

1                   **Structural and functional characterization of Rv0792c from *Mycobacterium***  
2                   ***tuberculosis*: identifying small molecule inhibitors against GntR protein**  
3  
4  
5  
6  
7

8  
9                   Neeraj Kumar Chauhan<sup>1#</sup>, Anjali Anand<sup>1#</sup>, Arun Sharma<sup>1</sup>, Kanika Dhiman<sup>2</sup>, Tannu Priya  
10                   Gosain<sup>1</sup>, Prashant Singh<sup>2</sup>, Eshan Khan<sup>3</sup>, Amit Kumar<sup>3</sup>, Deepak Sharma<sup>2</sup>, Ashish<sup>2</sup>, Tarun  
11                   Kumar Sharma<sup>1\*</sup> and Ramandeep Singh<sup>1\*</sup>  
12  
13  
14

15                   <sup>1</sup>Translational Health Science and Technology Institute, Faridabad-Gurugram expressway,  
16                   Gurugram – 121001.

17                   <sup>2</sup> Council of Scientific and Industrial Research-Institute of Microbial Technology, Sector 39A,  
18                   Chandigarh, India.

19                   <sup>3</sup> Department of Biosciences and Biomedical Engineering, Indian Institute of Technology  
20                   Indore, Indore 453552, India.

21  
22  
23  
24  
25                   # Equal first author contributions

26                   **\*Corresponding author:** E-mail: [ramandeep@thsti.res.in](mailto:ramandeep@thsti.res.in) and [tarun@thsti.res.in](mailto:tarun@thsti.res.in).  
27                   Translational Health Science and Technology Institute, Faridabad-Gurugram expressway,  
28                   Faridabad-121001.

29                   Phone: 91-129-2876305 and 91-129-2876370.

30                   **Running Title:** Characterization of *M. tuberculosis* Rv0792c protein.

31  
32  
33  
34                   **Keywords:** *Mycobacterium tuberculosis*, GntR transcription factors, HutC subfamily, bacterial  
35                   pathogenesis, Aptamer, SELEX, SAXS, small molecule inhibitor  
36

37                   **Total number of Pages – 52**

38                   **Number of Figures – 8**

39                   **Number of Tables – 1**

40                   **Number of Supplementary Figures – 8**

41                   **Number of Supplementary Tables - 3**

42 **ABSTRACT**

43 In order to adapt in host tissues, microbial pathogens regulate their gene expression through an  
44 array of transcription factors. Here, we have functionally characterized Rv0792c, a GntR  
45 homolog from *M. tuberculosis*. In comparison to the parental strain,  $\Delta$ Rv0792c mutant strain  
46 of *M. tuberculosis* was compromised for survival upon exposure to oxidative stress, cell wall  
47 agents and infection in guinea pigs. RNA-seq analysis revealed that Rv0792c regulates the  
48 expression of genes that are involved in stress adaptation and virulence of *M. tuberculosis*.  
49 Solution small angle X-ray scattering (SAXS) data steered model building confirmed that the  
50 C-terminal region plays a pivotal role in dimer formation. Systematic evolution of ligands by  
51 exponential enrichment resulted in identification of ssDNA aptamers that can be used as a tool  
52 to identify small molecule inhibitors targeting Rv0792c. Using SELEX and SAXS data based  
53 modelling, we identified residues essential for the DNA binding activity of Rv0792c and I-  
54 OMe-Tyrphostin as an inhibitor of Rv0792c aptamer binding activity. Taken together, we  
55 provide a detailed shape-function characterization of GntR family of transcription factors from  
56 *M. tuberculosis*. To the best of our knowledge, this is the first study that has resulted in the  
57 identification of small molecule inhibitors against GntR family of transcription factors from  
58 bacterial pathogens.

59 **Word count-205**

60

## 61 INTRODUCTION

62 *Mycobacterium tuberculosis* (*M. tuberculosis*), the causative agent of Tuberculosis (TB) has  
63 coexisted with humans for thousands of years and is a leading cause of mortality among  
64 infectious diseases (1). Approximately, 2.0 million people are latently infected with *M.*  
65 *tuberculosis* due to the ability of the pathogen to persist in host tissues (2). The incidence rates  
66 of TB are on the rise due to HIV-TB coinfections, poor patient compliance, rise of drug-  
67 resistant strains and failure of BCG vaccine to impart protection against adult TB (3-6). Hence,  
68 there is a compelling need for identification of novel drug targets and regimens to tackle the  
69 problem imposed by primary and latent TB infections. *M. tuberculosis* is able to sense  
70 extracellular signals and reprogram its transcriptional profiles for stress adaptation and  
71 persistence in host tissues (7). This transcriptional reprogramming is mediated by a complex  
72 network of regulatory proteins comprising of sigma factors, transcription factors, two  
73 components systems and serine-threonine protein kinases (8, 9). This highly coordinated  
74 regulation of gene expression in response to stress exposure is essential for *M. tuberculosis* to  
75 establish infection *in vivo*.

76 GntR family of transcription factors are highly abundant in various archaeal and  
77 bacterial genomes (10, 11). This protein family was named after the gluconate operon  
78 (gntRKPZ) repressor of *Bacillus subtilis* and is among the most widely distributed transcription  
79 factors in prokaryotes (12, 13). These proteins harbor a highly conserved amino-terminus DNA  
80 binding region and a carboxy terminus effector binding/oligomerization domain (10, 13). GntR  
81 proteins have an extended C-terminal which have not been visualized from any of the solved  
82 three-dimensional structure till date. Depending on the effector molecules, GntR family of  
83 transcription regulators have been categorized into various sub-families such as FadR, AraR,  
84 DevA, DasR, HutC, MocR, PlmA and YtrA (10, 13). Among these, FadR is the most well  
85 characterized GntR sub-family of transcription regulators. The binding of acyl-CoA to the  
86 effector domain of the FadR subfamily induces a conformational change and DNA binding is  
87 mediated by the helix-turn-helix motif (14). In addition to regulation of gluconate metabolism,  
88 GntR family of transcription factors have been shown to regulate microbial processes such as  
89 carbon metabolism, motility, antibiotic production, biofilm formation and pathogenesis (15-  
90 18). The genome of *M. tuberculosis* encodes for 8 homologs of GntR family of transcription  
91 regulators. Among these, Rv0043c, Rv0165c, Rv0494, Rv0586 and Rv3060c belongs to FadR  
92 family of GntR regulators. Previously, it has been shown that Rv0494 binds to fatty acyl CoA  
93 and negatively regulates the transcription of *kas* operon which is involved in mycolic acid  
94 biosynthesis (19). PipR (Rv0494 homolog) in *M. smegmatis* regulates the expression of genes

95 involved in piperidine and pyrrolidine utilization of *M. smegmatis* (20). Rv0165c negatively  
96 regulates *mce1* operon and is necessary for *M. tuberculosis* persistence (21). Rv0586,  
97 negatively regulates the expression of *mce2* operon and endonuclease IV (22). In another study  
98 Zeng et al., demonstrated that the expression of genes required for vancomycin susceptibility  
99 are regulated by Rv1152 (23).

100 Here, we have functionally characterized Rv0792c from *M. tuberculosis* that belongs  
101 to HutC subfamily of GntR transcription regulators. We report that Rv0792c is an  
102 autoregulatory transcription factor and is required for *M. tuberculosis* survival in oxidative  
103 stress and to establish infection in host tissues. To the best of our knowledge, this is the first  
104 report where SELEX and SAXS approaches have been combined to determine: (i) the  
105 structural state of Rv0792c, (ii) aptamer binding pocket of Rv0792c and (iii) identification of  
106 I-OMe-Tyrphostin as a small molecule inhibitor of Rv0792c with a log IC<sub>50</sub> value of ~ 2.0 $\mu$ M.  
107 The results reported here are expected to pave ways to interfere or regulate the functioning of  
108 Rv0792c from *M. tuberculosis* to rationally identify and validate novel small molecule  
109 inhibitors.

110 **Materials and Methods**

111 **Bacterial strains, media and growth conditions.** The strains, plasmids and primers used in  
112 the study are shown in Table S1. Various *E. coli* strains were cultured in Luria-Bertani broth  
113 medium. *M. tuberculosis* H<sub>37</sub>Rv was used as a parental strain in this study. Unless mentioned,  
114 culturing of *M. tuberculosis* strains was performed in Middlebrook 7H9 and Middlebrook  
115 7H11 medium as previously described (24). When required, the antibiotics were added at the  
116 following concentration; ampicillin, 100 µg/ml for *E. coli*, kanamycin, 25 µg/ml for both *E.*  
117 *coli* and mycobacteria, hygromycin, 150 µg/ml for *E. coli* and 50 µg/ml for mycobacteria and  
118 chloramphenicol, 34 µg/ml for *E. coli*. Biofilm experiments were performed in slightly  
119 modified Sauton's medium: Ferric ammonium citrate 50 mg/L; MgSO<sub>4</sub>.7H<sub>2</sub>O 0.05 g/L; ZnSO<sub>4</sub>  
120 0.01 mg/L; K<sub>2</sub>HPO<sub>4</sub> 1.0 g/L, CaCl<sub>2</sub> 0.05 g/L; asparagine 0.5 g/L; Na<sub>2</sub>HPO<sub>4</sub> 2.5 g/L and  
121 Tyloxapol 0.05%. MIC<sub>99</sub> determination assays were performed using microdilution method in  
122 the presence of different drugs as described previously (25).

123 **Protein expression and purification.** DNA fragments coding for either wild type Rv0792c or  
124 mutant proteins (Rv0792c<sup>R49A</sup> or Rv0792c<sup>G80D</sup> or Rv0792c<sup>R41A</sup> or Rv0792c<sup>P40A</sup>) were cloned  
125 into IPTG inducible prokaryotic expression vector, pET28b. For protein expression and  
126 purification, various constructs were transformed into *Escherichia coli* BL21-CodonPlus  
127 strain. The expression of recombinant proteins was induced by the addition of 1.0 mM IPTG  
128 at 18 °C at 200 rpm for 12-16 hrs. The induced cultures were harvested by centrifugation at  
129 6000g, pellets were resuspended and clarified lysates were prepared by sonication in 1x PBS.  
130 The recombinant protein from the clarified lysates was purified using Ni<sup>2+</sup>-NTA  
131 chromatography. The purified fractions were analysed by SDS-PAGE, pooled, dialyzed,  
132 concentrated and stored at -80°C in the buffer (10 mM Tris - pH 7.4, 100 mM NaCl and 5%  
133 glycerol) till further use.

134 **Sedimentation velocity experiments.** Analytical ultracentrifuge experiments were performed  
135 in Beckman optima XL-I analytical ultracentrifuge equipped with an absorbance-based  
136 detection system. The two-sector charcoal centrepiece of 1.2 cm path length built with sapphire  
137 windows was used for the study. The cell was filled with 390 µL of protein sample at a  
138 concentration of 0.38 mg/mL, 0.76 mg/mL or 1.52 mg/mL in Buffer A (25 mM HEPES - pH  
139 7.2, 400 mM NaCl and 10% Glycerol). The reference cell was filled with 400 µL of buffer A.  
140 Radial scans were collected at 40,000 rpm for 12-14 hours with an interval of 3 mins at 280nm.  
141 The data analysis was performed with the 'SedFit analysis' program using continuous  
142 distribution(s) model based on the Lamm equation. Parameters such as buffer density

143 ( $\rho=1.01660$ ), buffer viscosity ( $\eta=0.01057$  poise) and partial specific volume ( $v=0.73677$ ) of  
144 protein were measured by the Sednertp program. Standard sedimentation coefficients of  
145 samples were represented as  $S_{20,w}$  referring sedimentation at 20°C.

146 **Generation of Rv0792c mutant and complemented strain of *M. tuberculosis*.** In order to  
147 investigate the role of Rv0792c in *M. tuberculosis* physiology and pathogenesis, the mutant  
148 strain was constructed using temperature sensitive mycobacteriophages as per standard  
149 protocols (26). The replacement of the Rv0792c coding region with the hygromycin resistance  
150 gene in the mutant strain was confirmed by PCR and qPCR using locus specific primers. For  
151 the generation of complemented strain, Rv0792c was amplified along with its native  
152 promoter and cloned into an integrative vector, pMV306K. The electrocompetent cells of  
153 Rv0792c mutant strain was electroporated with the recombinant plasmid pMV306K-  
154 Rv0792c and the transformants were selected on Middlebrook 7H11 medium supplemented  
155 with kanamycin and hygromycin.

156 **Stress Experiments.** In order to evaluate the role of Rv0792c in stress adaptation, early-log  
157 phase cultures ( $OD_{600nm} \sim 0.2$ ) of various strains were subjected to different stress conditions  
158 as previously described (24, 27). For drug tolerance experiments, mid-log phase cultures  
159 ( $OD_{600nm} \sim 1.0$ ) were exposed to different drugs such as isoniazid, rifampicin and levofloxacin  
160 at 10x MIC<sub>99</sub> concentration. For bacterial load enumeration, 10-fold serial dilutions were  
161 prepared and 100  $\mu$ l was plated on Middlebrook 7H11 medium at 37°C for 3-4 weeks.

162 **Animal Experiments.** For animal experiments, pathogen-free female guinea pigs (Hartley  
163 strain weighing, 250–300 g) were purchased from Lala Lajpat Rai University of Veterinary  
164 and Animal Sciences, Hisar, India. The infection experiments were supervised as per CPCSEA  
165 guidelines and performed at the Infectious Disease Research Facility, Translational Health  
166 Science and Technology Institute, New Delhi, India. The animal experiments were approved  
167 by the Institutional animal ethics committee of Translational Health Science and Technology  
168 Institute. For aerosol infection, the strains were grown till mid-log phase, washed twice with  
169 1x PBS and single cell suspensions were prepared. The guinea pigs were infected using a Glas-  
170 Col aerosol chamber with single cell suspensions of various strains that resulted in implantation  
171 of 50-100 bacilli at day 1 post-infection. The extent of disease progression in guinea pigs was  
172 determined by both CFU and histopathology analysis as described previously (24).

173 **RNA-seq analysis.** For RNA-seq analysis, total RNA was isolated from mid-log phase  
174 ( $OD_{600nm} \sim 0.8$ ) cultures of parental and Rv0792c mutant strain using Trizol method as  
175 described previously (24). The purified RNA was shipped to Aggrigenome Labs Pvt Ltd (India)

176 for sequencing. The preparation of library, RNA-sequencing and data analysis was performed  
177 as previously described (28). The transcripts showing differential expression of more than 2.0  
178 fold with a *P-value* <0.05 were considered to be significant. Quantitative PCR was performed  
179 to validate the identified DEGs in the Rv0792c mutant strain. For qPCR studies, cDNA was  
180 synthesized using 200 ng of DNase I treated mRNA and Superscript III reverse transcriptase  
181 as per manufacturer's protocols. The synthesized cDNA was diluted 1:5 and qPCR was  
182 performed using gene specific primers and SYBR green mix. The expression of genes of  
183 interest was normalized to the transcript levels of *sigA* (a housekeeping gene) and was  
184 quantified as previously described (24).

185 **Aptamer selection against Rv0792c.** Aptamer selection against Rv0792c was performed  
186 using SELEX method as previously described (29). Briefly, to identify unique aptamer  
187 sequences specific for Rv0792c, aptamer library (2000 picomoles) in selection buffer (SB; 10  
188 mM Tris, pH-7.5, 10 mM MgCl<sub>2</sub>, 50 mM KCl, 25 mM NaCl) was allowed to bind nitrocellulose  
189 membrane (NCM) to remove the NCM binding species. The unbound ssDNA was removed  
190 from the NCM and incubated with (His)<sub>6</sub>-Rv0792c immobilized membrane. After one hour of  
191 incubation, the membrane was washed with SB supplemented with 0.05% Tween-20. The  
192 protein bound aptamers were eluted by heating at 92°C and further enriched through PCR. The  
193 stringency of selection in successive rounds was enhanced by (i) increasing the number of  
194 washes (2-5 times), (ii) the strength of buffer (0.05-1% Tween-20), (iii) decreasing incubation  
195 time in the selection step and (iv) increasing the incubation time for negative selection steps.  
196 After 6 rounds of selection, the highest affinity pool was cloned in pTZ57R/T vector. The  
197 plasmid DNA was isolated from randomly picked transformants and confirmed by sequencing.  
198 Subsequently, the sequence homology among the sequenced aptamers was performed using  
199 CLUSTALW and Bio Edit sequence alignment editor.

200 **Aptamer Linked Immobilized Sorbent Assay (ALISA) and determination of dissociation  
201 constant (K<sub>d</sub>).** ALISA was performed as previously described (29). Briefly, a Nunc  
202 MaxiSorp™ 96 well-plate was coated with 500 ng of purified wild type or mutant proteins in  
203 100 µL (0.1 mol/L) sodium bicarbonate buffer (pH-9.6) at 37°C for 2 hrs. The plate was  
204 incubated with blocking buffer (5% BSA and 0.25% Tween-20) at room temperature. After  
205 blocking, the wells were washed once with SB. This was followed by the addition of 100 pmol  
206 of 5' biotinylated aptamer in SB and plates were further incubated at room temperature.  
207 Following incubation for 1 hr, the wells were washed twice with SB supplemented with 1%  
208 Tween-20 and SB only. Following this, 1:3000 streptavidin-horse radish peroxidase antibody  
209 (strep-HRP) was added for 1 hr at room temperature. The unbound antibody was removed by

210 washing and 100  $\mu$ L of 3, 3', 5, 5'-tetramethylbenzidine (TMB) was added. The reaction was  
211 stopped after 5-10 mins of incubation by the addition of 100  $\mu$ L of 5% H<sub>2</sub>SO<sub>4</sub>. The  
212 quantification of the protein-bound aptamer-strep complex was determined by measuring  
213 absorbance at 450 nm. For K<sub>d</sub> determination, 500 ng protein was coated per well. After  
214 blocking, aptamer was added in the range of 2-500 nM and ALISA was performed as described  
215 above. Next, the absorbance reading at 450nm was plotted as a function of aptamer  
216 concentration and K<sub>d</sub> was determined using non-linear regression model in Graph-pad Prism.

217 **Electromobility gel shift assay (EMSA) for aptamer and promoter binding with Rv0792c.**

218 For EMSA, 100 pmol of selected aptamer candidates were incubated with 8  $\mu$ M and 16  $\mu$ M of  
219 Rv0792c protein in binding buffer (10 mM Tris, pH-7.8, 10 mM MgCl<sub>2</sub>, 50 mM KCl, 25 mM  
220 NaCl, 0.5 mg salmon sperm DNA, 0.75 mg BSA and 2.5% glycerol) for 20 mins at 4°C. The  
221 reactions were resolved on 2% agarose gel and the protein-aptamer complexes were detected  
222 by staining using SYBR safe. For promoter binding assays, the amplified fragments were gel  
223 extracted, end-labeled with [ $\gamma$ -<sup>32</sup>P] ATP (1000 Ci nmol<sup>-1</sup>) using T4 polynucleotide kinase and  
224 purified using Sephadex G-50 spin columns (30). Promoter binding assays were performed  
225 using radiolabeled promoter fragment and 1  $\mu$ M of (His)<sub>6</sub>-Rv0792c in binding buffer (10 mM  
226 Tris, pH-7.4, 50 mM NaCl, 10 mM MgCl<sub>2</sub>, 0.2 mg/ml BSA, 10% glycerol, 1 mM dithiothreitol  
227 (DTT), and 200 ng of sheared herring sperm DNA). Incubation was performed on ice for 20  
228 mins and subsequently, the reactions were resolved on 6% non-denaturing polyacrylamide gels  
229 at 4°C, dried and bands were visualized using a phosphorimager.

230 **Small angle X-ray scattering (SAXS) AND Model Building.** The SAXS studies were  
231 performed at an in-house SAXspace instrument using a line collimation source (X-rays  
232 wavelength 0.15414 nm) (Anton Paar, Graz, Austria). The samples were studied with sample  
233 to detector distance of 317.06 mm. About 50  $\mu$ L of unliganded proteins and aptamers, their  
234 molar mixtures and matched buffer were transferred in a 1 mm thermostated quartz capillary,  
235 and scattered X-rays were monitored on a 1D Mythen detector. An average of three frames of  
236 one hour each was obtained for further data analysis. Table S2 mentions the programs used  
237 for different steps of data collection and processing. SAXS data analyses were performed using  
238 the ATSAS suite of programs v 2.8.4. Using shape constraints in the SAXS data profile, the  
239 shape of the predominant scattering particles was restored. Residue details models of  
240 unliganded proteins/aptamers and their docked structures were compared and superimposed  
241 using automated alignment of inertial axes using CRYSTAL and SUPCOMB programs in the  
242 suite, respectively.

243 The models of unliganded (His)<sub>6</sub>-Rv0792c and ssDNA aptamers with residue/base  
244 level details were generated using the primary structures of protein and aptamers. SWISS-  
245 MODEL server was used to search for structural templates of Rv0792c  
246 (<https://swissmodel.expasy.org>) (31). The results provided the putative template for Rv0792c  
247 from residues 53-286 of lin2111 from *Listeria innocua* [PDB ID: 3EDP]. The amino-terminus  
248 1-52 residues and carboxy terminus segment from 287-303 residues were generated using  
249 molecular dynamics of the segments. MD stimulation studies were performed using Tinker  
250 molecular modeling package v 4.2 along with OPLSUA forcefield. Advanced Newton  
251 Raphson method was employed to compute structures of segments at 298K in implicit water  
252 ( $\epsilon = 80$ ). Simulations were run for 10 ns with restart coordinates written at every 1 ps. The  
253 predominant low energy structures were filtered out as described previously (32, 33). SAXS  
254 data supported a dimeric state of unliganded Rv0792c, thus using the dimer as a central  
255 scaffold, two copies of predominant low energy conformations of N- and C-terminal segments  
256 were aligned in space using the SASREF program, as reported previously (34). The composite  
257 structure of Rv0792c was generated and energy minimized by performing template-based  
258 modeling using the SWISS-MODEL server. ELNEMO server was used to compute low  
259 frequency collective vibrations accessible to the protein structure (35). ssDNA aptamers were  
260 modeled using their sequences and the ICM 3.8 program. SAXS data supported their masses  
261 to be close to their monomers and thus monomeric forms of all three aptamers were considered  
262 for modeling studies. Repeated runs of global minimization and local optimization were  
263 performed till the conformations did not change more than 0.01 RMSD across all atoms. By  
264 comparing theoretical SAXS profiles of the ten lowest energy conformations of aptamers with  
265 experimental SAXS data on the aptamers, the best conformation of aptamer agreeing with  
266 experimental data was identified. Further, the ELNEMO server was performed to compute the  
267 most collective low energy vibration mode to compare with SAXS data-based information and  
268 shape. These structures of ssDNA aptamers were docked on the structure of dimeric Rv0792c  
269 protein, and their pose on the protein was identified using SAXS data of the complexes as  
270 reference. The graphs pertaining to SAXS data analysis were prepared using OriginLab v5  
271 software. The images of molecular models were prepared using open-source Pymol v 1.1 and  
272 UCSF Chimera softwares v 1.14.

273 ***In silico* screening of drug-like molecules.** Molecular docking studies were performed using  
274 ICM Chemist Pro software v3.8. Using the interaction distance mapping option, all residues  
275 within 3 Å of the interacting surface of Rv0792c to aptamers, from the models of protein:

276 aptamer complexes were selected. From both chains of Rv0792c, stretches of residues 125-  
277 137, 224-231, 253-257, 279-289, and 300-303 were selected to form the aptamer binding site.  
278 The library of approved drugs from drugbank.ca was used for docking studies, and the docking  
279 was done in an automated manner. Full degrees of freedom and rotations were given to the  
280 ligand during evaluating docking poses on the identified receptor surface. The docking was  
281 carried out individually with each ligand, and its various poses with respective to the receptor  
282 pocket's charge and shape profile was calculated. The scores obtained of the docked pose were  
283 then arranged from low to high, and the top ten lowest scoring ligands were further selected  
284 for optimizing receptor residues around the low score pose of ligand to obtain new score. The  
285 shortlisted ligands were further arranged according to the 4D docking score.

286 Next, we performed competitive ALISA to determine the ability of top two hits to  
287 compete with the binding of aptamer to Rv0792c. The coating of the wild-type protein and  
288 blocking of non-specific sites was performed as described above. Subsequently, the binding of  
289 aptamer was determined in the presence or absence of the top-two small molecule inhibitors.  
290 For IC<sub>50</sub> determination assays, inhibition assays were performed in the presence of 2.0-fold  
291 serial dilutions of small molecules. IC<sub>50</sub> values were calculated as the drug concentration that  
292 showed 50% inhibition for aptamer binding with Rv0792c.

293 **Data availability:** The raw data files for RNA-seq experiments has been deposited at NCBI:  
294 PRNJA727912. The data pertaining to unliganded protein, aptamer and protein-aptamer  
295 complexes is available at <https://www.sasbdb.org/project/1396/kv4wukfdjsj>.

296 **Statistical analysis.** GraphPad Prism 8 software (version 8.4.3, GraphPad Software Inc., CA,  
297 USA) was used for statistical analysis and graphs generation. Significant differences between  
298 indicated groups were calculated using the 't-test' function and were considered significant at  
299 a *P*-value of <0.05.

300 **RESULTS**

301 **Rv0792c from *M. tuberculosis* belongs to HutC sub-family of GntR transcription factors.**

302 GntR family of transcription factors are highly conserved in the bacterial kingdom and *M.*  
303 *tuberculosis* genome encodes for eight GntR homologs (Rv0043c, Rv0165c, Rv0494, Rv0586,  
304 Rv0792c, Rv1152, Rv3060c and Rv3575c). Multiple sequence alignment revealed that GntR  
305 homologs from *M. tuberculosis* shared almost identical residues in DNA binding amino  
306 terminus region. As expected, not much sequence identity was seen in the effector binding  
307 region of the GntR family of transcription regulators. Phylogenetic analysis revealed the  
308 formation of two preponderant groups. Group-1 is the largest and ~91% of proteins are  
309 clustered together in Group-1, possibly due to high similarity in amino acid sequences (Fig.  
310 1A). As shown in Fig. 1A, Rv0792c clustered with different proteins of the GntR family such  
311 as HutC from *P. putida*, DasR from *S. coelicolor*, NagR from *B. subtilis*, PhnR from *S. enterica*,  
312 MngR from *E. coli* (10, 36-38). Multiple sequence alignment analysis between Rv0792c and  
313 other HutC homologs revealed that these proteins share an identity of ~ 30% among themselves  
314 (Fig. S1). FadR homologs from *M. tuberculosis* (Rv0494, Rv0586 and Rv3060c) and YtrA  
315 homolog (Rv1152) also grouped with their respective analogs from other bacterial species (Fig.  
316 1A). The Group-2 cluster consisted of Rv3575c and GntR homolog from *Klebsiella*  
317 *Pneumoniae* that shared similarity 24% among themselves (Fig. 1A). In the present study, we  
318 have performed experiments to biochemically, functionally and structurally characterize  
319 Rv0792c from *M. tuberculosis*.

320 **Rv0792c is a dimeric protein and bind its own promoter.** For biochemical characterization,  
321 Rv0792c was cloned in pET28b and recombinant protein was purified with amino-terminus  
322 histidine tag (Fig. 1B). The purity of various fractions was confirmed by SDS-PAGE analysis.  
323 The purified fractions were dialyzed, concentrated and subjected to sedimentation velocity  
324 ultracentrifugation experiments at varying protein concentrations, 0.38 mg/mL, 0.76 mg/mL  
325 and 1.52 mg/mL (Fig. 1C). The continuous distribution (c(s)) analysis of absorbance scans at  
326 different protein concentrations revealed that Rv0792c predominantly sediments at  $s_{20,w}$  of  
327 ~2.3S, consistent with a molecular weight of ~58kDa, thereby suggesting the protein is  
328 primarily dimeric in solution (Fig. 1C and Table 1). Additionally, very small fractions of higher  
329 order oligomeric species sedimenting at  $s_{20,w}$  of ~4.3S (8-11%) and ~8.5S (4-5%)  
330 corresponding to 130 kDa and 396 kDa, respectively, were also observed (Fig. 1C). The  
331 increase in fraction of species sedimenting at ~4.3S and ~8.5S with increased protein  
332 concentration suggest formation of higher order oligomers at relatively higher concentrations  
333 of the protein.

334 It has been previously reported that the GntR family of transcription factors bind to  
335 their own promoters and autoregulate their own expression (39, 40). Therefore, we next  
336 performed EMSA assays to study the binding of purified Rv0792c with its native promoter. As  
337 shown in Fig. 1D, the purified protein was able to bind to the radiolabeled promoter in a dose-  
338 dependent manner. Clear retardation was seen in the mobility of labeled DNA in the presence  
339 of purified protein. These observations suggest that similar to other GntR homologs, Rv0792c  
340 binds to its own promoter and likely autoregulates its expression (39, 40). DNA binding  
341 domains of GntR protein at the amino-terminus are highly conserved (14, 41). Multiple  
342 sequence alignment analysis revealed that residues important for DNA binding, Arg49 and  
343 Gly80 of Rv0792c that corresponds to Arg35 and Gly66 of FadR proteins were conserved.  
344 Next, we performed EMSA assays using labeled Rv0792c promoter and purified wild type,  
345 Rv0792c<sup>R49A</sup> and Rv0792c<sup>G80D</sup> mutant proteins. We observed that Rv0792c<sup>R49A</sup> mutant protein  
346 binds to the Rv0792c promoter (Fig. 1D). However, the mutation of glycine 80 to aspartic acid  
347 completely abrogated the ability of Rv0792c to bind to its native promoter (Fig. 1D). Based on  
348 these findings, we conclude that Rv0792c binds to its own promoter and glycine residue at  
349 position 80 is essential for its DNA binding ability.

350 **Rv0792c is essential for the adaptation of *M. tuberculosis* upon exposure to oxidative  
351 and cell wall damaging agent.** TB infection is an outcome of *M. tuberculosis* adaptation to  
352 unfavorable environmental conditions encountered in host tissues such as low oxygen, nutrient  
353 limitation, reactive nitrogen intermediates, oxidative and acidic stress (42). Several metabolic  
354 pathways including transcriptional regulators are essential for *M. tuberculosis* pathogenesis.  
355 The exact role of GntR homologs in *M. tuberculosis* pathogenesis has not been deciphered  
356 extensively. Here, we determined the role of Rv0792c in physiology, stress adaptation and  
357 virulence of *M. tuberculosis*. Using temperature sensitive mycobacteriophages, we  
358 generated a  $\Delta$ 0792c mutant strain of *M. tuberculosis* (Fig. S2A). The construction of the  
359 mutant strain was confirmed by PCR and qPCR using gene specific primers. As shown in  
360 Fig. S2B, locus specific primers resulted in amplification of ~ 1kb and 2.1 kb bands in the  
361 case of wild type and mutant strain, respectively. The restoration of Rv0792c expression in  
362 the complemented strain was confirmed by qPCR (Fig. S2C). As shown in Fig. S2D and  
363 S2E, no changes were observed in growth patterns and colony morphology of parental and  
364  $\Delta$ 0792c mutant strain of *M. tuberculosis*.

365 We next compared the survival of various strains in different stress conditions *in*  
366 *vitro*. As shown in Fig. 2A, a growth defect of 5.0- and 11.0-folds was seen in the survival

367 of mutant strain in comparison to the parental strain after exposure to oxidative stress for 24  
368 hrs and 72 hrs, respectively (Fig. 2A,  $*P<0.05$ ). This growth defect associated with the  
369 mutant strain was restored in the complemented strain (Fig. 2A). The mutant strain also  
370 exhibited a  $\sim 5.0$ -fold growth defect after exposure to cell wall degrading agent, lysozyme  
371 in comparison to the wild type strain (Fig. 2B,  $**P<0.01$ ). We observed that both wild type  
372 and mutant strains were susceptible to comparable levels after exposure to other stress  
373 conditions tested in this study (Fig. 2C, 2D, 2E and 2F). Since GntR's have been shown to  
374 be involved in the biofilm formation of bacterial pathogens, we also determined the role of  
375 Rv0792c in *M. tuberculosis* biofilm formation *in vitro* (43-46). We observed that the  
376 parental and  $\Delta$ 0792c mutant strain of *M. tuberculosis* were comparable in their ability to  
377 form biofilms *in vitro* (data not shown). In order to understand the role of Rv0792c in drug  
378 tolerance, we next determined the susceptibility of various strains to drugs with a different  
379 mechanism of action. Fig.S2F unequivocally demonstrates that deletion of Rv0792c did not  
380 alter the susceptibility of *M. tuberculosis* after 14 days of exposure to aforesaid drugs. In  
381 concordance, both strains displayed comparable MIC<sub>99</sub> values of 0.39  $\mu$ M, <0.05  $\mu$ M, 0.78  
382  $\mu$ M and 3.125  $\mu$ M against isoniazid, rifampicin, levofloxacin and ethambutol, respectively.  
383 Taken together, we demonstrate that Rv0792c is important for the adaptation of *M.*  
384 *tuberculosis* upon exposure to oxidative stress *in vitro*.

385 **Deletion of Rv0792c impairs the ability of *M. tuberculosis* to cause infection in guinea  
386 pigs.** Next, we determined the ability of Rv0792c to contribute to *M. tuberculosis*  
387 pathogenesis using the guinea pig model of infection. For animal experiments, guinea pigs  
388 were infected with various strains and aerosol infection resulted in implantation of  $\sim$ 50-100  
389 bacilli in lungs at day 1 post-infection. We observed discrete multiple lesions in lung tissues  
390 of animals infected with parental and complemented strain. The number of these lesions  
391 were significantly reduced in lung tissues from mutant strain infected guinea pigs at both 28  
392 - and 56-days post-infection (Fig. 3A). We did not observe any differences between the  
393 weight of lung tissues of guinea pigs infected with various strains. As shown in Fig. 3B, at  
394 4 weeks post-infection  $\sim$  230.0-fold significantly higher bacterial numbers were observed in  
395 lungs of wild type strain infected guinea pigs in comparison to the mutant strain infected  
396 guinea pigs ( $**P<0.01$ ). In agreement, splenic bacillary loads were higher in guinea pigs  
397 infected with wild type strain by  $\sim$  57.5-fold compared to the mutant strain infected animals  
398 (Fig. 3C,  $**P<0.01$ ). Further, the lungs and splenic bacillary loads were reduced by  $\sim$  120.0-  
399 and  $\sim$  600.0- folds, respectively, in mutant strain infected guinea pigs, in comparison to wild

400 type infected guinea pigs at 56-days post-infection (Fig. 3D, 3E, \*\*\* $P<0.001$ , \*\* $P<0.01$ ).  
401 We also observed that complementation with Rv0792c partially restored the growth defect  
402 associated with the mutant strain at both 4- and 8- weeks post-infection (Fig. 3B, 3C, 3D  
403 and 3E). Concordantly, minimal tissue involvement was observed in hematoxylin and eosin  
404 stained sections from guinea pigs infected with the mutant strain at 8 weeks post-infection  
405 (Fig. 3F). The granuloma formation was seen in sections from animals infected with either  
406 wild-type or complemented strains (Fig. 3F). Taken together, we show that Rv0792c is not  
407 essential for growth *in vitro* but is indispensable for *M. tuberculosis* to establish infection in  
408 host tissues.

409 **Effect of deletion of Rv0792c on the transcriptional profile of *M. tuberculosis*.**

410 The observed growth defect of the Rv0792c mutant strain in guinea pigs suggests that it might  
411 regulate the expression of genes that are involved in the virulence or stress adaptation of *M.*  
412 *tuberculosis*. In order to define Rv0792c regulon, RNA-seq experiments were performed using  
413 total RNA isolated from mid-log phase cultures of wild type and the mutant strain as described  
414 in Materials and Methods. We observed that majority of the genes were expressed to similar  
415 levels in the mutant and wild type strain. Using a cut-off value of  $>2.0$ -fold change and *p-value*  
416  $<0.05$ , transcriptome analysis revealed that a total of 197 genes were differentially expressed  
417 in mutant strain compared to the wild type strain (Fig. 4A). Among these, the levels of 108 and  
418 89 transcripts were increased and decreased, respectively, in the mutant strain (Fig. 4A, Table  
419 S4). These differentially expressed genes were further characterized based on their annotations  
420 in Mycobrowser (<https://mycobrowser.epfl.ch/>). We noticed that most of the differentially  
421 expressed genes were either conserved hypothetical proteins or involved in processes such as  
422 cell wall synthesis or intermediary metabolism (Fig. 4B). The transcript levels of proteins such  
423 as Rv0383c, Rv1094 (*desA2*), Rv1285 (*cysD*), Rv1350 (*fabG2*), Rv2166c, Rv2846c, Rv2988c  
424 and Rv3139 that are essential for *M. tuberculosis* growth *in vitro* were downregulated in the  
425 mutant strain (Table S4). RNA-seq analysis revealed that the transcripts of genes upregulated  
426 in low oxygen conditions (such as Rv2624c, Rv2625c, Rv3126c, Rv0572c and Rv1734c) or  
427 nutrient limiting conditions (such as Rv1149, Rv1285, Rv1929c, Rv2169c, Rv2269c, Rv2660c  
428 and Rv2745c) were reduced in the mutant strain (Table S4, (47, 48)). Among, the upregulated  
429 genes, the transcript levels of genes adjacent to Rv0792c and *mymA* operon were increased in  
430 the mutant strain (49, 50). A subset of these differentially expressed genes in RNA-seq  
431 experiments was also assessed by qPCR. As expected, the expression patterns obtained by  
432 qPCR were similar to those obtained from RNA-seq data (Fig. 4C). These observations indicate

433 that Rv0792c regulates the expression of genes and this transcriptional reprogramming is  
434 required for *M. tuberculosis* to adapt and survive in host tissues.

435 **Generation of Rv0792c binding aptamer through SELEX.**

436 We next performed Systematic Evolution of Ligands by EXponential enrichment (SELEX)  
437 experiments to find DNA aptamers as a possible tool to identify epitope(s) which may bind  
438 small molecule inhibitors against Rv0792c. Thus, SELEX was performed using an 80-  
439 nucleotide long random ssDNA library. To diversify the sequences of aptamer library, SELEX  
440 binding experiments were performed using an error-prone Taq DNA polymerase (51). Prior to  
441 successive SELEX rounds, the double-stranded (ds) PCR products that were obtained were  
442 converted to single-stranded form, using previously reported methods (51). After 6 rounds of  
443 SELEX, the enrichment of Rv0792c-specific binders was determined by ALISA. As shown in  
444 Fig. 5A, the ssDNA pools from archived rounds (round 1 to round 6) were able to bind to  
445 Rv0792c protein. We observed saturation in the binding of aptamer pool to Rv0792c after  
446 round 3 of SELEX. Therefore, aptamer binders from round 6 of SELEX enrichment were  
447 cloned in the pTZ57R/T vector. The plasmid DNA from 17 randomly picked transformants  
448 was isolated and subjected to DNA sequencing. Next, the sequences of aptamer candidates  
449 were further analyzed using ClustalW and BioEdit software (Fig. 5B). Phylogenetic analysis  
450 revealed two preponderant groups among aptamer sequences (Fig. S3A). Group 1 is the largest  
451 and contains 11 aptamer candidates, while Group 2 included 6 aptamers (Fig. S3A). The base  
452 fraction analysis of these SELEX derived aptamer candidates evinced higher distribution of  
453 'G' and 'T' residues over 'A' and 'C' (Fig. S3B). Based on primary sequence homology, 5  
454 representative aptamer candidates were selected for further studies. Interestingly, sequence  
455 alignment studies revealed high homology between Rv0729c\_1, Rv0729c\_2 and Rv0729c\_3  
456 with the known DNA sequences for GntR family of bacterial transcription factors (Fig. S4,  
457 (13)).

458 Next, to confirm the binding of aptamers with Rv0792c, EMSA assays using a panel  
459 of selected aptamer candidates (Rv0729c\_1, 2, 3, 4 and 5) were performed. As shown in **Fig.**  
460 **5C**, we observed that these aptamers interacted with Rv0792c at varying strength. Based on  
461 these findings, we selected three best aptamer candidates namely Rv0792c\_1, Rv0792c\_2 and  
462 Rv0792c\_5 for further biochemical and functional characterization of Rv0792c. As shown in  
463 Fig. 6A, maximum binding with aptamers was observed with the wild-type protein, Rv0792c.  
464 Also, as expected, mutation of arginine 49 and glycine 80 abrogated the aptamer binding ability  
465 of Rv0792c. Based on these observations, we conclude that Rv0792c\_2 displayed the highest  
466 binding for Rv0792c and in concordance with previous data, Arg49 and Gly80 are essential for

467 binding of aptamers by Rv0792c (39, 40). In order to determine the role of Mg<sup>2+</sup> ions in  
468 Rv0792c aptamer binding, ALISA assays were performed in the presence or absence of 10 mM  
469 EDTA. We observed that the inclusion of EDTA resulted in ~90% reduction in aptamer binding  
470 to Rv0792c, thereby, indicating that Mg<sup>2+</sup> ion is essential for aptamer-protein interaction (Fig.  
471 6B). We determined the dissociation constant for binding of aptamer Rv0729c\_2 with wild-  
472 type and mutant proteins and fitting of data was performed using the non-linear regression  
473 method. As expected, the highest binding was observed in wild-type protein with a Kd value  
474 of ~51 nM. In comparison, Rv0792c<sup>R49A</sup> and Rv0792c<sup>G80D</sup> binds with Rv0729c\_2 with Kd  
475 value of ~ 74 nM and ~ 120 nM, respectively (Fig. 6C). As Rv0792c belongs to the HutC  
476 family of GntR regulators, we next evaluated if L-histidine or urocanic acid (urocanic acid is  
477 an intermediate in the L-histidine catabolism) acts as effectors and alter the DNA binding  
478 ability of Rv0792c. Contrary to previous reports, we observed that the DNA binding ability of  
479 Rv0792c is not affected in the presence of L-histidine and urocanic acid (data not shown) (52-  
480 55). In order to identify Rv0792c effector molecules, ALISA was performed in the presence of  
481 various ligands. As shown in Fig. 6D, ALISA activity results indicate that Rv0792c aptamer  
482 binding ability did not increase in the presence of various ligands except L-arabinose.  
483 Approximately, 2.0-fold increase was seen in the presence of L-arabinose (Fig. 6D). These  
484 observations suggest that L-arabinose might act as an effector molecule for the DNA binding  
485 activity of Rv0792c or stabilizes the complex by maintaining the hydration layer.

486 **Secondary structure and circular dichroism spectral analysis.** In order to determine the  
487 structures of the selected aptamers, they were subjected to UNAFold  
488 (<https://eu.idtdna.com/UNAFold%3F>). As shown in Fig. 6E, the secondary structure of  
489 selected aptamer candidates (Rv0792c\_1, Rv0792c\_2 and Rv0792c\_5) showed a typical  
490 hairpin (stem-loop) like structure. Next, we performed circular dichroism (CD) studies for their  
491 conformational analysis. As shown in Fig. 6F, CD spectra of Rv0792c\_1, Rv0792c\_2 and  
492 Rv0792c\_5 revealed a strong positive peak around 275-280 nm and a negative peak near to  
493 240 nm. The observed spectra are in concordance with the spectra obtained for stem-loop like  
494 DNA (56, 57). However, the observed difference in the amplitude could be attributed to the  
495 variation in the sequence of these aptamers.

496 **SAXS Data Based Structural Model of Dimeric Rv0792c in the presence or absence of  
497 aptamers.**

498 We next acquired SAXS data to build a structural model in solution and identify the aptamer  
499 binding regions for Rv0792c. SAXS data was collected for Rv0792c at a concentration of 3.2  
500 mg/ml as shown in Fig. S5A. The double logarithm mode of presentation confirmed a lack of  
501 aggregation or inter particulate effect in the protein sample (58). The inset in Figure S5A shows  
502 the Guinier region considering globular scattering nature and linear fit to the analysis  
503 confirming the monodisperse profile of the sample. Guinier analysis suggested that particle  
504 size to be characterized by a radius of gyration ( $R_g$ ) of about 3.3 nm (Table S3). Indirect Fourier  
505 transformation of the data provided frequency distribution of pairwise interatomic vectors  
506 which further provided an estimate of maximum linear dimension ( $D_{max}$ ) and  $R_g$  of 12.5 and  
507 3.31 nm, respectively (Fig. S5B). Molecular mass estimation from different Bayesian models  
508 applied on experimental SAXS data suggested that the mass of the scattering particles was  $\sim$   
509  $63.2 \pm 5.7$  kDa supporting a dimeric state of association in solution (theoretical mass of  
510 monomer is 32.5 kDa).

511 As mentioned in materials and methods, a dummy residue model best representing the  
512 scattering shape of Rv0792c in solution was restored by averaging ten independent models and  
513 is presented in transparent map format with variation amongst models reflected as wire format  
514 (Fig. 7A and Fig. S6A). A normalized spatial disposition (NSD) value of 0.93 supported the  
515 similarity of the ten models solved and averaged for Rv0792c using SAXS data (Table S3). In  
516 order to compare the SAXS based envelope with structural model of Rv0792c, a sequence-  
517 based homology model was searched. The best sequence identity of 18.14% was observed  
518 between the 53-285 residues of Rv0792c with the solved structure for protein lin2111 from  
519 *Listeria innocua* Clip11262 (PDB deposition 3EDP; unpublished structure). We observed that  
520 most templates were similar in fold with a predicted association state of dimer. As stated in  
521 materials and methods, missing 52 and 16 residues from the amino and carboxy terminus,  
522 respectively, were modelled, their predominant conformation was oriented and subsequently  
523 attached to this central structural model of Rv0792c dimeric structure. Inertial axes of this  
524 structure was superimposed with those of SAXS based model for Rv0792c and similarities in  
525 the profile can be visually judged in the orthogonal views shown in Fig. 7A and Fig. S6A.  
526 Furthermore, a  $\chi^2$  value of 1.3 between theoretical SAXS profile of the residue-level model of  
527 Rv0792c and experimental data supported a similarity between the two models in three-  
528 dimensions (Table S3). Zoomed-in image in Fig. 7A highlights that the two C-terminal  
529 extensions of chains bind each other, thus contributing to additional stabilization of the dimeric  
530 entity.

531        Further, in order to perceive local and relative flexibility embedded in the computed  
532 structure of dimeric Rv0792c, low frequency normal modes accessible to the protein were  
533 calculated (Fig. S6B). The collective modes indicated that the N-terminal domain moved in  
534 synchronized mode independent of the central  $\beta$ -barrel type dimeric contact. The C-terminal  
535 tail of the proteins also move up and down the interacting  $\beta$ -barrel and linker connecting the  
536 barrel and N-terminal domain of the other chain in dimer. These theoretical analyses imply that  
537 the C-terminal ends of the dimer remain attached to each other chain. Next, using SAXS data  
538 analysis, solution shape parameters, association state, and structure of Rv0792c binding  
539 aptamers were determined in their unliganded state (Fig. 7B). Double Log profile of SAXS  
540 data from aptamers confirmed lack of any aggregation or interparticulate effect in the samples  
541 (Fig. S5C). Guinier analysis for globular scattering profiles are shown as inset and linearity of  
542 the fits in low  $q$  range further validated monodisperse nature of aptamers. The parameters  
543 deduced for predominant scattering shape of aptamers are listed in Table S3. In summary,  
544 aptamers had  $R_g$  and  $D_{max}$  in range of 1.8-2.1 nm and 7.1-8.6 nm, respectively. For all aptamers,  
545 the calculated  $P(r)$  indicated a “tailing” at higher  $r$  values suggesting flexible ends about core  
546 shape (Fig. S5D). Using SAXS data profiles, their estimated molecular masses were in the  
547 range of 12.9 – 13.5 kDa, clearly supporting a monomeric state of these ssDNA molecules in  
548 solution. Their dummy residue models solved within SAXS data-based constraints are shown  
549 in Fig. 7B. As mentioned in methods, considering monomeric status, predominant low energy  
550 conformations of the ssDNA aptamers were calculated in implicit dielectric of 80 (representing  
551 water), and the best-resembling conformation was selected using lowest  $\chi^2$  value between the  
552 calculated SAXS profile for the conformation and experimental data. These models for  
553 aptamers are shown overlaid on SAXS data-based model and alone in Fig. 7B. The additional  
554 views are shown in Figs. S7A, S7B and S7C. Relative to Rv0792c, NSD values for aptamers  
555 in the range of 0.5-0.7 indicated differential nature of ten models solved for the three aptamers  
556 (Table S3). This implied relatively higher inherent disorder in the unliganded aptamers as  
557 monomers. Similar disorders were observed in the higher terminal motions in the residue level  
558 models computed for these aptamers. Pertinently, it also explained the extended nature of their  
559 computed  $P(r)$  curves.

560        Having characterized that Rv0792c protein adopts dimeric state in solution, and all  
561 the binding aptamers are monomers, next set of SAXS data was acquired on molar mixtures of  
562 the protein and individual aptamers (ratio was computed for dimeric to monomeric state of  
563 Rv0792c and ssDNA) (Fig. S5E and S5F). It is important to state here that concentration of the

564 molecules were higher than the estimated binding constant of the protein and DNA molecules,  
565 supporting a higher order of binding between available molecules and scope of none or little  
566 unliganded molecules in samples used for SAXS data collection. Double Log plot and Guinier  
567 analysis of the Rv0792c\_1, Rv0792c\_2 and Rv0792c\_5 aptamers support that the scattering  
568 molecules did not aggregate or underwent inter particulate effect upon mixing (Fig S5E). While  
569 mixtures of Rv0792c with aptamer Rv0792c\_5 and Rv0792c\_1 showed  $D_{max}$  and  $R_g$  values of  
570 12.5 and 3.4-3.5 nm, respectively, the complex of GntR and Rv0792c\_2 aptamer adopted a  
571 decreased  $D_{max}$  and  $R_g$  of 9.8 and 3.1 nm, respectively (Table S3). The lower dimensions of  
572 complex with Rv0792c\_2 was correlated with SAXS based molecular mass prediction which  
573 indicated mass of ~ 44 kDa for this complex, and ~75 kDa for samples with Rv0792c and  
574 aptamers Rv0792c\_5 and Rv0792c\_1. This result indicated that Rv0792c\_5 and Rv0792c\_1  
575 binds to dimeric protein and does not alter the association state of Rv0792c into monomers. In  
576 contrast, binding of Rv0792c\_2 aptamer induces dissociation of dimeric proteins into  
577 monomers. The observed differences with  $R_g$ ,  $D_{max}$  values and  $P(r)$  profiles between these  
578 Rv0792c-aptamer complex, unliganded Rv0792c and aptamers supported that protein and  
579 aptamer molecules were bound to each other during data collection. Shapes restored for these  
580 scattering species showed higher NSD values than unliganded aptamers.

581 As mentioned in materials and methods, results from SAXS data analysis revealed  
582 that Rv0792c\_5 and Rv0792c\_1 form 2:1 complex with Rv0792c, but binding of Rv0792c\_2  
583 dissociates Rv0792c dimer into monomers. Accordingly, the low energy structures of aptamers  
584 were docked on Rv0792c dimers for Rv0792c\_5 and Rv0792c\_1 aptamer, and on monomer  
585 for Rv0792c\_2 aptamer to obtain models for their complexes. For latter, approximation was  
586 made that no large shape change occurred theoretically detaching monomer from dimer of  
587 Rv0792c. Different poses of docked aptamers on Rv0792c were filtered to correlate with the  
588 shape solved for the complexes (Fig. 7C and Fig. S8). The models selected for Rv0792c:  
589 aptamer complexes indicated that aptamers bind to the C-terminal portion of Rv0792c (Fig.  
590 8A). Energy minimization of the residue-level models of complexes obtained from docking  
591 indicated that while Rv0792c\_5 and Rv0792c\_1 aptamer coalesced with dimer interface,  
592 Rv0792c\_2 aptamer induced opening of the C-tail latch of Rv0792c. Probably, this last event  
593 in case of Rv0792c\_2 weakens the protein-protein interaction between Rv0792c and leads to  
594 eventual formation of 1:1 complex. In summary, all aptamers remain monomer in the presence  
595 or absence of Rv0792c and bind to its C-tail region, and some interaction extends to the stretch

596 encompassing PRG (residues 40 – 42) of Rv0792c protein (boxed in the zoomed image in  
597 lower panel in Fig. 8A).

598 **Computational docking to identify small molecule inhibitors for Rv0792c.**

599 As seen from shape restoration and docking data, all screened aptamers were binding  
600 to C-terminal dimerizing segment of Rv0792c protein. Additionally, binding of Rv0792c\_2  
601 induces dissociation of Rv0792c dimer. Presuming that this segment is key to structural  
602 organization of Rv0792c and small molecules capable of binding this segment may alter the  
603 native functioning of this protein, we used the aptamer binding segments to screen for  
604 molecules which can bind to this protein. Fig. 8B shows the defined aptamer binding region  
605 and three best hits in their lowest energy pose with the receptor. These molecules were I-OMe-  
606 Tyrphostin, Clofibrate and Rottlerin in the decreasing order of their relative docking score.  
607 Next, we performed ALISA experiments to investigate whether (i) PRG motif is required for  
608 aptamer binding to Rv0792c and (ii) whether the small molecules identified from  
609 computational docking can inhibit the binding of Rv0792c\_2 aptamer to Rv0792c. In order to  
610 determine the role of PRG motif in binding to these aptamers, Rv0792c harboring Pro<sup>40</sup>-Ala<sup>40</sup>  
611 and Arg<sup>41</sup>-Ala<sup>41</sup> mutation was cloned, expressed and purified as (His)<sub>6</sub> tagged protein. In  
612 concordance with SAXS based modeling results, we observed that mutation of either proline  
613 40 or arginine 41 to alanine abrogated the aptamer binding ability of Rv0792c (Fig. 8C). Of  
614 the three compounds, we were able to procure only 2 compounds with assured purity. Both  
615 compounds did not exhibit solubility issues and were evaluated for their ability to inhibit  
616 Rv0792c enzymatic activity. As shown in Fig. 8D, among these two compounds, I-OMe-  
617 Tyrphostin was able to inhibit the binding of aptamer to Rv0792c protein by ~60% at 200 μM  
618 concentration. We noticed no inhibition of aptamer binding in the presence of Clofibrate even  
619 at 200 μM concentration (Fig. 8D). We also observed that I-OMe-Tyrphostin was able to  
620 inhibit Rv0792c activity in a concentration dependent manner. As shown, the small molecule  
621 inhibited aptamer binding with an IC<sub>50</sub> of ~ 109 nM (Fig. 8E). Taken together, this is the first  
622 study, where we show that GntR homolog, Rv0792c from *M. tuberculosis* is essential to  
623 establish infection in host tissues. We also report novel aptamers which bind to the dimerizing  
624 segment of the protein, and used this information to identify an FDA-approved drug which can  
625 conceptually act as an inhibitor of Rv0792c protein.

626 **Discussion**

627 Transcriptional regulation has been shown to be essential for adaptation of various bacterial  
628 pathogens upon exposure to unfavourable and harsh environmental conditions. *M.*  
629 *tuberculosis* is a highly successful intracellular pathogen owing to its ability to sense  
630 external stimulus, reprogram its transcription machinery and persist in host tissues. The *M.*  
631 *tuberculosis* genome encodes for several transcription regulators that have been  
632 demonstrated to be essential for its growth *in vitro* or *in vivo*. GntR family of transcription  
633 factors are widespread among prokaryotes and are involved in various processes such as (i)  
634 carbon metabolism, (ii) motility, (iii) antibiotic production, (iv) drug tolerance, (v) biofilm,  
635 (vi) virulence and pathogenesis (15-18, 23). GntR is a relatively new and still poorly  
636 characterised family of transcriptional regulator. Despite the presence of GntR homologs in  
637 the genome of *M. tuberculosis* their biological functions have not been well established  
638 extensively (24-26). In the present study, we have used different approaches to characterize  
639 Rv0792c protein (HutC homolog) from *M. tuberculosis*.

640 GntR family of transcription regulators binds DNA as dimers and subsequently  
641 either repress or activate their own transcription (13). Using sedimentation  
642 ultracentrifugation and SAXS data analysis, we show unambiguously that Rv0792c exists  
643 as dimer in solution as reported for other GntR homologs (59). Although the sequence  
644 similarity between amino-terminus DNA binding domains is 25%, the residues essential for  
645 interaction with DNA are highly conserved (10). Sequence alignment studies revealed that  
646 the highly conserved helix-turn-helix DNA binding domain of Rv0792c spans amino acid  
647 between 21-86 residues. As expected, substitution of Glycine at position 80 to aspartic acid  
648 abrogated the DNA binding properties of Rv0792c in EMSA and ALISA-based assays.  
649 These results implicates that glycine residue is essential for DNA binding properties as  
650 reported in the case of *E. coli* FadR (41). In GntR family, the conformation of DNA binding  
651 motif is altered by binding of effector molecules. The binding of fatty acyl-CoA negatively  
652 regulates DNA binding activity of FadR in *E. coli* (60). Similarly, DNA binding of AraR  
653 in *B. subtilis* is repressed by binding of arabinose to the effector binding domain (61). The  
654 activity of HutC subfamily has also been reported to be regulated by N-acetyl-glucosamine  
655 and urocanic acid (55, 62). We also evaluated the ability of various effectors to regulate  
656 DNA binding activity of Rv0792c and observed that inclusion of L-histidine and urocanic  
657 acid couldn't affect the DNA binding ability of Rv0792c. However, arabinose increased the  
658 DNA binding ability of Rv0792c by ~2.0-fold which suggests that L-arabinose might be the  
659 effector molecule for Rv0792c. Nevertheless, regulation of Rv0792c might still be fine-

660 tuned by this specific ligand interaction and/or by some unknown ligand that needs to be  
661 investigated in near future.

662 In order to investigate GntR role in physiology, stress adaptation and virulence,  
663 Rv0792c mutant strain was generated using temperature sensitive mycobacteriophages. We  
664 noticed that the colony morphology, growth pattern and biofilm formation of the mutant and  
665 parental strain were comparable. Transcriptional regulators are well known in mediating  
666 mycobacterial stress adaptation. In order to mimic the environmental clues as encountered  
667 by mycobacterium within the host macrophage or granuloma, the survival of various strains  
668 was evaluated in different stress conditions. The mutant strain was compromised for survival  
669 upon exposure to oxidative stress and cell wall damage. However, no differences were  
670 observed between wild-type and mutant strains upon exposure to other stress conditions  
671 such as nitrosative, low oxygen, nutrient starvation and acidic pH. The deletion of Rv0792c  
672 in the *M. tuberculosis* genome also didn't alter the survival upon exposure to various drugs  
673 with a different mechanism of action. GntR family of transcription regulators have also been  
674 shown to be involved in the virulence of other bacterial pathogens (63-66). Notably, we  
675 observed that the Rv0792c mutant strain was markedly defective in establishing infection  
676 in lungs and spleens of guinea pigs. Both 4 and 8-week data showed significantly higher lungs  
677 and splenic bacillary load of guinea pigs infected with the wild type strain in comparison to the  
678 mutant strain. In agreement, less tissue damage was seen in H&E stained sections from guinea  
679 pigs infected with the mutant strain. The granuloma formation was seen in sections from wild  
680 type (necrotic) and complemented strains (non-necrotic). These observations implicate that  
681 Rv0792c plays a key role in *M. tuberculosis* virulence and is essential for establishing  
682 infection in host tissues. RNA-seq analysis constitutes an important functional framework  
683 to determine which gene or a subset of genes response impacts survival mechanisms  
684 deployed during host infection. To further understand the mechanisms associated with the  
685 attenuation of Rv0792c mutant strain in host tissues, transcriptomic profiles of wild-type  
686 and mutant strain were compared. This analysis revealed several important genes linked to  
687 *M. tuberculosis* virulence and survival such as *leuC* (Rv2987c), *desA2* (Rv1094), *efpA*  
688 (Rv2846c), *clgR* (Rv2745c) were differentially expressed. The transcript of several genes  
689 belonging to either PE/PPE or toxin-antitoxin modules or lipid metabolism were also  
690 downregulated in the mutant strains. We also observed that the transcript levels of Rv0793  
691 (gene neighbouring to Rv0792c) and *mymA* operon (shown to be upregulated in acidic  
692 conditions) were increased in the mutant strain (50, 67). These findings clearly suggest that

693 Rv0792c regulates the expression of “subset” of genes that enables the bacteria to adapt and  
694 persist in host tissues.

695 SELEX strategy was employed to search for novel ssDNA aptamers capable of  
696 tightly binding Rv0792c. Extended aim was to utilize the aptamer binding information to  
697 screen for small molecules which may efficiently bind Rv0792c and act as inhibitors of its  
698 function. The direct interactions between Rv0792c and SELEX derived DNA aptamers were  
699 confirmed using EMSA and ALISA. Among the identified, three DNA aptamer candidates  
700 (Rv0792c\_1, Rv0792c\_2 and Rv0792c\_5) showed good binding to Rv0792c albeit with  
701 varied intensity. This difference in the intensity of the DNA-protein complex evinced the  
702 differential rate of aptamer–target complex association and dissociation (56, 68).  
703 Interestingly, the binding of all three aptamers was abrogated by the substitution of glycine  
704 80 to aspartic acid and arginine 49 to alanine in the helix-turn-helix motif. This is possibly  
705 because of two reasons: (i) aptamer selection was performed with the wild-type protein and  
706 (ii) these residues (glycine 80 and arginine 49) play a critical role in maintaining the protein  
707 structure where aptamer binds (41). Notably, the presence of EDTA also abrogated the  
708 aptamer binding to Rv0792c indicating that  $Mg^{2+}$  is essential to maintain the active  
709 conformation of aptamers required for protein binding. This finding is in agreement with  
710 the previous reports where the role of divalent ion in aptamer binding to cognate protein  
711 target has already been established (69). Interestingly, all these aptamer candidates  
712 displayed  $K_d$  in the nanomolar range, an observation which is in concordance with the  
713 previously reported protein binding aptamers (29, 70, 71). Notably, the primary sequence of  
714 Rv0729c\_1, Rv0729c\_2 and Rv0729c\_3 DNA aptamer candidates designed against the  
715 Rv0792c, a HutC protein showed high similarity to DNA binding sequences of FadR  
716 subfamily transcription factors (13). We observed that the level of similarity was much  
717 higher in the case of Rv0729c\_1, Rv0729c\_2 compared to Rv0729c\_5. This pattern clearly  
718 indicates the possible role of these nucleotides to provide affinity to bind the transcription  
719 factor of the GntR family. *In silico* structure prediction and their validation by CD clearly  
720 demonstrates the presence of stem-loop like structures which are very common among  
721 protein binding DNA aptamers (70, 72). As mutation of arginine and glycine abrogated  
722 aptamer binding, our data suggests that aptamers are binding to a region in Rv0792c that is  
723 essential for DNA binding. Therefore, we hypothesized the epitope at which these aptamers  
724 bind may be functionally important and a small molecule binding to this site may impede  
725 the functional profile of the protein.

726        Further, to gain insight into the complexes of aptamers bound to Rv0792c, SAXS  
727 data analysis and molecular modelling was utilized. Analysis of the unliganded protein and  
728 aptamers showed that in solution their association state is predominantly dimer and  
729 monomer, respectively. The dimeric status of Rv0792c correlated well with the AUC data,  
730 which showed presence of minor higher-order associated species too. Interestingly, mixing  
731 of aptamers to dimeric Rv0792c showed that while one molecule of Rv0792c\_1 aptamer  
732 and Rv0792c\_5 aptamer binds to one dimer of Rv0792c, binding of Rv0792c\_2 aptamer led  
733 to dissociation of the Rv0792c dimer into monomer. *In silico* molecular modelling steered  
734 and selected within constraints from experimental SAXS data provided a key insight that  
735 Rv0792c dimerizes across its C-terminal, and the extended C-tail wraps around each other  
736 chain that provides additional stability to the dimer. The dimeric status or even association  
737 architecture is not novel to the GntR family of proteins, but the unique wrapping up of C-  
738 tail on each other chain opens up queries on its functional relevance and possible uniqueness  
739 in this family of regulators. Solution scattering data supported that the aptamers remained  
740 predominantly monomer. Interestingly, the structural analysis revealed that the exposed side  
741 of the dimeric Rv0792c is also the interaction site of the three aptamers that were identified  
742 from the SELEX study. Taken together, SAXS data provided insight that binding of  
743 Rv0792c\_2 aptamer induces rearrangement(s), which leads to dissociation of the dimer of  
744 Rv0792c protein.

745        Taking cue from the poses of aptamers on Rv0792c dimer, we considered using the  
746 interacting residues in the protein to screen for small molecules which may even compete  
747 with the binding of aptamers. The two molecules from the identified top hits were  
748 experimentally evaluated in our aptamer binding assays and we observed that I-OMe-  
749 Tyrphostin was able to inhibit binding Rv0792c\_2 aptamer to Rv0792c. It is worth  
750 mentioning here that Rv0792c\_2 binds with the highest affinity to Rv0792c, so it can be  
751 safely extrapolated that Tyrphostin analog may also competitively inhibit binding of other two  
752 aptamers. This molecule, I-OMe-Tyrphostin and its analogs have been assayed before for their  
753 potential as epigenetic regulator (73, 74) No specific correlations have been made with *M.*  
754 *tuberculosis*, except a recent study which identified new inhibitors for the Pup proteasome  
755 system in *M. tuberculosis* (<https://doi.org/10.1101/796359>). They report that I-OMe-  
756 Tyrphostin and Tyrphostin inhibit Dop, a depupylylase from *M. tuberculosis*. The future course  
757 of our experiments will explore the efficacy of this small drug molecule in inhibiting the growth  
758 or survivability of *M. tuberculosis* in different assays or models. Definitely, being an approved  
759 drug, any efficacy against *M. tuberculosis* will enable its quick translation. In conclusion, we

760 have (i) delineated the role and contribution of GntR-like factors in *Mtb* physiology, stress  
761 tolerance and pathogenesis and (ii) also identified small molecule inhibitor against Rv0792c,  
762 an *in vivo* essential transcription factor.

763 **References**

- 764 1. Donoghue HD, Spigelman M, Greenblatt CL, Lev-Maor G, Bar-Gal GK, Matheson C, et al. Tuberculosis: from prehistory to Robert Koch, as revealed by ancient DNA. *Lancet Infect Dis.* 2004;4(9):584-92.
- 765 2. Stewart GR, Robertson BD, Young DB. Tuberculosis: a problem with persistence. *Nat Rev Microbiol.* 2003;1(2):97-105.
- 766 3. Zumla A, Abubakar I, Ravaglione M, Hoelscher M, Ditiu L, McHugh TD, et al. Drug-resistant tuberculosis--current dilemmas, unanswered questions, challenges, and priority needs. *J Infect Dis.* 2012;205 Suppl 2:S228-40.
- 767 4. Kliiman K, Altraja A. Predictors of poor treatment outcome in multi- and extensively drug-resistant pulmonary TB. *Eur Respir J.* 2009;33(5):1085-94.
- 768 5. Farley JE, Ram M, Pan W, Waldman S, Cassell GH, Chaisson RE, et al. Outcomes of multi-drug resistant tuberculosis (MDR-TB) among a cohort of South African patients with high HIV prevalence. *PLoS One.* 2011;6(7):e20436.
- 769 6. Brandt L, Feino Cunha J, Weinreich Olsen A, Chilima B, Hirsch P, Appelberg R, et al. Failure of the *Mycobacterium bovis* BCG vaccine: some species of environmental mycobacteria block multiplication of BCG and induction of protective immunity to tuberculosis. *Infect Immun.* 2002;70(2):672-8.
- 770 7. Gupta S, Chatterji D. Stress responses in mycobacteria. *IUBMB Life.* 2005;57(3):149-59.
- 771 8. Zahrt TC, Deretic V. *Mycobacterium tuberculosis* signal transduction system required for persistent infections. *Proc Natl Acad Sci U S A.* 2001;98(22):12706-11.
- 772 9. Flentie K, Garner AL, Stallings CL. *Mycobacterium tuberculosis* Transcription Machinery: Ready To Respond to Host Attacks. *J Bacteriol.* 2016;198(9):1360-73.
- 773 10. Rigali S, Derouaux A, Giannotta F, Dusart J. Subdivision of the helix-turn-helix GntR family of bacterial regulators in the FadR, HutC, MocR, and YtrA subfamilies. *J Biol Chem.* 2002;277(15):12507-15.
- 774 11. Perez-Rueda E, Hernandez-Guerrero R, Martinez-Nunez MA, Armenta-Medina D, Sanchez I, Ibarra JA. Abundance, diversity and domain architecture variability in prokaryotic DNA-binding transcription factors. *PLoS One.* 2018;13(4):e0195332.
- 775 12. Haydon DJ, Guest JR. A new family of bacterial regulatory proteins. *FEMS Microbiol Lett.* 1991;63(2-3):291-5.
- 776 13. Suvorova IA, Korostelev YD, Gelfand MS. GntR Family of Bacterial Transcription Factors and Their DNA Binding Motifs: Structure, Positioning and Co-Evolution. *PLoS One.* 2015;10(7):e0132618.
- 777 14. van Aalten DM, DiRusso CC, Knudsen J. The structural basis of acyl coenzyme A-dependent regulation of the transcription factor FadR. *EMBO J.* 2001;20(8):2041-50.
- 778 15. Jaques S, McCarter LL. Three new regulators of swarming in *Vibrio parahaemolyticus*. *J Bacteriol.* 2006;188(7):2625-35.
- 779 16. Hoskisson PA, Rigali S. Chapter 1: Variation in form and function the helix-turn-helix regulators of the GntR superfamily. *Adv Appl Microbiol.* 2009;69:1-22.
- 780 17. Hillerich B, Westpheling J. A new GntR family transcriptional regulator in *streptomyces coelicolor* is required for morphogenesis and antibiotic production and controls transcription of an ABC transporter in response to carbon source. *J Bacteriol.* 2006;188(21):7477-87.
- 781 18. Haine V, Sinon A, Van Steen F, Rousseau S, Dozot M, Lestrate P, et al. Systematic targeted mutagenesis of *Brucella melitensis* 16M reveals a major role for GntR regulators in the control of virulence. *Infect Immun.* 2005;73(9):5578-86.

811 19. Biswas RK, Dutta D, Tripathi A, Feng Y, Banerjee M, Singh BN. Identification and  
812 characterization of Rv0494: a fatty acid-responsive protein of the GntR/FadR family from  
813 *Mycobacterium tuberculosis*. *Microbiology*. 2013;159(Pt 5):913-23.

814 20. Poupin P, Ducrocq V, Hallier-Soulier S, Truffaut N. Cloning and characterization of  
815 the genes encoding a cytochrome P450 (PipA) involved in piperidine and pyrrolidine  
816 utilization and its regulatory protein (PipR) in *Mycobacterium smegmatis* mc2155. *J Bacteriol*.  
817 1999;181(11):3419-26.

818 21. Casali N, White AM, Riley LW. Regulation of the *Mycobacterium tuberculosis* mce1  
819 operon. *J Bacteriol*. 2006;188(2):441-9.

820 22. Santangelo Mde L, Blanco F, Campos E, Soria M, Bianco MV, Klepp L, et al. Mce2R  
821 from *Mycobacterium tuberculosis* represses the expression of the mce2 operon. *Tuberculosis*  
822 (Edinb). 2009;89(1):22-8.

823 23. Zeng J, Deng W, Yang W, Luo H, Duan X, Xie L, et al. *Mycobacterium tuberculosis*  
824 Rv1152 is a Novel GntR Family Transcriptional Regulator Involved in Intrinsic Vancomycin  
825 Resistance and is a Potential Vancomycin Adjuvant Target. *Sci Rep*. 2016;6:28002.

826 24. Singh R, Singh M, Arora G, Kumar S, Tiwari P, Kidwai S. Polyphosphate deficiency  
827 in *Mycobacterium tuberculosis* is associated with enhanced drug susceptibility and impaired  
828 growth in guinea pigs. *J Bacteriol*. 2013;195(12):2839-51.

829 25. Kidwai S, Park CY, Mawatwal S, Tiwari P, Jung MG, Gosain TP, et al. Dual  
830 Mechanism of Action of 5-Nitro-1,10-Phenanthroline against *Mycobacterium tuberculosis*.  
831 *Antimicrob Agents Chemother*. 2017;61(11).

832 26. Bardarov S, Bardarov S, Jr., Pavelka MS, Jr., Sambandamurthy V, Larsen M, Tufariello  
833 J, et al. Specialized transduction: an efficient method for generating marked and unmarked  
834 targeted gene disruptions in *Mycobacterium tuberculosis*, *M. bovis* BCG and *M. smegmatis*.  
835 *Microbiology*. 2002;148(Pt 10):3007-17.

836 27. Agarwal S, Sharma A, Bouzeyen R, Deep A, Sharma H, Mangalaparthi KK, et al.  
837 VapBC22 toxin-antitoxin system from *Mycobacterium tuberculosis* is required for  
838 pathogenesis and modulation of host immune response. *Sci Adv*. 2020;6(23):eaba6944.

839 28. Deep A, Tiwari P, Agarwal S, Kaundal S, Kidwai S, Singh R, et al. Structural,  
840 functional and biological insights into the role of *Mycobacterium tuberculosis* VapBC11 toxin-  
841 antitoxin system: targeting a tRNase to tackle mycobacterial adaptation. *Nucleic Acids Res*.  
842 2018;46(21):11639-55.

843 29. Kalra P, Mishra SK, Kaur S, Kumar A, Prasad HK, Sharma TK, et al. G-Quadruplex-  
844 Forming DNA Aptamers Inhibit the DNA-Binding Function of HupB and *Mycobacterium*  
845 tuberculosis Entry into Host Cells. *Mol Ther Nucleic Acids*. 2018;13:99-109.

846 30. Anil Kumar V, Goyal R, Bansal R, Singh N, Sevalkar RR, Kumar A, et al. EspR-  
847 dependent ESAT-6 Protein Secretion of *Mycobacterium tuberculosis* Requires the Presence of  
848 Virulence Regulator PhoP. *J Biol Chem*. 2016;291(36):19018-30.

849 31. Waterhouse A, Bertoni M, Bienert S, Studer G, Tauriello G, Gumienny R, et al.  
850 SWISS-MODEL: homology modelling of protein structures and complexes. *Nucleic Acids*  
851 *Res*. 2018;46(W1):W296-W303.

852 32. Pandey K, Rathore YS, Nath SK, Ashish. Towards strain-independent anti-influenza  
853 peptides: a SAXS- and modeling-based study. *Journal of biomolecular structure & dynamics*.  
854 2013.

855 33. Gautam JK, Ashish, Comeau LD, Krueger JK, Smith MF. Structural and functional  
856 evidence for the role of the TLR2 DD loop in TLR1/TLR2 heterodimerization and signaling. *J*  
857 *Biol Chem*. 2006;281(40):30132-42.

858 34. Rathore YS, Rehan M, Pandey K, Sahni G, Ashish. First structural model of full-length  
859 human tissue-plasminogen activator: a SAXS data-based modeling study. *The journal of*  
860 *physical chemistry B*. 2012;116(1):496-502.

861 35. Suhre K, Navaza J, Sanejouand YH. NORMA: a tool for flexible fitting of high-  
862 resolution protein structures into low-resolution electron-microscopy-derived density maps.  
863 *Acta crystallographica Section D, Biological crystallography*. 2006;62(Pt 9):1098-100.

864 36. Sampaio MM, Chevance F, Dippel R, Eppler T, Schlegel A, Boos W, et al.  
865 Phosphotransferase-mediated transport of the osmolyte 2-O-alpha-mannosyl-D-glycerate in  
866 *Escherichia coli* occurs by the product of the *mngA* (*hrsA*) gene and is regulated by the *mngR*  
867 (*farR*) gene product acting as repressor. *J Biol Chem*. 2004;279(7):5537-48.

868 37. Fillenberg SB, Grau FC, Seidel G, Muller YA. Structural insight into operator dre-sites  
869 recognition and effector binding in the *GntR/HutC* transcription regulator *NagR*. *Nucleic Acids*  
870 *Res*. 2015;43(2):1283-96.

871 38. Fillenberg SB, Friess MD, Korner S, Bockmann RA, Muller YA. Crystal Structures of  
872 the Global Regulator *DasR* from *Streptomyces coelicolor*: Implications for the Allosteric  
873 Regulation of *GntR/HutC* Repressors. *PLoS One*. 2016;11(6):e0157691.

874 39. Vasanthakumar A, Kattusamy K, Prasad R. Regulation of daunorubicin biosynthesis in  
875 *Streptomyces peucetius* - feed forward and feedback transcriptional control. *J Basic Microbiol*.  
876 2013;53(8):636-44.

877 40. Martinez-Antonio A, Collado-Vides J. Identifying global regulators in transcriptional  
878 regulatory networks in bacteria. *Curr Opin Microbiol*. 2003;6(5):482-9.

879 41. Raman N, Black PN, DiRusso CC. Characterization of the fatty acid-responsive  
880 transcription factor *FadR*. Biochemical and genetic analyses of the native conformation and  
881 functional domains. *J Biol Chem*. 1997;272(49):30645-50.

882 42. Ehrt S, Schnappinger D. Mycobacterial survival strategies in the phagosome: defence  
883 against host stresses. *Cell Microbiol*. 2009;11(8):1170-8.

884 43. Pinheiro J, Lisboa J, Pombinho R, Carvalho F, Carreaux A, Brito C, et al. *MouR*  
885 controls the expression of the *Listeria monocytogenes* *Agr* system and mediates virulence.  
886 *Nucleic Acids Res*. 2018;46(18):9338-52.

887 44. Gu D, Meng H, Li Y, Ge H, Jiao X. A *GntR* Family Transcription Factor (VPA1701)  
888 for Swarming Motility and Colonization of *Vibrio parahaemolyticus*. *Pathogens*. 2019;8(4).

889 45. Li Z, Xiang Z, Zeng J, Li Y, Li J. A *GntR* Family Transcription Factor in *Streptococcus*  
890 *mutans* Regulates Biofilm Formation and Expression of Multiple Sugar Transporter Genes.  
891 *Front Microbiol*. 2018;9:3224.

892 46. Chai Y, Kolter R, Losick R. A widely conserved gene cluster required for lactate  
893 utilization in *Bacillus subtilis* and its involvement in biofilm formation. *J Bacteriol*.  
894 2009;191(8):2423-30.

895 47. Park HD, Guinn KM, Harrell MI, Liao R, Voskuil MI, Tompa M, et al. *Rv3133c/dosR*  
896 is a transcription factor that mediates the hypoxic response of *Mycobacterium tuberculosis*.  
897 *Mol Microbiol*. 2003;48(3):833-43.

898 48. Betts JC, Lukey PT, Robb LC, McAdam RA, Duncan K. Evaluation of a nutrient  
899 starvation model of *Mycobacterium tuberculosis* persistence by gene and protein expression  
900 profiling. *Mol Microbiol*. 2002;43(3):717-31.

901 49. Singh A, Jain S, Gupta S, Das T, Tyagi AK. *mymA* operon of *Mycobacterium*  
902 *tuberculosis*: its regulation and importance in the cell envelope. *FEMS Microbiol Lett*.  
903 2003;227(1):53-63.

904 50. Singh A, Gupta R, Vishwakarma RA, Narayanan PR, Paramasivan CN, Ramanathan  
905 VD, et al. Requirement of the *mymA* operon for appropriate cell wall ultrastructure and  
906 persistence of *Mycobacterium tuberculosis* in the spleens of guinea pigs. *J Bacteriol*.  
907 2005;187(12):4173-86.

908 51. Dhiman A, Haldar S, Mishra SK, Sharma N, Bansal A, Ahmad Y, et al. Generation and  
909 application of DNA aptamers against *HspX* for accurate diagnosis of tuberculous meningitis.  
910 *Tuberculosis (Edinb)*. 2018;112:27-36.

911 52. Schroder J, Maus I, Ostermann AL, Kogler AC, Tauch A. Binding of the IclR-type  
912 regulator HutR in the histidine utilization (hut) gene cluster of the human pathogen  
913 *Corynebacterium resistens* DSM 45100. *FEMS Microbiol Lett.* 2012;331(2):136-43.

914 53. Bender RA. Regulation of the histidine utilization (hut) system in bacteria. *Microbiol  
915 Mol Biol Rev.* 2012;76(3):565-84.

916 54. Aravind L, Anantharaman V. HutC/FarR-like bacterial transcription factors of the  
917 GntR family contain a small molecule-binding domain of the chorismate lyase fold. *FEMS  
918 Microbiol Lett.* 2003;222(1):17-23.

919 55. Sieira R, Arocena GM, Bukata L, Comerci DJ, Ugalde RA. Metabolic control of  
920 virulence genes in *Brucella abortus*: HutC coordinates virB expression and the histidine  
921 utilization pathway by direct binding to both promoters. *J Bacteriol.* 2010;192(1):217-24.

922 56. Sharma TK, Bruno JG, Dhiman A. ABCs of DNA aptamer and related assay  
923 development. *Biotechnol Adv.* 2017;35(2):275-301.

924 57. Chatterjee B, Kalyani N, Anand A, Khan E, Das S, Bansal V, et al. GOLD SELEX: a  
925 novel SELEX approach for the development of high-affinity aptamers against small molecules  
926 without residual activity. *Mikrochim Acta.* 2020;187(11):618.

927 58. Badmalia MD, Sharma P, Yadav SPS, Singh S, Khatri N, Garg R, et al. Bonsai Gelsolin  
928 Survives Heat Induced Denaturation by Forming beta-Amyloids which Leach Out Functional  
929 Monomer. *Scientific reports.* 2018;8(1):12602.

930 59. Jain D. Allosteric control of transcription in GntR family of transcription regulators: A  
931 structural overview. *IUBMB Life.* 2015;67(7):556-63.

932 60. DiRusso CC, Black PN, Weimar JD. Molecular inroads into the regulation and  
933 metabolism of fatty acids, lessons from bacteria. *Prog Lipid Res.* 1999;38(2):129-97.

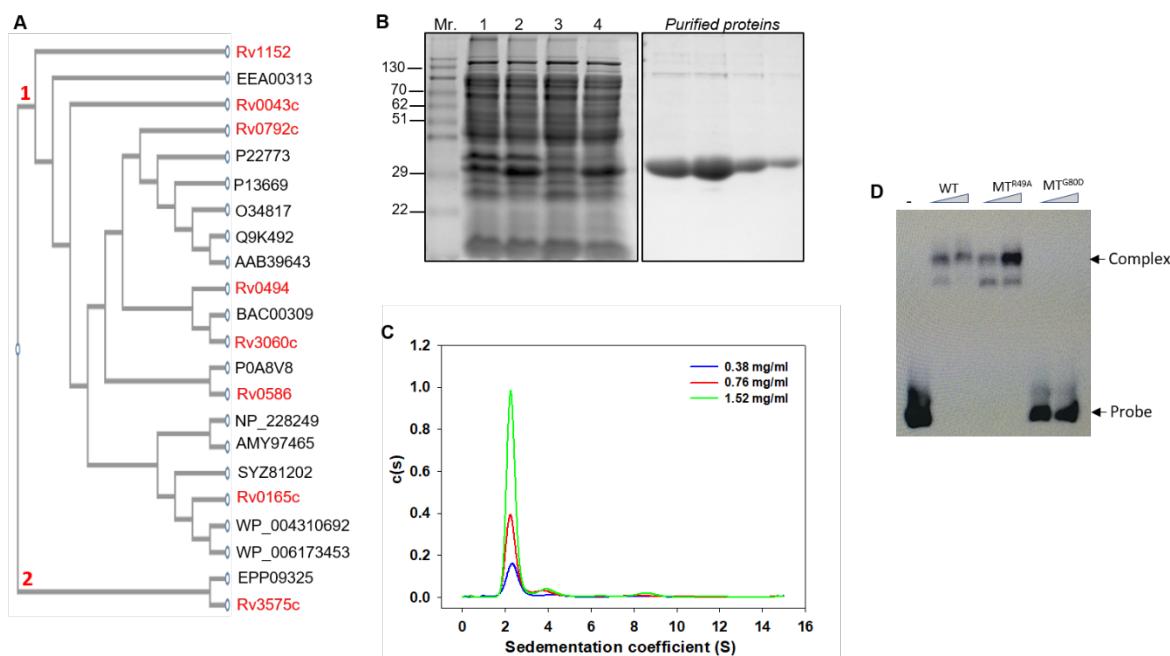
934 61. Franco IS, Mota LJ, Soares CM, de Sa-Nogueira I. Functional domains of the *Bacillus  
935 subtilis* transcription factor AraR and identification of amino acids important for nucleoprotein  
936 complex assembly and effector binding. *J Bacteriol.* 2006;188(8):3024-36.

937 62. Resch M, Schiltz E, Titgemeyer F, Muller YA. Insight into the induction mechanism  
938 of the GntR/HutC bacterial transcription regulator YvoA. *Nucleic Acids Res.*  
939 2010;38(7):2485-97.

940 63. Li ZQ, Zhang JL, Xi L, Yang GL, Wang SL, Zhang XG, et al. Deletion of the  
941 transcriptional regulator GntR down regulated the expression of Genes Related to Virulence  
942 and Conferred Protection against Wild-Type *Brucella* Challenge in BALB/c Mice. *Mol  
943 Immunol.* 2017;92:99-105.

944 64. Zhou X, Yan Q, Wang N. Deciphering the regulon of a GntR family regulator via  
945 transcriptome and ChIP-exo analyses and its contribution to virulence in *Xanthomonas citri*.  
946 *Mol Plant Pathol.* 2017;18(2):249-62.

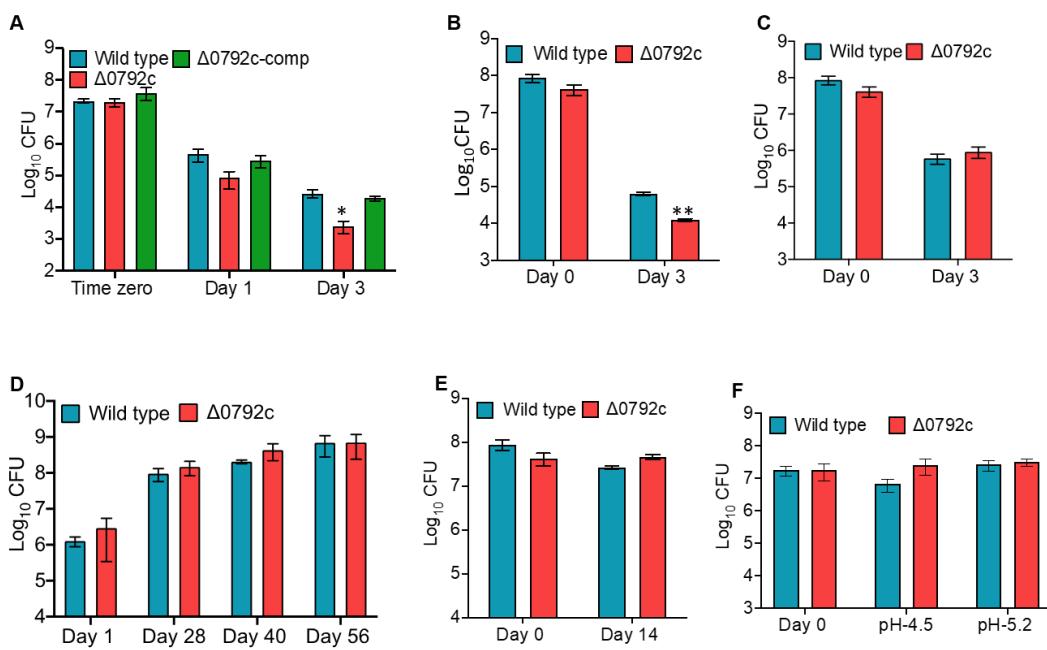
947 65. Wang T, Qi Y, Wang Z, Zhao J, Ji L, Li J, et al. Coordinated regulation of anthranilate  
948 metabolism and bacterial virulence by the GntR family regulator MpaR in *Pseudomonas  
949 aeruginosa*. *Mol Microbiol.* 2020;114(5):857-69.


950 66. Zhou Y, Nie R, Liu X, Kong J, Wang X, Li J. GntR is involved in the expression of  
951 virulence in strain *Streptococcus suis* P1/7. *FEMS Microbiol Lett.* 2018;365(14).

952 67. Lemieux MJ, Ference C, Cherney MM, Wang M, Garen C, James MN. The crystal  
953 structure of Rv0793, a hypothetical monooxygenase from *M. tuberculosis*. *J Struct Funct  
954 Genomics.* 2005;6(4):245-57.

955 68. Jing M, Bowser MT. Methods for measuring aptamer-protein equilibria: a review. *Anal  
956 Chim Acta.* 2011;686(1-2):9-18.

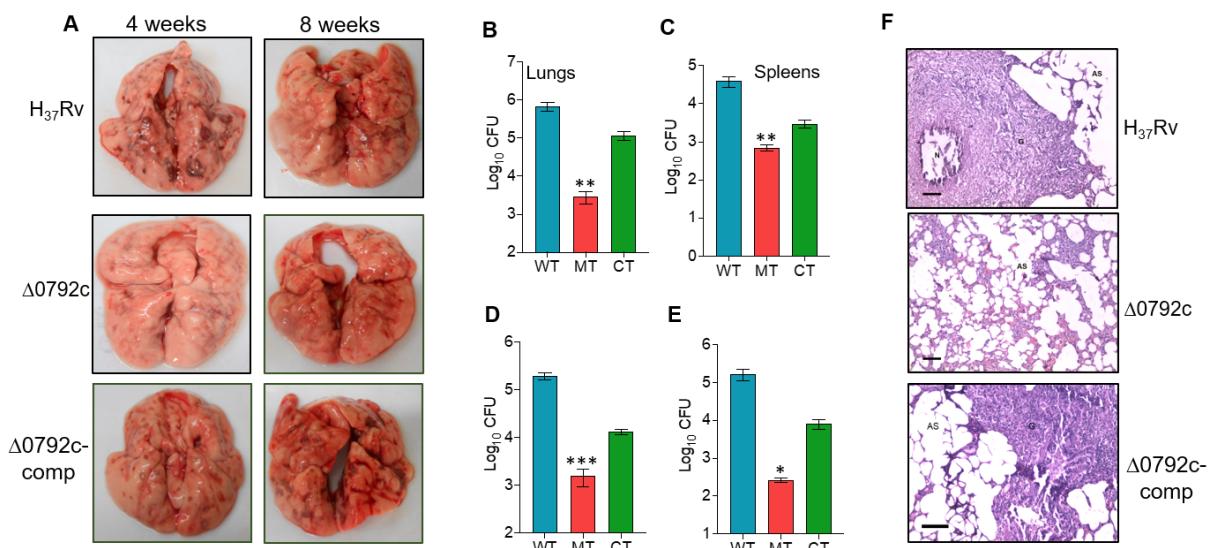
957 69. Bilibana MP, Citartan M, Yeoh TS, Rozhdestvensky TS, Tang TH. Aptamers as the  
958 Agent in Decontamination Assays (Apta-Decontamination Assays): From the Environment to  
959 the Potential Application In Vivo. *J Nucleic Acids.* 2017;2017:3712070.


960 70. Taneja V, Goel M, Shankar U, Kumar A, Khilnani GC, Prasad HK, et al. An Aptamer  
961 Linked Immobilized Sorbent Assay (ALISA) to Detect Circulatory IFN-alpha, an  
962 Inflammatory Protein among Tuberculosis Patients. *ACS Comb Sci.* 2020;22(11):656-66.  
963 71. Manochehry S, McConnell EM, Li Y. Unraveling Determinants of Affinity  
964 Enhancement in Dimeric Aptamers for a Dimeric Protein. *Sci Rep.* 2019;9(1):17824.  
965 72. Hu J, Kim J, Easley CJ. Quantifying Aptamer-Protein Binding via Thermofluorimetric  
966 Analysis. *Anal Methods.* 2015;7(17):7358-62.  
967 73. Momose I, Kunimoto S, Osono M, Ikeda D. Inhibitors of insulin-like growth factor-1  
968 receptor tyrosine kinase are preferentially cytotoxic to nutrient-deprived pancreatic cancer  
969 cells. *Biochem Biophys Res Commun.* 2009;380(1):171-6.  
970 74. Davis MI, Sasaki AT, Shen M, Emerling BM, Thorne N, Michael S, et al. A  
971 homogeneous, high-throughput assay for phosphatidylinositol 5-phosphate 4-kinase with a  
972 novel, rapid substrate preparation. *PLoS One.* 2013;8(1):e54127.  
973



974

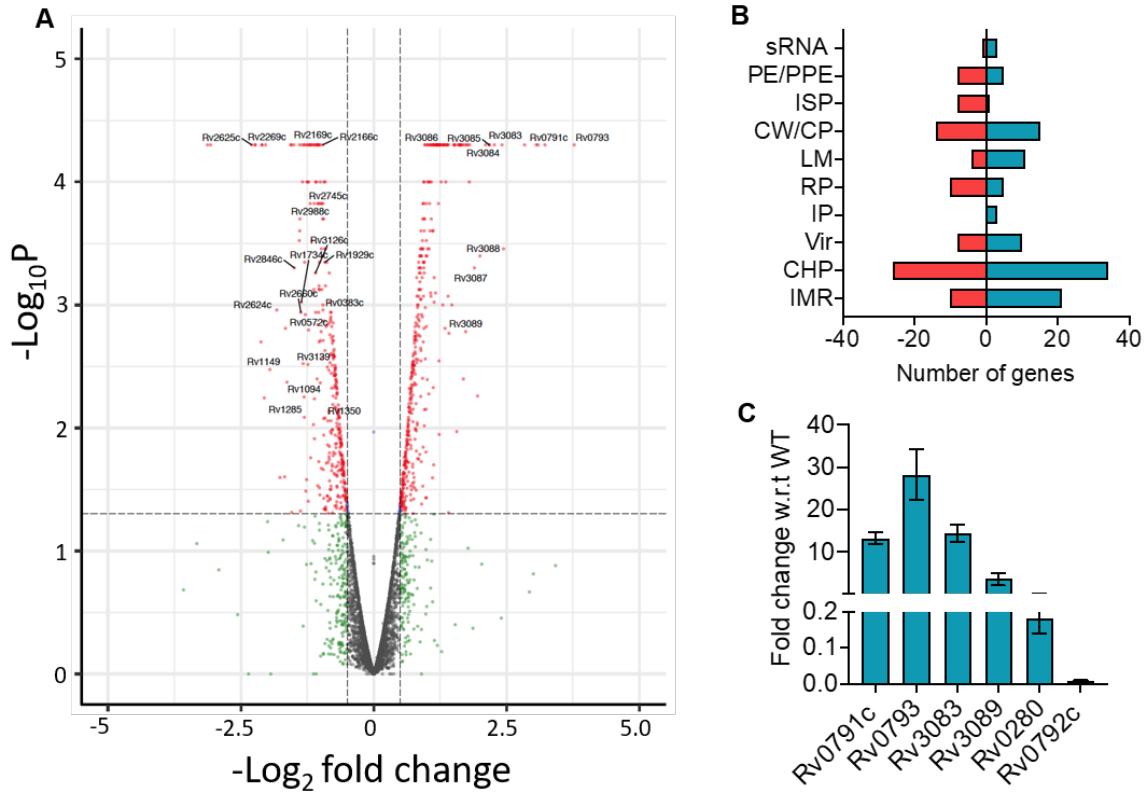
Chauhan et al., Figure 1


975 **Figure 1: (A) Rooted phylogenetic tree for GntR family of transcription factor in various**  
 976 **prokaryotes.** The bacterial species included in the phylogenetic analysis are: *M. tuberculosis*  
 977 (Rv0043c, Rv0165c, Rv0494, Rv0586, Rv1152, Rv0792c and Rv3060c), *Burkholderia* sp  
 978 (EEA00313), *Pseudomonas Putida* (P22773), *Escherichia coli* (P0A8V8, P13669), *Bacillus*  
 979 *subtilis* (O34817), *Streptomyces coelicolor* (Q9K492), *Salmonella enterica* (AAB39463),  
 980 *Corynebacterium glutamicum* (BAC00309), *Thermotoga maritima* (NP\_228249),  
 981 *Streptococcus pyogenes* (AMY97465), *Vibrio cholerae* (SYZ81202), *Pseudomonas syringae*  
 982 (WP\_044310692), *Brucella* sp (WP\_006173453) and *Klebsiella pneumoniae* (EPP09325). **(B)**  
 983 **Rv0792c expression and purification.** SDS-PAGE analysis of Rv0792c expression in *E. coli*.  
 984 Mr, molecular size markers (molecular weight of Rv0792c is about 29.9 kDa); Lane 1,  
 985 Uninduced total fraction; Lane 2, Induced total fraction; Lane 3, Uninduced soluble fraction;  
 986 Lane 4, Induced soluble fraction. Protein fractions purified by Ni-NTA affinity  
 987 chromatography. **(C) Sedimentation velocity analytical ultracentrifugation experiments.**  
 988 Radial absorption curves for different concentrations of Rv0792c were collected at 280nm.  
 989 Scans were collected every 3 mins. Sedimentation coefficient continuous distribution  $c(s)$  plots  
 990 of the protein at indicated concentrations.  $c(s)$  plots show that Rv0792c exists majorly as dimer  
 991 in its native state. **(D) Rv0792c binds to its own promoter.** EMSAs of (His)<sub>6</sub>-Rv0792c protein  
 992 with the promoter region of Rv0792c. The labelled probe was incubated with either wild type  
 993 or various mutant proteins as outlined in Materials and Methods.



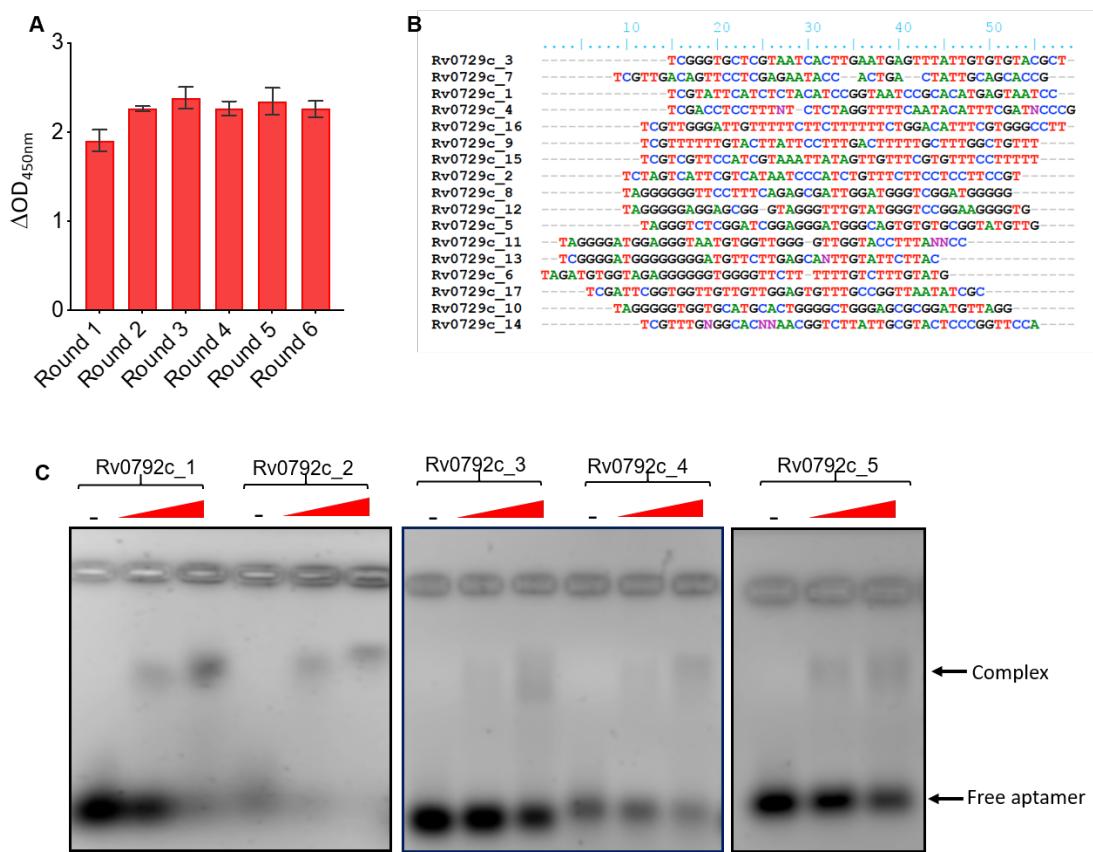
994

*Chauhan et al., Figure 2*


995 **Figure 2: The effect of deletion of Rv0792c on the survival of *M. tuberculosis* in different**  
996 **stress conditions *in vitro*.** For *in vitro* stress experiments, early log phase cultures of various  
997 strains were exposed to either oxidative stress (5 mM H<sub>2</sub>O<sub>2</sub>, A) or lysozyme (2.5 mg/ml, B) or  
998 nitrosative (5mM NaNO<sub>2</sub>, C) or low oxygen (D) or nutritional stress (1x TBST, E) or acidic  
999 pH (pH-5.2, F). The data shown in these panels is mean  $\pm$  S.E. of log<sub>10</sub> CFU obtained from  
1000 two or three independent experiments. The statistically significant differences were observed  
1001 for the indicated groups (paired (two-tailed) *t*-test, \**P*<0.05, \*\**P*<0.01.



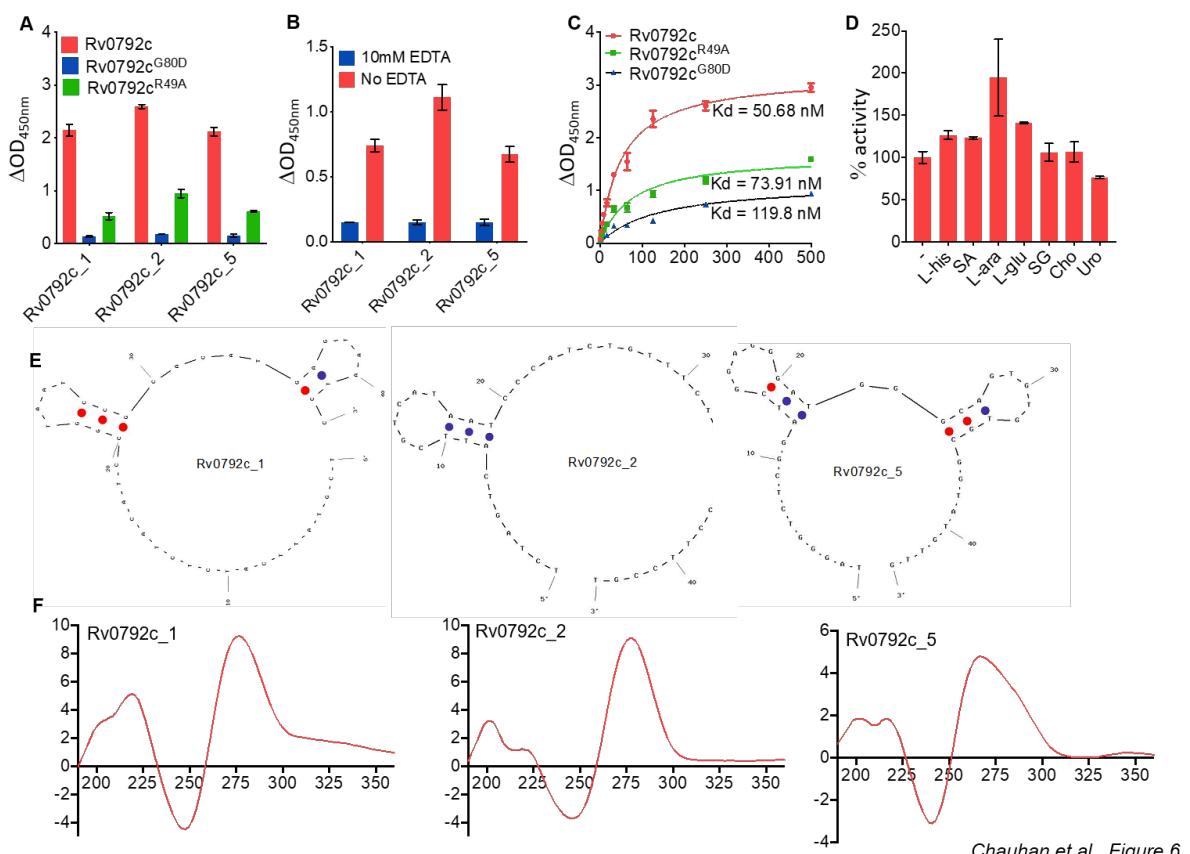
1002


Chauhan et al., Figure 3

1003 **Figure 3: Rv0792c is essential for *M. tuberculosis* to establish infection in the host. (A)**  
1004 Gross pathological evaluation of tissue damage of lung tissues from guinea pigs infected with  
1005 either wild type or Rv0792c mutant or Rv0792c complemented strains at 4 weeks or 8 weeks  
1006 post-infection. **(B-E)** The lung and splenic bacillary loads were determined in aerosol infected  
1007 guinea pigs at both 4 weeks (B, C) and 8 weeks (D, E) post-infection. The data represented in  
1008 this panel is mean  $\pm$  S.E. of  $\log_{10}$  CFU obtained from 6 or 7 animals per time points for each  
1009 strain. The statistically significant differences were observed for the indicated groups (paired  
1010 (two-tailed) *t*-test, \**P*<0.05, \*\**P*<0.01, \*\*\**P*<0.001. **(F)** The tissue sections from 8 weeks  
1011 infected animals were stained with haematoxylin and eosin to determine the extent of tissue  
1012 damage. Scale bar, 100 microns, 100x magnification.



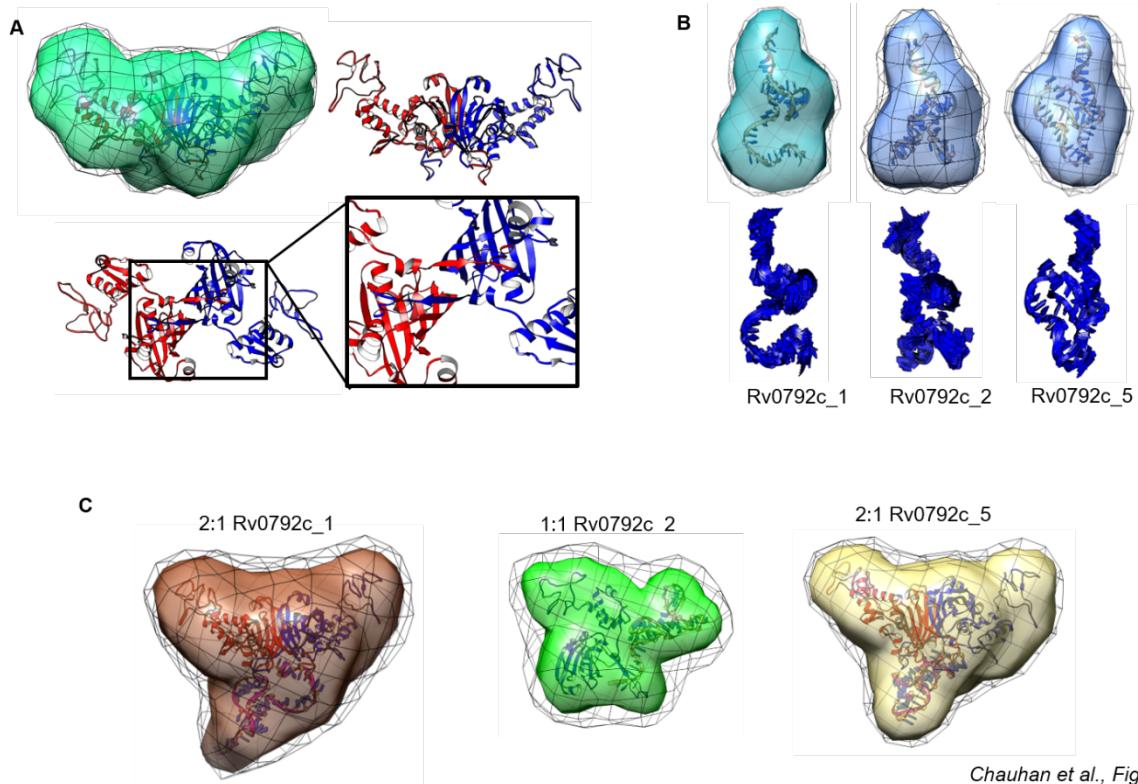
Chauhan et al., Figure 4


1013  
 1014 **Figure 4: Differential expression of genes in Rv0792c mutant strain** **(A)** Volcano plot  
 1015 illustrating the gene expression comparison between wild type vs mutant strain, where  
 1016 individual genes are represented as single dots with the -log<sub>10</sub> P-value on the y axis and the  
 1017 log<sub>2</sub> fold change on the x axis. Selected subset of significant genes are shown with their gene  
 1018 names as the labels. **(B)** The functional annotation of differentially expressed genes between  
 1019 parental and Rv0792c strain is shown. These annotations were generated using TB data base  
 1020 (<https://mycobrowser/epfl.ch>). The upregulated and downregulated genes in the mutant strain  
 1021 has been shown using blue bar and red bar, respectively. The abbreviations used in the panel  
 1022 are as follows; IMR- Intermediary metabolism and respiration, CHP- Conserved hypothetical  
 1023 protein, Vir- Virulence, detoxification and adaptation, IP- Information pathways, RP-  
 1024 Regulatory proteins, LM- Lipid metabolism, CW/CP- Cell wall and cell processes, ISP-  
 1025 Insertion sequences and phages, PE/PPE- Proline-glutamic acid (PE)/proline-proline-glutamic  
 1026 acid (PPE) sRNA – small RNA **(C)** The relative expression of differentially expressed  
 1027 transcripts was quantified after normalization to levels of housekeeping gene, *sigA*. The gene  
 1028 IDs are labelled on the x-axis and mean  $\pm$  S.E. fold change obtained from three independent  
 1029 experiments is shown on y-axis.



1030  
1031  
1032  
1033  
1034  
1035

*Chauhan et al., Figure 5*


**Figure 5: Selection and characterization of Rv0792c binding aptamers.** (A) Round-wise enrichment of Rv0792c-binding aptamer pools (Round 1-6) assessed by ALISA. (B) Multiple sequence alignment of Rv0792c binding aptamer sequences. (C) Electrophoretic mobility Gel shift assay of selected aptamer candidates (100 pmol) with increasing concentrations of purified Rv0792c. The data shown in panel A is obtained from 2 replicates.



Chauhan et al., Figure 6

1036  
1037  
1038  
1039  
1040  
1041  
1042  
1043  
1044  
1045  
1046  
1047  
1048

**Figure 6: Binding and structural studies of selected aptamer candidates.** (A) Binding of selected aptamer candidates (Rv0792c<sub>1</sub>, Rv0792c<sub>2</sub> and Rv0792c<sub>5</sub>) with wild type, Rv0792c<sup>R49A</sup> and Rv0792c<sup>G80D</sup>. (B) Effect of presence of EDTA on the binding of Rv0792c<sub>1</sub>, Rv0792c<sub>2</sub> and Rv0792c<sub>5</sub> aptamer candidates to Rv0792c protein. (C) Apparent dissociation constant curve derived through non-linear regression representing binding affinity (Kd) of Rv0792c<sub>2</sub> for wild type, Rv0792c<sup>R49A</sup> and Rv0792c<sup>G80D</sup>. (D) Effect of various ligands on aptamer binding to Rv0792c protein. L-his, SA, L-ara, L-glu, SG, Cho and Uro represents L-histidine, stearic acid, L-arabinose, glucose, sodium glyoxylate, cholesterol and urocanic acid, respectively. (E) UNA fold predicated secondary structure of selected aptamer candidates. (F) Circular dichroism (CD) spectrum of Rv0792c<sub>1</sub>, Rv0792c<sub>2</sub> and Rv0792c<sub>5</sub> aptamers. CD spectra indicate typical B-type stem-loop structure of aptamers. The data shown in panel a is obtained from 3 replicates. The data shown in panel b-d is obtained from 2 replicates.



*Chauhan et al., Figure 7*

1049  
1050

1051 **Figure 7: SAXS based structural models of unliganded protein Rv0792c, its binding**  
1052 **aptamers and their complexes.** (A) SAXS data-based envelope of Rv0792c dimer (green

1053 map) inertially aligned on structural model of protein (blue and red ribbon). The green map

1054 shows the common shape in ten solutions, and black mesh indicates the variation in them. Other

1055 panels show the C-terminal tail of each chain binds to the other stabilizing the dimeric

1056 association. (B) Upper panel shows the SAXS based dummy residue models of the unliganded

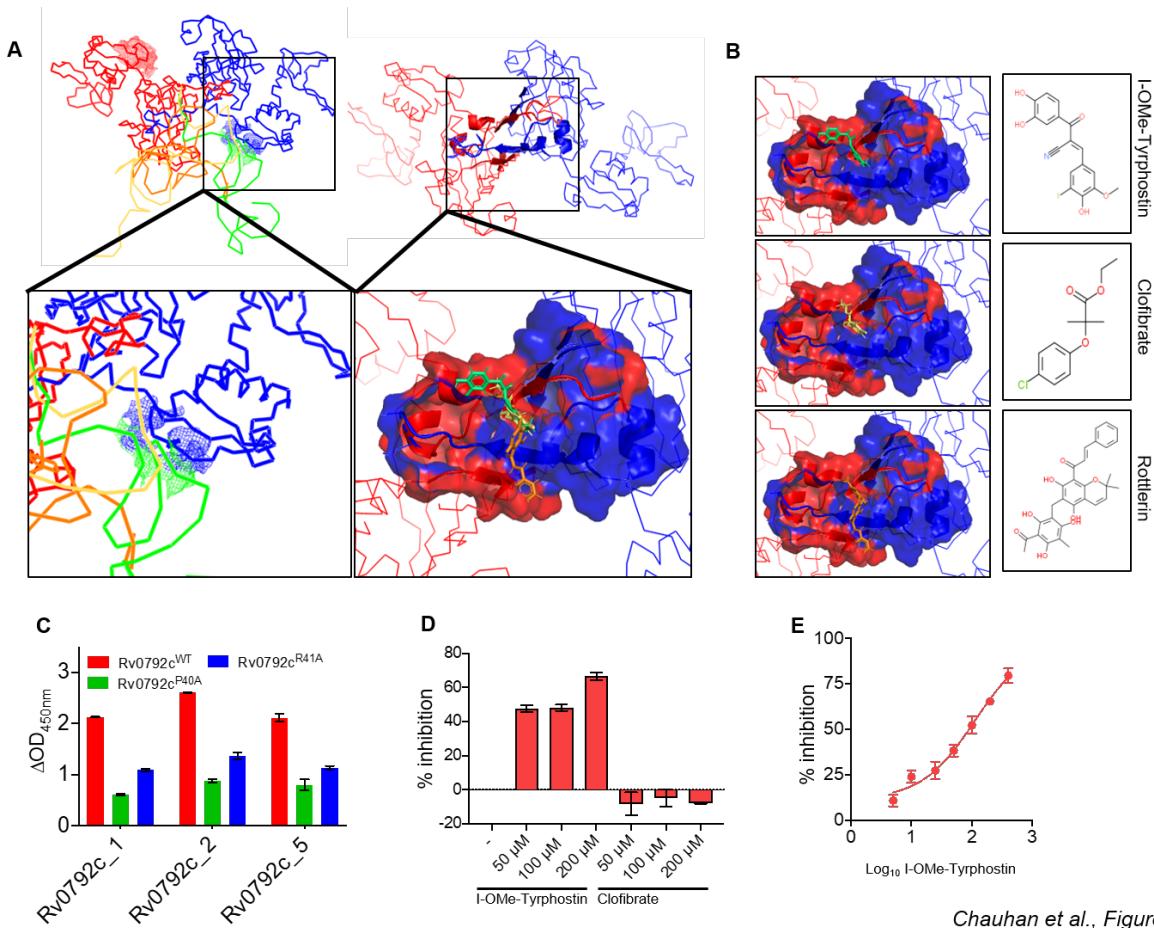
1057 aptamers Rv0792c\_1, Rv0792c\_2 and Rv0792c\_5 as molecular map. Respective model is

1058 aligned with the inertial axes of its model from energy optimization (shown as ribbon). Lower

1059 panel shows the most collective normal mode frequency calculated for the energy optimized

1060 model of aptamer to reflect the inherent motion to the model. (C) SAXS data-based models of

1061 ternary and binary complexes of Rv0792c\_1, Rv0792c\_2 and Rv0792c\_5 and protein Rv0792c


1062 are shown as molecular maps. The black mesh indicates the variations in the models solved for

1063 that complex. Inside each map, energy minimized model of the complex generated by SAXS

1064 data based selected result from docking of low energy conformation of aptamer on protein are

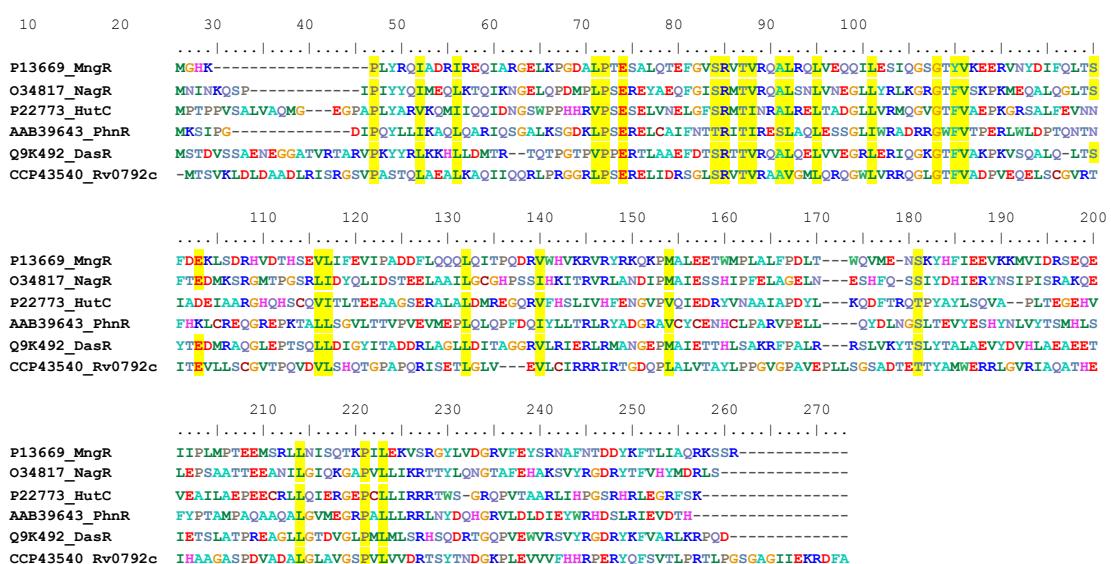
1065 shown as ribbons. Note that binding of Rv0792c\_2 to protein leads to binary complex while

1066 other aptamers form stable ternary complexes.



Chauhan et al., Figure 8

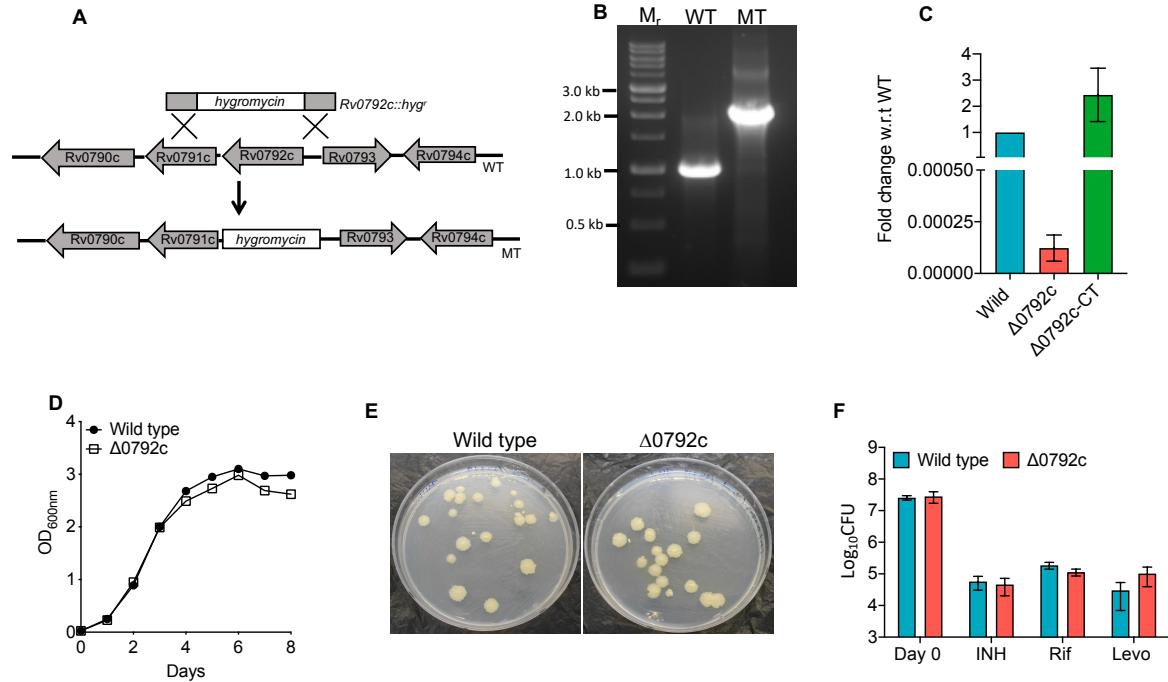
1067  
1068 **Figure 8: Identification of I-OMe-Tyrphostin as a small molecule inhibitor of Rv0792c.**  
1069 Left upper panels show ribbon representation of (left) the similar binding of the three aptamers  
1070 in space near the C-terminal dimerization region, and (right) shows the segment which is  
1071 common to binding of all aptamers. The zoomed in panel in lower left part show how aptamers  
1072 binding to C-terminal part extend interaction to the functionally critical PRG motif in one chain  
1073 of protein (shown as blue mesh). The zoomed in image in the right lower panel shows the  
1074 docking of three best hits on the surface common to binding of aptamers. The receptor is shown  
1075 in surface map mode with colouring of the chain of the dimer. The molecules are shown as  
1076 sticks. (B) The right three panels show the docked pose of individual molecules with their  
1077 chemical structures in inset. From top to bottom, hit molecules are: (2E)-2-(3,4-  
1078 Dihydroxybenzoyl)-3-(4-hydroxy-3-iodo-5-methoxy phenyl) acrylonitrile (*I-OMe-*  
1079 *Tyrphostin*); 2-(4-Chlorophenoxy)-2-methylpropionic acid ethyl ester (*Clofibrate*); and (2E)-  
1080 1-[6-(3-Acetyl-2,4,6-trihydroxy-5-methylbenzyl)-5,7-dihydroxy-2,2-dimethyl-2H-chromen-  
1081 8-yl]-3-phenyl-2-propen-1-one (*Rottlerin*). (C) Binding of selected aptamer candidates  
1082 (Rv0792c\_1, Rv0792c\_2 and Rv0792c\_5) with wild type, Rv0792c<sup>P40A</sup> and Rv0792c<sup>R41A</sup>. (D)  
1083 The aptamer binding activity of Rv0792c was determined by ALISA in the presence of I-OMe-  
1084 Tyrphostin and Clofibrate at 50 μM, 100 μM and 200 μM concentration. (E) The binding of  
1085 Rv0792c with aptamer was performed in the presence of different concentration of I-OMe-  
1086 Tyrphostin as described in Materials and Methods. The data shown in panel c-e is obtained  
1087 from 2 replicates.  
1088


1089 **Table 1.** Sedimentation coefficient values of Rv0792c obtained from analytical  
1090 ultracentrifugation studies.

1091

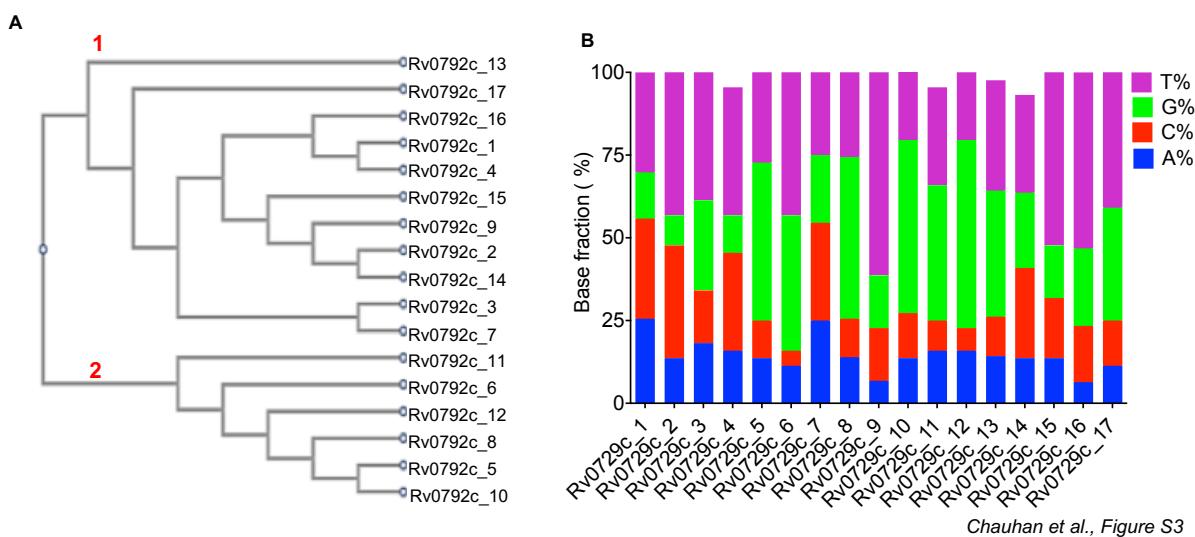
| Concentration<br>(mg/ml) | S <sub>20,w</sub> & (% Species) |              | Mol Wt (kDa) |        |
|--------------------------|---------------------------------|--------------|--------------|--------|
|                          | Peak 1                          | Peak 2       | Peak 1       | Peak 2 |
| 0.37                     | 2.37 (60.5%)                    | 4.37 (8.2%)  | 57.5         | 143.9  |
| 0.75                     | 2.23 (63.8%)                    | 4.21 (11.6%) | 55.6         | 136.1  |
| 1.5                      | 2.30 (73.6%)                    | 4.04 (6.7%)  | 54.6         | 127.9  |

1092 **Supplementary Information**


1093



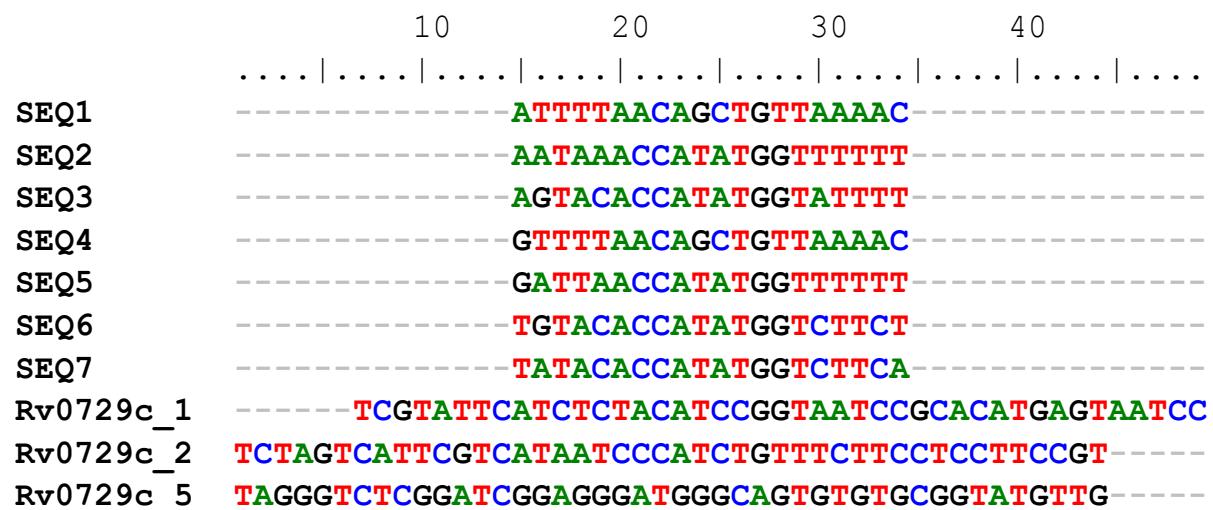
Chauhan et al., Figure S1


1094  
1095

1096 **Figure S1:** Multiple sequence alignment of putative Rv0792c homologs from various bacterial  
1097 pathogens. Multiple sequence alignments among different proteins were prepared using Clustal  
1098 W and formatted using BioEdit sequence alignment editor. The conserved residues among  
1099 different proteins are highlighted in red. The proteins used in alignment are; CCP43540  
1100 (Rv0792c, *M. tuberculosis*), P13669 (MngR, *E. coli*), O34817 (NagR, *B. subtilis*), P22773  
1101 (HutC, *P. putida*), AAB39463 (PhnR, *S. enterica*) and Q9K492 (DasR, *S. coelicolor*).



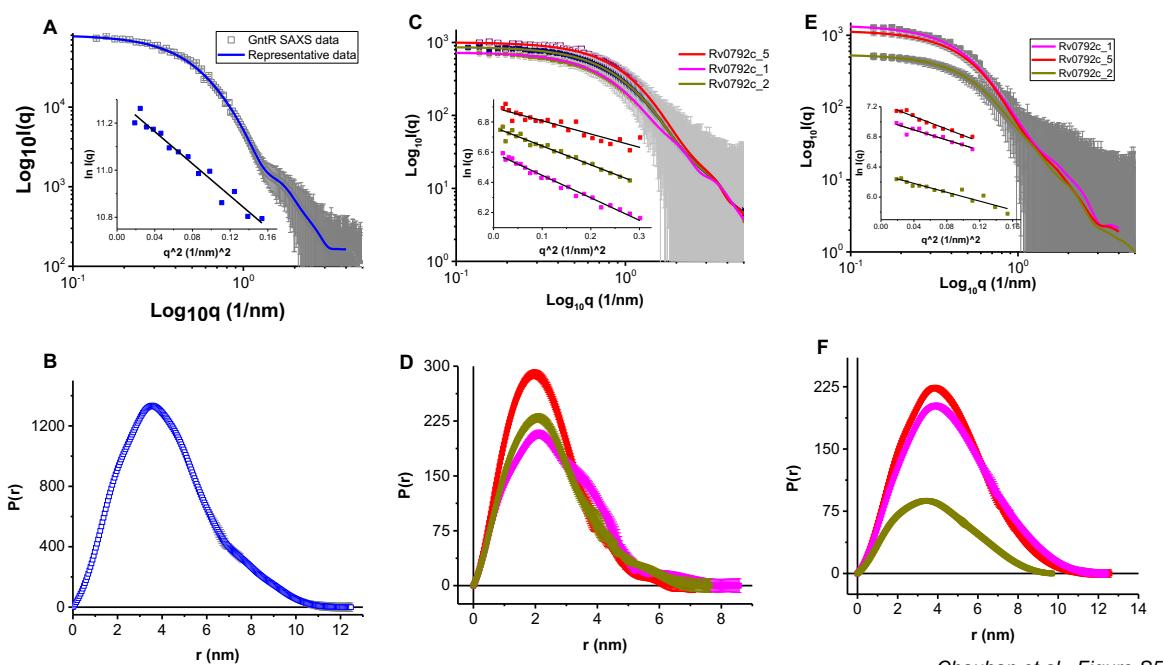
Chauhan et al., Figure S2


1102  
1103  
1104 **Figure S2: (A) Schematic representation of Rv0792c locus in wild type and mutant strain**  
1105 **of *M. tuberculosis*. The gene for Rv0792c was replaced with the hygromycin resistance**  
1106 **cassette in the mutant strain by homologous recombination using temperature sensitive**  
1107 **mycobacteriophages (B-F) Characterization of Rv0792c mutant strain of *M. tuberculosis*.**  
1108 **The disruption of Rv0792c in the mutant strain was confirmed by PCR (B) and qPCR analysis**  
1109 **(C) using gene locus specific primers. (D) The growth kinetics of wild type and Rv0792c**  
1110 **mutant strain was compared by measuring the absorbance at 600nm. (E) The colony**  
1111 **morphology of wild type vs mutant strain is shown in this panel. (F) For *in vitro* drug**  
1112 **susceptibility assays, mid-log phase cultures of various strains were exposed to various TB**  
1113 **drugs. The data shown in this panel is mean ± S.E. of results obtained from two independent**  
1114 **experiments.**



*Chauhan et al., Figure S3*

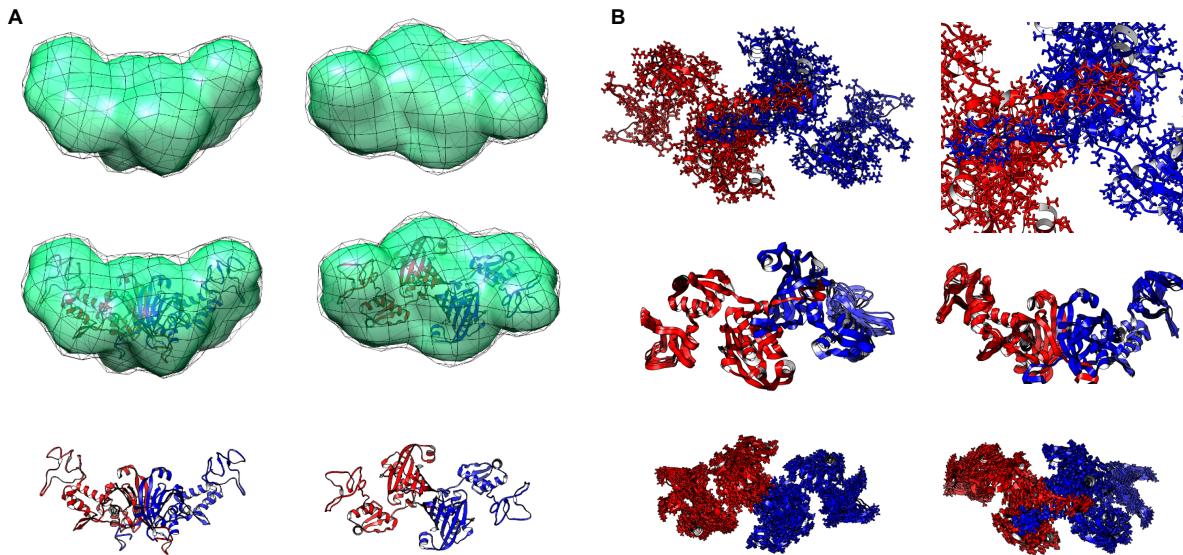
1115  
1116


1117 **Figure S3: (A)** Phylogenetic tree analysis of aptamer sequences using online tool ClustalW.  
1118 The numbers in red denote the preponderant groups in the phylogenetic tree. **(B)** Base fraction  
1119 analysis of aptamer candidates. We observed that the majority of selected aptamers evinced  
1120 bias towards 'T' richness.



*Chauhan et al., Figure S4*

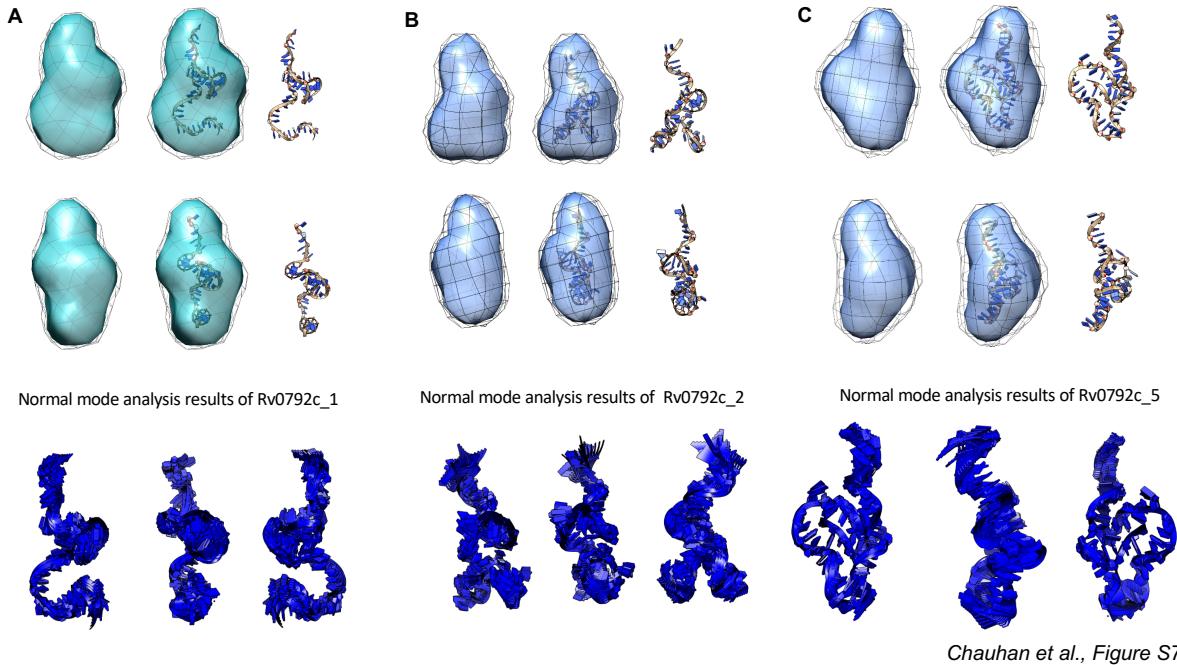
1121  
1122  
1123  
1124


**Figure S4:** Multiple sequence alignment of Rv0792c\_1, Rv0792c\_2 and Rv0792c\_5 aptamers with the known DNA sequences having affinity for transcription factors of GntR family. Seq1 to Seq7 represent the known DNA sequences.

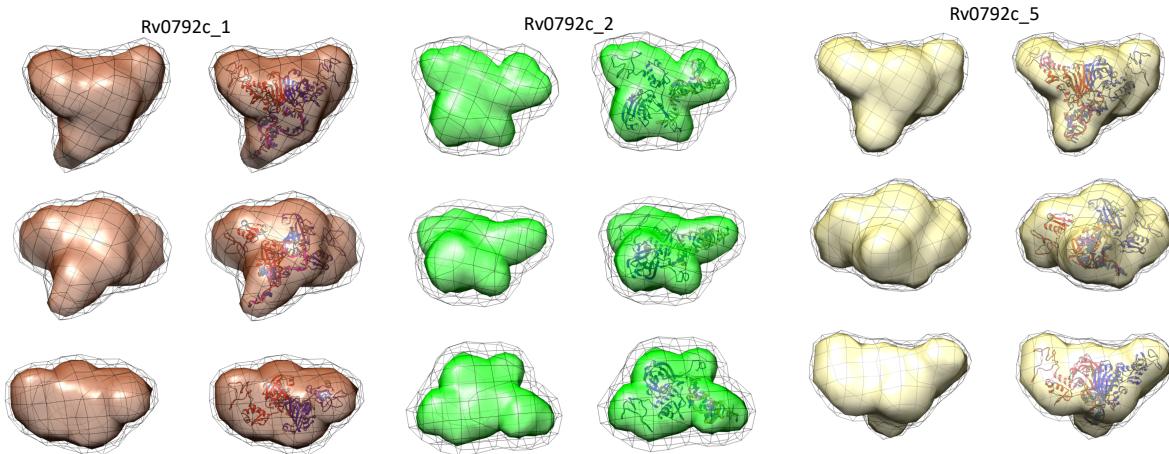


*Chauhan et al., Figure S5*

1125  
1126


1127 **Figure S5:** The panel (A) shows SAXS data acquired from a sample of Rv0792c at  
1128 concentration close to 3.2 mg/ml (grey square symbols). Inset shows the linear region of the  
1129 SAXS dataset in Guinier analysis considering globular scattering profile. (B) This panel shows  
1130 the distance distribution profile of the interatomic vectors inside SAXS profile of the protein,  
1131 and the blue line in the left panel plot shows the SAXS profile of the estimate. (C-F) Same  
1132 analyses of the unliganded aptamers (C, D) and 1:1 molar mixture of protein and aptamers (E,  
1133 F) are shown, respectively.




*Chauhan et al., Figure S6*

1134  
1135  
1136  
1137  
1138  
1139  
1140  
1141  
1142  
1143  
1144  
1145

**Figure S6:** (A) Two orthogonal views compare the SAXS data based scattering envelope shape of Rv0792c and its structure solved by a combination of homology modelling and energy minimization. The green map represents the shape profile which was calculated to be common in ten dummy residue models of the protein. The variation is depicted as black mesh. The bottom panels show rotated views of the residue detail model of protein which was found to be a dimer and is shown in ribbon format. The central panel shows the inertial axes overlay of the two models indicating their similarity in three-dimensional space. (B) The calculated low frequency normal modes of motion accessible to the model of the Rv0792c dimer. Upper two panels highlight how the C-terminal tail of one chain latches on to the other to stabilize dimeric association. Lower four panels show calculated collective motion in the protein structure which shows motion in the N-termini of the protein chains in the dimer.



1146  
1147  
1148 **Figure S7:** The SAXS based shapes of the three ssDNA aptamers have been shown here. The  
1149 maps indicate the shape common to ten independent dummy residue solutions and black mesh  
1150 represents the variation in them. The right panels show the low energy conformation of aptamer  
1151 which best resembled the shape profile obtained experimentally in their SAXS profiles. All  
1152 aptamers are monomer in solution. Normal mode analysis of the residue detail models of the  
1153 aptamers have been done to perceive the extent of inherent motion accessible to the model of  
1154 aptamers which also explains to some extent the additional volume seen in the molecular map  
1155 of scattering shape of aptamers.



Chauhan et al., Figure S8

1156  
1157

1158 **Figure S8:** The SAXS based envelope shapes and residue scale models of the three ssDNA  
1159 aptamers bound with Rv0792c protein have been shown here. The maps indicate the shape  
1160 common to ten independent dummy residue solutions and black mesh represents the variation  
1161 in them. The left column of images for the three sets shows the envelope of the complexes. The  
1162 right column has the residue detailed model of the protein and aptamer where the latter was  
1163 docked on protein and its pose was selected based on agreement with experimental SAXS data  
1164 profile. The residue detail model was superimposed on the SAXS data-based envelope in  
1165 automated manner by aligning their inertial axes.

1166 **Table S1: List of strains, plasmids and primers used in the study.**

1167

1168

| Strains                       | Description                                                                                                                                                                                                                 | Source                          |
|-------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|
| H <sub>37</sub> Rv            | Laboratory strain (ATCC 27294) of <i>M. tuberculosis</i>                                                                                                                                                                    | ATCC                            |
| Δ0792c strain                 | Rv0792c mutant strain of <i>M. tuberculosis</i>                                                                                                                                                                             | This work                       |
| Δ0792c-CT strain              | Rv0792c mutant <i>M. tuberculosis</i> strain complemented with Rv0792c                                                                                                                                                      | This work                       |
| BL21-CodonPlus (DE3)          | F <sup>-</sup> <i>ompT hsdS</i> (r <sub>B</sub> <sup>-</sup> m <sub>B</sub> <sup>-</sup> ) <i>dcm</i> <sup>+</sup> <i>Tet</i> <sup>r</sup> <i>gal λ</i> (DE3) <i>endA</i> Hte [ <i>argU ileY BB leuW Cam</i> <sup>r</sup> ] | Stratagene, USA                 |
| <i>E. coli</i> HB101          | F <sup>-</sup> , <i>thi-1, hsdS20</i> (r <sub>B</sub> <sup>-</sup> m <sub>B</sub> <sup>-</sup> ), <i>supE44, recA13, ara-14, leuB6, proA2, lacY1, galK2, rpsL20</i> (str <sup>r</sup> ), <i>xyl-5, mtl-1</i>                | Promega, UK                     |
| <i>E. coli</i> XL-1 blue      | <i>recA1, endA1, gyrA96, thi-1, hsdR17, supE44, relA1, lac</i> [F <sup>r</sup> <i>proAB, lacF</i> <sup>r</sup> <i>ZΔM15 Tn10</i> (Tet <sup>r</sup> )]                                                                       | Stratagene, USA                 |
| <i>E. coli</i> DH5α           | F <sup>-</sup> <i>φ80lacZΔM15 Δ(lacZYAargF)U169 recA1 endA1 hsdR17(rK<sup>-</sup>, m<sub>K</sub><sup>+</sup>) phoA supE44 λ thi-1 gyrA96 relA1</i>                                                                          | Thermo Fischer, Scientific, USA |
| Plasmids                      | Description                                                                                                                                                                                                                 | Source                          |
| pGEM-T easy                   | T/A cloning vector, <i>amp</i> <sup>r</sup>                                                                                                                                                                                 | Promega, UK                     |
| pTZ57 R/T                     | T/A cloning vector, <i>amp</i> <sup>r</sup>                                                                                                                                                                                 | Thermo Fischer Scientific, USA  |
| pYUB854                       | Cloning vector, <i>hyg</i> <sup>r</sup>                                                                                                                                                                                     | Bardarov <i>et al.</i> , 2002   |
| pYUB854Δ0792c                 | pYUB854 vector containing upstream and downstream regions of Rv0792c, <i>hyg</i> <sup>r</sup>                                                                                                                               | This work                       |
| pYUB159                       | Phagemid DNA, <i>amp</i> <sup>r</sup> , temperature sensitive mycobacteriophage                                                                                                                                             | Bardarov <i>et al.</i> , 2002   |
| pYUB159-Δ0792c                | Phagemid DNA containing upstream and downstream region of Rv0792c, <i>hyg</i> <sup>r</sup>                                                                                                                                  | This work                       |
| pMV306K                       | <i>E. coli</i> mycobacterium shuttle vector, <i>kan</i> <sup>r</sup>                                                                                                                                                        | Stover <i>et al.</i> , 1991     |
| pMV306K-0792c                 | pMV306K carrying Rv0792c along with its upstream region                                                                                                                                                                     | This work                       |
| pET28b                        | <i>E. coli</i> T7 based expression system, <i>kan</i> <sup>r</sup>                                                                                                                                                          | Novagen                         |
| pET28b-0792c WT               | pET28b carrying Rv0792c coding region                                                                                                                                                                                       | This work                       |
| pET28b-0792c R <sub>49A</sub> | pET28b carrying Rv0792c with Arg49-Ala mutation                                                                                                                                                                             | This work                       |
| pET28b-0792c G <sub>80D</sub> | pET28b carrying Rv0792c with Gly80-Asp mutation                                                                                                                                                                             | This work                       |
| pET28b-0792c R <sub>41A</sub> | pET28b carrying Rv0792c with Arg41-Ala mutation                                                                                                                                                                             | This work                       |
| pET28b-0792c P <sub>40A</sub> | pET28b carrying Rv0792c with Pro40-Ala mutation                                                                                                                                                                             | This work                       |

| Primers name         | Forward (5'---- 3')             | Reverse (5' ----- 3')           |
|----------------------|---------------------------------|---------------------------------|
| Rv0792c_up           | GAGGCCTCGCACAGGCTGGTCACCGGATC   | GTCTAGAACGCGTCCAGGTCCAGCTTGACAG |
| Rv0792c_dn           | GAAGCTTCGAGATTTCGCATGAACGCCAAAG | GAATAGTCAGCAGCGTGACCGACAGTCGC   |
| Rv0792c_ORF          | GGGATCCGATGACATCTGTCAAGCTGGACCT | GAAGCTTCATGCGAAATCTCGTTCTCGATA  |
| Rv0792c_R49A         | TTGCCAGCGAAGCAGAATTGATCGAC      | GTGATCAATTCTGCTTCGCTGGCAA       |
| Rv0792c_G80D         | GTGCGCCGGCAAGACTTGGGTACCTTC     | GAAGGTACCCAAAGTCTGCCGGCGCAC     |
| Rv0792c_R41A         | CAGCAGCGGCTGCCGGCCGGCGGGCGC     | GCGCCCGCCGGCCGGCAGCCGCTGCTG     |
| Rv0792c_P40A         | CAGCAGCGGCTGGCGCCGGCGGGCGC      | GCGCCCGCCGGCGCCAGCCGCTGCTG      |
| Rv0792c_complemented | GTCTAGAGCTGGTATAGCCAACCCGCCGCCG | GAAGCTTCATGCGAAATCTCGTTCTCGATA  |
| Rv0792c_SYBR         | GTGCGCCGGCAAGGCTTGGGTAC         | GCGCCGGCGAATACAGAGGACC          |

1169  
1170

1171 **Table S2:**  
1172 Details of instrumentation, programs used for SAXS processing and SAXS data based  
1173 parameters of unliganded protein Rv0792c, aptamers found to bind the protein and their  
1174 molar mixtures are tabulated below.  
1175

| 1176 <b>Instrument</b>                     | 1176 <b>SAXSpace (Anton Paar, Austria)</b>       |
|--------------------------------------------|--------------------------------------------------|
| 1177 Collimation                           | Line Collimation                                 |
| 1178 Source                                | X-rays, CuK $\alpha$ , 0.15414 nm                |
| 1179 Detector                              | 1D Mythen                                        |
| 1180 Sample to detector distance           | 317.06 mm                                        |
| 1181 Exposure time & Repeats               | Average of three 60 minutes for samples & buffer |
| 1182 Subtraction from Solutions            | Matched Buffer                                   |
| 1183 <b>Programs</b>                       |                                                  |
| 1184 Data collection & Optics Control      | SAXSDrive                                        |
| 1185 Beam Position Correction              | SAXSTreat                                        |
| 1186 Buffer Subtraction & Desmearing       | SAXSQuant                                        |
| 1187 SAXS Intensity File Analysis          | ATSAS Suite of Programs v 2.8.4                  |
| 1188 <b>Programs for Shape Restoration</b> |                                                  |
| 1189 Guinier Analysis                      | SAXS Data Analysis                               |
| 1190 Distance Distribution Function        | SAXS Data Analysis                               |
| 1191 Shape Restoration                     | DAMMIF (10 independent runs, no symmetry bias)   |
| 1192 Averaging                             | DAMAVER                                          |
| 1193 Refinement of average                 | DAMMIN                                           |
| 1194 Superimposition                       | SUPCOMB [Plugins for PyMol v 1.1]                |
| 1195 Theoretical SAXS Comparison           | CRYSTAL                                          |
| 1196 <b>Model Image Generation</b>         |                                                  |
| 1197 Software                              | UCSF CHIMERA v 1.14                              |

1198 **Table S3**

1199 **SAXS Data Analysis and Shape Reconstruction Related Parameters**

| 1200        | Sample                            | Guinier             | Distance Distribution | NSD (Models)        | $\chi^2$ to         |
|-------------|-----------------------------------|---------------------|-----------------------|---------------------|---------------------|
| 1201        |                                   | Analysis            | Function              |                     | residue model       |
| 1202        |                                   | R <sub>g</sub> (nm) | D <sub>max</sub> (nm) | R <sub>g</sub> (nm) |                     |
| <b>1203</b> |                                   |                     |                       |                     |                     |
| 1204        | <b><u>Unliganded Protein</u></b>  |                     |                       |                     |                     |
| 1205        | GntR                              | 3.30                | 12.5                  | 3.31                | 0.93±0.2 (10) 1.3   |
| 1206        |                                   |                     |                       |                     |                     |
| 1207        | <b><u>Unliganded Aptamers</u></b> |                     |                       |                     |                     |
| 1208        | Rv0792c_5                         | 1.81                | 7.1                   | 1.84                | 0.549±0.02 (10) 1.2 |
| 1209        | Rv0792c_1                         | 2.10                | 8.6                   | 2.23                | 0.727±0.03 (10) 1.7 |
| 1210        | Rv0792c_2                         | 1.92                | 7.6                   | 2.01                | 0.684±0.02 (10) 1.5 |
| 1211        |                                   |                     |                       |                     |                     |
| 1212        | <b><u>1:1 molar mixtures</u></b>  |                     |                       |                     |                     |
| 1213        | P+ Rv0792c_5                      | 3.33                | 12.5                  | 3.40                | 0.92±0.1 (10) 1.7   |
| 1214        | P+ Rv0792c_1                      | 3.52                | 12.4                  | 3.55                | 0.84±0.2 (10) 1.8   |
| 1215        | P+ Rv0792c_2                      | 3.10                | 9.8                   | 3.08                | 0.78±0.1 (10) 1     |

1216 **Acknowledgements**

1217 RS acknowledges the funding received from Department of Biotechnology, India (Grant ID;  
1218 BT/PR30215/MED/29/1343/2018). TKS thanks Department of Biotechnology, India for funding  
1219 support through Translational Research Program (BT/PR30159/MED/15/188/2018). Financial  
1220 Support provided to NKC from the DST SERB-NPDF Program (PDF/2016/002392) is gratefully  
1221 acknowledged. AS acknowledges research fellowship received from Indian Council of Medical  
1222 Research. TPG is also thankful to Department of Biotechnology for her fellowship. The authors  
1223 are also thankful to Infection disease research facility and small animal house staff members at  
1224 THSTI for technical help. RS is a recipient of Ramalingaswami fellowship and National  
1225 Bioscience Award from Department of Biotechnology. RS is a senior fellow of Wellcome Trust-  
1226 DBT India Alliance. The authors acknowledge lab attendants Mr. Rajesh and Mr. Sher Singh for  
1227 technical help.

1228 **Author contributions**

1229 RS and TKS conceived and designed the work plan. NKC, AS and TPG performed cloning,  
1230 biochemical, microbiology and animal experiments. AA performed SELEX based experiments.  
1231 KD and A performed SAXS studies. EK and AK performed CD studies. PS performed AUC  
1232 studies. RS, TKS, A, DS and AK supervised the experiments performed in their respective  
1233 laboratories. RS, TKS, A and NKC analyzed the data, interpreted them, and wrote the paper as  
1234 well.

1235 **Conflicts of interest statement**

1236 The authors declare that the research was conducted in the absence of any commercial or  
1237 financial relationships that could be considered as a potential conflict of interest.