

Comparison of two injectable anaesthetic protocols in Egyptian fruit bats (*Rousettus aegyptiacus*) undergoing gonadectomy.

Martina Amari¹, Federica A. Brioschi^{2*}, Vanessa Rabbogliatti^{1*}, Federica Di Cesare³, Alessandro Pecile², Alessia Giordano², Pierangelo Moretti¹, William Magnone⁴, Francesco Bonato⁵, Giuliano Ravasio²

¹ Department of Veterinary Medicine, Centro Clinico Veterinario e Zootecnico Sperimentale, Università degli Studi di Milano, Milan, Italy

² Department of Veterinary Medicine, Università degli Studi di Milano, Milan, Italy

³ Department of Health, Animal Science and Food Safety, Università degli Studi di Milano, Milan, Italy

⁴ Private Practitioner, Milan, Italy

⁵ Clinica Veterinaria San Maurizio, Cologno Monzese, Milan, Italy

* Corresponding author

E-mail: federica.brioschi@unimi.it (FAB); vanessa.rabbogliatti@unimi.it (VR)

1 Abstract

2 Egyptian fruit bats are experimental animals of increasing interest because they have been identified as a
3 natural reservoir for several emerging zoonotic viruses. For this reason, bats could undergo different
4 experimental procedures that require sedation or anaesthesia. Our aim was to compare the effects of two
5 balanced anaesthetic protocols on sedation, cardiopulmonary variables and recovery in bats undergoing
6 gonadectomy. Twenty bats were randomized into two groups; patients in group DK received intramuscular
7 injection of dexmedetomidine ($40 \mu\text{g kg}^{-1}$) and ketamine (7 mg kg^{-1}), whereas those in group DBM were
8 anaesthetized with intramuscular dexmedetomidine ($40 \mu\text{g kg}^{-1}$), butorphanol (0.3 mg kg^{-1}) and midazolam
9 (0.3 mg kg^{-1}). Time of induction, cardiopulmonary parameters and anaesthetic depth were measured. If
10 anaesthesia plan was considered inadequate, fraction of inspired isoflurane was titrate-to-effect to achieve
11 immobility. At the end of the surgery venous blood gas analysis was performed and intramuscular
12 atipamezole ($200 \mu\text{g kg}^{-1}$) or atipamezole ($200 \mu\text{g kg}^{-1}$) and flumazenil (0.03 mg kg^{-1}) was administered for
13 timed and scored recovery phase. A significantly higher heart rate and peripheral oxygen saturation were
14 recorded in DBM group ($p = 0.001$; $p = 0.003$ respectively), while respiratory rate was significantly lower than
15 DK group ($p = 0.001$). All bats required isoflurane supplementation during surgery with no significant
16 difference. No differences were observed in rectal temperature, induction and recovery times. Sodium and
17 chlorine where significantly higher in DBM group ($p = 0.001$; $p = 0.002$ respectively). Recovery scores in group
18 DK were significantly better than in group DBM ($p = 0.034$). Both protocols induced anaesthesia in Egyptian
19 fruit bats with comparable sedative and cardiorespiratory effect. These drug combinations may be useful for
20 minor procedures in bats, and they could be associated with inhalation anaesthesia in determining and
21 maintaining a surgical anaesthetic plan.

22 Introduction

23 Pteropid bats have been studied in various research fields as they have been identified as a natural reservoir
24 for various emerging zoonotic viruses, including Marburg virus [1], Hendra virus, Nipah virus [2] and lyssavirus
25 variants [3]. Moreover, among the family *Pteropodidae*, also the Egyptian fruit bat (*Rousettus aegyptiacus*)

26 showed characteristics of a reservoir host for SARS-CoV-2 [4]. Besides, Egyptian fruit bats are commonly
27 housed in zoological environments because they are small, amenable to handling and reproduce readily in
28 captivity [5].

29 The safe collection of biological samples from pteropid bats, such as blood and swabs from the throat, urethra
30 and rectum, is essential for both the animal and the operator [6]. During sampling, the physical restraint of
31 bats can expose the handler to bite and scratch injuries, resulting in potential zoonoses transmission. Short-
32 term anaesthesia facilitates operator safety and minimises stress for the bat [7,8]. Moreover, in zoological
33 settings, short-term anaesthesia results important to apply contraception protocols, to prevent
34 overpopulation and inbreeding in highly fertile bat colonies [9,10].

35 A total isoflurane inhalation anaesthesia is often the method of choice for bats, having the advantage of wide
36 safety margin, very little metabolism, and quick induction and recovery times [11,12]. However, isoflurane
37 is not commonly used under field conditions [13] and it does not provide a sufficient analgesic action [14].

38 Side effects that may occur with extensive inhaled anaesthetic use are dose-dependent and include
39 respiratory and myocardial depression and decreased in sympathetic activity, leading to decreased cardiac
40 output and hypotension [15]. For this reason, halogenates are often combined with injectable anaesthetics
41 to reduce anaesthetic requirements and cardiopulmonary effects [16,17].

42 Previously reported injectable anaesthetic protocols used in bats include alpha-2 adrenergic agonists (i.e.
43 xylazine or medetomidine) and ketamine (KET) [6–8,18]. The use of alpha-2 adrenergic agonists results in
44 sedation, analgesia, muscle relaxation, and anxiolysis, and reduces the anaesthetic requirements of
45 injectable and inhalant agents during induction and maintenance of general anaesthesia [19].
46 Dexmedetomidine (DEX) is the alpha-2 agonist with the highest receptor selectivity and it is twice as potent
47 as medetomidine [20].

48 Ketamine induces anaesthesia and amnesia by functional dissociation of the central nervous system resulting
49 in catalepsy, immobility, amnesia, and marked analgesia [19], but its use alone is highly discouraged due to
50 the poor muscle relaxation and slow and often excitatory awakenings [18]. The alpha-2 adrenergic agonists-
51 KET combination provide good analgesia and muscle relaxation together with an excellent cardiovascular
52 stability, but it may be associated with prolonged recovery and hypothermia [21].

53 Butorphanol (BUT) is a κ agonist- μ antagonist opioid with mild sedative and analgesic properties [19]. Opioids
54 are often combined with alpha-2 adrenergic agonists because they potentiate their sedative and analgesic
55 effects with minimal additional cardiovascular effects [22].

56 Midazolam (MDZ) is a benzodiazepine that has sedative-hypnotic, anxiolytic and muscle relaxant effects and
57 enhances the sedative and antinociceptive effects of alpha-2-adrenergic agonists [23].

58 A subcutaneous combination of medetomidine, MDZ and opioids has been shown to be safe for Egyptian
59 fruit bat anaesthesia, with no apparent morbidity or mortality [21].

60 The purpose of the study was to evaluate and compare sedative effects of two different injectable
61 anaesthetic protocols, DEX and KET (group DK) versus DEX, BUT and MDZ (group DBM) in bats undergoing
62 gonadectomy and to record physiological and adverse effects following administration of both protocols. We
63 also evaluated the duration of induction and timing and quality of recovery achieved by both combinations.
64 We hypothesized that both injectable protocols are effective in determining and maintaining a surgical
65 anesthetic plan with no or diminished use of isoflurane in Egyptian fruit bats with few side effects.

66 Materials and methods

67 Ethics statement

68 The present study complies with ethical standards and was conducted under the approval of the
69 Institutional Ethical Committee for Animal Care at the University of Milan (OPBA_104_2021). Owner's
70 written informed consent was obtained.

71 Animals and housing conditions

72 Twenty healthy male and female Egyptian fruit bats (age unknown, body weight between 100 and 150 g)
73 presented at the Veterinary Teaching Hospital of the University of Milan to perform gonadectomy were
74 included in the study.

75 All bats were housed together throughout the hospitalization period in a large mesh cage (height 2.5 m, width
76 1.5 m, length 2.0 m) in a controlled-environment room (22-25 °C and 60% humidity) and exposed to a natural

77 photoperiod (light/dark alternation period of 8/16 hours). They received water *ad libitum* and were fed with
78 a mixture of seasonal fruits and vegetables. All the procedures were performed after an acclimation period
79 of 10 days. During this period, they were considered healthy based on observation of normal behaviour
80 without stereotypic attitudes, normal activity levels and appetite along with normal weight, size and
81 wingspan length, in absence of clinical signs.

82 **Study design**

83 The day of the surgery each bat was captured inside the cage using protective leather gloves and was
84 temporarily placed inside a perforated canvas bag on a digital laboratory scale (Precisa BJ610C, Precisa
85 Instrument, Dietikon, Switzerland) to accurately measure its body weight. Patients were then randomly
86 assigned to either group DK or DBM (www.randomizer.org). Bats in group DK received an intramuscular (IM)
87 administration of DEX (40 µg kg⁻¹)(Dexdomitor 0.5 mg ml⁻¹; Vetoquinol Italia S.r.l., Italy) and KET (7 mg kg⁻¹)
88 (Lobotor 100 mg ml⁻¹; ACME S.r.l., Italy) and those in group DBM received an IM injection of DEX (40 µg kg⁻¹),
89 BUT (0.3 mg kg⁻¹)(Nargesic 10 mg ml⁻¹; ACME S.r.l., Italy) and MDZ (0.3 mg kg⁻¹)(Midazolam Hameln 5 mg ml⁻¹;
90 Hameln pharma gmbh, Germany). All syringes were prepared, labelled in a way that did not reveal their
91 content and injected in the bats' thigh muscles by an experienced anaesthetist not involved in the study. All
92 anaesthetic procedures were performed by another experienced anaesthetist, who was unaware of the
93 treatment administered.

94 Immediately after drugs' administration, the bat was placed in a transparent plexiglass cage and observed
95 continuously to monitor the induction phase and record the induction time. The induction time was defined
96 as the interval from administration of the drugs to the absence of movement following a gentle foot
97 palpation.

98 Upon the loss of response following palpation, the bat was positioned in dorsal recumbency on a warm air
99 blanket (Bair Hugger 505 Warming Unit; 3M, Germany), which was covered with an adsorbent pet sheet.
100 Moreover, a monopolar electrosurgical plate was placed under the bat. A complete physical examination was
101 performed, and the wingspan and the body length (head to tail) were measured. Based on the size of the
102 animal and development of the reproductive system, the age of each bat was estimated and classified into

103 "juvenile" or "adult". Adult males were distinguished on the basis of fully developed penis and testes, a body
104 size ≥ 15 cm and a wingspan ≥ 48 cm; adult females were distinguished from juvenile on the basis of worn or
105 enlarged nipples or if it were palpably pregnant, a body size ≥ 14 cm and a wingspan ≥ 48 cm. Juveniles (< 12
106 months old) were classified on their smaller size and rudimentary development of sexual characteristics [24].
107 A 22-gauge venous catheter (Jelco IV Catheter Radiopaque; Smiths Medical Italia S.r.l., Italy) was inserted in
108 the left cephalic vein. A multiparameter monitor (S5 Compact Anesthesia Monitor; Datex-Ohmeda, USA) was
109 used throughout the anaesthetic period. Oxygen 100% flow-by at 1 L min^{-1} was administered via a facemask,
110 which was attached to a side-stream spirometer. A pulse oximeter was connected on the right hind leg and
111 disposable foam pad electrodes for electrocardiographic measurements were positioned as in Fig 1.

112

113 **Fig 1. Egyptian fruit bat in dorsal recumbency, instrumented with monitoring devices (A) and overview in**
114 **operating room (B).** Disposable foam pad electrodes (a) positioned on the ventral aspect of wings for
115 electrocardiographic measurements; pulse oximetry probe (b) placed on the right hind leg for haemoglobin
116 saturation measurement; side-stream spirometer (c) attached to the facemask for multi gas analysis, and 22-
117 gauge catheter (d) inserted in the left cephalic vein for collection of samples for blood gas analysis.

118

119 Heart rate (HR), respiratory rate (RR) and peripheral oxygen saturation (SpO_2) were continuously monitored
120 and recorded every 5 minutes during surgery. Rectal temperature (RT) was measured at the beginning and
121 at the end of the surgical procedure using a digital thermometer (Pic VedoFamily; Pikdare S.p.A., Italy).
122 Depth of anaesthesia were assessed every 10 minutes by easy extension and flexion of the wing without any
123 voluntary movement or presence of muscle tone by opening the jaw. In case of spontaneous movement or
124 presence of muscle tone, the anaesthesia depth was considered inadequate, and the fraction of inspired
125 isoflurane (FI-ISO) was titrate-to-effect to the minimum concentration to achieve immobility and loss of
126 muscle tone and this value was recorded and then adjusted over time as needed.
127 All gonadectomy surgeries were performed by the same experienced surgeon and total surgery time was
128 recorded. Females that were found to be pregnant underwent ovariohysterectomy.

129 During the entire procedure, side effects including arrhythmia, irregular breathing pattern, twitching and
130 tremors were recorded as existing or not, regardless of severity or duration.
131 At the end of the surgery, venous blood gas analysis (Stat Profile pHox Ultra; Nova biomedical Italia S.r.l.,
132 Italy) was performed. Analysis included venous pH, venous partial pressure of oxygen (PvO_2) and carbon
133 dioxide ($PvCO_2$), base excess (BE) and electrolytes (Na^+ , K^+ , Cl^-) as well as bicarbonate (HCO_3^-) and total
134 haemoglobin (Hb). Then, bats in group DK received IM atipamezole ($200 \mu\text{g kg}^{-1}$) (Antisedan 5 mg ml $^{-1}$;
135 Vetoquinol Italia S.r.l., Italy), while bats in group DBM received IM atipamezole ($200 \mu\text{g kg}^{-1}$) and IM
136 flumazenil (0.03 mg kg^{-1}) (Flumazenil Kabi 0.1 mg ml $^{-1}$; Fresenius Kabi Italia S.r.l., Italy). Following the IM
137 injection of reversal drugs in the thigh muscles, each bat was returned in the plexiglass cage.
138 Recovery time, namely the time from the injection of the antagonists to flying, was recorded and recovery
139 quality scored on a scale of 1-3 (Table 1). All the recoveries were observed continuously and evaluated by
140 the same anaesthetist.
141

142 **Table 1. Scoring system used to assess recovery from anaesthesia.**

Score	Description
1	Poor recovery: compulsive movements, biting, wing-chewing, wing flapping
2	Weak recovery: tremors, twitching, reduced responsiveness to environmental stimuli
3	Excellent recovery: uneventful, good response to stimuli, rapid ability to fly

143
144 After recovery, all bats were monitored every hour until 12 hours, and then were observed daily for a week
145 to evaluate any side effects.
146

147 **Statistical analysis**

148 A power analysis was performed and determined that a minimum of 18 bats would be required to detect a
149 clinically relevant difference in induction time of 4 minutes or more between the two groups with a power
150 of 85% and $\alpha = 0.05$ (two-tailed).

151 Statistical analysis was performed using IBM SPSS Statistics 26.0 (SPSS Inc, Chicago, USA). The normality of
152 data distribution was assessed by a Shapiro-Wilk test at the $\alpha = 0.05$ level. Descriptive statistics were reported
153 as mean \pm standard deviation (SD) or median (range) for continuous and ordinal variables, respectively.
154 Pearson's chi-squared test was used to evaluate significant differences in nominal data. Analysis of variance
155 (ANOVAs), followed by Bonferroni's post hoc test, and Mann-Whitney U test or Wilcoxon's test was applied
156 for normal and non-normal data, respectively, to assess significant differences between and within groups.
157 The influence of total surgery time on recovery time was evaluated by Pearson's correlation. Differences with
158 $p < 0.05$ were considered significant.

159 **Results**

160 Twenty Egyptian fruit bats were included in the study: ten bats (5 males, 5 females) received DK treatment
161 and ten bats (4 males, 6 females) received DBM treatment. No significant differences in gender, age (DK 8
162 adults, 2 juveniles; DBM 7 adults, 3 juveniles), female reproductive status (DK 5 pregnant; DBM 5 pregnant)
163 and body weight (DK 111.4 ± 9.38 g; DBM 111.6 ± 6.91 g) were recorded. There were no significant differences
164 in mean induction time and in total surgery time between the two treatment groups (Table 2).

165

166 **Table 2. Induction time, surgery time and recovery time in 20 Egyptian fruit bats anaesthetized for**
167 **gonadectomy.**

	DK	DBM
Induction time (seconds)	149 ± 170	169 ± 159
Surgery time (minutes)	53 ± 16	44 ± 12
Recovery time (seconds)	345 ± 150	424 ± 210

168 Bats in group DK ($n = 10$) received DEX and KET combination and bats in group DBM ($n = 10$) received DEX,
169 BUT and MDZ administration. Atipamezole (group DK) or atipamezole and flumazenil combination (group
170 DBM) was administered intramuscularly at the end of the surgery.

171 Results are presented as mean \pm standard deviation.

172

173 Heart rate, RR and SpO₂ were compared between groups for the first 50 minutes following induction (on
174 further time-points some of the bats had already recovered). A significantly higher heart rate was recorded
175 in DBM group (DK 181 ± 31 bpm; DBM 203 ± 47 bpm) ($p = 0.001$), while respiratory rate was significantly
176 lower than DK group (DK 112 ± 26 bpm; DBM 85 ± 21 rpm) ($p = 0.001$). A significant difference was observed
177 in peripheral oxygen saturation, where in the DBM group it was higher than in the DK group (DK 98.1 ± 1.9
178 %; DBM 99.1 ± 0.9 %) ($p = 0.003$). All bats required isoflurane supplementation during surgery and no
179 significant difference in Fl-ISO was observed between groups. No statistically significant differences were
180 observed within groups over time in HR, RR, SpO₂ and Fl-ISO parameters. Results are summarized in Figs 2
181 and 3.

182

183 **Fig 2. Heart rate (HR) and respiratory rate (RR) in 20 Egyptian fruit bats during general anaesthesia for**
184 **gonadectomy.** Bats in group DK ($n = 10$) received DEX and KET combination and bats in group DBM ($n = 10$)
185 received DEX, BUT and MDZ administration. Results are presented as mean ± standard deviation. Significant
186 differences ($p < 0.05$) between groups in HR and RR were found.

187

188 **Fig 3. Peripheral oxygen saturation (SpO₂) and fraction of inspired isoflurane (Fl-ISO) in 20 Egyptian fruit**
189 **bats during general anaesthesia for gonadectomy.** Bats in group DK ($n = 10$) received DEX and KET
190 combination and bats in group DBM ($n = 10$) received DEX, BUT and MDZ administration. Results are
191 presented as mean ± standard deviation. Significant differences ($p < 0.05$) between groups in SpO₂ were
192 found.

193

194 There were no significant differences in initial (DK 37.5 °C ± 0.7; DBM 37.7 °C ± 0.7) or final (DK 36.8 °C ± 1.3;
195 DBM 37.2 °C ± 1.1) rectal temperature between treatments and RT at the end of the surgery did not decrease
196 significantly compared to the beginning of the surgical procedures in either group.

197 There was no significant difference between groups in venous blood gas analysis except for Na⁺ (mmol L⁻¹) (p
198 = 0.001) and Cl⁻ (mmol L⁻¹) ($p = 0.002$) that were significantly higher in DBM group (Table 3).

199

200 **Table 3. Venous blood-gas values, venous pH, total haemoglobin, venous base excess, venous bicarbonate,**
201 **and electrolytes in 20 Egyptian fruit bats anaesthetized for gonadectomy.**

Parameter	Group	Mean \pm SD
$PvCO_2$ (mmHg)	DK	39.10 ± 6.4
	DBM	40.90 ± 5.0
PvO_2 (mmHg)	DK	237.80 ± 137.0
	DBM	277.00 ± 117.1
pH	DK	7.35 ± 0.04
	DBM	7.35 ± 0.02
Hb (g dL $^{-1}$)	DK	13.70 ± 0.88
	DBM	13.48 ± 1.33
BE (mmol L $^{-1}$)	DK	-4.10 ± 1.47
	DBM	-3.06 ± 2.05
HCO^{3-} (mmol L $^{-1}$)	DK	20.73 ± 1.00
	DBM	21.81 ± 1.59
Na^+ (mmol L $^{-1}$)	DK	$134.8 \pm 1.75^*$
	DBM	$139.5 \pm 1.58^*$
K^+ (mmol L $^{-1}$)	DK	3.67 ± 0.52
	DBM	3.65 ± 0.66
Cl^- (mmol L $^{-1}$)	DK	$103.40 \pm 1.78^*$
	DBM	$107.50 \pm 2.42^*$

202 Bats in group DK ($n = 10$) received DEX and KET combination and bats in group DBM ($n = 10$) received DEX,
203 BUT and MDZ administration. Results are presented as mean \pm standard deviation (SD).
204 $PvCO_2$, PvO_2 , venous oxygen and carbon dioxide partial pressures; Hb, total haemoglobin; BE, venous base
205 excess; HCO^{3-} venous bicarbonate; Na^+ ionized sodium; K^+ ionized potassium; Cl^- ionized chlorine.
206 Significant differences ($p < 0.05$) between groups are indicated by *.

207

208 Recovery times did not significantly differ between groups and no correlation was observed between total
209 surgery time and recovery duration (Table 2).

210 A significantly worse recovery quality was observed in the DBM group (DK median 3, range 3-3 and DBM
211 median 3, range 2-3) ($p = 0.034$) as shown in Fig 4.

212

213 **Fig 4. Recovery quality scores in 20 Egyptian fruit bats anaesthetized for gonadectomy.** Bats in group DK (n
214 = 10) received DEX and KET combination and bats in group DBM ($n = 10$) received DEX, BUT and MDZ
215 administration. Significant differences ($p < 0.05$) between groups were found.

216

217 No side effects, such as arrhythmia or irregular breathing pattern, twitching and tremors, were observed in
218 any bat following intramuscular administration and during the surgery. After recovery, all bats returned to
219 normal behaviour and good activity levels and appetite; no side effects were observed during the follow-up
220 period.

221 Discussion

222 The present study aimed to evaluate sedative effects of two different injectable anaesthetic protocols, DEX
223 and KET (DK) versus DEX, BUT and MDZ (DBM) in bats undergoing gonadectomy.

224 Different studies report the use of alpha-2 adrenergic agonists in association with KET in bats [6–8,18].
225 Dexmedetomidine-ketamine combinations have been used in a variety of mammalian species [25–27]. To
226 the authors' knowledge, no studies have been carried out in Egyptian fruit bats, or any other Chiroptera
227 species, using DEX as a part of a balanced anaesthetic protocol. In the present study, this association
228 produced high-quality immobilization with rapid and smooth induction.

229 Anaesthesiologic protocols including the association of alpha-2 adrenergic agonists, opioids and
230 benzodiazepines have already been described in veterinary medicine in several species [28,29]. As regards
231 bats, only Tuval and colleagues (2018) have compared different subcutaneous combinations of
232 medetomidine, MDZ and opioids in *R. aegyptiacus* with no apparent morbidity and mortality. Compared with

233 the work of Tuval and colleagues (2018), the dosages and total volumes of drugs used in this study were
234 considerably lower, probably also due to the different route of administration. In our study, IM
235 administration was performed in the thigh muscles; no behaviour referable to muscle soreness or pain was
236 observed following injection or during recovery phase, and no bats had difficulty in flying following the
237 procedure.

238 A rapid and gentle induction was observed in all bats in the DBM group, and they reached the desired level
239 of sedation in slightly longer time than the DK group, but with less intragroup variability. The association of
240 these three drug classes, at lower doses than would be made if only one agent were used, results in a
241 synergistic central nervous system depressant response while minimizing the undesirable side effects of each
242 drug [30]. Further advantage of this association is that each drug can be completely antagonized enabling
243 precise timing of sedative effects and in case of emergency condition, allowing for safer patient management.
244 In the present study, butorphanol reversal was not performed to preserve post-operative pain management
245 in all bats included in DBM group.

246 All bats required isoflurane supplementation without differences in FI-ISO between groups and it only
247 became necessary during the surgical phase, while injectable anaesthetics were satisfactory for the patient
248 preparation. The use of 2-2.5% isoflurane via facemask for the maintenance of general anaesthesia in
249 Chiroptera species has been described in several works [9,11–13]. In the present study, the FI-ISO necessary
250 to obtain an adequate surgical plane of anaesthesia was much lower than that reported in literature,
251 suggesting that both protocols may have had a sparing effect on isoflurane. The minimal alveolar
252 concentration reduction of inhaled anaesthetics after administration of DEX, KET, BUT and MDZ is reported
253 in various species [20,31,32]. The results of this study suggested that to obtain an adequate plane for surgical
254 anaesthesia during gonadectomy, isoflurane had to be administered, even if at lower concentrations than
255 those reported in the literature. However, in the authors' opinion, for minor procedures (physical
256 examination, manipulation, blood and swab sampling or skin biopsy) both these injectable anaesthesia
257 protocols could be sufficient to achieve immobility in bats without stress and were used safely by the
258 operator during the entire anaesthetic period.

259 Noll and colleagues (1979) reported a resting HR of 248 ± 3 bpm in telemetrically monitored adults of *R.*
260 *aegyptiacus* [33]. In the present study, baseline values in manually restrained bats before drugs
261 administration were not measured. However, physical restraint is stressful and would have altered values
262 themselves, as reported in previous studies [34]. Therefore, considering the resting parameters in the
263 literature, it is possible to assume that there was a decrease in HR following the administration of both
264 injectable protocols and this finding is probably imputable to the effect of DEX. The cardiac effects of DEX
265 observed in this study are the same as those described for other mammalian species and other alpha-2
266 agonists [20,21,25]. Dose-dependent bradycardia following DEX administration results primarily from a
267 decrease in sympathetic tone and partly by baroreceptor reflex and enhanced vagal activity [20]. Opioids
268 decrease HR by increasing parasympathetic tone [19], while KET should balance the effects on the
269 cardiovascular system induced by alpha-2 adrenergic agonists [25]. Nevertheless, the use of adjunctive drugs,
270 such as alpha-2 adrenergic agonists, tends to blunt the sympathomimetic effect of KET and to decrease
271 cardiac function and arterial blood pressure [19]. Indeed, in this study, HR was significantly lower in DK group
272 than DBM group.

273 Comparing baseline values of RR reported by Tuval and colleagues (2018), in the present study both protocols
274 showed a slight reduction in the values of this physiological parameter if compared to other studies [21,34].
275 Bats in group DBM showed the greatest reduction in RR during anaesthesia, being significantly lower than
276 which occurred in group DK. However, SpO₂ was significantly higher in the DBM group, although in both
277 groups the measured values were within the normal ranges. Oxygen saturation values have always remained
278 within normal ranges probably due to the reduction in isoflurane concentration [32] and because 100%
279 oxygen was administered throughout the anaesthesia period, as oxygen supply was reported to improve
280 arterial oxygenation during anaesthesia in other species [35]. In the present study, arterial blood gas analysis
281 could not be performed, but peripheral venous blood drawn anaerobically is known to correlate reasonably
282 well with arterial values, at least for pH, bicarbonate and carbon dioxide tension values (CO₂) [36]. Kelly et al.
283 (2005) showed that a PvCO₂ of less than 45 mmHg has a 100% negative predictive value to rule out arterial
284 partial pressure of CO₂ (PaCO₂) greater than 50 mmHg in humans [37]. Therefore, normal peripheral PvCO₂
285 can be used as a screen to exclude hypercapnic respiratory disease [38] and in the present study,

286 hypoventilation induced by inhaled and injectable anaesthetics was neither reflected in changes in PvCO₂,
287 pH, or PvO₂ outside physiological ranges in other mammalian species [39] nor in significant differences
288 between the two groups.

289 Blood gas analysis did not show significant differences in the other values, except for electrolytes, where Na⁺
290 and Cl⁻ were significantly higher in DBM group. However, no references have been found in the literature to
291 explain a correlation between the plasma concentration of these ions and the effects induced by anaesthetic
292 drugs. So, in healthy animals this difference could be reasonably attributed to animal feeding and or to water
293 intake [40].

294 Due to the anatomical conformation of the wings and the small size with an high ratio between surface and
295 body mass, Chiroptera are particularly susceptible to heat loss [13,21]. Rectal temperature was measured at
296 the beginning and at the end of the surgical procedure and all bats were warmed with heating pad during
297 general anaesthesia. No significant differences between initial and final temperatures within and between
298 groups were found, suggesting that active warming counteracted the hypothermia induced by general
299 anaesthesia.

300 In both groups, the simultaneous use of several drugs, with their synergistic effects, may have contribute to
301 achieve an excellent and rapid anaesthetic plan, to reduce the single drug dosages and to avoid the
302 appearance of side effects, as reported by other authors [30,41]. Indeed, no complications associated with
303 the balanced anaesthesia have been observed in the two groups during induction, maintenance, and
304 recovery from general anaesthesia.

305 Recovery time never exceeded 11 minutes, without significant differences between groups, which suggests
306 that the use of antagonists (atipamezole and atipamezole/flumazenil) at the end of the surgery is advisable
307 to ensure a rapid recovery. In 4 out of 10 bats of DBM group tremors and twitching were observed during
308 recovery along with a greater difficulty in recovering normal wakefulness and responsiveness to
309 environmental stimuli, probably due to the residual sedative effect of BUT. This result is similar to what
310 observed by Tuval *et al.* (2018), where the recovery of bats administered a combination of medetomidine,
311 MDZ and BUT were significantly longer than other groups. Therefore, they concluded that the administration

312 of atipamezole following the use of a protocol containing an alpha-2 adrenergic agonist and BUT in Egyptian
313 fruit bats is recommended.

314 A limitation of the present study is that the depth of anaesthesia was assessed without evaluating reflexes
315 and probably prevented us from detecting small differences in isoflurane requirements between groups. In
316 addition, although Fi-ISO was accurately recorded, no bat was intubated, and it was not possible to determine
317 intraoperative end-tidal concentrations of isoflurane. Further studies are justified to evaluate minimal
318 alveolar concentration reduction induced by both protocols. Finally, we did not evaluate and compare the
319 quality of analgesia induced by both protocols, although changes in cardiorespiratory parameters possibly
320 related to nociception were never recorded in any bat during surgery.

321 **Conclusions**

322 In conclusion, DK and DBM protocols induced anaesthesia in Egyptian fruit bats with comparable sedative
323 and cardiorespiratory effects and without apparent morbidity or mortality. As Egyptian fruit bats are of
324 increasing interest as experimental animals due to their role as virus reservoirs, chemical restraint of this
325 species is becoming increasingly important to improve research in this field. These drug combinations may
326 be useful for minor procedures in Egyptian fruit bats, and they could be associated with inhalation
327 anaesthesia in determining and maintaining a surgical anaesthetic plan.

328 **Acknowledgments**

329 We thank the staff of “The Giant” involved in the supply of fresh fruit for patient nutrition and students for
330 their precious and enthusiastic contribution in bats care.

331 **References**

332 1. Amman BR, Carroll SA, Reed ZD, Sealy TK, Balinandi S, Swanepoel R, et al. Seasonal pulses of
333 Marburg virus circulation in juvenile *Rousettus aegyptiacus* bats coincide with periods of increased
334 risk of human infection. Kawaoka Y, editor. PLoS Pathog [Internet]. 2012 Oct 4;8(10):e1002877.

335 Available from: <https://dx.plos.org/10.1371/journal.ppat.1002877>

336 2. Buckles EL. Chiroptera (Bats). In: Miller ER, Fowler ME, editors. Zoo and Wild Animal Medicine. 8th
337 ed. St. Louis: Elsevier Saunders; 2015. p. 281–90.

338 3. Wang LF, Shi Z, Zhang S, Field H, Daszak P, Eaton BT. Review of bats and SARS. *Emerg Infect Dis*.
339 2006;12(12):1834–40.

340 4. Schlottau K, Rissmann M, Graaf A, Schon J, Sehl J, Wylezich C, et al. SARS-CoV-2 in fruit bats, ferrets,
341 pigs, and chickens: an experimental transmission study. *Lancet Microbe*. 2020;1(5):e218–25.

342 5. Seifert SN, Letko MC, Bushmaker T, Laing ED, Saturday G, Meade-White K, et al. *Rousettus*
343 *aegyptiacus* bats do not support productive Nipah virus replication. *J Infect Dis*. 2020;221(Suppl
344 4):S407–13.

345 6. Epstein JH, Zambriski JA, Rostal MK, Heard DJ, Daszak P. Comparison of intravenous medetomidine
346 and medetomidine/ketamine for immobilization of free-ranging variable flying foxes (*Pteropus*
347 *hypomelanus*). *PLoS One*. 2011;6(10):e25361.

348 7. Heard D, Towles J, LeBlanc D. Evaluation of medetomidine/ketamine for short-term immobilization
349 of variable flying foxes (*Pteropus hypomelanus*). *J Wildl Dis*. 2006;42(2):437–41.

350 8. Sohayati AR, Zaini CM, Hassan L, Epstein J, Suri AS, Daszak P, et al. Ketamine and xylazine
351 combinations for short-term immobilization of wild variable flying foxes (*Pteropus hypomelanus*). *J*
352 *Zoo Wildl Med*. 2008;39(4):674–6.

353 9. Lafortune M, Canapp SO, Heard D, Farina LL. A vasectomy technique for Egyptian fruit bats
354 (*Rousettus aegyptiacus*). *J Zoo Wildl Med*. 2004;35(1):104–6.

355 10. Prud'homme Y, Ferrell ST, Couture ÉL, Marquet B, Desmarchelier M. Surgical orchiectomy in fruit
356 bats—Description of two techniques in the Ruwenzori Long-haired fruit bat (*Rousettus lanosus*) and
357 the Jamaican fruit-eating bat (*Artibeus jamaicensis*). *J Zoo Wildl Med*. 2020;51(2):297–302.

358 11. Jonsson NN, Johnston SD, Field H, de Jong C, Smith C. Field anaesthesia of three Australian species
359 of flying fox. *Vet Rec*. 2004;154(21):664.

360 12. Wimsatt J, O'Shea TJ, Ellison LE, Pearce RD, Price VR. Anesthesia and blood sampling of wild big
361 brown bats (*Eptesicus fuscus*) with an assessment of impacts on survival. *J Wildl Dis*. 2005;41(1):87–

362 95.

363 13. Heard D. Chiropterans (bats). In: West G, Heard D, Caulkett N, editors. *Zoo Animal and Wildlife*
364 *Immobilization and Anesthesia*. 2 nd. New York: John Wiley & Sons; 2014. p. 543–50.

365 14. Cornett PM, Matta JA, Ahern GP. General anesthetics sensitize the capsaicin receptor transient
366 receptor potential V1. *Mol Pharmacol*. 2008;74(5):1261–8.

367 15. Steffey EP, Mama KR, Brosnan RJ. *Inhalation Anesthetics*. In: Grimm KA, Lamont LA, Tranquilli WJ,
368 Greene SA, Robertson SA, editors. *Veterinary Anesthesia And Analgesia: The Fifth Edition of Lumb*
369 and Jones

370 and Jones. 5 th. Ames: Wiley Blackwell; 2015. p. 1074.

371 16. Reed R, Doherty T. Minimum alveolar concentration: key concepts and a review of its
372 pharmacological reduction in dogs. Part 1. *Res Vet Sci [Internet]*. 2018;117:266–70. Available from:
<https://doi.org/10.1016/j.rvsc.2018.01.004>

373 17. Reed R, Doherty T. Minimum alveolar concentration: key concepts and a review of its
374 pharmacological reduction in dogs. Part 2. *Res Vet Sci [Internet]*. 2018;118:27–33. Available from:
<https://doi.org/10.1016/j.rvsc.2018.01.009>

375 18. Heard DJ, Beale C, Owens J. Ketamine and ketamine: xilazine ED50 for short-term immobilization of
376 the island flying fox (*Pteropus hypomelanus*). *J Zoo Wildl Med*. 1996;27(1):44–8.

377 19. Lamont LA, Grimm KA. *Clinical Pharmacology*. In: G. West, D. Heard NC, editor. *Zoo Animal and*
378 *Wildlife Immobilization and Anesthesia*. 2 nd. New York: John Wiley & Sons; 2014. p. 25–41.

379 20. Lee S. Dexmedetomidine: present and future directions. *Korean J Anesthesiol*. 2019;72(4):323–30.

380 21. Tuval A, Las L, Shilo-Benjamini Y. Evaluation of injectable anaesthesia with five medetomidine-
381 midazolam based combinations in Egyptian fruit bats (*Rousettus aegyptiacus*). *Lab Anim [Internet]*.
382 2018;52(5):515–25. Available from: <https://doi.org/10.1177/0023677218756456>

383 22. Cardoso CG, Marques DR, da Silva TH, de Mattos-Junior E. Cardiorespiratory, sedative and
384 antinociceptive effects of dexmedetomidine alone or in combination with methadone, morphine or
385 tramadol in dogs. *Vet Anaesth Analg [Internet]*. 2014 Nov;41(6):636–43. Available from:
386 <https://linkinghub.elsevier.com/retrieve/pii/S1467298716303166>

387 23. Boehm CA, Carney EL, Tallarida RJ, Wilson RP. Midazolam enhances the analgesic properties of

388 16

389 dexmedetomidine in the rat. *Vet Anaesth Analg.* 2010;37(6):550–6.

390 24. Moretti P, Ravasio G, Magnone W, Cesare F Di, Paltrinieri S, Pecile A, et al. Haematological, serum
391 biochemical and electrophoretic data on healthy captive Egyptian fruit bats (*Rousettus aegyptiacus*).
392 *Lab Anim.* 2020;55(2):158–69.

393 25. Selmi AL, Mendes GM, Lins BT, Figueiredo JP, Barbudo-Selmi GR. Evaluation of the sedative and
394 cardiorespiratory effects of dexmedetomidine, dexmedetomidinebutorphanol, and
395 dexmedetomidine-ketamine in cats. *J Am Vet Med Assoc.* 2003;222(1):37–41.

396 26. Jiron JM, Calle JLM, Castillo EJ, Abraham AM, Messer JG, Malphurs WL, et al. Comparison of
397 isoflurane, ketamine-dexmedetomidine, and ketamine-xylazine for general anesthesia during oral
398 procedures in rice rats (*Oryzomys palustris*). *J Am Assoc Lab Anim Sci.* 2019;58(1):40–9.

399 27. Di Cesare F, Cagnardi P, Villa R, Rabbogliatti V, Lucatello L, Capolongo F, et al. Dexmedetomidine and
400 ketamine simultaneous administration in tigers (*Panthera tigris*): Pharmacokinetics and clinical
401 effects. *Vet Rec Open.* 2020;7(1):e000412.

402 28. Santangelo B, Micieli F, Marino F, Reynaud F, Cassandro P, Carfora A, et al. Plasma concentrations
403 and sedative effects of a dexmedetomidine, midazolam, and butorphanol combination after
404 transnasal administration in healthy rabbits. *J Vet Pharmacol Ther.* 2016;39(4):408–11.

405 29. Diao HX, Zhang S, Hu XY, Guan W, Luan L, Liu HY, et al. Behavioral and cardiopulmonary effects of
406 dexmedetomidine–midazolam and dexmedetomidine–midazolam–butorphanol in the silver fox
407 (*Vulpes vulpes*). *Vet Anaesth Analg.* 2017;44(1):114–20.

408 30. Paddleford RR, Harvey RC. Alpha2 agonists and antagonists. *Vet Clin North Am - Small Anim Pract.*
409 1999;29(3):737–45.

410 31. Gianotti G, Valverde A, Johnson R, Sinclair M, Gibson T, Dyson DH. Prior determination of baseline
411 minimum alveolar concentration (MAC) of isoflurane does not influence the effect of ketamine on
412 MAC in rabbits. *Can J Vet Res.* 2012;76(4):261–7.

413 32. Tsukamoto A, Uchida K, Maesato S, Sato R, Kanai E, Inomata T. Combining isoflurane anesthesia with
414 midazolam and butorphanol in rats. *Exp Anim.* 2016;65(3):223–30.

415 33. Noll UG. Body temperature, oxygen consumption, noradrenaline response and cardiovascular

416 adaptations in the flying fox, *Rousettus aegyptiacus*. *Comp Biochem Physiol -- Part A Physiol.*
417 1979;63(A):79–88.

418 34. Tuval A, Dror-Maman I, Las L, Bdolah-Abram T, Shilo-Benjamini Y. Evaluation of alfaxalone and
419 midazolam with or without flumazenil reversal in Egyptian fruit bats (*Rousettus aegyptiacus*). *Vet*
420 *Anaesth Analg* [Internet]. 2021;48(2):239–46. Available from:
421 <https://doi.org/10.1016/j.vaa.2020.12.002>

422 35. Fahlman A, Caulkett N, Arnemo jon m, Neuhaus P, Ruckstuhl kathreen e. Efficacy of a portable
423 oxygen concentrator with pulsed delivery for treatment of hypoxemia during equine field
424 anesthesia. *Vet Anaesth Analg*. 2015;42(5):518–26.

425 36. Toftegaard M, Rees SE, Andreassen S. Evaluation of a method for converting venous values of acid-
426 base and oxygenation status to arterial values. *Emerg Med J*. 2009;26(4):268–72.

427 37. Kelly AM, Kerr D, Middleton P. Validation of venous pCO₂ to screen for arterial hypercarbia in
428 patients with chronic obstructive airways disease. *J Emerg Med*. 2005;28(4):377–9.

429 38. Bloom BM, Grundlingh J, Bestwick JP, Harris T. The role of venous blood gas in the Emergency
430 Department: a systematic review and meta-analysis. *Eur J Emerg Med* [Internet]. 2014 Apr;21(2):81–
431 8. Available from: <http://journals.lww.com/00063110-201404000-00002>

432 39. Ilkiw JE, Rose RJ, Martin ICA. A comparison of simultaneously collected arterial, mixed venous,
433 jugular venous and cephalic venous blood samples in the assessment of blood-gas and acid-base
434 status in the dog. *J Vet Intern Med*. 1991;5(5):294–8.

435 40. Korine C, Zinder O, Arad Z. Diurnal and seasonal changes in blood composition of the free-living
436 Egyptian fruit bat (*Rousettus aegyptiacus*). *J Comp Physiol - B Biochem Syst Environ Physiol.*
437 1999;169(4–5):280–6.

438 41. Corletto F. *Anestesia del cane e del gatto*. 3rd ed. Poletto Editore, editor. 2018. XII–256.

439

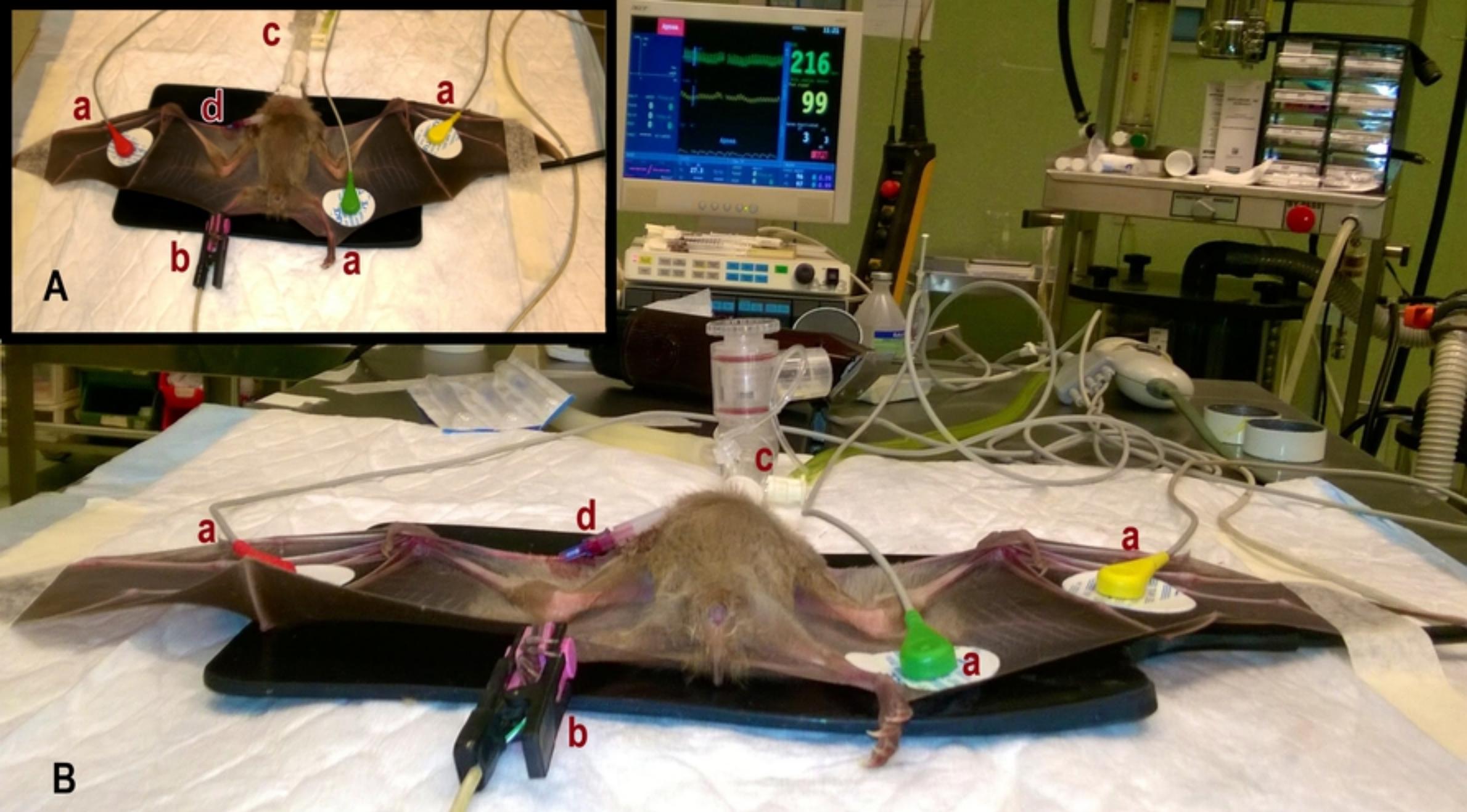


Fig1

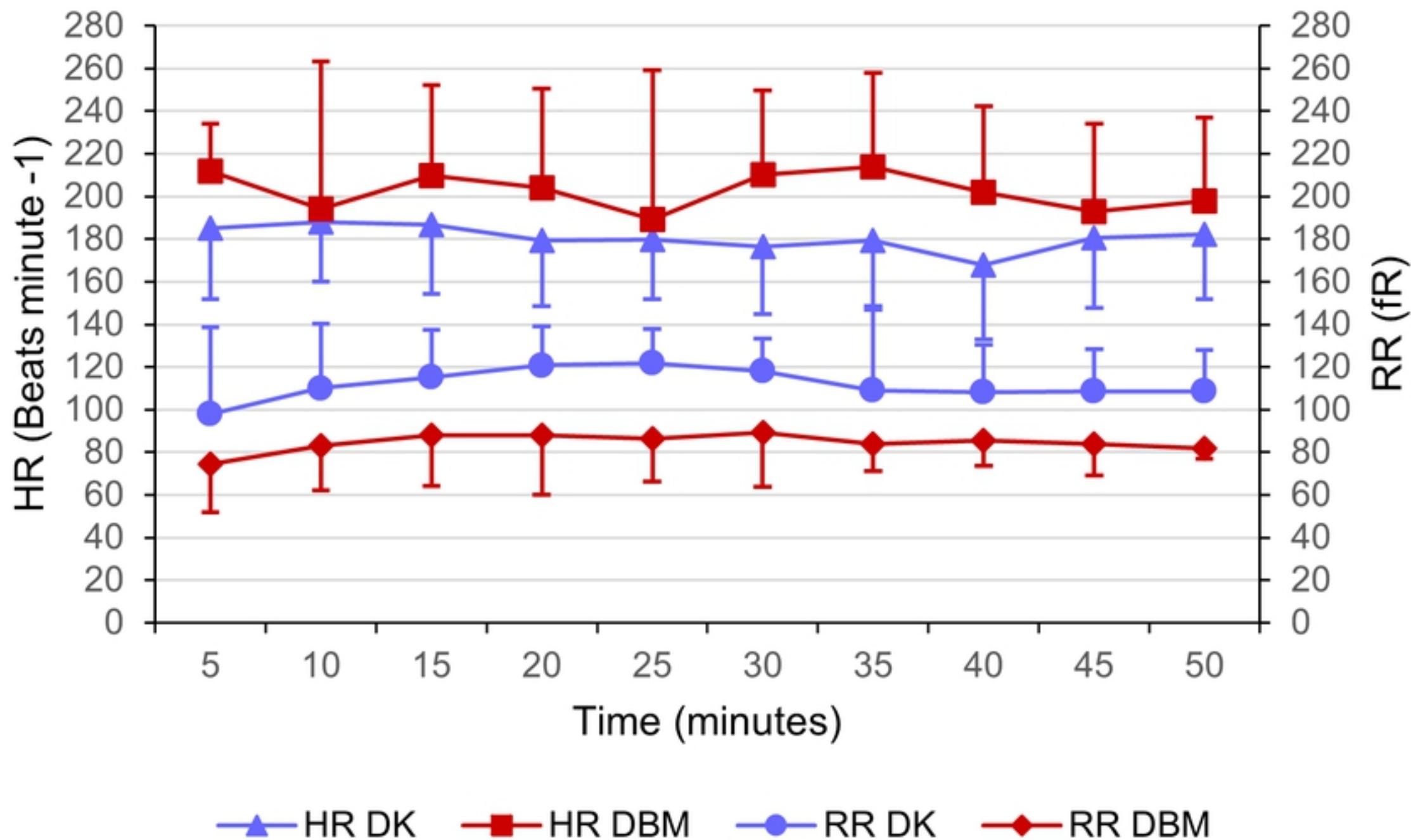


Fig2

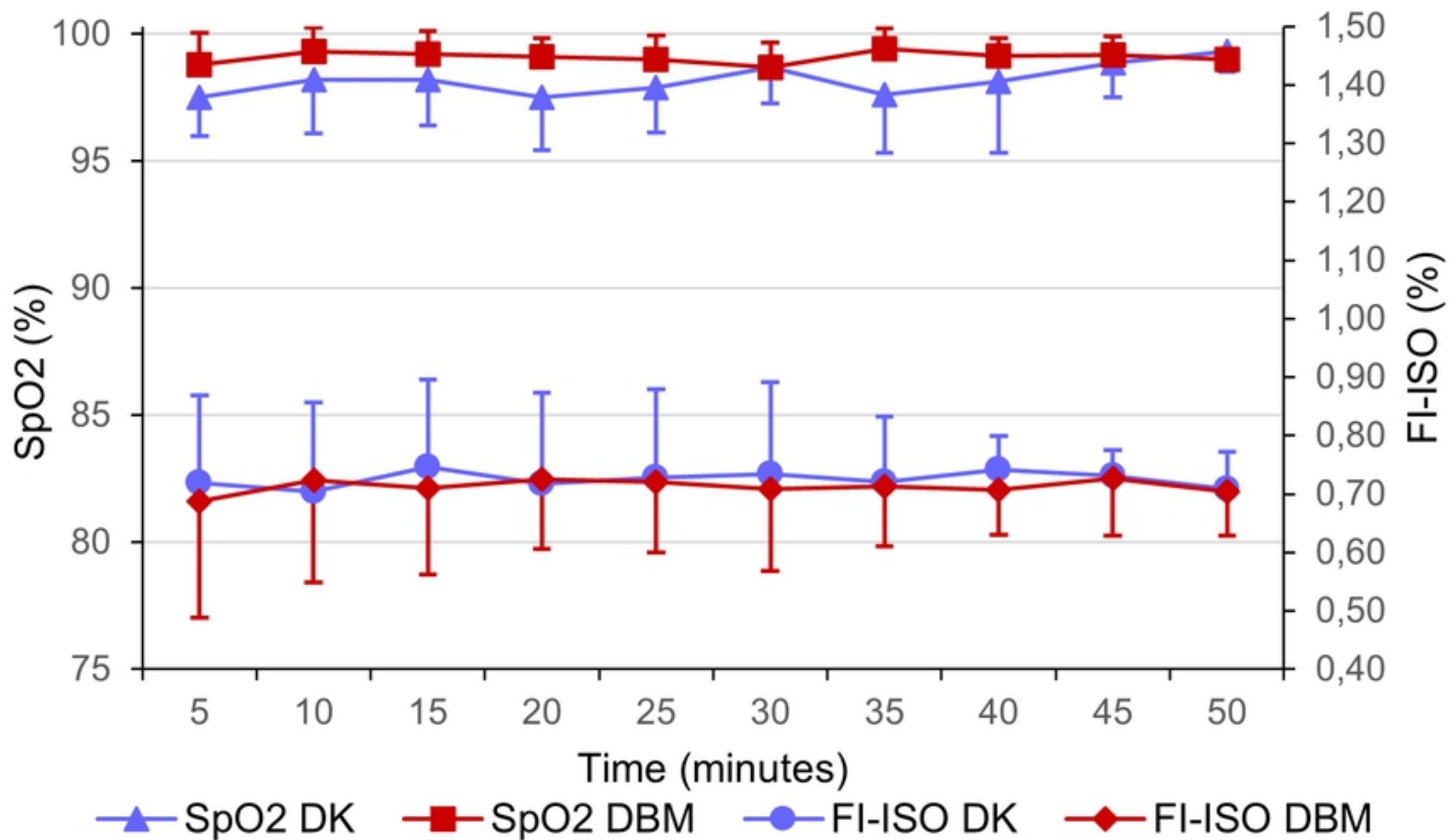


Fig3

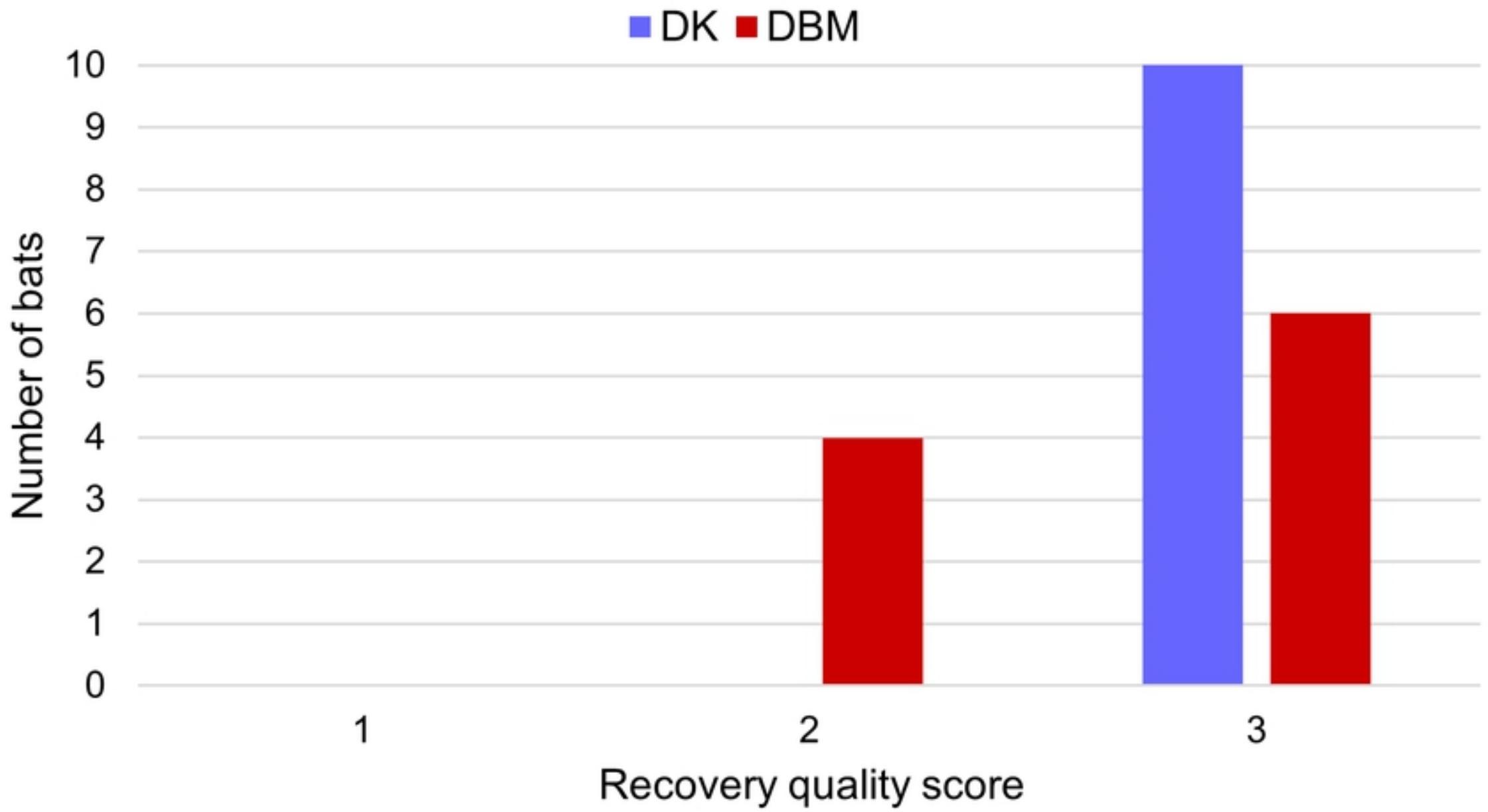


Fig4