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 1 

ABSTRACT 2 

Due to massive energetic investments in woody support structures, trees are subject to 3 

unique physiological, mechanical, and ecological pressures not experienced by 4 

herbaceous plants. When considering trait relationships across the entire plant kingdom, 5 

plant trait frameworks typically must omit traits unique to large woody species, thereby 6 

limiting our understanding of how these distinct ecological pressures shape trait 7 

relationships in trees. Here, by considering 18 functional traits—reflecting leaf 8 

economics, wood structure, tree size, reproduction, and below-ground allocation—we 9 

quantify the major axes of variation governing trait expression of trees worldwide. We 10 

show that trait variation within and across angiosperms and gymnosperms is captured 11 

by two independent processes: one reflecting tree size and competition for light, the 12 

other reflecting leaf photosynthetic capacity and nutrient economies. By exploring 13 

multidimensional relationships across clusters of traits, we further identify a 14 

representative set of seven traits which captures the majority of variation in form and 15 

function in trees: maximum tree height, stem conduit diameter, specific leaf area, seed 16 

mass, bark thickness, root depth, and wood density. Collectively, this work informs 17 

future trait-based research into the functional biogeography of trees, and contributes to 18 

our fundamental understanding of the ecological and evolutionary controls on forest 19 

biodiversity and productivity worldwide. 20 

  21 
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INTRODUCTION 22 

Physiological and morphological traits determine the water, nutrient, and light economies of trees, 23 

directly influencing how individuals interact with each other and with the surrounding 24 

environment1–5. Traits that elevate performance in one habitat typically reduce performance in 25 

others, leading to selection for specific traits across environments6. Genetic, morphological, and 26 

biophysical constraints subsequently limit the range of traits that a species can exhibit, leading to 27 

so-called trait ‘trade-offs’ that shape species’ geographic distributions7, coexistence 28 

mechanisms8,9, and the provision of ecosystem services10,11. Despite a wealth of research into trait 29 

trade-offs across the plant kingdom, there remains relatively little understanding of the unique 30 

trade-offs faced by large woody species. Identifying the dominant trait trade-offs in trees is 31 

fundamental to our understanding of the functional biogeography of forests, and critical for 32 

predicting how forest diversity, composition, and function will respond to changing environmental 33 

conditions12–15.  34 

Prior studies have identified a key set of traits that summarize the spectrum of form and function 35 

across herbaceous and woody plants4,16–18. But due to their size, longevity, ontogeny, and unique 36 

structural properties, trees have distinct characteristics and face novel abiotic stressors relative to 37 

herbaceous plants5,19–23. Trait analyses which include both woody and herbaceous plants are forced 38 

to omit critical aspects of tree architecture (e.g., bark properties, crown size, stem conduit 39 

diameter), which overlooks the massive energetic investments in structures that are unique to large 40 

woody species22,24. Understanding how tree-specific traits align with existing plant trait 41 

frameworks is key for identifying the dominant biogeographic and ecological processes governing 42 

forest structure across broad spatial scales15. 43 

Here, we uses a global database25 of more than 350,000 trait measurements to explore relationships 44 

among 18 functional traits, reflecting leaf economics, wood structure and function, tree size and 45 

architecture, reproduction, and below-ground allocation (Fig. 1b). We asked: (1) Which dominant 46 

trade-offs and abiotic variables best capture overall variation in tree trait expression? and (2) What 47 

are the dominant multi-trait constellations that capture the breadth of form and function at the 48 

global scale? We hypothesized that traits related to canopy architecture, wood density, and tree 49 

size would emerge as key variables governing trait patterns in trees, driven by the large energetic 50 

requirements of large woody structures26,27. Collectively, this work identifies emergent constraints 51 
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on tree functional biogeography, and sheds light on the core ecological processes shaping 52 

functional trait expression in forests worldwide. 53 

 54 

RESULTS & DISCUSSION 55 

TRADE-OFFS IN TREE TRAIT EXPRESSION. Our analysis included 386,526 unique trait 56 

measurements across 18 traits, encompassing 6905 tree species from 1629 genera and 203 families 57 

(Fig. 1). Traits were measured at 8490 distinct locations, including every continent except 58 

Antarctica. To explore trade-offs in functional traits at the individual level, we used random forest 59 

machine learning models to estimate trait expression for each individual as a function of its 60 

environment and phylogenetic history. Environmental predictors included a range of climate28–31, 61 

soil32, topographic33, and geological34 features. Phylogenetic history was incorporated via 62 

phylogenetic eigenvectors35,36 (see Methods).  63 

Across all 18 traits, our models explained 54% of trait variation (buffered leave-one-out cross-64 

validation, see Methods), with a relative predictive error of ± 28% (Fig. S1-S2). The inclusion of 65 

environmental variables led to substantial increases in explanatory power and accuracy, reducing 66 

the expected predictive error of the models by 10% and improving the explanatory power by 35% 67 

across all traits. Overall, environmental variables and phylogenetic information had approximately 68 

equal explanatory power (relative importance of 0.51 vs 0.49 for phylogeny vs. environment), 69 

albeit with substantial variation across traits (Fig. S3). Traits with high intraspecific variation and 70 

ontogenetic plasticity exhibited particularly strong increases in accuracy with the inclusion of 71 

environmental variables (e.g., 19% and 16% improvement for crown height and root depth, 72 

respectively). Only seed dry mass had no residual environmental signal after accounting for 73 

phylogeny (Fig. S2-S3). 74 

Using the resulting trait models, we quantified trait trade-offs at the individual levels, accounting 75 

for both phylogenetic trait conservatism and environmental-mediated trait variation. When 76 

considering all traits simultaneously, the first two axes of the resulting principal-component 77 

analysis capture 40% of variation in overall trait expression (Figs. 2a, S4). The first trait axis 78 

correlates most strongly with leaf thickness (ρ = -0.77), specific leaf area (ρ = 0.74), and leaf 79 

nitrogen (ρ = 0.70). By capturing key aspects of the leaf economic spectrum16, these traits reflect 80 

various physiological controls on leaf-level resource processing, tissue turnover and 81 
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photosynthetic rate6,37,38. Thick leaves with low SLA can help minimize desiccation, herbivory, 82 

frost damage, and nutrient limitation, but at the cost of reduced photosynthetic potential due to 83 

primary investment in structural resistance39. Accordingly, leaf nitrogen—a crucial component of 84 

Rubisco for photosynthesis40,41—trades off strongly with leaf thickness (ρ = -0.47). By reflecting 85 

an organismal-level trade-off between photosynthetic potential in optimal conditions and abiotic 86 

tolerance in suboptimal conditions, this first axis thus captures the core distinction between 87 

“acquisitive” and “conservative” functional traits which underpin fast-slow life-history strategies 88 

across the plant kingdom6,17,18. At one end of this spectrum are species with acquisitive traits which 89 

confer higher growth, faster nutrient cycling, and greater photosynthetic potential. At the other end 90 

are conservative traits (thick leaves) which help trees withstand a variety of stressful abiotic 91 

conditions, but which come at the cost of reduced photosynthetic capacity and growth in optimal 92 

environments.  93 

The second trait axis correlates most strongly with maximum tree height (ρ = 0.72), crown height, 94 

(ρ = 0.70), and crown diameter (ρ = 0.82), highlighting the overarching importance of competition 95 

for light and canopy position in forest 6 (Figs. 2a, S4). Large trees and large crowns are critical for 96 

light access and for maximizing light interception down through the canopy42. Nevertheless, tall 97 

trees with deep canopies also experience greater susceptibility to disturbance and mechanical 98 

damage, primarily due to wind and weight43,44. Because of the massive carbon and nutrient costs 99 

required to create large woody structures26,27, larger trees are less viable in nutrient-limited or 100 

colder climates45, and in exposed areas with high winds or extreme weather events46. This second 101 

axis thus reflects a fundamental biotic/abiotic trade-off related to overall tree size, which is largely 102 

orthogonal to leaf-level nutrient-use and photosynthetic capacity.  103 

Despite substantial differences in wood and leaf structures between angiosperms and 104 

gymnosperms (e.g., vessels vs. tracheids), the two main trade-offs hold within, as well as across, 105 

clades (Fig. 2b-c, S5-S6). Gymnosperms, however, exhibit less orthogonality between these axes, 106 

in part due to less variation in leaf thickness and a stronger subsequent correlation between leaf 107 

thickness and tree size (ρ = 0.39 vs. 0.04 for gymnosperms vs angiosperms). Nevertheless, despite 108 

differences in physiology and morphology, gymnosperms and angiosperms are subject to the same 109 

physical, mechanical, and chemical processes that determine the ability to withstand various biotic 110 
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and abiotic pressures7,47,48. Our results show that these processes translate into similar fundamental 111 

constraints on trait expression across clades. 112 

Collectively, the two primary trait axes thus reflect two different aspects of the dominance-113 

tolerance trade-off: (1) the ability to maximize leaf photosynthetic activity, at the cost of increase 114 

risk of leaf desiccation, and (2) the ability to compete for space and maximize light interception 115 

via tree size, at the cost of increased susceptibility to mechanical damage. Notably, these two trade-116 

offs closely mirror those seen when considering herbaceous species alongside woody species4, 117 

though we observe stronger orthogonality between leaf function and plant size is found when 118 

considering the whole plant kingdom. Thus, rather than fundamentally reshape the dominant trade-119 

offs, the inclusion of tree-specific traits shows that these two ecological constraints systematically 120 

affect all aspects of tree form and function, illustrating the universality of these two ecological 121 

trade-offs across the plant kingdom.  122 

ENVIRONMENTAL PREDICTORS OF TRAIT TRADE-OFFS. To examine how environmental variation 123 

shapes trait expression across the globe, we quantified the relationships between environmental 124 

conditions and the dominant trait trade-offs. 125 

In line with previous analysis49, temperature variables were the strongest univariate drivers of trait 126 

trade-offs (Figs. 3, S7). The first PC axis (leaf thickness) correlates most strongly with annual 127 

mean temperature (ρ = 0.26, Fig. 3a), reflecting that leaves face increased frost risk and reduced 128 

photosynthetic potential in colder conditions. Thus, selection should favor thick leaves with low 129 

SLA over thin leaves with high SLA and high nutrient-use37. However, the univariate 130 

environmental signal is relatively weak (Fig. 3c), highlighting that the first PC axis captures more 131 

complex relationships among leaf-level economies and environmental conditions (e.g. between 132 

angiosperms vs. gymnosperms).  133 

The second PC axis (tree size) correlates most strongly with temperature annual range (Fig. 3b). 134 

Crown diameter, leaf area, and tree height, in particular, all exhibit strong negative correlations 135 

with temperature annual range (ρ = -0.65, -0.56 and -0.54, respectively, Fig. 3c). At the global 136 

scale, high temperature variation is inversely correlated with annual temperature (ρ = -0.79), such 137 

that larger structural components are favored in areas with consistently warm temperatures—138 

primarily tropical regions near the equator, and coastal regions throughout the Americas, Australia, 139 
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and southern Africa. Trees in such environments are more likely to experience strong biotic 140 

interactions, which should increase evolutionary and ecological selection pressures over time50,51, 141 

favoring species with high competitive ability and efficient light acquisition strategies.  142 

Despite the primary importance of temperature governing tree trait trade-offs, precipitation and 143 

temperature regimes are highly correlated, and the main climate stressors to trees arise via 144 

interactions between temperature and water availability (e.g., xylem cavitation and embolism, fire 145 

regimes, and leaf desiccation). Indeed, when exploring the bivariate drivers of trait expression, 146 

precipitation variables emerge as the strongest secondary drivers of each trait trade-off. The first 147 

PC axis exhibits the highest values at high temperatures in combination with high precipitation 148 

(Fig. 3c), reflecting broad-scale differences in habitat requirements across angiosperms and 149 

gymnosperms52,53. For the second PC axis, higher values are observed among trees in regions with 150 

low temperature variation in tandem with sufficient ground water access (Fig. 3d), demonstrating 151 

that soil hydrology and precipitation place key limitations on tree size at the global scale54.  152 

TRAIT CONSTELLATIONS AT THE GLOBAL SCALE. Although exploration of trait PC axes sheds 153 

light on the dominant physiological trade-offs structuring tree traits, these first two trait axes 154 

account for less than half of overall trait variation (Fig. 2a). To better explore the multidimensional 155 

nature of these trade-offs, we subsequently identified groups of traits that form tightly coupled 156 

clusters and which reflect distinct aspects of tree function.  157 

Our results show that these 18 traits can be grouped into seven trait constellations, each of which 158 

reflects a unique aspect of tree growth, physiology, or ecology (Fig. 4). The largest trait 159 

constellation (Fig. 4, pink cluster) loads most heavily on the first trait trade-off (Fig. 4b), capturing 160 

various aspects of the leaf economic spectrum. Relationships among specific leaf area, leaf Vcmax 161 

(the maximum rate of carboxylation), leaf thickness, and leaf nutrient concentrations per mass (N, 162 

P, K) are well established4,6,41,55. The fact that nearly all leaf traits fall in this cluster (with the 163 

exception of leaf area and density) supports the inference that leaf economics represent a unique 164 

aspect of tree function that is largely independent of plant size 4.  165 

The second-largest trait constellation (Fig. 4, purple cluster) includes tree-size traits which closely 166 

align with the second trade-off, along with the addition of leaf area. As with tree height and canopy 167 

size, leaf area directly affects a tree’s ability to intercept light down through its canopy42. Leaf area 168 
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thus serves as an intermediary between the two primary trait axes: it is intrinsically correlated with 169 

SLA but exhibits relatively weak correlations with per-mass leaf nutrients. Although the largest 170 

discrepancies in leaf area are observed between needle-leaf gymnosperms and broadleaf 171 

angiosperms, these trends hold within clades as well, with leaf area among gymnosperms likewise 172 

correlating positively with both tree height (ρ = 0.20) and crown diameter (ρ = 0.48). This cluster 173 

thus highlights organismal-level coordination of light interception that integrates tree size, 174 

architecture, and leaf shape.  175 

Intermediate to these two largest clusters are three constellations each containing two traits: (1) 176 

stem conduit diameter and stomatal conductance (Fig. 4, dark green), capturing organismal-level 177 

integration of water transport at the cost of increased desiccation and cavitation risks; (2) stem 178 

diameter and bark thickness (Fig. 4, light green), primarily demonstrating intrinsic size-based 179 

relationships between stem parts56,57, which are secondarily related to aridity and fire frequency in 180 

some environments57; and (3) wood density and leaf density (Fig. 4, orange), indicative of 181 

slow/fast life-history strategies, where denser plant parts reduce growth rate and water transport5,17 182 

but protect against pest damage, desiccation, and mechanical breakage5,27,39. Collectively, these 183 

two-trait clusters each demonstrate unique and complementary trade-offs that insulate trees against 184 

various disturbances and extreme weather events, but at the cost of reduced growth, competitive 185 

ability, and productivity under optimal conditions (see Supplemental Discussion). 186 

Lastly, two traits each comprise their own unique cluster: root depth and seed dry mass (Fig. 3, 187 

yellow and blue). Root growth is subject to a range of belowground processes (e.g., root herbivory, 188 

depth to bedrock) that can promote a disconnect between aboveground climate conditions and 189 

belowground traits54,58,59. Root depth accordingly has a relatively weak phylogenetic signal (λ = 190 

0.44) but a strong environmental signal (Figs. 4, S1-S2), reflecting distinct belowground 191 

constraints on trait expression. In contrast, seed dry mass exhibits the strongest phylogenetic signal 192 

(λ = 0.98, Fig. 4c) and weakest environmental signal of any trait (Figs. S1-S2). Reproductive traits 193 

are subject to unique evolutionary pressures60, indicative of different seed dispersal vectors (wind, 194 

water, animals) and various ecological stressors that uniquely affect seed viability and 195 

germination60. The emergence of root depth and seed mass as solo functional clusters thus supports 196 

previous inference that belowground traits and reproductive traits reflect distinct aspects of tree 197 

form and function not captured by leaf or wood trait spectrums. 198 
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Collectively, these trait constellations shed light on organismal-level trait coordination and broad-199 

scale differences in trait expression across species and clades. A key challenge in identifying global 200 

patterns in trait trade-offs is the relatively sparse trait coverage at the individual level, with only a 201 

handful of traits typically measured on any single tree. This limitation is partly due to the enormous 202 

range of putative traits that can be measured on trees6,25. Here, by using phylogenetic and 203 

environmental information to estimate trait expression at the individual level, our approach helps 204 

to overcome some of these limitations, enabling us to explore organismal level trade-offs across 205 

thousands of species. The benefit of this approach we can include vastly broader phylogenetic, 206 

geographic, and trait coverage than would otherwise be possible. Future work, however, should 207 

focus on improving the precision of these global trait frameworks by measuring complete sets of 208 

traits on individual trees.  209 

To help address these challenges, the seven described trait constellations (Fig. 4) can be used as a 210 

starting point for research into organismal-level trait expression in trees. Although the exact subset 211 

of traits used in a given study should depend on the intended scope and application, we advise 212 

selecting traits which exhibit strong phylogenetic signal and/or low environmental-mediated 213 

variation, and ideally have low cross-correlations with other traits in other clusters. These criteria 214 

help to ensure that the selected traits can be robustly measured and that they reflect well-defined 215 

ecological processes. In line with this, we suggest a baseline set of seven traits selected from these 216 

trait constellations: bark thickness, maximum tree height, root depth, specific leaf area, stem 217 

conduit diameter, wood density, and seed dry mass. These seven traits represent complementary 218 

ecological and evolutionary processes, capturing differences in competitive ability, growth rate, 219 

abiotic stress tolerance, reproduction, wood and leaf properties, and above- vs. belowground 220 

allocation. Moreover, these traits are relatively well represented in many trait databases and have 221 

well-defined definitions and measurement protocols25,61,62, thus forming a baseline set of reference 222 

traits for expanding our understanding of tree functional trait expression.  223 

 224 

CONCLUSIONS 225 

Collectively, our analysis reveals key trade-offs and trait constellations governing tree form and 226 

function worldwide. We show that tree functional traits predominantly reflect two major functional 227 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 17, 2021. ; https://doi.org/10.1101/2021.09.16.458157doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.16.458157
http://creativecommons.org/licenses/by-nc-nd/4.0/


10 
 

trade-offs: one representing leaf-level nutrient-use and photosynthesis, and the other representing 228 

competition for light via tree and crown size. Mirroring patterns seen across the entire plant 229 

kingdom, these trade-offs capture an ecological gradient from conservative growth strategies under 230 

suboptimal environments (cold, dry, frequent disturbances), to acquisitive strategies associated 231 

with light competition in high-resource environments (consistently high temperature and water 232 

availability). By incorporating traits unique to large woody species, we further identify a unique 233 

set of functional constellations and representative traits that reflect the breadth of tree form and 234 

function. In doing so, these results elucidate key constraints on functional trait relationships in 235 

trees, contributing to our fundamental understanding of the controls on the function, distribution, 236 

and composition of forest communities. By identifying a core set of traits that reflect the broad 237 

variety of ecological life-history strategies in trees, this work can inform future trait-based research 238 

into the functional biogeography of the global forest system. 239 

  240 
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Data and code availability 241 

The data and code for replicating the central findings will be made available in a dedicated GitHub 242 

repository upon publication.  243 
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 267 

Figure 1. Overview of the 18 functional traits. (a) The unique geographic locations (n = 8490) 268 

where tree functional traits were recorded. The size of the circles denotes the relative number of 269 

traits measured at each location. (b) The number of unique measurements, species, locations, and 270 

genera for each of the 18 traits considered here, along with summary statistics. The analysis 271 

included 386,526 trait measurements, encompassing 6905 unique tree species and 1691 unique 272 

genera (see Table S1 for corresponding metadata).  273 

  274 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 17, 2021. ; https://doi.org/10.1101/2021.09.16.458157doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.16.458157
http://creativecommons.org/licenses/by-nc-nd/4.0/


13 
 

 275 

Figure 2. Dominant trait axes and trade-offs. Shown are the first two principal component axes 276 

capturing trait trade-offs across the 18 functional traits. (a) All tree species (n = 29,450 277 

observations), (b) angiosperms only (n = 5457), and (c) gymnosperms only (n = 23,993). In (a) the 278 

three variables that load most strongly on each axis are show in dark black lines, with the remaining 279 

variables shown in light gray. These same six variables are shown in (b) and (c) illustrating how 280 

the same trade-offs extend to angiosperms and gymnosperms. See Supplemental Figs. S4-S6 for 281 

the full trait PCAs.  282 
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 283 

Figure 3. The relationship between environmental variables and trait trade-offs. (a-b) The 284 

strongest univariate predictor of each trait trade-off. (c-d) The 2-dimensional surfaces showing the 285 

strongest bivariate predictors of each trait trade-off. The surfaces are constrained to the convex 286 

hull of the observed variable combinations in the dataset. Note that the x-axes in c-d align with 287 

those above in a-b. (e) Correlations between the first two trait trade-offs and environmental 288 

variables. The size of the circle denotes the relative strength of the correlation, with solid circles 289 

denoting positive correlations and open circles denoting negative correlations. For clarity, only 290 

trait correlations with |ρ| > 0.2 are shown. See Fig. S7 for the full set of correlations.  291 
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 293 

Figure 4. Trait correlations and functional constellations. (a) Trait clusters with high average 294 

intra-group correlation. The upper triangle shows species-weighted correlations incorporating 295 

intraspecific variation, and the lower triangle gives the corresponding correlations among species-296 

level phylogenetic independent contrasts. The size of the circle denotes the relative strength of the 297 

correlation, with solid circles denoting positive correlations and open circles denoting negative 298 

correlations. For clarity, only trait correlations with |ρ| > 0.2 are shown. (b) Correlations between 299 

each trait and each of the first two principal component axes, illustrating which functional trait 300 

clusters align most strongly with the dominant axes of trait variation. (c) The species-level 301 

phylogenetic signal of each trait, calculated using only the empirical trait measurements. 302 

  303 
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Materials & Methods 1 

 2 

Trait information 3 

Trait data were obtained from the TRY plant trait database1 in April 2020. Data were cleaned by 4 

converting all traits to standardized units and by matching species names to The Plant List (TPL) 5 

database v1.1 (http://www.theplantlist.org, accessed June 2020) using the Taxonstand package in 6 

R v3.6.02. Synonyms were replaced with accepted names, when available. The phylogenetic tree 7 

was taken from the seed plant phylogeny of Smith & Brown (2018), and species names were 8 

likewise cleaned and harmonized using the TPL database. To limit our analysis to tree functional 9 

traits only, we used the BGCI GlobalTreeSearch database v1.34,5, containing a comprehensive list 10 

of ca. 60,000 tree species compiled and harmonized from across 500 sources. The BGCI database 11 

uses TPL for much of its taxonomic identification, but to ensure consistency among all sources we 12 

used the same name harmonization pipeline as with TRY and the seed plant phylogeny. We 13 

constrained the set of traits and the phylogenetic tree to those species that could be matched to the 14 

BGCI database (n = 54,153 species matched), and we likewise trimmed the phylogenetic tree to 15 

the set of species matched in TRY. We further excluded any trait observations that did not have 16 

corresponding geographic coordinates.  17 

Traits were selected based on data availability, phylogenetic and spatial coverage, and importance 18 

for tree growth, survival, and competition. We prioritized traits that are commonly used in other 19 

leaf and wood economic spectrums6, thus focusing on leaf traits measured per unit mass rather 20 

than unit area, where possible. Secondly, we prioritized traits which are important indicators of 21 

tree growth and structure, such as stem conduit diameter and crown dimensions. Thirdly, we 22 

selected traits which capture important ecological processes and life-history differences among 23 

trees (e.g., root depth). This process resulted in 30 putative traits for analysis (Table S1, 24 

Supplemental Data References). Of these, we omitted traits with low sample sizes (either overall, 25 

or at the species, genus, or geographic level), those that are redundant or intrinsically correlated 26 

with other traits, and those that are known to be highly sensitive to trait assay conditions but were 27 

not clearly standardized. This pruning resulted in a set of 18 focal traits for use in the final analysis, 28 

with the 12 omitted traits used only to improve predicted power via trait covariation (see model 29 
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process, below).  Trait values were converted to common units where necessary (e.g., mm to cm). 30 

For each trait, we selected sub-categories (as given by TRY) that denoted comparable 31 

measurements and reflected uniform assay conditions (e.g., Vcmax measured at 25oC) (Table S1).  32 

Model details 33 

In order to consider trait trade-offs at the organismal level which accounted for intraspecific 34 

variation, we used machine learning models to estimate all 18 trait values for each individual tree 35 

in each location (Fig. 1a). We modeled trait expression as a function of both environmental and 36 

phylogenetic information so as to estimate traits with weak phylogenetic signals but strong abiotic 37 

filtering, and to incorporate intraspecific variation and ontogenetic plasticity into our analysis. 38 

Specifically, we used random forest (RF) models to estimate trait values for each observation using 39 

the 𝑟𝑎𝑛𝑔𝑒𝑟 package in R7. Initial exploration showed negligible effects of model tuning, such that 40 

the default hyper-parameters were used to prevent overfitting. In order to minimize the influence 41 

of data-recording errors or unit mismatches in the dataset, trait values which occurred outside of 42 

the bulk of the trait distribution were investigated as outliers. Those which could not be externally 43 

verified and which were biologically unreasonable were removed (e.g., stem diameters >15 m). 44 

When modeling tree height, canopy size, and root depth, we only considered observations with 45 

height >5 m, diameter >10 cm, root depth >25 cm, and canopy dimensions >1 m high and wide8, 46 

thereby ensuring that our analysis focused on adult trees rather than saplings or woody shrubs. We 47 

subsequently implemented quantile random forest9,10 to estimate the upper 90th percentile trait 48 

value for maximum stem diameter, canopy dimensions, and root depth. In all other cases the 49 

imputed traits represent the mean predicted value across the random forest. 50 

Environmental covariates used in the models included 50 variables encompassing range of 51 

climate11–13, soil14, topographic15, and geological16 variables (Table S2).  We omitted variables that 52 

directly measure plant community composition or biotic factors (e.g., NDVI or % forest cover) so 53 

as to ensure the resulting geographic layers solely encompassed abiotic factors. Layers were 54 

sampled from a previously prepared global composite (see van den Hoogen et al. 2019 for details). 55 

Briefly, all covariate map layers were resampled and reprojected to a unified pixel grid in 56 

EPSG:4326 (WGS84) at 30 arcsec resolution (approximately 1 km2 at the equator). Layers with a 57 

higher original pixel resolution were downsampled using a mean aggregation method; layers with 58 

a lower original resolution were resampled using simple upsampling (that is, without interpolation) 59 
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to align with the higher resolution grid. The set of environmental covariates for each trait 60 

measurement was obtained by sampling this composite image at each unique latitude and longitude 61 

value given in the TRY database. 62 

Phylogenetic information was incorporated in the form of phylogenetic eigenvectors18–21. We first 63 

calculated the pairwise cophenetic phylogenetic distance matrix across all 54,153 tree species that 64 

could be matched to both the BGCI tree list and the plant phylogeny. This matrix was then double-65 

centered by rows and columns21,22, and the first 50 orthogonal eigenvectors were extracted from 66 

this matrix for use as continuous predictors in the random forest models. The choice of 50 67 

eigenvectors (out of 54,153 possible) was in line with previous analyses to prevent over-fitting and 68 

to ensure the model was identifiable22. This also resulted in the same number of environmental 69 

and phylogenetic predictor variables.  70 

To leverage trait covariation among the disparate observations, we used a two-step algorithm to 71 

improve predictive power and imputation accuracy20,23. First, following standard approaches6,24–72 

26, trait values were log-transformed, allowing for comparisons across trait distributions which are 73 

highly right-skewed and vary by several orders of magnitude26 (Fig. 1). Using the general approach 74 

of Stekhoven & Bühlmann (2012), we next implemented a random forest on all traits for all 75 

observations. We then used these initial models to predict the full set of trait values for each 76 

observation (including the 12 ancillary traits not included in the focal analysis, Table S1). We then 77 

refit the random forest models for each trait, using the full set of predicted traits (apart from the 78 

focal traits) as covariates.  For the final analysis, observed traits were used in place of imputed 79 

traits, when available, with the exception of maximum tree height, stem diameter, root depth, and 80 

crown size, where the upper 90th percentile trait values were used. Variable importance in the 81 

random forest models was calculated using the “permutation” metric, reflecting the variance in 82 

responses across predictors7. 83 

Model performance 84 

Model performance was quantified using buffered leave-one-out cross-validation27. To avoid 85 

overfitting, we followed the approach recommended in Roberts et al. (2017) and fit a simple linear 86 

model to the data, where trait expression was modeled as a linear function of phylogenetic and 87 

environmental covariates. We then assessed spatial autocorrelation of the residuals using Moran’s 88 
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I plots using the ncf package in R, which displays the value of spatial autocorrelation (ranging 89 

from -1 to 1) as a function of distance28. We likewise assessed residual phylogenetic 90 

autocorrelation across taxonomic ranks (genus, family, order, group), using the the ape package in 91 

R. In general, spatial autocorrelation was low (I<0.10) (Fig. S8), with the exception of leaf 92 

phosphorous, which exhibited slight autocorrelation up to ~250 km. Residual phylogenetic 93 

correlation was likewise low, and generally only observable at the genus level, apart from crown 94 

size and conduit diameter, which exhibited residual autocorrelation up to the family level (Fig. 95 

S9). Thus, to be conservative, for all traits except crown size and conduit diameter, we used a 96 

genus-level spatial buffer of 250 km to exclude test/training data; and for crown size and conduit 97 

diameter we used a family-level buffer at 250 km. To implement the cross-validation accuracy 98 

assessment, we first randomly selected a focal species, with the out-of-fit test data containing all 99 

observations for that species for the focal trait. To construct the corresponding training data, we 100 

excluded all observation of the same genus (or family) that fell within a 250km spatial buffer of 101 

any of the training points for that species. The random forest models were then fit using the 102 

buffered training data, and used to predict the average trait value for the omitted species27. This 103 

procedure was repeated for each unique species for each trait, up to 1000 times, with a randomly 104 

sampled focal species selected at each iteration.  105 

Predictive accuracy was assessed in two ways. First, following the recommendation of Li (2017), 106 

we calculated the cross-validated coefficient of determination relative to the 1:1 line (termed 107 

"VEcv", Li 2017), which provides a normalized version of the mean-squared-error (MSE) that 108 

allows for comparisons across data types and units. Specifically, this value is calculated as: R2
VEcv 109 

= 1 - ∑(𝑦𝑖
𝑝𝑟𝑒𝑑 − 𝑦𝑖

𝑜𝑏𝑠)2/∑(𝑦𝑖
𝑜𝑏𝑠 − 𝑦‾)2 = 1 – SSE/TSS = 1 – MSE / 𝜎̂2, where the summation is 110 

taken across the species, and the predicted values are estimated out-of-fit using the buffered cross-111 

validation procedure outlined above. Importantly, this metric is not the same as a regression-based 112 

goodness-of-fit, as it is calculated by direct comparison of observed vs. predicted values29. Second, 113 

we also report the median absolute percentage error (MdAPE), which gives a more interpretable 114 

estimate of the expected error a given prediction, calculated as MdAPE = 𝑚𝑒𝑑𝑖𝑎𝑛( |𝑦𝑖
𝑜𝑏𝑠 −115 

 𝑦𝑖
𝑝𝑟𝑒𝑑|/ 𝑦𝑖

𝑜𝑏𝑠) × 100. Although the models were fit using log-transformed data, accuracy was 116 

assessed on the non-logged values in their original units.  117 

 118 
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Principal component analysis 119 

Species-weighted principal component analysis (PCA) was conducted on the full set of imputed 120 

traits using the aroma.light package in R. The weights were set to be inversely proportional to the 121 

number of observations for each species, which allowed us to incorporate intraspecific variation 122 

while also ensuring that each species had the same overall contribution to global trade-offs. 123 

Representative vectors for each axis were identified by selecting those that correlated most 124 

uniquely on each of the first two principle component axes.  125 

Abiotic relationships 126 

To identify univariate and bivariate relationships among trait trade-offs and environmental 127 

conditions, we first identified the environmental variable that correlated most strongly with each 128 

of the two PC axes (Fig. 3a-b, Fig. S7). We used Spearman rank correlations to allow for nonlinear 129 

relationships among traits and environmental conditions. To visualize these correlations, we 130 

separately fit third-order monotonic regression polynomials for angiosperms and gymnosperms, 131 

and obtained 95% bootstrap confidence intervals by randomly sampling one observation for each 132 

species per iteration, repeated 500 times. To explore the bivariate predictors of trait trade-offs, we 133 

then fit a series of simple pairwise linear regression models to identify which additional 134 

environmental variable led to the highest subsequent increase in explanatory power for each trait 135 

(measured via adjusted R2). To avoid spurious relationships due to the large number of pairwise 136 

combinations (50 choose 2), we only considered a subset of representative environmental traits, 137 

identified via cluster analysis: annual precipitation, annual temperature, temperature annual range, 138 

precipitation seasonality, aridity index, growing season mean temperature, growing season length, 139 

permafrost extent, soil water-holding capacity, soil cation-exchange capacity, soil pH, topographic 140 

northness, topographic eastness, and depth to water table. To visualize the resulting patterns (Fig. 141 

3c-d), we plotted the smooth regression surfaces across the full range of environmental conditions, 142 

restricted to the convex hull of the observed variable combinations in the dataset.  143 

Hierarchical cluster analysis 144 

Trait cluster analysis was conducted using hierarchical clustering on the species-level correlation 145 

matrix. First, we calculated species-weighted rank correlations between pairs of traits using the 146 

wCorr package in R, which again allowed us to incorporate intraspecific trait variation while 147 
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ensuring each species contributed equal weight. The optimal number of clusters was identified 148 

using the silhouette method in the dendextend package in R, and the dendrogram was subsequently 149 

cut into clusters based on groups of traits which exhibited consistently high average intra-group 150 

correlation. As an alternate measure of trait correlation which accounts for phylogenetic 151 

relatedness, we calculated phylogenetic independent contrasts30 on species-level average trait 152 

values using the ape package. The corresponding correlations among these contrasts are shown in 153 

the bottom triangle of the correlation matrix in Fig. 4. Species-level phylogenetic conservatism 154 

was calculated via Pagel’s λ, using only the empirically measured values in the TRY dataset.  155 

 156 

All analyses were conducted in R v. 3.6.0, with the exception the phylogenetic eigenvector 157 

calculations, which were obtained using the Arpack package in Julia v. 1.6.2. 158 

 159 

 160 

  161 
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