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ABSTRACT

Due to massive energetic investments in woody support structures, trees are subject to
unique physiological, mechanical, and ecological pressures not experienced by
herbaceous plants. When considering trait relationships across the entire plant kingdom,
plant trait frameworks typically must omit traits unique to large woody species, thereby
limiting our understanding of how these distinct ecological pressures shape trait
relationships in trees. Here, by considering 18 functional traits—reflecting leaf
economics, wood structure, tree size, reproduction, and below-ground allocation—we
quantify the major axes of variation governing trait expression of trees worldwide. We
show that trait variation within and across angiosperms and gymnosperms is captured
by two independent processes: one reflecting tree size and competition for light, the
other reflecting leaf photosynthetic capacity and nutrient economies. By exploring
multidimensional relationships across clusters of traits, we further identify a
representative set of seven traits which captures the majority of variation in form and
function in trees: maximum tree height, stem conduit diameter, specific leaf area, seed
mass, bark thickness, root depth, and wood density. Collectively, this work informs
future trait-based research into the functional biogeography of trees, and contributes to
our fundamental understanding of the ecological and evolutionary controls on forest

biodiversity and productivity worldwide.
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INTRODUCTION

Physiological and morphological traits determine the water, nutrient, and light economies of trees,
directly influencing how individuals interact with each other and with the surrounding
environment! >, Traits that elevate performance in one habitat typically reduce performance in
others, leading to selection for specific traits across environments®. Genetic, morphological, and
biophysical constraints subsequently limit the range of traits that a species can exhibit, leading to
so-called trait ‘trade-offs’ that shape species’ geographic distributions’, coexistence
mechanisms®®, and the provision of ecosystem services'®*t. Despite a wealth of research into trait
trade-offs across the plant kingdom, there remains relatively little understanding of the unique
trade-offs faced by large woody species. Identifying the dominant trait trade-offs in trees is
fundamental to our understanding of the functional biogeography of forests, and critical for
predicting how forest diversity, composition, and function will respond to changing environmental

conditions!? 12,

Prior studies have identified a key set of traits that summarize the spectrum of form and function
across herbaceous and woody plants**6-28, But due to their size, longevity, ontogeny, and unique
structural properties, trees have distinct characteristics and face novel abiotic stressors relative to
herbaceous plants>%-23, Trait analyses which include both woody and herbaceous plants are forced
to omit critical aspects of tree architecture (e.g., bark properties, crown size, stem conduit
diameter), which overlooks the massive energetic investments in structures that are unique to large
woody species???*. Understanding how tree-specific traits align with existing plant trait
frameworks is key for identifying the dominant biogeographic and ecological processes governing

forest structure across broad spatial scales®.

Here, we uses a global database? of more than 350,000 trait measurements to explore relationships
among 18 functional traits, reflecting leaf economics, wood structure and function, tree size and
architecture, reproduction, and below-ground allocation (Fig. 1b). We asked: (1) Which dominant
trade-offs and abiotic variables best capture overall variation in tree trait expression? and (2) What
are the dominant multi-trait constellations that capture the breadth of form and function at the
global scale? We hypothesized that traits related to canopy architecture, wood density, and tree
size would emerge as key variables governing trait patterns in trees, driven by the large energetic

requirements of large woody structures®®2’. Collectively, this work identifies emergent constraints
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on tree functional biogeography, and sheds light on the core ecological processes shaping

functional trait expression in forests worldwide.

RESULTS & DISCUSSION

TRADE-OFFS IN TREE TRAIT EXPRESSION. Our analysis included 386,526 unique trait
measurements across 18 traits, encompassing 6905 tree species from 1629 genera and 203 families
(Fig. 1). Traits were measured at 8490 distinct locations, including every continent except
Antarctica. To explore trade-offs in functional traits at the individual level, we used random forest
machine learning models to estimate trait expression for each individual as a function of its
environment and phylogenetic history. Environmental predictors included a range of climate?®3!,
s0il®2, topographic®, and geological®* features. Phylogenetic history was incorporated via

phylogenetic eigenvectors®>® (see Methods).

Across all 18 traits, our models explained 54% of trait variation (buffered leave-one-out cross-
validation, see Methods), with a relative predictive error of + 28% (Fig. S1-S2). The inclusion of
environmental variables led to substantial increases in explanatory power and accuracy, reducing
the expected predictive error of the models by 10% and improving the explanatory power by 35%
across all traits. Overall, environmental variables and phylogenetic information had approximately
equal explanatory power (relative importance of 0.51 vs 0.49 for phylogeny vs. environment),
albeit with substantial variation across traits (Fig. S3). Traits with high intraspecific variation and
ontogenetic plasticity exhibited particularly strong increases in accuracy with the inclusion of
environmental variables (e.g., 19% and 16% improvement for crown height and root depth,
respectively). Only seed dry mass had no residual environmental signal after accounting for
phylogeny (Fig. S2-S3).

Using the resulting trait models, we quantified trait trade-offs at the individual levels, accounting
for both phylogenetic trait conservatism and environmental-mediated trait variation. When
considering all traits simultaneously, the first two axes of the resulting principal-component
analysis capture 40% of variation in overall trait expression (Figs. 2a, S4). The first trait axis
correlates most strongly with leaf thickness (p = -0.77), specific leaf area (p = 0.74), and leaf
nitrogen (p = 0.70). By capturing key aspects of the leaf economic spectrum?®, these traits reflect
various physiological controls on leaf-level resource processing, tissue turnover and
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82  photosynthetic rate®3"3, Thick leaves with low SLA can help minimize desiccation, herbivory,
83  frost damage, and nutrient limitation, but at the cost of reduced photosynthetic potential due to
84  primary investment in structural resistance®. Accordingly, leaf nitrogen—a crucial component of
85  Rubisco for photosynthesis*®*—trades off strongly with leaf thickness (p = -0.47). By reflecting
86  an organismal-level trade-off between photosynthetic potential in optimal conditions and abiotic
87  tolerance in suboptimal conditions, this first axis thus captures the core distinction between
88  “acquisitive” and “conservative” functional traits which underpin fast-slow life-history strategies
89  across the plant kingdom®1718, At one end of this spectrum are species with acquisitive traits which
90 confer higher growth, faster nutrient cycling, and greater photosynthetic potential. At the other end
91 are conservative traits (thick leaves) which help trees withstand a variety of stressful abiotic
92  conditions, but which come at the cost of reduced photosynthetic capacity and growth in optimal

93  environments.

94  The second trait axis correlates most strongly with maximum tree height (p = 0.72), crown height,

95 (p=0.70), and crown diameter (p = 0.82), highlighting the overarching importance of competition

96 for light and canopy position in forest © (Figs. 2a, S4). Large trees and large crowns are critical for

97  light access and for maximizing light interception down through the canopy*?. Nevertheless, tall

98 trees with deep canopies also experience greater susceptibility to disturbance and mechanical

99  damage, primarily due to wind and weight*3#4, Because of the massive carbon and nutrient costs
100  required to create large woody structures?®?’, larger trees are less viable in nutrient-limited or
101  colder climates®, and in exposed areas with high winds or extreme weather events*. This second
102 axis thus reflects a fundamental biotic/abiotic trade-off related to overall tree size, which is largely
103  orthogonal to leaf-level nutrient-use and photosynthetic capacity.

104  Despite substantial differences in wood and leaf structures between angiosperms and
105 gymnosperms (e.g., vessels vs. tracheids), the two main trade-offs hold within, as well as across,
106  clades (Fig. 2b-c, S5-S6). Gymnosperms, however, exhibit less orthogonality between these axes,
107  in part due to less variation in leaf thickness and a stronger subsequent correlation between leaf
108  thickness and tree size (p = 0.39 vs. 0.04 for gymnosperms vs angiosperms). Nevertheless, despite
109  differences in physiology and morphology, gymnosperms and angiosperms are subject to the same

110  physical, mechanical, and chemical processes that determine the ability to withstand various biotic
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111  and abiotic pressures”#"*8, Our results show that these processes translate into similar fundamental

112  constraints on trait expression across clades.

113 Collectively, the two primary trait axes thus reflect two different aspects of the dominance-
114  tolerance trade-off: (1) the ability to maximize leaf photosynthetic activity, at the cost of increase
115  risk of leaf desiccation, and (2) the ability to compete for space and maximize light interception
116  viatree size, at the cost of increased susceptibility to mechanical damage. Notably, these two trade-
117  offs closely mirror those seen when considering herbaceous species alongside woody species?,
118 though we observe stronger orthogonality between leaf function and plant size is found when
119  considering the whole plant kingdom. Thus, rather than fundamentally reshape the dominant trade-
120  offs, the inclusion of tree-specific traits shows that these two ecological constraints systematically
121  affect all aspects of tree form and function, illustrating the universality of these two ecological

122 trade-offs across the plant kingdom.

123 ENVIRONMENTAL PREDICTORS OF TRAIT TRADE-OFFS. To examine how environmental variation
124  shapes trait expression across the globe, we quantified the relationships between environmental

125 conditions and the dominant trait trade-offs.

126 In line with previous analysis*, temperature variables were the strongest univariate drivers of trait
127  trade-offs (Figs. 3, S7). The first PC axis (leaf thickness) correlates most strongly with annual
128  mean temperature (p = 0.26, Fig. 3a), reflecting that leaves face increased frost risk and reduced
129  photosynthetic potential in colder conditions. Thus, selection should favor thick leaves with low
130 SLA over thin leaves with high SLA and high nutrient-use®’. However, the univariate
131  environmental signal is relatively weak (Fig. 3c), highlighting that the first PC axis captures more
132 complex relationships among leaf-level economies and environmental conditions (e.g. between

133 angiosperms vs. gymnosperms).

134  The second PC axis (tree size) correlates most strongly with temperature annual range (Fig. 3b).
135  Crown diameter, leaf area, and tree height, in particular, all exhibit strong negative correlations
136  with temperature annual range (p = -0.65, -0.56 and -0.54, respectively, Fig. 3c). At the global
137  scale, high temperature variation is inversely correlated with annual temperature (p =-0.79), such
138 that larger structural components are favored in areas with consistently warm temperatures—

139  primarily tropical regions near the equator, and coastal regions throughout the Americas, Australia,
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140 and southern Africa. Trees in such environments are more likely to experience strong biotic
141 interactions, which should increase evolutionary and ecological selection pressures over time®,

142  favoring species with high competitive ability and efficient light acquisition strategies.

143  Despite the primary importance of temperature governing tree trait trade-offs, precipitation and
144  temperature regimes are highly correlated, and the main climate stressors to trees arise via
145 interactions between temperature and water availability (e.g., Xylem cavitation and embolism, fire
146  regimes, and leaf desiccation). Indeed, when exploring the bivariate drivers of trait expression,
147  precipitation variables emerge as the strongest secondary drivers of each trait trade-off. The first
148  PC axis exhibits the highest values at high temperatures in combination with high precipitation
149  (Fig. 3c), reflecting broad-scale differences in habitat requirements across angiosperms and
150  gymnosperms®253, For the second PC axis, higher values are observed among trees in regions with
151  low temperature variation in tandem with sufficient ground water access (Fig. 3d), demonstrating

152 that soil hydrology and precipitation place key limitations on tree size at the global scale®.

153  TRAIT CONSTELLATIONS AT THE GLOBAL SCALE. Although exploration of trait PC axes sheds
154  light on the dominant physiological trade-offs structuring tree traits, these first two trait axes
155  account for less than half of overall trait variation (Fig. 2a). To better explore the multidimensional
156  nature of these trade-offs, we subsequently identified groups of traits that form tightly coupled

157  clusters and which reflect distinct aspects of tree function.

158  Our results show that these 18 traits can be grouped into seven trait constellations, each of which
159 reflects a unique aspect of tree growth, physiology, or ecology (Fig. 4). The largest trait
160  constellation (Fig. 4, pink cluster) loads most heavily on the first trait trade-off (Fig. 4b), capturing
161  various aspects of the leaf economic spectrum. Relationships among specific leaf area, leaf Vemax
162  (the maximum rate of carboxylation), leaf thickness, and leaf nutrient concentrations per mass (N,
163 P, K) are well established*541%° The fact that nearly all leaf traits fall in this cluster (with the
164  exception of leaf area and density) supports the inference that leaf economics represent a unique
165  aspect of tree function that is largely independent of plant size *.

166  The second-largest trait constellation (Fig. 4, purple cluster) includes tree-size traits which closely
167  align with the second trade-off, along with the addition of leaf area. As with tree height and canopy

168  size, leaf area directly affects a tree’s ability to intercept light down through its canopy*?. Leaf area
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169  thus serves as an intermediary between the two primary trait axes: it is intrinsically correlated with
170  SLA but exhibits relatively weak correlations with per-mass leaf nutrients. Although the largest
171  discrepancies in leaf area are observed between needle-leaf gymnosperms and broadleaf
172 angiosperms, these trends hold within clades as well, with leaf area among gymnosperms likewise
173  correlating positively with both tree height (p = 0.20) and crown diameter (p = 0.48). This cluster
174  thus highlights organismal-level coordination of light interception that integrates tree size,

175  architecture, and leaf shape.

176  Intermediate to these two largest clusters are three constellations each containing two traits: (1)
177  stem conduit diameter and stomatal conductance (Fig. 4, dark green), capturing organismal-level
178  integration of water transport at the cost of increased desiccation and cavitation risks; (2) stem
179  diameter and bark thickness (Fig. 4, light green), primarily demonstrating intrinsic size-based
180 relationships between stem parts®®®’, which are secondarily related to aridity and fire frequency in
181  some environments®’; and (3) wood density and leaf density (Fig. 4, orange), indicative of
182  slow/fast life-history strategies, where denser plant parts reduce growth rate and water transport>*’
183  but protect against pest damage, desiccation, and mechanical breakage>?’=°. Collectively, these
184  two-trait clusters each demonstrate unique and complementary trade-offs that insulate trees against
185  various disturbances and extreme weather events, but at the cost of reduced growth, competitive
186  ability, and productivity under optimal conditions (see Supplemental Discussion).

187  Lastly, two traits each comprise their own unique cluster: root depth and seed dry mass (Fig. 3,
188  yellow and blue). Root growth is subject to a range of belowground processes (e.g., root herbivory,
189  depth to bedrock) that can promote a disconnect between aboveground climate conditions and
190  belowground traits®*°®°°, Root depth accordingly has a relatively weak phylogenetic signal (A =
191 0.44) but a strong environmental signal (Figs. 4, S1-S2), reflecting distinct belowground
192  constraints on trait expression. In contrast, seed dry mass exhibits the strongest phylogenetic signal
193  (A=0.98, Fig. 4c) and weakest environmental signal of any trait (Figs. S1-S2). Reproductive traits
194  are subject to unique evolutionary pressures®, indicative of different seed dispersal vectors (wind,
195  water, animals) and various ecological stressors that uniquely affect seed viability and
196  germination®®. The emergence of root depth and seed mass as solo functional clusters thus supports
197  previous inference that belowground traits and reproductive traits reflect distinct aspects of tree

198  form and function not captured by leaf or wood trait spectrums.
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199  Collectively, these trait constellations shed light on organismal-level trait coordination and broad-
200  scale differences in trait expression across species and clades. A key challenge in identifying global
201  patterns in trait trade-offs is the relatively sparse trait coverage at the individual level, with only a
202  handful of traits typically measured on any single tree. This limitation is partly due to the enormous
203  range of putative traits that can be measured on trees®?®. Here, by using phylogenetic and
204  environmental information to estimate trait expression at the individual level, our approach helps
205  to overcome some of these limitations, enabling us to explore organismal level trade-offs across
206  thousands of species. The benefit of this approach we can include vastly broader phylogenetic,
207  geographic, and trait coverage than would otherwise be possible. Future work, however, should
208  focus on improving the precision of these global trait frameworks by measuring complete sets of

209 traits on individual trees.

210  To help address these challenges, the seven described trait constellations (Fig. 4) can be used as a
211  starting point for research into organismal-level trait expression in trees. Although the exact subset
212  of traits used in a given study should depend on the intended scope and application, we advise
213  selecting traits which exhibit strong phylogenetic signal and/or low environmental-mediated
214  variation, and ideally have low cross-correlations with other traits in other clusters. These criteria
215  help to ensure that the selected traits can be robustly measured and that they reflect well-defined
216  ecological processes. In line with this, we suggest a baseline set of seven traits selected from these
217  trait constellations: bark thickness, maximum tree height, root depth, specific leaf area, stem
218  conduit diameter, wood density, and seed dry mass. These seven traits represent complementary
219  ecological and evolutionary processes, capturing differences in competitive ability, growth rate,
220  abiotic stress tolerance, reproduction, wood and leaf properties, and above- vs. belowground
221  allocation. Moreover, these traits are relatively well represented in many trait databases and have
222 well-defined definitions and measurement protocols?>612, thus forming a baseline set of reference

223  traits for expanding our understanding of tree functional trait expression.

224
225 CONCLUSIONS

226  Collectively, our analysis reveals key trade-offs and trait constellations governing tree form and

227  function worldwide. We show that tree functional traits predominantly reflect two major functional
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228  trade-offs: one representing leaf-level nutrient-use and photosynthesis, and the other representing
229  competition for light via tree and crown size. Mirroring patterns seen across the entire plant
230  kingdom, these trade-offs capture an ecological gradient from conservative growth strategies under
231  suboptimal environments (cold, dry, frequent disturbances), to acquisitive strategies associated
232 with light competition in high-resource environments (consistently high temperature and water
233 availability). By incorporating traits unique to large woody species, we further identify a unique
234 set of functional constellations and representative traits that reflect the breadth of tree form and
235  function. In doing so, these results elucidate key constraints on functional trait relationships in
236  trees, contributing to our fundamental understanding of the controls on the function, distribution,
237  and composition of forest communities. By identifying a core set of traits that reflect the broad
238  variety of ecological life-history strategies in trees, this work can inform future trait-based research
239 into the functional biogeography of the global forest system.

240
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267

268
269
270
271
272
273

274

(a)

(b)
Trait # Observations # Species # Genera # Locations | Mean Median Std. Dev. Range
Bark thickness (mm) 6209 976 503 172 4.8 3.0 51 (0.05 - 53)
Crown height, maximum (i) 5073 266 159 113 5.6 4.7 4.0 (1.0-29.9)
Crown diameter, maximum () 4136 160 105 98 3.3 2.4 27 (1.0-24.8)
Leaf area (cin?) 13362 570 308 440 81.5 426 122.9 (0.025 - 999.6)
Leaf density (g em™) 21156 1471 583 256 0.37 0.37 0.12 (0.0025 - 1.3)
Leaf potassium (K) per mass (mg g~ *) 5796 1291 567 269 7.6 6.1 4.7 (0.14 - 35.1)
Leaf nitrogen (N) per mass (mg g~ ') 53837 4588 1275 3505 19.4 18.6 75 (2.8-51.9)
Leaf phosphorous (P) per mass (mg ¢~') 21812 2819 954 2274 1.2 1.0 0.78 (0.032 - 6)
Leaf thickness (mm) 54228 1821 675 399 0.25 0.23 0.1 (0.005-1.9)
Root depth, maximum (i) 1610 363 187 523 25 15 3.1 (0.25-22.2)
Seed dry mass (myg) 564 449 272 73 488.2 275 2178.6 (0.094 - 35714)
Specific leaf area (mm? mg~") 64583 4772 1310 2148 16.4 135 10.8 (0.56 - 55)
Stem conduit diameter (pm) 491 248 153 106 26.5 226 17.3 (4.6-110)
Stem diameter, maximum (i) 53591 2044 639 569 0.22 017 0.18 (0.1-86.0)
Stomatal conductance (mmnol m =% s 28465 911 448 248 1522 1217 146.0 (1.2-1499.7)
Tree height, maximum () 36028 1831 639 575 18.8 18.0 8.2 (5.0-112.9)
Vermae PEr mass, at 25°C (umol g=' s71) 1872 548 313 126 0.47 0.41 0.28 (0.032-1.7)
Wood density (g cm ) 13713 1655 638 4631 0.58 0.58 0.18 (0.061 - 1.2)

Figure 1. Overview of the 18 functional traits. (a) The unique geographic locations (n = 8490)
where tree functional traits were recorded. The size of the circles denotes the relative number of
traits measured at each location. (b) The number of unique measurements, species, locations, and
genera for each of the 18 traits considered here, along with summary statistics. The analysis
included 386,526 trait measurements, encompassing 6905 unique tree species and 1691 unique

genera (see Table S1 for corresponding metadata).
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276  Figure 2. Dominant trait axes and trade-offs. Shown are the first two principal component axes
277  capturing trait trade-offs across the 18 functional traits. (a) All tree species (n = 29,450
278  observations), (b) angiosperms only (n =5457), and (c) gymnosperms only (n = 23,993). In (a) the
279  three variables that load most strongly on each axis are show in dark black lines, with the remaining
280  variables shown in light gray. These same six variables are shown in (b) and (c) illustrating how
281  the same trade-offs extend to angiosperms and gymnosperms. See Supplemental Figs. S4-S6 for
282  the full trait PCAs.
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Figure 3. The relationship between environmental variables and trait trade-offs. (a-b) The
strongest univariate predictor of each trait trade-off. (c-d) The 2-dimensional surfaces showing the
strongest bivariate predictors of each trait trade-off. The surfaces are constrained to the convex
hull of the observed variable combinations in the dataset. Note that the x-axes in c-d align with
those above in a-b. (e) Correlations between the first two trait trade-offs and environmental
variables. The size of the circle denotes the relative strength of the correlation, with solid circles
denoting positive correlations and open circles denoting negative correlations. For clarity, only

trait correlations with |p| > 0.2 are shown. See Fig. S7 for the full set of correlations.
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294  Figure 4. Trait correlations and functional constellations. (a) Trait clusters with high average
295 intra-group correlation. The upper triangle shows species-weighted correlations incorporating
296  intraspecific variation, and the lower triangle gives the corresponding correlations among species-
297 level phylogenetic independent contrasts. The size of the circle denotes the relative strength of the
298  correlation, with solid circles denoting positive correlations and open circles denoting negative
299  correlations. For clarity, only trait correlations with |p| > 0.2 are shown. (b) Correlations between
300 each trait and each of the first two principal component axes, illustrating which functional trait
301 clusters align most strongly with the dominant axes of trait variation. (c) The species-level

302  phylogenetic signal of each trait, calculated using only the empirical trait measurements.
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Materials & Methods

Trait information

Trait data were obtained from the TRY plant trait database® in April 2020. Data were cleaned by
converting all traits to standardized units and by matching species names to The Plant List (TPL)
database v1.1 (http://www.theplantlist.org, accessed June 2020) using the Taxonstand package in
R v3.6.0%. Synonyms were replaced with accepted names, when available. The phylogenetic tree
was taken from the seed plant phylogeny of Smith & Brown (2018), and species names were
likewise cleaned and harmonized using the TPL database. To limit our analysis to tree functional
traits only, we used the BGCI GlobalTreeSearch database v1.3*°, containing a comprehensive list
of ca. 60,000 tree species compiled and harmonized from across 500 sources. The BGCI database
uses TPL for much of its taxonomic identification, but to ensure consistency among all sources we
used the same name harmonization pipeline as with TRY and the seed plant phylogeny. We
constrained the set of traits and the phylogenetic tree to those species that could be matched to the
BGCI database (n = 54,153 species matched), and we likewise trimmed the phylogenetic tree to
the set of species matched in TRY. We further excluded any trait observations that did not have

corresponding geographic coordinates.

Traits were selected based on data availability, phylogenetic and spatial coverage, and importance
for tree growth, survival, and competition. We prioritized traits that are commonly used in other
leaf and wood economic spectrums®, thus focusing on leaf traits measured per unit mass rather
than unit area, where possible. Secondly, we prioritized traits which are important indicators of
tree growth and structure, such as stem conduit diameter and crown dimensions. Thirdly, we
selected traits which capture important ecological processes and life-history differences among
trees (e.g., root depth). This process resulted in 30 putative traits for analysis (Table S1,
Supplemental Data References). Of these, we omitted traits with low sample sizes (either overall,
or at the species, genus, or geographic level), those that are redundant or intrinsically correlated
with other traits, and those that are known to be highly sensitive to trait assay conditions but were
not clearly standardized. This pruning resulted in a set of 18 focal traits for use in the final analysis,
with the 12 omitted traits used only to improve predicted power via trait covariation (see model
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process, below). Trait values were converted to common units where necessary (e.g., mm to cm).
For each trait, we selected sub-categories (as given by TRY) that denoted comparable

measurements and reflected uniform assay conditions (e.g., Vcmax measured at 25°C) (Table S1).
Model details

In order to consider trait trade-offs at the organismal level which accounted for intraspecific
variation, we used machine learning models to estimate all 18 trait values for each individual tree
in each location (Fig. 1a). We modeled trait expression as a function of both environmental and
phylogenetic information so as to estimate traits with weak phylogenetic signals but strong abiotic
filtering, and to incorporate intraspecific variation and ontogenetic plasticity into our analysis.
Specifically, we used random forest (RF) models to estimate trait values for each observation using
the ranger package in R’. Initial exploration showed negligible effects of model tuning, such that
the default hyper-parameters were used to prevent overfitting. In order to minimize the influence
of data-recording errors or unit mismatches in the dataset, trait values which occurred outside of
the bulk of the trait distribution were investigated as outliers. Those which could not be externally
verified and which were biologically unreasonable were removed (e.g., stem diameters >15 m).
When modeling tree height, canopy size, and root depth, we only considered observations with
height >5 m, diameter >10 cm, root depth >25 cm, and canopy dimensions >1 m high and wide?,
thereby ensuring that our analysis focused on adult trees rather than saplings or woody shrubs. We
subsequently implemented quantile random forest®° to estimate the upper 90" percentile trait
value for maximum stem diameter, canopy dimensions, and root depth. In all other cases the

imputed traits represent the mean predicted value across the random forest.

Environmental covariates used in the models included 50 variables encompassing range of
climate!*3 s0il**, topographic'®, and geological'® variables (Table S2). We omitted variables that
directly measure plant community composition or biotic factors (e.g., NDVI or % forest cover) so
as to ensure the resulting geographic layers solely encompassed abiotic factors. Layers were
sampled from a previously prepared global composite (see van den Hoogen et al. 2019 for details).
Briefly, all covariate map layers were resampled and reprojected to a unified pixel grid in
EPSG:4326 (WGS84) at 30 arcsec resolution (approximately 1 km? at the equator). Layers with a
higher original pixel resolution were downsampled using a mean aggregation method; layers with

a lower original resolution were resampled using simple upsampling (that is, without interpolation)
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to align with the higher resolution grid. The set of environmental covariates for each trait
measurement was obtained by sampling this composite image at each unique latitude and longitude

value given in the TRY database.

Phylogenetic information was incorporated in the form of phylogenetic eigenvectors'®2, We first
calculated the pairwise cophenetic phylogenetic distance matrix across all 54,153 tree species that
could be matched to both the BGCI tree list and the plant phylogeny. This matrix was then double-
centered by rows and columns?'??, and the first 50 orthogonal eigenvectors were extracted from
this matrix for use as continuous predictors in the random forest models. The choice of 50
eigenvectors (out of 54,153 possible) was in line with previous analyses to prevent over-fitting and
to ensure the model was identifiable?2. This also resulted in the same number of environmental

and phylogenetic predictor variables.

To leverage trait covariation among the disparate observations, we used a two-step algorithm to
improve predictive power and imputation accuracy?>?3. First, following standard approaches®2+
26 trait values were log-transformed, allowing for comparisons across trait distributions which are
highly right-skewed and vary by several orders of magnitude® (Fig. 1). Using the general approach
of Stekhoven & Biihlmann (2012), we next implemented a random forest on all traits for all
observations. We then used these initial models to predict the full set of trait values for each
observation (including the 12 ancillary traits not included in the focal analysis, Table S1). We then
refit the random forest models for each trait, using the full set of predicted traits (apart from the
focal traits) as covariates. For the final analysis, observed traits were used in place of imputed
traits, when available, with the exception of maximum tree height, stem diameter, root depth, and
crown size, where the upper 90" percentile trait values were used. Variable importance in the
random forest models was calculated using the “permutation” metric, reflecting the variance in

responses across predictors’.
Model performance

Model performance was quantified using buffered leave-one-out cross-validation?’. To avoid
overfitting, we followed the approach recommended in Roberts et al. (2017) and fit a simple linear
model to the data, where trait expression was modeled as a linear function of phylogenetic and

environmental covariates. We then assessed spatial autocorrelation of the residuals using Moran’s
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89 | plots using the ncf package in R, which displays the value of spatial autocorrelation (ranging
90 from -1 to 1) as a function of distance?®. We likewise assessed residual phylogenetic
91  autocorrelation across taxonomic ranks (genus, family, order, group), using the the ape package in
92  R. In general, spatial autocorrelation was low (I<0.10) (Fig. S8), with the exception of leaf
93  phosphorous, which exhibited slight autocorrelation up to ~250 km. Residual phylogenetic
94  correlation was likewise low, and generally only observable at the genus level, apart from crown
95  size and conduit diameter, which exhibited residual autocorrelation up to the family level (Fig.
96 S9). Thus, to be conservative, for all traits except crown size and conduit diameter, we used a
97  genus-level spatial buffer of 250 km to exclude test/training data; and for crown size and conduit
98  diameter we used a family-level buffer at 250 km. To implement the cross-validation accuracy
99  assessment, we first randomly selected a focal species, with the out-of-fit test data containing all
100  observations for that species for the focal trait. To construct the corresponding training data, we
101 excluded all observation of the same genus (or family) that fell within a 250km spatial buffer of
102  any of the training points for that species. The random forest models were then fit using the
103 buffered training data, and used to predict the average trait value for the omitted species?’. This
104  procedure was repeated for each unique species for each trait, up to 1000 times, with a randomly

105  sampled focal species selected at each iteration.

106  Predictive accuracy was assessed in two ways. First, following the recommendation of Li (2017),
107  we calculated the cross-validated coefficient of determination relative to the 1:1 line (termed
108  "VEcv", Li 2017), which provides a normalized version of the mean-squared-error (MSE) that

109  allows for comparisons across data types and units. Specifically, this value is calculated as: R?vec

110 =1-YP % — yfP)2 /¥ (yP% — 7)? = 1 — SSE/TSS = 1 — MSE / 62, where the summation is
111  taken across the species, and the predicted values are estimated out-of-fit using the buffered cross-
112  validation procedure outlined above. Importantly, this metric is not the same as a regression-based
113 goodness-of-fit, as it is calculated by direct comparison of observed vs. predicted values?. Second,
114  we also report the median absolute percentage error (MdAPE), which gives a more interpretable

115  estimate of the expected error a given prediction, calculated as MdAPE = median( |yobs —

l
116 yipred| / ¥2P$) x 100. Although the models were fit using log-transformed data, accuracy was

117  assessed on the non-logged values in their original units.

118
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119  Principal component analysis

120  Species-weighted principal component analysis (PCA) was conducted on the full set of imputed
121  traits using the aroma.light package in R. The weights were set to be inversely proportional to the
122 number of observations for each species, which allowed us to incorporate intraspecific variation
123 while also ensuring that each species had the same overall contribution to global trade-offs.
124  Representative vectors for each axis were identified by selecting those that correlated most

125  uniquely on each of the first two principle component axes.
126 Abiotic relationships

127  To identify univariate and bivariate relationships among trait trade-offs and environmental
128  conditions, we first identified the environmental variable that correlated most strongly with each
129  of the two PC axes (Fig. 3a-b, Fig. S7). We used Spearman rank correlations to allow for nonlinear
130 relationships among traits and environmental conditions. To visualize these correlations, we
131 separately fit third-order monotonic regression polynomials for angiosperms and gymnosperms,
132 and obtained 95% bootstrap confidence intervals by randomly sampling one observation for each
133 species per iteration, repeated 500 times. To explore the bivariate predictors of trait trade-offs, we
134  then fit a series of simple pairwise linear regression models to identify which additional
135  environmental variable led to the highest subsequent increase in explanatory power for each trait
136 (measured via adjusted R?). To avoid spurious relationships due to the large number of pairwise
137  combinations (50 choose 2), we only considered a subset of representative environmental traits,
138 identified via cluster analysis: annual precipitation, annual temperature, temperature annual range,
139  precipitation seasonality, aridity index, growing season mean temperature, growing season length,
140  permafrost extent, soil water-holding capacity, soil cation-exchange capacity, soil pH, topographic
141  northness, topographic eastness, and depth to water table. To visualize the resulting patterns (Fig.
142 3c-d), we plotted the smooth regression surfaces across the full range of environmental conditions,

143  restricted to the convex hull of the observed variable combinations in the dataset.

144  Hierarchical cluster analysis
145  Trait cluster analysis was conducted using hierarchical clustering on the species-level correlation
146 matrix. First, we calculated species-weighted rank correlations between pairs of traits using the

147  wCorr package in R, which again allowed us to incorporate intraspecific trait variation while
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148  ensuring each species contributed equal weight. The optimal number of clusters was identified
149  using the silhouette method in the dendextend package in R, and the dendrogram was subsequently
150  cut into clusters based on groups of traits which exhibited consistently high average intra-group
151  correlation. As an alternate measure of trait correlation which accounts for phylogenetic
152  relatedness, we calculated phylogenetic independent contrasts®® on species-level average trait
153  values using the ape package. The corresponding correlations among these contrasts are shown in
154  the bottom triangle of the correlation matrix in Fig. 4. Species-level phylogenetic conservatism
155  was calculated via Pagel’s A, using only the empirically measured values in the TRY dataset.

156

157  All analyses were conducted in R v. 3.6.0, with the exception the phylogenetic eigenvector

158  calculations, which were obtained using the Arpack package in Julia v. 1.6.2.

159
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