt different conformations in different tubule diameters. The angle


between filaments increases in tubules with higher curvature (bottom) along interface-4 (boxed) which acts as a hinge **D**. Interface-4 is formed by contacts between adjacent filaments, which are mediated by helices $\alpha 1$ and $\alpha 12$ of adjacent helical domains. These contacts vary in different cryo-ET reconstructions, indicating a loose interaction that appears to adapt in response to different membrane curvatures.


Figure 5: Model for EHD membrane remodeling: 1) ATP-bound EHD dimers are recruited to flat membranes in the open conformation where they oligomerize via interface-2 into filaments of low curvature. 2) Membrane curvature induces the transition of the open to closed conformation. In turn, insertion of the membrane binding site into the membrane promotes membrane curvature, which is associated with the formation of a stable helical filament via interface-3. See also Movie S3. 3) Constriction of the membrane tubule leads to increase of the helical pitch, which may allow interaction partners to be recruited to stabilize the membrane tubule. **B.** ATP hydrolysis leads to destabilization of the G interface and dissociation of the filament. The ADP-bound EHD dimer may convert back to the open conformation and dissociate from the membrane.

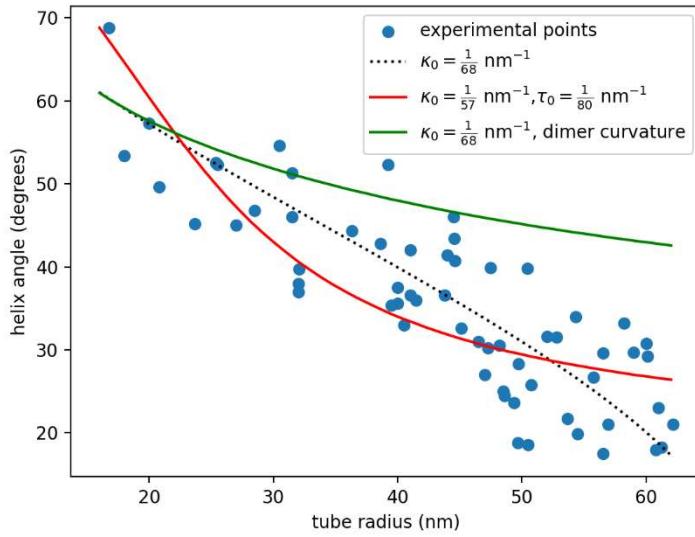

Figure S1: Heterogeneity of EHD4-coated membrane assemblies. Cryo-EM micrographs showing various examples of EHD4-coated membrane structures.

Figure S2: Resolution estimates. A. Mask-corrected gold standard Fourier Shell Correlation. **B.** Local resolution estimated with Phenix (58).

Figure S3. Displacement of the EH domains. **A.** The position of the EH domain was modelled in the filament, based on the EHD2 crystal structure. In this position, EH domains of adjacent dimers would clash. **B.** EH domains of adjacent dimers contact each other in the membrane-bound EHD4 structure. **C.** Superposition of the membrane-bound EHD4 and EHD2 crystal structure dimer (grey). Upon membrane binding, the EH domains (green) move towards the periphery of the filament. The C-terminus of the EH domains folds into the nucleotide-binding pocket of the G-domains in the EHD2 crystal structure but is displaced in the membrane-bound structure. **D.** Side view on the filament showing the new EH domain contact. Frontview (**E**) and topview (**F**) of NPF binding pockets highlighted in the EHD4 filament. They are positioned on the outer region of the EHD4 filament and are available for interactions with NPF-containing proteins at the cytosol or at the membrane.

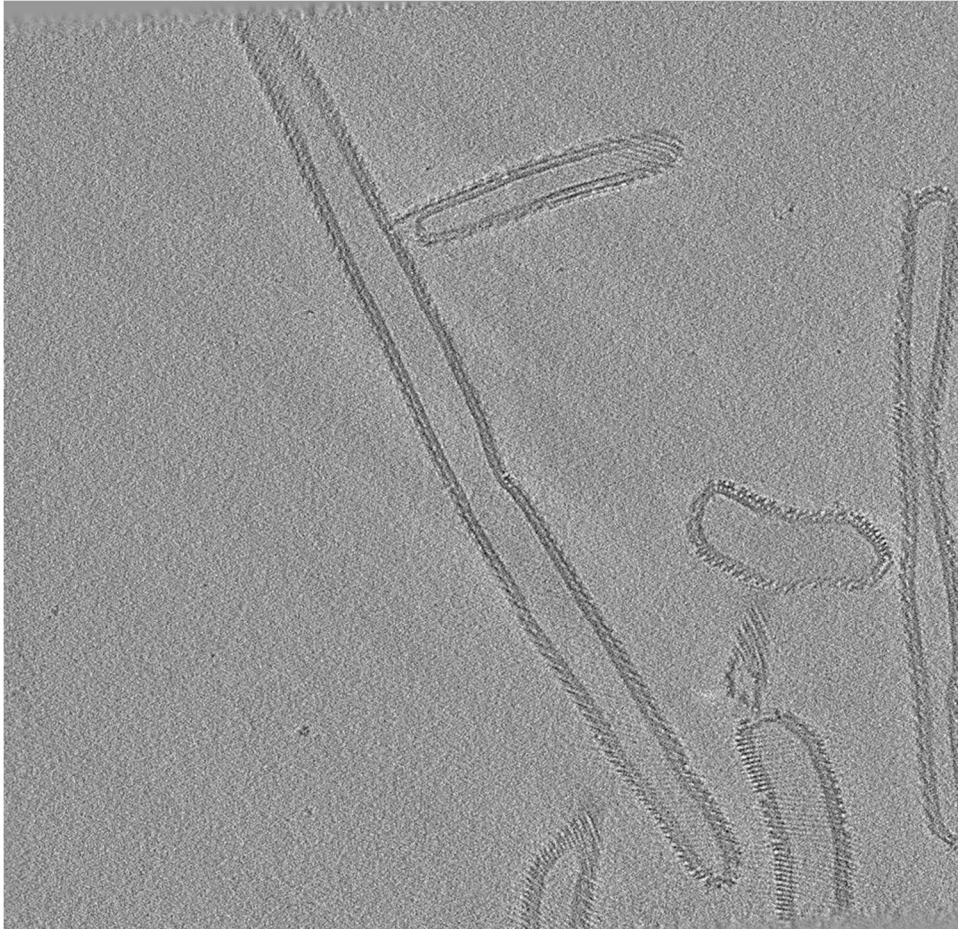
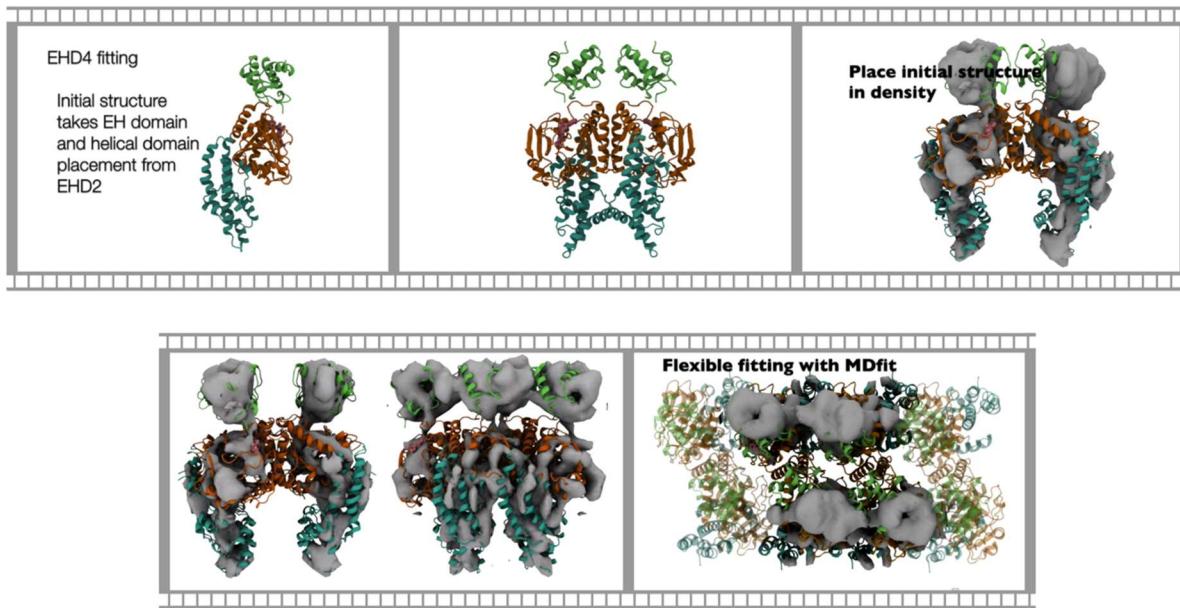
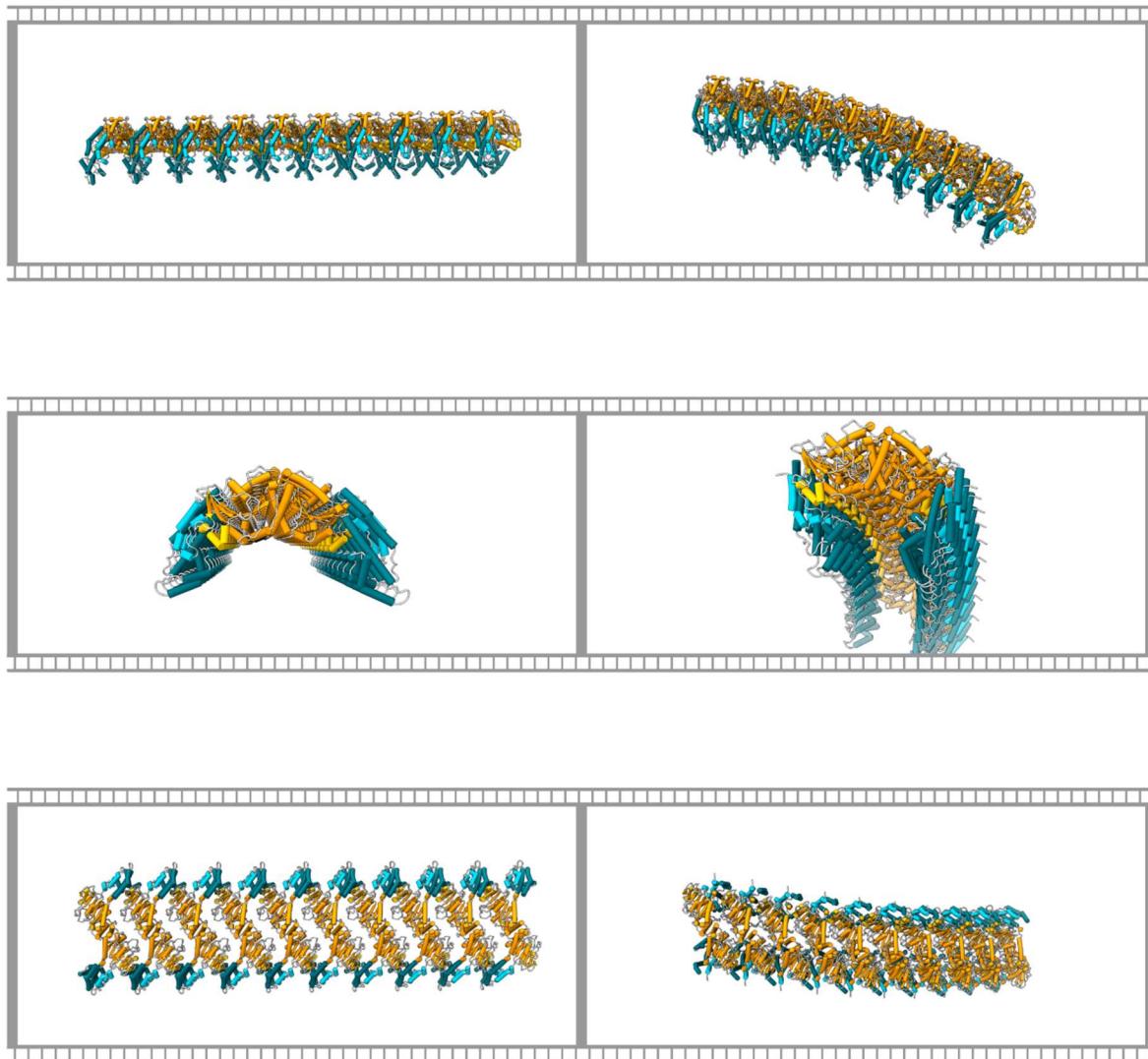

Figure S4. Two additional models compared to experimental points. Dotted line shows best fit result of main text Fig. 4. Red line shows best fit when taking the curvature and twist moduli as equal. While the fit is not obviously wrong, the better fit of the dotted line (where twist modulus is zero) suggests the twist modulus is relatively small. The green line shows the curve given by the dotted line plus an addition accounting for an alignment driven by the dimer curvature. The large tube behavior significantly deviates. See Methods for details.

Table S1: Cryo-EM data collection, refinement and validation statistics


DATA COLLECTION AND PROCESSING

MAGNIFICATION	53,000
VOLTAGE (kV)	300
ELECTRON EXPOSURE (e/Å ²)	94
DEFOCUS RANGE (μm)	3-6
PIXEL SIZE (Å)	2.628
SYMMETRY IMPOSED	C2
INITIAL PARTICLE IMAGES (NO.)	84,000
FINAL PARTICLE IMAGES (NO.)	23,813
MAP RESOLUTION (Å)	7.6
FSC THRESHOLD	0.143
MAP RESOLUTION RANGE (Å)	6.47-16


Movie S1. Orthogonal views of the reconstructed tomogram containing EHD4 coated tubes

Movie S2: Flexible fitting of membrane-bound EHD4 based on the crystal structures.

Movie S3. Transition between the open linear EHD4 filament to the curved closed filament.

