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Summary

Much cell-to-cell communication is facilitated by cell surface receptor tyrosine kinases (RTKS). These
proteins phosphorylate their downstream cytoplasmic substrates in response to stimuli such as growth
factors. Despite their central roles, the functions of many RTKSs are still poorly understood. To resolve the
lack of systematic knowledge, we used three complementary methods to map the molecular context and
substrate profiles of RTKs. We used affinity purification coupled to mass spectrometry (AP-MS) to
characterize stable binding partners and RTK-protein complexes, proximity-dependent biotin identification
(BiolD) to identify transient and proximal interactions, and an in vitro kinase assay to identify RTK
substrates. To identify how kinase interactions depend on kinase activity, we also used kinase-deficient
mutants. Our data represent a comprehensive, systemic mapping of RTK interactions and substrates. This
resource adds information regarding well-studied RTKs, offers insights into the functions of less well-
studied RTKs, and highlights RTK-RTK interactions and shared signaling pathways.
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Introduction

Protein phosphorylation reversibly controls the activity or localization of many proteins and is dynamically
regulated by protein kinases and protein phosphatases, which phosphorylate and dephosphorylate proteins,
respectively. Protein kinases catalyze the transfer of a phosphate group from ATP to threonine, serine, and
tyrosine amino acids of specific target proteins. Currently, 571 human protein kinases have been identified.
Of these, 137 are tyrosine kinases. Receptor tyrosine kinases (RTKSs) are a subclass of tyrosine kinases that
act as initiators, amplifiers, and central nodes in a plethora of complex biological functions and are mainly
associated with intercellular communication. RTKSs regulate key properties of their substrate proteins, which
is essential for the coordinated actions of biological pathways and processes. Similar to other kinases, RTKs
are strongly associated with a multitude of human diseases, such as cancer and a variety of multifactorial
diseases and developmental disorders (McDonell et al., 2015).

In the human genome, 58 RTKs have been identified (Robinson et al., 2000). These RTKSs are classified into
20 different subfamilies containing between 1 and 14 members. The Ephrin receptor subfamily is the largest,
with 14 members (Liang et al., 2019; Pasquale, 2005), followed by the PDGF subfamily, which includes 5
RTKs (Demoulin and Essaghir, 2014; Kazlauskas, 2017), and the ErbB (Hynes and MacDonald, 2009;
Warren and Landgraf, 2006) and FGF groups (Goetz and Mohammadi, 2013; Turner and Grose, 2010), each
with four members. The other subfamilies have three or fewer members. While some RTKSs, such as EGFR
or ERBB2 (also known as HER2), have been extensively studied, most RTKs have been less well studied
and have few known interactors; consequently, our understanding of their substrates of protein-protein
interaction partners is quite limited.

RTKs are thought to exist on the cell membrane as monomers, dimers, and oligomers. While dimerization or
oligomerization is required for activation (Lemmon and Schlessinger, 2010), not all dimers or oligomers
actively signal (Clayton et al., 2005; Gadella and Jovin, 1995; Ward et al., 2007). Once oligomerization has
occurred, the intracellular domains can transphosphorylate one or more tyrosine in neighboring RTKSs. In
addition to canonical cell surface signaling, nuclear signaling activity has also been identified for multiple
RTKSs (Song et al., 2013). The phosphorylated receptor serves as a platform for the assembly and activation
of intracellular signaling intermediaries. An inactive kinase is in an autoinhibitory conformation, and this
conformation is released by the phosphorylation of an activation loop, after which signaling can proceed.
Protein kinases are kept inactive by phosphatases. Protein tyrosine phosphatases (PTPs), in addition to
deactivating RTKs when appropriate, also function to maintain RTKSs in an inactive state. Indeed, inducing
the activation of RTKs is possible in one of two ways: ligand binding or inhibition by cellular phosphatases
(Ostman and Béhmer, 2001; Reynolds et al., 2003; Tonks, 2006). PTPs, in turn, can be inhibited in vitro with
vanadate or pervanadate, leading to tyrosine kinase activation (Boersema et al., 2010; Huyer et al., 1997;
Zhao et al., 1996).

RTKSs exert changes via interactions with other proteins and by phosphorylating their substrate proteins. The
interactions can be stable, as in the case of stable protein complexes, or they can be short-lived transient
associations. Therefore, to understand the role of RTKs in cellular signaling networks, it is vital to map their
protein-protein interaction (PPI) networks. This goal, however, is hindered because a large number of RTKs
have few known interactors. Two well-established and reliable methods for mapping PPIs by mass
spectrometry are affinity purification coupled to mass spectrometry (AP-MS) and proximity-dependent
biotin identification (BiolD). AP-MS captures stable interactions and can quantitatively capture other
complex components in addition to direct interactors. BiolD, in contrast, does not require a stable interaction
but can also capture transient interactions within an ~10 nm radius. Multiple proteins may be identified with
multiple baits, which suggests that these proteins participate in the same process or protein complex (Drew et
al., 2017; Knight et al., 2017; Youn et al., 2018).

In this study, we performed systematic AP-MS and BiolD analyses of ~90% of human RTKs in their
activated state. This set of 52 RTKs included 7 RTKs with fewer than 20 previously identified interactors.
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The generated interactome network included > 6000 unique high-confidence RTK-protein interactions.
Furthermore, to detect interactions that depended on the corresponding kinase activity, we used kinase
activity-deficient (KD) mutants for 11 RTKs. Additionally, we used a phosphoproteomic approach to
identify substrates for 45 RTKSs. The results represent a comprehensive RTK interaction network and reveal
central pathways through which RTKs may exert their effects, as well as networks of probable associations
between interactor proteins and RTK-specific functional enrichment.

Results
Defining the RTK interaction landscape

To comprehensively identify RTK-interacting proteins, we used two complementary methods, AP-MS and
BiolD MS. First, 52 human RTKs were cloned into the MAC-tagged expression vector (Liu et al., 2018) and
inducibly expressed in 52 stable cell lines. In all cases, the C-terminal tag was used. Each of these cell lines
had the corresponding MAC-tagged RTK incorporated in a single genomic locus, and expression could be
induced. AP-MS allows the capture of stable interactions and the derivation of complex stoichiometry, while
BiolD can also detect proximal and transient interactions (Liu et al., 2018) (Fig. S1A). To capture the
interactions of active RTKs, cellular PTPs were inhibited with pervanadate prior to sample collection.
Pervanadate irreversibly inhibits PTPs by modifying the catalytic cysteine (Huyer et al., 1997).

The 52 RTKs (>90% of all human RTKSs) studied here include all RTK subfamilies (Fig. 1A) (Lemmon and
Schlessinger, 2010). After stringent statistical filtering, we identified 6050 unique high-confidence
interactors (HCIs) (Table S1A). A total of 1145 interactions were identified with AP-MS, 4497 with BiolD,
and 408 with both methods. The interactors consisted of 1521 unique proteins. The number of identified
interactors varied significantly between individual kinases, but many RTK subfamilies showed similar
numbers of interactors. The number of known interactions identified was significantly higher than what
would be expected from random interaction networks with the same topology as the RTK network (Fig. 1A,
inset). The information gathered in this study therefore supplements the scarce interaction data available for
many less well-studied RTKSs.

15 RTKSs had more than 150 identified interactors, and the remaining 37 had fewer interactors (Fig. 1A).
While some RTKs have been well-studied with many known interactions, most have only a few reported
interactions (Fig. 1B), highlighting the need for a systematic study. The number of known interactors for
RTKSs generally follows the number of citations for each RTK (Fig. 1B), and indeed 19 RTKSs had fewer than
100 publications associated with them in the NCBI publication database. For known interactions, we utilized
a database combining six databases of interactions (Fig. 1C).

We next decided to characterize the distribution of the known interactors across the six (6) databases from
which they were taken. BioGRID, IntACT, and PINA2 contributed the highest number, followed by String,
and finally bioplex and human cell map. To characterize how commonly seen the known interactors were,
we next analyzed how many databases each interaction was featured in (Fig. 1D). While most interactions
were only seen in one database, roughly a third of the interactions were shared between two or more. The
largest proportion were seen at least two databases as expected, considering the complimentary nature of
BioGRID, IntAct, and PINA2.

Many RTKs share interactions with members of their own subfamily (Fig. S1B). While most subfamilies
have a high degree of interconnected interactors, each RTK in this study has identified HCIs, which were not
shown to interact with other members of their respective subfamilies. For example, the Eph subfamily has
many shared interactions, while the ERBB, INS, and LMR subfamilies have fewer shared interactions, which
may indicate similar functions within the Eph family. A second source of variability is the interaction types
themselves. BiolD interactions represent a higher proportion of all interactions in all subfamilies, except for
ROS. However, in different subfamilies, the proportion of BiolD interactions varied from 87% with VEGF
to 40% with ROS. Shared interactors were often identified with both methods (e.g., the shared cluster in the
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ERBB subfamily): 27% of the interactions shared between receptors in the same subfamily were detected
with both methods, whereas 15% of interactions overall were detected with both methods. The higher
percentage may suggest the presence of proteins that are instrumental to the overlapping functions of the
receptors in the subfamily. Interactors were widely shared across subfamily boundaries as well. We detected
675 interactors shared within subfamilies and 728 shared with receptors in another subfamily (Fig. S1C,
Table S1A). Common HCIs may suggest potential RTK functional overlap and crosstalk, while unique HCls
may indicate receptor-specific functions and RTK-specific variations in possible shared pathways.

To determine whether we could identify indications of the active state of the bait RTKs, we analyzed the AP-
MS data for known autophosphorylation site(s) for each RTK. For the majority of RTKs, we identified
known tyrosine autophosphorylation site(s) as phosphorylated site(s) (Table S2). In order to further validate
the phosphorylation status of the bait RTKs, we performed an anti-phosphotyrosine western blot (WB)
analysis of a subset of the RTKSs (Fig. S1D), and detected phosphorylation in all of the 8 RTKs analyzed. To
ensure that MAC-tagged RTKs localize to plasma membrane, we carried out immunofluorescence confocal
microscopy imaging for all of the baits included in the study (Fig. S2).

Given the varied expression of RTKs across tissues and cell types, we also decided to analyze, whether the
interactions detected could be cell-line specific, or proteins that are expressed in a variety of tissues. For this
purpose, we mapped expression level data from the human protein atlas (Uhlén et al., 2015) project (Fig.
1E). We next divided the identified interactors based on annotations of the database into proteins that were
detected in all, many (>=33 %), some (>1) or one cell line or tissue type. The majority of our unique
interactors were seen across all tissues and cell lines included in the atlas, while fewer than 300 were seen in
many, and fewer than 100 in some or only one.

We next utilized a subset of RTKSs to investigate the effect of pervanadate treatment in comparison to ligand-
induced activation. We performed side by side AP-MS and BiolD experiments with pervanadate-treated, and
ligand-treated cell lines of 8 RTKs (EGFR, FGFR1, FGFR4, IGF1R, INSR, INSRR, PDGFRB, and RET).
For these RTKSs the main ligand was known, and they were available as recombinant protein with validated
activity. From these experiments, we identified in total 1132 high-confidence interactions, consisting of 595
unique proteins. Of these, ~ 80% (872) of the HCIs were seen in both pervanadate and ligand-treated cells.
The majority of the prey proteins were seen with similar spectral count values in both experiments
(correlation value 0.954, Fig. 1F). Of the interactions seen only in ligand-treated samples, 83 were detected
with an average spectral count of over 5. Of these, 61 were seen only in AP-MS experiments, 18 in BiolD,
and four in both. Likewise, 25 HCIs were seen only in pervanadate-treated samples (14 AP-MS only, 10
BiolD, and one in both). On the functional level, however, the proteins which were seen only in either
pervanadate- or ligand-treated experiments fell into the same functional groups with proteins that were
identified in both experiments (Table S1C).

Kinase-kinase interactions between RTKs

To investigate whether RTK heterodimers or -oligomers contributed to the number of identified shared HCls,
we next investigated the presence of RTK-RTK interactions in detail (Fig. 2A). In total, we identified 77
RTK-RTK interactions, of which 33 were between receptors in the same subfamily. The majority of these
subfamily interactions (27) were detected either with AP-MS or both AP-MS and BiolD. In contrast, 27 of
the 44 interactions between receptors in different subfamilies were detected via BiolD only. The
identifications derived from BiolD alone could more specifically indicate membrane areas and structures
commonly shared between the RTKs than identifications derived by other methods. However, the 16 RTK-
RTK interactions that were detected by both methods and 28 detected via AP-MS alone suggest the
formation of a wide variety of stable RTK-RTK heterodimers. While heterodimerization is a well-
documented phenomenon in RTKs, many of the specific interactions here have not been documented
previously. Eighteen of the 77 (23%) were previously known, leaving 59 (77%) novel interactions. To
validate the RTK-RTK interactions, we performed co-IP analysis of 27 RTK-RTK interactions that were
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seen in AP-MS data, and detected the interactions with all but 4 of them (Fig. S1E), possibly indicating that
these four interactions are not direct but mediated by another protein.

Interestingly, EphA2 was seen with a majority of RTKs (30 in total), although it was previously known to
form complexes only with EGFR, ErbB2, EphA7, DDR1, and NTRK3 (Brantley-Sieders et al., 2008; De
Robertis et al., 2017; Huttlin et al., 2017; Larsen et al., 2007; Lemeer et al., 2012; Oricchio et al., 2011,
Zhuang et al., 2010). Through AP-MS only or both methods, we detected six interactions between EphA2
and another RTK (AXL, EphA3, EphA5, EphA6, EphA7, and LTK). Of these, only EphA7 is a previously
known interactor. To our knowledge, EphA2 is not highly expressed in HEK-293 cells (Table S1B); hence,
its wide identification is unlikely to be due to expression levels. It may therefore be possible that the
identified AP-MS interactions of RTKs with EphA2 represent heterocomplexes, while proximal or transient
interactions may be due to localization with similar membrane and internalization compartments.

RTK interactors participate in complexes in a wide variety of cellular compartments

In the interaction data gathered thus far, we wanted to investigate the presence of protein complexes, which
may be connected to RTK signaling in the cell. To this end, we performed enrichment analysis of CORUM
(Giurgiu et al., 2019) complexes for each RTK and then grouped the results based on the gene ontology
cellular component (GOCC) annotations, if available in CORUM. Although many of the complexes had no
localization annotations available, very thorough coverage of the cell was seen in the complexes that were
able to be assigned to a locale (Fig. 2B). Curiously few strictly plasma membrane complexes were seen in
the data. However, this may be in part due to imperfect coverage of GOCC annotations in CORUM and in
part due to strict filtering applied to the data.

In total, 208 unique complexes were enriched in the data (Table S3), and we were able to assign probable
localizations to 59 of these based on CORUM annotations. These assignments included five plasma
membrane and eight ER complexes (two of which were specific ER-membrane complexes), five
chromosomal complexes, and twenty-one other nuclear complexes. Other complexes enriched in the RTK
interactor sets were two kinase maturation complexes and five different TNF-alpha/NF-kappa B signaling
complexes. The most commonly enriched complex was the LTC-PLC-gamma-1-p85-GRB2-SOS signaling
complex, which was enriched in 27 RTKs. The first of many ER protein complexes, coat protein complex Il
(COPII), was the second most common and was enriched with 21 RTKs. This complex shares many
components with the two SEC23 complexes, which were also enriched in 21 RTKSs.

Additionally, 26 nuclear complexes were identified. Based on existing knowledge and GO annotations, some
of these complex components identified in this study do appear to shuttle between cytoplasm and nucleus,
and even to the plasma membrane. However, the majority of the components in these complexes are strictly
nuclear. Nuclear signaling is a well-documented, noncanonical mode of signaling for many RTKs
(Carpenter, 2003; Krolewski, 2005; Massie and Mills, 2006; Schlessinger and Lemmon, 2006; Song et al.,
2013). In our HCI data, we detected 93 strictly nuclear proteins with 40 different RTKs and 909 proteins
with some activity in the nucleus according to GOCC classifications. Among strictly nuclear proteins, MER
and FLT3 had the most interactions (22 interactions). In contrast, every RTK had interactors with some
connection to the nucleus: DDR1, a collagen receptor, had the fewest (12, none of which were strictly
nuclear). FGFR1 had the most (172), perhaps reflecting its known signaling functions in the nucleus (Myers
et al., 2003; Stachowiak et al., 1996). While nuclear interactors can be explained by possible encounters
during mitosis after nuclear breakdown, the data may also offer some additional context for possible
connections between RTKs and nuclear signaling pathways.

The four identified HSP90-related complexes, which were significantly enriched with 47 different RTK
baits, are of interest for the regulation of kinase activity. Considering the role of HSP90 in fostering and
promoting proper protein folding and function, we next examined this link in detail. Of the 29 RTK baits that
have previously been studied as potential interactors for the HSP90 complex (Taipale et al., 2012), 15 were
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strong interactors, 10 were weak interactors, and four were not interactors. Of the 3 HSP90 proteins of
interest, CDC37, HSP90AAL, and HSP90AB1 were all identified with 11 RTKs, of which FGFR4 was not
included in the Taipale et al study, and TYRO3 was classified as a weak interactor (Table S4). The nine
others were strong interactors. CDC37 and HSPAAL were identified as HCIs with LMR1. CDC37 alone was
identified with all but 5 baits (Table S1). Therefore, our findings were consistent with those of Taipale et al.
All three components were identified as HCIs for nine strong HSP9O0 interactors (Tables S1 and S4). These
interactions were detected mainly via AP-MS, suggesting stable interactions. The only weak interactor that
was detected with all three components, TYRO3, has since been linked to two HSP90 core interactor
proteins (Li et al., 2018). FGFR4, which was not included in the Taipale et al. study, was identified with all
three components by AP-MS, indicating that FGFR4 is a potential HSP90 interactor kinase.

Enriched protein domains and functions of RTK interactors

Considering the enriched protein complexes identified, we next proceeded to investigate the domain
composition of the individual HCI proteins (HCIPs). The top two domains identified by absolute counts were
SH3 and SH2 (Fig. 3A). When considering only unique HCIPs, SH3, the protein kinase domain and the
protein tyrosine kinase domain were the most common. All of these domains play prominent roles in kinase
signaling (Mayer, 2001; Xin et al., 2013). The SH3 domain was identified 216 times in 39 unique HCIPs,
whereas the SH2 domain was identified 180 times in 21 unique HCIPs.

Twenty-eight percent of all human proteins annotated with the protein tyrosine kinase domain were
identified among the HCIPs, compared to 10% of proteins annotated with the protein kinase domain. SH2
domains suggest potential target proteins, since RTK activation via autophosphorylation induces the
formation of SH2 domain binding sites (Lemmon and Schlessinger, 2010). Indeed, 43% of HCIPs with SH2
domains were previously known interactors of RTKs. To identify the specific functions these HCIPs
participate in, we next examined GO molecular function terms associated with the identified HCIs. Similar to
domains, the most common molecular functions associated with the HCIPs were related to protein kinase
activities either directly (ATP binding), indirectly (protein kinase binding), or in a supporting role (heat
shock protein binding) (Fig. 3B).

To investigate functional similarities and differences between RTKSs based on their interactions, we next
performed a GO biological process (BP) analysis and highlighted the most enriched (log2-fold change > 5)
terms (Fig. 3C). We identified four clear groups of terms containing processes related to RTK functions.
These included terms enriched in most RTKSs, such as multiple signaling pathways, and groups of more
specialized terms, such as processes related to vesicle trafficking between the Golgi apparatus and the
endosomal system.

Many of these processes are interlinked with known RTK functions. The ERBB2 signaling pathway, for
example, was significantly enriched in almost all RTKs. Similarly, the type | interferon signaling pathway
was seen in all but three RTKSs. As a further example, the Ephrin receptor pathway also contains the majority
of RTKs. Given that among the pathways enriched with the highest fold change values, few are limited to
individual receptors, the functional enrichment results further indicate that RTKs share many pathways
through which signaling may occur depending on cellular conditions, possibly including crosstalk between
the receptors.

We next examined how the enriched GOBP terms were represented among all previously known RTK
interactors (Fig. S3A). In the analysis, some of the most common GOBP terms detected in our results, such
as Signal transduction, protein phosphorylation and various signaling pathways (Fig. S3A, upper panel),
were prominently featured in the database of known RTK interactors as well (Fig. S3A, lower panel).
However, missing from the known interactors for many receptors were proteins connected to COPII vesicle
coating and cargo loading, as well as PI3K activity regulation, all of which were common functions among
the identified HCls, possibly illustrating a gap in the previous knowledge in regard to such interactors. For
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example, COPII vesicle coating, budding, and cargo loading related proteins are missing from the known
interactors of both RET and PDGFRB, but are found in our dataset in both pervanadate- and ligand-treated
samples (Figure S3A, Table S1C).

RTK interactors form protein clusters with distinctive functions

Previously, protein copurification was investigated in large-scale interaction studies to identify possible
interactions between HCIPs. Affinity purification experiments showed that two proteins that purify together
may indicate an interaction between them, such as a protein complex (Buljan et al., 2020; Mehta and
Trinkle-Mulcahy, 2016; Yu et al., 2009). Therefore, to understand how the RTK HClIs detected in our study
might interact with one another, we performed a cross-correlation analysis of both AP-MS (Fig. 4A, upper)
and BiolD (Fig. 4A, lower) data. In total, 2020 unique protein pair associations were detected through the
two approaches (Table S5). A total of 105 of these were previously known interactions, and 130 protein-
protein pairs were in the same reactome pathways. The analysis of random networks showed that this
network was highly enriched in both known protein interaction pairs (Fig. S3B, top) and proteins in the same
reactome pathways (Fig. S3B, bottom).

From the dataset, 21 clusters with 3 or more proteins were identified (Fig. 4A). Of these, 10 were detected in
AP-MS data and 11 in BiolD. In total, 7 of the clusters featured one or more RTKs as well. Reactome
pathway enrichment analysis was performed for each protein cluster to identify what functions each could
participate in. The proteins of largest cluster detected in AP-MS data, cluster 1 (Fig. S3C, top left),
functioned mainly in pathways such as small molecule transport, protein phosphorylation, and platelet
signaling. The largest BiolD cluster (11, Fig. S3C, bottom right) featured proteins in particular from multiple
signaling pathways, as well as vesicle trafficking and endocytosis in particular (Table S6). From the clusters,
also identified CORUM protein complexes (Fig. S3D). We filtered out all complexes from which less than
60 % of the components were identified, and removed overlapping complexes, keeping the more complete
ones. This resulted in 30 protein complexes identified from the cross-correlation network.

We next linked the significantly enriched reactome pathway terms to the reactome hierarchy and extracted
pathways linked to signal transduction (Fig. 4B). Several signaling pathways were enriched, particularly with
AP-MS or BiolD clusters. For example, RHO GTPase effector-related pathways were enriched in BiolD
clusters, while Notch and WNT signaling were enriched in AP-MS clusters. In the RTK pathways, we
observed clear differences, particularly in the MET, ERBB2, and NTRK1 signaling pathway groups. These
results suggest proximal RTK associations with functional protein networks related to RHO GTPase
signaling, as well as MAPK and PI3K/AKT signaling. In contrast, the pathways enriched in the AP-MS
clusters may indicate a more direct role for RTKSs in protein clusters related to Notch and WNT signaling.
The presence of core RTK pathways, such as TRKA receptor activation or MET signaling in the AP-MS
clusters, strengthens the idea that RTKs have a more direct role in the pathways detected in AP-MS clusters.

Ephrin receptors A5, A6, A7, and A8 are some of the less well-studied RTKs (Fig. 1B). We therefore
analyzed their interactomes and the interplay between these receptors. To focus on the common HCls, we
removed interactors seen with only one of these receptors (Fig. S4A). We identified the largest group of
shared HClIs between EphA5 and EphA7, and there were 46 shared HCls. In this group, we identified many
other kinases, such as MAP4K and EphB4, and phosphatases, such as PTPN11 and PTPN13. We also
identified nine HCls shared between all four of the Ephrin receptors and 16 shared between EphA4, A7, and
A8. The shared groups included multiple proteins that are integral to the function of RTKSs, such as SEC23B,
SEC24A, and SEC24B, which participate in coat protein complex Il, which may indicate the use of COPII-
coated vesicles in some portion of RTK membrane trafficking. When analyzing the interactions of enriched
reactome pathways (Fig. S4B, left side), we indeed observed multiple transport pathways, including
endosome-to-Golgi and Golgi-to-ER pathways. The interaction data therefore indicate possible RTK paths
through the cell. When examining the enriched CORUM complexes in detail (Fig. S4B, right side), we
identified the Wave2 complex and other actin dynamics-related factors, as well as oligosaccharyltransferase
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complexes responsible for co and posttranslational glycosylation of proteins in the ER lumen. Thus, the
interactomics data may be used to identify core RTK interactors shared between subgroups of receptors and
possible avenues for cooperative RTK actions.

Potential substrates define RTK kinase activity

A heavy-labeled **0-ATP-based in vitro kinase assay combined with LC-MS/MS (IVK, Fig. S5A) was used
to characterize potential direct substrates of RTKs (Miiller et al., 2016; Zhou et al., 2013). It is important to
note that the kinases used in this method have access to not just their physiological molecular context but
also proteins they may not normally encounter. Forty-five recombinant RTKs were used for experiments that
included all RTK subfamilies. Any sites with a localization probability of under 0.75 were filtered out, as
were sites seen in any of the control experiments, where recombinant kinase was not added. This resulted in
a total of 2254 unique phosphorylated tyrosine sites, resulting in 7758 unigque kinase-substrate interactions,
or 10194 kinase-substrate phosphosrylation site relations (Fig. 5A, Table S7). Of the 10194, 6639 were
novel, and 3555 were identified in a prior publication (Sugiyama et al., 2019), phosphoSitePlus, or
phosphoELM. The number of identified sites varied widely between individual kinases, from nearly a
thousand phosphotyrosine sites (982 substrate sites for EphB1) to fewer than five sites (Fig. 5C). A total of
1027 sites were detected with only one kinase, while others had up to 37 kinases (Fig. S5B). In contrast, in
the control experiments without added kinase, a maximum of 5 phosphotyrosine sites were identified (Fig.
S5B inset). Based on the PhosphoSitePlus database (Hornbeck et al., 2015), 1478 of the identified
phosphorylation sites were previously reported, and the kinase responsible for phosphorylation was known
for 124 of these sites. In 30 cases, we observed exactly the same kinase-substrate site interaction as was
reported in PhosphoSitePlus (Table S7).

We performed clustering analysis of the detected phosphorylation sites to obtain an overall view of the RTK
substrate profile, and the result was compared to the kinase domain sequence alignment tree produced by
Clustal omega (Madeira et al., 2019) (Fig. 5B). Several kinase groups, the Ephrin receptor subfamily in
particular, clustered together based on phosphosites, and most were close to their position in the kinase
domain sequence-based tree. The main difference between the two dendrograms was the Ephrin receptor
subfamily in the IVK analysis, which was divided in two: one group of four receptors and one of five
receptors. Substrate site-based clustering indicated a distinction between the EphB1-4 group and EphA1-A8
group, while the subfamily according to the kinase domain sequence is in one well-defined branch. The IVK
analysis results were also compared with clustering results from the AP-MS and BiolD data (Fig. S5C), and
no strict similarity in the interactor profiles of receptors in the Ephrin subfamily was observed. This may be
due to two factors. First, the number of identified phosphosites or HCIs per RTK varies, and when a few are
identified, the clustering algorithm does not work. Second, substrates may also vary significantly within
receptor families. However, when all three approaches (AP-MS, BiolD, and IVK) produced similarly
unorganized clusters, it seems plausible that RTK substrate and interactor profiles may vary as much within
subfamilies as between them. On the other hand, similarities detected between RTK substrates suggest a
similarity among some functions. One such case is KDR and PDGFRB, and similarities in their IVK
substrate profiles may indicate functional similarities. Indeed, the two proteins share 90 previously known
interactors (Table S1) and 53 phosphosites detected in our IVK experiments, indicating a strong basis for
overlapping functions.

A reactome enrichment analysis was used to link the identified RTK substrate proteins to functional
networks. We focused on pathways linked to signal transduction to study the possible significance of the
kinase-substrate relationships in cellular signaling networks (Fig. 5C, Table S8). While signaling by RTKs
was very prominent, the signaling pathways with the highest number of identified proteins were
‘MAPK6/MAPK4 signaling’ (31 substrate proteins) and ‘RHO GTPases Activate Formins’ (27 proteins).
The most commonly enriched pathway was the ‘VEGFA-VEGFR2 pathway’, which was seen with 38 of the
45 Kinases used, but there were only 15 unique substrate proteins. In particular, the enrichment of the Wnt,
TGF-p and MAPK signaling pathways may be due to a previously known link between RTKSs and regulation
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of these three signaling pathways (Billiard et al., 2005; Heldin and Moustakas, 2016; Katz et al., 2007;
Krejci et al., 2012; Shi and Chen, 2017). When examining the identified substrates in detail, out of the seven
pathway groups emphasized in Fig. 5C, TGF-B had the highest number of substrates (Fig. S5D). Our data
may therefore provide further information of these links.

Of the 10194 RTK-substrate site relationships identified, 3566 were found in one or more of the three
databases used to identify known phosphorylation sites of these kinases (PhosphoSitePlus, phosphoELM,
Sugiyama et al., 2019. A further 5 sites had identical surrounding +/- 7 amino acids as in a previously
identified substrate site. To further query whether the novel sites shared similarity with the previously
identified, we next compared the known and novel substrate sites to known phosphorylation motifs from the
human reference protein database. The motif match percentage profile between known and novel
phosphorylation sites is generally of the same shape, however we identified more perfect matches to the
annotated motifs in the set of novel substrate sites (Fig 5D).

Kinase activity-deficient mutants reveal activity-dependent functions

KD RTK mutants were used to understand which interactions might be dependent on RTK protein kinase
activity. We performed AP-MS and BiolD experiments with KD mutants and compared the results to the
WT RTK results. The kinase domain in the mutants was deactivated with a point mutation that introduced
bulk into the ATP binding pocket. The number of HCIs we identified varied widely depending on the
receptor (Fig. 6A, Table S1). Some WT RTKSs, such as AXL, EphA7, and MER, had more HClIs than their
KD counterparts, whereas in others, DDR2 in particular, the KD mutant had more HCls.

Considering the prominent role of RTK-RTK interactions in the WT data (Fig. 2A), we first identified
whether these interactions were gained or lost with the KD mutant (Fig. 6B). While many interactions were
lost, a similar number was also gained, suggesting that the ability of KD mutants to associate with other
RTKSs in general is not significantly impeded by the inability to bind ATP. However, individual RTKs such
as EphA3, A5, A7, and EphB4 seem to lose many interactions with other members of the Eph subfamily.
Three of these interactions were detected only by AP-MS, two only by BiolD, and two by both methods.
This finding may indicate a reduced capacity of these RTKSs to form heterodimers.

We then decided to sum up the lost or gained interactions by characterizing them via GOBP terms (Fig. 6C).
To isolate pathways that may be lost or gained by the KD mutants, we calculated fold change values for the
KD experiments using WT experiments as background. The results determined which terms were
proportionally better represented in KD mutant HCIs (such as cell-cell adhesion in AXL KD) and in WT
HCls (such as cell-cell adhesion in DDR2). These results show that although the WT AXL has more HClIs
than the KD counterpart, the different proteins do not concentrate heavily on any specific GOBP annotation;
hence, fewer GOBP terms are overrepresented in the WT data than in the KD HCI set.

Likewise, although the DDR2 KD mutant had a much higher number of interactors than the WT counterpart,
very few pathways had a positive fold change. DDR2 is a part of the DDR subfamily of collagen receptors.
The loss of cell-cell adhesion pathways in the KD mutant (Fig. 6C) therefore suggests the loss of this core
function. This finding together with fewer enriched pathways in general and the exceptional number of HClIs
identified in BiolD experiments for the DDR2 KD mutant (Table S1) indicates a proximity to a wider variety
of proteins, possibly stemming from irregular cellular localization for the KD mutant.

To identify if the KD mutation had an identifiable effect on a transcription level, we next performed a
luciferase assay panel measuring transcription factor activity as a response to the transfected kinase (Fig.
6D). With DDR2, where we saw the largest difference between WT and KD interactomes, we also detected
significant changes in transcription factor activity. ATF6, MAP/INK, MAPK/Erk, and NFKB pathways
showed a significantly different response between the KD mutant and the wild type kinase. In all cases, the
response of the KD-transfected cells was lower than that of WT. In contrast, with NTRK3 we saw
significantly different responses in MAP/INK, MAPK/Erk, and STAT3 pathways. However, in these cases,
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the wild type elicited a weaker response. Together, the data from the performed luciferase assay suggests that
WT DDR2 and NTRK3 may produce opposing effects on MAP/JINK and MAPK/Erk signaling pathways.

Known roles of EGFR identified via interactome analysis

After assessing the data produced in this study as a whole, the interactomes of singular receptors was focused
on. To validate our results, we first focused on the well-known receptor EGFR (Fig. S6). Among the EGFR
HCls, we identified 94 previously known interactors, including other kinases (e.g., EphA2 and ERBB4) and
phosphatases, such as PTPN1 and PTPN11. In addition to known interactors, we identified 137 novel
interactors (Fig. S6A). GOBP enrichment analysis was used to discover which processes were driven by
known and novel interactors. In this set of enriched GOBP terms, the most commonly identified ones were
often driven by a mixture of known and novel interactions (Fig. S6B). To see how the novel interactors relate
to the known ones, we next identified the previously known interactions between the known and novel
HCIPs (Fig. S6C). From these data, we could see that the novel interactors often act as bridges or network
hubs between different known interactors, such as MAP3K7, LTN1, or XPOL. Furthermore, some of the
novel interactors are closely related to the known ones. For example, although interaction with ABI1 is
included in the combined database of previously known interactions, ABI2 was not. Similarly, VAPA is in
the known interaction database, whereas VAPB is not. To validate interactions identified by our approach,
we chose 9 AP-MS-detected HCIPs at random for CO-IP analysis. Of these, only one failed to show a clear
interaction in the resulting blot (Fig. S6D, left). As two of the proteins chosen were also detected in NTRK3
AP-MS data (SEL1L and SEC61A), we chose to further ensure the reliability of the method by performing a
CO-IP experiment targeting these two as well. (Fig. S6D, right).

In the enriched biological processes (Fig. S6B), we identified terms driven only by known interactors, such
as clathrin-dependent endocytosis, terms driven by both, such as the VEGFR signaling pathway, and
functions related to novel interaction partners, such as the positive regulation of arp2/3 complex-mediated
actin nucleation. Clathrin-mediated endocytosis of EGFR is a major active pathway of receptor
internalization (Sigismund et al., 2008). After endocytosis, EGFR may be either recycled back to the
membrane or degraded, depending on ubiquitinylation. In addition to the enriched clathrin-dependent
endocytosis identified by GOBP analysis of the EGFR interactome, we also detected multiple
ubiquitinylation proteins. Six of these (CTNNB1, 0S4, PRKDC, UBE2M, UBE2N, and SH3RF1) were
previously documented EGFR interactors, while another four (CAND2, CDCAS3, LTN1, and TRIM13) were
novel interactors. Our data therefore provide additional support for the previously known interactors and
molecular processes of EGFR. Furthermore, the interactome provides an additional molecular context for
EGFR actions and dynamics with possible connections to novel functions.

Characterization of the novel EphA7 interactome and phosphorylome

EphA7 is one of the least well-characterized members of the Ephrin receptor subfamily, with only 12 known
interactors in IntAct. We therefore more closely analyzed the identified interactions and substrates of EphA?7.
WT EphA7 was analyzed together with the KD mutant to gain insights into the functions of WT EphA7 and
how these functions are impacted by the loss of kinase activity (Fig. 7A). We divided the interactor proteins
into the following groups: WT only, KD only, and shared proteins. In total, we identified 131 HClIs for the
WT protein and 101 for the KD mutant. Of the 12 previously known interactors, we detected 3 in our
experiments: EphA3 was only in WT, EphA2 was in WT and KD, and GNB1 was in KD only. Although
EphA2 was detected in both, in the KD experiments, it was only seen by BiolD, perhaps indicating loss of
heterotypic complex formation with EphA2. The formation of heterotypic complexes is a well-documented
behavior of the Eph subfamily of receptors (Janes et al., 2011), and given the detection of EphA5 in KD AP-
MS data only, it seems unlikely that the ability to form these complexes is completely destroyed by the KD
mutation.
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In the shared group, three proteins (SHB, PTPN11, and NBEA) clearly associated more with WT EphA7
than with the KD mutant, and one (MYOB1) associated more with the mutant. PTPN11 is a phosphatase
with known roles in EphA2 and WNT signaling (Miao et al., 2000; Noda et al., 2016). This, together with
EphA2 detection in the WT AP-MS data, also indicates potential cooperation by these two RTKs and the
loss of this function when the activity of the kinase domain is compromised. Multiple proteasomal
components (PSMB1, 4, and 7) and ubiquitinylation proteins (CUL7, KCMF1, and UBR4) were only
detected in WT experiments. Their presence may mean that proteasomal degradation of EphA7 is the
endpoint of the receptor, as it is for some other RTKs (Geetha and Wooten, 2008; Jeffers et al., 1997).
Moreover, the absence of these proteins in the KD data may indicate that the process is dependent on RTK
kinase activity.

We next determined how the differences in HCls affected the most enriched reactome pathways in the
EphA7 data. The Ephrin signaling and VEGFA-VEGFR2 pathways were represented by nearly identical
proportions of HCIs in both the KD and WT experiments. However, differences could be seen in other
pathways, especially in planar cell polarity (PCP) protein localization and various signaling events. It is
possible that the KD mutation does not affect the association with proteins related to many of the signaling
pathways but does affect the association with specific participants in the signaling cascades, such as the
aforementioned SHB and PTPNL1.

To understand how EphA7 affects the pathways it is most strongly linked to in our AP-MS and BiolD data,
we combined the data with substrates identified by the VK method, and found EphA7 substrates in most of
the pathways were enriched in the HCI data. Of the pathways that differed most between the WT and KD
experiments, degradation of beta-catenin by the destruction complex, degradation of GLI by proteasomes,
asymmetric localization of PCP proteins, Hedgehog ‘on’ state, and the regulation of RAS by GAPs all had
identified phosphosites in the IVK data (Fig. 7B-C).

Taken together, data produced by our systematic approach to identify interactors and phosphorylation targets
of EphA7 suggest that the KD mutation does not hinder the association with proteins in Ephrin signaling
pathways but may affect specific receptor localization, as reflected by the reduced number of proteins
identified in other signaling pathways. The IVK data can additionally be used to identify specific target
candidates for EphA7 in the Ephrin and VEGFA signaling pathways. Furthermore, the HCIs identified for
WT EphA7 suggest that proteasomal degradation may be the termination point receptor signaling, and their
absence in the KD data suggests that the process is dependent upon the kinase activity of EphA?7.

Discussion

Here, we present the comprehensive interactome and phosphorylome of human RTKs. RTKSs play key roles
in initiating a complex web of signaling cascades. While many have been well studied (Fig. S1B), detailed
and systematic knowledge of the roles and actions of a large proportion of RTKSs, such as many Ephrin
receptors, is lacking. In this study, we used three complementary approaches to understand RTK functions:
AP-MS to capture stable interactions and complex stoichiometries, BiolD to capture transient interactions
and molecular context, and IVK to identify RTK substrates. To date, this dataset is the most comprehensive
resource of RTK interactions and substrates. The data introduced here provide information about protein
complexes (AP-MS), the surrounding molecular landscape (BiolD), and signaling activity (IVK). Overall,
these three approaches can be used to characterize and introduce additional context for well-known receptors
(Fig. S6), discover the functions of less well-known receptors (Fig. 7), and identify possible active roles for
RTKs in signaling networks via substrate information (Fig. 5). The data supplement the scarce information
available for some RTKSs, and for the whole kinase family, these data underscore the interactions within and
across subfamilies. While the interconnectedness of RTK signaling networks is a well-known feature of
these receptors (Kholodenko et al., 2010; Paul and Hristova, 2019), the data presented in this study supply
additional molecular context for the signaling networks and indicate probable avenues of information flow.
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The interactomics insights gained here highlight the role of RTKs as important intersections in an
increasingly complicated landscape of cellular signaling networks.

Despite the comprehensiveness of the results presented here, our model does have several limitations
inherent to large-scale high-throughput proteomic studies. The results do not capture all context-dependent
interactions. Our use of pervanadate to ensure the capture of active-state interactions does alter the specific
molecular landscape of the cells, and thus, the detected interactions do not necessarily reflect in vivo
activation of RTKSs. Furthermore, the isoforms expressed in various cell populations may differ from the
isoforms used here, and N-terminal tagging of these constructs may affect some interactions or protein
stability. Indeed, not all RTKSs are physiologically expressed in HEK293 cells (Table S1B), nor does this cell
line represent all common cell types. Therefore, the new roles indicated by interaction data presented in this
study, while suitable for hypothesis generation, should not be taken to confirm any novel functions of RTKSs.
The IVK method has the caveat of using recombinant RTKs and giving each kinase access to more than their
physiological molecular context. Although nuclear proteins are not specifically solubilized, substrates
available in this method may cover e.g. membrane domains or structures from which RTKs are normally
excluded from.

In summary, the study describes the RTK molecular context and interactomics landscape, as seen from the
perspective of AP-MS and BiolD methodology, and the phosphorylome as identified by in vitro kinase
assays. The combined knowledge of the multifaceted dataset presented may best be used as a potential pool
for each RTK and be combined with additional application-specific information, such as data on specific
cancer types or drug applications, to generate testable hypotheses of molecular systems surrounding RTKSs.
The data may also be used to gain insight and context into known functions of well-studied kinases, such as
EGFR (Fig. S6), or to derive indications of possible roles for less well-known RTKs, such as EphA7 (Fig. 7).
Furthermore, systemic insights can be gained by studying the connections within groups of receptors, of
which we chose EphA5-A8 as an example subgroup (Fig. S4). The knowledge presented herein emphasizes
common functions between RTKs and the landscape that they share with other signaling pathways. The three
perspectives of the data presented here, stable interactions (AP-MS), proximal and transient interactions
(BiolD), and kinase-substrate relationships (IVK), together form a comprehensive molecular environment
that can serve as a foundation for a systemic view of RTK signaling pathways and networks.

Figure Legends

Figure 1 General assessment of study scope and interaction data landscape

A. Left: Sequence alignment tree of the receptor tyrosine kinase (RTK) family. Members of the 20 different
receptor tyrosine kinase subfamilies are grouped according to their sequence (kinase domain) homology to
their respective subfamilies, indicated by the unique colors. Gray color indicates RTKSs not included in this
study. Number of high-confidence interactor (HCI) proteins identified in AP-MS (orange) and BiolD (blue)
experiments are indicated above the circle. Right: Comparison of the detected interactions to existing
knowledge. The number of HCIs detected in this study are divided to previously reported interactions (blue)
and novel interactions (red). The number of known interactors was highly enriched compared to random
networks of the same topology (inset).

B. Number of citations and known interactors per RTK, which are grouped into their respective subfamilies.
Citations are shown in blue bars and plotted against the Y-axis on the left, while known interactors are
shown with orange bubbles, and the right axis.

C. Number of known RTK interactors from each of the databases used for the known set.

D. Number of known RTK interactors seen in one or more of the used databases.
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E. Expression of identified HCI proteins in tissues (top) and cell lines (bottom) from human protein atlas
(Uhlén et al., 2015). Detected in all: expression detected in all available tissues or cell lines; detected in
many: detected in at least a third of the tissues/cell lines; detected in some: detected in more than one, but
fewer than a third of the tissues/cell lines.

F. HCI comparison between ligand- and pervanadate-treated samples for 8 RTKSs.

Figure 2 Bait-bait interactions and enriched complexes in the RTK data

A. High-confidence bait-bait interactions detected between the RTKs. Connections are colored based on
whether they were detected in AP-MS (blue), BiolD (green) or both (burgundy).

B. Significantly (g<0.05) enriched CORUM complexes in the interactomes of the RTK subfamilies. The
cellular localization was assigned to each complex with available GO cellular component in CORUM.
Connections from subfamilies to complexes denote significant enrichment of the complex with one or more
members of the subfamily. On the right side, complexes without localization information are grouped based
on their protein composition.

Figure 3 Characterization of RTK interactor proteins

A. ldentified protein domains (PFam) of the RTK interactors. Blue bars (left Y-axis) denote the cumulative
count of the corresponding domain, while light red circles (right Y-axis) denote count of unique prey
proteins with the domain (i.e. SH3 domain was encountered 216 times in the data, but in 39 unique proteins,
while SH2 domain was identified 180 in 21 unique HCIs).

B. Significantly enriched (q<0.05) GO ‘molecular function’ annotations in the RTK interactors.

C. Significantly enriched signaling pathways (Reactome) identified in each RTK interactome. Fold change
values are shown in log2 scale.

Figure 4 Functional clusters extracted from HCI Cross-correlation analysis

A. HCI-HCI association clusters identified via cross-correlation analysis of the identified RTK interactors.
Clusters represent proteins, which are often co-purified in our experiments. Clusters were identified
separately from the AP-MS or the BiolD cross-correlation data. RTKSs, if any, in the clusters are shaded light
blue.

B. Enriched (log2FC > 5, g<0.05) Reactome pathways in the identified association clusters. Nodes
downstream from the signal transduction root node are shown. Node size corresponds to log2 fold change
value of the pathway. Three pathway groups where AP-MS and BiolD clusters had the most prominent
differences in enrichment are further highlighted in the boxes with orange (AP-MS) and blue (BiolD)
background on the right.

Figure 5 Characterization of RTK-specific phosphotyrosine sites

A. Phosphotyrosine sites identified in the IVK assay after filtering. Deeper shade of green corresponds to
previously identified kinase-substrate relationships.

B. Dendrograms of RTK clustering based on phosphosite identifications (left) compared to Clustal Omega
clustering based on protein kinase domain sequence of the same RTKs (right). Colored lines denote baits in
the same order in both clustering approaches.

C. Statistically enriched Reactome terms in the identified RTK substrates. Size of the node corresponds to
the number of unique substrates in the node, and nodes without significant enrichment are shaded white.
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Only subnodes of the signal transduction root node are shown. Colored areas denote different signaling
pathway trees.

D. Substrate site amino acid sequence compared to known phosphorylation motifs from human protein
reference database (Peri et al., 2003). Data presented represents only the receptors, for which motifs were
available in the database.

Figure 6 Assessment of differences in wild type and kinase dead RTK mutants

A. HCI counts per WT / KD pair. Total HCI number is shown in grey, while number of shared HCI proteins
is in yellow, WT only HCls in blue, and KD only HCls in red.

B. Bait-bait interactions of the WT / KD baits. Shown are all RTKs found in WT/KD HCI data, but
interactions are shown only for those with WT and KD constructs. Grey arrows depict preserved interactions,
while blue ones are interactions that are lost in KD data, and red denotes interactions only seen in KD data.

C. GO biological process change in KD data. Values are log2 fold change in KD compared to WT, where
positive values reflect higher representation in KD data.

D. Comparison of effects of DDR2 and NTRK3 WT and KD on activity of cellular signaling pathways.
*:p<0.05, **:p<0.01,***:p<0.001

Figure 7 EphA7 interactome and phosphorylome analysis

A. EphA7 WT (left) and KD (right) HCls. Shared HCls are in the middle arranged according to log2 fold
change values. HCls identified in AP-MS are marked with a violet rim, BiolD with black rim, and orange
rim marks HClIs detected with both approaches. For the shared interactors, a bait-normalized fold change
value was calculated. Four HCIs, CALM3, CDC37, UBR2, and HSPA1B were identified in both WT and
KD experiments with both AP-MS and BiolD methods. For these, the fold change values in the different
experimental approaches were within 0.1 of each other, and thus the value used was an average of both.
EphA2 was detected via AP-MS and BiolD with WT EphA7, and with only BiolD with KD EphA?7.

B. Significantly enriched (g<0.01) Reactome pathways in EphA7 WT data. Log2 fold change values are
shown for both WT (green) and KD (orange). The KD values used did not undergo filtering to avoid
eliminating smaller effects.

C. Counts of substrates identified with the IVK method in the Reactome pathways enriched in EphA7 WT
HCI data.

Materials and methods

RTK constructs

RTK constructs were obtained from three sources: 7 were gifts from William Hahn & David Root (Addgene
plasmid # 23914, 23906, 23900, 23910, 23892, 23883, 23891) (Johannessen et al., 2010). 15 were from
ORFeome collection (ORFeome and MGC Libraries; Genome Biology Unit supported by HiLIFE and the
Faculty of Medicine, University of Helsinki, and Biocenter Finland), and 29 from a collection published
previously (Varjosalo et al., 2013a), and 2 were synthesized by Genscript. RTKs were cloned into MAC-
TAG-C expression vector (Liu et al., 2018) and pcDNA™-DEST40 (Thermo Fisher Scientific) via gateway
cloning.

Cell culture
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Stable cell lines inducibly expressing the MAC-tagged RTK baits, Flp-In 293 T-REX cell lines (Cultured in
DMEM (4.5 g/l glucose, 2mM L-glutamine) supplemented with 50 mg/ml penicillin, 50 mg/ml streptomycin
and 10 % FBS) were co-transfected with the expression RTK vector, and pOG44 vector (Invitrogen) using
FUGENE 6 transfection reagent. Cells were selected with 50 ml/ml streptomycin and 100 pg/ml hygromycin
for two weeks, starting two days after transfection. Positive clones were pooled and amplified in 150 mm
plates. Each cell line was expanded to 80 % confluence in 20 x 150 mm plates. Ten of the plates were used
for AP-MS approach and 10 for BiolD. For AP-MS, expression of the bait protein was induced with 1 pg/ml
tetracycline 24 h prior to harvesting. With BiolD, 50 uM biotin was added to the plates in addition at
induction with tetracycline. Pervanadate treatment was performed at a concentration of 100 uM for 15
minutes prior to harvesting. Cells from 5 x 150 mm fully confluent plates (~ 5 x 107 cells) were harvested on
ice and pelleted as one biological sample, thus each bait protein had two biological replicates for each of the
two approaches. Samples were snap frozen and stored at -80°C. Tetracycline concentration of 1 ug/ml was
used to produce expression levels corresponding to expression levels similar to endogenous (Glatter et al.,
2009; Varjosalo et al., 2013a; Varjosalo et al., 2013b; Yadav et al., 2017).

For ligand experiments, the cells were treated with the ligand of the expressed RTK (EGF, 10 ng/ml; FGF,
10 ng/ml; IGF 20 ng/ml; HGF 50 ng/ml; NT-3 10 ng/ml; PDGF-BB 10 ng/ml; GDNF 10 ng/ml; All from
R&D systems). Ligand treatment was started at the time of tetracycline induction, 24 h before harvesting.
Ligand experiments were carried out for 8 RTKs (EGFR, FGFR1, FGFR4, IGF1R, INSR, INSRR, PDGFRB,
and RET).

Affinity purification of RTK interactors

For AP-MS, samples were lysed in 3 ml of ice-cold lysis buffer 1 (0.5 % IGEPAL, 50 mM Hepes (pH 8.0),
150 mM NaCl, 50 mM NaF, 1.5 mM NaVo,, 5 mM EDTA, with 0.5 mM PMSF and protease inhibitors
(Sigma-Aldrich)).

For BiolD approach, cell pellets were thawed in 3 ml of ice-cold lysis buffer 2 (0.5 % IGEPAL, 50 mM
Hepes (pH 8.0), 150 mM NaCl, 50 mM NaF, 1.5 mM NaVO,, 5 mM EDTA, 0.1 % SDS, with 0.5 mM PMSF
and protease inhibitors (Signa-Aldrich). Lysates were sonicated and treated with benzonase (Bio-Rad).

Lysates were centrifuged at 16000 x G for 15 minutes, after which the supernatant was centrifuged for an
additional 10 minutes to obtain cleared lysate. This was then loaded consecutively on spin columns (Bio-
Rad) containing 200 pl Step-Tactin beads (IBA,GmbH) prewashed with lysis buffer 1. The beads were
washed thrice with 1 ml of lysis buffer 1, and 4 x 1 ml of wash buffer (50 mM Tris-HCI, pH 8.0, 150 mM
NaCl, 50 mM NaF, 5 mM EDTA). After the final wash, beads were resuspended in 2 x 300 ul elution buffer
(50 mM Tris-HCI, pH 8.0, 150 mM NaCl, 50 mM NaF, 5 mM EDTA, 0.5 mM biotin) for 5 minutes, and
eluates were collected into 2 ml tubes. Cysteine bonds were then reduced with 5 mM Tris(2-carboxyethyl)
phosphine (TCEP) for 30 minutes at 37 °C, followed by alkylation with 10 mM iodoacetamide for 20
minutes in the dark. Proteins were then digested to peptides with sequencing grade modified trypsin
(Promega V5113), at 37 °C overnight.

The following day quenching was done with 10 % TFA, and the samples were desalted with C18 reversed-
phase spin columns. These columns were first washed 3 x 100 ul of 100 % acetonitrile (ACN), and
equilibrated with 3x100 ul of buffer A(0.1%TFA, 1% ACN). This was followed by 4 x 100 ul of wash buffer
(0.1 % TFA, 5 % ACN). Peptide samples were then loaded 300 ul at a time, followed by 4 x 100 ul washes
with wash buffer. Elution was done with 3 x 100 ul of elution buffer (0.1 % TFA, 50 % ACN). The eluted
peptide sample was then dried in a vacuum centrifuge and reconstituted to a final volume of 30 ul in buffer
A.

In-vitro kinase assay
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HEK 293 cells were cultivated in DMEM (GE Healthcare), supplemented with 10% foetal bovine serum
(FBS) and antibiotics (penicillin, 50 ug/mL and streptomycin, 100 pug/mL). Cells on a plate were washed
with PBS, dislodged with PBS and EDTA, and collected with centrifugation at 1,400 x g for 5 min before
lysis. Cell lysate was prepared by lysing the pelleted cells with buffer containing 50 mM Tris-HCL, pH 7.5,
150 mM NaCl, 5 mM EDTA, 1% NP-40 (Invitrogen, Thermo Fisher Scientific), and protease inhibitors
cocktail (Sigma) on ice. The cell debris was cleared by centrifugation at 16,000 x g for 10 min. The protein
contents were measured using a BCA protein assay Kit (Pierce, Thermo Scientific) and the cell fractions were
stored at -80 °C.

Cell fractions were thawed on ice and endogenous Kinases were inhibited with 5'-[p-
(fluorosulfonyl)benzoyl]adenosine (FSBA; Sigma-Aldrich) in DMSO at a final concentration of 1 mM
FSBA and 10% DMSO in Tris-HCL, pH 7.5 for 1 h at 30 °C. Excess FSBA reagent was removed by
ultracentrifugation with 15 mL 10 K MWCO Amicon® Ultra-4 centrifugal filter units (Merck) at 3,500 x g
at RT. Proteins were washed 4x the initial volume with kinase assay buffer (50 mM Tris-HCI, pH 7.5, 10
mM MgCI2, 1 mM DTT), adjusted to 2 mg/ml and stored on ice. For kinase reaction, 200 pg (100 ul) of
FSBA-treated cell lysate was incubated with 1 pg of kinase (Life Technologies) and 1 mM y[*0,]-ATP
(Cambridge Isotope Laboratory) in 30 °C for 1 hour. For negative control experiments, 200 ug of FSBA-
treated cell lysate was incubated with 1 mM y[**0,]-ATP in the absence of added kinase. Reactions were
halted with 100 pl of 8 M urea.

Prior to digestion, the proteins the samples were reduced with 5 mM Tris(2-carboxyethyl)phosphine (TCEP;
Sigma-Aldrich) for 20 minutes in 37 °C, and then alkylated with 10 mM iodoacetamide (IAA; Sigma-
Aldrich) for 20 min in room temperature in the dark. 600 pl of ammonium bicarbonate (AMBIC; Sigma-
Aldrich) was added to dilute urea before trypsin digestion. Sequencing Grade Modified Trypsin (Promega)
was then used to get a 1:100 enzyme:substrate ratio and the samples were incubated overnight at 37 °C. After
digestion, the samples were desalted with C18 macrospin columns (Nest Group).

The macrospin columns were first conditioned by centrifuging 200 ul of 100% ACN through at 55 x g,
followed by 200 ul of water. Column was then equilibrated twice with 200 ul of buffer A(0.1 % TFA, 1 %
ACN). Sample was then added 100 ul at a time, and washed twice with 200 ul of buffer A. Finally, the
sample was released with 3x200 ul of elution buffer (80 % ACN, 0.1 % TFA).

Phosphopeptide enrichment was performed using immobilized metal ion affinity chromatography with
titanium (1V) ion (Ti4+-IMAC). The IMAC material was prepared by following the steps of the protocol
published previously (Zhou et al., 2013). For enrichment of phosphopeptides, the Ti4+-IMAC beads were
loaded onto GELoader tips (Thermo Fisher Scientific). The material was then conditioned with 50 pl of
conditioning buffer (50 % CH3CN, 6 % TFA) by centrifuging at 150 g until all of the buffer had gone
through. The protein digests were dissolved in a loading buffer (80 % CH3CN, 6 % trifluoroacetic acid
(TFA)) and added into the spin tips and centrifuged at 150 g until all had gone through. The columns were
then washed with 50 pl of wash buffer 1 (50 % CH3CN, 0.5 % TFA, 200 mM NacCl), followed by 50 pl of
wash buffer 2 (50 % CH3CN, 0.1 % TFA), and finally the bound phosphopeptides were eluted with 10%
ammonia, followed by a second elution with elution buffer (80 % CH3CN, 2 % FA). Samples were then
dried in a vacuum centrifuge and reconstituted to a final volume of 15 ul in 0.1 % TFA and 1 % CH3CN.

Liquid chromatography-Mass spectrometry (LC-MS)

The LC-MS/MS analysis was performed on Q-Exactive or Orbitrap Elite mass spectrometers using Xcalibur
version 3.0.63 with an EASY-nLC 1000 system attached via electrospray ionization sprayer (Thermo Fisher
Scientific). For each sample two biological replicates were used. Peptides were eluted and separated with C-
18-packed precolumn and an analytical column, using a 60-minute buffer gradient from 5 to 35 % buffer B,
followed by 5-minute gradient from 35 to 80 % buffer B, and a 10-minute gradient from 80 to 100 % buffer
B at a flow rate of 300 nl/min (Buffer A: 0.1 % formic acid in 2 % acetonitrile and 98 % HPLC-grade water;
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buffer B: 0.1 % formic acid in 98 % acetonitrile and 2 % HPLC-grade water). Four microliters of peptide
sample was loaded for each analysis from an enclosed, cooled autosampler. Data-dependent FTMS
acquisition was in positive ion mode for 80 minutes, and a full scan from 200 to 2000 m/z with a resolution
of 70 000 was performed, followed by top 10 CID-MS2 ion trap scans with a resolution of 17500. Dynamic
exclusion was set to 30 s.

The Acquired MS2 spectral data files (Thermo RAW) were searched with Proteome Discoverer 1.4 (Thermo
Scientific) using SEQUEST search engine against human protein database extracted from UniProtkKB
(https://uniprot.org) on 26.03.2019. For the searches, trypsin was set as the digestion enzyme with a
maximum of two missed cleavages permitted. Precursor mass tolerance was set to +/- 15 ppm, and fragment
mass tolerance to 0.05 Da. Carbamidomethylation of cysteine was defined as a static modification, and
oxidation of methionine, and biotinylation of lysine and N-termini as variable modifications.

For the kinase assays, LC-MS/MS analysis was performed as before, except peptide separation gradient was
a 120-minute linear gradient. The IVK raw data files were processed with MaxQuant version 1.6.0.16 (Cox
and Mann, 2008). MS spectra were searched against the human component of the UniProtKB database
(release 2017 12 with 20192 entries) using the Andromeda search engine (Cox et al., 2011).
Carbamidomethylation (+57.021 Da) of cysteine residues was used as static modification. Heavy
phosphorylation of serine/threonine/tyrosine (+85.966 Da) and oxidation (+15.994 Da) of methionine were
used as dynamic modifications. Precursor mass tolerance and fragment mass tolerance were set to less than
20 ppm and 0.1 Da, respectively. A maximum of two missed cleavages was allowed. The results were
filtered to a maximum false discovery rate (FDR) of 0.05. Processed data was analyzed manually and filtered
based on localization probability with a cut-off at 0.75. Any phosphotyrosine sites that were identified in
control experiments without added kinase were also discarded.

Data filtering steps

Significance Analysis of INTeractome (SAINT) express version 3.6.0 (Choi et al., 2011) and Contaminant
Repository for Affinity Purification (CRAPome, http://www.crapome.org) (Mellacheruvu et al., 2013) were
used as statistical tools for identification of specific high-confidence interactions from AP-MS and BiolD
data. 70 control runs with MAC-Tagged GFP were used as controls for SAINT analysis. Identifications with
a SAINT-assigned bayesian FDR >= 0.05 were dropped, as well as any proteins that were detected in >= 20
% of CRAPome experiments, unless the spectral count fold change was over 3 when compared to CRAPome
average. The remaining high-confidence interactors (HCIs) were then used for further analysis. For the IVK
method, any phosphosite with <75 % localization probability as assigned by MaxQuant were discarded, as
were sites that were detected in any control sample.

Databases

Known interactors were mapped from BioGRID (only experimentally detected interactions)(Oughtred et al.,
2021), Bioplex (Interactions with probability over 0.95)(Huttlin et al., 2021), human cellmap (Go et al.,
2021), IntAct (only experimentally validated physical interactions)(Orchard et al., 2014), PINA2 (Cowley et
al., 2012), and STRING (only with a STRING score > 0.9) databases (Szklarczyk et al., 2019). Number of
citations per RTK were taken from gene2pubmed.gz file provided by NCBI at
ftp://ftp.ncbi.nIm.nih.gov/gene/DATA/gene2pubmed.gz (May 2020). Domain annotations were mapped from
PFam (EI-Gebali et al., 2019), Reactome annotations from Uniprot to lowest pathway level mapping file
available at Reactome (Fabregat et al., 2018). Gene ontology and CORUM (Giurgiu et al., 2019) annotations
were taken from UniProt. GOCC annotations for CORUM complexes were taken from the CORUM
database (Giurgiu et al., 2019). Known phosphosites, and kinases if available, were mapped from human
protein reference database (Peri et al., 2003), PhosphoSitePlus (Hornbeck et al., 2015),
phospho.ELM. (Dinkel et al., 2011), and a dataset from Sugiyama et al. (2019).
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We checked expression status of our high-confidence interactors and our bait proteins against the Human
Protein Atlas database version 20.1. (Uhlen et al. 2017) using RNA HPA cell line gene data that details the
expression levels per gene in 69 different cell lines and against the RNA consensus tissue gene data that
summarizes expression per gene in 62 tissues (downloaded 8.7.2021). In both cases 'not expressed' was
judged to be a missing value or < 1 normalized expression (NX) value.

Bioinformatic analyses

Enrichment values were calculated with an in-house python script using all identified proteins before any
filtering steps were applied as the background set. Prey-Prey cross-correlation was calculated with in-house
python script using scipy (Virtanen et al., 2020), and prey-prey associations from the correlation matrix were
filtered based on g-value (< 0.01) calculated with scipy using FDR correction (Benjamini and Hochberg,
1995), and correlation value (> 0.7). Kinase domain sequence based clustering was done with clustal Omega
(Madeira et al., 2019) using default settings and kinase domain sequences extracted from UniProt. Clustering
of phosphotyrosine sites, and AP-MS and BiolD data was performed in R with the seginr and dendextend
libraries. Clustering for heatmaps was performed in python using seaborn. Network figures were drawn with
cytoscape 3.7 (Kohl et al., 2011). Fold change values for KD RTKSs vs WT were calculated with an in-house
python script using the WT kinase interactome as the background set. Random networks were generated by
replacing HClIs in the RTK interactome with random proteins drawn from the background set of all identified
proteins before any filtering steps were applied.

Immunofluorescence confocal microscopy

The specific RTK expressing HEK293 cells were grown on glass coverslips. After 24 hours, cells were
washed with PBS prior to fixation in 4% (wt/vol) paraformaldehyde (PFA) in PBS for 15 min at room
temperature. Cells were then washed with PBS and permeabilized by 4 min of incubation in 0.1% (wt/vol)
Triton X-100 in PBS. Bait proteins were detected with the anti-HA antibody (Thermo Fisher Scientific, Cat.
No. 26183, dilution 1:1000 dilution), followed by Alexa Fluor488-conjugated secondary antibody (Thermo
Fisher Scientific, A-11001, 1:1000 dilution). The nucleus was stained with DAPI (Sigma, Cat. No. D9542).
Finally, coverslips were dried before mounting in Mowiol 4-88(Sigma, Cat. No. 81381). Prepared slides
were analyzed using a confocal microscope (Leica TCS SP8 STED, Leica) with HC PL APO 93x/1.30
motCORR glycerol objective. Images were processed using ImageJ software (MacBiophotonics).

Signal pathway analysis and luciferase assay

Cignal 45-Pathway Reporter Array (Qiagen, Cat. No. 336841) was used to monitor the corresponding
signaling pathway activity. Briefly, 30 ul Opti-MEM containing dilute Attractene Transfection Reagent
(Qiagen, Cat. No. 301005) was added to each well of the Cignal Finder Array plate coated with pre-
formulated, transfection-ready reporter construct and test gene of interest construct, incubating at room
temperature for 20 min. Subsequently, was added to DNA construct mixtures, 100 pl of HEK293 cell
suspension containing 4 x 10 cells in DMEM medium with 10% of fetal bovine serum was added to each
well. After 24 h of transfection, the medium was changed to complete growth medium and further incubated
for 24 h, followed by Dual-Luciferase Reporter Assay System that was performed according to the
manufacturer's protocol (Promega, Cat. No. E1960).

Co-Immunoprecipitation

To validate the protein-protein interactions, HEK293 cells were co-transfected using Fugene 6 transfection
reagent (Promega) with MAC-tag (600ng) and V5-tag (600ng) bait and prey constructs on 6-well cell culture
plates with 5,00,000 cells per well. 24 hours post-transfection cells were rinsed with ice-cold 1X PBS and
lysed with 1ml HENN lysis buffer per well (50mM HEPES pH8.0+ 5mM EDTA+ 150mM NaCl+ 50mM


https://doi.org/10.1101/2021.09.17.460748
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.09.17.460748; this version posted September 20, 2021. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

NaF+ 0.5% IGEPAL+ 1mM DTT+ 1mM PMSF+ 1.5mM Na3V04 + 1X Protease inhibitor cocktail (Sigma-
Aldrich)). Cell lysates were vortexed briefly and centrifuged (16,000 x g, 20min, 4°C) to remove cellular
debris. 20 pl of Strep-Tactin® Sepharose® resin (IBA Lifesciences GmbH) was washed in a microcentrifuge
tube twice with 200 pul HENN lysis buffer (4,000 x g, 1 min, 4°C). The clear lysate was collected and added
to the washed Strep-Tactin® Sepharose® resin and incubated on a rotating wheel (60min, 4°C). After
incubation, the samples were centrifuged (4,000 x g, 1 min, 4°C), and the supernatant was discarded. The
pellet was washed three times with 1ml HENN lysis buffer (4,000 x g, 30 sec, 4°C). After the last wash, 60
ul of 2X Laemmli sample buffer was added directly to the beads and boiled at 95°C for 5 minutes. Samples
were later used for immunodetection using western blot. For western blotting, immunoprecipitated proteins
were detected with monoclonal mouse anti-V5 (Invitrogen) or mouse anti-HA.11 (BioLegend) primary
antibodies and polyclonal goat anti-mouse HRP conjugated (GE Healthcare) secondary antibody. Signals
were visualized by chemiluminescence using Amersham™ ECL™ Prime (Cytiva) for 5 min prior to imaging
using iBright Imaging Systems (Thermo Fisher Scientific)
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