

1 **A Cellular Reference Resource for the Mouse Urinary Bladder**

2 Dylan Baker^{1,2,4*}, Iman M. Al-Naggar^{4*}, Santhosh Sivajothi¹, William F. Flynn¹, Anahita Amiri¹,

3 Diane Luo¹, Cara C. Hardy⁴, George A. Kuchel⁴, Phillip P. Smith^{4,5#}, Paul Robson^{1,2,3#}

4

5 ¹The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032 USA

6 ²Department of Genetics and Genome Sciences, University of Connecticut School of Medicine,
7 Farmington, CT 06032 USA

8 ³Institute for Systems Genomics, University of Connecticut, Farmington, CT 06032 USA

9 ⁴UConn Center on Aging, University of Connecticut School of Medicine, Farmington, CT 06032
10 USA

11 ⁵Department of Surgery, UConn School of Medicine, Farmington, CT 06032 USA

12

13 *These authors contributed equally to this work.

14 #Corresponding authors

15 *Correspondence: ppsmith@uchc.edu, paul.robson@jax.org

16

17 **SUMMARY**

18 The urinary bladder functions as a reservoir to store and extrude liquid bodily waste. Significant
19 debate exists as to this tissue's cellular composition and genes associated with their functions.
20 We use a repertoire of cell profiling tools to comprehensively define and spatially resolve cell
21 types. We characterize spatially validated, basal-to-luminal gene expression dynamics within
22 the urothelium, the cellular source of most bladder cancers. We define three distinct populations
23 of fibroblasts that spatially organize from the sub-urothelial layer through to the detrusor muscle,
24 clarifying knowledge around these controversial interstitial cells, and associate increased
25 fibroblasts with aging. We overcome challenges of profiling the detrusor muscle, absence from
26 earlier single cell studies, to report on its transcriptome with many novel and neuronal-like
27 features presumably associated with neuromuscular junctions. Our approach provides a
28 blueprint for tissue atlas construction and the data provides the foundation for future studies of
29 bladder function in health and disease.

30 **Keywords:** Mouse bladder, cell atlas, single cell RNA sequencing, spatial transcriptomics,
31 imaging mass cytometry, detrusor, fibroblast, urothelium, aging, differentiation

32

33

34 INTRODUCTION

35 The urinary bladder is a complex organ with diverse cell types interacting in concert to achieve
36 effective storage and expulsion of urine. The cells of the bladder are structured into three major
37 layers; mucosa, submucosa and muscularis. The mucosa is composed of a specialized
38 epithelium - the urothelium - which provides a barrier preventing urine from re-entry into the
39 body, undergoes significant morphological changes to accommodate the dynamics in urine
40 volume, and participates in defense against bacterial infection. The submucosa is an
41 extracellular (ECM) and fibroblast rich layer joining the muscularis and mucosa which has been
42 postulated as an integrative hub of bladder activity. Finally, the muscularis is composed
43 primarily of the detrusor smooth muscle which relaxes and contracts to accommodate and expel
44 urine. The bladder is highly innervated, though lacking neuronal cell bodies itself, and the entire
45 bladder structure considered to be an integrated sensory web that promotes reciprocal
46 communication between the urothelium, the underlying submucosa and muscularis, and the
47 CNS¹.

48 Obfuscation of the foundational cellular elements of the bladder has made it difficult to address
49 bladder related disorders leading to common debilitating and costly clinical conditions. Immune
50 and urothelial subtypes are heavily implicated in divergent treatment outcomes and disease
51 recurrence for interstitial cystitis and bladder cancer. Yet the diversity and dynamics of these
52 subtypes is still being investigated with some aspects remaining controversial. Similarly, age-
53 related bladder disorders, especially overactive bladder disorder, have been associated with
54 multiple cell types including the detrusor smooth muscle, fibroblasts and the urothelium.
55 However, contradictory evidence exists with regards to subtype contributions to disease and
56 changes in cell type proportions with aging. Furthermore, a network of bladder interstitial cells,
57 analogous to the interstitial cells of Cajal (ICC) in the gut has been postulated as a critical

58 bladder regulatory element²⁻⁴. However, definitive characterization of such cells is lacking with
59 conflicting evidence for a unique urinary ICC cell type leading to questions regarding their
60 existence and proposed functionality in the bladder⁴. Thus, it is imperative to provide more
61 comprehensive definitions of bladder cell types in order to better understand pathophysiology
62 and improve patient outcomes.

63 With the goal of addressing controversies in the field that have arisen due to often
64 incomplete and inappropriate cell typing data, we set out to generate a comprehensive cell atlas
65 of the mouse urinary bladder by combining a set of cell profiling technologies. Here we provide
66 an atlas of the mouse urinary bladder utilizing single cell RNA sequencing (scRNAseq), single
67 nucleus RNA sequencing (snRNAseq), RNA sequencing on bulk tissue, spatial transcriptomics
68 (ST), and imaging mass cytometry (IMC). Using the complementary nature of these techniques
69 we are able to provide novel insight into bladder biology including differentiation of the
70 urothelium, the identity of interstitial cells, and the unique nature of the detrusor smooth muscle.

71 **RESULTS**

72 **Construction of the Atlas**

73 To provide a comprehensive atlas of the mouse urinary bladder we utilized a number of high
74 content, complementary techniques to generate molecular and spatial profiles for each cell type
75 (Fig. 1A). In-house scRNAseq data was generated from eighteen mouse bladders in five sets
76 utilizing the droplet-based Chromium system in which 3'-end counts were generated. We then
77 combined in-house generated data with publicly available data from the Mouse Cell Atlas⁵ and
78 the Tabula Muris Consortium⁶. To identify potential biases introduced through tissue
79 dissociation and cell capture, we performed differential expression analysis between bulk RNA-
80 seq generated from whole mouse bladders and the aggregate scRNAseq data. Genes found to

81 be significantly over-represented in bulk whole bladder samples were associated with smooth
82 muscle (e.g. *Acta2*, *Actg2*, *Myh11*) and neuronal (e.g. *Gria1*, *Cdh8*, *Rbfox3*, *Rims1*) cell types
83 (Table S2). A number of these genes (*Hcn1*, *Stum*, *Kcnf1*) were entirely absent from processed
84 scRNAseq data (Table S3). The mouse bladder lacks neuronal cell bodies and thus we
85 postulated these apparent neuronal transcripts were derived from RNAs present within axonal
86 boutons, which would be lost upon tissue dissociation. Of greater concern was the dramatic loss
87 of smooth muscle transcripts. For instance, *Myh11* and *Myocd*, both classical smooth muscle
88 transcripts required for proper smooth muscle function were abundantly expressed in bulk RNA-
89 seq data (*Myh11* 11.6 CPM, *Myocd* 4.42 CPM) with high log fold change (*Myh11* -9.42, *Myocd* -
90 7.95) in the scRNAseq data^{7,8}. An analysis of the initial scRNAseq data set indicated a
91 population of smooth muscle-like cells but only representing 1.1% of the total, a significant
92 under-representation considering the detrusor muscle comprises a major component of the
93 bladder. The associated cells had high expression of genes known to mark vascular smooth
94 muscle cells (vSMC; e.g. *Pln*) and pericytes (e.g. *Rgs5*), but minimal expression of *Myh11* and
95 *Myocd*. vSMCs and pericytes are readily captured by this scRNAseq approach in other
96 tissues^{9,10} and are expected to be present in the vascularized bladder. We therefore reasoned
97 that, like cardiomyocytes in the heart⁹, detrusor smooth muscle (DSM) cells do not survive
98 standard dissociation approaches and therefore their transcriptomes missed in our initial, and
99 the previously published^{5,6} data sets.

100 To rectify the extreme under-representation of DSM cells we performed additional scRNAseq on
101 samples from optimized dissociation techniques specifically designed to capture DSM cells¹¹ by
102 stripping the detrusor layer from the mucosa and processing the detrusor layer with papain
103 followed by collagenase. We also performed snRNAseq which has been previously shown to be
104 useful in capturing difficult to dissociate cell types⁹. The addition of detrusor muscle layer-
105 enriched datasets increased the total smooth muscle cell number from 315 to 1763, and a

106 distinct smooth muscle subcluster became apparent which highly expressed genes originally
107 enriched in the bulk RNAseq over the scRNAseq (including *Myh11* and *Myocd*) and known to be
108 expressed and functional in detrusor muscle (see below), thus providing adequate
109 representation of the detrusor muscle. A complete list of mice, preparation techniques and
110 metrics for each sample in the final dataset can be found in Table S1 and Methods.

111 With the addition of this detrusor-enriched scRNAseq data, the final single cell transcriptome
112 dataset consisted of a total of 42,904 cells of which 38,858 cells were generated in this study,
113 and represented a gain of 5,296 genes detected compared to the previously published studies.
114 The final dataset correlated well with bulk data (scRNAseq versus whole tissue R=0.915,
115 scRNAseq versus dissociated cells R=0.923; Fig. S1C&D). Primary clustering revealed seven
116 broad clusters corresponding to, in decreasing order of abundance, fibroblast, urothelial,
117 immune, smooth muscle, endothelial, Schwann, and mesothelial cells (Fig. 1B&C). Cell type
118 proportions varied across datasets indicating the impact of tissue preparation techniques on cell
119 types identified and their relative abundance (Fig. 1D). Described in detail throughout the
120 remainder of this study, through iterative clustering and analysis, we define 25 transcriptionally
121 distinct cell populations.

122 To position these cell types within the spatial context of the bladder we utilized IMC and ST.
123 IMC provides a highly multiplexed antibody-based approach to detect epitopes of interest at
124 sub-cellular (1 μ m) resolution. The selection of antibodies for use in IMC was informed by the
125 scRNAseq analysis and designed to encompass the cell type composition of the bladder. The
126 ST technology generates spatially resolved polyadenylated transcriptome gene count data with
127 identical molecular biology to the scRNAseq profiling, at a resolution of 55 μ m (i.e. not single
128 cell). ST was performed on eight mouse bladder sections with a total of 4,569 transcriptome
129 data spots yielding an average of 21,821 UMIs and 4,776 genes per spot. These averages
130 varied significantly between layers correlating with total polyadenylated RNA content identified

131 in the ST permeabilization optimization experiment with the urothelial layer showing the highest
132 density of gene expression (Fig. S1B) averaging 45,884 UMIs and 6,832 genes per spot.
133 Clustering of the ST data resulted in the identification of five clusters, four of which
134 corresponded to a particular layer of the bladder: urothelial, lamina propria, detrusor muscle,
135 and the outer mesothelial lining (Fig. 1E). A panel of 15 metal-conjugated antibodies was used
136 in IMC analysis, a representation of six of these is shown in Fig. 1F. The following analysis of
137 the respective layers and cell types integrates the bulk RNAseq, scRNAseq, snRNAseq, IMC,
138 and Visium ST to define the cellular architecture of the mouse urinary bladder.

139 **Urothelial Cells**

140 Sub-clustering of the urothelium in the scRNAseq data revealed a continuous cluster polarized
141 by classical urothelial markers, *Krt5* for basal and *Upk2* for luminal (Fig. 2A), suggesting these
142 data capture the dynamics of this differentiation. Pseudotime analysis on the entire urothelial
143 cell population was performed in order to generate insight into the transcriptional dynamics of
144 this process. At pseudotime t=0 *Krt5* expression was highest and *Upk2* expression lowest with
145 the reciprocal observed at t=1. *Krt14*, known to mark a subset of *Krt5*+ basal cells¹², was
146 detectable in a few cells at the basal end of the pseudotime projection. IMC data for KRT5 and
147 PSCA, markers for basal and luminal populations respectively^{13,14} validated this projection,
148 though the protein expression was much more restricted to either end points than RNA
149 expression profiles (Fig. 2B). We identified a set of genes (e.g. *Krt20*, *Rgs5*, *Fut9*, *Prss27* and
150 *Sprr2a2*; Fig. 2C) with a rapid increase in expression only at later points in pseudotime and
151 reasoned this set might constitute the end-stage transcriptional differentiation into
152 luminal/umbrella cells. To verify this, we took advantage of the ST data by manually annotating
153 ST spots, guided by the H&E image, as basal or luminal based on the positioning of urothelium
154 relative to the bladder lumen (Fig. 2D). We then performed differential expression analysis
155 between basal and luminal cells for both ST and scRNAseq separately and compared top DE

156 genes. The top 50 genes found with increased expression on lumen-associated ST spots
157 showed significant overlap with the late luminal gene set identified in pseudotime analysis of the
158 scRNASeq data (Fig. 2E, TableS9). This combined strategy therefore validates the pseudotime
159 projection and highlights a robust gene set which delineates the most luminal cells.

160 To further exploit the identified differentiation dynamics we classified sub-groups of genes
161 based on their gradient of expression across urothelial pseudotime (Fig. S2A), defining five
162 general groupings; early basal, basal, intermediate, luminal and late luminal. The pseudotime
163 profiles of genes characteristic for each of these categories is illustrated in (Fig. 2C). Early basal
164 and basal genes decrease across pseudotime with early basal genes showing an exponential
165 decrease in expression and basal genes having a more linear decrease. Similar dynamics are
166 observed between luminal and late luminal for the genes which increase across pseudotime.
167 Intermediate genes had more variable pseudotime profiles, however, each had some increase
168 in expression early in pseudotime with a relative decrease at t=1. The Notch signaling
169 transcriptional effector *Hes1* identified as intermediate in our analysis has previously been
170 shown to transiently increase during urothelial differentiation¹⁵ lending credence to these genes
171 constituting a true intermediate set. Transcription factors both with known (e.g. *Klf5*¹⁶) and as
172 yet to be defined (e.g. *SP6*) functions in urothelial differentiation are represented in these gene
173 sets, as are genes (e.g. *Elf3* and *Klf5*) with mutations recently found to be positively selected for
174 in apparently normal human bladders¹⁷. Interestingly, we identified a group of luminal genes
175 which are each involved in xenobiotic processing based on GO annotations (Fig. 2C). One of
176 these, *Gstm1* is one of the few known loci associated with increased genetic susceptibility to
177 bladder cancer in humans¹⁸ thus providing a mechanistic link between carcinogens in the
178 bladder lumen and urothelial carcinomas.

179 **Fibroblasts**

180 Fibroblasts within the lamina propria and the detrusor muscle layer of the bladder wall have
181 been postulated to behave as an intercellular communications network^{19–22} analogous to the
182 interstitial cells of Cajal (ICC) in the gut. However, a uniquely identifiable ICC in the bladder has
183 not been convincingly characterized^{3,23,24}. Although *Kit* (CD117) is the prototypical marker for
184 ICCs in the intestinal tract²⁵, recent data suggested mouse bladder *Kit* is expressed only on
185 mast cells²⁶. In our data, *Kit* expression was restricted to a small number of immune and DSM
186 cells and other gut ICC markers (*Pdgfra*, *Entpd2*, *Cd34*, and *Gja1*) were either absent or not
187 restricted to the fibroblast cluster (Fig. 3A).

188 Further analysis of fibroblasts revealed three sub-clusters (Fig. 3B) each defined by marker
189 genes such as *Car3*, *Npy1r* and *Penk* (Fig. 3C). Utilizing the spatial information provided by ST
190 and IMC, we were able to position these three sub-populations within the bladder layers. The
191 *Penk*⁺ fibroblasts are primarily located in the detrusor layer (Fig. 3D&E) while the *Npy1r*⁺
192 fibroblasts are primarily within the lamina propria creating a network which extends into the
193 detrusor layer (Fig. 3D&E). The *Car3*⁺ fibroblasts which express myofibroblast-related genes
194 (e.g. *Acta2*) are located directly beneath the urothelium, and are also enriched in basement
195 membrane collagens (*Col4a1*, *Col4a2*). Based on their spatial geography we term these sub-
196 populations as *Car3*⁺ sub-urothelial (suF), *Npy1r*⁺ lamina propria (IpF), and *Penk*⁺ detrusor
197 muscle (dmF) fibroblasts. All appeared to form a continuum with suF co-localizing with IpF in the
198 sub-urothelial region and the terminal ends of the IpF extending into the detrusor layer co-
199 localizing with the dmF (Fig. 3D&E).

200 Given the spatial and transcriptional proximity between all three fibroblast subtypes we
201 reasoned that the entire population represents different cellular states of a single cell lineage,
202 and that microenvironmental cues may guide transcriptome differences. IPA upstream regulator
203 analysis based on differentially expressed genes between dmF and the suF revealed reciprocal
204 apparent activity of *TGFB1* and *PDGFBB* in these two cell types (Fig. 3F). In scRNAseq data

205 *Tgfb1* was expressed across multiple cell types including the urothelium and the suF (Fig. 3G).
206 *Pdgfb* was expressed highly on a subtype of Schwann cells which primarily reside in the
207 detrusor region (Fig. 3G, 6D&E). ST data showed a higher expression of *Tgfb1* in the urothelial/
208 lamina propria region compared with the detrusor region while the inverse was true of *Pdgfb*
209 expression (Fig. S2). Thus, the apparent activity of the TGFB1 and PDGFBB pathways in suF
210 and dmF, respectively, fit with the spatial location of the expression of these ligands.

211 To determine if reciprocal activity of TGFB1 and PDGFBB causes a transition of IpF into suF
212 and dmF, we isolated IpFs by stripping mucosa from detrusor to remove dmFs and collecting
213 the CD34+ mucosal population by FACS. We then cultured the recovered cell population in
214 combinations of these ligands and inhibitors of TGFB1 and PDGFBB pathways. After 6 days in
215 culture the expression of dmF-associated genes (*Dlk1*, *Penk*, *Gpx3*) were increased in PDGFBB
216 activated, TGFB1 inhibited cultures compared to untreated cells (Fig. 3H). Expression of suF-
217 associated genes (*Acta2*, *Cxcl14*) was also decreased in these cultures. In TGFB1 activated,
218 PDGFBB inhibited cultures expression of suF-associated genes were increased compared to
219 untreated samples although dmF-associated genes were also slightly increased. This would
220 indicate that while reciprocal activity of TGFB1 and PDGFBB can influence the transcriptional
221 profile of IpF, additional factors may be involved in the differentiation of the suF population.
222 Notably, these fibroblast sub-populations fit into classifications of cancer-associated fibroblasts
223 that we and others have described in human solid tumors, with the suF favorably comparing
224 with myCAF/CAF-B and dmF to iCAF/CAF-A^{27,28}. ACTA2/SMA-high CAFs have further been
225 identified as a tumor-adjacent TGF β -driven population²⁸, thus correlating with the signaling of
226 the suF positioned adjacent to the urothelium.

227 **Fibroblasts and Aging**

228 To elucidate the cell types which are responsible for gross changes observed in the aging
229 bladder²⁹⁻³¹ we analyzed previous bulk data within the context of our scRNAseq data (Fig. 4A).
230 A number of genes found to be upregulated with aging based on previous literature were shown
231 to be expressed in the fibroblast subtypes in scRNAseq data (Fig. 4A). Comparison of cell type
232 proportions from our own data between batch-matched old/young and old/mature datasets
233 showed an 11% increase in the proportion of fibroblasts with age regardless of dissociation
234 technique used (Fig. 4B). Additionally, the ratio of mesenchymal to urothelial cells was found to
235 be increased with aging by flow cytometry (Fig. 4F) indicating an increase in fibroblast number
236 with aging.

237 Our findings were in contrast to a recent study utilizing scRNAseq, that found the mesenchymal
238 compartment decreased by a factor of three with aging and the urothelial compartment
239 increased by a similar amount.³² As this consortium performed scRNAseq on stripped bladder
240 mucosa (non-mucosa was discarded) rather than whole bladder we reasoned the aged
241 fibroblast, and its associated deposition of ECM, may influence the physical properties of the
242 tissue resulting in differential cell composition in mechanically stripped bladders compared to
243 whole bladder preps. To test this hypothesis, we performed flow cytometry on young and old
244 stripped bladders to determine how the number of fibroblasts change with aging in the two
245 regions, the mucosa (urothelium and lamina propria) and the detrusor/muscularis, after
246 stripping. In young the proportion of fibroblasts was higher in the mucosa than in the detrusor
247 region while the inverse was true of the old samples (Fig. 4F). Thus, the change in physical
248 properties of the bladder with aging alters the composition of the stripped mucosal layer, with
249 more fibroblasts remaining on the surface of the muscularis layer after stripping of the aged
250 bladder than that of the young.

251 As we have defined three sub-types of fibroblasts we next sought to determine if aged-related
252 changes were sub-type specific. The increases in fibroblast numbers were similar across the

253 three fibroblast subtypes (Fig. 4B). However, differential expression between old and
254 young/mature fibroblasts revealed a number of differentially expressed genes were specific to
255 the suF (Fig. 4C). Many of the suF-specific genes found upregulated in aging had been
256 previously implicated in myofibroblast differentiation (*Tagln*, *Acta2*, *Sparc*, *Fxyd5*), suggesting
257 the increase in the suF cell number with aging coincides with an increase of suF differentiation
258 towards terminal myofibroblasts. To confirm this we used a set of terminally differentiated
259 myofibroblast markers (*Acta2*, *Tagln*, *Mylk*, *Myl9*) to binarize the suF cluster into partially
260 differentiated myofibroblasts and terminally differentiated myofibroblasts by Gaussian mixture
261 modeling, and compared the results across ages. Indeed, the percentage of terminally
262 differentiated suF myofibroblasts increased from ~6% in both young and mature samples to
263 ~32% in the aged samples (Fig. 4D, p indistinguishable from 0). This was further confirmed by
264 spatial transcriptomics: ST spots annotated as suF had increased expression of myofibroblast
265 differentiation genes *Acta2*, *Tagln*, and *Cdkn2a* when comparing old to mature tissue sections
266 (Fig. 4E). Additional genes emerging in the differentiated myofibroblast, identified by differential
267 expression between the terminally and partially differentiated myofibroblast cells, revealed a
268 number of genes related to neurogenic bladder pathology (Table S5). Specifically, genes such
269 as *Ngf*, *Bdnf*, and *Nrg1* were found to be increased in terminal myofibroblasts and constitute
270 molecular markers for neurogenic bladder syndrome and outlet obstruction^{33,34}.

271 **Detrusor Smooth Muscle**

272 After ensuring optimization of tissue harvest for DSM-specific cells, the smooth muscle
273 population in the bladder could be sub-divided into three distinct clusters (Fig. 5A) consisting of
274 the 555 vSMCs, 388 pericytes, and 820 DSM (Fig. 5A). Notably, of the cells from the previously
275 published data sets, only 4 cells clustered with the DSM, emphasizing the importance of our
276 optimized tissue enrichment and dissociation of this cell type. Overall, each of the three
277 subclusters shared expression of many general smooth muscle marker genes (e.g. *Acta2*, *Myl9*,

278 *Mylk*) (Fig. 5B, TableS6). The two vascular-associated populations shared some known
279 molecular markers, such as *Epas1*, *Sncg*, and *Notch3*³⁵, that were absent in the DSM, but also
280 each had distinct molecular features that enabled their classification separately as pericytes
281 (*Rgs5*, *Kcnj8*, *Pdgfrb*)³⁶ and vSMC (*Tesc*, *Pln*, *Wtip*)³⁷. In addition to the earlier-mentioned
282 *Myh11* and *Myocd* expression, the DSM cluster was marked by the mRNA expression of a
283 number of structural proteins associated with the detrusor muscle such as *Actg2*, *Acta1*, and
284 *Tnnt2*. *Actg2* (uSMA) localization to the detrusor layer was confirmed by IMC (Fig. 5C) while the
285 more broadly expressed *Acta2* (αSMA) was found both in the detrusor layer and around
286 vascular structures (i.e. in vSMC) which colocalize with the endothelial marker AQP1 (Fig. 5C).
287 In addition, a number of genes (*Cnn1*, *Synpo2*, *Actg2*, *Mylk*) genetically linked to detrusor
288 muscle defects in megacystis microcolon intestinal hypoperistalsis syndrome^{38,39} are also
289 marker genes of DSM cells identified in scRNASeq, further validating the identity of this cluster.

290 As previously stated, differential expression between whole bladder bulk RNA-seq and the initial
291 scRNASeq data resulted in a number of genes enriched in the bulk that are classically
292 associated with neuronal cell types (e.g. *Rbfox3*, *Kcnf1*, *Rims1* (Table S2)). Initially, we
293 suspected that transcripts of these genes are present within axons and nerve terminals
294 innervating the bladder and thus were lost following dissociation. Interestingly, however, we
295 found the expression of these neuronal genes to be located specifically in the DSM cell cluster.
296 For instance, *Rbfox3*, which encodes NeuN, thought to be exclusively expressed in neurons and
297 is frequently used to mark neuronal nuclei⁴⁰, has not previously been shown to be expressed in
298 smooth muscle cells. With the tight coupling between axonal projections and DSM in the
299 bladder⁴¹ we initially postulated that the apparent presence of these transcripts in DSM may be
300 due to axonal terminals adhering to DSM cells upon dissociation in the detrusor-enriched
301 preparations. To address this, we analyzed the snRNASeq muscle subclusters by themselves
302 (i.e. without any scRNASeq data) reasoning that any DSM nuclei will only contain transcripts

303 expressed in the DSM cells themselves, and the absence of neuronal nuclei within the bladder
304 itself will remove neuronal-specific transcripts. These neuronal-like transcripts were still however
305 detected and specific to the DSM cluster within the single nuclei data (Fig. 5D). Visualizing
306 these mapped reads confirmed appropriate mapping to the exonic regions of these genes (Fig.
307 5E) ruling out spurious mapping issues. These data indicate that the DSM has a transcriptional
308 profile related to both the contractile function of detrusor muscles, as well as a transcriptional
309 signature better known in neuronal biology.

310 To further identify DSM genes that may contribute to bladder-specific biology we refined the
311 *DSM_nocontractile* gene set by applying a bladder specificity index score for each gene utilizing
312 mouse ENCODE transcriptome data (Fig. 6A). A higher index score indicates higher specificity
313 for expression in the DSM compared to all other tissues profiled in the ENCODE data and
314 therefore potentially connote DSM-specific functionality. The two genes with the highest
315 specificity both encode neuropeptide Y receptors, *Npy6r* and *Npy4r*. As far as we are aware,
316 this is the first report of these receptors on DSM cells, this is intriguing as *Npy4r* has been
317 identified as expressed on colonic muscle cells and functionally involved in colonic
318 contraction.⁴² At least one of the ligands for these receptors, NPY, is known to be richly
319 distributed in nerve fibres within the detrusor layer⁴³. *Stum*, first characterized as a
320 mechanosensing molecule in *Drosophila*⁴⁴, is also specific to the DSM among bladder resident
321 cells. An as yet to be functionally characterized gene, *Gm28729*, is also represented in this
322 gene set. Comparative analysis of the *Gm28729* predicted protein sequence indicates a deep
323 evolutionary history (invertebrates through to mammals) of this protein-coding gene, with an
324 apparent functional loss within the last common ancestor of humans and Denisovans (Fig. S3).
325 Thus, numerous genes are revealed in our uncovering of the DSM transcriptome with apparent
326 functional relevance to bladder control potentially through roles at the neuromuscular junction.

327 **Neuronal Moieties**

328 While no neuronal cell bodies are present in the mouse bladder, we sought to identify
329 transcripts from innervating neurons in ST using genes encoding for products known to localize
330 to neuronal boutons in the bladder; specifically, *Npy* and *Slc17a7* (VGLUT1)⁴⁵. Eight spots were
331 found to contain *Npy* and differential expression between *Npy*+ and *Npy*- spots revealed *Npy*
332 was co-expressed with other neuronal-associated genes such as *Grp* (Fig. 6B, S4A, TableS7)
333 which has been used as a marker for neuronal processes⁴⁶. Based on this and the fact these
334 genes are absent in our scRNASeq data, including the DSM-enriched samples, provides
335 confidence they represent neuronal-specific transcripts. However, co-expression of *Npy* and
336 *Dlk1* was surprising as *Dlk1* was found to be expressed in the *Penk*+ dmF; co-expression in ST
337 could be due to co-localization of axons with *Dlk1*+ fibroblasts or due to *Dlk1* transcripts within
338 the axons themselves. Previous work has indicated that *Dlk1* is expressed on neurons and in
339 fact distinguishes fast twitch from slow twitch motor neurons⁴⁷. Given the physiological
340 implications of axons with a fast twitch transcriptional signature innervating the bladder we
341 sought to resolve where *Dlk1* protein is present. Bladder sections were co-stained with *Dlk1*,
342 *Pgp9.5* and *Cd34* to distinguish *Dlk1* signal in neurons vs fibroblasts. *Dlk1* signal co-localized
343 independently with both *Pgp9.5* and *Cd34* indicating its expression in both neurons innervating
344 the bladder and *Penk*+ dmFs (Fig. 6C).

345 Only three *Slc17a7*-containing spots were identified in ST. Differential expression analysis,
346 despite being underpowered and lacking significance, between *Slc17a7*+ and *Slc17a7*- spots
347 revealed *Slc17a7* co-expression with *Ramp3*, *S100b*, *Sv2a* and *Slc2a3*. With the exception of
348 *S100b* each encode for neuronal specific products (Fig. 6B, S4A). *S100b* is a well-known
349 Schwann cell marker and based on the association between Schwann cells and axons this co-
350 expression of *S100b* and *Slc17a7* in ST is intuitive. Sub-clustering of Schwann cells in the
351 scRNASeq data (*S100b*+) resulted in two clusters identified as myelinating and non-myelinating
352 Schwann cells based on classical markers (Fig. 6D). ST indicated that peri-synaptic Schwann

353 cells reside mostly within the detrusor region (Fig. 6E and 6F). Interestingly, scRNASeq data
354 indicated that Schwann cells are a primary source of *Pdgfb* which we determined to be an
355 upstream regulator of the dmF transcriptome (Fig. 3G). Sub-clustering of Schwann cells reveals
356 that *Pdgfb* is expressed almost exclusively by peri-synaptic Schwann cells (Fig. 3D). This
357 coupled with the co-localization of S100b, Pgp9.5 and Cd34 (Fig. 6B) indicates a signaling niche
358 in the interstitial space of DSM muscle fascicles between peri-synaptic Schwann cells, neurons,
359 detrusor smooth muscle, and fibroblasts (Fig. 6G).

360 Beyond the major function related elements of the bladder detailed above other cell types
361 identified in this study included mesothelial, endothelial and immune cells. Interestingly, the
362 mesothelial cluster shares the same marker genes with the mouse cl.11 of the Yu et al⁴⁸ data
363 set, defined as 'neuron'. Given the high expression of the classical mesothelial marker *Msln*
364 (mesothelin) and localization of a marker for this cluster, *Gpm6a*, to the traditional mesothelial
365 region in the outermost layer of the bladder (Fig. 1F) we believe these are indeed mesothelial
366 cells and not neurons. Subclustering of immune cells revealed 13 unique cell types (Fig.
367 S5A&B) and when subclustering was performed with inclusion of a publicly available mouse
368 PBMC dataset two myeloid populations (cDC2 and macrophages) were primarily bladder in
369 origin indicating tissue residency (Fig.S5C). Markers for these cluster *Xcr1* (cDC2) and *Adgre1*
370 (macrophages) have been known to mark tissue resident populations. Interestingly, certain
371 myeloid populations displayed high layer specificity based on IMC and ST (Fig. S5D&E).
372 Macrophage and MHCII+ monocytes were more likely to be located in the detrusor region while
373 cDC2 was almost exclusive to the urothelium/lamina propria region (Figure S5E). Additionally,
374 large groups of contiguous spots positive for the plasma cell marker *Jchain* were identified in ST
375 data. Specifically these large clusters of contiguous spots were present in aged but not mature
376 sections (contiguous spots Aged=462, Young=3, Fig.S6) which is in line with a recent report⁴⁹

377 wherein tertiary lymphoid structures, which are highly populated with plasma cells, were more
378 prevalent in aged bladder sections.

379 **DISCUSSION**

380 We have generated a comprehensive cell atlas of the mouse urinary bladder by combining
381 multiple techniques, both dissociative and those that maintain spatial organization, significantly
382 improving upon past efforts to profile the mouse bladder at single cell resolution. In addition to
383 greatly expanding the numbers of profiled individual cells and therefore gleaning insight into cell
384 type sub-structure, we provide the first cell-type-specific transcriptomic view of the detrusor
385 muscle cell, and identify age-specific dissociation differences which have confounded the
386 interpretation of earlier single cell studies. Table S8 provides a summary of cell types we have
387 defined with, where available, the cell ontology terminology from EMBL-EBI Cell Ontology.
388 Bladder ontology terminology was noticeably sparse compared to other organs such as lung
389 and heart indicating a lack of adequate bladder cell typing.

390

391 The limitations in dissociative techniques are evident in past studies of the bladder^{5,6,50} that
392 nearly completely lack representation of the detrusor smooth muscle cell, a major component of
393 this tissue. DSMs have strong intercellular attachments through detrusor muscle fibers and can
394 be very large in size and therefore, similar to cardiomyocytes, are a challenge to isolate. With
395 our combination of strategies focused on the detrusor layer and including single nucleus
396 profiling we were able to generate 474 single nuclei and 342 single cell transcriptomes of DSM
397 cells and validate expression localization to the detrusor layer through spatial methods.

398

399 Cells attached to or embedded in the extracellular matrix (ECM) can inhibit their recovery in
400 dissociative techniques; we have previously seen this in the percent recovery of cells between
401 the morula and late-stage blastocyst⁵¹ when ECM is first deposited, and in the efficiency of

402 recovery of fibroblast in heavily desmoplastic tumors such as in pancreatic cancer²⁸. This effect
403 apparently confounded the interpretation of single cell data in a recent study concluding
404 urothelial cells increase in numbers with age³². Here we show that the fibroblast-containing
405 lamina propria has age-dependent biases when stripping urothelial from detrusor muscle layers,
406 coming off more with the former in young mice and the latter in aged mice. This would lead to
407 technical artifacts in the ratios of urothelial to fibroblast that were profiled in the Tabula Muris³².
408 Instead, and in line with previous literature reporting increased fibrosis in aged bladders^{52,53}, our
409 data suggest an increase in the proportion of fibroblasts and, specifically a distinctive increase
410 in ECM-producing differentiated myofibroblast with age. Further, we provide evidence that
411 TGFB1 is a contributor to this differentiation, a factor known to increase with aging⁵⁴.
412 Interestingly, the expression profile of these fully differentiated myofibroblasts include genes
413 known to be associated with age-related bladder disorders such as neurogenic bladder
414 dysfunction⁵⁵. These differential dissociation outcomes of fibroblast with age emphasized the
415 importance of not solely relying on one method of interrogation in such studies.
416
417 While we were careful in employing complementary techniques to capture a comprehensive
418 view of cell types and their associated transcriptomes, our study still lacks in describing the
419 biology of, and heterogeneity within, bladder neuronal innervation. Neuronal cell bodies are not
420 present in the highly innervated bladder. We believe we capture some axonally-localized
421 transcripts (e.g. *Npy*, *Slc17a7*), present in the bulk RNA-seq and spatial transcriptomics but
422 absent in the single cell and nucleus data, but only slightly informs the rich biology in these
423 structures. Future studies incorporating neuronal specific techniques such as retrograde tracing
424 will better provide insight into the transcriptome, and therefore the biology, of these neurons.
425
426 In addition to the cataloging of cell types and states, single cell analysis can capture
427 developmental transitions and provide insight into the molecular control of cell fate decisions⁵¹.

428 With the numbers of individual cells profiled here we were able to reconstruct the differentiation
429 dynamics found within the urothelial layer, from basal progenitors to the fully differentiated
430 luminal umbrella cells, validating the pseudotime projections generated from the scRNAseq data
431 with spatial transcriptomics mapped to the histology of this layer. This transcriptome dynamics
432 aids in understanding the genetic regulatory network controlling the normal urothelial
433 regenerative process but also how this may be co-opted in disease mechanisms. With respect
434 to the latter it is interesting to note we find genes associated with a number of somatic mutations
435 apparently selected for in the normal aging bladder⁵⁶, and enriched in cancer lesions, are
436 dynamically expressed through this process suggesting these pre-cancerous mutations are
437 beginning to subvert the normal regenerative pathway within the urothelium.

438

439 The characterization of interstitial cells of Cajal (ICC) within the gastrointestinal (GI) tract as
440 pacemakers for smooth muscle cell contraction via response to enteric motor
441 neurotransmitters⁵⁷ led to the search for similar cells controlling detrusor muscle function in the
442 bladder. In the gut ICCs are localized between muscle fascicles and within the bladder a
443 fibroblast subtype exists within the space between detrusor fascicles. However, as opposed to
444 being ICC-like our data indicates this cell type to be closely related to other bladder fibroblasts
445 and forms a continuous fibroblastic network extending from the suburothelium deep into the
446 detrusor. The growth factor receptor Kit marks GI ICCs and its associated antibodies have been
447 used with mixed results to define fibroblast-like ICCs within the bladder^{23,26}. Our data agrees
448 with the absence of *Kit* expression in the fibroblast/interstitial cell compartment. In addition, our
449 data indicates that other highly expressed pan-ICC markers identified within the gastrointestinal
450 track (*Ano1*, *Gja1*, *Hprt*)⁵⁸; are also either absent or extremely low in expression in bladder
451 fibroblasts. These are not just markers for ICCs but functionally required for electrical activity in
452 the mouse intestine^{59,60}. While this does not rule out a role for fibroblasts in bladder volume
453 control, the absence of an ICC-like cell within the bladder argues for fundamental cell-type

454 differences in the control of smooth muscle contractility between the bladder and those lining
455 the gastrointestinal tract.

456

457 Our ability to capture the detrusor muscle cell transcriptome, lacking in previously published
458 single cell work, will provide further insight into bladder muscle control. Indeed, multiple
459 neuronal-like genes, presumed contributors to the post-synaptic junction, are expressed within
460 the detrusor smooth muscle cells and point towards new players at the neuromuscular junction.

461 Intriguing in this regard is the DSM-specific expression of *Stum*, a molecule first described as
462 mechanosensing in *Drosophila* proprioceptive neurons⁴⁴ though with little functional information
463 yet described in mammals. Evidence for a signaling niche that involves DSM, fibroblasts and
464 neurons has been suggested⁶¹ and our spatial data supports this and adds peri-synaptic
465 Schwann cells to the mix. Importantly, with the cell-type-specific transcriptomes of three of these
466 components now in-hand – the neuronal transcriptomes were not captured in this study –
467 insights into this signaling niche can be gained, an example of which being the aforementioned
468 PDGBB induced differentiation of fibroblasts within the detrusor region.

469

470 The mouse is an essential model to understand the biology of the human bladder as it remains
471 challenging to establish a human-based *in vitro* model that can fully replicate the integrated
472 physiology of the bladder (e.g. filling, voiding, innervation). As mouse gene knock-out efforts
473 continue⁶², having comprehensive tissue atlases such as we have generated here, will guide
474 subsequent phenotyping efforts, which are currently underway for *Stum* and *Gm28729*. As a
475 model of human biology, it is essential to define the similarities and differences between the
476 mouse and human. The expectation is that much of the biology will be conserved but identifying
477 where this varies will further inform the biology of both systems. We noted an intriguing species
478 difference in DSM-specific *Gm28729*, a 409 amino acid protein coding gene in the mouse that
479 remains without functional annotation, with a high bladder-specificity score, conserved across at

480 least 350 million years of time, yet apparently recently lost in humans and Denisovans (Fig. S3).
481 While functional characterization awaits, one may speculate on an association between this
482 mutation and bladder-specific features of the hominins. In this regard, it is noteworthy that an
483 association between bipedal gait, a hominin-specific feature, and urinary bladder control has
484 been identified^{63,64}. Future comprehensive cell-type-specific gene expression comparisons
485 between the mouse and human bladder will further inform the similarities and differences in this
486 organ.

487

488 Overall, this study represents the most comprehensive atlas of the mouse bladder to date. This
489 resource provides a foundation of bladder cell types from which researchers can elucidate
490 aspects of bladder physiology and pathobiology. This data is available in multiple formats from
491 the raw sequence trace files and associated count matrices to analyzed and interpreted
492 outcomes (<https://singlecell.jax.org/bladder>). Importantly, we show true tissue atlases require a
493 combination of tissue processing and analytical techniques, with age of tissue-dependent
494 considerations, providing important context for the rapidly growing cell atlas construction
495 community.

496 **DATA ACCESS**

497 All raw and processed sequencing data generated in this study including scRNAseq,
498 snRNAseq, Visium ST, and bulk RNA seq have been submitted to the NCBI BioProject
499 database (<http://www.ncbi.nlm.nih.gov/bioproject>) under accession number GSE180128.
500 Publicly available datasets can be downloaded from Tabula Muris Consortium (<https://tabula-muris.ds.czbiohub.org/>), Mouse Cell Atlas (Microwell-Seq) (<http://bis.zju.edu.cn/MCA/>) and 10X
501 (<https://www.10xgenomics.com/resources/datasets>) websites. To provide data accessibility and
502 allow use as a resource, we made our processed scRNAseq, snRNAseq and Visium Spatial
503 Transcriptomics data available at <https://singlecell.jax.org/datasets>.

505

506 **ACKNOWLEDGEMENTS**

507 FUNDING: NIH/NIA: K76AG054777 (PPS), R01AG058814 (PPS), Travelers Chair in Geriatrics
508 and Gerontology (GAK). The Jackson Laboratory startup funds (PR).

509

510 **AUTHOR CONTRIBUTIONS**

511 Conceptualization – P.R., P.P.S. Methodology – D.B., I.M.A., S.S., A.A. Software – W.F.F., D.B.
512 Formal Analysis – D.B. Investigations – D.B., D.L., A.A., S.S. Resources – P.P.S., P.R. Data
513 Curations – D.B., W.F.F. Writing Original Draft – D.B., I.M.A., P.P.S., P.R. Writing Review &
514 Editing – G.A.K., W.F.F., D.B., I.M.A., P.P.S., P.R. Visualization – C.C.H., D.B. Supervision –
515 P.R., P.P.S., G.A.K. Project Administration - P.R., P.P.S., G.A.K. Funding Acquisition - P.R.,
516 P.P.S.

517

518 **DECLARATION OF INTERESTS**

519 All authors have nothing to disclose/declare.

520 **FIGURE TITLES AND LEGENDS**

521 **Figure 1. Generation of a Mouse Bladder Atlas via Complementary Dissociative and**
522 **Spatially Resolved Techniques.** A) Schematic of atlas generation design representing the four
523 complementary techniques employed; single cell (and nucleus) transcriptomics (SCT), bulk
524 RNA sequencing (Bulk Seq), imaging mass cytometry (IMC), and spatial transcriptomics
525 (Visium). B) UMAP plot of combined, complete scRNAseq datasets of in house-generated and
526 publicly available datasets totaling 42,904 cells across 11 datasets. C) Gene expression
527 heatmap of select classical and novel marker genes identified for the seven major clusters
528 represented in B. D) Proportional representations of cells within clusters for each individual
529 dataset. Asterisks indicate public datasets. E) Representative image of Visium spatial
530 transcriptomics showing spatial localization of cell types. F) Representative IMC image of
531 mouse urinary bladder. Seven of 15 channels are represented corresponding to the three major

532 layers (mucosa:KRT15, submucosa:CD34, muscularis: α SMA), vasculature (AQP1), myeloid
533 cells (CD68), and the outer mesothelial layer (GPM6A).

534 **Figure 2. Urothelial Differentiation Dynamics.** A) Urothelial cells subclustered and visualized
535 using a Fruchterman Reingold (FR) graph layout reveal two major clusters identified by
536 expression of classical urothelial markers (*Upk2*, *Krt5*). PAGA pseudotime analysis generates a
537 trajectory recapitulating known urothelium differentiation from basal (pseudotime t=0) to luminal
538 (pseudotime t=1) cells. B) IMC (left) of luminal (*PscA*) and basal (*Krt5*) markers initially identified
539 by scRNAseq (*PscA* = scRNAseq luminal marker, right) indicates expression discrepancy
540 between transcript (scRNAseq) and protein (IMC) of urothelial markers. C) Pseudotime
541 trajectory plots. Gene expression across discrete points of pseudotime was binned to identify
542 distinct patterns, shown are early basal, basal, intermediate, and luminal. Additional trajectories
543 are shown for selected transcription factors and carcinogen (xenobiotic) processing genes. D)
544 Representative Visium ST image with urothelial spots manually annotated as basal or luminal
545 by spatial location relative to the lumen. E) Venn diagram of top 50 differentially expressed
546 genes identified between basal and luminal cells from manually annotated Visium ST spots (D)
547 and subclustered scRNAseq data.

548 **Figure 3. Definition and Spatial Localization of Fibroblast Sub-types.** A) Dot plot
549 representing the expression of previously proposed markers of bladder ICC across the seven
550 major cell types in the bladder. B) UMAP plot of fibroblasts defined into three subclusters by the
551 expression of *Car3*, *Npy1r*, and *Penk*. C) Dot plot of markers identified as distinguishing the
552 three fibroblast subtypes identified in B. D) Clustering of ST data based on fibroblast sub-cluster
553 marker genes identified in the scRNAseq data. E) IMC validation of fibroblast localization with
554 *Acta2/aSMA*+ fibroblasts directly beneath the urothelium (marked by *Krt15*), and *Cd34*+
555 fibroblasts residing primarily in the lamina propria and extending into the detrusor region and
556 *Dlk1*+ fibroblasts residing in the detrusor region. F) IPA upstream regulator analysis of
557 differentially expressed genes between dmF and suF indicating reciprocal upstream activity

558 (Activation Z-Score) of *Tgfb1* and *Pdgfb*. H) Quantitative RT-PCR analysis of fibroblast
559 subcluster marker genes, normalized to untreated, from growth factor (*Pdgfb* & *Tgfb1*) and
560 their respective receptor inhibitors (AG370 & A83-01) treated IpF cultures. Primary IpFs were
561 derived through FACS and treated for 8 days (suF markers: *Acta2* and *Cxcl14*; dmF
562 markers: *Dlk1*, *Penk*, and *Gpx3*). G) UMAP plot of expression of *Tgfb1* and *Pdgfb* in scRNAseq
563 data.

564 **Figure 4. Age Related Changes in Fibroblast Populations.** A) A gene expression heatmap
565 across the bladder single cell data set of previously identified genes found to be upregulated in
566 aging studies. Cell types are indicated by color bar. B) Proportion of cell types in scRNAseq
567 data from dissociation matched datasets (WB1+WB2, WB3+WB4+WB5). C) Volcano plot of
568 differential expression analysis between old and young/mature fibroblasts. suF marker genes
569 (*Car3*, *Cxcl14*, *Tsc22d3*) and those related to myofibroblast differentiation (*Sparc*, *Tagln*, *Fxyd5*,
570 *Acta2*) are indicated. D) Percent of suFs classified as terminally differentiated myofibroblasts. E)
571 Violin plot of ST expression of myofibroblast differentiation related genes in suF spots in aged
572 and mature sections. F) Flow cytometry analysis of mesenchymal (VCAM-1+) and urothelial
573 (EPCAM+) populations in old (22M) and mature (12M) bladders. G) Flow cytometry analysis of
574 CD34+ fibroblast populations in the urothelium/lamina propria (Uro/LP) versus the detrusor layer
575 (DSM) in young (4M) and old (22M) bladders. Percent of fibroblasts in each layer significantly
576 changed with aging (Uro/LP p=0.004, DSM p=0.003).

577 **Figure 5. Smooth Muscle Subclustering Identifies a Detrusor Muscle Population.** A)
578 UMAP plots of subclustered smooth muscle identified in combined complete dataset color
579 coded by cell type and dataset. B) Gene expression heatmap of smooth muscle marker genes.
580 Subcluster specific genes identified by marker analysis of the subclustered dataset (left) were
581 plotted against the general smooth muscle marker genes identified in the original combined
582 complete dataset. C) IMC validation images of the detrusor smooth muscle subtype identity.
583 uSMA (*Actg2*) was identified as a detrusor cluster specific marker in sequencing data and used

584 as a detrusor marker in IMC. α SMA (*Acta2*), a general smooth muscle marker, localized to the
585 detrusor layer and also co-localized with the endothelial marker *Aqp1*. D) UMAP plot of smooth
586 muscle subclusters from the snRNAseq dataset. DSM nuclei displayed expression of genes
587 previously indicated as exclusively or primarily neuronal. E) IGV plot of snRNAseq and bulk
588 RNAseq indicate specificity of read mapping to exons of *Rbfox3*.

589 **Figure 6. Neuronal Related Features of the Mouse Bladder.** A) Bladder specificity of genes
590 differentially expressed in bulk data compared to scRNAseq. Index derived from mouse
591 ENCODE transcriptome data and defined as bladder RPKM over sum RPKM of all ENCODE
592 tissues. B) Differentially expressed genes between *Npy*⁺ and *Npy*⁻ ST spots (left) and *Slc17a7*⁺
593 and *Slc17a7*⁻ ST spots. C) Representative immunofluorescence images of mouse bladder
594 sections co-stained with *Pgp9.5*, *Dlk1*, and *Cd34*. D) Left panel - UMAP plot of subclustered
595 Schwann cells indicating two subclusters, myelinating and perisynaptic. Right panel – the same
596 UMAP plot indicating *Pdgfb* expression. E) Representative ST image of Schwann cell containing
597 spots color coded by perisynaptic or myelinating gene signatures. F) Quantification of Schwann
598 cell subtype localization across all ST sections. G) Representative immunofluorescence images
599 of mouse bladder detrusor region co-stained with *Pgp9.5*, *S100b* and *Cd34* to highlight close
600 proximity of fibroblasts and Schwann cells within the detrusor region.

601 **STAR METHODS**

602 Bladder Harvesting: All animal procedures were conducted according to protocols approved by
603 the University of Connecticut Health Center Animal Care Committee and the JAX Animal Care
604 and Use Committee. Animals (C5BL6/J mouse) were sacrificed by CO₂ euthanasia and
605 bladders harvested into cold PBS or media, depending on the dissociation protocol, and
606 individually minced using microscissors prior to enzymatic dissociation.

607 Dissociation Methods for scRNASeq: Three different bladder tissue dissociation protocols were
608 used in this study (described below) to achieve optimal cell type representation. Dissociation
609 Protocol 1 was adapted from Mora-Bau et al.⁶⁶ as a general bladder dissociation technique.
610 Dissociation Protocol 2 was developed as a modified Dissociation protocol 2 in order to increase
611 cell viability prior to sorting. Dissociation Protocol 3 was adapted from Hristov et al.²⁴ to
612 specifically dissociate cells from the detrusor smooth muscle layer.

613 **Dissociation Protocol 1:** Bladders were collected in cold PBS and, after mincing, each bladder
614 transferred to 1 mL of freshly prepared digestion solution (0.06mg/mL Liberase TM (Roche),
615 0.125mg/mL DNase I (Roche) in PBS), and incubated for 1 hour at 37°C in a water bath with
616 vigorous shaking at 15 min intervals until a glassy appearance was reached. Reactions were
617 stopped by addition of cold FACS buffer (2% FBS, 0.2 mM EDTA in PBS). Cells were filtered
618 using a 100 µm filter (Corning), collected by centrifugation and resuspended in FACS buffer (2%
619 FBS, 5mM EDTA in PBS).

620 **Dissociation Protocol 2:** Bladders were collected in cold Ham's F10 medium (Gibco) and, after
621 mincing, each bladder transferred to 2 mL of freshly prepared digestion solution (0.06mg/mL
622 Liberase TM (Roche), 0.125mg/mL DNase I (Roche) in DMEM/F-12 medium (Gibco)), and
623 incubated for 15 min at 37°C in a water bath with gentle inversion every 5 min. After a final
624 trituration larger material/tissue was allowed to settle for 1 min and cells in suspension collected
625 and placed into cold FACS buffer on ice. This procedure was repeated two more times on the
626 remaining tissue. The combined cells were filtered using a 100 µm filter (Corning), collected by
627 centrifugation, RBCs removed by ACK lysis (Gibco) then washed with FACS buffer. Cells were
628 stained with DAPI (Sigma) and CalceinAM (Life Technologies) and live cells collected by FACS.

629 **Dissociation Protocol 3:** Bladders were collected in cold PBS and using forceps, mucosa and
630 detrusor were separated and minced separately. After mincing, mucosa tissue was processed

631 according to Dissociation 2 up until ACK lysis. Detrusor tissue was transferred to 2 mL of a
632 freshly prepared papain solution (1 mg/mL BSA (Sigma), 1 mg/mL papain (Stem Cell
633 Technologies), 1 mg/ml DTT (Sigma) in Ca²⁺-free PBS), and incubated at 37°C in a water bath
634 for 25 min with gentle inversion every 5 min. Detrusor tissue was washed 2x with Ca²⁺-free PBS
635 and transferred to 2 ml of freshly prepared collagenase solution (1 mg/mL BSA, 1 mg/mL
636 collagenase II (Sigma), 100 µM CaCl₂ (Teknova) in Ca²⁺-free PBS), incubated 10-15 min at
637 37°C in a water bath with gentle inversion every 5 min. Detrusor tissue was then gently triturated
638 and cells in suspension collected and placed into FACS buffer, filtered using a 100µm filter and
639 collected by centrifugation. Detrusor and mucosa samples were counted by Countess II
640 (Thermo Fisher) and pooled in equal amounts for library preparation.

641 Flow Cytometry and Sorting: C5BL6/J mouse bladders were dissociated into single cell
642 suspensions and stained with Dapi and CalceinAM (Dissociation 1/2 above). Cells were stained
643 with Dapi (Sigma) and CalceinAM (Life Technologies) according to manufacturers instruction
644 prior to sorting. Live cells were sorted using FACSariaTM Fusion (BD Biosciences). After
645 exclusion of debris and doublets, Dapi- and CalceinAM+ cells were sorted as live viable fraction
646 (50,000-100,000 cells per sample) and collected in 2% FBS/PBS + EDTA (FACS buffer). Sorted
647 viable cells were then washed and resuspended with 0.01% BSA in PBS and assessed for
648 viability using trypan blue staining for subsequent scRNAseq experiments. Flow cytometry
649 analysis for assessment of mesenchymal:urothelial ratio in age and young mouse bladders was
650 performed by dissociating cells by Dissociation 1 and collecting cells in FACS buffer and
651 blocked with anti-mouse CD16/CD32 Fc Block (BioLegend, clone 2.4G2, 1:50) for 15 minutes .
652 Staining of cell suspensions was performed with CD326 APC (urothelial marker) (eBioscience,
653 clone G8.8) and V-CAM1 FITC (mesenchymal marker) (Thermo Fisher clone M/K-2). Prior to
654 sorting, Dapi was added to cell suspension (Sigma). After debris, doublet and dead cell
655 exclusion, mesenchymal:urothelial ratio was determined as the number of V-CAM1+ cells /

656 CD326+ cells. For assessment of layer specific age-related changes in cell proportions 22
657 month and 4 month mice were sacrificed and bladders were removed. Using forceps, mucosa
658 and detrusor were separated and dissociated separately by Dissociation 2 for mucosa and
659 Dissociation 3 for detrusor. After dissociation cells were resuspended in FACS buffer and
660 stained with CD34 AlexaFluor 647 (RAM34 eBioscience) (fibroblast marker) for 30 minutes on
661 ice Cells were then washed by centrifugation, fixed with 4% PFA and washed again by
662 centrifugation again prior to flow cytometry. Cells were analyzed using BD LSRII (BD
663 Biosciences) and fibroblast percentage for each sample determined as number of fibroblasts /
664 total number of cells after debris and doublet exclusion. All post hoc flow cytometry analysis was
665 performed with Flowjo (version 10).

666 Nuclei Preparation: Fresh bladders were mechanically stripped to separate detrusor and
667 mucosal layers. Each layer was then minced and flash frozen on dry ice. Tissue was placed in
668 50 µl of ice cold nuclei EZ lysis buffer (Sigma) and ground by mortar and pestle for 5 min (SP
669 Bel-Art). Sample were then centrifuged 500g for 5 min at 4°C. Supernatant was removed and 50
670 µl of fresh lysis buffer was added and cells were incubated for 5 min after which 50 µl of PBS
671 with 0.04% BSA and Ambion RNase inhibitor (Invitrogen) were added. Samples were then
672 washed with PBS with 0.04% BSA and filtered with a 40 µm filter followed by an additional wash
673 and filtration with a 5 µm filter. Nuclei were then counted with a Countess II (ThermoFisher) and
674 equal numbers of nuclei from each matched detrusor and mucosal preparations pooled prior to
675 loading on 10x chromium chip.

676 Single-Cell/nuclei Capture, Library Preparation, and RNA-seq: Prepared cells or nuclei in PBS
677 containing 0.01% BSA were quantified on a Countess II (Thermo Fisher), and up to 12,000
678 cells/nuclei were loaded per channel on a Chromium microfluidic chip (10x Genomics). Single-
679 cell/nuclei capture, barcoding, and library preparation were performed using Chromium version
680 1, 2, or 3 chemistries according to the manufacturer's protocols (#CG00103 10x Genomics).

681 cDNA and library quality were verified on an Agilent 4200 TapeStation and libraries quantified
682 by KAPA qPCR before sequencing (HiSeq4000/Novaseq, Illumina) targeting an average depth
683 of 50,000 reads per cell.

684 Single-Cell Data Processing, Quality Control, and Analysis: Illumina base call (BCL) files were
685 converted to FASTQ files using bcl2fastq (Illumina, version 2.16.0.10). CellRanger 3.1.0 (10x
686 Genomics) was used to align FASTQs to the mm10-3.0.0 reference (Ensembl build
687 GRCm38.84) and produce a digital gene-cell counts matrix. Publicly available counts matrices^{5,6}
688 were downloaded from Tabula Muris and Microwell Cell Atlas websites respectively.
689 Subsequent data processing was performed in python utilizing the Scanpy 1.4.6 package⁶⁴.
690 Gene-cell matrices were filtered to remove cells with fewer than 500 transcripts and genes with
691 fewer than 3 counts and present in more than 3 cells. Individual gene-cell matrices were then
692 normalized such that the number of unique molecular identifiers (UMI) in each cell is equal to
693 the median UMI count across the data set and log transformed. Cells with over 30%
694 mitochondrial transcripts in non-detrusor enriched samples and cells with over 20% hemoglobin
695 transcripts were filtered from downstream analysis.

696 Samples were then aggregated and the top 2,000 genes with the highest variance across the
697 aggregated dataset were identified based on their mean expression in the population and
698 dispersion. Highly variable genes were used as input to dimensionality reduction. Batch
699 corrected dimensionality reduction was performed as follows: PCA embeddings were generated
700 and corrected for library preparation and dissociation technique using Harmony⁶⁸. Corrected
701 PCA embeddings were used to generate nearest neighbor graph using BBKNN⁶⁹ and used for
702 dimensionality reduction via UMAP. The resultant UMAP embeddings were clustered via scanpy
703 built in Leiden community detection algorithm to produce labeled cell clusters. Marker genes
704 were identified using a one-versus-rest strategy which determines marker genes by area under
705 a receiver operating characteristic curve (AUROC) analysis for all genes that are greater than

706 twofold expressed in a cluster compared with all other cells. Genes with greater than 85%
707 AUROC were defined as markers specific to the cell type. All differential gene expression
708 analysis was performed using edgeR (version 3.28.1)⁷⁰. Subcluster analysis was performed by
709 subsetting the global dataset according to cell type of interest and performing dimensionality
710 reduction, clustering and marker identification as above on the subset.

711 Processed scRNA/snRNA datasets were aggregated to create pseudobulk datasets by
712 averaging transcriptomes across all cells for comparison to processed averaged bulk RNA
713 datasets generated from dissociated and whole bladders. Mapping of neuronal transcripts in
714 detrusor smooth muscle was confirmed by visual inspection the snRNA seq and bulk whole
715 bladder samples in IGV 2.3.32⁷¹.

716 Pseudotime analysis of urothelial clusters was performed using PAGA⁷² . Briefly, relevant cell
717 clusters were extracted and subclustered by using the neighborhood graph from above followed
718 by dimensionality reduction via with force-directed graph drawing (Fruchterman Reingold) and
719 Louvain clustering. Urothelial gene trajectory analysis was performed by binning cells (n=8) at
720 uniformly distributed intervals across pseudotime and averaging gene expression across cells in
721 each bin to generate a pseudotime-gene expression matrix. The gradient of the pseudotime-
722 gene expression matrix was then used as input into UMAP to generate trajectory embeddings.

723 To quantify the percent of terminally differentiated suFs with respect to age, the suFs were
724 extracted from batch matched scRNaseq datasets containing old and young/mature samples
725 (WB1+WB2, WB3+WB4+WB5). For each set of batch matched samples, gene expression
726 matrices of known myofibroblast differentiation genes were extracted and fit to a gaussian
727 mixture (n_components=2) to classify suFs as terminally or partially differentiated. Significance
728 was determined by Fisher's Exact Test.

729 For aging transcriptome analysis, genes found to be significantly differentially expressed
730 between mature and aged mice based on Kamei et. al.⁶⁵ were identified on GEO (GSE100219)
731 and downloaded for plotting within scRNASeq datasets. Specificity indices were generated by
732 downloading Mouse ENCODE transcriptome data from the NCBI Gene website
733 (<https://www.ncbi.nlm.nih.gov/gene/>) and bladder specificity determined by bladder expression /
734 total expression in all other tissues. Regulator analysis of fibroblasts was performed with IPA
735 (QIAGEN Inc., <https://www.qiagenbioinformatics.com/products/ingenuity-pathway-analysis>)
736 using edgeR DE output between suF and dmF as input into IPA. To co-cluster bladder immune
737 cells and PBMC's, a publicly available C57BL/6 peripheral blood mononuclear cell (PBMC)
738 scRNA-seq gene counts matrix (5' Gene Expression V1) was downloaded from the 10X website
739 (www.10xgenomics.com/resources/datasets) as a counts matrix. The public PBMC counts
740 matrix was concatenated with a counts matrix generated from immune cell subclusters from our
741 in house datasets. The combined dataset was processed according to filtering and batch
742 corrections metrics stated above with additional batch correction for cell origin (PBMC, bladder).

743 Cross species comparison GM28729. Predicted protein sequence was obtained from the
744 ProteomicsDB (<https://www.proteomicsdb.org/>), compared to other organisms with NCBI
745 BLAST (<https://blast.ncbi.nlm.nih.gov/Blast.cgi>) and visualized with MView
746 (<https://www.ebi.ac.uk/Tools/msa/mview/>).

747 Imaging Mass Cytometry (IMC): 15 antibodies were used for IMC, a full description of these can
748 be found in Table S4. Antibodies selected for the panel were first validated via
749 immunofluorescence and subsequently metal-conjugated using the Maxpar X8 Multimetal
750 labeling kit (Fluidigm). PFA-fixed OCT embedded mouse bladder tissues were cut into 5 µm
751 sections and mounted on slides. After blocking in a buffer containing 10% BSA, slides were
752 incubated overnight at 4°C with a cocktail of metal-conjugated IMC-validated primary antibodies.
753 The following day, slides were washed twice in PBS and counterstained with iridium intercalator

754 (Fluidigm) (0.25 μ mol/L) for 5 min at RT, to visualize the DNA. After a final wash in ddH₂O, the
755 slides were air-dried for 20 min. The slides were then loaded on the Hyperion/Helios imaging
756 mass cytometer (Fluidigm). Regions of interest were selected using the acquisition software and
757 ablated by the Hyperion and metals measured by the Helios. The resulting images were
758 exported as 16-bit .tiff files using the MCDViewer software (Fluidigm) and analyzed using the
759 open source HistoCat++ 1.76 toolbox and ImageJ 1.53. Immune cell type localizations from IMC
760 were determined in ImageJ by manually separating detrusor and urothelium/lamina propria
761 regions into separate images and using automated counting for cell specific marker positive
762 objects in each region.

763 Bulk RNA Sequencing: 12-month old male and female mouse bladders were bisected and one
764 half dissociated into single cells using Dissociation 2 while the other half was directly
765 homogenized without single cell dissociation. RNA was extracted using RNEasy kit (Qiagen).
766 Library preparation was performed using TruSeq RNA Library Prep Kit v2 (Illumina). Libraries
767 were sequenced on an illumina Hiseq 4000 at a depth of 80 million reads per library. Data was
768 processed with bcl2fastq2 (version 2.16.0.10) to generate FASTQ files. FASTQs were aligned
769 via STAR 2.7.3a to the mm10-3.0.0 mouse reference genome used for scRNAseq analysis and
770 a transcript counts matrix generated with subread 1.5.2 featureCounts. Counts were normalized
771 by TPM. Differential expression between groups was performed with edgeR (version 3.28.1).

772 Spatial Transcriptomics: Spatial transcriptomics was performed according to the Visium Spatial
773 Gene Expression Solution (#CG000239 10x Genomics). First, the optimal length of time for
774 permeabilization was determined to be 20 min from using a Visium spatial tissue optimization
775 slide (10x Genomics) testing times of 3, 6, 12, 18, 24, and 30min on 10 μ m thick sections of an
776 OCT-embedded, unfixed mouse bladder. To generate the spatial transcriptomics data four 12-
777 month and four 22-month old bladders were embedded in OCT without fixation, in sets of two
778 each, and snap frozen for a total of 8 blocks. From this, one 10 μ m thick section from each block

779 (each containing two bladders) was carefully positioned across one 6.5 mm² capture area on
780 the Visium Spatial Gene Expression slide with four areas per slide for a total of two slides.
781 Slides were stained with H&E, imaged on a Phenix High Content Imaging system (Perkin Elmer)
782 with a 20x objective prior to a 20 min permeabilization. Sequencing was performed on an
783 Illumina Novaseq with 300 million reads per library. Image alignment was performed with Space
784 Ranger V1.1 and data analysis was performed with scanpy⁶⁷. Cluster generation was performed
785 in the same manner as scRNAseq data with the exception of dimensionality reduction feature
786 selection in which genes identified as cell type markers in scRNAseq data were used as input.
787 For more specific localization of particular subclusters identified in scRNAseq data fibroblast the
788 gene list for dimensionality reduction was adjusted to include subcluster specific markers. To
789 identify neuronal signatures in ST data, spots with *Npy* or *Slc17a7* expression > 0 were
790 annotated as neuronal and DE analysis with edgeR was performed between neuronal and all
791 other spots. For immune and Schwann cell localizations by Visium ST, spots were annotated as
792 containing immune or Schwann cells based on thresholding expression of markers genes
793 identified in scRNAseq data and classified as detrusor or uro/lp based on regional position using
794 grayscale H&E images. For basal vs. luminal urothelium comparison, grayscale H&E images
795 were used to manually annotate fiducials in Loupe Browser (version 4.0.0) as basal or luminal
796 based on known locations of these cell types relative to the bladder lumen. Barcodes of basal
797 and luminal annotated spots were exported and used to subset and annotate ST expression
798 matrix for DE analysis. For comparison of tertiary lymphoid structures (TLS) between mature
799 and aged ST samples, a plasma cell marker (*Jchain*) known to localize to TLS was used to
800 identify spots *Jchain* expressing spots with neighboring spots (n>2) also expressing *Jchain*.

801 Tissue culture: Fibroblasts were derived from 12-month-old mice by stripping the mucosal layer
802 from the bladders and processing this into a single cell suspension according to Dissociation 3
803 protocol described above. Cells were then stained with AlexaFluor 647 CD34 (RAM34

804 eBioscience) and calcein AM (Life Technologies) for 30 min and propidium iodide (BD
805 Pharmingen) for 10 min. Cells were washed with FACS buffer and sorted on a FACS Aria™
806 Fusion (BD Biosciences). Viable CD34+ cells were collected in media (10% FBS (Gibco), MEM
807 non-essential amino acids, 100 U/mL primocin (Invitrogen) in Advanced DMEM/F12 (Gibco) and
808 cultured on Matrigel-coated (Corning) 24-well plates (Corning) at 50,000 cells/well with 500 µL
809 of media/well. The following day, when cells were confluent, media was exchanged with media
810 alone, media with 20 µM AG370 (Enzo Life Sciences) and 10 ng/ml TGB1 (LS Bio), or media
811 with 3 µM A83-01 (Tocris) and 10 ng/ml PDGFBB (Stem Cell Technologies). Cultures were
812 maintained for 6 days with media changes occurring every other day. At day 6 RNA was
813 isolated utilizing Arcturus PicoPure RNA Isolation Kit and qPCR reactions were prepared using
814 SuperScript III Platinum Kit with SYBR Green One Step qRT PCR with the following primers
815 from IDT: Penk: F-ACACAACTTCACTAATCCAGGTG R- GAAGCCTCCGTACCGTTCAT
816 Acta2: F- GTCCCAGACATCAGGGAGTAA R- TCGGATACTTCAGCGTCAGGA Dlk1: F-
817 CCCAGGTGAGCTTCGAGTG R- GGAGAGGGGTACTCTTGTTGAG Gpx3: F-
818 CCTTTAACAGTATGCAGGCA R- CAAGCCAAATGGCCCAAGTT Cxcl14: F-
819 GAAGATGGTTATCGTCACCACC R- CGTTCCAGGCATTGTACCACT. IDT Ready-Made
820 Gapdh F/R (51-01-07-12/13) was used for normalization.

821 Immunofluorescence on Frozen Sections: Bladder sections for immunofluorescence were
822 prepared in the same manner as for IMC. Slides were permeabilized and block (30 minutes with
823 5% normal goat serum and 0.3% Triton X-100 in PBS) and incubated with primary antibodies in
824 PBS with 0.03% Triton (Sigma) and 2% serum at 4°C overnight. The following day slides were
825 washed with ice cold PBS and incubated with secondary antibody for 2 hours at RT. Slides were
826 then washed with PBS + Hoechst (Invitrogen) and coverslips mounted (Prolong Diamond
827 Antifade Mountant). Immunofluorescence images were acquired with a Zeiss Axiovert
828 microscope at 20X. Primary antibodies used for immunofluorescence were PGP9.5 (PA5-

829 85273, ThermoFisher), PGP9.5 (MA5-12371, ThermoFisher), DLK1 (LS-C746855-50, LS Bio),
830 S100B (AMAb91038, Atlas Antibodies) and CD34 (14-0341-82, ThermoFisher). Secondary
831 antibodies used were Goat Anti-Rat AlexaFluor 647 (A-21247 ThermoFisher), Goat Anti-Mouse
832 AlexaFluor 568 (A-11004 ThermoFisher), Goat Anti-Mouse Goat AlexaFluor 488 (A-11001
833 ThermoFisher), Anti-Rabbit AlexaFluor 568 (A-11011 ThermoFisher), and Goat Anti-Rabbit
834 AlexaFluor 488 (A-11008 ThermoFisher).

835

836 **Supplemental Information titles and legends**

837 There are seven supplemental figures and nine supplemental tables as follows:

838 **Figure S1. Initial Dataset Generation QC** A) UMAP plot color coded for cell types identified in
839 initial datasets (see Table 1). B) Example image from Visium Tissue Optimization Protocol (left)
840 indicates high RNA content (TRITC) in urothelial region and example UMI counts per spot
841 (Gene Expression Sum) from processed ST section (right). C) Correlation plot of gene
842 expression between pseudo-bulk initial scRNA seq datasets and bulk RNA sequencing (Whole
843 Tissue + Dissociated Cells). D) Correlation plot of gene expression between pseudo-bulk
844 complete scRNA seq datasets and bulk RNA sequencing (Whole Tissue + Dissociated Cells).

845 **Figure S2. Urothelial Cell Pseudotime Analysis and *Pdgfb* and *Tgfb1* Localization.** A)
846 Gene expression across pseudotime was binned to generate a distinct pseudotime trajectory
847 profile for each gene. 2D UMAP dimensionality reduction was applied to these profiles to
848 identify groups of genes with similar dynamics. Five groups were observed corresponding to
849 sets of early basal (*Gsdmc2*), basal (*Trp63*), intermediate (*Hes1*), luminal (*Upk2*) and late
850 luminal (*Prss27*). B) Example ST plot of *Pdgfb* and *Tgfb1* high expressing spots. Higher
851 expression of *Tgfb1* was observed within the urothelial region while *Pdgfb* was more evenly

852 distributed across the whole bladder. C) Violin plot of *Tgfb1* and *Pdgfb* expression by region
853 across all Visium datasets. Urothelial and lamina propria spots were binned together and *Tgfb1*
854 and *Pdgfb* expression compared to detrusor region.

855 **Figure S3. Protein alignment of GM28729 across Eutherians.** A) A screen grab of the
856 genomic region encompassing Gm28729 from the Ensembl genome browser from the mouse
857 (GRCm39) chr9:96350407-96433904 inclusive of neighboring genes *Rnf7* and *Rasa2*. Exon 8,
858 in which the homologous human sequence contains a nonsense mutation, is circled in red. B)
859 50 base region of human exon 8 sequence (hg19; chr3:141,432,169-141,432,218)
860 encompassing the nonsense mutation (boxed) and visualized in the UCSC Genome Browser.
861 PhastCons and genomic evolutionary rate profiling (GERP) tracks are included for a measure of
862 sequence conservation. The PhastCons and GERP scores at the position of the nonsense
863 mutation are 1 and 4.52, respectively, indicating high conservation score across vertebrates and
864 mammals. A track for Denisova sequencing reads (Display mode – dense; representative of 29
865 reads spanning the site of interest) indicates identical sequence to that of human. An additional
866 14 non-human mammalian sequences, including three great apes, indicate the nonsense
867 mutation is restricted to human and Denisovan genomes. Amino acid translation (Human aa) of
868 the human sequence is shown with the stop codon (TAG) introduced by the nonsense mutation
869 indicated by ‘-’. All other extant mammalian sequences contain a TTG codon encoding a leucine
870 (L) at this position. C) Protein sequence alignment scores of Gm28729 from 28 mammalian
871 species generated from the indicated XP_ accessions. As the human gene (LINC02618;
872 ENSG00000242104) is annotated as non-coding, the human protein sequence was manually
873 generated from this gene guided by alignment to the mouse. The minimum, maximum, and
874 average protein sequence length of the 28 sequences was 406, 462, and 415 amino acids,
875 respectively. The alignment percent coverage (cov) with respect to the gerbil sequence and the
876 corresponding percent amino acid identity (pid) are indicated. Protein sequence alignment is

877 shown (right) for the region around the nonsense mutation which is indicated by an 'X' at
878 position 309 in the human sequence.

879 **Figure S4. Identification of neuronal and Schwann cell marker genes** A) UMAP projection
880 of markers identified as likely neuronal markers derived from Visium ST. Few *Slc17a7*+ (3) and
881 *Npy*+ (8) spots were found. B) Marker genes used to identify Schwann cell subtypes upon
882 subclustering. *Scn7a* and *Mpz* are well known perisynaptic and myelinating Schwann cell
883 markers.

884 **Figure S5. Immune Cell Composition of the Urinary Bladder.** A) Subclustering of immune
885 cell types results in 13 distinct clusters with 8 myeloid and 5 lymphoid subtypes. B) Heatmap of
886 identified immune cell subcluster marker genes used to annotate clusters. C/D) Spatial
887 localization of immune cell types based on Visium and IMC data. Visium and IMC images were
888 split into detrusor and urothelium/lamina propria regions and the proportion of each immune cell
889 type cluster was calculated. Majority detrusor groups included macrophages, cDC1, and
890 MHCII+ monocyte. cDC2 was primarily Uro/LP with MHCII- monocyte displaying mixed
891 localization. E) Immune cells were clustered with mouse PBMC data in order to identify potential
892 bladder resident cell types based on overrepresentation of bladder origin cells vs PBMC origin.
893 Myeloid cell types comprised the bladder origin clusters including a bladder origin macrophage
894 subcluster.

895 **Figure S6. Plasma cell identification** A) Tertiary Lymphoid Structures in Aged and Mature ST
896 Sections. *Jchain*+ ST spots with neighboring *Jchain*+ spots (n>2) were used to denote the
897 potential presence of tertiary lymphoid structures in aged and mature mouse bladder sections.
898 Aged sections had a higher number of *Jchain*+ spot clusters than mature sections (Aged = 462,
899 Young = 3).

900 Table S1. Animals Used and Associated Datasets Generated

901 Table S2. Differential Expression Gene List Between Bulk and Single Cell RNA-seq

902 Table S3. scRNAseq and Bulk RNAseq Counts

903 Table S4. Details of Antibodies in IMC Panel

904 Table S5. Differential Expression of Myofibroblasts

905 Table S6. Markers of Smooth Muscle Cell Sub-types

906 Table S7. Neuronal Transcript Detection in Visium Data. Worksheet1 = Npy-associated genes,

907 Worksheet2 = Slc17a7-associated genes

908 Table S8. Marker Genes Associated with Cell Ontologies

909 Table S9. Luminal versus Basal Urothelium Differential Expression. Worksheet1 = Visium,

910 Worksheet2 = scRNAseq

911

912 **REFERENCES**

913

914 1. Apodaca, G., Balestreire, E. & Birder, L. A. The Uroepithelial-associated sensory web.
915 *Kidney International* (2007) doi:10.1038/sj.ki.5002439.

916 2. Gillespie, J. I., Markerink-van Ittersum, M. & de Vente, J. cGMP-generating cells in the
917 bladder wall: identification of distinct networks of interstitial cells. *BJU Int.* **94**, 1114–24
918 (2004).

919 3. Kanai, A. *et al.* Do we understand any more about bladder interstitial cells? - ICI-RS
920 2013. *Neurourol. Urodyn.* **33**, 573–576 (2014).

921 4. Koh, S. D., Lee, H., Ward, S. M. & Sanders, K. M. The Mystery of the Interstitial Cells in
922 the Urinary Bladder. *Annu. Rev. Pharmacol. Toxicol.* **58**, 603–623 (2018).

923 5. Han, X. *et al.* Mapping the Mouse Cell Atlas by Microwell-Seq. *Cell* **172**, 1091-1107.e17
924 (2018).

925 6. Consortium, T. M. *et al.* Single-cell transcriptomics of 20 mouse organs creates a Tabula
926 Muris. *Nature* **562**, 367–372 (2018).

927 7. Morano, I. *et al.* Smooth-muscle contraction without smooth-muscle myosin. *Nat. Cell*
928 *Biol.* **2**, 371–375 (2000).

929 8. Huang, J. *et al.* Myocardin is required for maintenance of vascular and visceral smooth
930 muscle homeostasis during postnatal development. *Proc. Natl. Acad. Sci. U. S. A.* **112**,
931 4447–4452 (2015).

932 9. Skelly, D. A. *et al.* Single-Cell Transcriptional Profiling Reveals Cellular Diversity and
933 Intercommunication in the Mouse Heart. *Cell Rep.* **22**, 600–610 (2018).

934 10. Mickelsen, L. E. *et al.* Cellular taxonomy and spatial organization of the murine ventral
935 posterior hypothalamus. *Elife* **9**, e58901 (2020).

936 11. Hristov, K. L. *et al.* Stimulation of beta3-adrenoceptors relaxes rat urinary bladder smooth
937 muscle via activation of the large-conductance Ca²⁺-activated K⁺ channels. *Am. J.*
938 *Physiol. Cell Physiol.* **295**, C1344–C1353 (2008).

939 12. Papafotiou, G. *et al.* KRT14 marks a subpopulation of bladder basal cells with pivotal role
940 in regeneration and tumorigenesis. *Nat. Commun.* **7**, 11914 (2016).

941 13. Kullmann, F. A. *et al.* Urothelial proliferation and regeneration after spinal cord injury. *Am.*
942 *J. Physiol. Renal Physiol.* **313**, F85–F102 (2017).

943 14. Amara, N. *et al.* Prostate stem cell antigen is overexpressed in human transitional cell
944 carcinoma. *Cancer Res.* **61**, 4660–5 (2001).

945 15. Santos, C. P. *et al.* Urothelial organoids originating from Cd49f(high) mouse stem cells
946 display Notch-dependent differentiation capacity. *Nat. Commun.* **10**, 4407 (2019).

947 16. Bell, S. M. *et al.* Kruppel-like factor 5 is required for formation and differentiation of the
948 bladder urothelium. *Dev. Biol.* **358**, 79–90 (2011).

949 17. Lawson, A. R. J. *et al.* Extensive heterogeneity in somatic mutation and selection in the
950 human bladder. *Science (80-.).* **370**, 75–82 (2020).

951 18. Yu, C. *et al.* GSTM1 and GSTT1 polymorphisms are associated with increased bladder
952 cancer risk: Evidence from updated meta-analysis. *Oncotarget* **8**, 3246–3258 (2017).

953 19. Gevaert, T. *et al.* Comparative study of the organisation and phenotypes of bladder
954 interstitial cells in human, mouse and rat. *Cell Tissue Res.* **370**, 403–416 (2017).

955 20. Wolnicki, M., Aleksandrovych, V. & Gil, K. Interstitial cells of Cajal and telocytes in the
956 urinary system: facts and distribution. *Folia Med. Cracov.* **56**, 81–89.

957 21. Liu, Q. *et al.* Decreased hyperpolarization-activated cyclic nucleotide-gated channels are
958 involved in bladder dysfunction associated with spinal cord injury. *Int. J. Mol. Med.* **41**,
959 2609–2618 (2018).

960 22. Steiner, C., Gevaert, T., Ganzer, R., De Ridder, D. & Neuhaus, J. Comparative
961 immunohistochemical characterization of interstitial cells in the urinary bladder of human,
962 guinea pig and pig. *Histochem. Cell Biol.* **149**, 491–501 (2018).

963 23. Yu, W., Zeidel, M. L. & Hill, W. G. Cellular expression profile for interstitial cells of cajal in
964 bladder - a cell often misidentified as myocyte or myofibroblast. *PLoS One* **7**, e48897–
965 e48897 (2012).

966 24. Fry, C. H. Interstitial cells in the urinary tract, where are they and what do they do? *BJU*
967 *Int.* **114**, 434–5 (2014).

968 25. Chen, H. *et al.* Selective labeling and isolation of functional classes of interstitial cells of
969 Cajal of human and murine small intestine. *Am. J. Physiol. Physiol.* **292**, C497–C507
970 (2007).

971 26. Gevaert, T. *et al.* The stem cell growth factor receptor KIT is not expressed on interstitial
972 cells in bladder. *J. Cell. Mol. Med.* **21**, 1206–1216 (2017).

973 27. Li, H. *et al.* Reference component analysis of single-cell transcriptomes elucidates
974 cellular heterogeneity in human colorectal tumors. *Nat. Genet.* **49**, 708–718 (2017).

975 28. Elyada, E. *et al.* Cross-Species Single-Cell Analysis of Pancreatic Ductal
976 Adenocarcinoma Reveals Antigen-Presenting Cancer-Associated Fibroblasts. *Cancer*
977 *Discov.* **9**, 1102–1123 (2019).

978 29. Bercovich, E., Barabino, G. & Pirozzi-Farina, F. AGE RELATED FIBROSIS IS THE MAIN
979 FACTOR OF URINARY SYMPTOMS IN BENIGN PROSTATE HYPERPLASIA (BPH)
980 PATIENTS. *J. Urol.* **235** (1999) doi:10.1097/00005392-199904010-00941.

981 30. Lepor, H., Sunaryadi, I., Hartanto, V. & Shapiro, E. Quantitative Morphometry of the Adult
982 Human Bladder. *J. Urol.* **148**, 414–417 (1992).

983 31. Lluel, P. *et al.* Functional and morphological modifications of the urinary bladder in aging
984 female rats. *Am. J. Physiol. Integr. Comp. Physiol.* **278**, R964–R972 (2000).

985 32. Consortium, T. M. A single-cell transcriptomic atlas characterizes ageing tissues in the
986 mouse. *Nature* **583**, 590–595 (2020).

987 33. Jang, H., Han, D. S. & Yuk, S. M. Changes of neuregulin-1 (NRG-1) expression in a rat
988 model of overactive bladder induced by partial urethral obstruction: is NRG-1 a new
989 biomarker of overactive bladder? *BMC Urol.* **13**, 54 (2013).

990 34. Powell, C. R. Not all neurogenic bladders are the same: a proposal for a new neurogenic
991 bladder classification system. *Transl. Androl. Urol.* **5**, 12–21 (2016).

992 35. Domenga, V. *et al.* Notch3 is required for arterial identity and maturation of vascular
993 smooth muscle cells. *Genes Dev.* **18**, 2730–2735 (2004).

994 36. Song, H. W. *et al.* Transcriptomic comparison of human and mouse brain microvessels.
995 *Sci. Rep.* **10**, 12358 (2020).

996 37. Chasseigneaux, S. *et al.* Isolation and differential transcriptome of vascular smooth
997 muscle cells and mid-capillary pericytes from the rat brain. *Sci. Rep.* **8**, 12272 (2018).

998 38. Thorson, W. *et al.* De novo ACTG2 mutations cause congenital distended bladder,
999 microcolon, and intestinal hypoperistalsis. *Hum. Genet.* **133**, 737–42 (2014).

1000 39. Halim, D. *et al.* Loss-of-Function Variants in MYLK Cause Recessive Megacystis
1001 Microcolon Intestinal Hypoperistalsis Syndrome. *Am. J. Hum. Genet.* **101**, 123–129
1002 (2017).

1003 40. Duan, W. *et al.* Novel Insights into NeuN: from Neuronal Marker to Splicing Regulator.
1004 *Mol. Neurobiol.* **53**, 1637–1647 (2015).

1005 41. Gabella, G. Muscle cells, nerves, fibroblasts and vessels in the detrusor of the rat urinary
1006 bladder. *J. Smooth Muscle Res.* **55**, 34–67 (2019).

1007 42. Moriya, R. *et al.* Pancreatic polypeptide enhances colonic muscle contraction and fecal
1008 output through neuropeptide Y Y4 receptor in mice. *Eur. J. Pharmacol.* **627**, 258–64
1009 (2010).

1010 43. Mattiasson, A., Ekblad, E., Sundler, F. & Uvelius, B. Origin and distribution of
1011 neuropeptide Y-, vasoactive intestinal polypeptide- and substance P-containing nerve
1012 fibers in the urinary bladder of the rat. *Cell Tissue Res.* **239**, 141–146 (1985).

1013 44. Desai, B. S., Chadha, A. & Cook, B. The stum Gene Is Essential for Mechanical Sensing
1014 in Proprioceptive Neurons. *Science (80-).* **343**, 1256–1259 (2014).

1015 45. Mattiasson, A., Ekblad, E., Sundler, F. & Uvelius, B. Origin and distribution of
1016 neuropeptide Y-, vasoactive intestinal polypeptide-and substance P-containing nerve
1017 fibers in the urinary bladder of the rat. *Cell Tissue Res.* **239**, 141–6 (1985).

1018 46. Barry, D. M. *et al.* Exploration of sensory and spinal neurons expressing gastrin-releasing
1019 peptide in itch and pain related behaviors. *Nat. Commun.* **11**, 1397 (2020).

1020 47. Muller, D. *et al.* Dlk1 Promotes a Fast Motor Neuron Biophysical Signature Required for
1021 Peak Force Execution. *Science (80-).* **343**, 1264–1266 (2014).

1022 48. Yu, Z. *et al.* Single-cell transcriptomic map of the human and mouse bladders. *J. Am.*
1023 *Soc. Nephrol.* **30**, 2159–2176 (2019).

1024 49. Ligon, M. M. *et al.* Single cell and tissue-transcriptomic analysis of murine bladders
1025 reveals age- and TNF α -dependent but microbiota-independent tertiary lymphoid tissue
1026 formation. *Mucosal Immunol.* **13**, 908–918 (2020).

1027 50. Yu, Z. *et al.* Single-Cell Transcriptomic Map of the Human and Mouse Bladders. *J. Am.*
1028 *Soc. Nephrol.* **30**, 2159–2176 (2019).

1029 51. Guo, G. *et al.* Resolution of cell fate decisions revealed by single-cell gene expression
1030 analysis from zygote to blastocyst. *Dev. Cell* **18**, 675–85 (2010).

1031 52. Birder, L. A., Kullmann, A. F. & Chapple, C. R. The aging bladder insights from animal
1032 models. *Asian J. Urol.* **5**, 135–140 (2018).

1033 53. Zhao, W. *et al.* Impaired bladder function in aging male rats. *J. Urol.* **184**, 378–385
1034 (2010).

1035 54. Yousef, H. *et al.* Systemic attenuation of the TGF- β pathway by a single drug
1036 simultaneously rejuvenates hippocampal neurogenesis and myogenesis in the same old
1037 mammal. *Oncotarget* **6**, 11959–11978 (2015).

1038 55. Ranson, R. N. & Saffrey, M. J. Neurogenic mechanisms in bladder and bowel ageing.
1039 *Biogerontology* **16**, 265–284 (2015).

1040 56. Lawson, A. R. J. *et al.* Extensive heterogeneity in somatic mutation and selection in the
1041 human bladder. *Science* **370**, 75–82 (2020).

1042 57. Sanders, K. M., Koh, S. D. & Ward, S. M. Interstitial cells of cajal as pacemakers in the
1043 gastrointestinal tract. *Annu. Rev. Physiol.* **68**, 307–43 (2006).

1044 58. Lee, M. Y. *et al.* Transcriptome of interstitial cells of Cajal reveals unique and selective
1045 gene signatures. *PLoS One* **12**, e0176031–e0176031 (2017).

1046 59. Ward, S. M., Burns, A. J., Torihashi, S. & Sanders, K. M. Mutation of the proto-oncogene
1047 c-kit blocks development of interstitial cells and electrical rhythmicity in murine intestine.
1048 *J. Physiol.* **480** (Pt 1), 91–97 (1994).

1049 60. Sanders, K. M., Zhu, M. H., Britton, F., Koh, S. D. & Ward, S. M. Anoctamins and
1050 gastrointestinal smooth muscle excitability. *Exp. Physiol.* **97**, 200–206 (2012).

1051 61. Andersson, K.-E. & Arner, A. Urinary bladder contraction and relaxation: physiology and
1052 pathophysiology. *Physiol. Rev.* **84**, 935–86 (2004).

1053 62. Munoz-Fuentes, V. *et al.* The International Mouse Phenotyping Consortium (IMPC): a
1054 functional catalogue of the mammalian genome that informs conservation. *Conserv.
1055 Genet.* **19**, 995 (2018)

1056 63. Booth, J. *et al.* The relationship between urinary bladder control and gait in women.
1057 *Neurourol. Urodyn.* **32**, 43 (2013)

1058 64. Gibson, W. *et al.* The association between lower urinary tract symptoms and falls:
1059 Forming a theoretical model for a research agenda. *Neurourol. Urodyn.* **37**, 501 (2018)

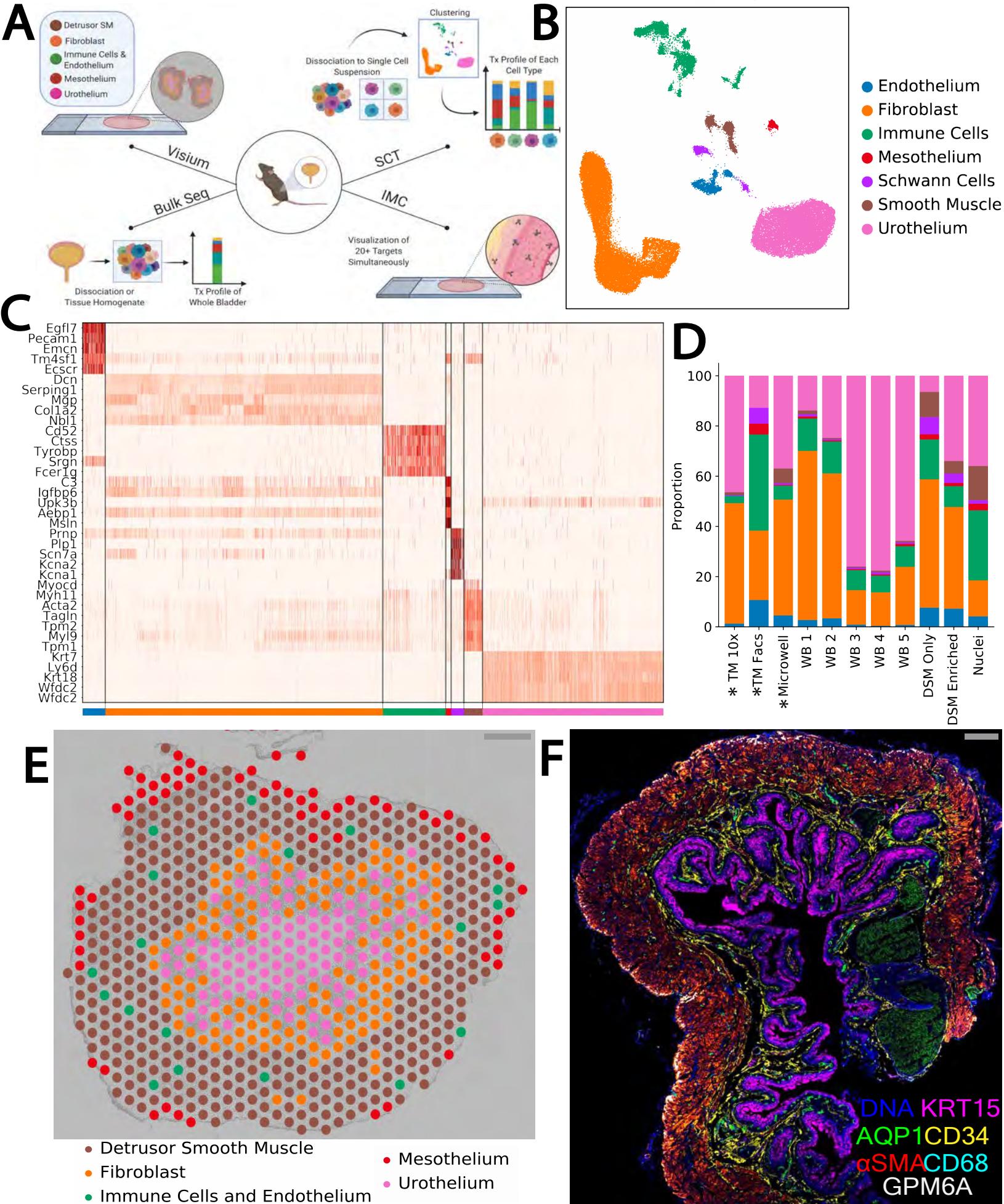
1060 65. Kamei, J. *et al.* Age-related changes in function and gene expression of the male and
1061 female mouse bladder. *Sci. Rep.* **8**, 2089 (2018).

1062 66. Mora-Bau, G. *et al.* Macrophages Subvert Adaptive Immunity to Urinary Tract Infection.
1063 *PLoS Pathog.* **11**, e1005044–e1005044 (2015).

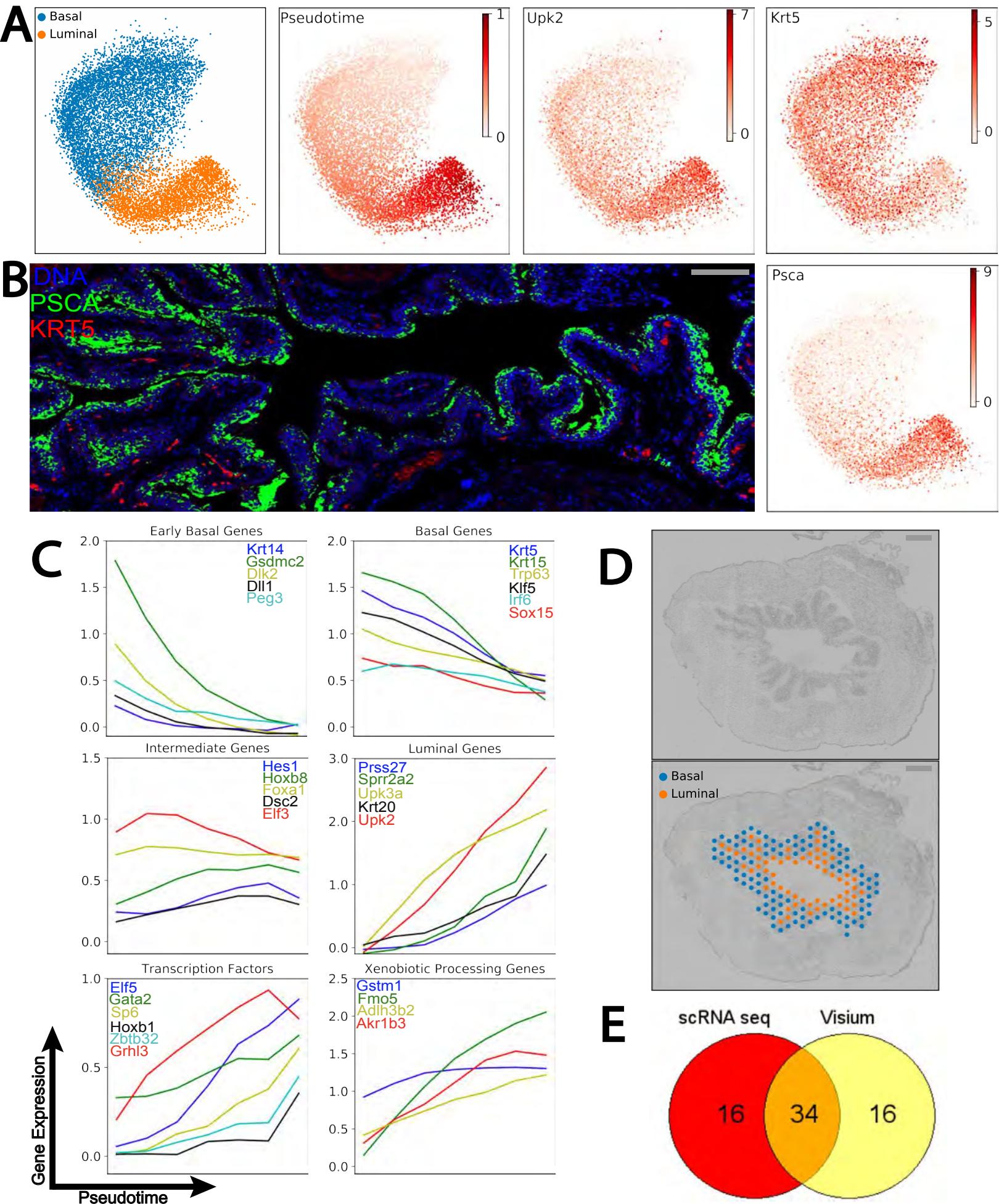
1064 67. Wolf, F. A., Angerer, P. & Theis, F. J. SCANPY: large-scale single-cell gene expression
1065 data analysis. *Genome Biol.* **19**, 15 (2018).

1066 68. Korsunsky, I. *et al.* Fast, sensitive and accurate integration of single-cell data with
1067 Harmony. *Nat. Methods* **16**, 1289–1296 (2019).

1068 69. Polański, K. *et al.* BBKNN: fast batch alignment of single cell transcriptomes.
1069 *Bioinformatics* **36**, 964–965 (2020).


1070 70. Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: a Bioconductor package for
1071 differential expression analysis of digital gene expression data. *Bioinformatics* **26**, 139–40
1072 (2010).

1073 71. Robinson, J. T. *et al.* Integrative genomics viewer. *Nat. Biotechnol.* **29**, 24–6 (2011).


1074 72. Wolf, F. A. *et al.* PAGA: graph abstraction reconciles clustering with trajectory inference
1075 through a topology preserving map of single cells. *Genome Biol.* **20**, 59 (2019).

1076

FIGURE 1

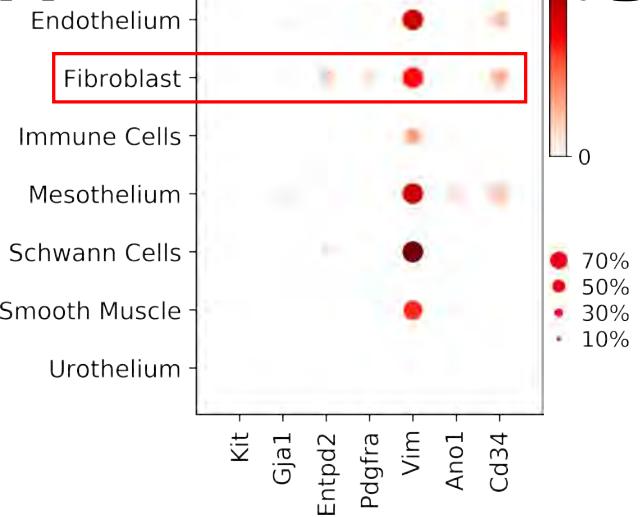


FIGURE 2

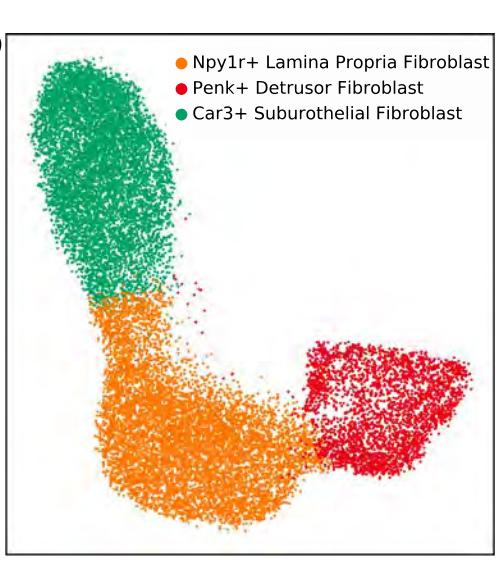
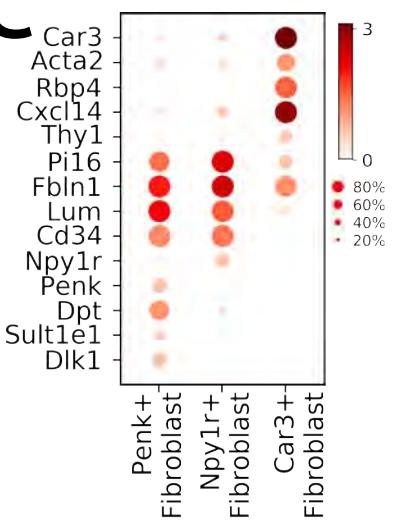
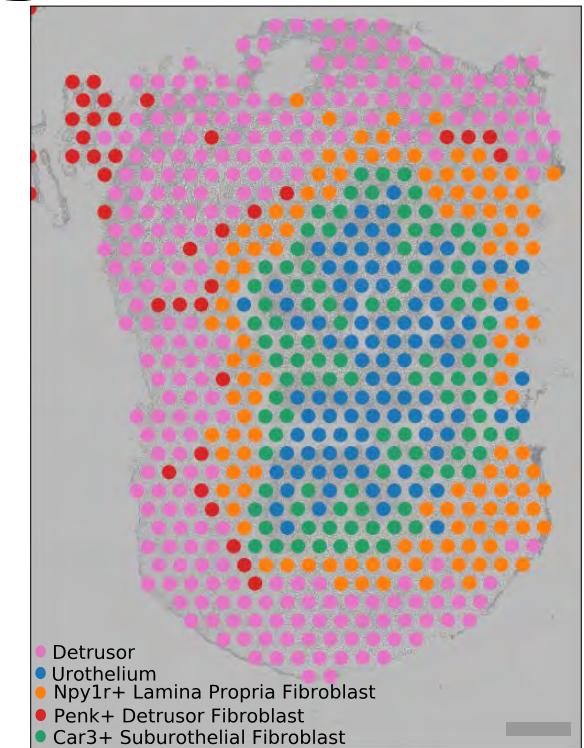
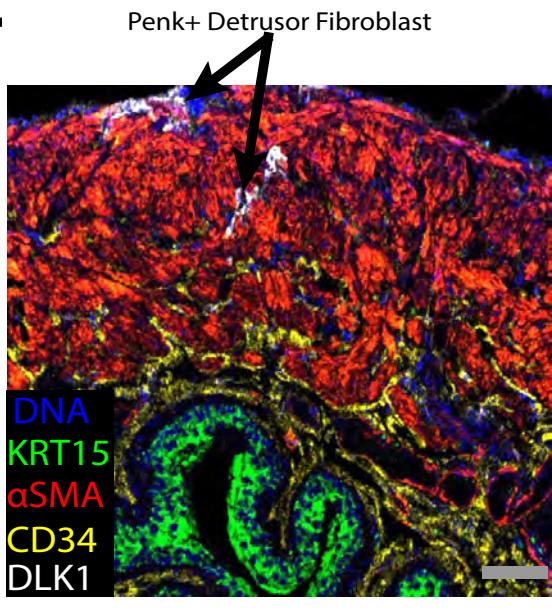
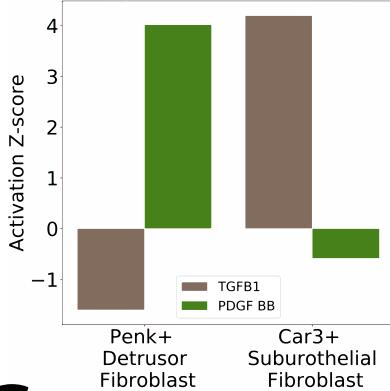


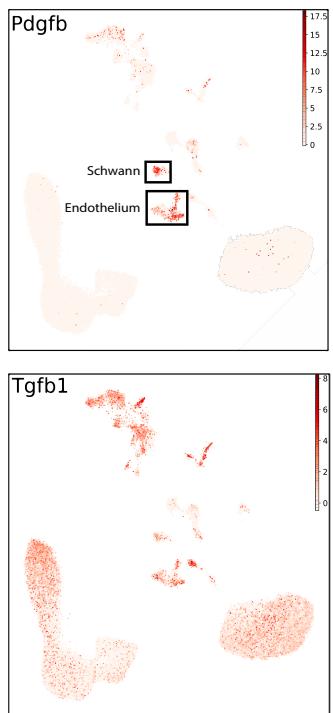
FIGURE 3

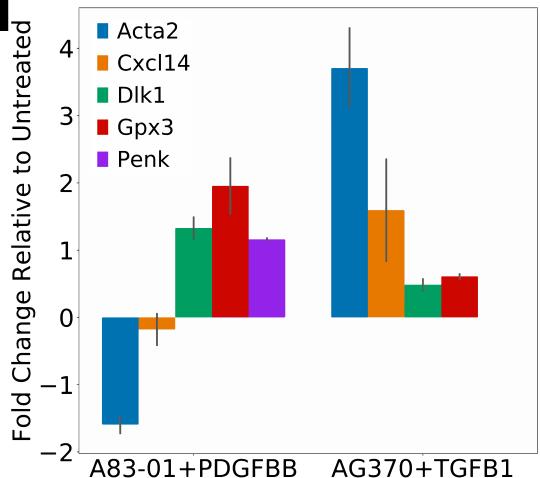

A

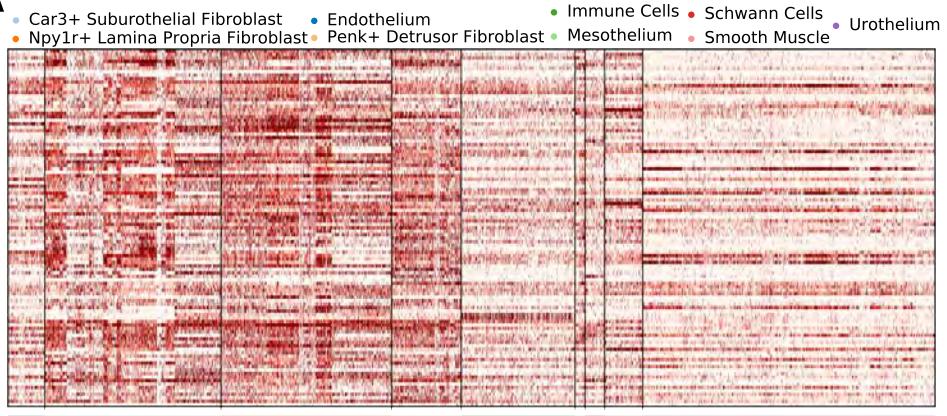

B

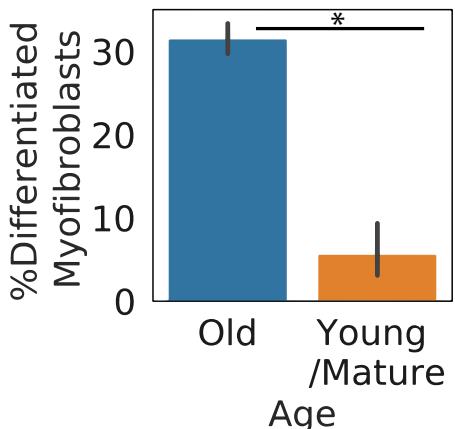

C

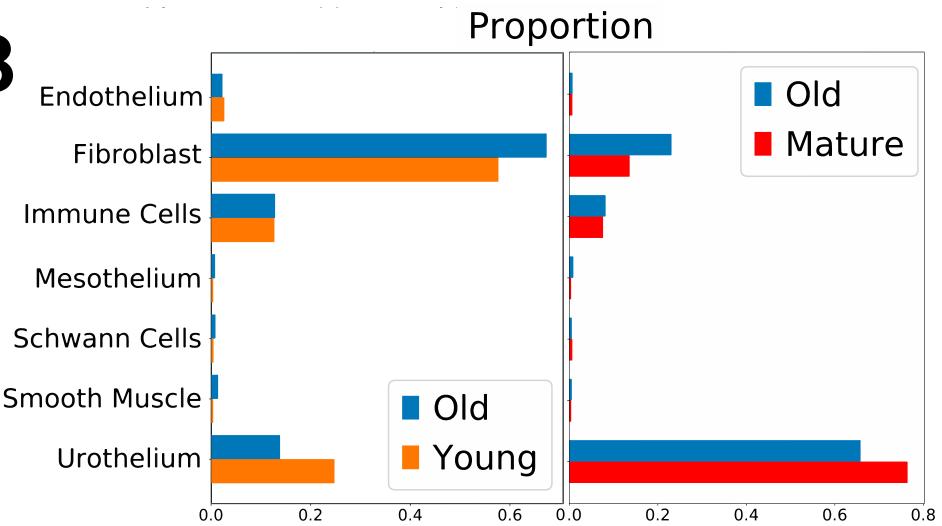

D

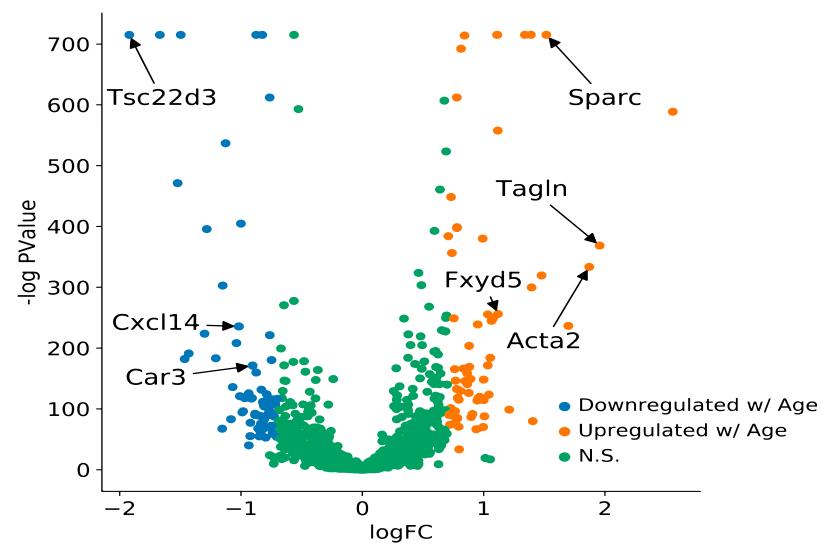

E

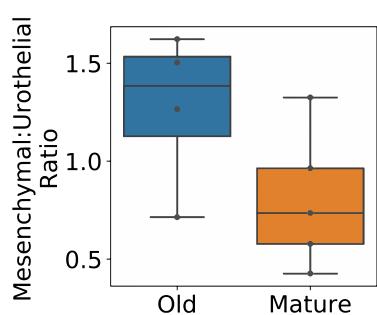

F

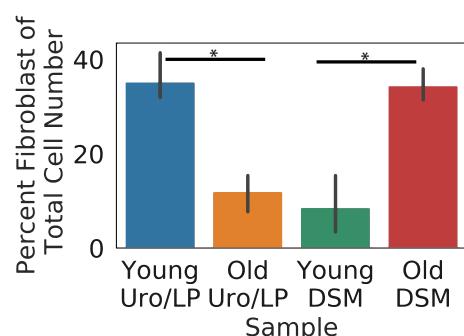

G

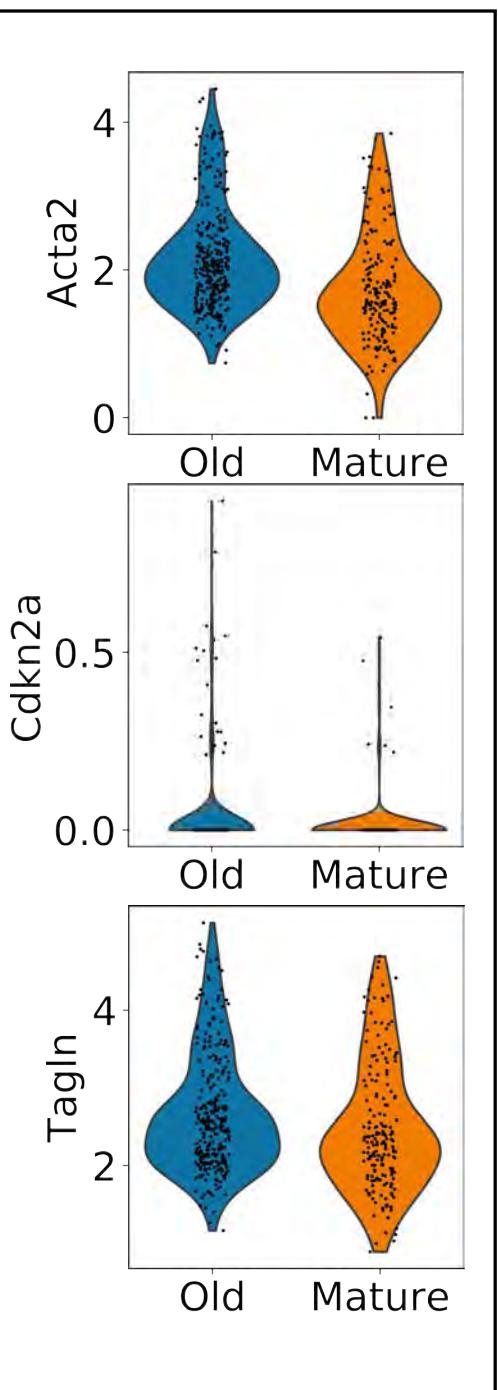

H


A

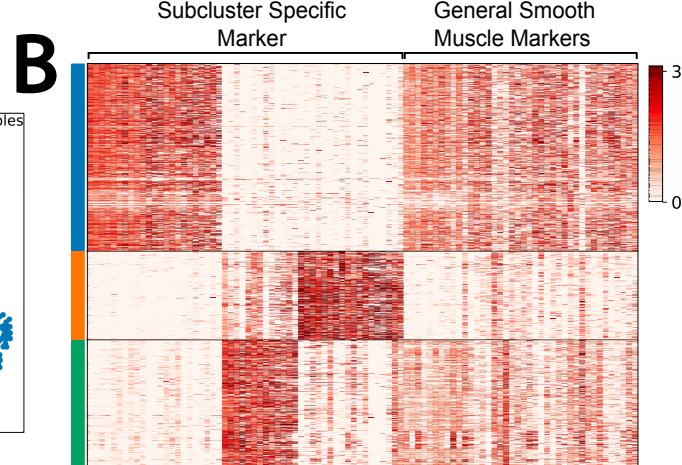
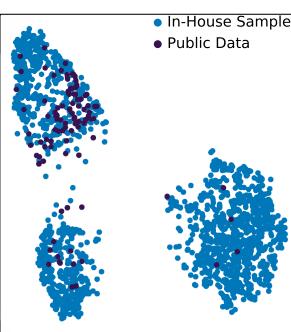

D

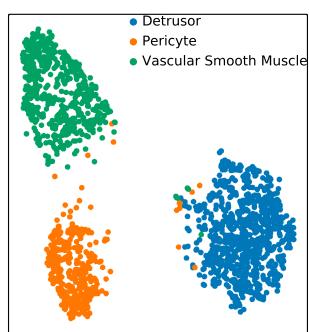

B


C


F

G



E

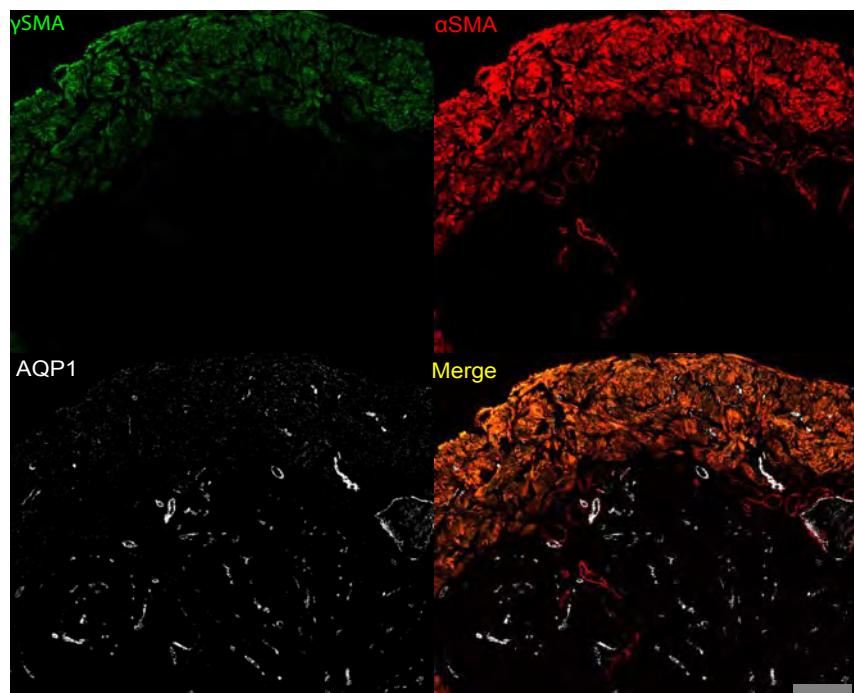
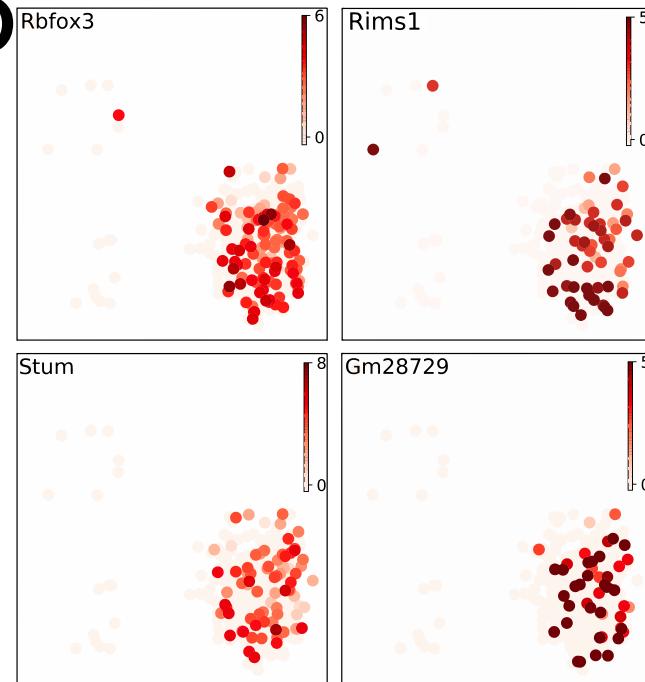
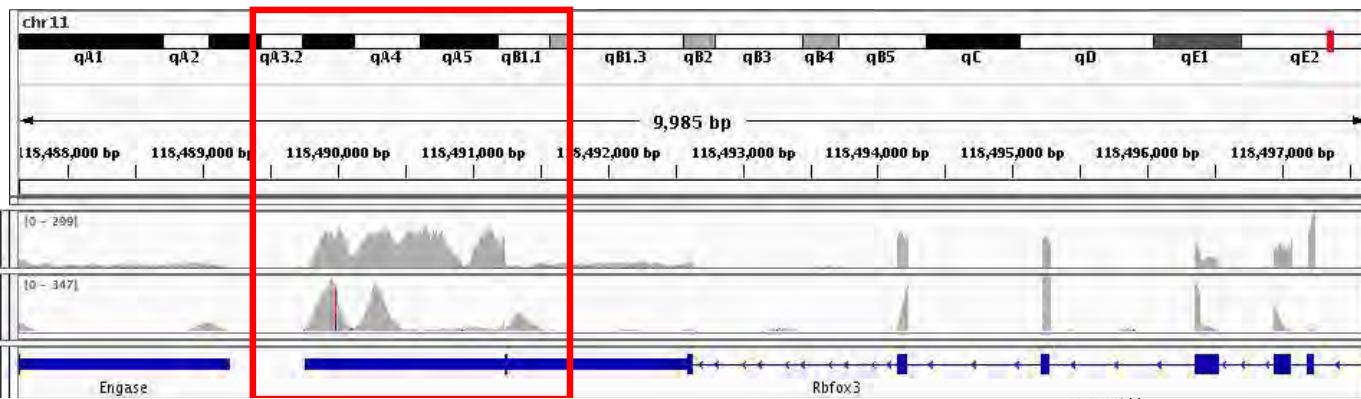
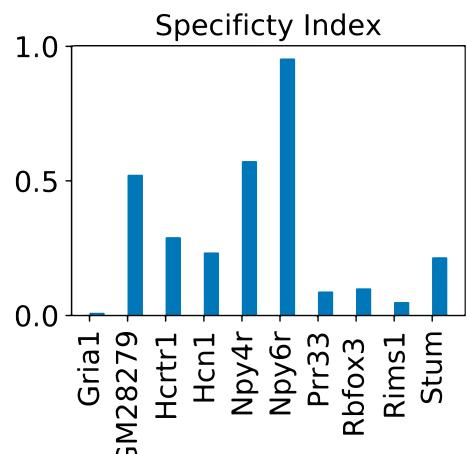


FIGURE 5


A

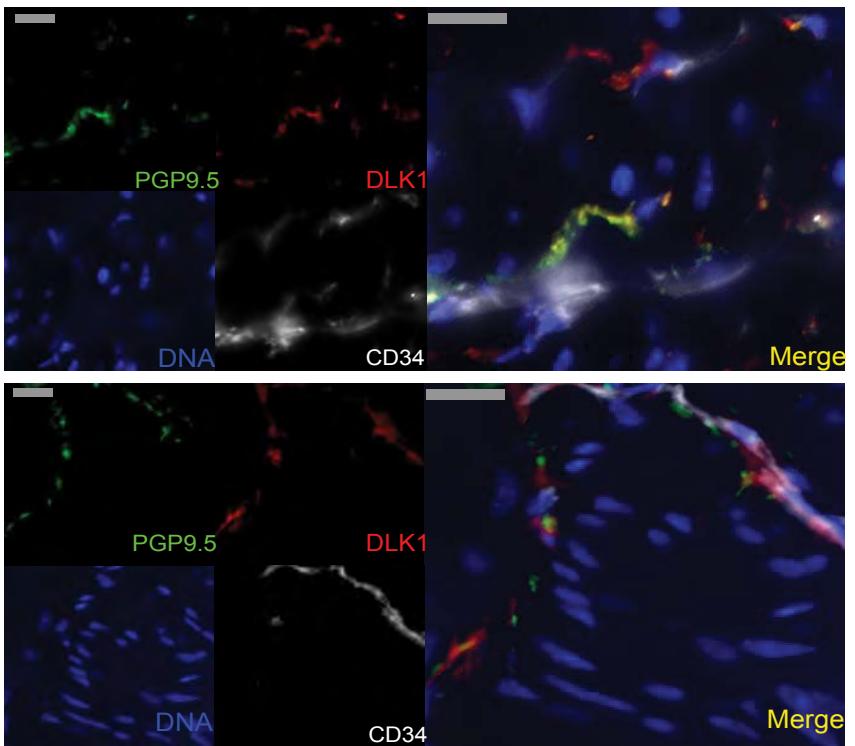

C

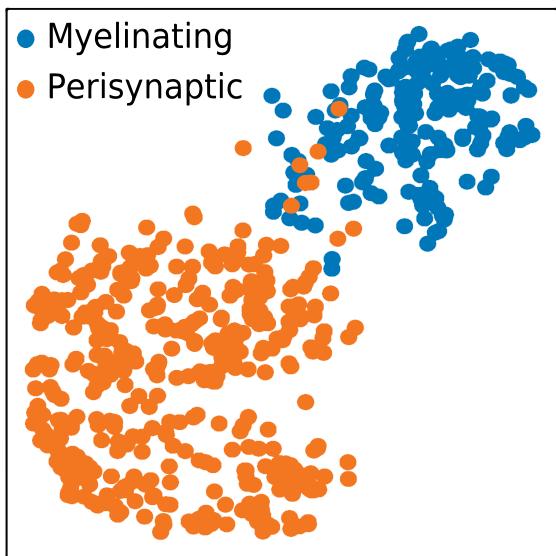
D



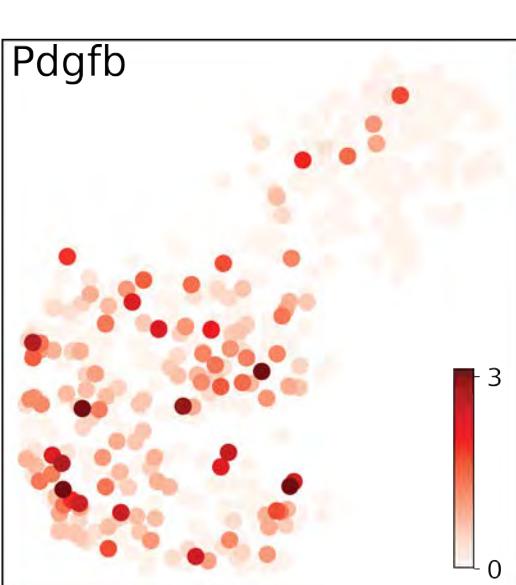
E

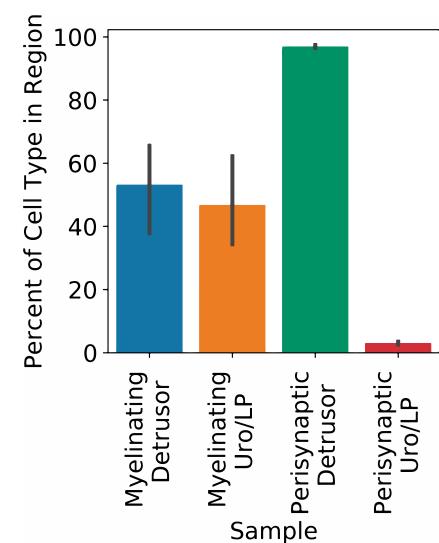
FIGURE 6

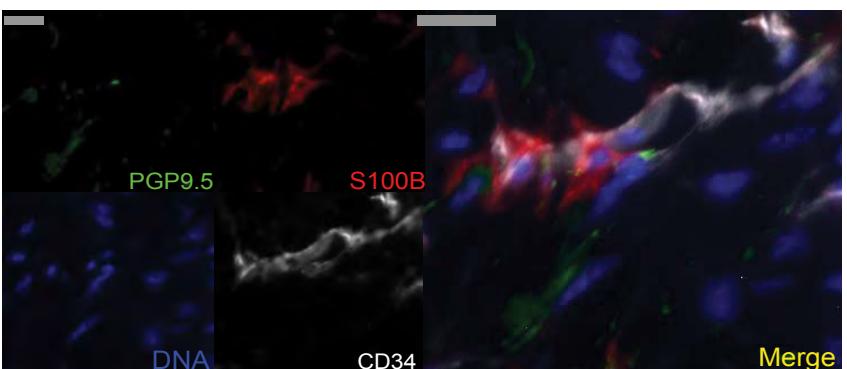

A


B

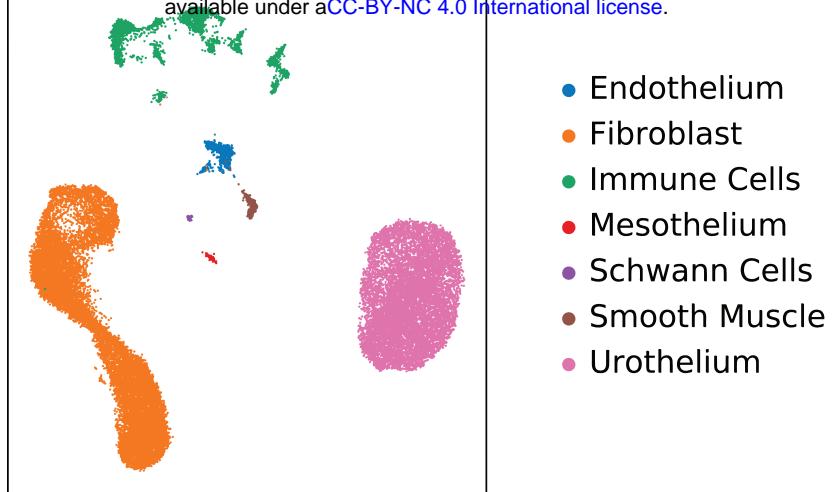
NPY DE Genes	VGlut1 DE Genes
Npy	Slc17a7
Grp	Ramp3
Nkain4	S100b
Prph	Sv2a
Dlk1	Slc2a3


C

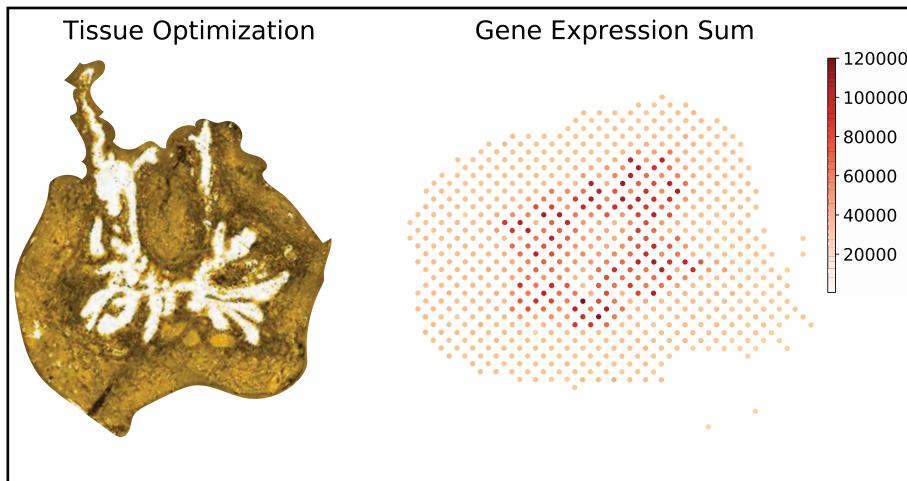

D


E

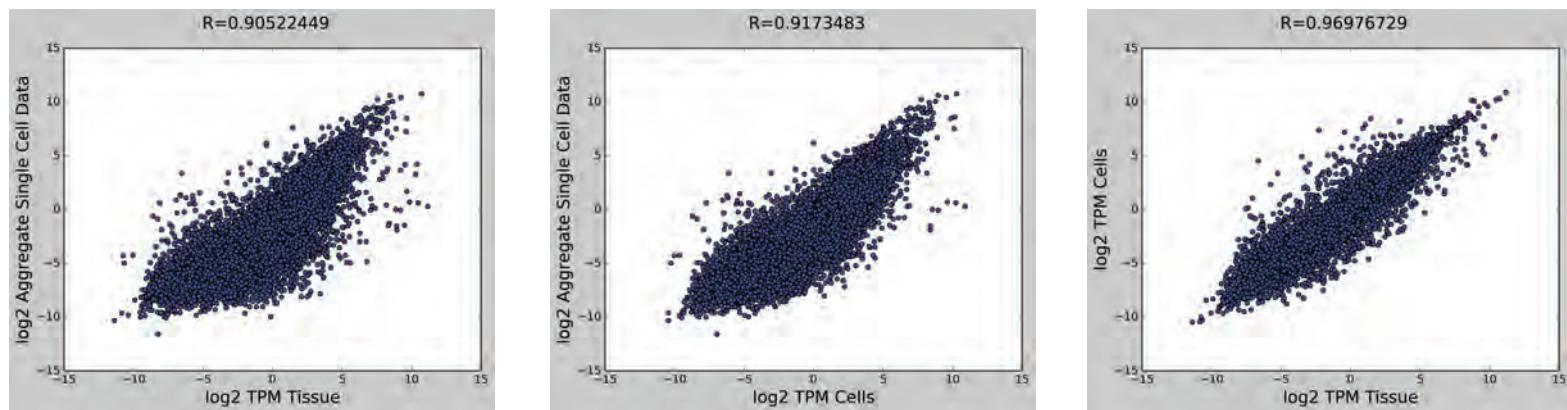
F



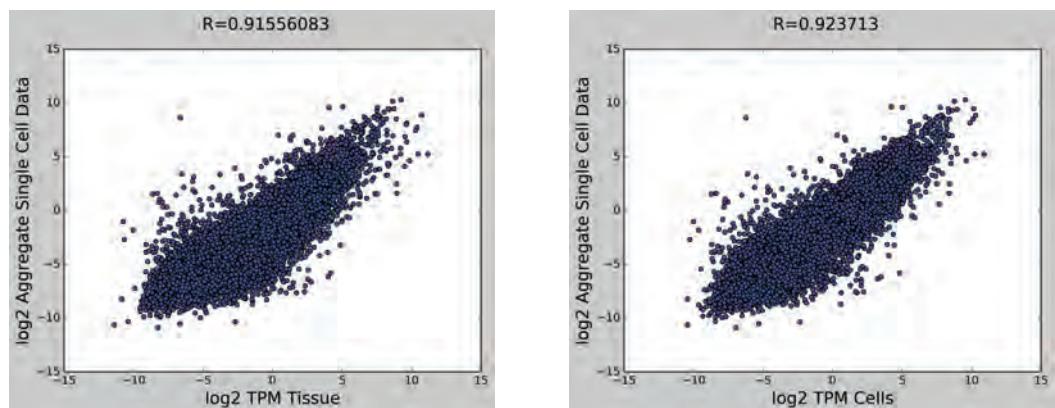
G


Figure S1

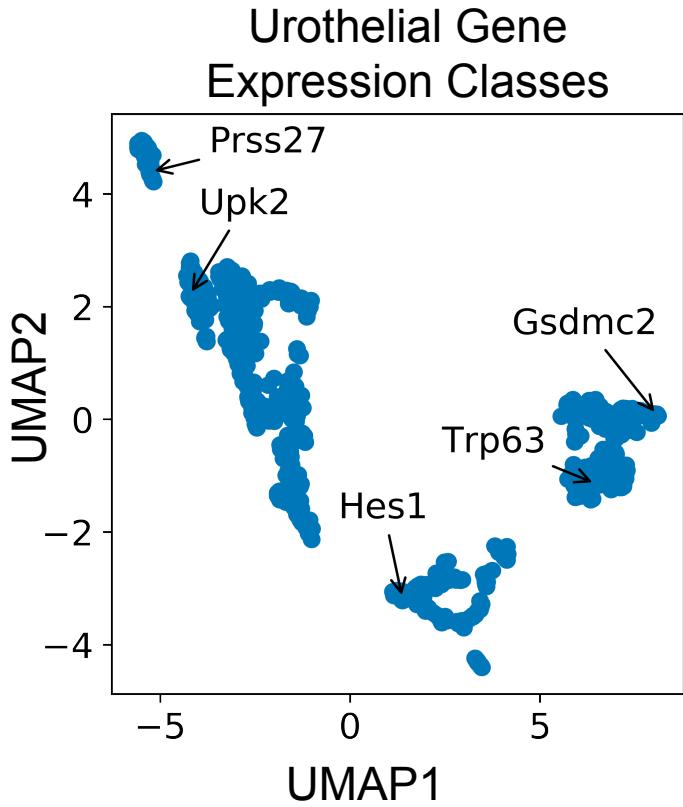
A



- Endothelium
- Fibroblast
- Immune Cells
- Mesothelium
- Schwann Cells
- Smooth Muscle
- Urothelium


B

C



D

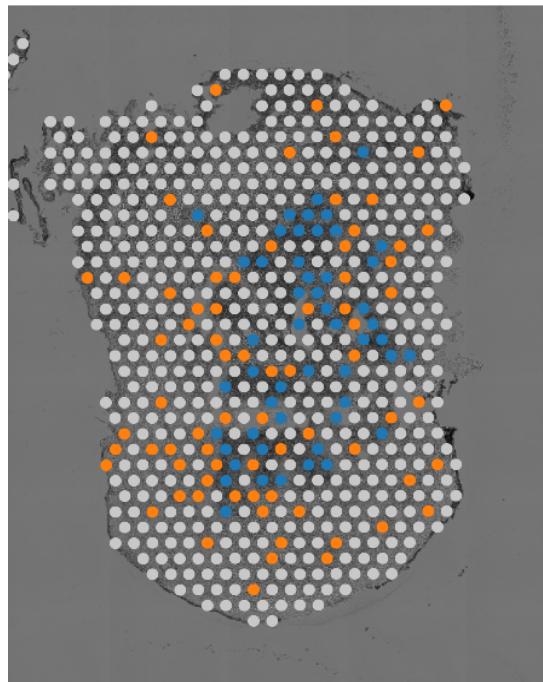
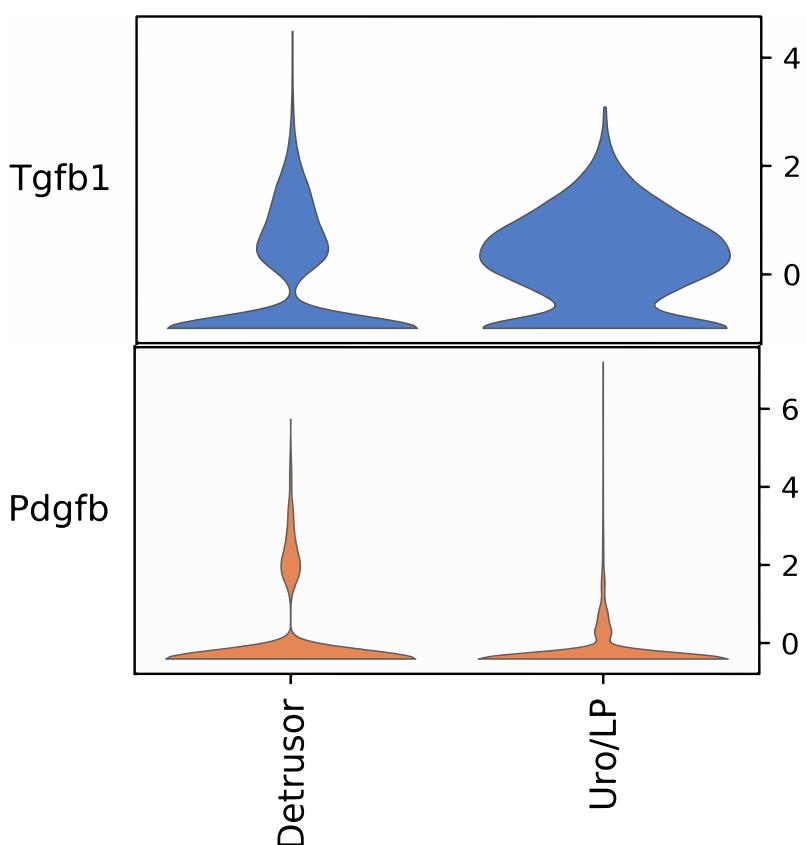


FIGURE S2

A



B

Pdgfb^{hi}
 Tgfb1^{hi}

C

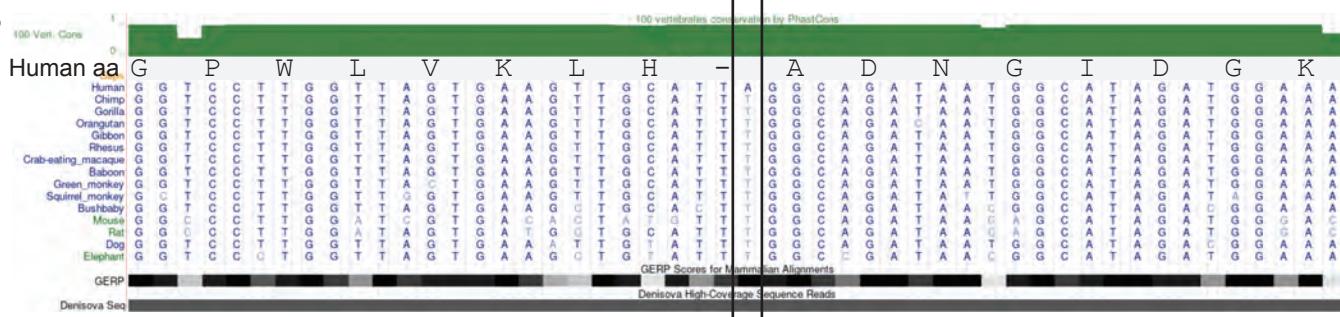
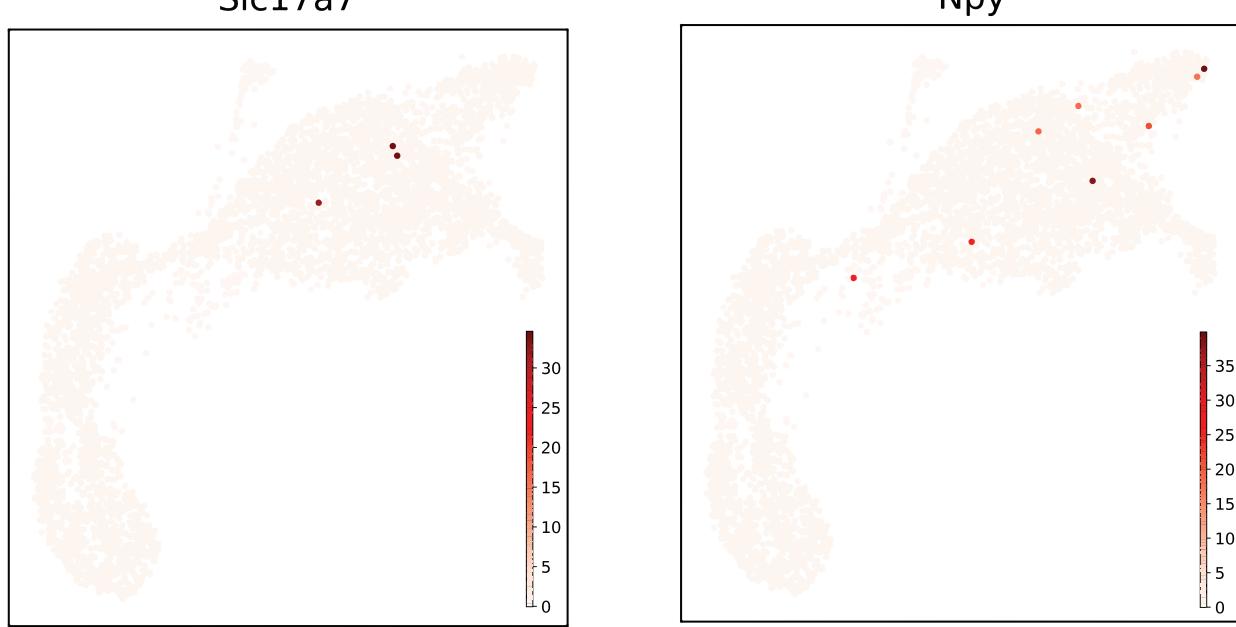


FIGURE S3

A

B



C


Species	Accession#	cov	pid	300	310	320
Gerbil	XP_021504109.1	100.0%	100.0%	A G P W V V A L H L A D N C I D G T C K D G E Q		
Mouse	XP_006511671.1	93.0%	73.6%	A G P W I V T L C L A D N S I D G T G R E E P		
Hamster	XP_012976452.2	93.0%	75.6%	A G P W V V T L H L A D N S I D R T G K E E Q		
Vole	XP_026644814.1	93.0%	73.8%	A G P W V V M L H L A D N S I D G T G V E E Q		
Armadillo	XP_004459299.1	93.0%	65.4%	A G P W L V K L H L A D N G I D G K G K G E K		
Elephant	XP_023411243.1	92.0%	65.6%	A G P W L V K L Y L A D N G I D G K G K E G E N		
Lemur	XP_020141608.1	92.5%	67.5%	A G P W L E K L H L A D N G I D G K G R - G E N		
Old World Monkey	XP_011916640.1	93.0%	68.8%	A G P W L V K L H L A D N G I D G K G R E G E N		
Gorilla	XP_018878551.1	97.7%	61.5%	T G P W L V K L H L A D N G I D G K G R E G E N		
Human	-	93.0%	69.8%	S G P W L V K L H L A D N G I D G K G R E G E N		
Chimp	XP_016797571.2	96.6%	63.6%	T G P W L V K L H L A D N G I D G K G R E G E N		
Orangutan	XP_024100671.1	93.0%	70.0%	T G P W L V K L H L A D N G I D G K G R E G E N		
Brandts Bat	XP_014398187.1	93.0%	67.1%	A G P W L V K L Y L A D N G I D G K G K D G E N		
Bat	XP_019602139.1	93.0%	66.1%	A G P W L V K L Y L A D N G I D G K G K E G E N		
Fruit Bat	XP_015997364.1	92.7%	68.0%	A G P W L V K L Y L A D N G I D G K G K E G E N		
Cheetah	XP_026917508.1	93.6%	61.6%	A G P W L V K L Y L A D N G I D G K G K E G E N		
Tiger	XP_007086412.1	93.6%	62.5%	A G P W L V K L Y L A D N G I D G K G K E G E N		
Leopard	XP_019293802.1	93.6%	61.8%	A G P W L V K L Y L A D N G I D G K G K E G E N		
Otter	XP_022365862.1	94.5%	63.8%	A G P W L V K L Y L A D N G I D R R G K E G E N		
Ferret	XP_012912730.1	93.0%	64.6%	A G P W L V K L Y L A D N G I D R R G K E G G N		
Fox	XP_025874333.1	92.5%	64.1%	A G P W L V K L Y L A D N G I D G K G K E G E N		
Panda	XP_011220158.1	93.0%	63.9%	A G P W L V K L Y L A D N G I D R K G K E G E N		
Polar Bear	XP_008706037.1	93.0%	63.4%	A G P W L V K L Y L A D N G I D G K G K E G E N		
Camel	XP_0144119697.1	94.1%	63.2%	A G P W L V K L Y L A D N G I D G K G K E E E N		
Alpaca	XP_015093421.1	94.1%	62.3%	A G S W L V K L Y L A D N G I D G K G K E G E N		
Pig	XP_020925205.1	92.5%	66.6%	V G P W L V K L Y L A D N G I D G K G K E G E N		
Cow	XP_010799875.1	92.7%	65.1%	T G P W L V K L Y L A D N G I D G K G K E G E N		
Sheep	XP_014948119.1	92.7%	64.6%	T G P W L V K L Y L A D N G I D G K G K E G E N		

Figure S4

A

B

Figure S5

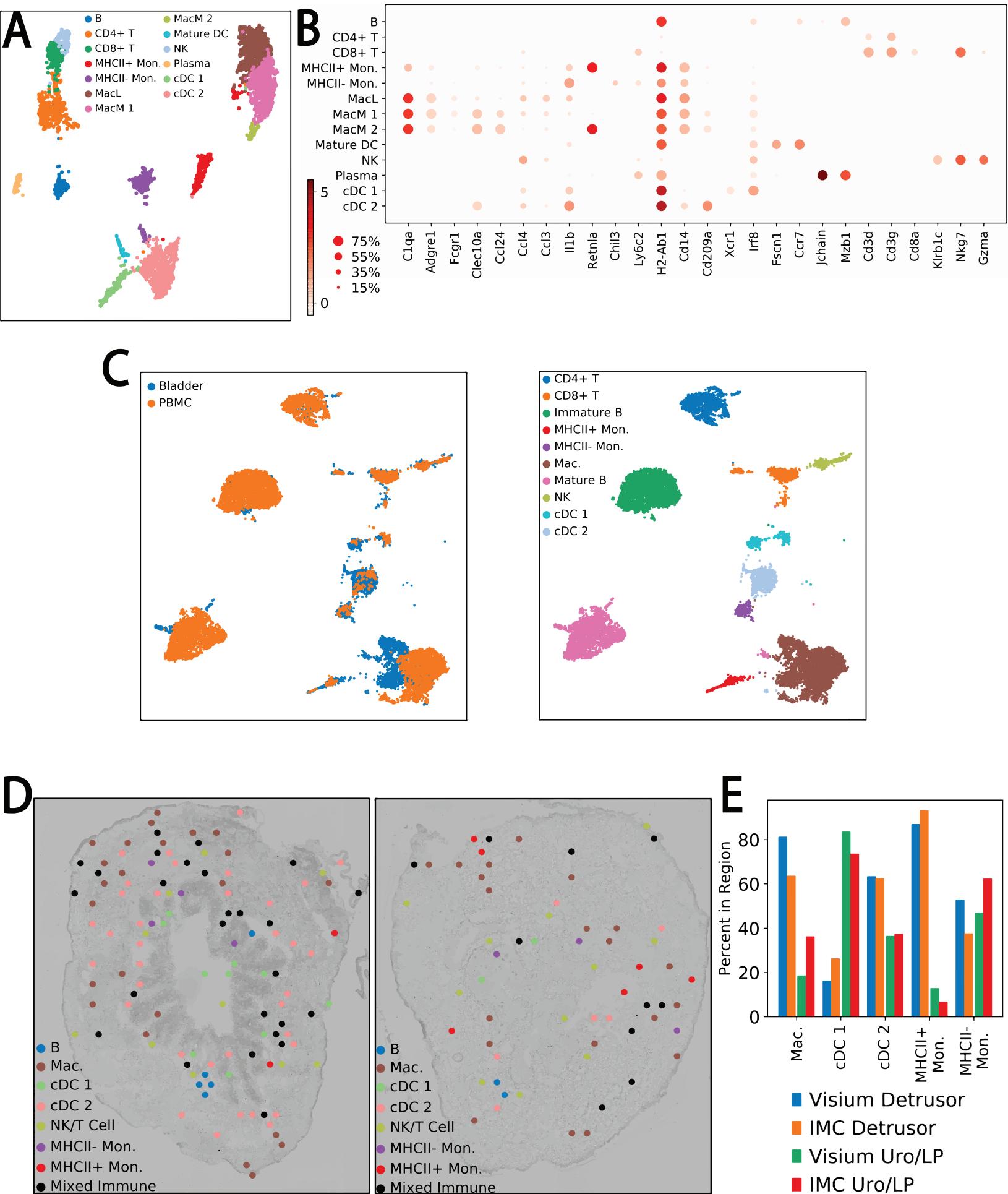
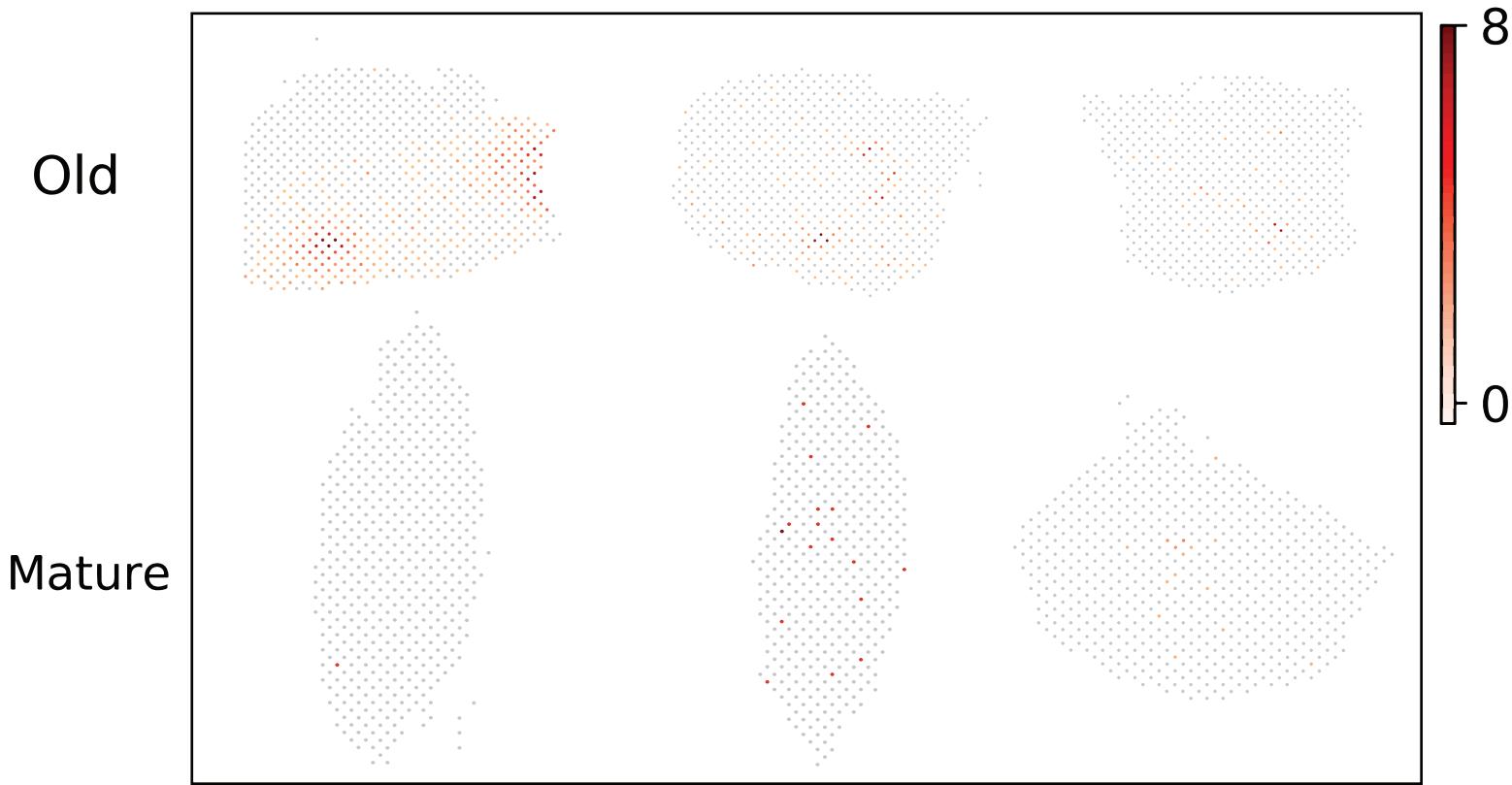



Figure S6

A

Jchain

