

1 **Crotamiton derivative JM03 extends lifespan and improves**
2 **oxidative and hypertonic stress resistance in *Caenorhabditis***
3 ***elegans* via inhibiting OSM-9**

4 Keting Bao ^{1†}, Jiali Feng ^{1†}, Wenwen Liu ^{1†}, Zhifan Mao ¹, Lingyuan Bao ¹, Tianyue Sun ¹,
5 Zhouzhi Song ¹, Zelan Hu ^{1*} and Jian Li ^{1,2,3*}

6 † Keting Bao, Jiali Feng and Wenwen Liu contributed equally to this work.

7 * Correspondence: Jian Li (jianli@ecust.edu.cn); Zelan Hu (huzelan@ecust.edu.cn)

8 ¹ State Key Laboratory of Bioreactor Engineering, Frontiers Science Center for Materiobiology
9 and Dynamic Chemistry, Shanghai Key Laboratory of New Drug Design, East China University
10 of Science and Technology, 130 Mei Long Road, Shanghai 200237, China

11 ² Yunnan Key Laboratory of Screening and Research on Anti-pathogenic Plant Resources from
12 West Yunnan, College of Pharmacy, Dali University, 5 Xue Ren Road, Dali (Yunnan) 671000,
13 China

14 ³ Clinical Medicine Scientific and Technical Innovation Center, Shanghai Tenth People's Hospital,
15 Tongji University School of Medicine, Shanghai 200092, China

16

17 **Abstract**

18 While screening our in-house 1,072 marketed drugs for their ability to extend the
19 lifespan using *Caenorhabditis elegans* (*C. elegans*) as an animal model, crotamiton
20 (*N*-ethyl-*o*-crotonotoluidide) showed anti-aging activity and was selected for further
21 structural optimization. After replacing the ortho-methyl of crotamiton with
22 ortho-fluoro, crotamiton derivative JM03 was obtained and showed better activity in
23 terms of lifespan-extension and stress resistance than crotamiton. It was further
24 explored that JM03 extended the lifespan of *C. elegans* through osmotic avoidance
25 abnormal-9 (OSM-9). Besides, JM03 improves the ability of nematode to resist
26 oxidative stress and hypertonic stress through OSM-9, but not osm-9/capsaicin
27 receptor related-2 (OCR-2). Then the inhibition of OSM-9 by JM03 reduces the
28 aggregation of Q35 in *C. elegans* via upregulating the genes associated with
29 proteostasis. SKN-1 signaling was also found to be activated after JM03 treatment,
30 which might contribute to proteostasis, stress resistance and lifespan extension. In
31 summary, this study explored a new small molecule derived from crotamiton, which
32 has efficient anti-oxidative, anti-hypertonic and anti-aging effects, and could further
33 lead to promising application prospects.

34

35 **Introduction**

36 In spite the fact that aging is an inevitable process, many efforts have been made to
37 uncover drugs which could delay aging. Numerous aging associated signaling
38 pathways, discovered in *C. elegans*, are found to be conserved in the mammals ¹.
39 Moreover, many compounds, which extended the lifespan of *C. elegans*, also showed
40 anti-aging effects in the mice model. For example, urolithin A was found to prolong
41 the lifespan and normal activity including mobility and pharyngeal pumping in *C.*
42 *elegans*, and it also improved the exercise capacity in mice with age-related decline of
43 muscle function ². Similarly, rapamycin has been also found to increase the lifespan in
44 worms ³, yeast ⁴ and flies ⁵, as well as mean and maximum lifespans in mice ⁶.
45 Metformin, a first-line drug for type 2 diabetes treatment, has been widely studied to
46 extend the lifespan both in *C. elegans* ⁷⁻⁹ and mice ^{10,11}.

47 In order to discover novel anti-aging compounds, we screened our in-house 1,072
48 marketed drugs using *C. elegans* as an animal model for their ability to extend the
49 lifespan. As marketed drugs generally have definite pharmacokinetics and
50 pharmacodynamics properties and are useful for drug repurposing, our research group
51 is focused on searching compounds for drug repurposing. Herein, in this study, the
52 approved drug crotamiton has been found to show anti-aging activity for the first time
53 and was further selected for the structural optimization.

54 Crotamiton is an inhibitor of TRPV4 (Transient Receptor Potential Vanilloid-4)
55 channels and has been used as anti-scabies and anti-itch agent in humans for nearly 70

56 years¹². TRPV subfamily proteins are encoded by five genes in *C. elegans*, including
57 *osm-9* (osmotic avoidance abnormal), *ocr-1* (osm-9/capsaicin receptor related), *ocr-2*,
58 *ocr-3* and *ocr-4* (ref.¹³). Only loss of *osm-9* or *ocr-2* in worms resulted in the lifespan
59 extension¹⁴. OSM-9 and OCR-2 can form heterotetrameric channels which transduce
60 signals from olfactory, nociceptive, and serotonergic neurons¹⁵⁻¹⁷, however the role of
61 OSM-9 and OCR-2 in the regulation of stress resistance involves different
62 mechanisms¹⁸. It has been shown in previous studies that the inactivation of OCR-2
63 extends the L1 Starvation Survival, while null mutations in *osm-9* did not alter L1
64 starvation survival¹⁹. *Osm-9* null mutants showed more resistance to oxidative or
65 hypertonic stress than the control worms²⁰. Noticeably, it was reported that taurine,
66 an essential amino acid involved in various physiological functions, promoted
67 longevity of *C. elegans* in oxidative stress condition by inhibiting OSM-9 but not
68 OCR-2 (ref.¹⁸). Taken together, further extensive research is still needed to decipher the
69 downstream signaling pathways after OSM-9 or OCR-2 activation.

70 With an aim to get a potential anti-ageing tool molecule, structural optimization
71 based on crotamiton led to the identification of JM03. This molecule displayed better
72 activity than crotamiton in terms of the lifespan extension and stress resistance of *C.*
73 *elegans*. To further decipher the mechanisms of JM03 involved in the anti-aging
74 activity, this study was conducted with special emphasis on its interaction with
75 OSM-9 or OCR-2.

76 **Results**

77 **Crotamiton prolongs lifespan of *C. elegans***

78 To identify candidate anti-aging compounds, we initially performed a phenotypic
79 screening of our in-house 1,072 marketed drugs with 15 worms per concentration
80 (100 μ M) using an *C. elegans* model for their ability of lifespan extension (Figure
81 1-source data 1). Thereafter, 125 drugs which showed up to 10% increase in mean
82 lifespan extension as compared to the controls were selected for the secondary
83 screening with 30 worms per concentration (100 μ M) (Figure 1-source data 2). Finally,
84 10 drugs which showed up to 10% increase in mean lifespan extension were chosen
85 for the third screening with 60 worms per concentration (400 μ M, 100 μ M and 25
86 μ M), respectively (Figure 1-source data 2). Apart from recently reported verapamil
87 hydrochloride²¹ and chlorpropamide²² listed in our screening results, crotamiton was
88 finally selected as one hit compound with significant effect on *C. elegans* lifespan
89 extension in this study ($P < 0.01$) (Fig. 1a). The toxicity of crotamiton was evaluated
90 by following parameters: (1) The reproductive capacity was not changed in
91 crotamiton-treated worms at 400 μ M (Fig. 1b); (2) For the normal human fetal lung
92 fibroblasts cells MRC-5, crotamiton significantly increased its viability at 200 μ M and
93 showed no toxicity even up to 400 μ M (Fig. 1c).

94 In order to exclude the fact that the anti-aging effect of crotamiton was due to its
95 anti-scabies activity, two anti-scabies drugs, benzyl benzoate and permethrin, were
96 also examined along with crotamiton in the same experiment. However, both of the
97 compounds failed to extend the worm lifespan (Fig. S1), which indicated that it was

98 not the anti-scabies activity of crotamiton which led to the lifespan extension.
99 Moreover, crotamiton showed no significant effect on the bacterial growth, which
100 further ascertained that the anti-aging effect is not the result of insufficient food (Fig.
101 S2a).

102 **JM03, the derivative of crotamiton, has better life extension activity in *C. elegans***

103 Structural optimization of crotamiton was conducted to identify more potent
104 compounds with better anti-aging activity. The synthetic route for compounds
105 JM01-JM15 was shown in Fig.2a. Treatment of the substituted N-ethylaniline with
106 acryloyl chloride derivatives and potassium carbonate in dichloromethane at room
107 temperature resulted in the formation of JM01-JM05, JM10, JM12, JM13, JM15, **9-11**
108 in about 90-98% yield. Then, compounds JM10, JM12, JM15, **9-11** were conveniently
109 hydrolyzed to provide the corresponding acid JM06-JM09, JM11, JM14.

110 Studies on the relationship between structure and activity (Fig.S3) showed the
111 removal of the methyl group from the *ortho*-position (Crotamiton) to *meta*-position
112 (JM01) led to the minor improvement in the activity for the R1 substituent group at
113 benzene ring. However, moving the methyl group to the *para*-position (JM02)
114 resulted in better activity. Replacing the *ortho*-methyl with *ortho*-fluoro (JM03),
115 chloro (JM04) and bromo (JM05) significantly increased the activity. Additionally,
116 incorporation of the carboxyl (JM06, JM07) on the benzene ring did not increase the
117 activity. Since the introduction of a carboxyl at the terminal of alkenyl of crotamiton
118 (JM08) improved the activity, we conducted additional modification based on the

119 potent compounds JM02 and JM03. Unfortunately, no remarkable increased activity
120 was observed after this step (Fig.S4). Moreover, the movement of the fluoro
121 substituent from the *ortho*-position (JM03) to the *para*-position (JM13) had no effect
122 on the activity. Further adding carboxyl (JM14) or ethoxycarbonyl (JM15) was found
123 to be detrimental. Considering the introduction of fluorine substituents into drugs can
124 enhance biological activity and increase chemical or metabolic stability ²³, JM03 was
125 selected for the following study (Fig. 2a). The lifespan of worms treated with JM03
126 increased significantly as compared to those treated with crotamiton (Fig. 2b). It has
127 been reported that aging would lead to slower and uncoordinated body movement in
128 *C. elegans* ²⁴. Therefore, keeping this in view, we measured the age-dependent muscle
129 deterioration and diminished pharyngeal pumping rate in worms to assess the
130 healthspan of worms treated with JM03. It was found that JM03 did not change the
131 body bend rate of *C. elegans* at different age (Fig. 2c). JM03-treated groups exhibited
132 increased pharyngeal pumping rate at day 9 (Fig. 2d). Additionally, no changed
133 reproductive capacity was observed in JM03-treated worms (Fig. 2e). Similar to
134 crotamiton, JM03 showed no toxicity against MRC-5 cells and increased their
135 viability at 200 and 400 μ M (Fig. 2f). Moreover, the anti-aging effect of JM03 is not
136 the result of insufficient food (Fig. S2b).

137 **JM03-induced extension of lifespan depends on OSM-9 in *C. elegans***

138 Crotamiton is an inhibitor of TRPV4 channel ¹², which shows similarity to the *C.*
139 *elegans* channels OSM-9 (26% amino acid identity, 44% identity or conservative

140 change) and OCR-2 (24% identity, 38% identity or conservative change)²⁵. In *C.*
141 *elegans*, lacking of TRPV channel OSM-9 or OCR-2 resulted in the lifespan extension
142²⁶. Therefore, we further performed the lifespan analysis on *osm-9* or *ocr-2*
143 knockdown worms to investigate the mechanism of JM03. As shown in Fig. 3a and 3b,
144 knockdown of *osm-9* or *ocr-2* via RNAi (Fig. 3d and 3e) extended the lifespan of
145 worms compared to the empty vector group. This indicated that TRPV inhibition
146 extended *C. elegans* lifespan. Notably, JM03 failed to extend the lifespan of *osm-9*
147 knockdown worms (Fig. 3a), but still extended the lifespan of *ocr-2* knockdown
148 worms (Fig. 3b). Consistently, JM03 was found to be unresponsive to the lifespan of
149 *osm-9(ky10)* mutants (Fig. 3c). These results suggested that OSM-9 not OCR-2,
150 played a leading role in JM03-mediated longevity.

151 **JM03 improves the ability of nematode to resist oxidative and hypertonic stress**
152 **through OSM-9**

153 It has been previously shown that the loss of OSM-9 enhanced the resistance of
154 nematodes to the oxidative and hypertonic stress²⁰. Therefore, we also evaluated the
155 efficacy of JM03 under the oxidative or hypertonic stress condition. As shown in Fig.
156 4a, the lifespan of *C. elegans* under paraquat-induced oxidative stress condition was
157 significantly increased in JM03-treated group compared with control or
158 crotamiton-treated group. Then, we examined whether the effect of JM03 under
159 oxidative stress condition is mediated via OSM-9 and OCR-2. It was showed that
160 JM03 treatment didn't increase the lifespan *osm-9(ky10)* mutants (Fig. 4b), but

161 increased the lifespan of *ocr-2(ak47)* mutants under paraquat-induced oxidative stress
162 condition (Fig. 4c), which suggested OSM-9 is required for JM03 to improve the
163 anti-oxidative stress ability.

164 In addition, the motile time of *C. elegans* under hypertonic stress condition
165 revealed by motility assays was significantly increased in JM03-treated group
166 compared with control or crotamiton-treated group (Fig. 4d). We also examined
167 whether the effect of JM03 under hypertonic stress condition is mediated via OSM-9
168 and OCR-2. *Osm-9(ky10)* mutants exhibited increased motility and viability upon
169 prolonged exposures to high osmotic environments compared with wild type *N2* (Fig.
170 4e), while *ocr-2(ak47)* mutants exhibited motility and viability similar to wild type *N2*
171 (Fig. 4f). For *osm-9(ky10)* mutants, the increased significance of the motile time
172 under hypertonic stress condition is reduced after JM03 treatment (Fig. 4e). But for
173 *ocr-2(ak47)* mutants, JM03 still significantly increased the motile time of *C. elegans*
174 under hypertonic stress condition (Fig. 4f). Taken together, these results suggested
175 that the OSM-9 inhibition by JM03 increased the anti-oxidative and anti-hypertonic
176 stress ability of *C. elegans*.

177 **JM03 reduces the aggregation of Q35 in *C. elegans* via upregulating the genes
178 associated with proteostasis**

179 It has been reported that oxidative ²⁷ and hypertonic ²⁰ stress enhances rapid and
180 widespread protein aggregation and misfolding in *C. elegans*. Here, we investigated
181 the efficacy of JM03 to reduce the aggregation of protein using Q35::YFP, a worm

182 strain expressing polyglutamine (Q35) containing yellow fluorescent (YFP) protein in
183 their body wall muscle. Q35::YFP is normally fully soluble in the muscles cells of
184 young worms, but undergoes a slow, progressive aggregation as *C. elegans* ages ²⁸.
185 Here, we observed the anti-hypertonic stress ability of Q35::YFP and wild type
186 worms was similar (Fig. 4g). JM03 significantly increased the motile time of
187 Q35::YFP or wild type worms exposed to 500 mM NaCl, which is consistent with
188 results shown in Fig. 4d. Meanwhile, Q35::YFP aggregation was significantly reduced
189 when treated with JM03 (Fig. 4h), which suggested JM03 reduced the aggregation of
190 protein in *C. elegans*.

191 To gain a more detailed picture of the genetic expression after JM03 treatment,
192 worms fed with JM03 or DMSO for 10 days were processed for RNA-sequencing to
193 analyze the altered mRNA abundance (Figure 4-source data, NCBI Gene Expression
194 Omnibus, GSE19373). It was reported that the improved proteostasis capacity of the
195 *osm-9* null mutant was due to altered expression of genes encoding components of the
196 proteostasis network (including protein degradation, protein synthesis, protein folding
197 and so on) ²⁰. Interestingly, these genes that are upregulated in *osm-9* null mutant and
198 play known or presumptive roles in proteostasis, were also upregulated in
199 JM03-treated worms (Fig 4i). Taken together, these results supported the notion that
200 JM03 upregulates the genes associated with proteostasis through OSM-9 leading to
201 enhanced proteostasis capacity, which may improve the ability of nematode to resist
202 oxidative stress and hypertonic stress.

203 **JM03 activates the SKN-1 stress response pathway in *C. elegans***

204 The transcription factors DAF-16^(ref. 29,30) and SKN-1 play important roles in
205 regulating stress resistance, longevity and proteostasis^{31,32}. Therefore, we examined
206 the effect of JM03 on DAF-16 and SKN-1 pathway. JM03 prolonged the lifespan of
207 *daf-16(mu86)* null mutant (Fig. S5), suggesting that DAF-16 is not required for
208 JM03-induced lifespan extension. On the contrary, JM03 did not prolonged the
209 lifespan of *skn-1(zu135)* mutants with loss of function mutation in all SKN-1 isoforms
210³³, indicating that SKN-1 played an essential role in JM03-induced positive effects
211 (Fig. 5a). Given the dependency of the transcription factor SKN-1 in JM03-induced
212 lifespan extension, we further examined our RNAseq dataset to determine whether
213 expression of target genes of SKN-1 might be perturbed by JM03 treatment. We found
214 that *skn-1* and its target genes, such as *gst-4*, *gst-6*, *gst-7*, *gcs-1*, *prdx-3* and *mtl-1* were
215 upregulated by JM03 (Fig. 5b).

216 Next, we examined the effect of JM03 on the activation of the SKN-1 stress
217 response pathway using a previously described GFP translational reporter fused to the
218 *skn-1* promoter^{33, 34}. JM03 treatment significantly increased the intensity of GFP
219 fluorescence driven by the native *skn-1* promoter (*Is007[skn-1::gfp]*)³³ (Fig. 5c).
220 Concurrently, it also significantly increased the transcriptional expression of *skn-1*
221 itself and *skn-1* regulated genes *gst-4*, *gst-6*, *gst-7*, *gcs-1*, *ctl-2*, *prdx-3* or *mtl-1* (Fig.
222 5d). Subsequently, we also confirmed the increased expression of glutathione
223 S-transferase-4 (*gst-4*), a key downstream target of SKN-1^(ref. 35), based on the GFP

224 fluorescence signal of *gst-4::gfp* worms (Fig. 5e). In addition, JM03 did not extend
225 the lifespan of *skn-1(zu135)* mutants under oxidative stress condition (Fig. 5f). In
226 conclusion, JM03 prolongs the lifespan and improves stress-resistance ability of *C.*
227 *elegans* through SKN-1 pathway.

228 **Discussion**

229 Drug repurposing has emerged as an effective approach for the rapid identification
230 and development of pharmaceutical molecules with novel activities against various
231 diseases based on the already known marketed drugs³⁶. Herein, we explored the
232 possibility of identifying the potent drugs which could increase the longevity by
233 screening our in-house marketed drugs. Based on the screening of 1,072 marketed
234 drugs using lifespan extension assays in *C. elegans*, crotamiton, which was known as
235 an anti-scabies and anti-itch agent was identified for its property to increase the
236 lifespan. We also proved that the lifespan extension effect of crotamiton was not the
237 result of its anti-scabies activity (Fig. S1) or the change in the nutritional value of the
238 bacteria (Fig. S2). Thereafter, structural optimization of crotamiton led to the
239 identification of a more potential compound JM03, which was found to show better
240 lifespan expansion and stress resistance activity than crotamiton. Various aspects of
241 the mechanistic action of this molecule were further explored in this study.

242 It has been reported that crotamiton is an inhibitor of human TRPV4 channel¹²,
243 which is homologous to OSM-9 and OCR-2 channels in *C. elegans*¹³. Loss of OCR-2
244 or OSM-9, can result in the lifespan extension in *C. elegans*²⁶. In our study, JM03

245 further increased the lifespan for the *ocr-2* knockdown *C. elegans*, but was ineffective
246 for the knockdown or knockout of *osm-9* (Fig. 3), which suggested JM03 selectively
247 acted on OSM-9, not OCR-2. Furthermore, JM03 improved the antioxidant and
248 anti-hyperosmotic stress resistance of wild type worms (Fig. 4a, d). Interestingly,
249 *osm-9* mutants showed enhanced ability to resist oxidative stress and hypertonic stress
250 (Fig. 4b, e), while *ocr-2* mutants didn't (Fig. 4c, f). These results also supported that
251 JM03 selectively acted on OSM-9, not OCR-2. Consistently, JM03 still had
252 significant anti-oxidant and anti-hyperosmotic effects on *ocr-2* mutants (Fig. 4c, f),
253 but not *osm-9* mutants (Fig. 4b, e). It is noted that OSM-9 is not the only mechanism
254 that mediate the anti-hyperosmotic effect of JM03 because JM03 retained a slight
255 effect on osmotic pressure resistance of the *osm-9* mutants.

256 OSM-9 plays major roles in transduction and regulation of signals in several
257 sensory neurons and is important for processes such as volatile chemotaxis and
258 osmotic avoidance³⁷. *Osm-9* null mutant was reported to show enhanced survival in
259 hypertonic environments, not due to altered systemic volume regulation or glycerol
260 accumulation and instead may be due to enhanced proteostasis capacity²⁰.
261 Consistently, JM03 treatment also enhanced proteostasis capacity in *C. elegans*
262 revealed by reduced aggregation of Q35 (Fig. 4h). Besides, the genes associated with
263 proteostasis, that are upregulated in *osm-9* null mutant, were also upregulated in
264 JM03-treated worms revealed by transcriptome analysis (Fig. 4i). Among these genes,
265 the increased expression of *aquaporin-8* (*aqp-8*) in *osm-9(ok1677)* mutant was also
266 reported by a Germany lab³⁸. Considering the essential roles of AQP-8 in sustaining

267 the salt/water balance in various cells types and tissues, the loss/inhibition of *osm-9*
268 might help to maintain the salt/water balance to promote proteostasis during the
269 response to hyperosmotic stress.

270 To investigate which downstream signaling was activated after OSM-9 inhibition
271 by JM03, two important stress response transcription factors DAF-16 and SKN-1
272 were examined^{27,39,40}. Lifespan analysis showed that JM03 extended the lifespan
273 through SKN-1 (Fig. 5a), but not DAF-16 (Fig. S5). Then our RNA-sequencing and
274 qPCR data both showed the transcriptional expression of *skn-1* itself and *skn-1*
275 regulated genes were significantly increased in JM03-treated worms (Fig. 5b, d). The
276 expression of SKN-1 and GST-4 was confirmed by using GFP translational reporter
277 worms (*skn-1::gfp* and *gst-4::gfp*) (Fig. 5c, e). These results provide the evidence that
278 JM03 activates SKN-1 signaling that regulates longevity, stress resistance and
279 proteostasis. But how JM03 activates SKN-1 signaling after inhibiting OSM-9
280 remained to be studied.

281 In conclusion, overall results showed that JM03 increased the lifespan of *C. elegans*
282 by inhibiting OSM-9, and then activated SKN-1, which improved proteostasis, stress
283 resistance and lifespan extension in *C. elegans* (Fig. 6). Since OSM-9 is the
284 homologous to mammal TRPV channels, it's very interesting to examine whether
285 JM03 acts selectively on a certain TRPV subtypes in mice in future studies.

286 **Materials and methods**

287 **Strains**

288 *C. elegans* were kept at 20°C on the nematode growth media (NGM) with plates
289 seeded with *E. coli* OP50. Strains used in this study were obtained from
290 Caenorhabditis Genetics Center. The *C. elegans* strains used in this study were as
291 follows: wild type Bristol strain N2, CX4544 *ocr-2(ak47) IV*, CX10 *osm-9(ky10) IV*,
292 AM140 rmIs132 [*unc-54p::Q35::YFP*], LG333 *skn-1(zu135) (IV)/nT1[qIs51] (IV;V)*;
293 *ldIs7 [skn-1b/c::GFP]*, CF1038 *daf-16(mu86) (I)*, CL2166 *dvIs19 [gst-4p::GFP::NLS]*
294 (*III*), EU31 *skn-1(zu135) (IV)/nT1[unc-?(n754);let-?]* (*IV;V*).

295 **Lifespan analysis**

296 Worms were synchronized with bleaching buffer, followed by the starvation in M9
297 buffer at the L1 stage for 24 hours. Worms were thereafter transferred to the NGM
298 plates containing the respective compounds at L4 stage. To avoid progeny hatching,
299 50 µg/mL of 5-Fluorodeoxyuridine (FUDR) was added to the agar plates from day 0 to
300 day 10. From the 10th day of adulthood, all the groups were transferred to the plates
301 without compounds or FUDR treatment until the end of life. During adulthood, worms
302 were counted every day and transferred to the fresh plates every two days. Death was
303 indicated by total cessation of movement in response to gentle mechanical stimulation.
304 The survival curves were generated using GraphPad Prism 8.3.0. The log-rank
305 (Mantel-Cox) test was used to assess the curve significance.

306 For lifespan screening experiments, 15 worms were cultured on each Petri dish (60
307 mm in diameter) containing NGM plate ^{41,42}. 1 Petri dishes in the 1st round screen, 2
308 Petri dishes in the 2nd round screen, 4 Petri dishes in the 3rd round screen and 8 Petri

309 dishes in the validation of the effect of drugs were used. In lifespan assay of mutant or
310 control worms, more than 100 worms were used for 1 experiment and at least 3
311 independent experiments were performed for biological replication.

312 **RNAi experiment**

313 *E. coli* strain HT115 was used for this assay. The clones used were *osm-9* (B0212.5)
314 and *ocr-2* (T09A12.3). L4440 was used as the vector. Worms fed with the bacteria
315 expressing L4440 or engineered to produce a gene RNAi effect were cultured until the
316 F4 stage. One subset of the worms was confirmed to exhibit the decreased expression
317 of the gene via qPCR. Then, the other subset of worms was synchronized for a
318 lifespan assay on the control and JM03 400 μ M treated NGM plates seeded with
319 bacteria either expressing L4440 or engineered to produce a gene RNAi effect.

320 **Bacterial growth assay**

321 A single colony of bacteria was inoculated in the LB media and cultured at 37°C.
322 For plate assay, 30 μ L of bacterial culture ($OD_{600}=0.12$) was transferred to an NGM
323 plate either with or without crotamiton or JM03 at a concentration of 400 μ M, and
324 cultured at 20°C. The bacteria were washed off using 1 mL M9 buffer and OD_{600} was
325 measured every 12 h, with M9 buffer as the blank control. OD was assessed using a
326 Hitachi U-2910 spectrometer with a 10-mm quartz cuvette. At least 3 technical and 3
327 biological independent replicates were performed.

328 **Thrashing assay**

329 Wild type worms *N2* were transferred to the NGM plates at L4 stage and incubated
330 with JM03 at the concentration of 400 μ M. For the control and JM03 treatment

331 groups, thrashes were counted on days 3, 8, and 12. Any change in the midbody
332 bending direction was referred to as a thrash. Worms were placed in M9 buffer drop
333 on an NGM plate without OP50 and allowed to adapt for 30 s. Then, the number of
334 thrashes over 30 s were counted.

335 In thrashing assay, pharyngeal pumping assay and reproductive lifespan assay,
336 more than 15 worms were used for 1 experiment and a least 3 independent
337 experiments were performed for biological replication.

338 **Pharyngeal pumping assay**

339 Wild type worms *N2* were transferred to the NGM plates at L4 stage with JM03.
340 On days 3, 6, 9, and 12, worms were evaluated by quantifying the contractions of the
341 pharynx over a period of 30 s.

342 **Reproductive lifespan assay**

343 Wild type worms *N2* were transferred to 3.5 cm NGM plates individually at L4
344 stage with or without JM03 at a concentration of 400 μ M. They were further moved to
345 a fresh plate each day until 3 consecutive days without the progeny production. After
346 transferring, plates were checked for progeny after 2 days. For each individual, the
347 last day of the live progeny production was determined as the day of reproductive
348 cessation.

349 **Cell culture and viability assay**

350 MRC-5 cells were maintained in MEM medium (Gibco) supplemented with 10%
351 FBS (42F6590K, Gibco), 1% non-essential amino acid solution (BI), 1% sodium
352 pyruvate solution (BI) and 1% Penicillin-Streptomycin (100 \times) (Yeasen). Thereafter,

353 the cells were cultured at 37°C in an incubator with humidified atmosphere and with 5%
354 CO₂. Cells were periodically checked to be mycoplasma-free using GMyc-PCR
355 Mycoplasma Test Kit (40601ES10, Yeasen, Shanghai, China).

356 For the cell counting kit-8 (CCK-8) assay, MRC-5 cells (1×10⁴ cells/well) were
357 seeded in the 96-well culture plates (100 μL/well) for 12 h. Further, different
358 concentrations of test compounds were added to the plates in 100 μL of fresh medium
359 (the total volume was 200 μL, DMSO < 0.1%) and incubated for 72 h. After removal
360 of the cell culture medium, a 10% CCK-8 solution (Targetmol, C0005) in medium
361 was added and re-incubated for 2 h. Then, the absorbance at 450 nm was measured in
362 a microplate reader (Bioteck, Vermont, USA). At least 3 technical and 3 biological
363 independent replicates were performed.

364 **Hypertonic stress resistance assay**

365 Worms were transferred to the NGM plates at L4 stage and incubated with JM03 at
366 a concentration of 400 μM for 4 days. Approximately 60 worms were transferred to
367 NGM plates with 500 mM NaCl and their movement (# moving/total) was assessed.
368 Worms were defined as paralyzed if they failed to move forward upon the tail
369 prodding. Survival was measured every two minutes until all the worms were
370 paralyzed. More than 100 worms were used for 1 experiment and a least 3
371 independent experiments were performed for biological replication.

372 **Oxidative stress resistance assay**

373 Worms were transferred to the NGM plates at L4 stage and incubated with JM03 at
374 a concentration of 400 μM for 4 days. Worms were further transferred to the 24-well

375 plate (6 worms/well) and incubated in M9 buffer containing 10 mM paraquat.
376 Survival was measured every two hours until all the worms were died. More than 70
377 worms were used for 1 experiment and a least 3 independent experiments were
378 performed for biological replication.

379 **PolyQ aggregation assay**

380 PolyQ aggregation assay was performed using AM140 *C. elegans* expressing
381 polyQ35::YFP fusion protein in muscle cells. Worms were transferred to the NGM
382 plates at L4 stage and incubated with JM03 at a concentration of 400 μ M for 4 days.
383 Thereafter, YFP images were taken using a fluorescence microscopy (Nikon Eclipse
384 Ti2) and the polyQ35::YFP aggregates in worms were quantified manually using
385 imageJ software. More than 50 worms were used for 1 experiment and a least 3
386 independent experiments were performed for biological replication.

387 **Transcriptome analysis by RNA-sequencing**

388 The transcriptome analysis by RNA sequencing was performed according to a
389 previously published method ⁴³. Wild type worms *N2* were transferred to the NGM
390 plates at the L4 stage and incubated with JM03 at a concentration of 400 μ M for 10
391 days. At the 10th day of adulthood, worms were collected. Total RNAs were extracted
392 using Trizol Reagent (R0016, Beyotime, Shanghai, China). Further assay and analysis
393 were assisted by Majorbio Bio-Pharm Technology Co. Ltd (Shanghai, China) and are
394 shown in Figure 4-source data.

395 **qRT-PCR analysis**

396 Wild type worms *N2* were transferred to the NGM plates at the L4 stage and

397 incubated with JM03 at a concentration of 400 μ M for 4 days. Total RNA was
398 extracted from *C. elegans* with a Total RNA Kit II (R6934-01, Omega, USA) and
399 reverse transcribed using Hifair II 1st Strand cDNA Synthesis SuperMix for qPCR
400 (11123ES60, Yeasen, Shanghai, China) in accordance with the manufacturer's
401 instructions. qPCR was performed using Hieff qPCR SYBR® Green Master Mix
402 (11201ES08, Yeasen, Shanghai, China) on a CFX96 quantitative PCR system
403 (Bio-Rad, USA). Data were processed using CFX Maestro 1.0. The primers used are
404 listed as follows: *ama-1*, forward: TGGAACTCTGGAGTCACACC; reverse:
405 CATCCTCCTTCATTGAACGG. *act-1*, forward: ATGTGTGACGACGAGGTTGC;
406 reverse: ACTTGCAGGTGAACGATGGATG. *skn-1*, forward:
407 ACAGTGCTTCTCTCGGTAGC; reverse: GAGACCCATTGGACGGTTGA. *gst-4*,
408 forward: TGCTCAATGTGCCTTACGAC; reverse: AGTTTTCCAGCGAGTCCAA.
409 *gst-6*, forward: TTTGGCAGTTGTTGAGGAG; reverse:
410 TGGGTAATCTGGACGGTTG. *gst-7*, forward:
411 AGGACAACAGAACATCCAAAGG; reverse: AGCAAATCCCATCTTCACCAT.
412 *gst-10*, forward: GTCTACCACGTTTGGATGC; reverse:
413 ACTTTGTCGGCCTTCTCTT. *gcs-1*, forward: AATCGATTCTTGGAGACC;
414 reverse: ATGTTGCCTCGACAATGTT. *ctl-1*, forward:
415 GCGGATACCGTACTCGTGAT; reverse: GTGGCTGCTCGTAGTTGTGA. *prdx-3*,
416 forward: CTTGACTTCACCTTGTATGCC; reverse:
417 GGCGATCTTCTTGTGAAATCA. *mtl-1*, forward:
418 CAAGTGTGACTGCAAAACAAG; reverse: GCAGTACTTCTCACAAACACTTG.

419 *osm-9*, forward: GACCGCGTAGGAGTACATGG; reverse:
420 GAGAGGTGTGGAAGGCGAAA. *ocr-2*, forward: GCCAGTCAGCTTACCAACAC;
421 reverse: GGTGCAGAATTGGCGAACG.

422 **SKN-1 and GST-4 expression determination**

423 CL2166 (*gst-4p::GFP*) and LG333 (*skn-1b/c::GFP*) transgenic strains were
424 transferred to the NGM plates at L4 stage and incubated with 400 μ M JM03 for 4
425 days. The SKN-1 and GST-4 expression was determined by the fluorescence
426 microscopy (Nikon Eclipse Ti2). The fluorescence intensity was quantified using the
427 ImageJ software. More than 50 worms were used for 1 experiment and a least 3
428 independent experiments were performed for biological replication.

429 **Statistical analysis**

430 All the data are represented as mean \pm SD. Statistical analysis was conducted using
431 Graphpad Prism 8.3.0 and significant differences within treatments were determined
432 by Log-rank (Mantel-Cox) test, two-way ANOVA or Student's t-test. $P \leq 0.05$ was
433 considered statistically significant.

434 **General information of Crotamiton derivatives**

435 All the reagents were purchased from commercial corporation without further
436 purification. Nuclear magnetic resonance (NMR) spectroscopy was recorded on 400
437 MHz or 600 MHz Bruker spectrometer at 303 K and referenced to TMS. Chemical
438 shifts were reported in parts per million (ppm, δ). High-resolution mass spectra
439 (HRMS) data were given by Waters LCT or Agilent 6545 Q-TOF. The flash column
440 chromatography was conducted on silica gel (200– 300 mesh) and visualized under

441 UV light at 254 and 365 nm.

442 *General procedures for the synthesis of JM01-JM05, JM10, JM12, JM13, JM15,*

443 **9-11**

444 To a solution of **1-8** (4.0 mmol) in dichloromethane was added acryloyl chloride
445 derivatives (4.0 mmol) and potassium carbonate (1.66 g, 12.0 mmol) at 0 °C. Then the
446 mixture was stirred at room temperature for about 1 h. After removing the solvent
447 under reduced pressure, the residue was dissolved in ethyl acetate, washed with water
448 and brine. Then the organic phase was dried with sodium sulfate and concentrated *in*
449 *vacuo*. The crude compound was purified by silica gel column chromatography.

450 *(E)-N-ethyl-N-(m-tolyl)but-2-enamide (JM01)*

451 780 mg, 96.0 % yield. **1H NMR** (600 MHz, CDCl₃) δ 7.33-7.27 (m, 1H), 7.16 (d, *J* =
452 7.5 Hz, 1H), 6.97 (s, 1H), 6.96 – 6.87 (m, 2H), 5.68 (d, *J* = 14.8 Hz, 1H), 3.80 (q, *J* =
453 6.9 Hz, 2H), 2.39 (s, 3H), 1.72 (d, *J* = 6.7 Hz, 3H), 1.13 (t, *J* = 7.0 Hz, 3H).
454 ESI-HRMS [M+H]⁺ calcd for C₁₃H₁₈NO: 204.1383, found: 204.1389.

455 *(E)-N-ethyl-N-(p-tolyl)but-2-enamide (JM02)*

456 789 mg, 97.0 % yield. **1H NMR** (600 MHz, CDCl₃) δ 7.21 (d, *J* = 7.5 Hz, 2H), 7.03 (d,
457 *J* = 7.4 Hz, 2H), 6.94 – 6.86 (m, 1H), 5.68 (d, *J* = 15.0 Hz, 1H), 3.79 (q, *J* = 7.0 Hz,
458 2H), 2.39 (s, 3H), 1.71 (d, *J* = 6.7 Hz, 3H), 1.12 (t, *J* = 7.0 Hz, 3H). ESI-HRMS
459 [M+H]⁺ calcd for C₁₃H₁₈NO: 204.1383, found: 204.1386.

460 *(E)-N-ethyl-N-(2-fluorophenyl)but-2-enamide (JM03)*

461 791 mg, 95.4 % yield. **1H NMR** (600 MHz, CDCl₃) δ 7.39 – 7.34 (m, 1H), 7.23 – 7.16
462 (m, 3H), 6.99-6.91 (m, 1H), 5.63 (d, *J* = 15.0 Hz, 1H), 3.87-3.81 (m, 1H), 3.78 – 3.69

463 (m, 1H), 1.73 (dd, $J = 6.9, 1.5$ Hz, 3H), 1.12 (t, $J = 7.2$ Hz, 3H). ESI-HRMS $[\text{M}+\text{H}]^+$
464 calcd for $\text{C}_{12}\text{H}_{15}\text{FNO}$: 208.1132, found: 208.1135.

465 *(E)-N-(2-chlorophenyl)-N-ethylbut-2-enamide (JM04)*

466 828 mg, 92.5 % yield. **1H NMR** (600 MHz, CDCl_3) δ 7.54 – 7.50 (m, 1H), 7.37 – 7.32
467 (m, 2H), 7.24 – 7.20 (m, 1H), 6.97-6.91 (dq, $J = 13.9, 6.9$ Hz, 1H), 5.53 – 5.46 (m,
468 1H), 4.07 (dq, $J = 14.3, 7.2$ Hz, 1H), 3.48 (dq, $J = 14.3, 7.2$ Hz, 1H), 1.72 (dd, $J = 6.9,$
469 1.6 Hz, 3H), 1.14 (t, $J = 7.2$ Hz, 3H). ESI-HRMS $[\text{M}+\text{H}]^+$ calcd for $\text{C}_{12}\text{H}_{15}\text{ClNO}$:
470 224.0837, found: 224.0804.

471 *(E)-N-(2-bromophenyl)-N-ethylbut-2-enamide (JM05)*

472 1009 mg, 94.1 % yield. **1H NMR** (600 MHz, CDCl_3) δ 7.70 (dd, $J = 8.0, 1.3$ Hz, 1H),
473 7.39 (td, $J = 7.6, 1.3$ Hz, 1H), 7.28 – 7.25 (m, 1H), 7.22 (dd, $J = 7.8, 1.6$ Hz, 1H), 6.95
474 (dq, $J = 13.9, 6.9$ Hz, 1H), 5.48 (dd, $J = 15.0, 1.6$ Hz, 1H), 4.14 (dq, $J = 14.3, 7.2$ Hz,
475 1H), 3.39 (dq, $J = 14.2, 7.2$ Hz, 1H), 1.72 (dd, $J = 6.9, 1.6$ Hz, 3H), 1.15 (t, $J = 7.2$ Hz,
476 3H). ESI-HRMS $[\text{M}+\text{H}]^+$ calcd for $\text{C}_{12}\text{H}_{15}\text{BrNO}$: 268.0332, found: 268.0308.

477 *Ethyl (E)-4-(ethyl(p-tolyl)amino)-4-oxobut-2-enoate (JM10)*

478 951 mg, 91.0 % yield. **1H NMR** (600 MHz, CDCl_3) δ 7.22 (d, $J = 8.0$ Hz, 2H), 7.02 (d,
479 $J = 8.1$ Hz, 2H), 6.82 (q, $J = 15.3$ Hz, 2H), 4.16 (q, $J = 7.1$ Hz, 2H), 3.83 (q, $J = 7.1$
480 Hz, 2H), 2.39 (s, 3H), 1.24 (t, $J = 7.1$ Hz, 3H), 1.15 (t, $J = 7.1$ Hz, 3H). **13C NMR**
481 (150 MHz, CDCl_3) δ 165.81, 163.59, 138.29, 138.26, 134.83, 130.71, 130.42, 127.84,
482 60.92, 44.66, 21.10, 14.10, 12.81. ESI-HRMS $[\text{M}+\text{H}]^+$ calcd for $\text{C}_{15}\text{H}_{20}\text{NO}_3$:
483 262.1438, found: 262.1435.

484 *Ethyl (E)-4-(ethyl(2-fluorophenyl)amino)-4-oxobut-2-enoate (JM12)*

485 960 mg, 90.5 % yield. **1H NMR** (600 MHz, CDCl₃) δ 7.43-7.37 (m, 1H), 7.25 – 7.17
486 (m, 3H), 6.87 (d, *J* = 15.2 Hz, 1H), 6.74 (d, *J* = 15.2 Hz, 1H), 4.16 (q, *J* = 7.1 Hz, 2H),
487 3.90 – 3.77 (m, 2H), 1.25 (t, *J* = 7.1 Hz, 3H), 1.15 (t, *J* = 7.1 Hz, 3H). ESI-HRMS
488 [M+H]⁺ calcd for C₁₄H₁₇FNO₃: 266.1187, found: 266.1185.

489 *(E)-N-ethyl-N-(4-fluorophenyl)but-2-enamide (JM13)*

490 792 mg, 95.5 % yield. **1H NMR** (600 MHz, CDCl₃) δ 7.15 – 7.09 (m, 4H), 6.92 (dq, *J*
491 = 14.0, 6.8 Hz, 1H), 5.62 (d, *J* = 14.9 Hz, 1H), 3.78 (q, *J* = 7.1 Hz, 2H), 1.73 (d, *J* =
492 6.8 Hz, 3H), 1.13 (t, *J* = 7.1 Hz, 3H). ESI-HRMS [M+H]⁺ calcd for C₁₂H₁₅FNO:
493 208.1132, found: 208.1132.

494 *Ethyl (E)-4-(ethyl(4-fluorophenyl)amino)-4-oxobut-2-enoate (JM15)*

495 992 mg, 93.5 % yield. **1H NMR** (600 MHz, CDCl₃) δ 7.13 (d, *J* = 6.4 Hz, 4H), 6.84 (d,
496 *J* = 15.3 Hz, 1H), 6.74 (d, *J* = 15.3 Hz, 1H), 4.17 (q, *J* = 7.1 Hz, 2H), 3.83 (q, *J* = 7.1
497 Hz, 2H), 1.25 (t, *J* = 7.1 Hz, 3H), 1.15 (t, *J* = 7.1 Hz, 3H). ESI-HRMS [M+Na]⁺ calcd
498 for C₁₄H₁₆FNO₃Na: 288.1006, found: 288.1010.

499 *General procedures for the synthesis of JM06-JM09, JM11, JM14*

500 To a solution of **JM10**, **JM12**, **JM15**, **9-11** (2.0 mmol) in methanol (5 mL) was added
501 1M NaOH (5 mL). The resulting mixture was stirred at room temperature for 2 h.
502 Then the methanol was removed under reduced pressure, and the residue was
503 acidified to pH = 2 or below with HCl (1M). Then the solution was extracted with
504 ethyl acetate and the combined organic solvents were dried with sodium sulfate and
505 concentrated *in vacuo*. The crude compound was purified by silica gel column
506 chromatography.

507 *(E)-3-(N-ethylbut-2-enamido)-4-methylbenzoic acid (JM06)*

508 485 mg, 98.0 % yield. **¹H NMR** (600 MHz, CDCl₃) δ 10.91 (s, 1H), 8.04 (dd, *J* = 8.0, 1.3 Hz, 1H), 7.86 (d, *J* = 1.3 Hz, 1H), 7.43 (d, *J* = 8.0 Hz, 1H), 7.01 (dq, *J* = 13.9, 6.9 Hz, 1H), 5.50 (dd, *J* = 15.0, 1.4 Hz, 1H), 4.11 (dq, *J* = 14.2, 7.2 Hz, 1H), 3.45 (dq, *J* = 14.2, 7.2 Hz, 1H), 2.29 (s, 3H), 1.72 (dd, *J* = 6.9, 1.2 Hz, 3H), 1.18 (t, *J* = 7.2 Hz, 3H).

512 ESI-HRMS [M+H]⁺ calcd for C₁₄H₁₈NO₃: 248.1281, found: 248.1281.

513 *(E)-4-(N-ethylbut-2-enamido)-3-methylbenzoic acid (JM07)*

514 478 mg, 97.0 % yield. **¹H NMR** (400 MHz, CDCl₃) δ 8.09 (d, *J* = 1.3 Hz, 1H), 8.02 (d, *J* = 8.0 Hz, 1H), 7.22 (d, *J* = 8.1 Hz, 1H), 7.00 (dq, *J* = 13.8, 6.8 Hz, 1H), 5.49 (d, *J* = 14.9 Hz, 1H), 4.09 (dq, *J* = 14.0, 7.1 Hz, 1H), 3.46 (dq, *J* = 13.9, 7.0 Hz, 1H), 2.28 (s, 3H), 1.72 (d, *J* = 6.8 Hz, 3H), 1.17 (t, *J* = 7.1 Hz, 3H). ESI-HRMS [M+H]⁺ calcd for C₁₃H₁₈NO: 248.1281, found: 248.1281.

519 *(E)-4-(ethyl(o-tolyl)amino)-4-oxobut-2-enoic acid (JM08)*

520 460 mg, 98.5 % yield. **¹H NMR** (600 MHz, CDCl₃) δ 7.33 – 7.29 (m, 2H), 7.27 – 7.23 (m, 1H), 7.07 (d, *J* = 7.6 Hz, 1H), 6.83 (d, *J* = 15.3 Hz, 1H), 6.65 (d, *J* = 15.3 Hz, 1H), 4.14 – 4.06 (m, 1H), 3.47 – 3.40 (m, 1H), 2.18 (s, 3H), 1.16 (t, *J* = 7.2 Hz, 3H).

523 ESI-HRMS [M+H]⁺ calcd for C₁₃H₁₆NO₃: 234.1125, found: 234.1122.

524 *(E)-4-(ethyl(p-tolyl)amino)-4-oxobut-2-enoic acid (JM09)*

525 464 mg, 99.5 % yield. **¹H NMR** (600 MHz, CDCl₃) δ 7.22 (d, *J* = 7.7 Hz, 2H), 7.00 (d, *J* = 7.6 Hz, 2H), 6.80 (s, 2H), 3.83 (q, *J* = 7.1 Hz, 2H), 2.39 (s, 3H), 1.14 (t, *J* = 7.1 Hz, 3H). **¹³C NMR** (150 MHz, CDCl₃) δ 169.96, 163.42, 138.49, 138.02, 136.52,

528 130.48, 129.85, 127.75, 44.79, 21.12, 12.75. ESI-HRMS [M+H]⁺ calcd for
529 C₁₃H₁₆NO₃⁺: 234.1125, found: 234.1129.

530 *(E)-4-(ethyl(2-fluorophenyl)amino)-4-oxobut-2-enoic acid (JM11)*

531 464 mg, 97.8 % yield. ¹H NMR (600 MHz, CDCl₃) δ 7.43 – 7.38 (m, 1H), 7.24–7.16
532 (m, 3H), 6.83 (d, *J* = 15.2 Hz, 1H), 6.77 (d, *J* = 15.2 Hz, 1H), 3.89 – 3.76 (m, 2H),
533 1.15 (t, *J* = 7.2 Hz, 3H). ESI-HRMS [M+H]⁺ calcd for C₁₂H₁₃FNO₃: 238.0874, found:
534 238.0874.

535 *(E)-4-(ethyl(4-fluorophenyl)amino)-4-oxobut-2-enoic acid (JM14)*

536 471 mg, 99.2 % yield. ¹H NMR (600 MHz, CDCl₃) δ 7.13 (d, *J* = 6.2 Hz, 4H), 6.79 (q,
537 *J* = 15.3 Hz, 2H), 3.83 (q, *J* = 6.9 Hz, 2H), 1.15 (t, *J* = 7.0 Hz, 3H). ESI-HRMS
538 [M-H]⁻ calcd for C₁₂H₁₁FNO₃⁻: 236.0728, found: 236.0724.

539 Acknowledgements

540 This study was supported by the National Natural Science Foundation of China
541 [22037002, 81772689], the Program for Professor of Special Appointment [Eastern
542 Scholar TP2018025] at Shanghai Institutions of Higher Learning, Sponsored by
543 Natural Science Foundation of Shanghai [21ZR1416700], the Innovation Program of
544 Shanghai Municipal Education Commission [2021-01-07-00-02-E00104], and the
545 Chinese Special Fund for State Key Laboratory of Bioreactor Engineering [2060204].

546 Conflict of interests

547 The authors declare no conflicts of interest.

548 **Author Contributions**

549 Research design: KTB, ZLH and JL. Data collection, analysis, and interpretation:
550 KTB, JLF, WWL, ZFM, TYS, ZZS. Preparation of figure composites: KTB, ZLH and
551 JL. Manuscript writing: KTB, ZLH and JL. All authors provided feedback and edits to
552 the manuscript text and approved the final version of the manuscript.

553 **Data Availability Statement**

554 The data used to support the findings of this study are provided as figure source data.

555

556 **References**

557 1 Kenyon, C. J. The genetics of ageing. *Nature* **464**, 504–512 (2010).

558 2 Ryu, D. *et al.* Urolithin A induces mitophagy and prolongs lifespan in *C. elegans*
559 and increases muscle function in rodents. *Nat. Med.* **22**, 879–888 (2016).

560 3 Robida-Stubbs, S. *et al.* TOR signaling and rapamycin influence longevity by
561 regulating SKN-1/Nrf and DAF-16/FoxO. *Cell Metab.* **15**, 713–724 (2012).

562 4 Medvedik, O., Lamming, D. W., Kim, K. D. & Sinclair, D. A. MSN2 and MSN4
563 link calorie restriction and TOR to sirtuin-mediated lifespan extension in
564 *Saccharomyces cerevisiae*. *PLoS Biol.* **5**, e261 (2007).

565 5 Bjedov, I. *et al.* Mechanisms of life span extension by rapamycin in the fruit fly
566 *Drosophila melanogaster*. *Cell Metab.* **11**, 35–46 (2010).

567 6 Harrison, D. E. *et al.* Rapamycin fed late in life extends lifespan in genetically
568 heterogeneous mice. *Nature* **460**, 392–395 (2009).

569 7 Cabreiro, F. *et al.* Metformin retards aging in *C. elegans* by altering microbial
570 folate and methionine metabolism. *Cell* **153**, 228–239 (2013).

571 8 De Haes, W. *et al.* Metformin promotes lifespan through mitohormesis via the
572 peroxiredoxin PRDX-2. *Proc. Natl. Acad. Sci. USA* **111**, E2501–2509 (2014).

573 9 Chen, J. *et al.* Metformin extends *C. elegans* lifespan through lysosomal pathway.
574 *Elife* **6**, e31268 (2017).

575 10 Anisimov, V. N. *et al.* Metformin slows down aging and extends life span of
576 female SHR mice. *Cell Cycle* **7**, 2769–2773 (2008).

577 11 Martin-Montalvo, A. *et al.* Metformin improves healthspan and lifespan in mice.

578 12 Kittaka, H., Yamanoi, Y. & Tominaga, M. Transient receptor potential vanilloid 4
579 (TRPV4) channel as a target of crotamiton and its bimodal effects. *Pflugers Arch.* **469**,
580 1313–1323 (2017).

582 13 Xiao, R. & Xu, X. Z. Function and regulation of TRP family channels in *C.*
583 *elegans*. *Pflugers Arch.* **458**, 851–860 (2009).

584 14 Sheng, Y., Tang, L., Kang, L. & Xiao, R. Membrane ion Channels and Receptors
585 in Animal lifespan Modulation. *J. Cell Physiol.* **232**, 2946–2956 (2017).

586 15 Tobin, M. D. *et al.* Combinatorial expression of TRPV channel proteins defines
587 their sensory functions and subcellular localization in *C. elegans* neurons. *Neuron* **35**,
588 307–318 (2002).

589 16 Ohnishi, K. *et al.* OSM-9 and OCR-2 TRPV channels are accessorial warm
590 receptors in *Caenorhabditis elegans* temperature acclimatisation. *Sci. Rep.* **10**, 18566
591 (2020).

592 17 Zhang, S., Sokolchik, I., Blanco, G. & Sze, J. Y. *Caenorhabditis elegans* TRPV
593 ion channel regulates 5HT biosynthesis in chemosensory neurons. *Development* **131**,
594 1629–1638 (2004).

595 18 Moriuchi, M. *et al.* Taurine Inhibits TRPV-Dependent Activity to Overcome
596 Oxidative Stress in *Caenorhabditis elegans*. *Biol. Pharm. Bull.* **41**, 1672–1677 (2018).

597 19 Lee, B. H. & Ashrafi, K. A TRPV channel modulates *C. elegans* neurosecretion,
598 larval starvation survival, and adult lifespan. *PLoS Genet.* **4**, e1000213 (2008).

599 20 Lee, E. C. *et al.* Abnormal Osmotic Avoidance Behavior in *C. elegans* Is

600 Associated with Increased Hypertonic Stress Resistance and Improved Proteostasis.

601 *PLoS One* **11**, e0154156 (2016).

602 21 Liu, W. W. *et al.* Verapamil extends lifespan in *Caenorhabditis elegans* by
603 inhibiting calcineurin activity and promoting autophagy. *Aging-US*. **12**, 5300–5317
604 (2020).

605 22 Mao, Z. *et al.* Anti-aging effects of chlorpropamide depend on mitochondrial
606 complex-II and the production of mitochondrial reactive oxygen species. *Acta
607 Pharmaceutica Sinica B*. <https://doi.org/10.1016/j.apsb.2021.08.007>.

608 23 Hagmann, W. K. The Many Roles for Fluorine in Medicinal Chemistry. *J. Med.
609 Chem.* **51**, 4359–4369 (2008).

610 24 Herndon, L. A. *et al.* Stochastic and genetic factors influence tissue-specific
611 decline in ageing *C. elegans*. *Nature* **419**, 808–814 (2002).

612 25 Liedtke, W., Tobin, D. M., Bargmann, C. I. & Friedman, J. M. Mammalian
613 TRPV4 (VR-OAC) directs behavioral responses to osmotic and mechanical stimuli in
614 *Caenorhabditis elegans*. *Proc. Natl. Acad. Sci. USA* **100**, 14531–14536 (2003).

615 26 Riera, C. E. *et al.* TRPV1 pain receptors regulate longevity and metabolism by
616 neuropeptide signaling. *Cell* **157**, 1023–1036 (2014).

617 27 Mark, K. A. *et al.* Vitamin D Promotes Protein Homeostasis and Longevity via
618 the Stress Response Pathway Genes skn-1, ire-1, and xbp-1. *Cell Rep.* **17**, 1227–1237
619 (2016).

620 28 Morley, J. F., Brignull, H. R., Weyers, J. J. & Morimoto, R. I. The threshold for
621 polyglutamine-expansion protein aggregation and cellular toxicity is dynamic and

622 influenced by aging in *Caenorhabditis elegans*. *Proc. Natl. Acad. Sci. USA* **99**, 10417–
623 10422 (2002).

624 29 Baxi, K., Ghavidel, A., Waddell, B., Harkness, T. A. & de Carvalho, C. E.
625 Regulation of Lysosomal Function by the DAF-16 Forkhead Transcription Factor
626 Couples Reproduction to Aging in *Caenorhabditis elegans*. *Genetics* **207**, 83–101
627 (2017).

628 30 Li, S. T. *et al.* DAF-16 stabilizes the aging transcriptome and is activated in
629 mid-aged *Caenorhabditis elegans* to cope with internal stress. *Aging Cell* **18**, e12896
630 (2019).

631 31 Blackwell, T. K., Steinbaugh, M. J., Hourihan, J. M., Ewald, C. Y. & Isik, M.
632 SKN-1/Nrf, stress responses, and aging in *Caenorhabditis elegans*. *Free Radic. Biol.
633 Med.* **88**, 290–301 (2015).

634 32 Jones, L. M., Chen, Y. & van Oosten-Hawle, P. Redefining proteostasis
635 transcription factors in organismal stress responses, development, metabolism, and
636 health. *Biol. Chem.* **401**, 1005–1018 (2020).

637 33 Bishop, N. A. & Guarente, L. Two neurons mediate diet-restriction-induced
638 longevity in *C. elegans*. *Nature* **447**, 545–549 (2007).

639 34 Kahn, N. W., Rea, S. L., Moyle, S., Kell, A. & Johnson, T. E. Proteasomal
640 dysfunction activates the transcription factor SKN-1 and produces a selective
641 oxidative-stress response in *Caenorhabditis elegans*. *Biochem. J.* **409**, 205–213
642 (2008).

643 35 Li, H. *et al.* Arginine methylation of SKN-1 promotes oxidative stress resistance

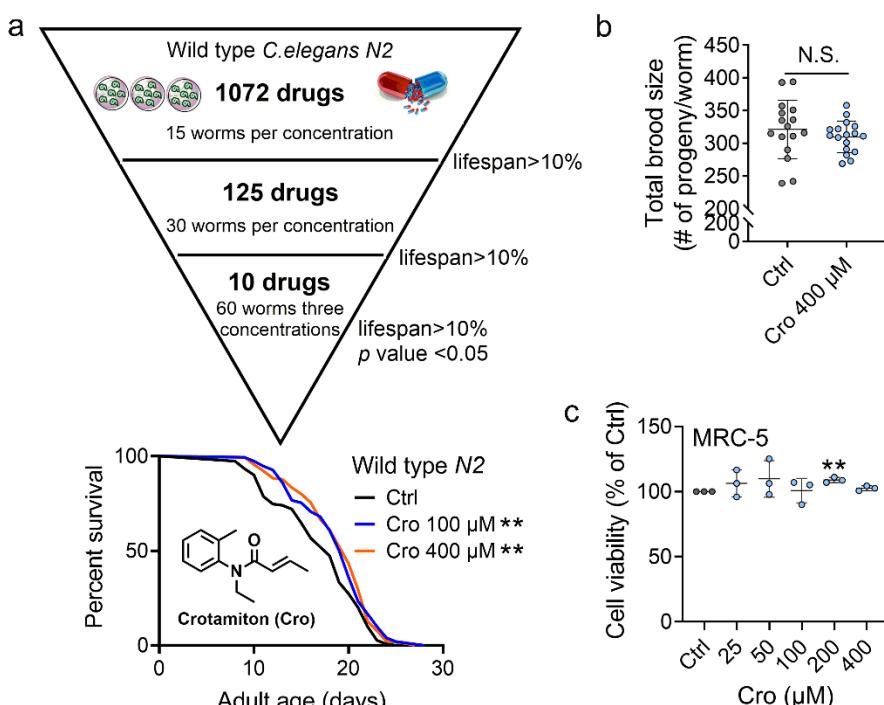
644 in *Caenorhabditis elegans*. *Redox Biol.* **21**, 101111 (2019).

645 36 Pushpakom, S. *et al.* Drug repurposing: progress, challenges and
646 recommendations. *Nat. Rev. Drug Discov.* **18**, 41–58 (2019).

647 37 Colbert, H. A., Smith, T. L., & Bargmann, C. I. OSM-9, a novel protein with
648 structural similarity to channels, is required for olfaction, mechanosensation, and
649 olfactory adaptation in *Caenorhabditis elegans*. *J. Neurosci.* **17**, 8259–8269 (1997).

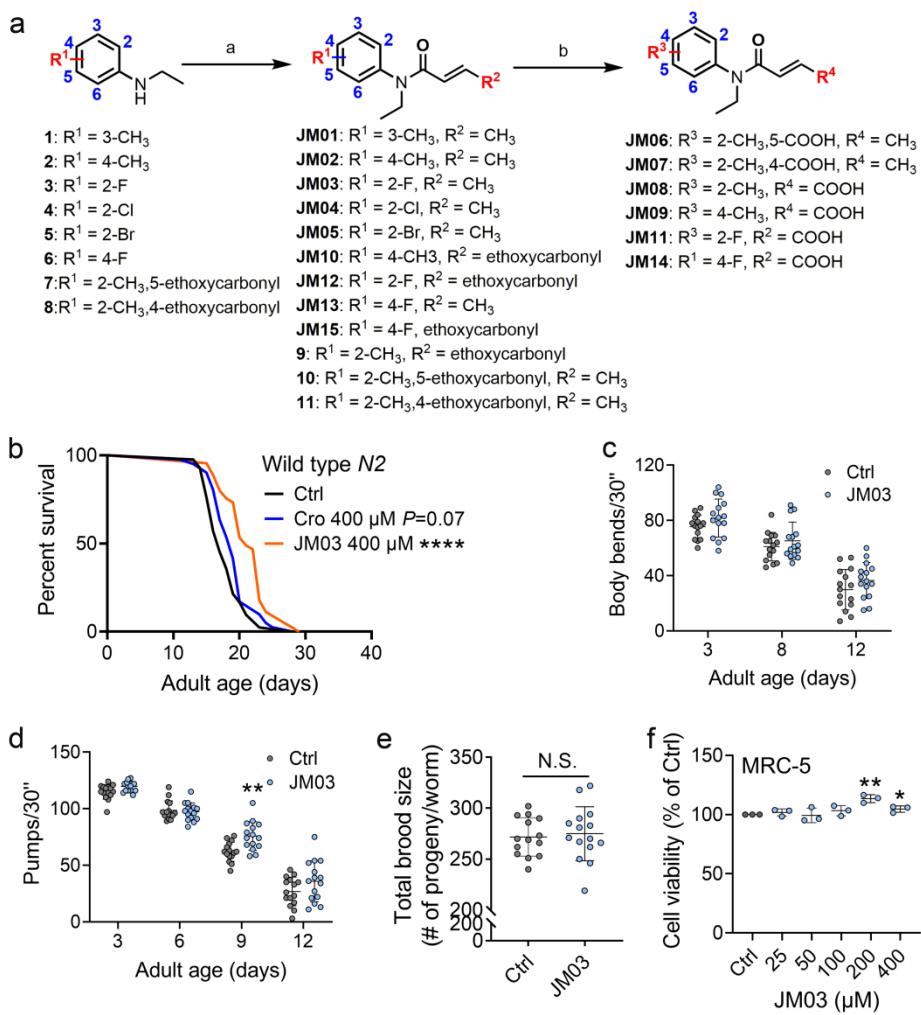
650 38 Igual Gil, C., Jarius, M., von Kries, J. P. & Rohlffing, A. K. Neuronal
651 Chemosensation and Osmotic Stress Response Converge in the Regulation of aqp-8 in
652 *C. elegans*. *Front. Physiol.* **8**, 380 (2017).

653 39 Alavez, S., Vantipalli, M. C., Zucker, D. J. S., Klang, I. M. & Lithgow, G. J.
654 Amyloid-binding compounds maintain protein homeostasis during ageing and extend
655 lifespan. *Nature* **472**, 226–229 (2011).


656 40 Cohen, E., Bieschke, J., Perciavalle, R. M., Kelly, J. W. & Dillin, A. Opposing
657 Activities Protect Against Age-Onset Proteotoxicity. *Science* **313**, 1604–1610 (2006).

658 41 Petrascheck, M., Ye, X. & Buck, L. B. An antidepressant that extends lifespan in
659 adult *Caenorhabditis elegans*. *Nature* **450**, 553–556 (2007).

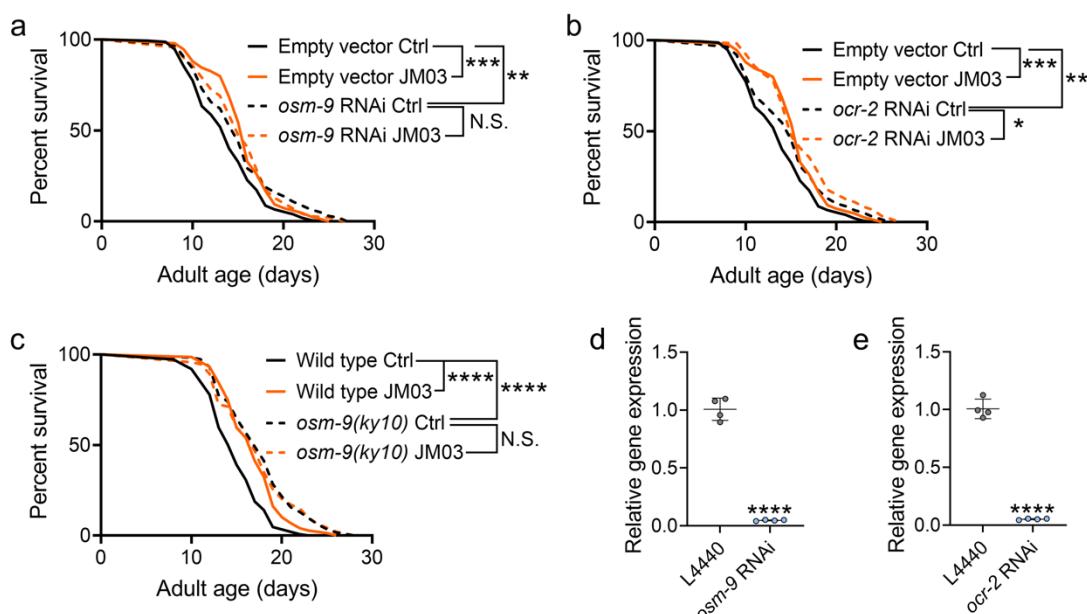
660 42 Evasion, K., Huang, C., Yamben, I., Covey, D. F. & Kornfeld, K. Anticonvulsant
661 medications extend worm life-span. *Science* **307**, 258–262 (2005).


662 43 Bao, K. *et al.* Fangchinoline suppresses conjunctival melanoma by directly
663 binding FUBP2 and inhibiting the homologous recombination pathway. *Cell Death
664 Dis.* **12**, 380 (2021).

666 **Figure Legends**

668 **Fig. 1. Crotamiton extends the lifespan of *C. elegans*.** (a) Phenotypic screening led
669 to the discovery of crotamiton as a hit compound for prolonging the lifespan in wild
670 type (N2) worms. Data were compared using the Log-rank test and statistics have
671 been mentioned in Table S1. (b) The total brood size of crotamiton-treated N2 worms.
672 Control n = 16 and crotamiton n = 17. (c) The viability of crotamiton-treated MRC-5
673 cells. P-values by Student t-test. P = 0.0015 for Cro 200 μ M. (b, c) Data have been
674 represented as the mean \pm SD, and comparisons are made using Student t-test. The
675 graphics represent a compilation of at least 3 independent experiments. * P < 0.05, **
676 P < 0.01.

677

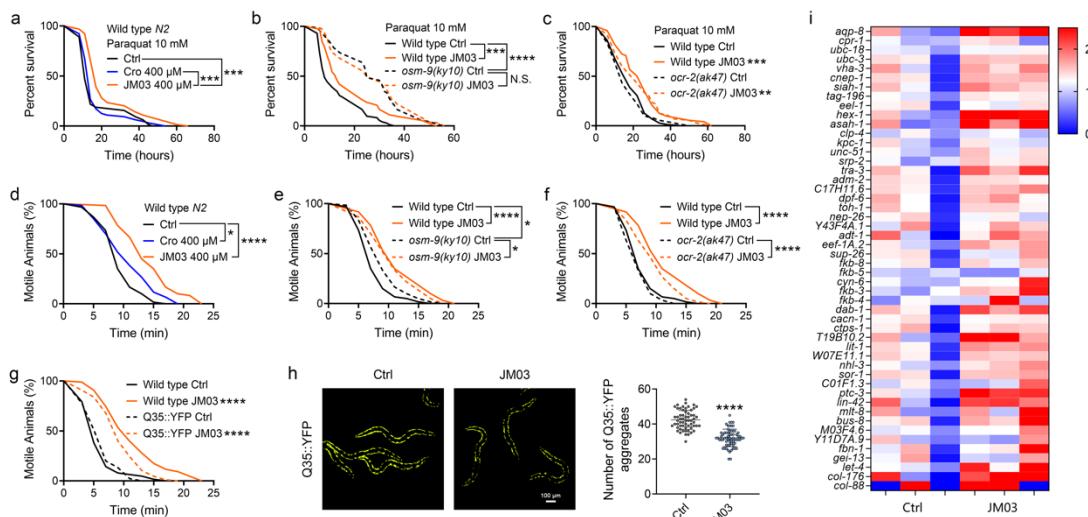


678

679 **Fig. 2. JM03 has better lifespan extension activity in *C. elegans*. (a)** Synthesis of
 680 compounds JM01–JM15. Reagents and conditions: (a) Acryloyl chloride derivatives,
 681 K2CO3, CH2Cl2, 0 °C to rt; (b) 1M NaOH (aq.), CH3OH, rt. **(b)** JM03 prolonged
 682 lifespan in wild type (N2) worms. Data were compared using the Log-rank test and
 683 statistics have been mentioned in Table S1. $P = 0.0737$ for Cro 400 μM. $P < 0.0001$
 684 for JM03 400 μM. **(c)** The mobility of JM03-treated N2 worms by analyzing the body
 685 bend rate at day 3, 8 and 12. Control n = 15 and JM03 n = 15. **(d)** The pharyngeal
 686 pumping rate of JM03-treated N2 worms. Control n = 15 and JM03 n = 15 at day 3, 6,
 687 9 and 12. P -values by two-way AVOVA. $P = 0.0015$ for 9 days. **(e)** The total brood
 688 size of JM03-treated N2 worms. Control n = 15 and JM03 n = 15 at day 3, 6, 9 and 12.
 689 P -values by two-way AVOVA. $P = 0.0001$ for 9 days. **(f)** Cell viability of JM03-treated
 690 MRC-5 cells. Cell viability is relatively stable around 100% until 200 μM, then decreases
 691 significantly at 400 μM. The P-values are indicated as *** for 25 μM, ** for 50 μM, and * for
 692 100 μM.

688 size of JM03-treated *N2* worms. Control n = 14 and JM03 n = 15. (f) The viability of
689 JM03-treated MRC-5 cells. *P*-values by Student t-test. *P* = 0.0023 for JM03 200 μ M.
690 *P* = 0.0412 for JM03 400 μ M. (c-d) Data have been represented as the mean \pm SD,
691 and comparisons are made using two-way AVOVA. (e-f) Data have been represented
692 as the mean \pm SD, and comparisons are made using Student t-test. The graphics
693 represent a compilation of at least 3 independent experiments. * *P* < 0.05, ** *P* < 0.01,
694 **** *P* < 0.0001.

695


696

697 **Fig. 3. JM03-induced lifespan extension depends on OSM-9.** (a) JM03 failed to
698 extend the lifespan of *osm-9* RNAi worms. *P*-values by Log-rank test. *P* = 0.0002
699 between Empty vector Ctrl and Empty vector JM03. *P* = 0.0028 between Empty
700 vector Ctrl and *osm-9* RNAi Ctrl. (b) JM03 extended the lifespan of *ocr-2* RNAi
701 worms. *P*-values by Log-rank test. *P* = 0.0002 between Empty vector Ctrl and Empty
702 vector JM03. *P* = 0.0084 between Empty vector Ctrl and *ocr-2* RNAi Ctrl. *P* = 0.0259
703 between *ocr-2* RNAi Ctrl and *ocr-2* RNAi JM03. (c) JM03 failed to extend the
704 lifespan of *osm-9(ky10)* mutants. *P*-values by Log-rank test. *P* < 0.0001 for Wild type
705 JM03 and *osm-9(ky10)* Ctrl. (d) The transcriptional level of *osm-9* decreased after
706 RNAi treatment. *P*-values by Student t-test. *P* < 0.0001 for *osm-9* RNAi. (e) The
707 transcriptional level of *ocr-2* decreased after RNAi treatment. *P*-values by Student
708 t-test. *P* < 0.0001 for *ocr-2* RNAi. (a-c) Data are compared using the Log-rank test
709 and statistics have been mentioned in Table S2 and S3. (d-e) Data have been
710 represented as the mean \pm SD, and comparisons are made using Student t-test. The

711 graphics represent a compilation of at least 3 independent experiments. * $P < 0.05$, **

712 $P < 0.01$, *** $P < 0.001$, **** $P < 0.0001$.

713

714

715 **Fig. 4. OSM-9 inhibition induced by JM03 has beneficial effect for *C. elegans***

716 **lifespan under oxidative and hypertonic stress conditions. (a)** JM03 extended the

717 lifespan of wild type (*N2*) worms under paraquat-induced oxidative stress condition.

718 *P*-values by Log-rank test. *P* = 0.0001 between Ctrl and JM03 400 μ M. *P* = 0.0002

719 between Cro 400 μ M and JM03 400 μ M. **(b)** JM03 failed to extend the lifespan of

720 *osm-9(ky10)* mutants under oxidative stress condition. *P*-values by Log-rank test. *P* =

721 0.0009 between Wild type Ctrl and Wild type JM03. *P* < 0.0001 between Wild type

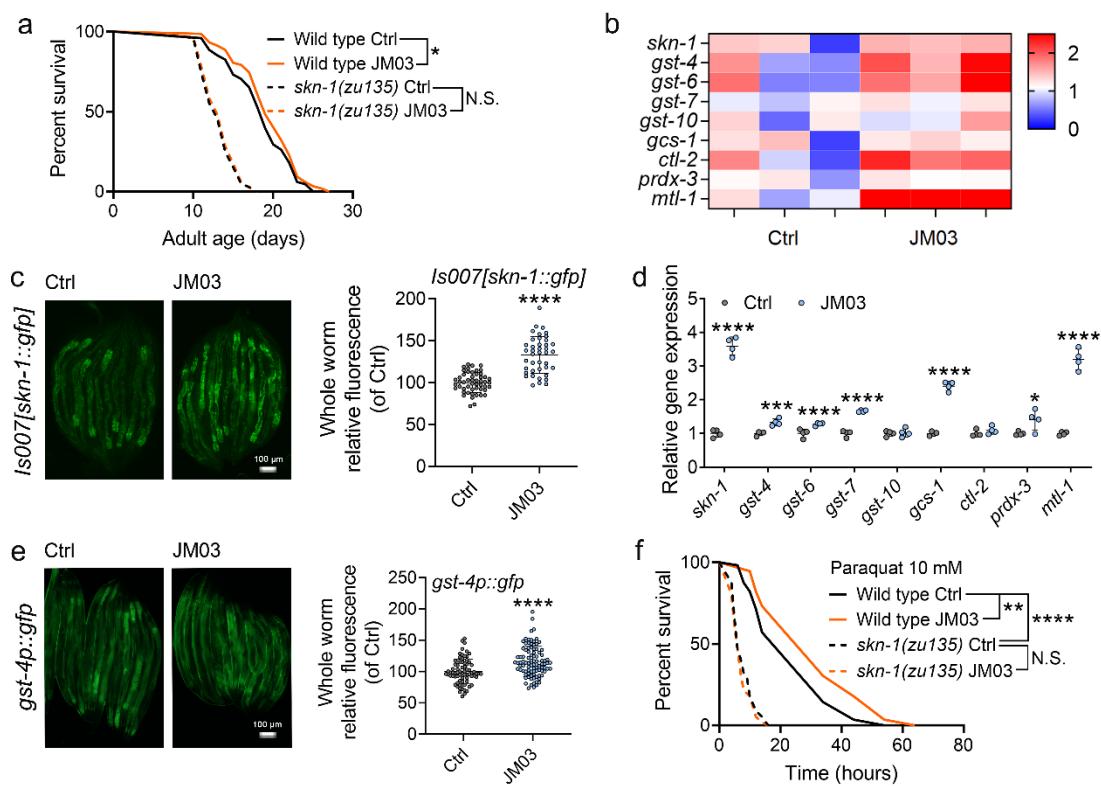
722 Ctrl and *osm-9(ky10)* Ctrl. **(c)** JM03 extended the lifespan of *ocr-2(ak47)* mutants

723 under oxidative stress condition. *P*-values by Log-rank test. *P* = 0.0005 between Wild

724 type Ctrl and Wild type JM03. *P* = 0.0024 between *ocr-2(ak47)* Ctrl and *ocr-2(ak47)*

725 JM03. **(d)** JM03 significantly reduced the paralysis for wild type worms under

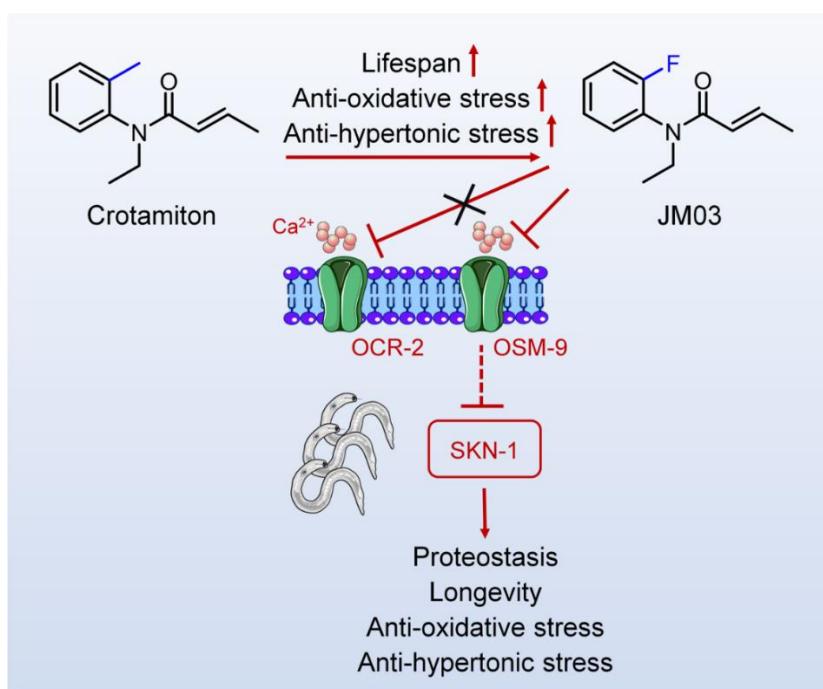
726 NaCl-induced hypertonic stress condition. *P*-values by Log-rank test. *P* = 0.0171


727 between Ctrl and Cro 400 μ M. *P* < 0.0001 between Ctrl and JM03 400 μ M. **(e)** JM03

728 reduced the responsiveness for *osm-9(ky10)* mutants under hypertonic stress condition.

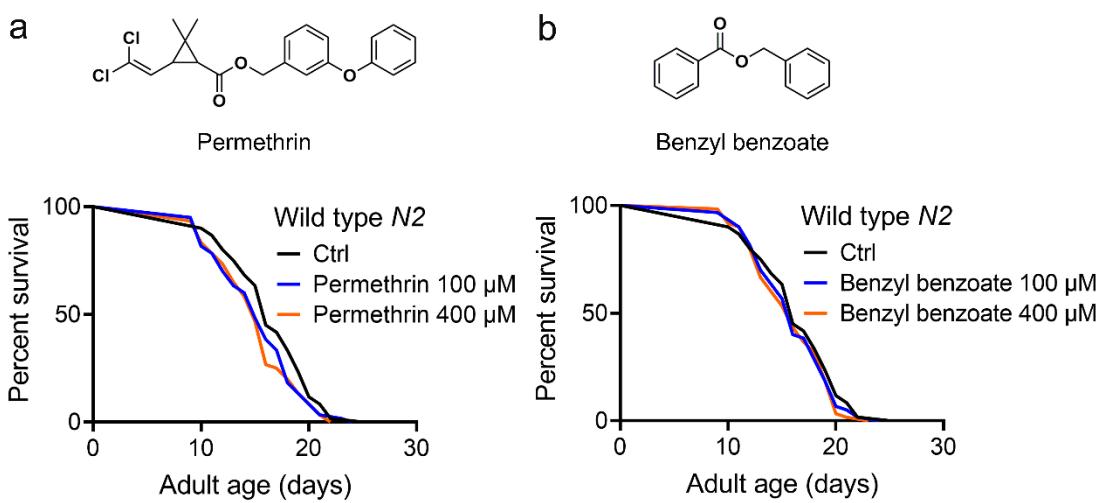
729 *P*-values by Log-rank test. *P* < 0.0001 between Wild type Ctrl and Wild type JM03. *P*

730 = 0.0128 between Wild type Ctrl and *osm-9(ky10)* Ctrl. $P = 0.0254$ between
731 *osm-9(ky10)* Ctrl and *osm-9(ky10)* JM03. (f) JM03 significantly reduced the paralysis
732 for *ocr-2(ak47)* mutants similar to wild type worms under hypertonic stress condition.
733 P -values by Log-rank test. $P < 0.0001$ between Wild type Ctrl and Wild type JM03. P
734 < 0.0001 between *ocr-2(ak47)* Ctrl and *ocr-2(ak47)* JM03. (g) JM03 significantly
735 reduced the paralysis for Q35::YFP worms similar to wild type worms under
736 hypertonic stress condition. P -values by Log-rank test. $P < 0.0001$ between Wild type
737 Ctrl and Wild type JM03. $P < 0.0001$ between Q35::YFP Ctrl and Q35::YFP JM03. (h)
738 JM03 significantly reduced the Q35::YFP aggregation. P -values by Student t-test. $P <$
739 0.0001 for JM03 treatment. (i) Putative proteostasis genes differentially upregulated
740 by JM03 treatment in wild type worms by transcriptome analysis. (a-g) Data are
741 compared using the Log-rank test. (h) Data have been represented as the mean \pm SD,
742 and comparisons are made using Student t-test. The graphics represent a compilation
743 of at least 3 independent experiments. * $P < 0.05$, ** $P < 0.01$, *** $P < 0.001$, **** P
744 < 0.0001 .

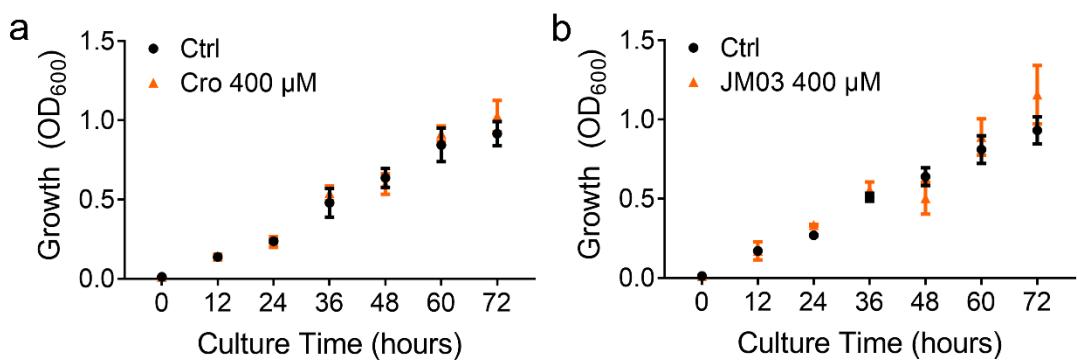

745

746

747 **Fig. 5. JM03-induced lifespan extension through SKN-1 pathway. (a)** JM03
 748 treatment failed to extend the lifespan of *skn-1(zu135)* mutants. *P*-values by Log-rank
 749 test. *P* = 0.0569 between Wild type Ctrl and Wild type JM03. **(b)** *Skn-1* and its targets
 750 genes upregulated by JM03 in wild type worms by transcriptome analysis. **(c)** JM03
 751 significantly increased the fluorescence intensity of *skn-1::gfp*. Scale bar = 100 μ m.
 752 *P*-values by Student t-test. *P* < 0.0001 for JM03 treatment. **(d)** JM03 significantly
 753 increased the transcriptional expression of *skn-1* and *skn-1* regulated genes. *P*-values
 754 by Student t-test. *P* < 0.0001 for *skn-1*. *P* = 0.0006 for *gst-4*. *P* < 0.0001 for *gst-6*. *P* <
 755 0.0001 for *gst-7*. *P* < 0.0001 for *gcs-1*. *P* = 0.0424 for *prdx-3*. *P* < 0.0001 for *mtl-1*. **(e)**
 756 JM03 significantly upregulated the fluorescence intensity of *gst-4p::gfp*. Scale bar =
 757 100 μ m. *P*-values by Student t-test. *P* < 0.0001 for JM03 treatment. **(f)** JM03
 758 treatment failed to extend the lifespan of *osm-9(ky10)* and *skn-1(zu135)* mutants under

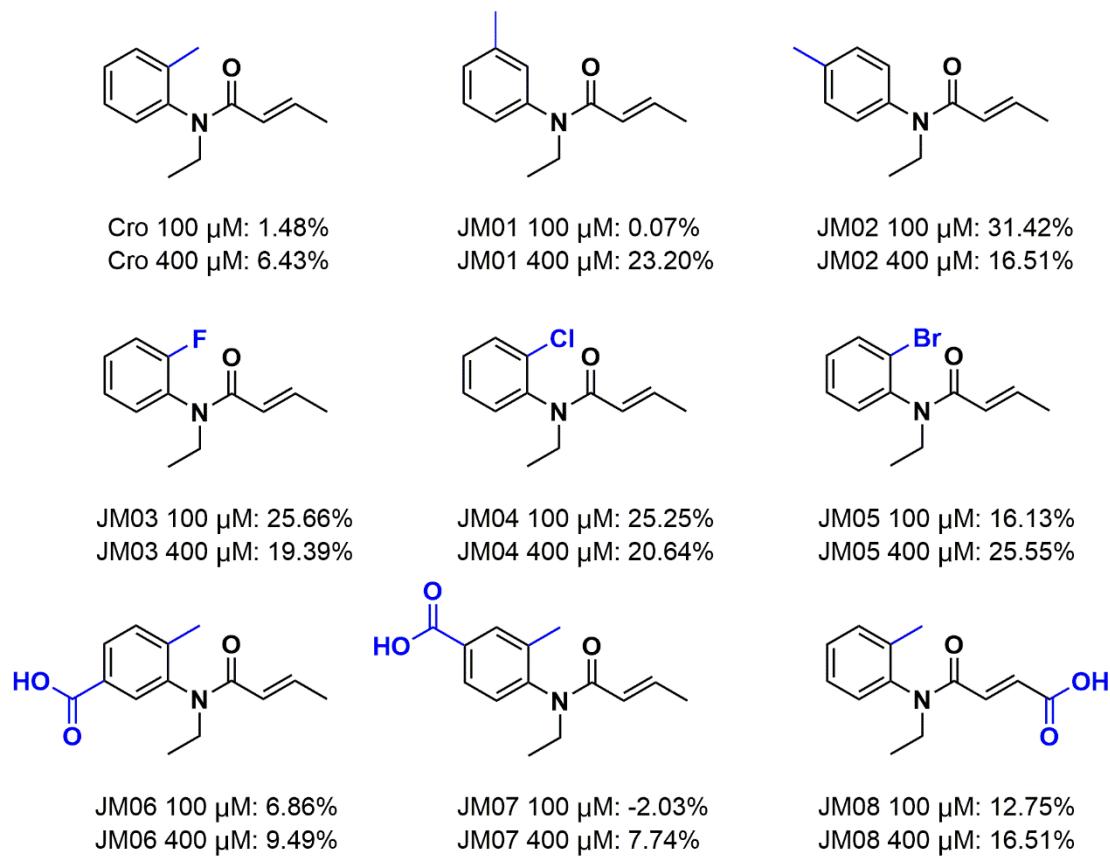

759 oxidative stress condition. P -values by Log-rank test. $P = 0.0059$ between Wild type
760 Ctrl and Wild type JM03. $P < 0.0001$ between Wild type Ctrl and *skn-1(zu135)* Ctrl.
761 (a, f) Data are compared using the Log-rank test. The graphics represent a compilation
762 of at least 3 independent experiments. (c-e) Data have been represented as the mean \pm
763 SD, and comparisons are made using Student t-test. * $P < 0.05$, ** $P < 0.01$, *** $P <$
764 0.001, **** $P < 0.0001$.

765


766 **Fig. 6. Schematic diagram of the mechanism of action of JM03 for regulating the**
767 **lifespan, anti-oxidative and anti-hypertonic stress ability in *C. elegans*.**

1 **Figure S1.**

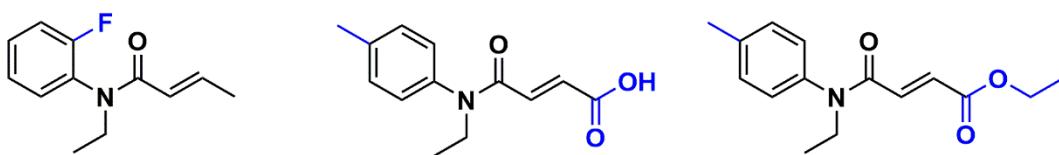
Figure S1. The anti-scabies drugs permethrin and benzyl benzoate failed to extend the lifespan in *C. elegans*. (a) Permethyl failed to extend the lifespan of *C. elegans*. (b) Benzyl benzoate failed to extend the lifespan of *C. elegans*. (a-b) Data were compared using the Log-rank test and statistics have been mentioned in Table S1 Experimental group 3. * $P < 0.05$.


1 **Figure S2**

3 **Figure S2. Crotamiton and JM03 did not reduce the bacterial growth at 400 μM**
4 **concentration. (a)** Crotamiton did not reduce the bacterial growth at 400 μM concentration. **(b)**
5 JM03 did not reduce the bacterial growth at 400 μM concentration. Data represented as the mean
6 ± SD, and comparisons were made using Student t-test. The graphics represent a compilation of at
7 least 3 independent experiments. * $P < 0.05$.

8

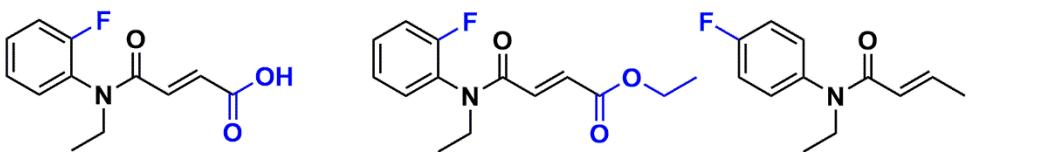
1 **Figure S3**



2

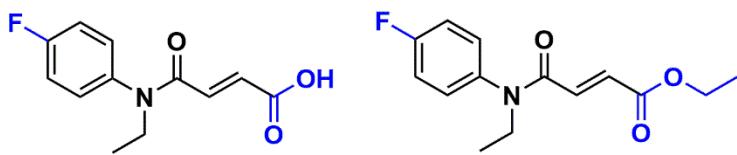
3 **Figure S3. The structures and mean percentage of lifespan extension by crotamiton**
4 **derivatives.**

5


1 **Figure S4**

JM03 100 μM : 10.28%
JM03 400 μM : 11.66%

JM09 100 μM : 10.84%
JM09 400 μM : 14.06%

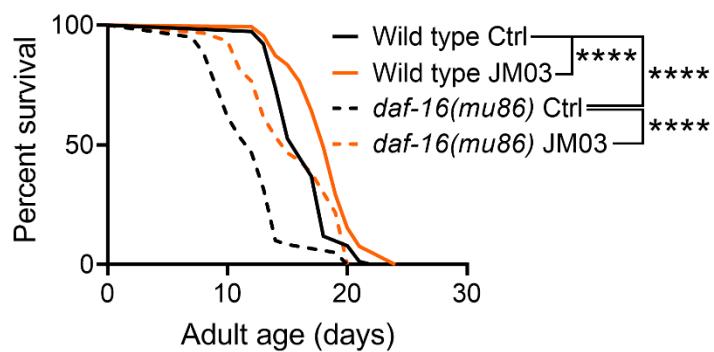

JM10 100 μM : 5.95%
JM10 400 μM : 4.93%

JM11 100 μM : 7.88%
JM11 400 μM : 14.89%

JM12 100 μM : 1.15%
JM12 400 μM : 8.99%

JM13 100 μM : 6.13%
JM13 400 μM : 11.49%

JM14 100 μM : 3.27%
JM14 400 μM : 8.71%


JM15 100 μM : -0.14%
JM15 400 μM : -7.42%

2

3 **Figure S4. The structures and mean percentage of lifespan extension by crotamiton**
4 **derivatives.**

5

1 **Figure S5**

2

3 **Figure S5. JM03 treatment extended the lifespan of *daf-16(mu86)* mutants.** Data are
4 compared using the Log-rank test and statistics have been mentioned in Table S2 Experimental
5 group 2. The graphics represent a compilation of at least 3 independent experiments. **** $P <$
6 0.0001.

7