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ABSTRACT 
 
Cutaneous lupus erythematosus (CLE) is a disfiguring and poorly understood condition frequently 
associated with systemic lupus. Studies to date suggest that non-lesional keratinocytes play a role in 
disease predisposition, but this has not been investigated in a comprehensive manner or in the 
context of other cell populations. To investigate CLE immunopathogenesis, normal-appearing skin, 
lesional skin, and circulating immune cells from lupus patients were analyzed via integrated single-
cell RNA-sequencing and spatial-seq. We demonstrate that normal-appearing skin of lupus patients 
represents a type I interferon-rich, ‘prelesional’ environment that skews gene transcription in all major 
skin cell types and dramatically distorts cell-cell communication. Further, we show that lupus-enriched 
CD16+ dendritic cells undergo robust interferon education in the skin, thereby gaining pro-
inflammatory phenotypes. Together, our data provide a comprehensive characterization of lesional 
and non-lesional skin in lupus and identify a role for skin education of CD16+ dendritic cells in CLE 
pathogenesis. 
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INTRODUCTION 
 
Cutaneous lupus erythematosus (CLE) is a disfiguring inflammatory skin disease that affects 70% of 
patients with systemic lupus erythematosus (SLE). While about 50% of patients respond to SLE-
directed therapies1, many patients suffer from refractory skin lesions, even when their systemic 
disease is controlled. Lack of knowledge regarding the inflammatory composition of CLE and the 
drivers that instigate disease has delayed effective therapy development. 
 
Intriguingly, the etiology of skin lesions in CLE may be, at least partially, found in abnormalities in 
non-lesional, normal-appearing skin. Recent data support a role for increased epidermal type I 
interferon (IFN) production2, 3, 4, 5 and dysfunction of Langerhans cells6 as important for priming 
inflammatory and apoptotic responses. However, the role of other cells in the skin, the skewed 
communication networks between them, and cellular mediators of this inflammatory predisposition 
have not been well-defined. 
 
In this paper, we examined the cellular composition of paired lesional and non-lesional skin samples 
from SLE patients with active CLE lesions to comprehensively define the cellular makeup and to 
characterize the principal mediators of inflammatory changes that contribute to the disease. We 
further examined the peripheral blood of the same patients to investigate the cutaneous education of 
monocyte-derived dendritic cells, which were found to be prominent in lesional and non-lesional skin. 
Overall, we found an IFN-rich signature and a unique, pro-inflammatory cellular communication 
network between stromal and inflammatory cells in lesional and non-lesional skin that supports a 
critical role for the skin itself in priming inflammatory responses in SLE patients. 
 
 
RESULTS 
 
Single-cell RNA-sequencing (scRNA-seq) of lesional and non-lesional skin from patients with 
CLE identifies diverse skin and immune cell populations 
 
To investigate the cellular composition and comprehensive transcriptional effects of CLE, we 
performed scRNA-seq on lesional and sun-protected non-lesional skin from 7 patients with active 
CLE (Supplementary Table 1), 6 of whom also carried a diagnosis of SLE. Samples were analyzed 
in parallel with skin from 14 healthy controls from diverse sites. The final dataset comprised 46,540 
cells, with an average of 2,618 genes and 11,645 transcripts per cell. Visualization using Uniform 
Manifold Approximation and Projection (UMAP) revealed 26 distinct cell clusters (Fig. 1a) that were 
annotated as 10 major cell types, each comprising cells from lesional, non-lesional, and healthy 
control skin biopsies (Fig. 1b-d). Conspicuous clustering by disease state was evident for many cell 
types, including keratinocytes (KCs), myeloid cells, and melanocytes. Cell composition analysis 
revealed an increase in the proportion of myeloid cells in both lesional and non-lesional skin relative 
to healthy control (Fig. 1e). 
 
 
KCs from both lesional and non-lesional skin of patients with CLE exhibit a pathologic type I 
IFN signature 
 
KCs constituted the majority of cells sequenced (25,675 cells). Sub-clustering analysis of KCs 
identified 14 sub-clusters (Fig. 2a), including several (5, 6, 8, 13) dominated by KCs from lupus 
patients (Fig. 2b,c). Analyses of characteristic KC subtype markers identified 5 KC states: basal, 
spinous, supraspinous, follicular, and cycling (Fig. 2d, Supplementary Fig. 1a). Lupus-dominated 
sub-clusters corresponded to subpopulations within basal and spinous KC states.  
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The relatively shallow depth of scRNA-seq precludes direct examination of transcript levels for many 
cytokines implicated in CLE – particularly IFNs. Thus, to investigate whether cytokine responses were 
driving this KC sub-clustering by disease, we calculated KC module scores derived from genes 
induced in cultured KCs upon stimulation with the indicated cytokines and generated feature plots 
displaying module scores for each cytokine (Fig. 2e, Supplementary Fig. 1b). Lupus-enriched sub-
clusters corresponded best with cells exhibiting high scores for type I IFN (IFN-α), type II IFN (IFN-γ), 
and to a lesser degree TNF. Our and others’ prior work has identified a critical role for type I IFN in 
SLE and CLE keratinocytes2, 3, 4, 5. Accordingly, cytokine module violin plots revealed that lupus-
enriched basal (sub-cluster 8) and spinous (5 and 6) sub-clusters consisted almost entirely of KCs 
with high IFN-α module scores (Fig. 2f, Supplementary Fig. 1c), whereas the separation was less 
striking for IFN-γ and TNF. Notably, cells scoring highest in these clusters originated from non-
lesional biopsies. This suggests that even normal-appearing skin from patients with CLE exists in a 
‘prelesional’ state, primed by heightened type I IFN signaling. Follicular KC sub-clusters (10 and 11) 
showed elevated IFN-α cytokine module scores in non-lesional and lesional samples relative to 
healthy control as well (Fig. 2f), suggesting the follicular epithelium also represents an abnormal, 
IFN-rich environment in CLE; however, scores were far lower for follicular than basal KCs, implicating 
the interfollicular epidermis more strongly than the follicular epithelium in type I IFN education of 
neighboring stromal and skin-infiltrating cells. 
 
For a broader understanding of the transcriptomic differences in lesional KCs of patients with CLE, 
we performed differential expression analysis between the non-lesional and lesional CLE vs. healthy 
basal KCs and identified type I IFN downstream genes (e.g., MX1, IFITM1, IFITM3, IFI6, ISG15, 
IFI27) among the top upregulated genes in the lesional cells (Fig. 2g). We then used Ingenuity 
Pathway Analysis (IPA) to identify the top cytokines predicted to serve as upstream regulators for the 
genes induced in lesional samples, identifying primarily IFNs as upstream regulators of CLE-enriched 
transcripts (Fig. 2h). Corroborating this, canonical pathway analysis distinguished IFN signaling as 
highly enriched in lesional samples (Fig. 2i). 
 
 
scRNA-seq identifies a CLE-enriched fibroblast subtype exhibiting a strong IFN response 
signature and IL-17A influence restricted to lesional skin 
 
We next analyzed fibroblasts (FBs), the other major stromal cell constituent of the skin. Sub-
clustering analysis of 8,622 FBs identified 10 sub-clusters (Fig. 3a). Only one sub-cluster (4) was 
dominated by FBs from lupus patients (Fig. 3b,c). Annotation of these sub-clusters based on 
published dermal FB marker genes7 revealed three subtypes as previously described (SFRP2+, 
COL11A1+, and SFRP4+ FBs) and a small cluster marked by expression of COL66A1 and RAMP1 
(RAMP1+ FBs) (Fig. 3d, Supplementary Fig. 2a). Immunohistochemistry of these key markers 
(Supplementary Fig. 2b) confirmed that SFRP2+ FBs constituted the majority of FBs7. The lupus-
enriched sub-cluster lay within the SFRP2+ FBs and was analyzed as an independent subtype. 
Analysis of the top gene markers of each FB subtype indicated that these FBs were distinguished by 
high IFN-stimulated gene (ISG) expression (Supplementary Fig. 2c), and thus we designated these 
IFN FBs. Consistent with this, feature and violin plots depicting FB cytokine module scores calculated 
using genes induced in cultured FBs stimulated by cytokines as above revealed that IFN FBs were 
most uniquely distinguished by IFN-α and IFN-γ cytokine signatures (Fig. 3e,f, Supplementary Fig. 
2d,e). As in KCs (Fig. 2e), IFN cytokine module scores were highest in non-lesional FBs, reinforcing 
that normal-appearing skin of lupus patients represents a prelesional, IFN-primed environment. We 
compared the cytokine upstream regulators identified in the comparisons of non-lesional vs. healthy 
basal KCs and non-lesional IFN FBs vs. healthy SFRP2+ FBs. This revealed that type I IFNs, such as 
IFNA2, IFNL1, and IFNB1, served as the top upstream regulators in both cell types (Fig. 3g). Notably, 
high FB IFN module scores were primarily restricted to the single sub-cluster of IFN FBs (Fig. 3f), 
indicating that only a specific subset of FBs in skin of patients with CLE exhibits robust IFN education. 
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This is an interesting contrast to KCs, where non-lesional and/or lesional KCs showed elevated IFN 
module scores for the majority of sub-clusters (Fig. 2e).  
 
 
T cells infiltrating lesional and non-lesional skin of patients with CLE demonstrate IFN 
education across multiple subsets including regulatory T cells 
 
Having analyzed the major stromal cell types of the skin, we moved on to examination of the immune 
cells. Sub-clustering and annotation based on established marker genes identified nine T cell subsets 
(Fig. 4a-c). Cells of one sub-cluster were distinguished by expression of ISGs and were therefore 
designated IFN T cells (Fig. 4c). IFN T cells derived primarily from lupus samples (Fig. 4d), 
constituting 13% and 15% of T cells from non-lesional and lesional samples, respectively, but <1% of 
healthy control T cells.  
 
Regulatory T cells (Tregs), annotated based on FOXP3 expression, were detected in similar 
proportions across healthy control, non-lesional, and lesional samples (Fig. 4d). Investigations of 
Treg abundance in peripheral blood of patients with SLE have yielded conflicting results8, 9, 10, 11, 
possibly due to differences in methodology or definition of Tregs12, but there appears to be consensus 
that Treg function is altered in patients with SLE8, 9. To investigate whether the non-lesional skin 
environment might influence Treg function in lupus patients, we examined the top DEGs upregulated 
in non-lesional vs. healthy control Tregs. This identified numerous ISGs, suggestive of chronic IFN 
stimulation (Fig. 4e). Overproduction of type I IFNs by antigen-producing cells (APCs) in SLE has 
been proposed as a cause of Treg dysfunction in SLE13, 14, and we have previously demonstrated that 
lupus-prone NZM2328 mice treated with ultraviolet light exhibit type I IFN-dependent suppression of 
Treg function13. Thus, the chronic IFN stimulation of Tregs that we observe in non-lesional skin may 
contribute to impaired Treg ability to maintain immune homeostasis and self-tolerance in lupus. 
 
One sub-cluster of T cells clustered closely with Tregs but did not express FOXP3. Rather, this sub-
cluster was distinguished by expression of CXCL13 (Fig. 4c), a B cell-attracting chemokine and SLE 
biomarker that appears to play a pathogenic role (reviewed in Schiffer et al., 201515), as well as ICOS 
and PDCD1 (encoding PD-1), leading us to annotate these as T follicular helper (Tfh)-like cells. 
Abundance of these cells varied by disease state at 1%, 4%, and 2% of healthy control, non-lesional, 
and lesional T cells, respectively. Closer inspection revealed that Tfh-like cells from healthy control 
and non-lesional samples differed in expression of ISGs including CXCL13 (expressed by 0% of 
healthy control vs. 76% of non-lesional Tfh-like cells). A similar population of Tfh-like cells was 
detected in scRNA-seq of kidney biopsies from patients with lupus nephritis16, where they were 
theorized to promote B cell responses such as local antibody production and antigen-specific T cell 
activation by B cells17. Their detection in our dataset suggests a similar process might be occurring in 
non-lesional skin of lupus patients as well. 
 
Altogether, T cell imbalances and the presence of IFN T cells and other IFN-educated T cell subsets 
including Tregs in non-lesional samples indicate the presence of an abnormal and likely pathologic T 
cell infiltrate poised in the prelesional environment of normal-appearing skin of patients with CLE.  
 
 
Major shifts in myeloid cell subsets are detected in lesional and non-lesional skin of CLE 
patients  
 
We then evaluated myeloid cells, the other major immune cell type detected in our skin samples. 
Sub-clustering and annotation identified nine myeloid cell subsets with largely distinct marker genes 
(Fig. 5a-c): classical type 1 dendritic cell (cDC1; CLEC9A, IRF8), classical type 2 dendritic cell subset 
A (cDC2A; LAMP3 and CD1B), classical type 2 dendritic cell subset B (cDC2B; CLEC10A, IL1B), 
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plasmacytoid dendritic cell (pDCs; GZMB, JCHAIN), CD16+ dendritic cell (CD16+ DC; FCGR3A, 
HES1), Langerhans cell (LC; CD207, CD1A), lipid-associated macrophage (LAM; APOE, APOC1), 
perivascular macrophage (PVM; CD163, SELENOP), and plasmacytoid dendritic cell-like cell (pDC-
like; PPP1R14A, TRPM4) that was previously described by Villani et al.18. Myeloid cell subsets 
showed far greater variability in representation among healthy control, non-lesional, and lesional 
samples than the above cell types (Fig. 5a,d,f). 
 
In healthy control skin, cDC2Bs accounted for nearly half (47%) of the myeloid cells; this differed 
greatly from non-lesional lupus skin, where pDCs dominated (41%), although most were from a single 
patient (Fig. 5e). In keeping with prior reports, LCs were decreased in lesional19, 20 and non-lesional6 
lupus skin (Fig. 5d,e). Among the most striking differences between healthy control and lupus skin, 
however, was the overrepresentation of CD16+ DCs in both non-lesional and lesional CLE samples 
compared to healthy skin (Fig. 5d,e). While the exact identity of these cells remains somewhat in flux, 
CD16+ DCs are gaining recognition as a unique DC subset characterized by expression of 
FCGR3A/CD16a that can be detected as a transcriptomically distinct population (labeled DC4 in work 
by Villani et al. profiling circulating mononuclear cell populations in healthy individuals using scRNA-
seq18). This population is thought to overlap with CD16+ DCs previously described by MacDonald et 
al. as expressing high levels of CD86 and CD40 and possessing potent T cell stimulatory 
capabilities21. CD16+ DCs also exhibit enhanced capacity relative to cDC2Bs for secretion of 
inflammatory cytokines upon toll-like receptor stimulation22, a capacity that is further enhanced in 
CD16+ DCs isolated from peripheral blood of patients with SLE23. Expansion and enhanced function 
of CD16+ DCs in lupus patients could therefore promote pathogenesis. Based on shared surface 
marker expression, this subset may also overlap with 6-Sulfo LacNAc-dendritic cells (slanDCs)24, a 
pro-inflammatory myeloid DC subset that has been linked to lupus immunopathogenesis25, 26 and is 
increased in lesional skin of lupus patients25.  
 
 
Ligand-receptor (L-R) analysis demonstrates lupus-enriched cell-cell interactions prominently 
involving CD16+ DCs  
 
Following identification of cellular populations, we then sought to understand how cell-cell 
communication differed in the skin of lupus patients. We thus performed L-R analyses among all 
major cell populations within healthy control, non-lesional, and lesional skin samples using 
CellPhoneDB. Each L-R pair was then assigned to the condition in which it showed the highest 
interaction score, and the number of interactions for each cell type pair was plotted. Few L-R 
interactions were strongest in healthy control skin, and the majority of these represented KC-KC 
crosstalk (Fig. 6a). Non-lesional skin, in contrast, showed many more interactions (Fig. 6b). FBs 
represented the main ligand-expressing cell type among non-lesional-enriched pairs, but myeloid and 
endothelial cells (ECs) were also highly interactive. Additionally, eccrine gland cells participated in a 
high number of interactions in non-lesional skin as expressers of both ligands and receptors, which is 
of interest given that perieccrine inflammation is a hallmark of CLE. In lesional skin, however, myeloid 
and ECs were most prominent among cell-cell interactors (Fig. 6c). 
 
These analyses indicate a prominent role for myeloid cells in non-lesional and lesional skin. Given the 
functional heterogeneity within the myeloid cell population, we sought to define more precisely the 
myeloid and other cellular participants in these interactions. Thus, we divided KCs, FBs, T cells, and 
myeloid cells into their respective subsets and repeated analysis of L-R pairs. Plotting the L-R 
interactions revealed an even denser network of candidate cellular interactors (Fig. 6d). Regarding 
stromal cells, ligands expressed by KC subsets primarily signaled to receptors on ECs, suggesting a 
mechanism by which KCs may influence tissue infiltration by immune cells. IFN FBs were among the 
most active of all cell subsets. However, CD16+ DCs represented the top interactors. Expressing both 
ligands and receptors, CD16+ DCs showed numerous enriched interactions involving IFN FBs, Tfh-
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like cells, and cDC2B cells, as well as within-CD16+ DC crosstalk. pDCs were comparatively inert in 
comparison, rarely participating in L-R pairs (Fig. 6d), consistent with recent literature supporting a 
more senescent phenotype of pDCs in SLE skin4.  
 
 
Integration of spatial-seq and scRNA-seq analyses provides architectural context shaping 
cell-cell interactions within lupus skin 
 
L-R analysis derives exclusively from differential gene enrichment and therefore lacks critical spatial 
context to substantiate putative interactions. To bolster our interaction analyses, we analyzed discoid 
lupus lesional skin sections using spatial sequencing on the 10x Genomics Visium platform. A section 
containing multiple hair follicle segments was selected for in depth analysis (Fig. 7a). We detected 
632 spatially defined spots with an average of 3,704 genes and 10,176 transcripts per spot. Abundant 
dermal deposition of extracellular glycosaminoglycans, termed mucin, is a frequent feature of 
cutaneous lupus and is evident in the section as collagen fiber splaying; accordingly, many dermal 
areas showed very low transcript detection and were excluded during quality control.  
 
At a diameter of 55µm, each spot may account for multiple cells of intermixed types. This was 
corroborated by spatial heatmaps showing overlapping expression of representative marker genes 
corresponding to the major cell types (Supplementary Fig. 3a). Accordingly, rather than assigning a 
single cell type to each spot, we generated a pie chart for each spot showing the representation of the 
transcriptomic signature of each major cell type (Fig. 7b, Supplementary Fig. 3b). This approach 
recapitulated the architecture visible on H&E staining, with the epidermis and follicle showing high KC 
signature detection and the dermis showing a mix of signatures corresponding primarily to FBs, ECs, 
and smooth muscle cells, which include both vascular smooth muscle and the cells of the arrector pili 
muscle attached to the hair follicle. The majority of spots with high immune cell signatures localize to 
the subepidermal and perifollicular regions (Fig. 7b), corresponding respectively to the characteristic 
interface dermatitis and periadnexal infiltrate of discoid lupus. Subepidermal spots showed a 
particularly prominent myeloid signature with a comparatively weak T cell signature, suggesting 
strong localization of myeloid cells to the interface, possibly as a direct effect of signaling initiated by 
KCs or FBs in the prelesional CLE environment. 
 
To further understand how the KC, FB, T cell, and myeloid cell heterogeneity observed in our scRNA-
seq mapped onto the architecture of the lesional tissue, we generated spatial heatmaps showing 
prediction scores corresponding to the subsets defined above. Spatial KC subset analysis 
demonstrated appropriate localization of the supraspinous, spinous, and basal KC signals to the 
superficial, mid, and basal epidermis, respectively (Supplementary Fig. 3c). The follicular KC signal 
localized to the follicular epithelium and the cycling KC signal primarily to the deeper portion of the 
follicle, where the stem cells that give rise to the follicle are located. Consistent with the interfollicular 
epidermis representing the primary site of exaggerated IFN education in CLE, spatial FB subset 
analysis revealed prominent localization of the IFN FB signal to the superficial dermis (Fig. 7c) and 
detection of other FB subsets in the perifollicular dermis (Supplementary Fig. 3d). Spatial T cell 
subset analysis also showed subset-specific localization within the tissue section (Supplementary 
Fig. 3e). 
 
Myeloid cell subset spatial heatmaps (Supplementary Fig. 3f, full panel) complemented our 
immunostaining results (Fig. 5f). As expected, spots showing a strong LC gene signature were 
restricted to the epidermis and the follicular epithelium (Fig. 7d). Many spots in the perifollicular 
dermis scored highly for pDCs (Fig. 7e). Spots scoring highly for CD16+ DC clustered most densely 
in the superficial dermis (Fig. 7f), again suggesting these cells can be modulated in the IFN-rich 
environment generated by the basal KCs of the interfollicular epidermis2.  
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To further dissect CD16+ DC cell-cell communication at the level of the individual cell, we performed 
imaging mass cytometry of lesional DLE and subacute CLE (SCLE) skin biopsies, defining CD16+ 
DCs as CD14+CD11c+CD16+ cells. This identified CD16+ DCs primarily concentrated in the 
superficial dermis directly under the dermo-epidermal junction (Fig. 7g). Enumeration of neighboring 
cells revealed that diverse immune cell types are detected within 4 μm distance of CD16+ DCs, with 
monocytes and macrophages being more common than lymphocytes (Fig. 7h). Among stromal cell 
types included in the analysis, epithelial cells (here, keratinocytes), occurred more commonly in 
proximity to CD16+ DCs than ECs, supporting interaction between CD16+ DCs and basal KCs. 
Statistical analysis demonstrated significant overrepresentation of innate inflammatory cells including 
pDCs and monocytes in proximity to CD16+ DCs in both DLE and SCLE (Supplementary Fig. 4). 
 
 
Pseudotime analysis of paired circulating and skin-infiltrating myeloid cells suggests that 
CD16+ DCs arise from non-classical monocytes that undergo IFN education in lupus skin 
 
Overall, our data thus far supported close communication of CD16+ DCs with stromal cells in the 
skin, so we next wanted to understand the origin and phenotype of CD16+ DCs that infiltrate the skin 
in lupus patients. Reasoning that these likely arise from circulating mononuclear cells similar to the 
DC4 subset identified by Villani et al.18, we examined peripheral blood mononuclear cells (PBMCs) by 
scRNA-seq from the same seven lupus patients above as well as from four healthy controls. PBMC 
and skin cell data were aggregated for clustering, and clusters containing myeloid cells were selected 
for further analysis based on expression of established markers (Supplementary Fig. 5). Myeloid 
cells from PBMCs and skin were then re-clustered together to assess for connections between 
circulating and skin-infiltrating subsets. 
 
Sub-clustering of the aggregated myeloid cells revealed an apparent transition spanning PBMCs and 
skin (Fig. 8a). Annotation identified the bridging cells as CD14+CD16++ non-classical monocytes 
(ncMos), which derived exclusively from PBMCs, and CD16+ DCs from both PBMCs and skin (Fig. 
8b-d). Pseudotime analysis of ncMos and CD16+ DCs performed using Monocle arranged the cells 
along a single trajectory reflecting a transition from circulating ncMos to skin-infiltrating CD16+ DC 
(Fig. 8e) – a process that appears to occur much more frequently in lupus than healthy control skin 
based on relative abundance (Fig. 8c). This increased exit into the skin could even account for the 
decreased proportion of ncMos and circulating CD16+ DCs observed in lupus patients relative to 
controls in our dataset (Fig. 8c). 
 
To understand the transcriptional changes that accompany this transition, we performed differential 
expression analysis along the pseudotime. This identified five gene expression patterns spanning the 
transition from ncMo to CD16+ DC (Fig. 8f). Close inspection of the top 80 most significant marker 
genes revealed that this transition was marked primarily by late upregulation of numerous genes 
encoding chemokines, which could support retention of CD16+ DCs and recruitment of other 
inflammatory cells into the skin of CLE patients, as well as ISGs, consistent with migration of these 
cells into the type I IFN-rich lupus skin environment (Fig. 8g). Broadly, these changes support our 
prior findings that keratinocyte-derived type I IFN can promote DC activation, enabling them to 
stimulate immune responses in the skin2. 
 
We next analyzed these five gene expression patterns for canonical pathway enrichment for insight 
into what cellular functions might be acquired and lost across this transition (Supplementary Fig. 6). 
Top canonical pathways enriched among gene patterns expressed earlier in the transition (mostly 
periphery-associated) tended to relate to leukocyte trafficking. These included ephrin receptor 
signaling (p=7.44x10-3), the top pathway enriched in pattern A, as well as actin cytoskeleton signaling 
(p=5.57x10-7) and integrin signaling (p=4.57x10-4), the top pathways enriched in pattern B. Top 
pathways enriched among gene patterns expressed later in the transition (mostly skin-associated) 
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related more to cytokine signaling. The top pathway enriched in pattern D was the role of 
hypercytokinemia/hyperchemokinemia in the pathogenesis of influenza (p=6.79x10-6), with IFN 
signaling (p=2.80x10-4) also highly ranked. The top pathway enriched in pattern E was IL-6 
(p=1.85x10-6), in line with data supporting a role for increased production of IL-6 by lupus KCs 
secondary to conditioning by IFN signaling3.  
 
To analyze the cytokines influencing the transition from ncMo to skin-infiltrating CD16+ DC, we 
calculated upstream regulator scores for all cytokines included in IPA for each cell and determined 
the correlation of these scores with pseudotime. Scores for a panel of type I IFNs (IFN-α1/13, IFN-β, 
and IFN-κ) and IFN-γ (Fig. 8h) indicated very high correlation (r= 0.774, 0.880, 0.666, and 0.873, 
respectively) with a more pronounced rise late in pseudotime, consistent with robust IFN education 
representing an important terminal step in this transition. A number of upstream regulators showed 
more gradual induction across pseudotime and higher correlation scores, suggestive of an earlier role 
in the transition. These included IL-1β (r= 0.928), the top-correlated cytokine, and TNF (r= 0.903); of 
note, these also emerged as top significant genes in the pseudotime DEG analysis, showing late 
upregulation in the transition from ncMo to CD16+ DC (Fig. 8g). This is in keeping with our prior 
report that prolonged type I IFN exposure primes monocytes for inflammasome activation and 
enhances their production of IL-1β27. 
 
The interactions that mediate infiltration of CD16+ DCs into normal-appearing skin of patients with 
CLE are not yet known. To highlight L-R pairs that could promote this accumulation, we generated 
circos plots of all cytokine interaction pairs in which CD16+ DCs expressed either receptor 
(Supplementary Fig. 7a) or ligand (Supplementary Fig. 7b). CD16+ DCs expressed 12 cytokine 
receptors involved in L-R pairs (Supplementary Fig. 7a). ECs and smooth muscle cells, which 
include vascular smooth muscle cells, expressed the highest number of interacting ligands. Next 
highest among stromal cells were IFN FBs. In a similar pattern, CD16+ DCs expressed 23 ligands 
involved in L-R pairs (Supplementary Fig. 7b), with ECs and IFN FBs expressing the highest 
number of interacting receptors. Together, these L-R data suggest enhanced interactions with ECs 
and IFN FBs enable CD16+ DCs to accumulate in the skin of CLE patients, where the IFN-rich 
environment augments their pro-inflammatory properties and capacity for cell-cell communication. 
 
 
DISCUSSION 
 
Collectively, our data describe the cellular composition and architecture of cutaneous lupus at 
unprecedented resolution. We demonstrate the pervasive effects of IFN, of which the epidermis is a 
critical source2, on skin stromal and immune cells alike. Most intriguingly, these effects are 
pronounced in non-lesional samples, suggesting that normal-appearing skin of patients with CLE 
exists in an immunologically primed, ‘prelesional’ state. This state skews the transcriptional programs 
of many of the major cell types in the skin, with dramatic effects on the capacity for cell-cell 
communication. Indeed, even the minor cellular constituents of the skin not examined in detail here 
exhibited transcriptional shifts in non-lesional CLE skin that alter their potential to engage other 
stromal and immune cells (Fig. 6b).   
 
This investigation highlighted CD16+ DCs, a myeloid cell subset increasingly implicated in lupus 
pathogenesis21, 22, 23, 25, 26, as proficient intercellular communicators even in non-lesional skin of CLE 
patients (Fig. 6d), where they are highly abundant (Fig. 5d). Unsupervised clustering followed by 
pseudotime analysis of combined myeloid cells from skin and peripheral blood suggests that 
progenitor ncMos in circulation give rise CD16+ DCs (Fig. 8a,b,e). Clustering of DCs isolated from 
peripheral blood of healthy patients identified a subset of so-called DC4 cells characterized by 
expression of FCGR3A, encoding CD16a, with high transcriptional similarity to a monocyte subset 
with features of ncMos18, inspiring some discussion that DC4 cells may in fact represent monocytes28, 
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29. Here, however, utilization of single-cell technologies across blood and tissues has enabled 
identification of a CD16+ DC population enriched in the skin of patients with SLE and defined their 
probable precursors and the transcriptomic changes accompanying this transition that arm CD16+ 
DCs to instigate tissue inflammation. ScRNA-seq analysis of immune cells isolated from kidney 
biopsies of patients with lupus nephritis (LN) and healthy controls suggests that this paradigm may 
not be limited to the skin. Arazi et al. identified several myeloid subpopulations resembling DC4 cells 
(CM0, CM1, and CM4); these were highly enriched in LN biopsies and showed upregulation of IFN 
response scores relative to steady-state kidney macrophages and conventional DCs16, suggesting 
IFN education is a characteristic feature of tissue-infiltrating CD16+ DCs that facilitates their 
pathogenicity in lupus.  
 
Accumulation of CD16+ DCs in the skin represents a distinguishing feature of not just the lesional but 
also the prelesional CLE environment. In CLE patients, exit of CD16+ DCs from the circulation into 
non-lesional skin is likely enhanced through robust L-R interactions between CD16+ DCs and the 
vasculature (Supplementary Fig. 7). Following tissue infiltration, CD16+ DCs may be directed to 
accumulate in the superficial dermis (Fig. 7g) by ligand gradients generated by subepidermal FBs 
that have been transformed to an IFN FB phenotype through the effects of KC-secreted IFN (Fig. 3g, 
Fig. 7c). Upon encountering the IFN-rich non-lesional CLE environment, CD16+ DCs upregulate a 
panoply of ISG-encoded cytokines and chemokines (Fig. 8f,g). This endows them with the capacity 
for extensive cell-cell communication with diverse cell types (Supplementary Fig. 7) including innate 
immune cells in their immediate proximity (Supplementary Fig. 4), whereby they may contribute to 
genesis of CLE lesions. Thus, the prelesional environment of skin of CLE patients represents a 
collaboration between stromal and immune cells, with critical contributions from KCs, FBs, and 
CD16+ DCs. Further investigations directed at differences in cell-cell communication between non-
lesional and lesional CLE will provide additional insight into the downstream events that precipitate 
clinically evident inflammation and lesion formation and provide targeted therapeutic strategies to 
improve treatment response in patients with this devastating disease. 
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METHODS 
 
Human sample acquisition 
7 patients with active CLE (Supplementary Table 1) were recruited for this study, all of whom 
contributed lesional and non-lesional (sun-protected skin of the buttock) 6mm punch skin biopsies 
and whole blood for isolation of PBMCs. A diagnosis of SLE was confirmed for 6 of 7 patients via the 
European League Against Rheumatism/American College of Rheumatology criteria30. 14 healthy 
controls were recruited for skin biopsy and 4 for whole blood. The study was approved by the 
University of Michigan Institutional Review Board (IRB), and all patients were consented. The study 
was conducted according to the Declaration of Helsinki Principles. 
 
Immunohistochemistry 
Paraffin embedded tissue sections from punch biopsies from patients with discoid lupus 
erythematosus and healthy control skin were heated at 60°C for 30 minutes, de-paraffinized, and 
rehydrated. Slides were placed in antigen retrieval buffer at the pH indicated in Supplementary 
Table 3 and heated at 125°C for 30 seconds in a pressure cooker water bath.  After cooling, slides 
were treated with 3% H2O2 (5 minutes) and blocked using 10% goat serum (30 minutes). Overnight 
incubation was performed at 4°C with primary antibodies at the indicated concentrations 
(Supplementary Table 3). Slides were then washed, treated with appropriate secondary antibodies, 
peroxidase (30 minutes), and diaminobenzidine substrate, before imaging. 
 
Single-cell RNA library preparation, sequencing, and alignment 
Generation of single-cell suspensions for scRNA-seq was performed as follows: Skin biopsies were 
incubated overnight in 0.4% dispase (Life Technologies) in Hank’s Balanced Saline Solution (Gibco) 
at 4°C. Epidermis and dermis were separated. Epidermis was digested in 0.25% Trypsin-EDTA 
(Gibco) with 10U/mL DNase I (Thermo Scientific) for 1 hour at 37°C, quenched with FBS (Atlanta 
Biologicals), and strained through a 70μM mesh. Dermis was minced, digested in 0.2% Collagenase 
II (Life Technologies) and 0.2% Collagenase V (Sigma) in plain medium for 1.5 hours at 37°C, and 
strained through a 70μM mesh. Epidermal and dermal cells were combined in 1:1 ratio, and libraries 
were constructed by the University of Michigan Advanced Genomics Core on the 10X Chromium 
system with chemistry v3. Libraries were then sequenced on the Illumina NovaSeq 6000 sequencer 
to generate 150 bp paired end reads. Data processing including quality control, read alignment 
(hg38), and gene quantification was conducted using the 10X Cell Ranger software. The samples 
were then merged into a single expression matrix using the cellranger aggr pipeline. 
 
Cell clustering and cell type annotation 
The R package Seurat (v3.1.2)31 was used to cluster the cells in the merged matrix. Cells with less 
than 500 transcripts or 100 genes or more than 10% of mitochondrial expression were first filtered out 
as low-quality cells. The NormalizeData function was used to normalize the expression level for each 
cell with default parameters. The FindVariableFeatures function was used to select variable genes 
with default parameters. The ScaleData function was used to scale and center the counts in the 
dataset. Principal component analysis (PCA) was performed on the variable genes, and the first 30 
PCs were used in the RunHarmony function from the Harmony package32 to remove potential batch 
effect among samples processed in different libraries. Uniform Manifold Approximation and Projection 
(UMAP) dimensional reduction was performed using the RunUMAP function. The clusters were 
obtained using the FindNeighbors and FindClusters functions with the resolution set to 0.5. The 
cluster marker genes were found using the FindAllMarkers function. The cell types were annotated by 
overlapping the cluster markers with the canonical cell type signature genes. To calculate the disease 
composition based on cell type, the number of cells for each cell type from each disease condition 
were counted. The counts were then divided by the total number of cells for each disease condition 
and scaled to 100 percent for each cell type. Differential expression analysis between H and N or H 
and L were carried out using the FindMarkers function.  
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Cell type sub-clustering 
Sub-clustering was performed on the abundant cell types. The same functions described above were 
used to obtain the sub-clusters. Sub-clusters that were defined exclusively by mitochondrial gene 
expression, indicating low quality, were removed from further analysis. The subtypes were annotated 
by overlapping the marker genes for the sub-clusters with the canonical subtype signature genes. 
Ingenuity pathway analysis was applied to the differentially expressed genes to determine the 
canonical pathways and the potential upstream regulators. The upstream regulators with an activation 
z score ≥2 or ≤2 were considered significant. The module scores were calculated using the 
AddModuleScore function on the genes activated by the intended cytokine from bulk RNA-seq 
analysis as previously described33.  
 
Ligand receptor interaction analysis 
CellphoneDB (v2.0.0)34 was applied for L-R analysis. In the first analysis, the major cell type 
annotations were used. The cells were separated by their disease classifications (H, N, L), and a 
separate run was performed for each disease classification. Pairs with p value >0.05 were filtered out 
from further analysis. To compare among the three disease conditions, each pair was assigned to the 
condition in which it showed the highest interaction score. The number of interactions for each cell 
type pair was then calculated. In the second analysis, KCs, FBs, T cells, and myeloid cells were 
divided into their respective subtypes. The number of interactions between each cell type pair was 
calculated. The cytokine pairs for CD16+ DC was plotted in circos plots using the R package 
“circlize”. The connectome web was plotted using the R package “igraph”. 
 
Pseudotime trajectory construction 
Pseudotime trajectory for myeloid cell sub-clusters 6 and 8 from Fig. 8a was constructed using the R 
package Monocle (v2.10.1)35. The raw counts for cells were extracted from the Seurat analysis and 
normalized by the estimateSizeFactors and estimateDispersions functions with the default 
parameters. Genes detected in >10 cells were retained for further analysis. Variable genes were 
determined by the differentialGeneTest function with a model against the Seurat sub-cluster 
identities. The orders of the cells were determined by the orderCells function, and the trajectory was 
constructed by the reduceDimension function with default parameters. Differential expression 
analysis was carried out using the differentialGeneTest function with a model against the pseudotime, 
and genes with an adjusted p value smaller than 0.05 were clustered into five patterns and plotted in 
the heatmap. Ingenuity Pathway Analysis was used to determine the upstream regulators for the 
genes in each expression pattern. A module score was calculated for each upstream regulator on 
gene targets from all five patterns. The module scores were calculated using the Seurat function 
AddModuleScore with default parameters. Pearson correlation was then performed between the 
upstream regulator module scores and the pseudotime. 
 
Spatial sequencing library preparation 
Skin samples were frozen in OCT medium and stored at -80°C until sectioning. Optimization of tissue 
permeabilization was performed on 20 μm sections using Visium Spatial Tissue Optimization 
Reagents Kit (10X Genomics, Pleasanton, CA, USA), which established an optimal permeabilization 
time to be 9 minutes. Samples were mounted onto a Gene Expression slide (10X Genomics), fixed in 
ice-cold methanol, stained with hematoxylin and eosin, and scanned under a microscope (Keyence, 
Itasca, IL, USA). Tissue permeabilization was performed to release the poly-A mRNA for capture by 
the poly(dT) primers that are precoated on the slide and include an Illumina TruSeq Read, spatial 
barcode, and unique molecular identifier (UMI). Visium Spatial Gene Expression Reagent Kit (10X 
Genomics) was used for reverse transcription to produce spatially barcoded full-length cDNA and for 
second strand synthesis followed by denaturation to allow a transfer of the cDNA from the slide into a 
tube for amplification and library construction. Visium Spatial Single Cell 3� Gene Expression 
libraries consisting of Illumina paired-end sequences flanked with P5/P7 were constructed after 
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enzymatic fragmentation, size selection, end repair, A-tailing, adaptor ligation, and PCR. Dual Index 
Kit TT Set A (10X Genomics) was used to add unique i7 and i5 sample indexes and generate TruSeq 
Read 1 for sequencing the spatial barcode and UMI and TruSeq Read 2 for sequencing the cDNA 
insert, respectively. 
 
Spatial sequencing data analysis 
After sequencing, the reads were aligned to the human genome (hg38), and the expression matrix 
was extracted using the spaceranger pipeline. Seurat was then used to analyze the expression 
matrix. Specifically, the SCTransform function was used to scale the data and find variable genes 
with default parameters. PCA and UMAP were applied for dimensional reduction. The 
FindTransferAnchors function was used to find a set of anchors between the spatial-seq data and 
scRNA-seq data, which were then transferred from the scRNA-seq to the spatial-seq data using the 
TransferData function. These two functions construct a weights matrix that defines the association 
between each query cell and each anchor. These weights sum to 1 and were used as the percentage 
of the cell type in the spots.  
 
Data availability 
The scRNA-seq data are available in GEO under accession number [to be deposited]. 
 
Imaging mass cytometry of tissue sections 
Formalin-fixed, paraffin-embedded (FFPE) skin biopsy tissue sections from lesional skin of patients 
with SCLE or DLE were analyzed using the Hyperion imaging CyTOF system (Fluidigm) as previously 
described33 with modifications of the antibody panel. Specifically, metal-tagged antibodies including 
pan-keratin (C11, Biolegend), BDCA2 (Polyclonal, R&D Systems), CD56 (123C3, ThermoFisher 
Scientific), HLA-DR (LN3, Biolegend), CD11c (EP1347Y, Abcam), and CD4 (EPR6855, Fluidigm) 
were added in this study. Markers used to annotate each cell type are listed in Supplementary Table 
4. 
 
Imaging mass cytometry data analysis 
Multiplexed imaging mass cytometry data were converted first to .TIFF images using MCD Viewer 
v1.0.560.2 (Fluidigm) and then segmented using CellProfiler v3.1.8 for single-cell analysis. The 
unsupervised clustering algorithm Phenograph was performed on 16 markers (CD56, CD15, CD11c, 
CD16, CD14, CD31, CD27, CD4, HLA-DR, CD68, CD20, CD8, BDCA2, CD138, E-cadherin, and 
Pan-Keratin) using histoCAT v1.75 software. To identify the rare CD16+ DCs, manual gating was 
performed on high CD14+CD11c+CD16+ expression. Neighborhood analysis was performed by 
permutation test36 using histoCAT. 
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MAIN FIGURES 
 

 
 
Figure 1. Single-cell RNA-sequencing (scRNA-seq) captures the cellular diversity within 
lesional and non-lesional skin of patients with cutaneous lupus erythematosus (CLE). a. UMAP 
plot of 46,540 cells colored by cluster. b. UMAP plot of cells colored by cell type. c. UMAP plot of 
cells colored by disease state. H, healthy control skin. N, non-lesional lupus skin. L, lesional lupus 
skin. d. Dot plot of representative marker genes for each cell type. Color scale, average marker gene 
expression. Dot size, percentage of cells expressing marker gene. e. Bar plot of cell type proportions 
across disease states. 

 
  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 20, 2021. ; https://doi.org/10.1101/2021.09.17.460124doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.17.460124
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
 
Figure 2. Interferon (IFN) responses shape the transcriptomic landscape of both lesional and 
non-lesional keratinocytes in patients with CLE. a. UMAP plot of 25,675 keratinocytes (KCs) 
colored by sub-cluster. b. Bar plot of number of KCs in each sub-cluster split by disease state. c. 
UMAP plot of KCs colored by disease state. d. UMAP plot of KCs colored by subtype. e. Feature 
plots of module scores for the indicated KC cytokine modules. f. Violin plots of KC scores for the 
indicated cytokine modules split by disease state. g. Dot plot of the top 15 differentially expressed 
genes (DEGs) downregulated and upregulated in L vs. H basal KCs. Color scale, average marker 
gene expression. Dot size, percentage of cells expressing marker gene. h. Dot plot of the top 30 
upstream regulators enriched among DEGs in L vs. H basal KCs. Color scale, -log10(p value) from 
the enrichment analysis. Dot size, number of DEGs corresponding to each upstream regulator. 
Negative Z score, enriched in L; positive, enriched in H. i. Dot plot of the top 30 canonical pathways 
enriched among DEGs in L vs. H basal KCs. Color scale, -log10(p value) from the enrichment 
analysis. Dot size, ratio of [number of pathway genes among the DEGs]/[total number of pathway 
genes]. 
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Figure 3. Analysis of fibroblast (FB) heterogeneity in CLE patient skin identifies an IFN-
educated FB subtype present in both non-lesional and lesional skin. a. UMAP plot of 8,622 FBs 
colored by sub-cluster. b. Bar plot of number of FBs in each sub-cluster split by disease state. c. 
UMAP plot of FBs colored by disease state. d. UMAP plot of FBs colored by subtype. e. Feature plots 
of scores for the indicated FB cytokine module scores. f. Violin plots of FB module scores for the 
indicated cytokine modules split by disease state. g. Scatter plot showing activation z scores for 
cytokine upstream regulators common to basal KCs (N vs. H) and IFN FBs (N) vs. SFRP2+ FBs (H). 
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Figure 4. Skin of CLE patients exhibits an abnormal T cell infiltrate at both lesional and non-
lesional sites. a. UMAP plot of 3,030 T cells colored by disease state. b. UMAP plot of T cells 
colored by subset. Naïve T, naïve CD4+ T cells; nCD8T, naïve CD8+ T cells; Memory T, memory T 
cells; MAIT, mucosal-associated invariant T cells; Treg, regulatory T cells; Tfh-like, T follicular helper-
like cells; IFN T, interferon T cells; CD8T, CD8+ T cells; gdT, γδ T cells. c. Dot plot of representative 
marker genes for each T cell subset. Color scale, average marker gene expression. Dot size, 
percentage of cells expressing marker gene. d. Bar plot of disease state representation within each T 
cell subset. e. Dot plot of the top 15 differentially expressed genes (DEGs) downregulated and 
upregulated in N vs. H Tregs. 
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Figure 5. Non-lesional skin of CLE patients shows major myeloid cell subset shifts including 
infiltration of plasmacytoid and CD16+ dendritic cells. a. UMAP plot of 973 myeloid cells colored 
by disease state. b. UMAP plot of myeloid cells colored by subset. cDC1, classical type 1 dendritic 
cells (DCs); cDC2A, classical type 2 DC subset A; cDC2B, classical type 2 DC subset B; pDC, 
plasmacytoid DC; DC, dendritic cell; LC, Langerhans cell; LAM, lipid-associated macrophage; PVM, 
perivascular macrophage. c. Dot plot of representative marker genes for each myeloid cell subset. 
Color scale, average marker gene expression. Dot size, percentage of cells expressing marker gene. 
d. Bar plot of disease state representation within each myeloid cell subset. e. Percentage of cells in 
each myeloid cell subset divided by disease state. f. Immunostaining for the indicated marker genes 
for each myeloid cell subset in healthy control and discoid lupus erythematosus (DLE) lesional skin. 
CLEC9A, cDC1; LAMP3, cDC2A; CLEC10A, cDC2B; BDCA2, pDC; CD16, CD16+ DC; CD207, LC; 
APOC1, LAM; and C1QA, PVM. Scale bar, 50 μm. Images are representative of 2 healthy control and 
3 DLE sections. 
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Figure 6. Ligand-receptor (L-R) analysis indicates major shifts in cell-cell communication in 
CLE and identifies CD16+ DCs as the top candidate cellular interactors in non-lesional skin. a. 
Heatmap depicting the number of L-R pairs with interaction scores highest in H samples divided by 
cell type. Row, cell type expressing the ligand; column, cell type expressing the receptor. Color scale, 
number of L-R pairs. b. Heatmap depicting the number of L-R pairs with interaction scores highest in 
N samples. c. Heatmap depicting the number of L-R pairs with interaction scores highest in L 
samples. d. Connectome web analysis of interacting cell types. Vertex (colored cell node) size is 
proportional to the number of interactions to and from that cell type, whereas the thickness of the 
connecting lines is proportional to the number of interactions between two nodes. 
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Figure 7. Spatial sequencing reinforces the effects of IFN-producing interfollicular KCs on CD16+ DCs and FBs in 
the superficial dermis. N=4; data are shown for the most complex sample as defined by the highest number of spots 
after quality control steps. a. Hematoxylin and eosin staining of DLE tissue section corresponding to spatial sequencing 
data below. b. Spatial scatter pie plot showing cell type composition based on detection of scRNA-seq signatures 
corresponding to 7 cell types. Each spot is represented as a pie chart showing relative cell type proportions. Spot 
coordinates correspond to tissue location. c. Spatial heatmap of the IFN FB subset gene signature. Color, scaled 
expression of each subset gene signature. Only spots meeting a FB prediction score threshold of 0.25 are shown. d. 
Spatial heatmap of the LC subset gene signature. All spots are shown. e. Spatial heatmap of the pDC subset gene 
signature. All spots are shown. f. Spatial heatmap of the CD16+ DC subset gene signature. All spots are shown. g. 
Representative image of a DLE skin section showing the localization of CD16+ DCs (as indicated by the 
CD14+CD11c+CD16+ immunophenotype) generated by imaging mass cytometry. Insets, subepidermal enrichment of 
CD16+ DCs. h. Heatmap depicting the number of the indicated cell types (columns) located within 4μm of each of the 
CD16+ DCs (rows) located across 6 DLE (N=16 CD16+ DCs) and 2 subacute CLE (SCLE; N=5CD16+ DCs) sections. 
Color scale, number of neighboring cells. 
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Figure 8. Pseudotime analysis suggests CD16+ DCs arise from non-classical monocytes (ncMos) that migrate 
into skin of lupus patients and undergo IFN education. a. UMAP plot of 6,576 myeloid cells from skin and peripheral 
blood mononuclear cells (PBMCs) colored by origin and disease state. H, healthy skin; N, non-lesional lupus skin; L, 
lesional lupus skin; HP, healthy PBMCs; LP, lupus PBMCs. b. UMAP plot of myeloid cells colored by subset. Red ellipse, 
bridge between circulating and skin-derived myeloid cells consisting of non-classical monocyte (ncMo) and CD16+ DC 
subsets. Mono, monocytes. c. Bar plot of origin and disease state representation within each myeloid cell subset. d. Dot 
plot of representative marker genes for each myeloid cell subset. Color scale, average marker gene expression. Dot size, 
percentage of cells expressing marker gene. e. Pseudotime trajectory of ncMos and CD16+ DCs colored by origin and 
disease state (top), by subset (mid), and by pseudotime (bottom). X-axis, component 1; Y-axis, component 2. f. 
Pseudotime heatmap depicting expression of significant marker genes corresponding to 5 expression patterns that span 
the transition from ncMo to CD16+ DC. Color scale, scaled marker gene expression across pseudotime. g. Pseudotime 
heatmap depicting expression of the top 80 marker genes across the transition from ncMo to CD16+ DC. Color scale, 
scaled marker gene expression across pseudotime. h. Scatter plots depicting scores for the indicated upstream regulators 
for each cell across pseudotime. X-axis, pseudotime; Y-axis, module score. 
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SUPPLEMENTARY FIGURES 
 

 
 
Supplementary Figure 1. Cytokine module scoring reveals that lupus keratinocyte (KC) 
transcriptomes are heavily influenced by interferon (IFN). a. Dot plot of marker genes showing 
the highest fold change for each KC subtype. Color scale, average marker gene expression. Dot size, 
percentage of cells expressing marker gene. b. Feature plots of KC scores for the indicated additional 
cytokine modules. c. Violin plots of KC scores for the indicated additional cytokine modules split by 
sub-cluster and disease state. 
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Supplementary Figure 2. Cytokine module scoring reveals that lupus fibroblast (FB) 
transcriptomes are heavily influenced by IFN. a. Feature and violin plots of the indicated FB 
subtype markers. b. Detection of the indicated FB subtype markers by immunohistochemistry (IHC) in 
healthy control (CTL) and lesional discoid lupus erythematosus (DLE) skin sections. Scale bar, 50 
μm. Images are representative of sections from 2 control CTL and 3 DLE biopsies examined. c. Dot 
plot of marker genes showing the highest fold change for each FB subtype. Color scale, average 
marker gene expression. Dot size, percentage of cells expressing marker gene. d. Feature plots of 
KC scores for the indicated additional cytokine modules. e. Violin plots of KC scores for the indicated 
additional cytokine modules split by sub-cluster and disease state. 
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Supplementary Figure 3. Spatial sequencing enables identification of individual cell types and cell subsets within 
lesional DLE sections. N=4; data are shown for the most complex sample as defined by the highest number of spots 
after quality control steps. Full panels are shown, including panels presented in Fig. 7. a. Spatial heatmap of marker 
genes identifying immune cells (PTPRC, encoding CD45), KCs (KRT1), FBs (COL1A1), EC (CDH5), smooth muscle cells 
(ACTA2), and melanocytes (DCT). Color, scaled expression of each gene. Spot coordinates correspond to tissue location. 
b. Spatial heatmaps showing detection of scRNA-seq cell type-specific gene signatures for seven cell types. Color, scaled 
expression of each cell type signature. c. Spatial heatmap of KC subset gene signatures. Only spots meeting a KC 
prediction score threshold of 0.25 are shown. Color, scaled expression of each subset signature. d. Spatial heatmap of FB 
subset gene signatures. Only spots meeting a FB prediction score threshold of 0.25 are shown. e. Spatial heatmap of T 
cell subset gene signatures. All spots are shown. f. Spatial heatmap of myeloid cell subset gene signatures. All spots are 
shown.   
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Supplementary Figure 4. Neighborhood analysis of imaging mass cytometry data reveals 
CD16+ dendritic cells (DCs) tend to neighbor pDCs and monocytes. Only values for cell pairs 
with p < 0.05 by permutation test are shown. Values for CD16+ DCs (as indicated by the 
CD14+CD11c+CD16+ immunophenotype) are boxed. Row, cell type of interest; column, cell type in 
neighborhood. Color scale, percent of images showing interaction (red) or avoidance (blue). a. 
Neighborhood analysis of the 6 DLE sections analyzed in Fig. 7h. b. Neighborhood analysis of the 2 
SCLE sections analyzed in Fig. 7h.  
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Supplementary Figure 5. Integrated scRNA-seq of peripheral blood mononuclear cells and 
skin cells of CLE patients. a. UMAP plot of 100,822 cells colored by sub-cluster. b. UMAP plot of 
cells colored by cell type. c. UMAP plot of cells colored by origin and disease state. HP, healthy 
peripheral blood mononuclear cells (PBMCs); LP, lupus PBMCs. d. Dot plot of representative marker 
genes for each cell type. Color scale, average marker gene expression. Dot size, percentage of cells 
expressing marker gene. e. Bar plot of cell type abundance across disease states. 
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Supplementary Figure 6. Dot plots showing the top canonical pathways enriched among the 
gene markers of the five expression patterns across pseudotime. Patterns correspond to the 
expression heatmap shown in Fig. 8f. The top ten pathways (or the total number of significant 
pathways if fewer than ten) are shown for each pattern. Color scale, log(p value) from the enrichment 
analysis. Dot size, ratio calculated by dividing the number of associated genes found in the gene 
marker list by the total number of genes in each pathway. 
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Supplementary Figure 7. Circos plots showing ligand-receptor (L-R) pairs involving CD16+ 
DCs, divided by cell subset. Arrows indicate direction from ligand to receptor. a. L-R pairs in which 
CD16+ DCs express the receptor. b. L-R pairs in which CD16+ DCs express the ligand. 
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SUPPLEMENTARY TABLES 
 

 
 
Supplementary Table 1. Cutaneous lupus erythematosus (CLE) patient characteristics. DLE, 
discoid lupus erythematosus. SCLE, subacute cutaneous lupus erythematosus. ITP, immune 
thrombocytopenia. APS, antiphospholipid syndrome. 
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[See uploaded file] 
 
Supplementary Table 2. IFN fibroblast (FB) gene markers. p_val, unadjusted p value; avg_logFC, 
average log fold change in expression of the indicated gene in IFN FB vs. all other FBs; pct.1, percent 
of IFN FBs expressing the indicated gene; pct.2, percent of all other FBs expressing the indicated 
gene; p_val_adj, Benjamini-Hochberg-adjusted p value. Only gene markers with adjusted p values < 
.05 are included.  
  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 20, 2021. ; https://doi.org/10.1101/2021.09.17.460124doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.17.460124
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
 
Supplementary Table 3. Antibodies used for immunohistochemistry. 
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Supplementary Table 4. Cell type annotation for imaging mass cytometry. 
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