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ABSTRACT

Metagenomics is the study of all genomic content presented in given microbial communities.
Metagenomic functional analysis aims to quantify protein families and reconstruct metabolic pathways
from the metagenome. It plays a central role in understanding the interaction between the microbial
community and its host or environment. De novo functional analysis, which allows the discovery of novel
protein families, remains challenging for high-complexity communities. There are currently three main
approaches for recovering novel genes or proteins: de novo nucleotide assembly, gene calling, and
peptide assembly. Unfortunately, their informational connection and dependency have been overlooked,
and each has been formulated as an independent problem. In this work, we develop a sophisticated
workflow called integrated Metagenomic Protein Predictor (iMPP), which leverages the informational
dependencies for better de novo functional analysis. iIMPP contains three novel modules: a hybrid
assembly graph generation module, a graph-based gene calling module, and a peptide assembly-based
refinement module. iIMPP significantly improved the existing gene calling sensitivity on unassembled
fragmented reads, achieving a 92% - 97% recall rate at a high precision level (>90%). iIMPP further
allowed for more sensitive and accurate peptide assembly, recovering more reference proteins and
delivering more hypothetical protein sequences. The high performance of iIMPP can provide a more
comprehensive and unbiased view of the microbial communities under investigation. iIMPP is freely

available from https://qgithub.com/Sirisha-t/iMPP.
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INTRODUCTION

Microbial communities are ubiquitously present in many environmental niches on earth, including soil (1),
water (2), and air (3). Microbial communities are also a critical component of the human system, playing
important roles in maintaining human health and wellbeing (4-6). Human microbiome dysbiosis can lead
to various diseases, such as obesity (7-10), diabetes (11,12), and inflammatory bowel disease (13-15).
On the other hand, human microbiome intervention has recently been explored as a meaningful non-
invasive treatment. For example, Salmonella, Escherichia, and Clostridium are used as anticancer agents
with highly promising effects in cancer therapeutics (16-18). Certain microbes also correlate with the
response and toxicity from cancer treatments (19,20). Advances in next-generation sequencing (NGS)
enable the study of the genomic content of a microbial community as a whole, known as metagenomics
(21,22). Metagenomic sequencing data allows one to examine the taxonomic composition of the microbial
community (23-25). More importantly, it further enables protein family profiling (26-28) and metabolic
pathway reconstruction (29,30). This information is critical to unlocking the functional potential of the
microbial community and elucidating its interactions with the environment.

Metagenomic functional analysis usually begins with homology search, such as aligning the
sequencing reads against functionally annotated genomes (e.g., NCBI RefSeq) or protein databases
(NCBI NR or UniProt (31)) using BLAST (32). However, due to the incompleteness of current databases,
this approach may overlook functional elements encoded by previously-unseen microbial species and
novel protein families, yielding a biased view of the community’s function. Alternatively, a reference-
independent approach first assembles the sequencing reads into complete or near-complete genome
sequences using de novo genome assemblers such as Meta-IDBA (33), MEGAHIT (34), MetaVelvet
(35,36), and metaSPAdes (37). Then, it attempts to find open reading frames (ORFs) directly from the
assembled genomes based on signals such as gene length, GC-content, and codon usage that are
universal among all protein-coding genes. The so-called de novo gene calling step can be handled by
software packages like Glimmer (38), GeneMark (39), and Prodigal (40). When long enough genomic
sequences with stable and complete ORF signals are available, de novo gene calling is often reliable.
However, the problem becomes more challenging on fragmented sequences (e.g., unassembled reads).
More sophisticated computational models and algorithms are often required to solve the problem.
Software packages that support fragmented gene calling include MetaGeneAnnotator (41),
FragGeneScan (42), Orphelia (43), Glimmer-MG (44), MetaGeneMark (45), and MetaProdigal (46).
Despite being less accurate than their genome-scale counterparts (42,43), fragmented gene callers can
detect low-abundance protein-coding reads that are difficult to assemble. They output the detected
protein-coding reads, whose corresponding peptide sequences can be further assembled into peptide
contigs using de novo peptide assemblers such as SPA (47,48), PLASS (49), and MetaPA (50).

The three de novo functional analysis approaches discussed above, i.e., de novo nucleotide
assembly, gene calling, and peptide assembly, strongly depend on each other (Figure 1). First, nucleotide

assembly reconstructs longer genomic sequences with stronger and more stable ORF signals, which is
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expected to improve gene calling (42,43). For example, Graph2Pro (51) explicitly couples nucleotide
assembly and gene calling by searching ORFs from paths in the nucleotide assembly graph. Second,
gene calling can benefit downstream peptide assembly by providing refined short peptide sequences as
input. The peptide assembler SPA (47) showed a higher performance when fed with peptide sequences
predicted by FragGeneScan (42) compared to those predicted by MetaGeneAnnotator (41). We will
further show (in this work) that peptide assemblers that accept all six-frame translations as input can also
benefit from a refined input set. Conversely, peptide assembly explores the overlap information among
the input short peptide sequences and can improve gene calling by rescuing false-negative predictions.
Specifically, if a candidate ORF significantly overlaps with other peptides and is assembled into a long-
enough contig, the candidate ORF is likely to be correct. The peptide overlap information is independent
of the traditional ORF signals (e.g., codon frequency) and can further contribute to gene calling. Finally,
peptide assembly reconstructs longer peptide contigs or even complete protein sequences that can serve
as guides to nucleotide assembly. The so-called gene-centric assembly demonstrates better performance
than its model-free counterparts (52-54).

Despite the strong informational connection and dependency of de novo nucleotide assembly, gene
calling, and peptide assembly in metagenomic functional analysis, they have largely been considered and
solved independently. Examples include many dedicated metagenome assemblers (33-37), dedicated
metagenomic gene callers (41,42,44,45), and dedicated metagenomic peptide assemblers (47-50). While
Graph2Pro (51) explicitly couples nucleotide assembly with gene calling, it expects metaproteomic data to
validate its protein prediction and lacks a peptide assembly component. To the best of our knowledge, no
functional annotation method exists that considers the informational dependency among the three
approaches and integrates them into a single functional analysis framework. It remains unclear whether
doing so is feasible and by how much it can improve metagenomic functional analysis.

We integrate nucleotide assembly, gene calling, and peptide assembly into a de novo metagenomic
functional analysis workflow called integrated Metagenomic Protein Predictor (iMPP). Instead of being a
simple sequential execution, iIMPP is empowered with three novel modules to fully leverage the
informational dependency. iIMPP constructs a hybrid assembly graph by merging a de Bruijn graph and
an overlap graph. The de Bruijn graph information increases graph connectedness, while the overlap
graph information retains minor sequence variations. It further contains a novel gene calling module that
operates on the merged hybrid graph. The gene calling module is computationally efficient by applying
heuristics to eliminate unnecessary graph traversals. Finally, iMPP employs a protein reconstruction
module with a two-pass peptide assembly, correcting the gene calling results in the first pass and
reconstructing peptide contigs in the second pass. Due to computational efficiency concerns, the current
implementation of iIMPP does not contain a gene-centric nucleotide assembly module that guides
nucleotide assembly with the assembled peptide contigs (Figure 1, the broken gray line).

We benchmarked the performance of iIMPP in terms of both de novo gene calling and peptide

sequence assembly on four real metagenomic datasets from different environments: human gut, soil,
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marine, and cow rumen. While the performance of the existing gene calling methods is already as high as
85-90%, iIMPP further improved it by another ~5%, reaching ~92-93% of F-measure. For peptide
assembly, we further compared iMPP with two other strategies: one as a sequential integration of gene
calling and peptide assembly, and the other as peptide assembly alone. Our evaluations using both real
and simulated metagenomic datasets showed that iMPP outperformed both strategies in most assembly
statistics, including assembly rate, the number of assembled reads, assembled contig length, N50,
reference coverage, and specificity. iIMPP successfully recovered ~500-2,000 more known protein
sequences than the second-best method and reconstructed ~700-14,000 more novel peptide sequences
over 60aa. Taken together, IMPP has demonstrated the feasibility and benefit of integrating de novo

nucleotide assembly, gene calling, and peptide assembly in metagenomic functional analysis.

MATERIALS AND METHODS
The iMPP Algorithm
iIMPP overview

Figure 2 summarizes the iIMPP workflow. iIMPP first runs FragGeneScan (42) on the unassembled
metagenomic (MG) reads to perform fragmented gene calling. In order to leverage sequence overlap
information to improve gene calling, iIMPP uses nucleotide assemblers SGA (55) and SPAdes (37) to
generate assembly overlap graph and de Bruijn graph contigs, respectively. It then merges them into a
hybrid graph (see the “Assembly Graph Merging” section). iMPP performs the second pass of gene
calling on the edges and paths of the hybrid graph (see the “IMPP Gene Calling” section). Subsequently,
iIMPP refines the gene calling results by exploiting sequence overlap information among the peptide reads
(see the “Gene Calling Refinement” section). Finally, all predicted short peptides are assembled using
PLASS (49). Below we focus on the three modules uniquely contributed by iIMPP (Figure 2, bolded
operations). More detailed method descriptions, including the chosen parameters and command lines,

are available from Supplementary Methods.
Assembly Graph Merging

iIMPP employs a hybrid graph generation module that combines a nucleotide assembly overlap graph and
a set of contigs generated by de Bruijn graph assemblers (Figure 3A). de Bujin graph assembly breaks
down the reads into k-mers and models sequence overlap via shared k-mers among reads. It can identify
sequence overlaps with a greater sensitivity and often produces more complete assemblies. However, it
may overlook minor local sequence variations due to its more aggressive graph simplification strategy.
Overlap graph, in contrast, preserves raw sequence variation information but is more fragmentary.
Therefore, by merging information from both graphs, we expect to preserve the raw sequence information
from the overlap graph and improve the graph connectedness. The idea is similar to hybrid assembly,
where longer reads (e.g., PacBio SMRT or Oxford Nanopore MinlON) are used to connect short reads

(56-58) to improve the overall assembly.
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Specifically, iIMPP attempts to connect the isolated overlap graph components using de Bruijn graph
contigs as a bridge. iIMPP generates an assembly overlap graph using SGA (55) and simplifies the
overlap graph by collapsing all unbranched unipaths into single paths (Figure 3A, the blue graph). iIMPP
then uses SPAdes (under “meta” mode (37)) to generate de Bruijn contigs (Figure 3A, the purple
sequence). Denote a vertex with an in- or out-degree of 0 as a dead end and an edge containing at least
one dead end as a terminal edge. iIMPP collects all terminal edges from the overlap graph and maps
them against all de Bruijn graph contigs. It discards the alignments in which the dead-end sequences are
clipped. iIMPP then attaches the overlap graph components onto the aligned de Bruijn graph contigs
(Figure 3A). iIMPP includes all unaligned overlap graph components and de Bruijn graph contigs into the
hybrid graph without any modification. This module is similar to the hybrid graph construction module in
DRAGOM (59).

iIMPP Gene Calling

Given the hybrid graph, iIMPP performs the second pass of gene calling on the paths of the hybrid graph
(recall that the first pass of gene calling is performed directly on unassembled reads). Since paths in the
hybrid graph contain sequences longer than individual reads, they may contain more complete and stable
OREF signals (26,60). However, as the number of paths grows exponentially w.r.t the traversal depth,
iIMPP employs an “anchor and extend” heuristic to reduce the running time. Specifically, iIMPP first runs
FragGeneScan (42) on the edges of the hybrid graph. Since microbial genomes are dense in protein-
coding genes, the graph usually contains significantly fewer unpredicted edges (i.e., noncoding) than
predicted edges. Consequently, iMPP only selects the unpredicted edges as anchors to avoid traversing
a large proportion of the graph (Figure 3B). Intuitively, if many predicted edges surround an unpredicted
edge, the unpredicted edge is likely to be protein-coding and should also be predicted. IMPP performs a
depth-first search (DFS) towards both directions from each anchor (Figure 3B). The DFS terminates after
reaching a certain depth, which further bounds the number of paths that need to be reinvestigated. Finally,
iIMPP reperforms gene calling on the collected paths using FragGeneScan (42). The predicted edges and
paths are both considered as protein-coding; the MG reads that can be mapped to the protein-coding

edges and paths are considered as protein-coding reads.
Gene Calling Refinement

iIMPP further refines the gene calling results by utilizing the overlap information in peptide space. Note the
difference between this stage and the previous stage, which relies on overlap information in nucleotide
space. Due to codon redundancy, reads that cannot be overlapped in nucleotide space (because of
synonymous mutations) may be overlapped in peptide space (47). Hence, ORF signals that are missed
during nucleotide assembly could be captured by peptide assembly. Specifically, IMPP collects the
remaining unpredicted reads and performs all six-frame translations to convert them into pseudo peptides.
Note that each nucleotide read can associate with up to six pseudo peptides. Then, the pseudo peptides

are assembled with the predicted peptides using PLASS (49). Reads with at least one of their pseudo
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peptides assembled into long-enough contigs are considered as protein-coding; the pseudo peptides
contained in the longest contigs are used to determine the frame.

Benchmark Datasets

We used four real datasets from different environments (human gut (61), soil (62), marine (63), and cow
rumen (64)) to benchmark iIMPP. We named them DS1, DS2, DS3, and DS4, respectively. To obtain
ground truth, we collected microbial genomes typically found from the corresponding environment and
mapped the reads against these reference genomes. The reference genomes and their relative
abundances for DS1-4 are available from Supplementary Tables 12-15, respectively. We compiled all the
mapped reads into so-called subsampled datasets. We also used the entire set of reads to benchmark
the software's performance on real data; we refer to them as the complete datasets. Detailed information
is summarized in Table 1 and is available in Supplementary Methods.

We also benchmarked using three simulated datasets, where the first two comprised of reads
generated in silico from reference genomes, and the third was a CAMI dataset (65). Please see
Supplementary Methods and Results as well as Supplementary Table 2 for more information regarding
these simulated datasets.

Performance Metrics

We benchmarked iMPP in terms of both de novo gene calling and peptide assembly. For gene calling, we
compared iIMPP with three other strategies. The first strategy corresponded to fragmented gene calling
directly on unassembled reads using FragGeneScan (42), denoted as “FGS” for short. The second
strategy was to assemble the reads using SGA and then performed gene calling using FragGeneScan on
the assembled contigs. We denote this strategy as “SGA+FGS”. The third strategy was similar to the
second one, but with SPAdes as the assembler, denoted as “SPAdes+FGS”. We measured the
performance of iIMPP and these three strategies using precision and recall. For the subsampled datasets,
we used FragGeneScan to identify all protein-coding regions from the reference genomes. We chose
FragGeneScan for ground truth generation because it was also used by the benchmarked strategies
(including iIMPP), eliminating the impact of using different gene callers. We defined true positives (TP) as
the predicted reads with >60% of their total lengths mapped to the coding regions in the reference
genomes, false positives (FP) as the predicted reads that are not mapped to the coding regions, and false
negatives (FN) as the unpredicted reads that can be mapped to the coding regions. Then, we computed
the recall, precision, and F-score as:

TP _ 2xrecall * precision

recall = TP+—FN,preCLsmn =

Since no ground truth was available for the complete datasets, we only reported the number of predicted

TP+ FP' ~  recall + precision

protein-coding reads.

For peptide assembly benchmark, we benchmarked iMPP with two other strategies. The first strategy
corresponded to the assembly of FragGeneScan (42) predicted reads using PLASS (49). This strategy
was similar to SPA (47,48), which expected the input to be selected by gene callers. We refer to this

strategy as “FGS+PLASS". The second strategy was to use the entire set of unfiltered reads, which was
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the expected input of PLASS. We refer to this strategy as “PLASS". We measured the total number of
assembled reads, the number of output contigs, the total length of output contigs, N50, assembly rate (the
number of assembled reads overall the total number of reads), and chimera rate. To evaluate the
correctness of the assembly, we further aligned (using DIAMOND (66)) the contigs against the proteins
encoded in the reference genomes (for the subsampled datasets) and the UniProt (31) database (for the
complete datasets). A contig was considered true if its aligned proportion was above a certain threshold.
We reported contig-level specificity as the total length of the true contigs over the total contig length, and
read-level specificity as the total number of reads constituting the true contigs over the total number of
assembled reads. Finally, to measure sensitivity, we reported reference coverage as the percentage of
reference genes covered (for more than a length threshold) by the assembled contigs.

RESULTS

Gene Calling Benchmark

The gene calling performances of iIMPP and the other strategies on the four subsampled datasets are
summarized in Figure 4. The results were broadly consistent among all datasets, where iMPP
demonstrated the highest performance, followed by FGS, SPAdes+FGS, and SGA+FGS. Specifically, the
peak F-scores of IMPP were 92.98%, 92.13%, 92.50%, and 92.73% on the four datasets, respectively
(Supplementary Table 1). The second-best strategy, FGS, showed F-scores of 87.22%, 84.72%, 89.54%,
and 88.56%, respectively. iIMPP improved over FGS with an F-score of 2.96% - 5.76%. Given the
already-high performance baseline of >85% F-score, the improvement was significant. Strategies that
perform gene calling on assembled reads, i.e., SGA+FGS and SPAdes+FGS, performed worse than FGS,
potentially because many reads were not assembled into contigs and were not considered.

For the gene calling performance on the complete datasets, we only report the raw prediction counts
because no ground truth is available (Figure 5). iIMPP and FGS predicted more protein-coding reads than
the assembly-based strategies SGA+FGS and SPAdes+FGS. This is likely due to the low assembly rate
on these datasets. iIMPP also predicted more reads than FGS, especially on DS1 and DS2 (14.61% and
20.96% more, respectively). The improvement was marginal on DS3 and DS4 (6.71% and 2.89%,
respectively). The results are consistent with the observations made from the subsampled datasets
(Figure 4), where iMPP showed the highest recall rate among all strategies.

Peptide Assembly Benchmark

We summarize the peptide assembly benchmark results on the subsampled datasets in Table 2. We only
considered peptide contigs that are >60aa long. iIMPP assembled the largest number of contigs and total
contig length for all datasets. It outperformed FGS+PLASS by 3.3% - 12.5% of the total contig length, but
with a less significant improvement over PLASS (0.2% - 4%). Note that the peptide assembly module of
iIMPP only accepted the predicted protein-coding reads as input, which is less than the entire dataset
accepted by the PLASS strategy (DS1: 8.7M vs 9.0M, DS2: 2.4M vs 2.9M, DS3: 11.1M vs 11.3M, and

DS4: 7.4M vs 7.8M). However, even with fewer input reads, iIMPP assembled more contigs in terms of
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both the quantity and total length. It suggests that eliminating noncoding reads from the input can
potentially benefit peptide assembly. On the other hand, iIMPP also outperformed the FGS+PLASS
approach that also refined the input. It suggests that true protein-coding reads should not be excluded
from the input or it might harm peptide assembly. Because of using the most accurate input sets, iIMPP
had the highest assembly rate overall. Although slightly underperformed FGS+PLASS on DS1 and DS2
(~0.3%), IMPP showed a significantly higher assembly rate than FGS+PLASS on DS3 and DS4 (9.5%
and 9.3% improvement, respectively). iIMPP also consistently showed the highest N50, although it
remained similar to the other strategies. Finally, iIMPP showed a slightly higher chimera rate, but it
remained ignorable and below 0.1% on all datasets.

We aligned the resulted contigs against the ground-truth reference proteins to investigate the
accuracy of the peptide assemblies. The contig- and read-level specificities of different strategies are
summarized in Table 3. All three strategies had similar levels of performance, with most of the differences
<2%. iIMPP showed the highest assembly accuracy in DS1, DS3, and DS4, while FGS+PLASS was the
best for DS2. It is expected that iIMPP and FGS+PLASS had higher assembly accuracies, as they
accepted only the predicted protein-coding reads as input. On the other hand, PLASS used all reads,
including noncoding reads, which could have compromised the assembly accuracy.

We further calculated the proportion of reference protein sequences recovered by the assemblies
generated by difference strategies (Figure 6). iIMPP consistently showed the highest reference coverages
at all sequence length thresholds on all four benchmark datasets. The average improvement over the
second-best PLASS strategy was 1.1%. The results were in line with the observation that iMPP
generated more contigs and total contig length than PLASS (Table 2). Taken together, iMPP showed the
highest de novo peptide assembly sensitivity and accuracy on the subsampled datasets.

We also performed similar analyses on the complete datasets. The results summarized in Table 4
were largely consistent with what had been observed for the subsampled datasets (Table 2). Specifically,
iIMPP assembled significantly more contigs (2.3% - 9.9%) and longer total contig length (1.8% - 10.0%)
than FGS+PLASS, and slightly more than PLASS (0.4% - 3.0% more assembled contigs, 0% - 1.2%
longer total contig length). The only exception was on DS3, where PLASS assembled slightly more
contigs (<0.1%) than iIMPP but had shorter total contig length. It is likely that the PLASS assembly was
more fragmentary, as indicated by its lower N50 in DS3. Meanwhile, iIMPP consistently showed the
highest assembly rate and N50 among all datasets, although with marginal improvements (the only
exception was that iMPP had a 0.5% lower assembly rate than FGS+PLASS on DS1). All strategies had
the same low chimera rate.

As we did not have the ground truth reference proteins for the complete datasets, we aligned the
assembled peptide contigs against the UniProt database (31) to benchmark assembly accuracy. The
corresponding contig- and read-level specificities are summarized in Table 5. The results were again
consistent with the subsampled datasets, with iIMPP leading most of the metrics. All accuracies were

lower than those for the subsampled datasets, as the complete dataset may contain more novel proteins


https://doi.org/10.1101/2021.09.20.461079
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.09.20.461079; this version posted September 23, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

that cannot be aligned. Interestingly, the second-most accurate strategy appeared to be PLASS for the
complete datasets, unlike FGS+PLASS for the subsampled datasets. The reason could be that the ORF
model used by FragGeneScan was trained on known protein families and might miss true protein-coding
reads from the novel protein families in the complete datasets. The less complete input further led to
fragmentary assemblies, where many short contigs failed to be reliably aligned to references.

Finally, Figure 7 summarizes the number of peptide contigs that aligned to the UniProt database (31)
under different reference length thresholds. iIMPP was able to recover the largest number of known
protein sequences from UniProt, followed by PLASS (~500 - 2,000 more peptides). These results
reconfirmed iIMPP’s high peptide assembly sensitivity on real datasets.

Benchmark Results on Simulated Datasets

In addition to the real datasets DS1-DS4, we also benchmarked iMPP on three simulated datasets. We
generated two in-house datasets in silico, one from 28 marine microbial genomes and one from 8
Streptococcus genomes. We also included the CAMI (65) medium-complexity dataset and subsampled it
based on the reference genomes provided by the database. For all of the datasets, because of their
relatively simple complexity, all methods performed similarly well. More details regarding benchmark
results on the simulated datasets can be found from Supplementary Methods and Results as well as
Supplementary Figures 1-6 and Supplementary Tables 2-11. The reference genomes used for
subsampling and their relative abundances are summarized in Supplementary Tables 16-18.
Time-Performance Tradeoff

We investigated the proportion of true protein-coding reads discovered by different modules of the
iIMPP pipeline (Figure 8). Recall that iIMPP can make ORF predictions in three stages: from the direct
application of FragGeneScan on unassembled reads, from the iIMPP gene calling module on the hybrid
graph, and finally from the peptide assembly-based refinement. The most economical way to identify
coding reads was to perform fragmented gene calling, as FragGeneScan could find >85% of the true
positives using ~10% of the total time. The result was consistent with the high performance observed for
FragGeneScan (42). The remaining ~15% of the protein-coding reads were more challenging to discover,
but the majority of them could be discovered using the iIMPP gene calling module. It indicates that longer
paths from the hybrid assembly graph indeed contain stronger ORF signals and benefit gene calling.
However, this module was also the most time-consuming since it performed both overlap graph assembly
and de Bruijn graph assembly. It took up ~55% - 80% of the total runtime of IMPP. Finally, a very small
proportion (2% - 3%) of the coding reads could be rescued by peptide assembly-based refinement, which
took ~15% - 30% of the total runtime.

DISCUSSION

In this work, we present a de novo metagenomic functional analysis workflow iMPP. iMPP directly
operates on unassembled raw reads and is capable of discovering novel proteins or protein families. To
the best of our knowledge, iIMPP is currently the only method that integrates nucleotide assembly, gene

calling, and peptide assembly based on their informational connection and dependency (Figure 1). The
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integration appears to be successful based on benchmark results. For gene calling, iMPP significantly
improves the state-of-the-art method FragGeneScan with a 10% - 15% higher sensitivity (Figure 4).
Notably, while the original sensitivity of FragGeneScan is already high at ~85%, iIMPP has achieved a
near-perfect recall rate of >95% at a specificity level of ~90%. The highly accurate iIMPP gene calling
results further benefit downstream de novo peptide assembly, generating more peptide contigs with
higher specificity.

The peptide assembly results point to two seemingly counterintuitive observations regarding de novo
peptide assembly. First, a more specific input set does not necessarily lead to a more specific assembly.
As shown in Figure 4, FragGeneScan had a slightly higher specificity than iIMPP (1% - 2%, see details in
Supplementary Table 1). However, iMPP assembly showed higher contig- and read-level specificity than
FGS+PLASS assembly (Table 3). The reason could be that the more specific input set generated by
FragGeneScan was less comprehensive, and missing the true protein-coding reads made the assembly
graph more fragmentary. It further resulted in many ultra short peptide contigs, which were subsequently
filtered out, reducing the true positive rate and specificity. Second, a more comprehensive input set does
not necessarily lead to a more complete assembly. Because iMPP only accepted the predicted coding
reads as its input, its input was less complete than PLASS, which accepted all reads. Surprisingly, the
iIMPP assembly was more comprehensive than the PLASS assembly (Table 2 and Figure 6). The reason
could be that contaminants (false pseudo peptides or mispredicted ORF from noncoding reads) may
overlap with other peptides by chance, generating more false connections in the assembly graph. The
false connections may confound graph traversal and reduce true positive output. As such, a more refined
input that contains exactly all the coding reads will likely result in the best assembly. While these
observations were made from peptide assembly, we believe that they also apply to nucleotide assembly,
as most assembly algorithms are similar. The observation may provide insights to improve de novo
nucleotide and peptide assembly from a different perspective: refining the input.

We also identified an interesting correlation between environmental characteristics and the difference
in assembly performance between subsampled and complete datasets. By comparing Table 2 and Table
4, we found that the assembly rate difference clearly separates the datasets into two subcategories. DS3
(marine) and DS4 (cow rumen) showed a significant increase in assembly rate on the subsampled
datasets (20% - 30% improvement) compared to the corresponding complete datasets, whereas DS1
(human gut) and DS2 (soil) showed nearly no improvement (<2%). DS3 and DS4 likely have few known
microbial species dominating the corresponding communities. The subsampling process enriched reads
from these highly abundant genomes, simplified the subsequent assembly process, and led to a higher
assembly rate. Indeed, the most abundant five microbes in DS3 and DS4 comprised 16.1% and 26.1% of
the corresponding datasets, respectively (Supplementary Table 14 and 15). On the other hand, the
percentage was only ~2% for DS1 and DS2 (Supplementary Table 12 and 13). In addition to the
staggered microbial composition, the completeness of the reference database could also contribute to the

smaller assembly rate difference for DS1 and DS2. For DS1 (human gut), we may have identified most of
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the microbes in the community, such that the subsampled data has similar characteristics as the complete
dataset. This is supported by the highest subsampling rate of 38.5% observed in DS1 among all datasets
(Table 1). On the other hand, for DS2 (soil), it is possible that our understanding of the environment is so
little that the reference-based subsampling process is not significantly better than random subsampling.
The conjecture is again in line with the lowest subsampling rate of 6.6% observed in DS2 (Table 1).

With the novel protein families discovered from the above analysis, as well as the known protein
families, we expect to develop an algorithm to improve de novo nucleotide assembly. This work will
complete the last piece of missing information flow from Figure 1 (the gray broken arrow). While it is
possible to improve the assembly of individual genes using protein family profiles as a guide (26,54), it is
unknown by how much it can improve assembly at the genome level. The improvement observed on
individual genes suggests that a guided assembly can help resolve branches in the assembly graph. We
shall take advantage of it towards more accurate genome assembly. With this module, we will further
develop an iterative version of iMPP following the information flow shown in Figure 1. While the iterative
version could be uneconomical given the already high recall rate of the current iMPP version (92% - 97%,
Figure 4), it is of theoretical interest to investigate the limit of gene calling directly from fragmented
sequences.

To promote practical applications of iIMPP, we expect to include an additional module for hypothetical
protein annotation. Note that a significant proportion (60% - 70%) of peptide sequences assembled by
iMPP from the complete datasets cannot be aligned to the UniProt database (Table 5). Given the high
contig-level specificity (~80%) observed from the subsampled datasets (Table 3), most of the assembled
peptide contigs likely correspond to true novel proteins. Note that all of these assembled peptides are
>60aa, therefore they should contain sufficient information for reliable functional prediction. Specifically,
we will develop a hypothetical protein annotation module (67) that includes physicochemical property
characterization, domain analysis, protein subcellular localization analysis, and protein-protein interaction
analysis. We will also include a de novo clustering module to identify novel protein families and sequence
motifs (68). Finally, we will also provide the corresponding DNA sequences of these proteins to facilitate
their taxonomic analyses and experimental validations.

We also plan to improve the usability and efficiency of iMPP from a software engineering perspective.
We will modulate different components of iMPP to meet flexible needs in performance and efficiency. For
example, the user will be able to eliminate the peptide assembly refinement step for a speedup without
losing a significant number of true positive predictions. We also note that the current iIMPP pipeline
depends on some third-party software packages, such as SGA (55), SPAdes (37), FragGeneScan (42),
and PLASS (49). We will standardize the interface between different modules to allow the substitution of
these software packages with other alternatives, e.g., substituting the peptide assembler PLASS (49) with
MetaPA (69) or SFA-SPA (48). Finally, we will also try to speed up iIMPP by “internalizing” third-party
software modules as libraries. For example, iMPP first writes the assembly overlap graph and de Bruijn

graph contigs into the hard disk and loads them to generate the hybrid graph. Internalizing the assembly
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graph generation modules can eliminate the hard-disk traffic and make the entire workflow more efficient.
In addition, internalizing peptide assembly will also allow us to access the peptide assembly graph
generated by the first PLASS run (for gene calling refinement); the information may help to save a
significant amount of time for the second pass (for peptide contig reconstruction).

In conclusion, we present a novel method called iIMPP for metagenomic functional analysis. iIMPP
integrates de novo nucleotide assembly, gene calling, and peptide assembly. iMPP is able to improve
both gene calling and peptide assembly and has the potential to improve our current understanding of the
functions of microbial communities. IMPP was implemented using GNU C++, Python, and Perl. It is freely

available from (https://github.com/Sirisha-t/iMPP) under the Creative Commons BY-NC licence.
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TABLES

Table 1: A summary of benchmark datasets. “#Reads” indicates the total number of reads for the
complete dataset; “#Genomes” indicates the number of reference genomes used for subsampling,
“#Sampled Reads" corresponds to the number of subsampled reads.

Dataset  Accession Description Len. #Reads #Genomes #Sampled Reads
DS1 SRR341583 Human Gut 75 23.4M 3,499 oM

DS2 SRR350919 Soil 75 43.9M 65,356 2.9M

DS3 SRR5720229  Marine 150 61.1M 27,216 11.3M

DS4 ERR2027889 Cow Rumen 150 109.8M 8,980 7.8M
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Table 2: Peptide assembly statistics of IMPP, FGS+PLASS, and PLASS on the subsampled datasets.
The highest performance in each category is bolded.

Dataset Metrics iMPP FGS+PLASS PLASS
DS1 # Contigs 28,645 25,621 26,833
(subsampled)  Assembly rate (%) 26.65 26.81 24.97
Total contig length 2,180,987 1,945,668 2,095,045
N50 (bp) 75 75 74
Chimera rate (%) 0.026 0.018 0.021
DS2 # Contigs 6,911 6,030 6,680
(subsampled) = Assembly rate (%) 7.92 8.21 6.42
Total contig length 591,348 525,637 585,397
N50 (bp) 87 87 87
Chimera rate (%) 0.00 0.00 0.00
DS3 # Contigs 761,837 720,195 758,779
(subsampled)  Assembly rate (%)  60.53 51.00 58.18
Total contig length 79,683,890 77,128,267 79,561,338
N50 (bp) 111 110 111
Chimera rate (%) 0.014 0.008 0.012
DS4 # Contigs 2,591,823 2,235,889 2,537,281
(subsampled) = Assembly rate (%) 91.62 82.36 87.46
Total contig length 370,451,823 350,734,063 369,827,910
N50 (bp) 180 179 180
Chimera rate (%) 0.093 0.099 0.092
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Table 3: The contig- and read-level specificity (%) for the peptide assemblies made by IMPP,
FGS+PLASS, and PLASS at different length thresholds on the subsampled datasets. The highest
performance in each category is bolded.

Dataset iMPP FGS+PLASS PLASS

contig read contig read contig read

DS1 60%  83.62 90.07 83.46 89.93 83.55 89.72
(subsampled) 70%  83.32 89.64 83.18 89.61 83.24 89.27
80% 83.15 88.81  82.60 88.80 82.64 88.46

90%  82.86 87.21 81.24 87.14  81.36 86.81
DS2 60%  98.61 90.45 98.74 99.70  98.58 99.68
(subsampled) 70% 98.55 99.22 98.62 99.60 98.33 99.54
80%  98.43 98.83  98.45 99.32 98.01 99.06

90%  97.83 98.47 97.49 98.50 97.23 97.86
DS3 60% 72.82 67.49 69.90 61.36 72.03 66.24
(subsampled) 70% 72.11 65.82 68.84 58.17 71.01 63.33
80%  71.73 60.25  66.85 53.03  69.03 58.95

90% 62.28 42.44  58.87 43.88  60.82 50.99
DS4 60%  84.00 96.81 83.60 96.89  83.00 96.16
(subsampled) 70% 83.74 96.22 83.34 96.44 82.73 95.66
80%  83.18 95.97 82.78 95.82 82.16 94.93

90%  81.59 94.80 81.03 94.64  80.58 93.70
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Table 4: Peptide assembly statistics of IMPP, FGS+PLASS, and PLASS on the complete datasets. The
highest performance in each category is bolded.

Dataset Metrics iMPP FGS+PLASS | PLASS

DS1 # Contigs 69,943 65,254 69,289

(complete) Assembly rate (%) 24.65 25.18 23.21
Total contig length 5,290,265 4,933,737 5,234,898
N50 (bp) 75 74 74
Chimera rate (%) 0.00 0.00 0.00

DS2 # Contigs 515,905 469,788 510,832

(complete) Assembly rate (%) 9.72 9.53 7.92
Total contig length 55,942,224 50,841,297 55,692,303
N50 (bp) 111 110 111
Chimera rate (%) 0.00 0.00 0.00

DS3 # Contigs 7,325,292 7,149,433 7,328,392

(complete) Assembly rate (%) 41.44 39.54 35.16
Total contig length 884,928,849 869,609,146 884,791,359
N50 (bp) 131 130 130
Chimera rate (%) 0.00 0.00 0.00

DS4 # Contigs 30,876,275 30,179,658 30,862,245

(complete) = Assembly rate (%) 66.16 66.02 59.64
Total contig length 951,090,439 880,119,183 950,690,715
N50 (bp) 205 205 205
Chimera rate (%) 0.00 0.00 0.00
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Table 5: The contig- and read-level specificity (%) for the peptide assemblies made by IMPP,
FGS+PLASS, and PLASS at different length thresholds on the complete datasets. The highest
performance in each category is bolded.

Dataset iMPP FGS+PLASS PLASS

Len contig read contig read contig read
DS1 60% 27.43 50.89 26.81 47.71 27.12 48.11
(complete) ' 70% 27.39 50.23 26.31 46.91 27.04 48.02

80% 26.92 49.78 2541 4510 26.81 47.71
90% 26.54 48.25 23.30 43.26 26.31 46.21
DS2 60% 46.93 54.11 4580 54.28 46.33 53.72
(complete) 70% 46.25 53.67 45.11 53.46 45.69 52.97
80% 44.81 5219 43.69 5193 4432 51.50
90% 41.32 50.66 40.07 48.56 40.73 48.13
DS3 60% 4491 5418 4399 5252 44.70 53.37
(complete) 70% 44.23 53.39 4322 5152 43.92 52.44
80% 42.74 51.72 4146 49.53 42.14 50.60
90% 38.15 48,98 3587 4471 36.46 46.08
DS4 60% 42.35 4228 41.73 40.76 41.76 41.24
(complete) 70% 4190 41.17 41.48 40.16 4151 40.15
80% 41.07 39.62 4093 38.09 40.98 38.60
90% 40.63 36.78 39.46 36.18 39.53 35.75
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FIGURES

Figure 1
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Figure 1: The informational dependency among de novo nucleotide assembly, gene calling, and peptide
assembly. Solid arrows indicate dependencies that have been utilized by iMPP to improve metagenomic
functional annotation.
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Figure 2: The iIMPP workflow overview. Yellow arrows indicate nucleotide assembly information flow;
green arrows indicate gene calling information flow; and blue arrows indicate peptide assembly
information flow. The bolded operations, i.e., “graph merging”, “IMPP gene calling”, and “PLASS
refinement” are unique contributions of IMPP and discussed in detail in the Materials and Methods section.
“MG reads” stands for metagenomic reads.
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Figure 3
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Figure 3: A schematic illustration of the iIMPP hybrid graph generation and iMPP gene calling modules. (A)
iIMPP aligns terminal edges of the assembly overlap graph components (blue) against the de Bruijn graph
contigs (purple), and attaches the aligned overlap graph components to the de Bruijn graph contigs. (B)
iIMPP predicts the protein-coding potential of each edge of the resulted hybrid graph and marks them as
either protein-coding (green) or noncoding (gray). iMPP selects the noncoding edges (gray) as anchors
and performs depth-first-search from the anchors towards both directions to generate candidate paths.


https://doi.org/10.1101/2021.09.20.461079
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.09.20.461079; this version posted September 23, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

Figure 4

(B)

1.0 R i 1.0
--:—',
i ‘_-"" -~
08 § - -7 0.8
,/
,/
— -
a0.6 - 0.6
Q
s
x0.4 0.4
0.2 0.2
0.0 0.0
00 0.2 04 06 08 1.0 00 0.2 04 06 08 1.0
(D)
1.0 ——
0.8 R
”,/ ,/
”~
0.6 PR
,/
04
0.2
0.0
00 0.2 04 06 08 1.0 00 0.2 04 06 08 1.0
1-Precision 1-Precision
=@ iMPP == SGA+FGS e SPAdes+FGS m—fee FGS

Figure 4. The ROC curves for the de novo gene calling performances of the four strategies on the
subsampled datasets. (A) DS1, (B) DS2, (C) DS3, and (D) DS4.
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Figure 5: The number of protein-coding reads predicted by iIMPP, SGA+FGS, SPAdes+FGS, and FGS on

the four complete datasets. Panels from left to right: DS1, DS2, DS3, and DS4.
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Figure 6: Reference coverages by the peptide contigs assembled by iIMPP, FGS, and PLASS on the four
subsampled datasets. (A) DS1, (B) DS2, (C) DS3, and (D) DS4.
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Figure 7: The number of aligned (against UniProt) peptide contigs assembled by iMPP, FGS, and PLASS
on the four complete datasets. (A) DS1, (B) DS2, (C) DS3, and (D) DS4.
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Figure 8: The proportion of the wallclock runtime and detected true protein-coding reads by the direct
application of FragGeneScan (yellow), iMPP gene calling (green), and peptide assembly refinement
(blue). Panels from left to right: DS1, DS2, DS3, and DS4.
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