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ABSTRACT 

With advances in NGS technologies, transcriptional profiling of human tissue across many diseases is 

becoming more routine, leading to the generation of petabytes of data deposited in public repositories. 

There is a need for bench scientists with little computational expertise to be able to access and mine 

this data to understand disease pathology, identify robust biomarkers of disease and the effect of 

interventions (in vivo or in vitro). To this end we release an open source analytics and visualization 

platform for expression data called OmicsView, http://omicsview.org. 

This platform comes preloaded with 1000s of samples across many disease areas and normal tissue, 

including the GTEx database, all processed with a harmonized pipeline. We demonstrate the power 

and ease-of-use of the platform by means of a Crohn’s disease data mining exercise where we can 

quickly uncover disease pathology and identify strong biomarkers of disease and response to treatment.   

INTRODUCTION 

Comprehensive omics profiling of patients is fundamental for understanding the molecular mechanism 

of diseases as well as drug discovery in the era of precision medicine. Modern technologies have 

enabled the generation of terabytes of RNA-seq and microarray data across all disease areas, and 

typically they are deposited into public repositories from both academia and industry. However, the 

deposited data are heterogeneous, and analysed using highly customized pipelines against a variety 

of annotations, making it a formidable task to make comparisons across projects and diseases. 

Interpretation and visualization of high-dimensional omics data sets is another daunting task that 

requires considerable computational training and practice. Although web portals have been developed 

to analyze publicly available and proprietary datasets1-4, the analytical capacity is either limited or 

specialized to the disease of interest, e.g. oncology.  Thanks to major breakthroughs in data generation, 

especially Next Generation Sequencing (NGS), there is a booming demand for advanced tools 

providing comprehensive visualizations as well as analytical capabilities for biological interpretation of 

data.  Here, we make the public release of OmicsView (http://omicsview.org), an open source solution 

that is designed to be data type agnostic with all visualization modules easily adaptable to new data 

types, and has a straightforward user data upload process. Furthermore, we provide sample level gene 
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expression data sets across ten disease areas from a curation effort in collaboration with Qiagen to 

demonstrate the versatile functionalities of the system with an emphasis on accessibility of advanced 

visual and analytical capabilities and cross study meta-analyses. With OmicsView, every bench 

scientist, regardless of their computational skill level, can carry out in-depth data analysis and 

interpretation. 

 

MATERIAL AND METHODS 

OmicsView was developed as an independent interactive web application with backend database 

support that uses multiple underlying libraries and tools for visualizations. The interactive plots have 

been generated with a diverse array of JavaScript libraries like CanvasXpress, D3, Plotly and 

Highcharts running within the web browser. Additionally, R packages, specifically from Bioconductor 

have been used to create some specific plots like KEGG pathways with a gene highlighting feature. 

JavaScript and PHP were the underlying programming languages for the web framework and to tie the 

visualizations together. Finally, MySQL was used for data storage and management.  

Data processing 

To demonstrate the utility of the web-based application, a subset of curated data from DiseaseLand 

(https://www.qiagenbioinformatics.com/diseaseland/) is accessible through OmicsView. The 

DiseaseLand data service uses common analysis pipelines to quantify and normalize publicly available 

microarray and RNA-seq expression data from raw files. For each project, and each sample, metadata 

are curated to apply controlled vocabularies and ensure consistent formatting of metadata fields. 

Information on the data processing pipeline and the DiseaseLand product is available at the following 

links: http://www.arrayserver.com/wiki/index.php?title=DiseaseLand_Curation_Pipeline 

 http://www.arrayserver.com/wiki/index.php?title=Omicsoft_Affymetrix_Microarray_Preprocessing 

 http://www.arrayserver.com/wiki/index.php?title=RNA-Seq_Normalized_FPKM_Values_in_Land. 

The data in OmicsView was exported from DiseaseLand prior to 8/27/2019. None of the preloaded  

curated data can be exported from the portal, distributed with a software package, or otherwise 

redistributed without express permission from QIAGEN.  

 

Plotting and Visualization 

OmicsView offers two main ways to visualize datasets: through a gene-centric or a dataset-centric way. 

The gene-centric way shows expression of a single or multiple candidate genes across the datasets 

available in OmicsView (see Supplemental text: Section 2. Visualize Gene expression). On the other 

hand, the dataset-centric way is based on one or more candidate datasets, and plots expression of all 

genes within them (see Supplemental text: Section 3. Visualize Comparison data). OmicsView offers a 

variety of plotting types like Bubble Plots, PCA Plots, Volcano Plots, Heatmaps, Pathway plots etc, that 

are highly customizable.. These visualization options are data-type agnostic enabling plotting of micro-

array, RNA-seq and proteomic datasets together for comparative analysis (Supplemental text, section 
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3.12). This is possible because of the uniform way the datasets are analysed, normalized and stored in 

OmicsView. 

 

Functional and Pathway Enrichment 

The functional enrichment algorithms implemented in OmicsView come in two flavors. The first is based 

on hypergeometric enrichment of differentially expressed genes (DEGs) against a number of knowledge 

databases, based on the HOMER package (http://homer.salk.edu/homer/microarray/go.html). This 

requires a significance cutoff to be applied to the two group comparison expression data in order to 

select a set of genes that is upregulated and downregulated, i.e. differentially expressed genes. The 

HOMER package comes with pre-compiled collections of gene knowledge databases that we use for 

enrichment. The second approach is based on a variant of the Gene Set Enrichment Analysis (GSEA) 

approach called PAGE (Parametric Analysis of Gene Set Enrichment) which is faster than the original 

GSEA approach and more sensitive5. We use an implementation of PAGE included in the R piano 

package (https://www.bioconductor.org/packages/release/bioc/html/piano.html). GSEA based 

approaches just require a ranked list of genes (genes with a numeric quantity for ranking them that 

shows how different they are between groups in the comparison, usually logFC values) and are typically 

more sensitive in detecting pathway enrichment. Both, HOMER and PAGE packages come pre-built 

with a set of known functions/pathways in the form of gene sets, against which we look for enrichment 

in the comparison of interest. The enrichment tools are run against differential expression data as they 

are being imported into OmicsView, so the end user is presented with pre-computed results readily. We 

describe both enrichment approaches in the subsequent sections. 

 

HOMER workflow 

The HOMER workflow is our first enrichment tool that enables pathway analysis on differentially 

expressed genes (DEGs) in two ways. The first step is selection of differentially expressed genes (DEGs) 

for enrichment analysis. For each comparison, a list of the up- and down-regulated genes are selected 

as input for functional enrichment analysis. We use a dynamic cutoff of logFC and AdjustedPValue / 

PValue to aim for 200-2000 genes in each list. To achieve this, we start with a stringent cutoff of adjusted 

p-value of 0.05, and 2-fold change up or down. Getting a list of greater than 200 genes is ideal for the 

downstream analysis. If there are fewer, we drop the nominal p-value to 0.01 (with 2-fold up or down), 

and subsequently if 200 is not reached we drop the fold change to 1.2 in either direction or increase the 

adjusted p-value to 0.1. If the most lenient cutoff does not generate a list of 50 up or down genes, we 

take the top 50 logFC (negative and positive) to generate the lists for enrichment analysis. The second 

step is functional enrichment of the DEG list against the genome.  In this workflow the findGo.pl function 

from the Homer package implements the hypergeometric test and is used to analyse the functional 

enrichment for each DEG list.  There are several different "ontologies", or libraries of gene groupings 

that come with the Homer package.  We used Homer version v4.8.3, human-o v5.8 and mouse-o v5.8 

libraries (current as of Dec 6, 2016). The HTML output from HOMER is further enhanced by a custom 

php script for a cleaner display of browsable results. 
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Gene Set Enrichment Analysis (GSEA) and PAGE workflow 

For our second enrichment tool, we used a variation of the GSEA method, PAGE (Parametric Analysis 

of Gene Set Enrichment)5 to process the DEG data, as PAGE is much faster than GSEA and more 

sensitive.  For each comparison, we produce a rank file with gene symbol and logFC values. If a gene 

symbol appears multiple times in the same comparison, the average logFC is used. Human gene sets 

were downloaded from MSigDB, version 5.2 (msigdb.v5.2.symbols.gmt). Mouse gene sets were 

downloaded from Bader Lab from Univ. of Toronto (http://baderlab.org/GeneSets), version from 

December 2016  (Mouse_GO_AllPathways_with_GO_iea_December_01_2016_symbol.gmt). This gmt 

file contains special characters that cannot be used by the R piano package, therefore we manually 

replace special characters to / or _ .  In addition, some mouse gene sets have the same name, so we 

added suffix _altSetX to make all the names unique. For the PAGE workflow, the R piano package is 

used for all the rank files. To simplify the piano output, we combined down-regulated and up-regulated 

gene sets into a single table for each gene set. From the piano results we extract out the p-value, FDR 

and Z-score. 

Meta-Analysis 

The meta-analysis functions allow a user to combine expression data across multiple studies to find 

changes that are robust and much less likely to be due to batch differences. OmicsView offers two ways 

to perform meta-analysis. The first method works on comparison data. The system will use the 

comparison data (logFC, p-value) to compute a combined p-value and rank product (product of ranks 

for each gene across the comparisons of interest). This method is fast and can be applied to any type 

of comparison data. However, it does not use the individual sample data, nor does it consider the 

number of samples in each comparison. The second method uses per sample gene expression data. 

The user inputs a list of factors that indicate comparisons across or within studies and then gene level 

significant changes are recomputed by extracting expression data from all samples for each comparison, 

and then applying the RankProd (https://bioconductor.org/packages/release/bioc/html/RankProd.html)6 

and/or metaDE (https://github.com/metaOmics/MetaDE)7 packages to perform meta-analysis. Limma 

is also applied to get statistics for each individual comparison.  This analysis takes much longer (10 

minutes to an hour for a typical analysis, even longer if number of samples are very large), and it has 

more strict sample requirements (no samples can occur in two different comparisons). Statistically, the 

second method is more robust but both methods should detect consistently changed genes. 

Meta-analysis statistics: For comparison data the combined p-value is computed using Fisher’s method, 

that is -2*(sum of ln(p-value)) is compared against a Chi-squared distribution with N degrees of freedom, 

where N is the number of p-values being combined. This is carried out for every gene and yields a 

combined p-value that is reported. Another simpler approach is to report the maximum p-value for the 

gene across all the comparisons – a much more stringent measure of overall significance. This 

approach to combining p-values is implemented in the MetaDE R package 7. Note MetaDE will not 

produce results if > 30% of the comparisons for a gene have missing values for the p-value. In addition, 

with this approach, the p-value combination does *not* account for the direction of the fold change (up 
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or down) so the up regulated & down regulated percentage summaries need to be referred to for 

interpretation. 

The RankProd6 method converts log2 fold changes across all genes in a comparison to ranks and then 

computes a meta-statistic per gene which is the geometric mean of the ranks across comparisons. It is 

a non-parametric approach, and computes statistical significance based on permutations. Permutations 

also account for the multiple testing aspect of looking for significance within the set of all genes in the 

transcriptome. 

RESULTS AND DISCUSSION 

Currently, OmicsView is published with the entire database from the Genotype-Tissue Expression 

project (GTEx)8 and a disease database containing samples from highly studied disease areas, both 

processed with the same computational pipeline and extracted from QIAGEN DiseaseLand. The web-

based portal provides an easy-to-use framework for wet-lab biologists to interactively explore, compare 

and analyze data and produce publication-quality figures in SVG format, Figure 1. In addition, the user 

has the option of uploading their own datasets (see Supplementary Material for instructions), and by 

following the installation guide they can create their own private instance of the OmicsView application 

to store proprietary data. 

Users can easily search genes (using gene symbols, descriptions, alias or database IDs) and samples 

for detailed annotations in the database. By providing a list of gene names, users can compare 

expression of multiple genes between multiple samples within and across tissue types, disease states 

and disease categories. Differential gene expression between relevant groups is pre-computed along 

with pathway enrichment results. Gene, sample and pathway level plots are readily visualized in 

interactive JavaScript based views including PCA, Volcano, Multiple Gene Boxplot, Pathway Heatmap 

and Pathway Overlay and many more options (see Supplementary Material for user guide with all 

functionality). 

In addition to gene expression and differential gene expression data, OmicsView’s powerful pathway 

analysis module pre-computes and stores pathway enrichment results for popular public databases 

from the Gene Ontology Consortium9, WikiPathways10, Gene Set Enrichment Analysis (GSEA - 

MSigDB)11, Kyoto Encyclopedia of Genes and Genomes (KEGG)12, and Reactome13. 

 

Exploration of Crohn’s disease pathology and identification of TNFalpha signaling pathway 

dysregulation 

Crohn’s disease datasets To demonstrate the power of OmicsView in discovering underlying disease 

pathology with minimal effort, we mine Crohn’s disease datasets that are available from QIAGEN’s 

DiseaseLand. The dashboard interface allows you to quickly see the distribution of disease types and 

determine that the current database has a good representation of Crohn’s disease datasets where 

disease versus normal comparisons have been carried out and are available, see Figure 2. We then 
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select out the comparisons directly from the dashboard by selecting relevant categories. We retrieve 8 

comparisons in ileum or colon tissue across several GEO studies which enables a robust meta-analysis. 

This can be saved to a comparison list for easy access. 

We next pass that through a pathway meta-analysis by using the “Pathway Heatmap” tool against all 

PAGE genesets to get a sense of what the general disease pathology is in Crohn’s disease. We find 

very strong upregulation in a number of inflammatory genesets – many of these are oncology related 

or computationally predicted but one canonical pathway that appears in the top 5 is TNFalpha signalling 

which is strongly enriched (z-score > 10 in all comparisons tested), Figure 3A. To further probe this, by 

clicking directly on the enrichment heatmap, we can overlay the gene-expression for each comparison 

onto the TNF signalling pathway from KEGG where we can identify genes that are consistently 

upregulated in comparisons, including TNF, CEBP and many downstream cytokines and chemokines, 

Figure 3B. We believe this is a novel approach to pathway enrichment visualization as it points to key 

genes in the pathway that are consistently dysregulated in a meta-analysis, and the overlayed network 

structure can suggest potential targets for modulation. 

Then, by browsing and searching comparisons in the “Review Comparisons” interface we find that there 

is a GEO study, GSE52746, that includes colon gene expression after anti-TNF treatment. This 

comparison can be added to the disease versus control list, and on a selected set of immunologic 

pathways (including TNFalpha signalling) we see a striking reversal of the disease signature when 

comparing treatment at 12 weeks versus baseline groups, Figure 4A. A sample level representation of 

the full gene expression profiles can be generated from the PCA tool for this study, Figure 4B, which 

shows very clearly disease samples returning to normal in gene expression space, and interestingly 

two annotated non-responders in the study are outliers at 12 weeks. 

To query the magnitude of fold changes of the anti-TNF response, we can apply annotated volcano 

plots, Figure 5A where we have highlighted the genes of interest from the GSE52746 study showing 

the relative strength of the effect compared to the full transcriptome., Alternatively we can readily 

generate  multi-gene boxplots where we can group and colour by relevant patient groups, Figure 5B. 

We may also want to look for novel biomarkers of disease independent of prior biological knowledge or 

pathway enrichment, so we can ask “What is the most significantly dysregulated genes across the whole 

transcriptome in Crohn’s disease?”. The Meta Analysis (Comparisons) tools will apply several statistics 

to rank genes (see Methods) by level of dysregulation across studies. To carry out the analysis, we 

need merely re-load the previously saved comparison list, and in Fig 6A and 6B we see the results of 

such an analysis on Crohn’s disease comparisons. Most of these genes can be related back to IBD, 

colitis or colonic epithelial cell homeostasis15-17. MLKL itself is in the TNF signaling pathway as can be 

seen in Figure 3B, and has been noted as a biomarker for intestinal inflammation in IBD16. 

The power of OmicsView is in these meta-analyses across studies and diseases. Another cross-disease 

use case is a new indication search for a given target gene. For example, motivated by the Crohn’s 

disease analysis, we may want to ask “In what other indications may TNF be a good target?”. This is 
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readily answered by creating a Bubble Plot for TNF where its fold changes across many diseases and 

comparisons can be shown, and the top 10 can be highlighted, Figure 7. In this analysis we see, along 

with the consistent TNF upregulation in Crohn’s disease versus normal, there also appears to be 

significant TNF upregulation in psoriasis and ulcerative colitis. These validate the approach, as anti-

TNF treatments (e.g. infliximab, adulumamab) are approved for both of these conditions18,19.      

Discussion  

The combined user-friendly experience, accessibility and functionality of the OmicsView pathway 

analysis module improves upon popular web portals like GSEA and DAVID14 in terms of 

comprehensiveness and interactivity. 

Other omics results can also be overlaid along with transcriptomics for integrated data analysis with 

appropriate name mapping in the input dataset, and by means of the metanalysis features. By 

combining the latest advancement of visualization, harmonized state-of-the-art bioinformatics analysis 

and a large publicly available expression dataset, OmicsView is an easy-to-use powerful platform that 

can benefit all scientists, especially ones with limited programming skills in the biomedical research 

field. The entire system is released as open source for wide adoption and further enhancement. The 

Supplementary Material outlines the detailed steps for interacting with the system and generating plots 

and analyses of interest. 

DATA AVAILABILITY 

OmicsView source code and installation guide is freely available at 

 https://github.com/interactivereport/OmicsView 

A publicly hosted instance of OmicsView, preloaded with GTEx and selected DiseaseLand studies is 

available at http://omicsview.org 

SUPPLEMENTARY DATA 

Supplementary Data are available at NAR online. 
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Figure 1. Schematic view of main analytical functionalities in OmicsView on Data Exploration by PCA, 

heatmap analysis, Biological Interpretation by pathway mapping and comparison, and Meta-Analysis 

by bubble and forest plots. 

 

Figure 2. Part of “Comparison Dashboard” view in OmicsView showing breakdown of comparisons for 

Crohn’s disease (highlighted interactively in green barplot), 8 disease versus normal expression 

comparisons are available and selected (orange selection in pie chart, top right). 

Figure 3. (A) PAGE results: TNFalpha signalling is a top enriched pathway across 8 Crohn’s disease 

dataset comparisons of disease versus normal. (B) KEGG pathway highlight of the upregulated TNF 

pathway showing central role for TNF and downstream consequences on chemokines and cytokines. 
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Figure 4. (A) GSE52746 study: Pathway scores for an anti-TNF expression profile compared to 

baseline untreated. On a selected set of immunologic pathways, including TNFalpha signalling (top 

row in the heatmap) we see a very strong reversal of the disease signature (red – upregulated) 

compared to TNF treated (blue – downregulated). (B) The PCA tool in OmicsView allows us to 

examine GSE52746 samples individually where we can see baseline disease (blue circles), normal 

control (red circles) and the 12 week treated samples which show an intermediate profile and are 

returning to control. Interestingly the two outlier treated samples are non-responders. 

 

Figure 5. Gene level drill down into selected genes for inflammatory mediators in Crohn’s disease 

from GSE52746. A select set of genes from the original publication are viewed in a volcano plot for 

anti-TNFa response (A) and as boxplots partitioned by gene and grouped by response category (NA 

response means baseline samples, prior to treatment). The responders (red triangles) clearly show 

much more pronounced cytokine suppression towards normal levels compared to non-responders 

(red squares). 
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Figure 6. Unbiased (independent of pathway knowledge) meta-analysis of most dysregulated genes 

in Crohn’s disease using the Meta-analysis (Comparisons) feature of OmicsView. Panel (A) provides 

a bubble plot view where the consistency of changes in disease versus control comparisons across 

studies is apparent. Panel (B) is part of a numeric table exported showing the individual comparison 

data. Four out of five of these genes have literature evidence for involvement in inflammatory bowel 

disease, colitis and epithelial cell homeostasis. 

 

Figure 7. Looking at TNF fold changes across disease types in OmicsView to identify other potential 

indications for anti-TNF treatment. The bubble plot shows the top ten diseases (y-axis) where TNF is 

significantly dysregulated. The x axis is log2 fold change, and the bubble size is proportional to 

significance. Each panel is a different comparison type, the most relevant one for new disease 

discovery is “Disease vs. Normal”. We see both psoriasis and ulcerative colitis are both consistently 

upregulated in TNF. Note that by hovering over the “Treament1 vs. Treatment2” bubbles for 

osteoarthritis and rheumatoid arthritis we see that in fact this is an in vitro experiment with 

administration of TNF (versus vehicle), hence the high observed TNF levels. 
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