

1 **β-Catenin-NF_κB-CFTR interactions in cholangiocytes regulate**
2 **inflammation and fibrosis during ductular reaction**

3 *Shikai Hu^{1,2}, *Jacquelyn O. Russell², Silvia Liu^{2,3}, Ravi Rai², Karis Kosar², Junyan
4 Tao², Edward Hurley⁴, Minakshi Poddar², Sucha Singh², Aaron Bell², Donghun Shin^{3,5},
5 Reben Raeman^{2,3}, Aatur D. Singhi^{2,3}, Kari Nejak-Bowen^{2,3}, **Sungjin Ko^{2,3},
6 **Satdarshan P. Monga^{2,3,6}

7 ¹School of Medicine, Tsinghua University, Beijing, China;

8 ²Department of Pathology¹, ³Pittsburgh Liver Research Center, ⁴Department of
9 Pediatrics, and ⁵Department of Developmental Biology, ⁶Department of Medicine,
10 University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center,
11 Pittsburgh, PA, USA

12

13 **Running Title:** β-Catenin-p65-CFTR interactions in cholangiocytes

14 Abstract word count: 146

15 Number of Figures: 8

16 Number of Supplementary Figures: 5

17 Number of Supplementary Tables: 2

18 Number of words in text: 4940

19

20

21

22 **Keywords:** Liver fibrosis, inflammation, β-catenin, Wnt pathway, ductular reaction,
23 biliary epithelial cells, NF-κB, cystic fibrosis, CFTR

24

25

26 ***Address Correspondence to:**
27 Satdarshan P. S. Monga, MD, FAASLD
28 Professor of Pathology and Medicine

29 University of Pittsburgh, School of Medicine
30 University of Pittsburgh Medical Center
31 200 Lothrop Street S-422 BST,
32 Pittsburgh, PA 15261
33 Tel: (412) 648-9966; Fax: (412) 648-1916; E-mail: smonga@pitt.edu
34

35 Sungjin Ko, DVM, PhD
36 Research Assistant Professor
37 Department of Pathology (Division of Experimental Pathology)
38 University of Pittsburgh, School of Medicine
39 200 Lothrop Street S-422 BST,
40 Pittsburgh, PA 15261
41 Email: sungjin@pitt.edu

42 **Conflict of Interest**

43 No conflict of interest for any of the authors relevant to the current study.

44 **Acknowledgements**

45 This work was supported by NIH grants 1R01DK62277, 1R01DK100287,
46 1R01DK116993, R01CA204586, 1R01CA251155-01 and Endowed Chair for
47 Experimental Pathology to S.P.M. This work was also supported in part by
48 1R01CA258449 to SK. This work was also supported by T32EB0010216 and
49 1F31DK115017-01 to J.O.R. This work was also supported by P30DK120531 to the
50 Pittsburgh Liver Research Center for services provided by Biospecimen Repository and
51 Processing Core.

52

53

54 **Contributors**

55 Conceived project, analyzed and interpreted results, wrote manuscript: SH, JOR, SK,

56 SPM

57 Performed experiments: SH, JOR, RR, KK, AB, SS, EH,

58 Provided reagents or performed specialized analysis and interpretations: SL, SS, MP,

59 AB, DS, RR, ADS, KN, JT

60

61 **Abstract**

62 Expansion of biliary epithelial cells (BECs) during ductular reaction (DR) is observed in
63 liver diseases including cystic fibrosis (CF), and associated with inflammation and
64 fibrosis, *albeit* without complete understanding of underlying mechanism. Using two
65 different genetic knockouts of β -catenin, one with β -catenin loss in hepatocytes and
66 BECs (KO1), and another with loss in only hepatocytes (KO2), we demonstrate
67 disparate long-term repair after an initial injury by 2-week choline-deficient ethionine-
68 supplemented diet. KO2 show gradual liver repopulation with BEC-derived β -catenin-
69 positive hepatocytes, and resolution of injury. KO1 showed persistent loss of β -catenin,
70 NF- κ B activation in BECs, progressive DR and fibrosis, reminiscent of CF histology. We
71 identify interactions of β -catenin, NF κ B and CF transmembranous conductance
72 regulator (CFTR) in BECs. Loss of CFTR or β -catenin led to NF- κ B activation, DR and
73 inflammation. Thus, we report a novel β -catenin-NF κ B-CFTR interactome in BECs, and
74 its disruption may contribute to hepatic pathology of CF.

75

76 **Introduction**

77 The liver possesses unique regenerative potential. During chronic liver injury,
78 however, liver fibrosis accompanies regeneration and can progress to cirrhosis, which
79 can then progress to end-stage liver disease (ESLD) or hepatocellular cancer (HCC)¹.
80 Currently, cirrhosis is the 11th leading cause of death globally, and the incidence of liver
81 disease continues to rise as conditions such as non-alcoholic fatty liver disease
82 (NAFLD) and alcoholic liver disease continue to prevail². Thus, there has been great
83 interest in studying mechanisms of injury, inflammation and fibrosis during liver injury in
84 order to effectively develop novel therapies. The role of hepatic epithelial cells (referred
85 henceforth as 'hepithelial' cells), which include both hepatocytes and cholangiocytes or
86 biliary epithelial cells (BECs), in regulating microenvironment is beginning to be
87 appreciated. Loss of hepatocyte differentiation in chronic liver diseases and ESLD,
88 either due to much needed hepithelial proliferation for repair, or as an adaptation to
89 escape injury, seems to contribute to not only loss of key hepatic functions, but is also
90 causally associated with increased immune response and hepatic fibrosis^{3, 4}. However,
91 how hepithelial cells may modulate hepatic immune microenvironment, is unclear.

92 As an important hepithelial cell type, BECs are known to undergo proliferation to
93 replace dying BECs in cholangiopathies or cystic liver diseases, as well as can under
94 phenotypic switch to generate *de novo* hepatocytes when hepatocytes are chronically
95 injured and/or are unable to optimally proliferate, phenomena termed as ductular
96 reaction (DR)^{5, 6}. Reactive ductules, however, can secrete pro-inflammatory and pro-
97 fibrotic cytokines to induce inflammation, activate myofibroblasts, and induce fibrosis.
98 The extent of DR correlates with fibrosis in many types of liver injuries^{7, 8, 9}. The

99 molecular underpinnings of reactive DR is incompletely understood although molecules
100 like Yes associated protein-1 (YAP1) have been implicated¹⁰.

101 β -Catenin, the major downstream effector of the Wnt signaling is a well-known
102 mediator of hepatocyte proliferation. Liver-specific (hepatocyte and BECs) β -catenin
103 knockout (KO1) mice generated by breeding β -catenin-floxed and albumin-cre mice
104 show delayed liver regeneration (LR) after partial hepatectomy or after toxicant-induced
105 liver injury^{11, 12}. When KO1 were administered choline-deficient, ethionine-supplemented
106 (CDE) diet, it triggered greater steatosis, cell death, DR, inflammation and fibrosis than
107 wild-type (WT1), and upon switching to normal diet for 2 weeks (2w) for recovery,
108 continued to show greater injury due to an impairment of hepatocyte proliferation^{13, 14}.
109 Similar greater injury, fibrosis and DR was observed in CDE-fed hepatocyte-only β -
110 catenin KO (KO2), generated by delivering adeno-associated virus serotype 8 carrying
111 a plasmid encoding *Cre* recombinase under a hepatocyte-specific thyroxine-binding
112 globulin (TBG) promoter (AAV8-TBG-Cre) into the β -catenin-floxed mice¹⁴. Intriguingly,
113 labeling BECs for fate-tracing, showed the liver repair to occur through BEC-to-
114 hepatocyte transdifferentiation upon recovery for 2w and up to 6 months on normal diet,
115 although long-term impact on injury resolution, inflammation, DR and fibrosis was not
116 studied in either model¹⁴.

117 In the current study, we investigate hepatic injury and repair in KO2 and KO1
118 mice challenged for 2w with CDE diet and allowed to recover on normal diet for 2w, 3
119 months (3m) and 6m. Intriguingly, we observed highly divergent injury-repair responses
120 in the two models. KO2 mice showed progressive repair through expansion of BEC-
121 derived β -catenin-positive hepatocytes, and resolution of inflammation, DR and fibrosis.

122 However, KO1 display progressive and peculiar DR composed of numerous small
123 luminal structures lined by a single layer of BECs, even after being on normal diet for
124 6m, which is associated with fibrosis and inflammation, and is reminiscent of Cystic
125 fibrosis (CF)-like morphology. We identify a unique interactome of β -catenin, p65
126 subunit of NF- κ B and Cystic fibrosis transmembranous conductance regulator (CFTR)
127 in BECs and show perturbations in these interactions leading to excessive NF- κ B
128 activation and inflammation in BECs in both KO1 and CF patients.

129

130 **Results**

131 **Long term follow-up of mice lacking β -catenin in hepatocytes only (KO2) show**
132 **delayed but eventual resolution of fibrosis and DR after initial 2w CDE diet.** We
133 previously showed CDE diet for 2w led to enhanced injury, fibrosis, and DR in mice
134 lacking β -catenin in hepatocytes only (KO2), generated by delivering AAV8-TBG-Cre
135 into *Ctnnb1*^{fl/fl}; *Rosa-stop*^{fl/fl}-*EYFP* mice, as compared to WT2 mice, generated by
136 injecting AAV8-TBG-Cre into *Ctnnb1*^{+/+}; *Rosa-stop*^{fl/fl}-*EYFP* mice¹⁴. And that upon
137 switching to normal diet, liver repair occurred via hepatocyte proliferation in WT2 but
138 through BEC-to-hepatocyte transdifferentiation in KO2¹⁴. To specifically investigate
139 durability of repair especially after the increased injury observed in the KO2 mice at 2w
140 of CDE diet, we fed CDE diet to KO2 and WT2 mice for 2w and switched to normal diet
141 for 2w, 3m or 6m (Fig.1A). KO2 mice had elevated serum alanine aminotransferase
142 (ALT) and total bilirubin (BR) levels than WT2 at 2w of CDE diet, but returned to normal
143 at 2w onwards after switching to normal diet, similar to WT2, although BR levels tended
144 to be higher in KO2 up to 3m of recovery (Fig.1B). Alkaline phosphatase (ALP) was

145 increased in WT2 and KO2 after 2w of CDE injury but returned to normal at 2w of
146 recovery in both groups (Fig.1B).

147 Previously by fate-tracing, we observed a BECs transdifferentiated to
148 hepatocytes and expanded in KO2¹⁴. Likewise, by immunohistochemistry (IHC) for β -
149 catenin that is only present in BECs in KO2 at baseline, there were increased numbers
150 of β -catenin-positive hepatocytes at 3m and 6m of recovery (Fig.1C). RT-PCR for β -
151 catenin gene (*Ctnnb1*) expression showed increasing expression in KO2 livers over
152 time, becoming comparable to WT2 at 6m (Fig.1D).

153 Sirius red staining for fibrosis showed greater collagen deposition in KO2 than
154 WT2 at 2w of CDE diet and persisted at 2w of recovery (Fig.2A,2B). Interestingly,
155 despite being on normal diet and lack of any ongoing injury, KO2 continued to show
156 fibrosis at 3m, eventually resolving at 6m (Fig. 2A, 2B). Likewise, expression of *Col1a1*
157 and *Tgfb2* tended to be higher in KO2 compared to WT2 mice at 3m recovery, but were
158 comparable to WT2 at 6m (Fig.2C).

159 Since increased DR was observed in KO2 after CDE-diet induced injury, and
160 fibrosis can be associated with DR, we next performed IHC for pan-cytokeratin (PanCK)
161 (Fig.2D). There was robust DR in KO2 mice and WT2 mice after 2w CDE diet, and was
162 also evident at 2w of recovery although it was more pronounced in KO2. At 3m of
163 recovery, normal bile ducts are seen in WT2 whereas DR composed of flattened, non-
164 luminal, and single or few cell clusters is evident throughout liver lobule in KO2 (Fig.2D).
165 At 6m, there was no DR in either group (Fig.2D). Gene expression of BEC markers
166 *Krt19* and *Epcam* confirmed these observations (Fig.2E).

167 Expression of the gene encoding tissue inhibitor of metalloproteinase 1a (*Timp1*),
168 a well-known inhibitor of matrix metalloproteinases, known for a role in extracellular
169 matrix degradation, was determined next as a possible mechanism of fibrosis
170 resolution^{15, 16}. Higher expression of *Timp1* persisted in KO2 as compared to WT2 at all
171 recovery times except 6m, coinciding with resolution of fibrosis and DR (Fig.2F).

172 Taken together, these results suggest that higher DR is associated with greater
173 fibrosis in KO2, and resolution of the DR and fibrosis took longer in KO2 than WT2,
174 which correlated with enhanced repopulation of the KO2 liver with β-catenin-positive
175 hepatocytes and normalization of *Timp1* levels.

176 **Long term follow-up of mice lacking β-catenin in hepatocytes and BECs (KO2)**
177 **show prolonged fibrosis and DR without any evidence of regression after initial**
178 **2w CDE-diet.** Next, we next placed *Albumin-Cre*^{+/−} *Ctnnb1*^{flox/flox} (KO1) mice lacking β-
179 catenin in hepatocytes and BECs, and their wild-type littermates (WT1) on CDE diet for
180 2w and allowed recovery on normal diet for 2w, 3m and 6m (Fig.3A). We observed
181 severe liver injury in KO1 mice, shown by significantly higher serum ALT and total BR
182 after 2w of CDE diet compared to WT1. During recovery, serum ALT levels in KO1 and
183 WT1 mice decreased to normal levels (Fig.3B), while BR remained mildly elevated in
184 KO1 mice up to 3m of recovery as compared to WT1 which returned to normal at 2w of
185 recovery (Fig.3B). Serum ALP levels were comparably increased in WT1 and KO1 at
186 2w of CDE injury and returned to normal levels at 2w recovery (Fig.3B).

187 Since β-catenin is lacking in epithelial cells in the KO1 livers, IHC for β-catenin
188 and RT-PCR for *Ctnnb1* showed continued absence in KO1 and not WT1 at 3m and 6m
189 recovery on normal diet (Fig.3C,3D).

190 We previously reported increased fibrosis in KO1 mice compared to WT1
191 littermates after 2w CDE diet¹⁴. Here, we evaluated fibrosis during recovery on normal
192 diet in both WT1 and KO1. Despite normalization of serum transaminases during
193 recovery, we observed continued fibrosis especially in the periportal area in KO1
194 especially at 3m and 6m by Sirius Red staining, whereas WT1 mice displayed resolution
195 of fibrosis as early as 2w recovery (Fig.4A). Quantification verified significant increases
196 in fibrosis in KO1 at all time points compared to WT1 (Fig.4B). Additionally, expression
197 of *Col1a1* tended to be higher in KO1 mice during recovery (Fig.4C).

198 DR was next assessed by IHC for PanCK. While there was a dramatic decrease
199 in DR overtime in WT1 mice, a profound DR was observed in KO1 mice at all times,
200 which was even more pronounced at 6m of recovery (Fig.4D). Furthermore, the DR was
201 peculiar and composed of numerous small luminal structures lined by a single layer of
202 PanCK-positive columnar cells at 3m and 6m, rather than more flattened and invasive
203 DR without lumen seen at earlier stages of CDE injury and recovery in both WT1, KO1
204 and even KO2 (Fig.4D,2D). Enhanced gene expression for *Krt19* and *Epcam* was
205 simultaneously evident in KO1 at these times (Fig.4E).

206 To determine if the continued DR was due to ongoing BEC proliferation, we co-
207 stained KO1 livers from 3m recovery with PanCK and proliferating cell nuclear antigen
208 (PCNA) (Fig.S1A). Significantly more BECs were proliferating in KO1 compared to WT1
209 mice (Fig. S1B). A subset of BECs in DR were also positive for phospho-Erk1/2 (p-
210 Erk1/2), known for regulating BEC proliferation (Fig.S1C)¹⁷.

211 Since decreased gene expression of *Timp1* correlated with reduced fibrosis in
212 KO2 at 6m of recovery, we next investigated its levels in KO1 and WT1. *Timp1* tended
213 to be upregulated in KO1 mice at all times but significantly at 6m recovery time (Fig.4F).

214 Taken together, these results suggest that KO1 mice which continue to lack β -
215 catenin in hepithelial cells, show persistent *Timp1* and fibrosis, and display continued
216 and morphologically distinct DR associated with increased BEC proliferation at all times
217 after the initial 2w CDE-diet injury, despite lack of active insult.

218 **Unremarkable changes in hepatic bile acids, apoptosis and senescence during**
219 **resolution of fibrosis and DR during recovery from CDE diet in KO2 mice.** To
220 discern the basis of disparate DR and fibrosis between the two models, we first focused
221 on investigating differences in specific injury processes between KO2 and WT2 during
222 CDE injury and recovery. Increased hepatic bile acids have been implicated in hepatic
223 injury and repair¹⁸ and our lab has previously reported altered hepatic bile acids (BAs) in
224 KO1 mice after Methionine-Choline deficient (MCD) diet^{19, 20}. However, CDE diet-fed
225 KO2 or WT2 mice showed no significant increase in hepatic bile acids at any time
226 suggesting these to not be driving DR or fibrosis in this model (Fig.S2A). We also
227 investigated cell senescence as a possible driver of DR and fibrosis²¹. However, no
228 significant hepatocyte senescence was observed by p21 IHC in WT2 or KO2 mice
229 during long-term recovery from CDE diet (Fig.S2B).

230 Although ALTs were not elevated, we wanted to directly address any ongoing
231 injury in recovering WT1 and KO1 mice. Cleaved caspase-3 staining showed minimal
232 cell death in both WT1 and KO1 mice at 3m of recovery (Fig.S2C).

233 Thus, BA alterations, cellular senescence, and cell death are not the basis of DR
234 and fibrosis in CDE injury, and hence can't explain differences in recovery between KO1
235 and KO2 mice.

236 **Maintenance of adherens junctions in KO2 and KO1 during recovery from CDE-diet injury.** Next, we assessed if continued absence of β -catenin in KO1 but not in KO2
237 at 6m of recovery could be affecting adherens junctions (AJs) integrity, and could
238 explain differences in DR and fibrosis between KO2 and KO1 mice. Temporal disruption
239 of cell-cell junctions has been associated with pathologies in hepatobiliary injury
240 including after CDE diet²². However, at 6m of recovery, immunoprecipitation (IP) with E-
241 cadherin showed an association of E-cadherin to β -catenin in KO2 and with γ -catenin in
242 KO1, as has been shown in β -catenin-deficient livers by us previously (Fig.S2D)²³.
243 Thus, intact AJs are present in both models during recovery, and can't be the basis of
244 sustained DR and fibrosis in KO1.

246 **Prolonged periportal inflammation in KO1 but not in KO2 mice during recovery from CDE diet correlates with ongoing DR and fibrosis.** Previously, the presence of
247 immune cell infiltration has been shown to be essential in development of DR and
248 fibrosis. Mice lacking Th1 immune signaling or interferon- γ showed impaired DR and
249 decreased fibrosis after CDE diet²⁴. To address inflammation, we performed staining for
250 CD45, a pan-leukocyte marker. There were high numbers of CD45-positive cells in WT2
251 and KO2 mice after 2w CDE diet, which declined in WT2 after 2w weeks of recovery but
252 persisted pan-lobularly in KO2 up to 3m, and normalized to WT2 levels by 6m (Fig.5A).
253 CD45-positive cells were present in high numbers in both WT1 and KO1 at 2w weeks of
254 CDE-diet and while these numbers returned to baseline in WT2 at 2w of recovery, a

256 more intense periportal appearing infiltration was seen in KO1 especially at 3m and 6m
257 (Fig.5B).

258 To determine if these inflammatory cells were close to DR, we performed triple
259 immunofluorescence (IF) for PanCK, CD45, and myofibroblast marker α -smooth muscle
260 actin (α SMA) (Fig.S3A). At 2w CDE diet, both WT2 and KO2 livers exhibited
261 inflammatory cells and α SMA-positive cells close to BECs. After 2w of recovery, α SMA-
262 positive cells were no longer associated with BECs in WT2 and no immune cells were
263 seen. In KO2 mice, BECs, α SMA-positive cells and leukocytes were seen in close
264 proximity to each other up to 3m months of recovery and returned to WT2-state at 6m
265 (Fig.S3A). KO1 livers showed closely associated CD45- and PanCK-positive cells at all
266 times in contrast to WT1 which lacked CD45 cells at all times after 2w of recovery
267 (Fig.S3A). Intriguingly, even in KO1, α SMA-positive cells were not observed at any time
268 after 2w of recovery. Overall, the presence of CD45-positive cells close to PanCK-
269 positive cells was clear in KO1 but not in KO2 at 6m (Fig.5C).

270 Analysis in whole livers for expression of *Adgre1*, gene encoding macrophage
271 marker F4/80, showed significant increase in KO1 compared to WT1 mice at 3m
272 recovery (Fig.5D), and these macrophages were located close to the DR (Fig.S3B).
273 Bone marrow monocyte-derived macrophages express high levels of *Itgam* (CD11b),
274 and infiltrate liver during injury, express pro-inflammatory cytokines, and are involved in
275 both progression and recovery phases of fibrosis²⁵. *Itgam* expression was significantly
276 higher in KO1 at 3m and 6m recovery times (Fig.5D). There was also increased staining
277 for Ly6G, a marker for monocytes, granulocytes, and neutrophils, in KO1 at 3m and 6m
278 recovery times (Fig.5E).

279 Together, these results show resolution of DR and fibrosis in KO2 correlated with
280 reduced inflammation, whereas persistent β -catenin-negative DR and continuing fibrosis
281 in KO1 mice at late recovery stages from CDE injury was associated with persistent
282 periportal inflammation.

283 **Lack of β -catenin from BECs in KO1 leads to persistent NF- κ B activation during**
284 **recovery from CDE-diet induced injury.** To address the mechanism of enhanced
285 periportal inflammation, we next assessed the status of NF- κ B, the master regulator of
286 immune cell response. We have previously shown an inhibitory interaction of β -catenin
287 with p65 subunit of NF- κ B in hepatocytes and the absence of β -catenin in KO1 led to
288 increased NF- κ B activation in response to Lipopolysaccharide (LPS) or Tumor necrosis
289 factor- α challenge²⁶. Further, while immune cells are essential for DR and fibrosis,
290 reactive ductules are a well-known source of pro-inflammatory and pro-fibrogenic
291 cytokines and thus this cross-cellular signaling perpetuates overall injury^{27, 28}. Since
292 inflammatory cells were specifically enriched in KO1 in the periportal region and
293 associated closely to the DR, we next assessed NF- κ B status along with β -catenin in
294 BECs in KO2 and KO1. At baseline in KO2, p65 subunit of NF- κ B was present in the
295 cytosol of the CK19-positive cells, as was β -catenin (Fig.6A). In KO1, at baseline,
296 CK19-positive BECs lacked β -catenin and p65 was still evident in cytosol (Fig.6A). At
297 2w of CDE-diet, when DR and inflammation is ongoing in both KO2 and KO1 livers, a
298 subset of CK19-positive BECs showed comparable nuclear p65 by confocal microscopy
299 in both groups (Fig.6B,6C). At 6m, β -catenin-positive, CK19-positive BECs showed only
300 cytosolic p65 similar to baseline (Fig.6B). However, unlike at baseline, KO1 livers at 6m
301 recovery from CDE injury showed profound nuclear translocation of p65 in almost all

302 CK19-positive BECs which continued to lack β -catenin (Fig.6B). Quantification showed
303 significant difference in nuclear p65 in BECs in KO1 versus KO2 at 6m recovery time-
304 point (Fig.6C).

305 To verify if nuclear p65 indicated NF- κ B activation, 84 downstream target genes
306 were checked by RT-PCR array (fold change threshold=>2, p-value threshold=0.05).
307 Relative to WT1, we found a striking upregulation in the expression of 44% of genes
308 (37/84) in KO1, whereas 92% of genes (77/84) in KO2 livers were unchanged at 6m of
309 recovery (Fig.6E). Clustergram showed KO2s were indistinguishable from WT1, but
310 KO1 clearly separated from both groups (Fig.S4).

311 Altogether, these data suggest a pronounced and prolonged NF- κ B activation in
312 BECs lacking β -catenin along with periportal inflammation during recovery phase from
313 CDE injury, whereas presence of β -catenin dampened NF- κ B activation in BECs to
314 curbed inflammation and assist in recovery from the same injury.

315 **β -Catenin modulation in BECs leads to differential impact on NF- κ B activity**
316 **through β -catenin and p65 interactions.** To more conclusively address the
317 relationship between β -catenin and NF- κ B in BECs directly, we utilized immortalized
318 mouse small cholangiocyte cells (SMCCs), which were transfected with control- or β -
319 catenin siRNA together with either β -catenin-TCF Topflash reporter or p65 luciferase
320 reporter. Knockdown of β -catenin in SMCCs shown by a significant decrease in
321 Topflash activity, induced p65 luciferase activity, which was 3-times greater than caused
322 by 100ng/ml LPS stimulation (Fig.7A). Conversely, expression of stable S45Y- β -catenin
323 or T41A- β -catenin (not shown) in SMCCs led to increased Topflash activity but
324 significantly decreased p65 reporter activity with or without LPS (Fig.7B). Similar

325 negative regulation was also observed in MzChA and HuCCT1, two independent human
326 BEC lines (Fig.S5A,5B).

327 To address how β -catenin regulates NF- κ B activity, SMCCs transfected with
328 control- or Ctnnb1-siRNA were cultured with or without LPS, and subjected to cell
329 fractionation. WB using nuclear- and cytoplasmic-enriched fractions showed
330 significantly higher levels of p65 in the nuclear compartment in β -catenin-silenced group
331 versus controls, both with or without LPS (Fig.7C,7D).

332 Next, we modulated β -catenin activity in SMCCs to determine changes in global
333 gene expression. Bulk RNA-seq was performed on β -catenin-silenced or control
334 SMCCs, and on SMCCs transfected with S45Y- β -catenin or eGFP. Using a cutoff p -
335 value ≤ 0.05 and $\text{abs}(\text{log2FC}) \geq 1.5$, we found 335 β -catenin-regulated genes in BECs.
336 Specifically, β -Catenin-silenced SMCCs showed 75 upregulated and 122
337 downregulated, and β -catenin-active SMCCs showed 76 upregulated and 69
338 downregulated genes (Fig.S5C,5D). While there was a minimal overlap (Fig.S5E),
339 JASPAR was queried to identify transcription factor (TF) binding profiles in the 335
340 DEGs. RELA (p65) was identified among the top TFs (ranking by p -value), with 9.6% of
341 DEGs showing known RELA regulation (32/335, $p=0.015$), and 15.2% (51/335,
342 $p=0.088$) showing NF- κ B binding sites (Fig.7E). Interestingly, from RNA-seq and by
343 qPCR, we found modest but significant increase in CCL2, and a more pronounced and
344 significant increase in CXCL5 expression, in the β -catenin-silenced SMCCs (Fig.7F).
345 After 6m recovery from CDE diet, a significant induction in CCL2 and CXCL5
346 expression was noted in KO1 but not in WT1 and KO2 (Fig.7G).

347 Next, we investigated if β -catenin interacts with p65 in BECs. Whole cell lysates
348 from SMCCs and normal mouse liver were used to pulldown p65. We identified robust
349 β -catenin association with p65 in SMCCs (Fig.7H,7I). A fainter but positive β -catenin-
350 p65 association was evident in whole livers, likely due to low BEC representation in
351 protein lysates from whole livers (Fig.7I). To further verify presence of β -catenin-p65
352 complex in BECs *in vivo*, we examined β -catenin and p65 localization using confocal
353 microscopy. In WT1 liver at baseline, a notable co-localization of p65 and β -catenin was
354 evident in BECs which was absent in KO1 (Fig.7J,S5F). Quantification of co-localization
355 using Image J showed about 35% of p65 is associated with β -catenin, which was
356 significantly greater than KO1 (Fig.7J).

357 Altogether, biochemical and IF studies identify a heretofore undescribed β -
358 catenin-p65 complex in BECs. Further, β -catenin seems to be important in shutting off
359 NF- κ B activation when its signaling is not required anymore and absence of β -catenin in
360 BECs leads to sustained and excessive NF- κ B activation along with its associated
361 sequela- proliferation, inflammation and fibrosis^{29, 30}.

362 **Nuclear p65 in pathologic DR in subset of clinical cases divulges heretofore
363 unidentified interactions of β -catenin, p65 and CFTR.** Since persistent DR observed
364 in KO1 at 3m and 6m after recovery from CDE injury showed unique morphology
365 consisting of numerous small luminal structures lined by a single layer of PanCK-
366 positive cells, we decided to interrogate livers from clinical cases exhibiting DR including
367 alcoholic hepatitis (AH), polycystic liver disease (PLD) and cystic fibrosis (CF). As seen
368 by panCK IF, AH cases displayed DR with variable morphology including areas of
369 luminal small DR (shown in representative case), whereas PLD showed large cysts

370 lined by flattened BECs (Fig.8A). DR in CF was more homogeneous and appeared
371 uniformly reminiscent of what we observed in 3m and 6m recovery times in KO1
372 (Fig.4D, 8A). Intriguingly, strongest and significant nuclear p65 was consistently
373 observed in DR seen in CF cases followed by PLD with only a very small subset of cells
374 in DR showing nuclear p65 in AH (Fig.8B). While β -catenin seem to be unaltered by IF
375 staining in all three pathologies (Fig.8A), we observed a decrease in total β -catenin in a
376 single CF case from whom two independent frozen liver samples were available
377 (Fig.8C).

378 CF cases typically have varying loss-of-function (LOF) mutations in *CFTR* gene.
379 Since β -catenin-p65 interactions were observed in SMCCs, we next assessed if CFTR
380 is interacting with this complex. We observed concomitant pulldown of both B-Band
381 (faster migrating core glycosylated immature form) as well as slowly migrating C-Band
382 (complex glycosylated form)³¹, along with p65, when we immunoprecipitated β -catenin
383 in SMCCs (Fig.8D). To mimic LOF of CFTR seen in CF, we next silenced *Cftr* in
384 SMCCs. Knockdown of *Cftr* led to a pronounced increase in p65 reporter activity
385 (Fig.8E). Likewise, the expression of NF- κ B target chemokines *Ccl2* and *Cxcl5*, were
386 significantly induced upon *Cftr* knockdown (Fig.8F). To query impact of β -catenin
387 modulation, we next co-expressed stable- β -catenin (S45Y-mutant) in control and *Cftr*-
388 siRNA-transfected SMCCs. Stabilization of β -catenin significantly decreased CFTR
389 knockdown-induced p65 activation (Fig.8E).

390 Thus, we identify important interactions between β -catenin, p65 and CFTR in
391 BECs, and LOF of CFTR or β -catenin leads to enhanced p65 activation, which can be
392 inhibited by β -catenin stabilization.

393 **Discussion**

394 DR is a common hallmark of many chronic liver pathologies although it's
395 morphology is heterogeneous ranging from isolated invasive ductular cells, luminal
396 phenotype and sometimes purely cystic^{5, 6, 32}. The significance of DR remains
397 controversial and has been associated with both repair and disease progression^{5, 33}. Its
398 role as a source of *de novo* hepatocytes through the process of transdifferentiation is
399 indisputable in preclinical models shown by many fate-tracing studies^{14, 21, 32, 34}. At the
400 same time, DR can induce fibrosis by secreting pro-inflammatory and profibrogenic
401 factors to contribute to the disease process^{7, 8, 9, 29, 35}. What drives the pro-inflammatory
402 and pro-fibrogenic phenotype of these reactive BECs and what reverts these cells back
403 to normal, is poorly understood.

404 Previously, we and others have described β-catenin-p65 complex in hepatocytes,
405 breast and colon cancer cells, which could inhibit NF-κB activation^{26, 36}. The exact
406 biological significance of this interaction is not well understood, and likely context
407 dependent. We identify this complex in normal cholangiocytes demonstrating its critical
408 role in homeostasis in this cell-type. Being a 'sticky' protein, β-catenin interacts with
409 many proteins in a cell to modulate their activities³⁷. We show that β-catenin-p65
410 complex, keeps NF-κB activity in check by preventing its nuclear translocation. β-
411 Catenin activation is observed in BECs in DR during chronic liver injuries^{38, 39, 40}. Unlike
412 in hepatocytes, β-catenin activation in BECs does not play a role in proliferation^{14, 40}.
413 Our current study shows β-catenin stabilization in BECs may in fact be 'mopping' up
414 p65 to dampen and eventually shutting off NF-κB activation, reverting BECs to their
415 quiescence. NF-κB activation has been shown to be important in BEC proliferation and

416 DR by regulating Jagged/Notch signaling²⁹. And NF- κ B in BECs has been suggested to
417 play a role in inducing profibrogenic and pro-inflammatory milieu as well⁴¹. Absence of
418 β -catenin in BECs in KO1 prevented formation of a complex with p65, allowing
419 unchecked NF- κ B activation whereas re-formation of β -catenin-p65 complex in KO2 as
420 a way of keeping inflammation in check during chronic injuries. Molecular underpinnings
421 of β -catenin stabilization in BECs during liver injuries remains under investigation
422 although portal fibroblasts, macrophages, hepatocytes and BECs have all been shown
423 to secrete ligands like Wnt7a, Wnt7b, Wnt10a and Wnt5a^{39, 40, 42}.

424 Another intriguing observation was the distinct morphology of DR evident in the
425 recovery phase from the CDE injury in β -catenin-deficient livers, which was reminiscent
426 histology in CF cases⁴³. Surprisingly, very few BECs in AH showed nuclear p65, while
427 PLD cases showed variable but increased nuclear p65 in cells lining the cysts.
428 However, DR in CF cases exhibited strong and consistent nuclear p65. This led us to
429 investigate interactions between β -catenin-p65 and CFTR, whose gene is mutated in
430 CF. CFTR protein is present in BECs only in the liver⁴⁴. We observed a pulldown of
431 CFTR (B-Band and C-Band) with β -catenin in BEC line. To mimic LOF, which is the
432 common end-result of *CFTR* mutations in CF patients, we silenced CFTR in SMCC line,
433 which led to a profound p65 activation that was decreased upon β -catenin stabilization.
434 This suggests an important tripartite regulatory interaction between these proteins.
435 Interestingly, in human lung epithelial cells, a proteomic screen identified interaction of
436 β -catenin with WT CFTR but not with Δ F508 CFTR, a major site of LOF mutation in the
437 *CFTR*⁴⁵. Additionally, in mouse intestine, CFTR was shown to stabilize β -catenin and

438 prevent its degradation⁴⁶. The same study showed that ΔF508 CFTR is unable to
439 interact with β-catenin leading to β-catenin degradation and eventually resulting in
440 activation of NF-κB-mediated inflammatory cascade. Our results show an existence of a
441 tripartite interaction between β-catenin, p65 and CFTR in cholangiocytes and LOF of
442 CFTR led to reduced β-catenin protein in BECs both *in vitro* (SMCC) and *in vivo* (CF
443 patient liver lysate), leading to profound NF-κB activation and increased expression of
444 its pro-inflammatory chemokine targets. We believe that the classical pathology of liver
445 disease in CF including periductal inflammation, DR, periportal fibrosis, and focal biliary
446 cirrhosis, may be explained by our observations, in addition to previously described
447 mechanisms such as Rous sarcoma oncogene cellular homolog (Src) dependent toll
448 like receptor-4 activation⁴⁷. Since β-catenin activation in BECs inhibited NF-κB
449 activation due to CFTR-silencing, this strategy may have therapeutic implications in
450 controlling CF disease progression in the liver and elsewhere and future studies will
451 directly address this novelty. NF-κB activation has been shown to be important in BEC
452 proliferation and DR by regulating Jagged/Notch signaling²⁹. The same study showed
453 NF-κB activation to be regulated by Cystein-rich protein 61 (CYR61), whose knockdown
454 reduced DR. Incidentally, *CFTR* was also significantly reduced in that study and might
455 have been a mechanism of DR through disruption of CTFR-p65-β-catenin interactions.
456 The mechanism of NF-κB activation and whether these tripartite interactions are playing
457 any role in other pathologies such PLD or subset of AH cases, requires further
458 investigation.

459 There is very little understanding of the process of resolution of DR along with its
460 associated fibrosis, although these are strongly linked to inflammation⁴⁸. Our study

461 provides novel insight into not only the molecular underpinnings of a reactive
462 cholangiocyte, but also sheds light on how BECs regulate the immune
463 microenvironment. Levels of Timp1 correlate with fibrosis, and several groups have
464 investigated the use of TIMP1 levels as a biomarker for fibrosis in hepatitis C patients^{49,}
465 ⁵⁰. Mice with overexpression of TIMP1 developed dramatically more fibrosis after CCl₄
466 treatment¹⁵, and TIMP1 transgenic mice showed impaired fibrosis resolution after
467 cessation of CCl₄¹⁶. Our data is consistent since expression of *Timp1* was associated
468 with fibrosis, and levels of *Timp1* normalized upon resolution of fibrosis.

469

470 **Materials and Methods**

471 **Animals.** All animals are housed in temperature and light-controlled facilities and are
472 maintained in accordance with the Guide for Care and Use of Laboratory Animals and
473 the Animal Welfare Act. Generation of *Albumin-Cre;Ctnnb1*^{flox/flox} mice and wild-type
474 littermates has been described previously¹². Generation of *Ctnnb1*^{flox/flox}; *Rosa-stop*^{flox/flox}-
475 *EYFP* reporter mice was also described previously¹⁴. In brief, 23–25 day-old
476 *Ctnnb1*^{flox/flox}; *Rosa-stop*^{flox/flox}-*EYFP* mice were injected intraperitoneally with 1x10¹²
477 genome copies (GCs) of adeno-associated virus serotype 8 encoding Cre recombinase
478 under the hepatocyte-specific thyroid binding globulin promoter (AAV8-TBG-Cre)
479 (Addgene) followed by a 12 days (12d) washout period. The same protocol was utilized
480 on *Ctnnb1*^{+/+}; *Rosa-stop*^{flox/flox}-*EYFP* mice to generate WT2 mice. When mice were 4-6
481 weeks old, choline-deficient diet (Envigo Teklad Diets) supplemented with 0.15%
482 ethionine drinking water (Acros Organics, 146170100) was administered for 2 weeks.
483 For recovery time points, animals were switched back to normal chow diet for up to 6

484 months. Serum biochemistry analysis was performed by automated methods at the
485 University of Pittsburgh Medical Center clinical chemistry laboratory. All studies were
486 performed according to the guidelines of the National Institutes of Health and the
487 University of Pittsburgh Institutional Animal Use and Care Committee.

488 **Patient data.** All patient tissue sections were provided by the Pittsburgh Liver Research
489 Center's (PLRC's) Clinical Biospecimen Repository and Processing Core (CBPRC),
490 supported by P30DK120531. Sections from 5 patients with healthy liver, 12 patients
491 with DR from AH (n=10) and/or NASH (n=2), 5 patients with DR associated with PLD,
492 and 6 patients with DR in CF cases were triple stained with CK19, p65, β -catenin for
493 further analysis. Patient information from these groups of cases is listed in
494 Supplementary Table 1. Two pieces of frozen livers from one CF patient (TP10-P531)
495 was provided by Pitt Biospecimen Core and used for WB. Information on this case is
496 also included in Supplementary Table 1.

497 **Immunohistochemistry.** The IHC protocols have been described previously¹⁴. In brief,
498 liver tissue was fixed in 10% buffered formalin for 48 hours prior to paraffin embedding.
499 Blocks were cut into 4 μ m sections, deparaffinized, and washed with PBS. For antigen
500 retrieval, samples were microwaved for 12 minutes in pH 6 sodium citrate buffer
(PanCK, CD45, p-Erk1/2, Cleaved Caspase 3) or Tris-EDTA buffer (p21), were
502 pressure cooked for 20 minutes in pH 6 sodium citrate buffer (β -catenin), or were
503 incubated with Proteinase K (Agilent Dako, S302030-2) for 10 minutes (F4/80).
504 Samples were then placed in 3% H₂O₂ for 10 minutes to quench endogenous peroxide
505 activity. After washing with PBS, slides were blocked with Super Block (ScyTek
506 Laboratories, AAA500) for 10 minutes or 10% goat serum in PBS for 10 minutes (p21).

507 The primary antibodies were incubated at the following concentrations in antibody
508 diluent (PBS + 1% BSA (Fisher BioReagents, BP1605-100) with 0.1% Tween™ 20
509 (Fisher BioReagents, BP337-500): PanCK (Dako, Z0622, 1:200), Cleaved Caspase 3
510 (Cell Signaling, 9664, 1:100), p-Erk1/2 (Cell Signaling, 4370, 1:100), F4/80 (BioRad,
511 MCA497A488, 1:100) for one hour at room temperature or at 4°C overnight: β-catenin
512 (Abcam, ab32572, 1:50) and p21 (Santa Cruz, sc-471, 1:25). Samples were washed
513 with PBS three times and incubated with the appropriate biotinylated secondary
514 antibody (Vector Laboratories) diluted 1:500 in antibody diluent for 30 minutes at room
515 temperature. Samples were washed with PBS three times and sensitized with the
516 Vectastain® ABC kit (Vector Laboratories, PK-6101) for 30 minutes. Following three
517 washes with PBS color was developed with DAB Peroxidase Substrate Kit (Vector
518 Laboratories, SK-4100), followed by quenching in distilled water for five minutes. Slides
519 were counterstained with hematoxylin (Thermo Scientific, 7211), dehydrated to xylene
520 and coverslips applied with Cytoseal™ XYL (Thermo Scientific, 8312-4). For Sirius Red
521 staining, samples were deparaffinized and incubated for one hour in Picro-Sirius Red
522 Stain (American MasterTech, STPSRPT), washed twice in 0.5% acetic acid water,
523 dehydrated to xylene, and coverslipped. Images were taken on a Zeiss Axioskop 40
524 inverted brightfield microscope.

525 **Immunofluorescence.** Liver tissue was fixed in 10% buffered formalin overnight,
526 cryopreserved with 30% sucrose in PBS overnight, frozen in OCT compound (Sakura,
527 4583) and stored at -80°C. OCT-embedded samples were cut into 5 µm sections,
528 allowed to air-dry, and then washed in PBS. Antigen retrieval was performed through
529 microwaving in pH 6 sodium citrate buffer. Slides were washed with PBS and

530 permeabilized with 0.1% Triton X-100 in PBS for 20 minutes at room temperature.

531 Samples were washed three times with PBS and then blocked with 2% Donkey serum

532 in 0.1% Tween™ 20 in PBS (antibody diluent) for 30 minutes at room temperature.

533 Antibodies were diluted as follows: PanCK (Dako Z0622, 1:200), PCNA (Santa Cruz

534 Biotechnology, sc-56, 1:1000), p65 (Santa Cruz Biotechnology, sc-372, 1:500), β -

535 catenin (BD Biosciences, 610154, 1:500), CK-19 (DSHB, TROMA-III, 1:10) in antibody

536 diluent and incubated at 4°C overnight. Ly6G (Clone: RB6-8C5) antibody was

537 purchased from Thermo Fisher Scientific, Waltham, MA. Samples were washed three

538 times in PBS and incubated with the proper fluorescent secondary antibody (AlexaFluor

539 488/555/647, Invitrogen) diluted 1:400 in antibody diluent for two hours at room

540 temperature. The α SMA antibody is directly conjugated to Cy3 and requires no

541 secondary antibody. Samples were washed three times with PBS and incubated with

542 DAPI (Sigma, B2883) for 1 minute. Samples were washed three times with PBS and

543 mounted with fluoromount (SouthernBiotech) or ProLong™ Gold antifade reagent

544 (Invitrogen, P10144). Images were taken on a Nikon Eclipse Ti epifluorescence

545 microscope or a Zeiss LSM700 confocal microscope.

546 **Image quantification.** To determine BEC proliferation, for each sample seven images

547 at x200 magnification of periportal regions were taken and in each image the number of

548 PanCK+/PCNA+ cells was manually counted. For quantification of Sirius Red staining,

549 staining intensity was measured in ImageJ for five images at 100x magnification per

550 sample. To determine p65 nuclear positive cholangiocytes, four images from each

551 animal or patient at x200 magnification of ductular reaction regions were counted.

552 **RT-PCR.** Whole liver was homogenized in TRIzol™ (Thermo Scientific, 15596026) and
553 nucleic acid was isolated through phenol-chloroform extraction. Cellular DNA was
554 digested with DNA-free™ Kit (ambion, AM1906), and RNA was reverse-transcribed into
555 cDNA using SuperScript® III (Invitrogen, 18080-044). Real-time PCR was performed in
556 technical triplicate on a StepOnePlus™ Real-Time PCR System (Applied Biosystems,
557 4376600) or on a BioRad CFX96 Real-Time System using the Power SYBR® Green
558 PCR Master Mix (Applied Biosystems, 4367660). Target gene expression was
559 normalized to the average of two housekeeping genes (*Gapdh* and *Rn18s*), and fold
560 change was calculated utilizing the $\Delta\Delta$ -Ct method. Primers are listed in Supplementary
561 Table 2. For RT-PCR Arrays, 2 μ l of cDNA, 7.5 μ l of Power SYBR® Green PCR Master
562 Mix and 4.5 μ l of nuclease-free water, were premixed and added to each well of RT²
563 Profiler™ PCR Array Mouse NF κ B Signaling Pathway (Qiagen, PAMM-025Z) for target
564 gene qPCR. RT-PCR arrays data were analyzed at GeneGlobe
565 (<https://geneglobe.qiagen.com/us/analyze/>). The average of three housekeeping genes
566 (*Rn18s*, *Actb* and *Gapdh*) was used for normalization. Volcano plot and clustergram
567 were generated by the data analysis web portal mentioned above.

568 **Immunoprecipitation and Western blot.** Whole liver tissue was homogenized in RIPA
569 buffer premixed with fresh protease and phosphatase inhibitor cocktails. Cytoplasmic
570 and Nuclear extracts were prepared using the NE-PER™ Nuclear and Cytoplasmic
571 Extraction Reagents (Thermo Fisher Scientific, 78835). The concentration of the protein
572 was determined by the bicinchoninic acid assay. For immunoprecipitation, 1mg of
573 SMCC lysate was precleared with 40 μ l of Protein A/G PLUS-Agarose (Santa Cruz
574 Biotechnology, sc-2003) for 2 hours at 4°C. After centrifugation (3,000 rpm, 1 minute),

575 the supernatant was incubated with 2 μ g of p65 antibody (Santa Cruz Biotechnology, sc-
576 8008, 1:100), 2 μ g of β -catenin antibody (BD Biosciences, 610154, 1:100) or control IgG
577 overnight at 4°C. The next day, samples were incubated with 40 μ l of Protein A/G PLUS-
578 Agarose for 1 hour at 4°C. The pellet was collected, washed with RIPA buffer for 3
579 times, resuspended in 10 μ l of loading buffer, and subjected to electrophoresis. Protein
580 lysate was separated on pre-cast 7.5% or 4-20% polyacrylamide gels (Bio-Rad) and
581 transferred to the PVDF membrane using the Trans-Blot Turbo Transfer System (Bio-
582 Rad). Membranes were blocked for 75 minutes with 5% skim milk (Lab Scientific,
583 M0841) or 5% BSA in Blotto buffer (0.15M NaCl, 0.02M Tris pH 7.5, 0.1% Tween in
584 dH₂O), and incubated with primary antibodies at 4°C overnight at the following
585 concentrations: β -catenin (Cell Signaling, 8480, 1:1000 in 1% BSA), p65 (Cell Signaling,
586 8242, 1:1000 in 1% BSA), CFTR (Alomone labs, ACL-006, 1:250 in 1% BSA), GAPDH
587 (Cell Signaling, 5174, 1:10000 in 1% milk), Histone H3 (Cell Signaling, 9715, 1:1000 in
588 1% milk). Membranes were washed in Blotto buffer and incubated with the appropriate
589 HRP-conjugated secondary antibody for 75 minutes at room temperature. Membranes
590 were washed with Blotto buffer, and bands were developed utilizing SuperSignal® West
591 Pico Chemiluminescent Substrate (Thermo Scientific, 34080) and visualized by
592 autoradiography.

593 **Cell culture and reporter assays.** SMCCs, MzChA and HuCCT1 were seeded on 6
594 well plates in a humidity-saturated incubator with 5% CO₂ maintained at 37°C. For p65
595 reporter assay, Cells were transfected with 2 μ g of p65 reporter and 0.2 μ g of *Renilla*
596 (internal control) together with 2 μ g of either eGFP (control) or S45Y to overexpress
597 constitutively active β -catenin using Lipofectamine™ 3000 Transfection Reagent

598 (Invitrogen™, L3000008), or together with si-Control (Cell Signaling, 6568) and si- β -
599 catenin (Cell Signaling, 6225) to knockdown β -catenin using Lipofectamine™ RNAiMAX
600 Transfection Reagent (Invitrogen™, 13778150). For TopFlash reporter assay, p65
601 reporter above was replaced by TopFlash plasmid. Cells were treated with 100ng/ml of
602 LPS 6 hours before harvest. si-CFTR (Santa Cruz Biotech, sc-35053) was used to
603 knockdown CFTR in SMCCs. Cells were harvested at 48 hours and luciferase signals
604 were got using Dual-Luciferase® Reporter Assay System (Progema, E1910) and
605 normalized to the value of *Renilla*.

606 **Measurement of hepatic bile acids.** Total hepatic bile acids were measured using the
607 Mouse Total Bile Acids Assay Kit from Crystal Chem (Downers Grove, IL), as per the
608 manufacturer's instructions. To isolate total bile acids from liver, 50-100mg frozen liver
609 tissue was homogenized in 70% ethanol at room temperature, then samples were
610 incubated in capped glass tubes at 50°C for 2 hours. The homogenates were
611 centrifuged at 6,000g for 10 minutes to collect the supernatant. Total bile acid
612 concentrations were determined using the calibration curve from the standard provided
613 in the kit and the mean change in absorbance value for each sample.

614 **RNAseq and analysis.** Twelve SMCC RNA samples were measured: 3 for CTNNB1
615 activation (SMCC-S45Y), 3 for CTNNB1 activation control (SMCC-eGFP), 3 for
616 CTNNB1 silencing (SMCC-si- β -catenin), 3 for CTNNB1 silencing control (SMCC-si-
617 Control). In total 12 RNA-seq libraries were sequenced. For each library, quality control
618 was performed to each raw sequencing data by tool FastQC. Based on the QC results,
619 low-quality reads and adapter sequences were filtered out by tool Trimmomatic⁵¹.
620 Surviving reads were then aligned to mouse reference genome mm10 by aligner

621 Hisat2⁵². HTSeq tool⁵³ was then applied to the aligned file for gene quantification.

622 Based on the gene count, differential expression analysis was applied to compare

623 CTNNB1 activation samples with their corresponding controls, and to compare CTNNB1

624 silencing samples with their corresponding controls, respectively. R package DESeq2⁵⁴

625 was employed to perform the test and differentially expressed genes (DEGs) were

626 defined as genes with fold-change higher than 1.5-fold and p-value (or adjusted p-value)

627 smaller than 0.05. These DEGs were further used to detect common upstream

628 transcription factors based on the JASPAR database⁵⁵. Opposite regulation directions of

629 the activation and silencing models were finally compared in terms of DEGs. All

630 statistical analyses were performed by R programming. Raw RNA-seq data and gene

631 count quantification were submitted to NCBI GEO data base with accession ID

632 GSE155981 (<https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE155981>).

633 **Statistics.** For analysis of serum biochemistry between two groups, a two-tailed t-test

634 was performed. For analysis of cell counts, such as proliferating BECs, a Mann-Whitney

635 U Test was performed. A p<0.05 was considered significant, and plots are mean ± SD.

636 Detailed statistic information for each assay is in the figure legend. All statistical

637 analysis and graph generation was performed using GraphPad Prism 7 software.

638

639

640 **REFERENCES**

641 1. Pellicoro A, Ramachandran P, Iredale JP, Fallowfield JA. Liver fibrosis and repair: immune
642 regulation of wound healing in a solid organ. *Nat Rev Immunol* **14**, 181-194 (2014).

643 2. Asrani SK, Devarbhavi H, Eaton J, Kamath PS. Burden of liver diseases in the world. *J Hepatol* **70**,
644 151-171 (2019).

645 3. Argemi J, *et al.* Defective HNF4alpha-dependent gene expression as a driver of hepatocellular
646 failure in alcoholic hepatitis. *Nat Commun* **10**, 3126 (2019).

647 4. Nishikawa T, *et al.* Resetting the transcription factor network reverses terminal chronic hepatic
648 failure. *J Clin Invest* **125**, 1533-1544 (2015).

649 5. Sato K, Marzoni M, Meng F, Francis H, Glaser S, Alpini G. Ductular Reaction in Liver Diseases:
650 Pathological Mechanisms and Translational Significances. *Hepatology* **69**, 420-430 (2019).

651 6. Wilson DB, Rudnick DA. Invasive Ductular Reaction: Form and Function. *Am J Pathol* **189**, 1501-
652 1504 (2019).

653 7. Lowes KN, Brennan BA, Yeoh GC, Olynyk JK. Oval cell numbers in human chronic liver diseases
654 are directly related to disease severity. *Am J Pathol* **154**, 537-541 (1999).

655 8. Richardson MM, *et al.* Progressive fibrosis in nonalcoholic steatohepatitis: association with
656 altered regeneration and a ductular reaction. *Gastroenterology* **133**, 80-90 (2007).

657 9. Zhao L, Westerhoff M, Pai RK, Choi WT, Gao ZH, Hart J. Centrilobular ductular reaction correlates
658 with fibrosis stage and fibrosis progression in non-alcoholic steatohepatitis. *Mod Pathol* **31**, 150-
659 159 (2018).

660 10. Planas-Paz L, *et al.* YAP, but Not RSPO-LGR4/5, Signaling in Biliary Epithelial Cells Promotes a
661 Ductular Reaction in Response to Liver Injury. *Cell Stem Cell* **25**, 39-53.e10 (2019).

662 11. Apte U, *et al.* Beta-catenin activation promotes liver regeneration after acetaminophen-induced
663 injury. *Am J Pathol* **175**, 1056-1065 (2009).

664 12. Tan X, Behari J, Cieply B, Michalopoulos GK, Monga SP. Conditional deletion of beta-catenin
665 reveals its role in liver growth and regeneration. *Gastroenterology* **131**, 1561-1572 (2006).

666 13. Akhurst B, *et al.* A modified choline-deficient, ethionine-supplemented diet protocol effectively
667 induces oval cells in mouse liver. *Hepatology* **34**, 519-522 (2001).

680

681 14. Russell JO, *et al.* Hepatocyte-Specific β -Catenin Deletion During Severe Liver Injury Provokes
682 Cholangiocytes to Differentiate Into Hepatocytes. *Hepatology* **69**, 742-759 (2019).

683

684 15. Yoshiji H, *et al.* Tissue inhibitor of metalloproteinases-1 promotes liver fibrosis development in a
685 transgenic mouse model. *Hepatology* **32**, 1248-1254 (2000).

686

687 16. Yoshiji H, *et al.* Tissue inhibitor of metalloproteinases-1 attenuates spontaneous liver fibrosis
688 resolution in the transgenic mouse. *Hepatology* **36**, 850-860 (2002).

689

690 17. Pepe-Mooney BJ, *et al.* Single-Cell Analysis of the Liver Epithelium Reveals Dynamic
691 Heterogeneity and an Essential Role for YAP in Homeostasis and Regeneration. *Cell Stem Cell* **25**,
692 23-38.e28 (2019).

693

694 18. Fickert P, Wagner M. Biliary bile acids in hepatobiliary injury - What is the link? *J Hepatol* **67**,
695 619-631 (2017).

696

697 19. Behari J, *et al.* Liver-specific beta-catenin knockout mice exhibit defective bile acid and
698 cholesterol homeostasis and increased susceptibility to diet-induced steatohepatitis. *Am J
699 Pathol* **176**, 744-753 (2010).

700

701 20. Thompson MD, *et al.* beta-Catenin regulation of farnesoid X receptor signaling and bile acid
702 metabolism during murine cholestasis. *Hepatology* **67**, 955-971 (2018).

703

704 21. Lu WY, *et al.* Hepatic progenitor cells of biliary origin with liver repopulation capacity. *Nat Cell
705 Biol* **17**, 971-983 (2015).

706

707 22. Pradhan-Sundd T, *et al.* Dysregulated Bile Transporters and Impaired Tight Junctions During
708 Chronic Liver Injury in Mice. *Gastroenterology* **155**, 1218-1232 e1224 (2018).

709

710 23. Pradhan-Sundd T, *et al.* Dual catenin loss in murine liver causes tight junctional deregulation and
711 progressive intrahepatic cholestasis. *Hepatology* **67**, 2320-2337 (2018).

712

713 24. Knight B, *et al.* Attenuated liver progenitor (oval) cell and fibrogenic responses to the choline
714 deficient, ethionine supplemented diet in the BALB/c inbred strain of mice. *J Hepatol* **46**, 134-
715 141 (2007).

716

717 25. Guillot A, Tacke F. Liver Macrophages: Old Dogmas and New Insights. *Hepatol Commun* **3**, 730-
718 743 (2019).

719

720 26. Nejak-Bowen K, Kikuchi A, Monga SP. Beta-catenin-NF-kappaB interactions in murine
721 hepatocytes: a complex to die for. *Hepatology* **57**, 763-774 (2013).

722

723 27. Fava G, Glaser S, Francis H, Alpini G. The immunophysiology of biliary epithelium. *Semin Liver Dis*
724 **25**, 251-264 (2005).

725

726 28. Pinto C, Giordano DM, Maroni L, Marzoni M. Role of inflammation and proinflammatory
727 cytokines in cholangiocyte pathophysiology. *Biochim Biophys Acta Mol Basis Dis* **1864**, 1270-
728 1278 (2018).

729

730 29. Kim KH, Chen CC, Alpini G, Lau LF. CCN1 induces hepatic ductular reaction through integrin
731 alphavbeta(5)-mediated activation of NF-kappaB. *J Clin Invest* **125**, 1886-1900 (2015).

732

733 30. Luedde T, Schwabe RF. NF-kappaB in the liver--linking injury, fibrosis and hepatocellular
734 carcinoma. *Nat Rev Gastroenterol Hepatol* **8**, 108-118 (2011).

735

736 31. Chang XB, *et al.* Role of N-linked oligosaccharides in the biosynthetic processing of the cystic
737 fibrosis membrane conductance regulator. *J Cell Sci* **121**, 2814-2823 (2008).

738

739 32. Nejak-Bowen K. If It Looks Like a Duct and Acts Like a Duct: On the Role of Reprogrammed
740 Hepatocytes in Cholangiopathies. *Gene Expr* **20**, 19-23 (2020).

741

742 33. Kamimoto K, Nakano Y, Kaneko K, Miyajima A, Itoh T. Multidimensional imaging of liver injury
743 repair in mice reveals fundamental role of the ductular reaction. *Commun Biol* **3**, 289 (2020).

744

745 34. Raven A, *et al.* Cholangiocytes act as facultative liver stem cells during impaired hepatocyte
746 regeneration. *Nature* **547**, 350-354 (2017).

747

748 35. Aguilar-Bravo B, *et al.* Ductular Reaction Cells Display an Inflammatory Profile and Recruit
749 Neutrophils in Alcoholic Hepatitis. *Hepatology* **69**, 2180-2195 (2019).

750

751 36. Deng J, *et al.* beta-catenin interacts with and inhibits NF-kappa B in human colon and breast
752 cancer. *Cancer Cell* **2**, 323-334 (2002).

753

754 37. Russell JO, Monga SS. Wnt/β-Catenin Signaling in Liver Development, Homeostasis, and
755 Pathobiology. *Annu Rev Pathol*, (2017).

756

757 38. Apte U, Thompson MD, Cui S, Liu B, Cieply B, Monga SP. Wnt/beta-catenin signaling mediates
758 oval cell response in rodents. *Hepatology* **47**, 288-295 (2008).

759

760 39. Hu M, *et al.* Wnt/beta-catenin signaling in murine hepatic transit amplifying progenitor cells.
761 *Gastroenterology* **133**, 1579-1591 (2007).

762 40. Okabe H, *et al.* Wnt signaling regulates hepatobiliary repair following cholestatic liver injury in
763 mice. *Hepatology* **64**, 1652-1666 (2016).

764

765 41. O'Hara SP, Tabibian JH, Splinter PL, LaRusso NF. The dynamic biliary epithelia: molecules,
766 pathways, and disease. *J Hepatol* **58**, 575-582 (2013).

767

768 42. Wilson DH, *et al.* Non-canonical Wnt signalling regulates scarring in biliary disease via the planar
769 cell polarity receptors. *Nat Commun* **11**, 445 (2020).

770

771 43. Sakiani S, Kleiner DE, Heller T, Koh C. Hepatic Manifestations of Cystic Fibrosis. *Clin Liver Dis* **23**,
772 263-277 (2019).

773

774 44. Cohn JA, Strong TV, Picciotto MR, Nairn AC, Collins FS, Fitz JG. Localization of the cystic fibrosis
775 transmembrane conductance regulator in human bile duct epithelial cells. *Gastroenterology*
776 **105**, 1857-1864 (1993).

777

778 45. Pankow S, *et al.* F508 CFTR interactome remodelling promotes rescue of cystic fibrosis. *Nature*
779 **528**, 510-516 (2015).

780

781 46. Liu K, Zhang X, Zhang JT, Tsang LL, Jiang X, Chan HC. Defective CFTR- beta-catenin interaction
782 promotes NF-kappaB nuclear translocation and intestinal inflammation in cystic fibrosis.
783 *Oncotarget* **7**, 64030-64042 (2016).

784

785 47. Fiorotto R, *et al.* The cystic fibrosis transmembrane conductance regulator controls biliary
786 epithelial inflammation and permeability by regulating Src tyrosine kinase activity. *Hepatology*
787 **64**, 2118-2134 (2016).

788

789 48. Ko S, Russell JO, Molina LM, Monga SP. Liver Progenitors and Adult Cell Plasticity in Hepatic
790 Injury and Repair: Knowns and Unknowns. *Annu Rev Pathol*, (2019).

791

792 49. Leroy V, *et al.* Circulating matrix metalloproteinases 1, 2, 9 and their inhibitors TIMP-1 and
793 TIMP-2 as serum markers of liver fibrosis in patients with chronic hepatitis C: comparison with
794 PIIINP and hyaluronic acid. *Am J Gastroenterol* **99**, 271-279 (2004).

795

796 50. Boeker KH, Haberkorn CI, Michels D, Flemming P, Manns MP, Lichtenhagen R. Diagnostic
797 potential of circulating TIMP-1 and MMP-2 as markers of liver fibrosis in patients with chronic
798 hepatitis C. *Clin Chim Acta* **316**, 71-81 (2002).

799

800

801 51. Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data.
802 *Bioinformatics* **30**, 2114-2120 (2014).

803

804 52. Kim D, Langmead B, Salzberg SL. HISAT: a fast spliced aligner with low memory requirements.
805 *Nat Methods* **12**, 357-360 (2015).

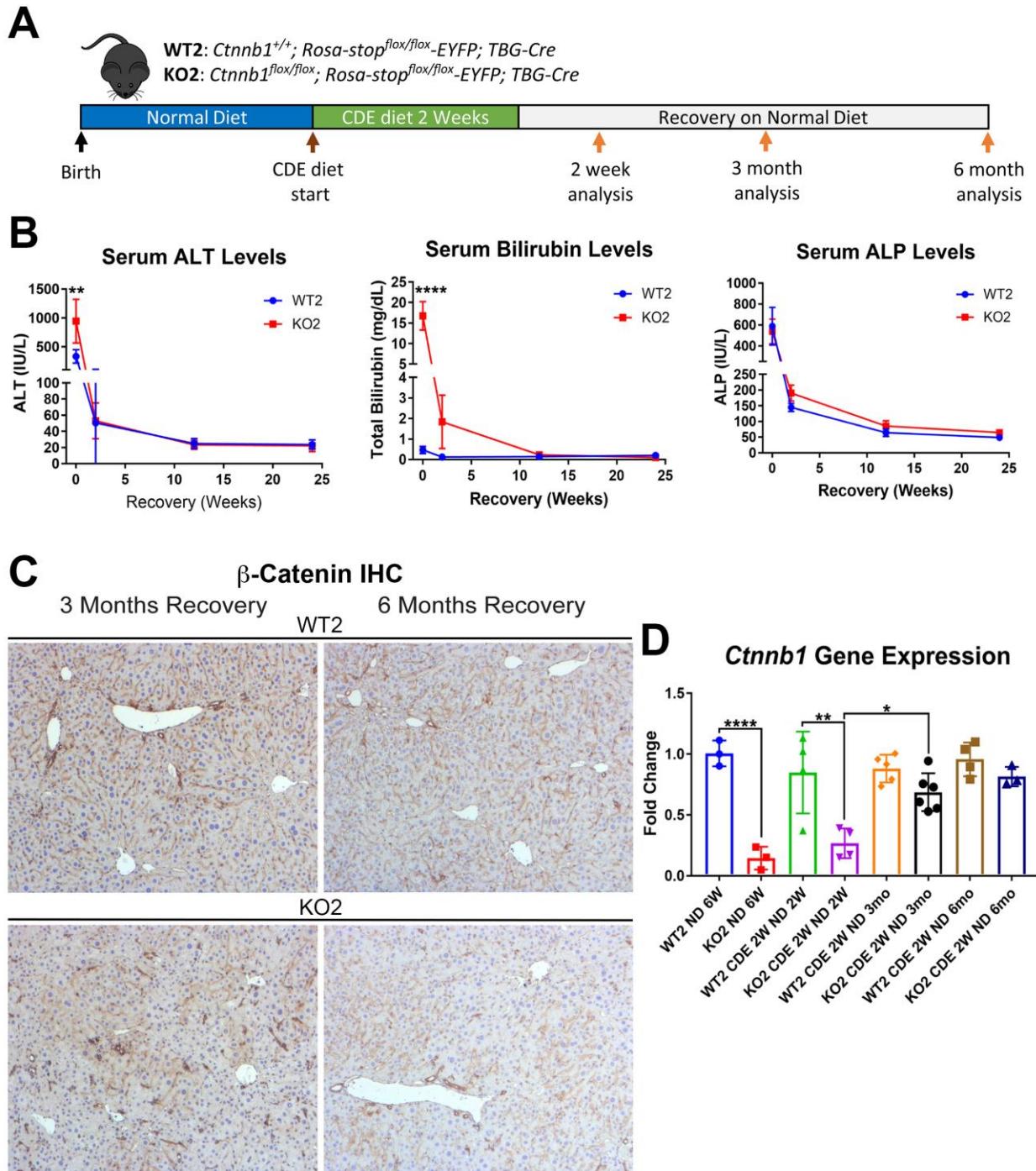
806

807 53. Anders S, Pyl PT, Huber W. HTSeq--a Python framework to work with high-throughput
808 sequencing data. *Bioinformatics* **31**, 166-169 (2015).

809

810 54. Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq
811 data with DESeq2. *Genome Biol* **15**, 550 (2014).

812

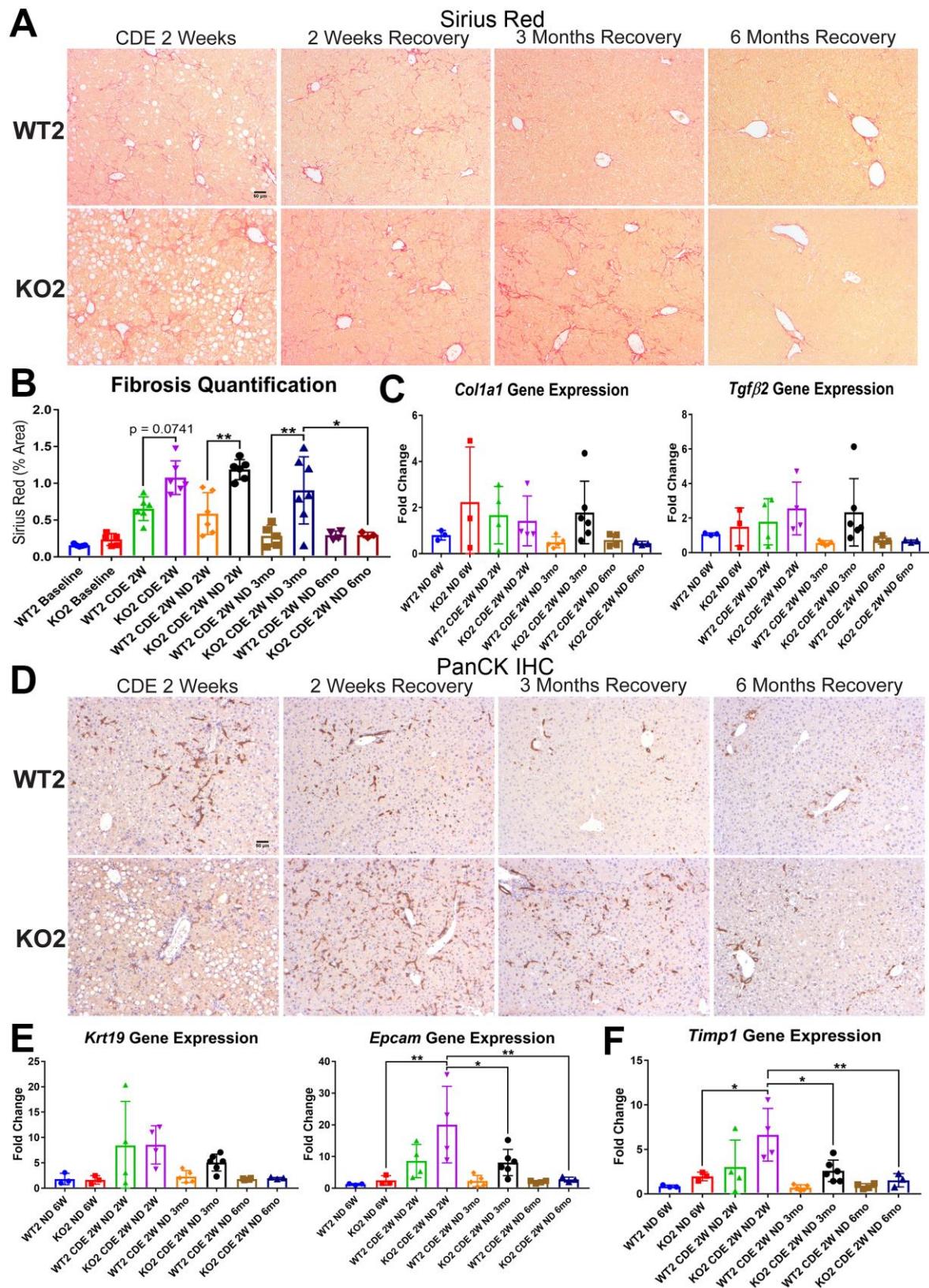

813 55. Fornes O, *et al.* JASPAR 2020: update of the open-access database of transcription factor binding
814 profiles. *Nucleic Acids Res* **48**, D87-D92 (2020).

815

816

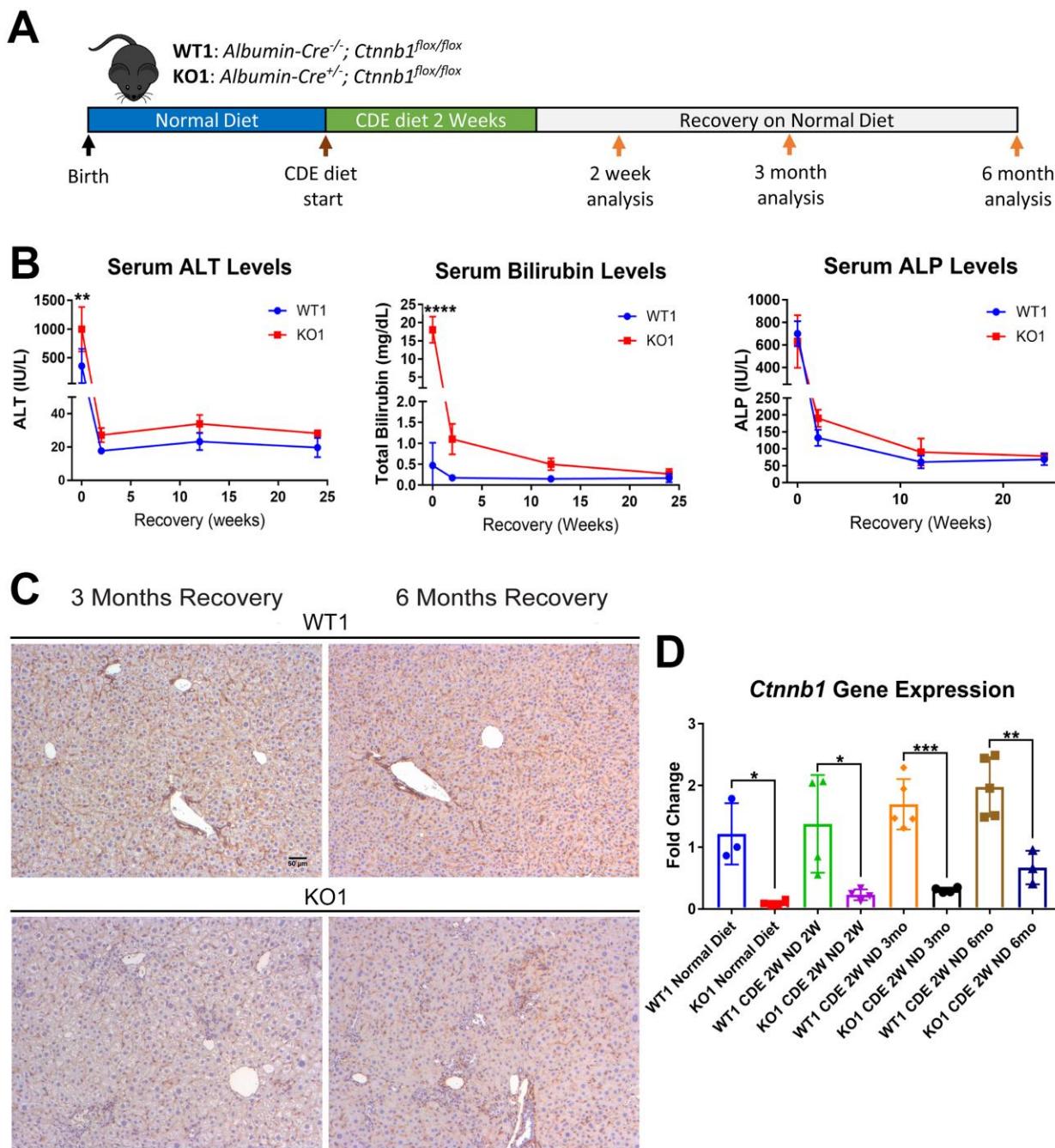
817

818 **FIGURES**
819
820 **Figure 1**



821

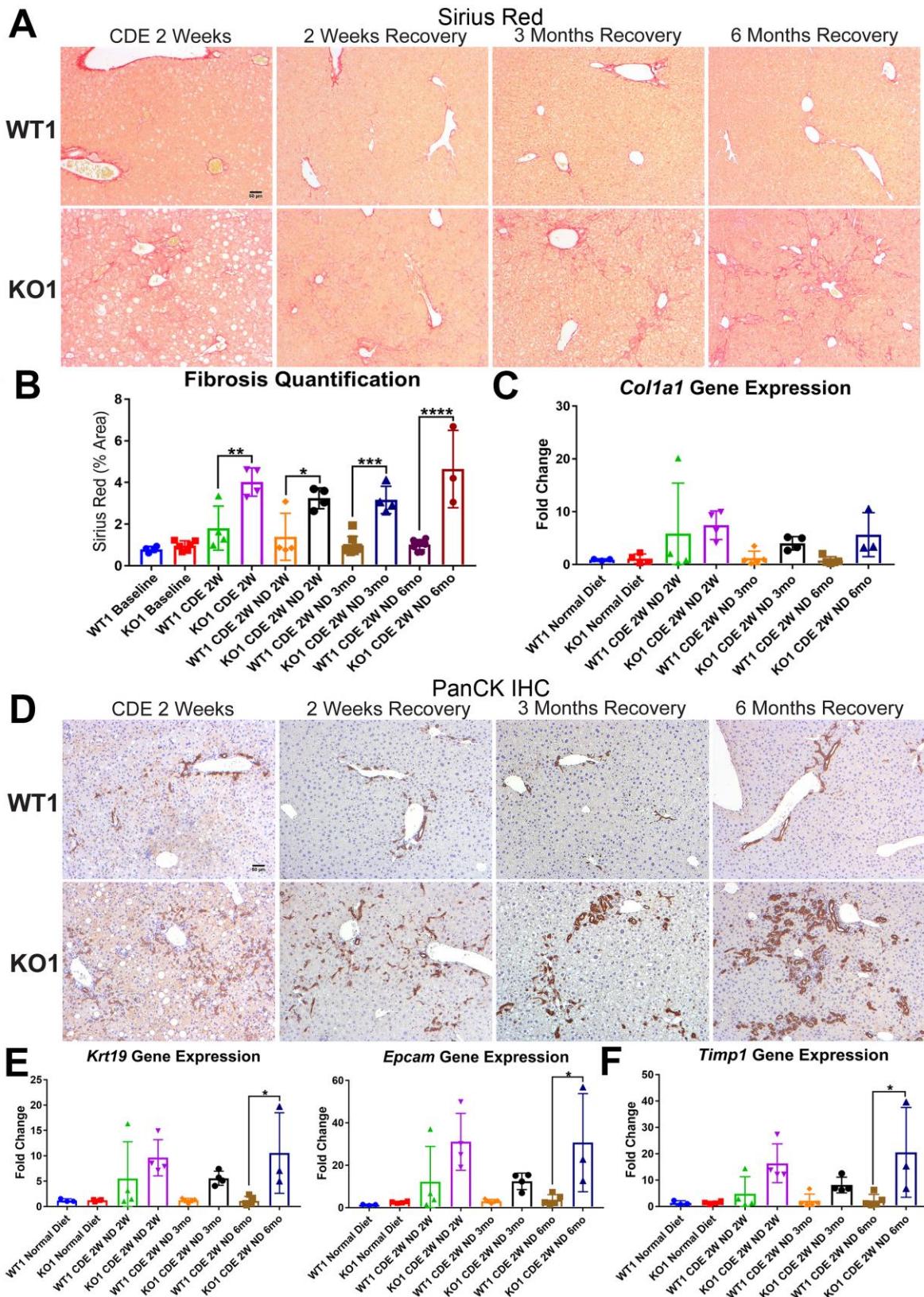
822 **Figure 1: Comparable recovery of WT2 and KO2 on normal diet after initial 2w**
823 **CDE diet injury, along with repopulation of KO2 livers with BEC-derived β -catenin-**
824 **positive hepatocytes.** A) Experimental design showing WT2 and KO2 on 2w of CDE
825 diet and recovery on normal diet for up to 6m with analysis at intermediate time-points
826 as indicated. B) Serum ALT, bilirubin, and alkaline phosphatase (ALP) in the two groups
827 over time (one-way ANOVA, **p<0.01, ****p<0.0001, n = 3 to 6 per group). C) β -Catenin
828 immunohistochemistry in WT2 and KO2 mice at 3m and 6m of recovery showing β -
829 catenin-positive BECs and hepatocytes in KO2 and WT2. Scale bar = 50 μ m. D) *Ctnnb1*
830 gene expression in WT2 and KO2 mice during recovery from CDE diet (one-way
831 ANOVA, *p<0.05; **p<0.01, ****p<0.0001. n = 3 to 6 per group. Individual animal values
832 represented by dots.)


833

834 **Figure 2:**

836 **Figure 2: Fibrosis and DR is sustained in KO2 mice recovering on normal diet**
837 **until 3m, but subsides by 6m, after initial 2w CDE diet.** A) Sirius Red staining in
838 WT2 and KO2 mice over time during recovery from CDE diet. Scale bar = 50 μ m. B)
839 Quantification of Sirius Red staining (one way-ANOVA, *p<0.05, **p<0.01. n = 3 to 7 per
840 group. Individual animal values represented by dots.). C) A trend of increased
841 expression of *Col1a1* and *Tgfb2* in KO2 mice at 3m of recovery but not at 6m (n = 3 to 6
842 per group. Individual animal values represented by dots.). D) Pan-cytokeratin (PanCK)
843 staining in WT2 and KO2 mice over time during recovery from CDE diet. Scale bar = 50
844 μ m. E) A trend of higher *Krt19* expression and significantly higher expression of *Epcam*
845 gene in KO2 up to 3m on recovery and normalization to WT2 levels at 6m (one-way
846 ANOVA, *p<0.05, **p<0.01. n = 3 to 6 per group. Individual animal values represented
847 by dots.). F) Significantly higher *Timp1* gene expression in KO2 than WT2 up to 3m on
848 recovery diet and normalization at 6m (one-way ANOVA, *p<0.05, **p<0.01. n = 3 to 6
849 per group. Individual animal values represented by dots.)
850
851

852 **Figure 3:**

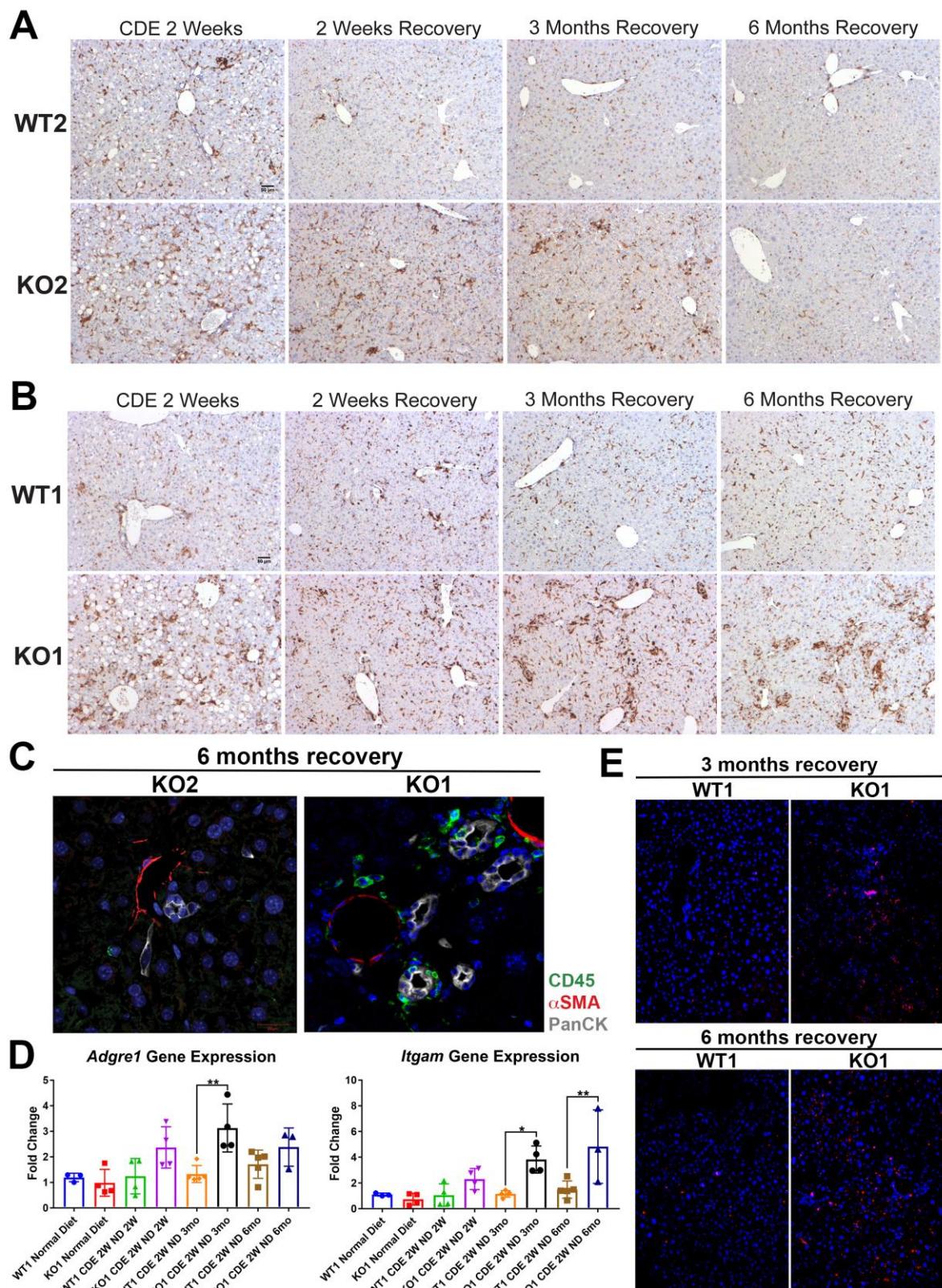


853

854

855 **Figure 3: Serum biochemistry suggests comparable recovery on normal diet in**
856 **WT1 and KO1 after 2w CDE diet and continued lack of β -catenin in KO1. A)**
857 Experimental design showing WT1 and KO1 on 2 weeks of CDE diet and recovery on
858 normal diet for up to 6m with analysis at intermediate time-points as indicated. B) Serum
859 ALT, bilirubin, and ALP in the two groups over time. (One-way ANOVA, **p<0.01,
860 ****p<0.0001, n = 3 to 5 per group). C) β -Catenin immunohistochemistry in WT1 and
861 KO1 mice at 3m and 6m of recovery showing absence of β -catenin in BECs and
862 hepatocytes in KO1. Scale bar = 50 μ m. D) *Ctnnb1* gene expression in WT1 and KO1
863 mice during recovery from CDE diet shows continued β -catenin absence over time in
864 KO1 (one-way ANOVA, *p<0.05; **p<0.01, ****p<0.0001. n = 3 to 5 per group.
865 Individual animal values represented by dots.)
866
867

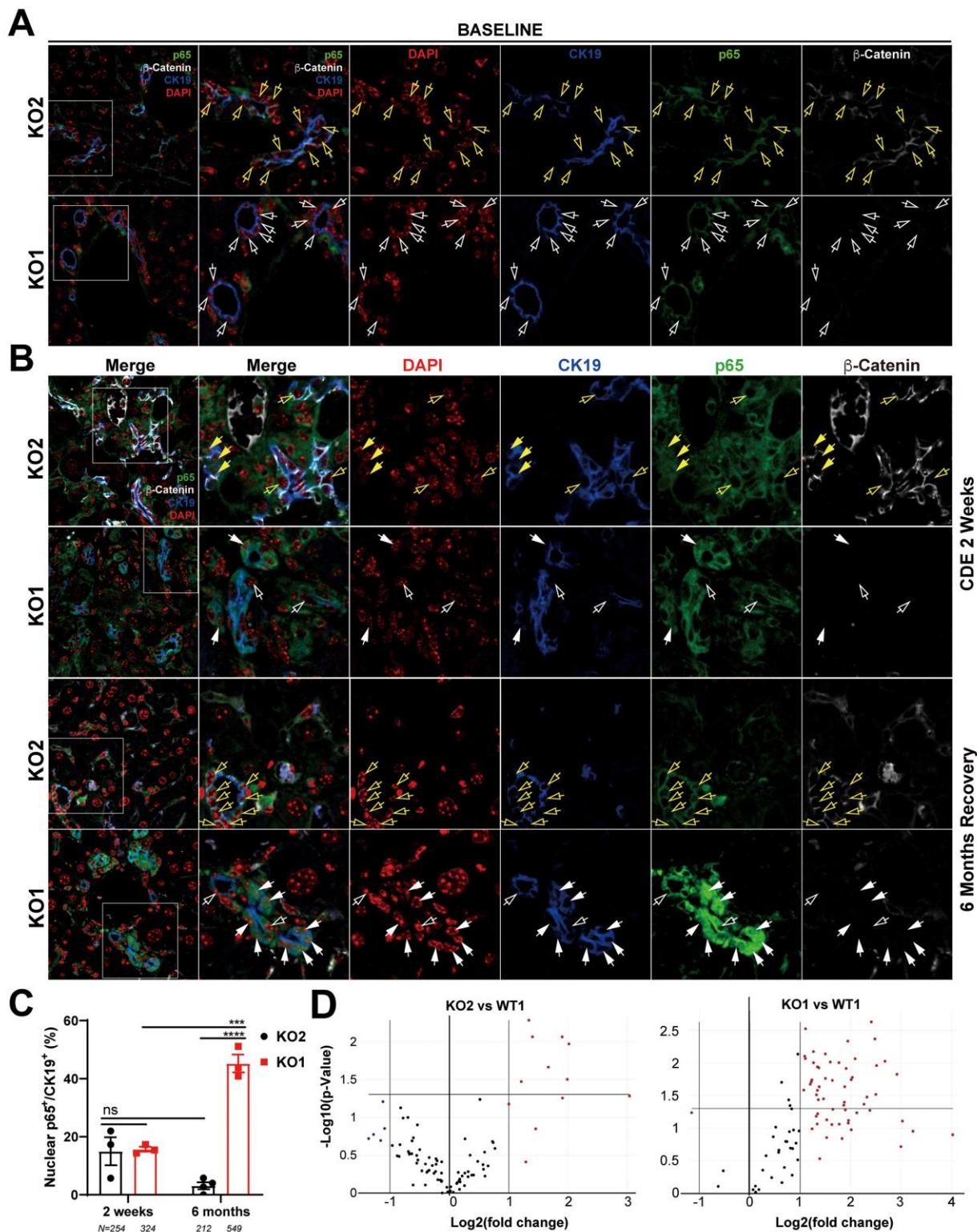
868 **Figure 4:**



870 **Figure 4: Unresolved fibrosis and ductular reaction in KO1 mice throughout 6m**
871 **on recovery, after the initial 2w CDE diet injury.** A) Sirius Red staining in WT1 and
872 KO1 mice over time during recovery from CDE diet. Scale bar = 50 μ m. B) Quantification
873 of Sirius Red staining (one way-ANOVA, *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001. n
874 = 3 to 6 per group. Individual animal values represented by dots.). C) A trend of
875 increased expression of *Col1a1* in KO1 mice even at 6m of recovery (n = 3 to 5 per
876 group. Individual animal values represented by dots.). D) PanCK staining in WT1 and
877 KO1 mice over time during recovery from CDE diet. The DR changes from flattened,
878 invasive and without lumen morphology from early time-points to numerous small
879 luminal structures lined by a single layer of PanCK-positive columnar cells at 3m and
880 6m. Scale bar = 50 μ m. E) Significantly higher *Krt19* and *Epcam* gene expression in
881 KO1 especially at 6m of recovery (one-way ANOVA, *p<0.05. n = 3 to 5 per group.
882 Individual animal values represented by dots.). F) Significantly higher *Timp1* gene
883 expression IN KO1 especially at 6m of recovery diet (one-way ANOVA, *p<0.05. n = 3
884 to 5 per group. Individual animal values represented by dots.)

885

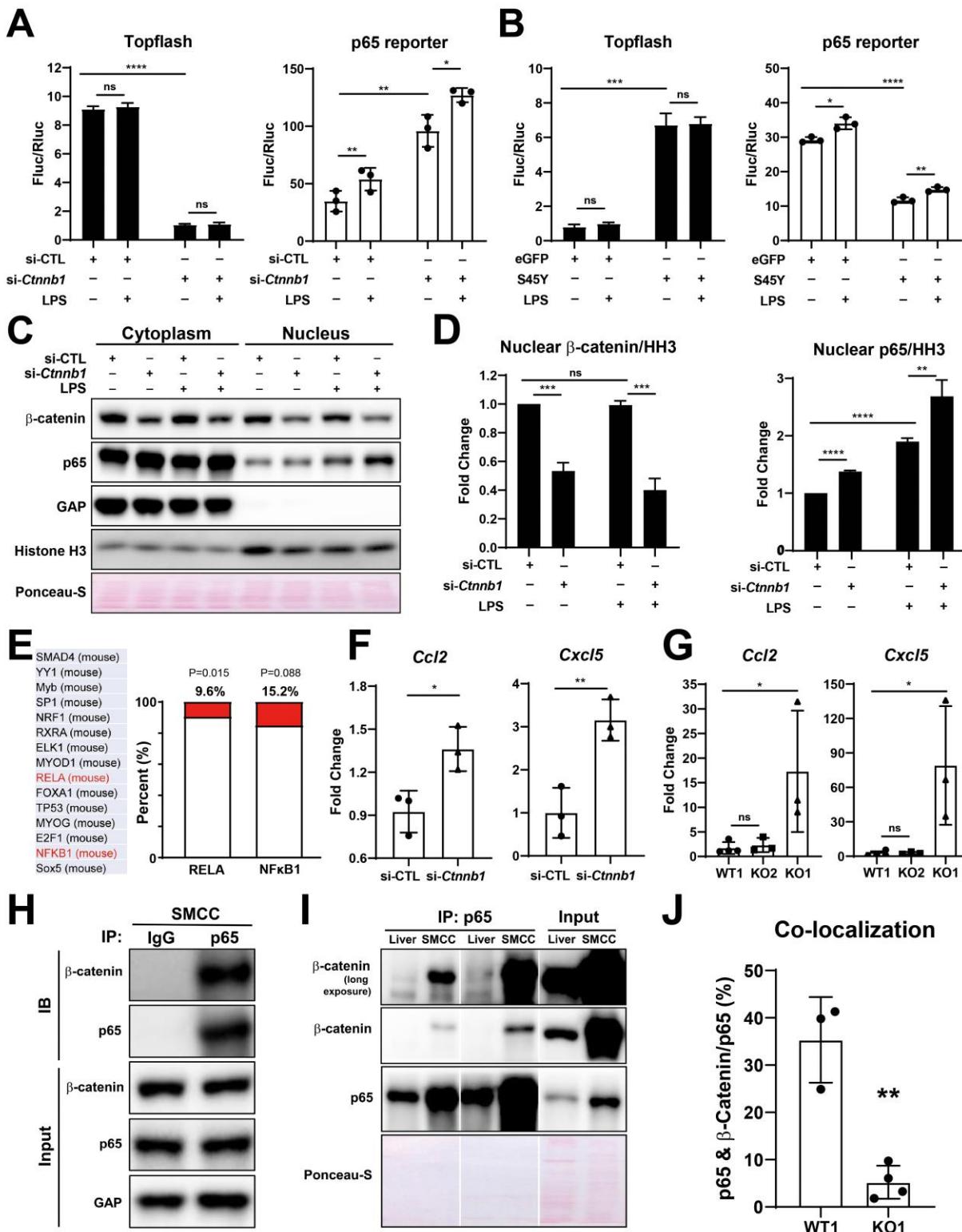
886


887 **Figure 5:**

889 **Figure 5: Sustained inflammation during recovery after the initial CDE diet injury**
890 **in KO1 mice as compared to WT1, WT2 and KO2.** A) CD45 immunostaining in WT2
891 and KO2 mice over time during recovery from CDE diet. Scale bar = 50 μ m. B) CD45
892 staining in WT1 and KO1 mice over time during recovery from CDE diet. Scale bar =
893 50 μ m. C) Representative confocal image of triple immunofluorescence for PanCK
894 (white), α SMA (red), and CD45 (green) in KO1 and KO2 at 6m of recovery (400x). D)
895 Changes in *Adgre1* and *Itgam* gene expression in WT1 versus KO1 at various time-
896 points (one-way ANOVA, *p<0.05, **p<0.01. n = 3 to 5 per group. Individual animal
897 values represented by dots.). E) Increased Ly6G staining (red) in KO1 mice after 3m
898 and 6m of recovery (100x).

899

900 **Figure 6:**



901

902 **Figure 6: Nuclear translocation of p65 in BECs lacking β-catenin during recovery**
903 **from CDE diet injury shows NF-κB activation in BECs only in KO1. A)**

904 Representative confocal image of triple immunofluorescence for CK19 (blue), β-catenin
905 (white) and p65 (green) along with DAPI (red) in KO1 and KO2 baseline livers. Merged
906 image at low magnification (100x) is shown in leftmost panel and higher magnification
907 (200x) of selected area (box) along with its individual channels are shown to the right.
908 Yellow open arrows identify CK19-positive BECs with cytosolic β-catenin and p65 in
909 KO2. White open arrows identify CK19-positive BECs with cytosolic p65 and absent β-
910 catenin in KO1. B) Representative confocal image of triple immunofluorescence for
911 CK19 (blue), β-catenin (white) and p65 (green) along with DAPI (red) in KO1 and KO2
912 at 2w of CDE diet and after 6m of recovery on normal diet. The left most panel is low
913 magnification (100x) merged image. The higher magnification (200x) of the selected
914 boxed area is presented in the adjacent panel as a merged image followed by individual
915 channels. Yellow open arrows identify CK19-positive BECs with cytosolic β-catenin and
916 p65, and yellow solid arrows with nuclear p65 in KO2. White open arrows indicate
917 CK19-positive BECs with cytosolic p65 and white solid arrows identify CK19-positive
918 BECs with nuclear p65 with absent β-catenin in KO1. C) Quantification of CK19-positive
919 cells showing nuclear p65 at 2w of CDE diet and 6m of recovery in KO2 versus KO1
920 (one way-ANOVA, ***p<0.001, ****p<0.0001. n = 3 per group. Individual animal values
921 represented by dots. Number of cells counted are indicated.). D) Volcano plots of NF-κB
922 downstream target gene expression in KO2, KO1 and WT1 livers at 6m of recovery.
923 Genes with fold-change >2 are highlighted in red, with fold-change <2 are highlighted in
924 green, and unchanged genes shown as black dots. (n = 3 per group)

925 **Figure 7:**

927 **Figure 7: Modulation of β -catenin in BECs perturbs its complex with p65 to impact**

928 **NF- κ B activity.** A) Luciferase reporter assay shows successful knockdown of *Ctnnb1* in

929 SMCC line by Topflash assay (left), which stimulates p65 transcriptional activity with or

930 without 100ng/ml LPS (right) (Unpaired t-test, ns: no significance, *p<0.05, **p<0.01,

931 ****p<0.0001. n = 3 biological replication). B) Luciferase reporter assay shows

932 expression of constitutively active S45Y- β -catenin enhances Topflash (left) and

933 suppresses p65 transcriptional activity with or without 100ng/ml LPS (right) (Unpaired t-

934 test, ns: no significance, *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001, n = 3 biological

935 replication). C) Representative WB from two independent experiment shows knockdown

936 of *Ctnnb1* increases p65 nuclear translocation with or without 500ng/ml LPS. D)

937 Quantification of nuclear β -catenin (left) and nuclear p65 (right) to HH3 (Blots in Figure

938 7C were technically quantified three times and p-value was calculated using unpaired t-

939 test, ns: no significance, **p<0.01, ***p<0.001, ****p<0.0001). E) Identification of RELA

940 and NFKB1 among the top fifteen transcription factors identified by applying the 335

941 DEGs to JASPAR. F) qPCR shows knockdown of *Ctnnb1* in SMCCs induces *Ccl2* (left)

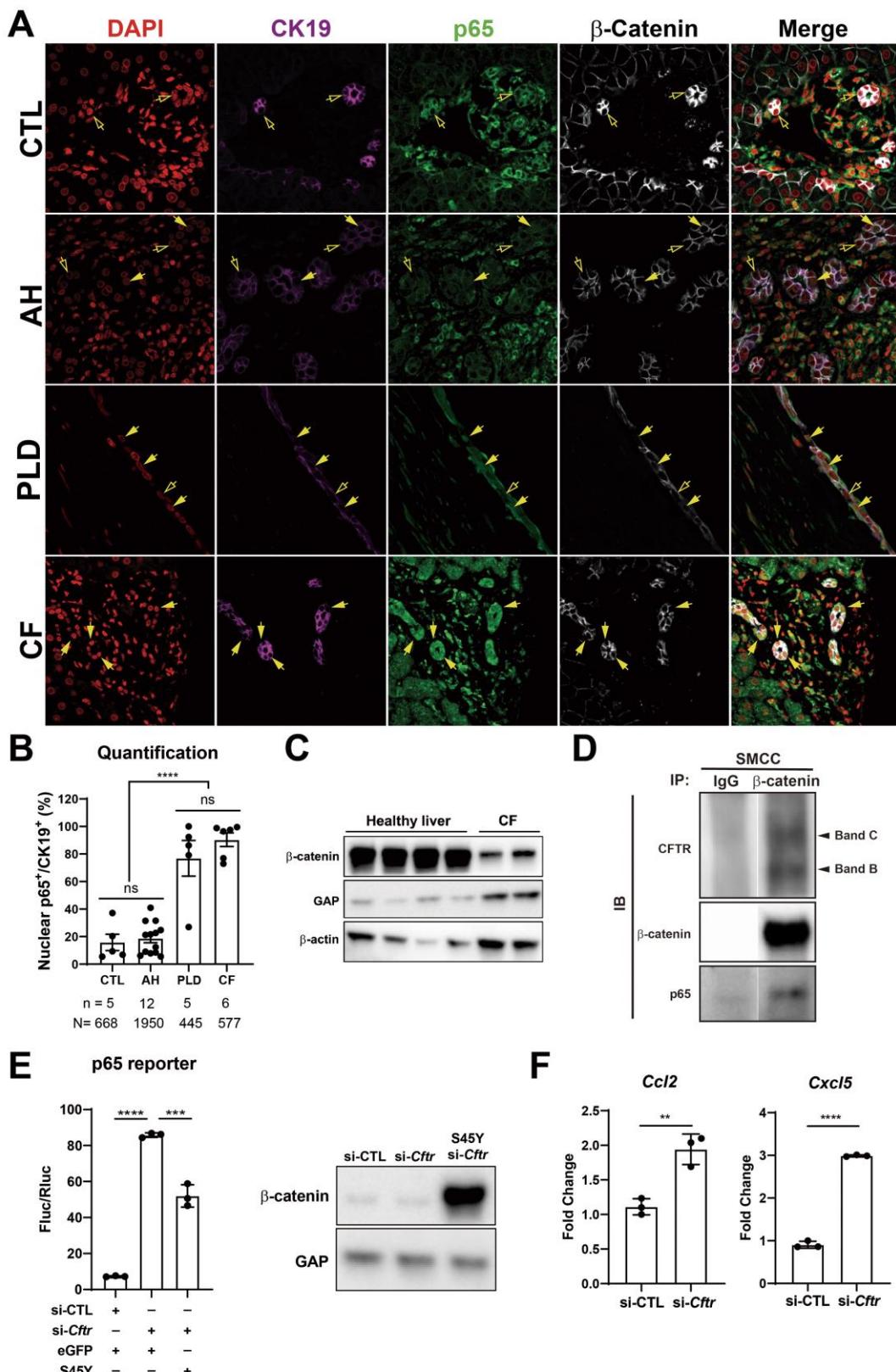
942 and *Cxcl5* (right) expression (Unpaired t-test, ns: no significance, *p<0.05, **p<0.01, n =

943 3 biological replication). G) qPCR shows *Ccl2* (left) and *Cxcl5* (right) are induced in KO1

944 after 6m recovery of CDE diet (Unpaired t-test, *p<0.05. n = 3 to 4 biological replication).

945 H) Representative Immunoprecipitation (IP) image from two independent experiment

946 shows p65 is strongly associated with β -catenin in SMCC. I) IP shows that p65 is


947 associated with β -catenin in whole liver lysate (L: Liver; S: SMCC; P: equal amount of

948 liver and SMCC lysate). J) Quantification of colocalization of p65 and β -catenin is

949 significantly diminished in KO1 compare to WT1 (Unpaired t-test, **p<0.01, n = 3 to 4
950 biological replication).

951

952 **Figure 8:**

954 **Figure 8. Nuclear p65 is highly present in the ductular cells of cystic type liver**
955 **disease.** A) Representative IF images of liver sections from patients with healthy liver
956 (CTL), alcoholic hepatitis (AH), polycystic liver disease (PLD), and cystic fibrosis (CF).
957 (200x) B) Quantification of the percentage of nuclear p65+CK19+ cells among CK19+
958 BECs from CTL (668 cells from 5 patients), AH (1950 cells from 12 patients), PF (445
959 cells from 5 patients), and CF (577 cells from 6 patients) (one-way ANOVA,
960 ***p<0.0001). C) WB shows β -catenin is decreased in two liver samples from one CF
961 patient as compared to four healthy liver controls. D) IP studies show CFTR (C-Band
962 and B-Band) and p65 to be pulled down with β -catenin and not with IgG control in
963 SMCC. Images are from the same gel with same exposure time. E) Luciferase reporter
964 assay shows knockdown of CFTR in SMCC line strongly induces p65 transcriptional
965 activity. Overexpression of stable S45Y- β -catenin partially rescues p65 activity
966 (Unpaired t-test, ***p<0.001, ****p<0.0001, n = 3 biological replication). Representative
967 WB shows β -catenin levels after si-*Cftr* or after simultaneous S45Y- β -catenin
968 expression as compared to si-control (si-CTL). F) qPCR shows knockdown of CFTR
969 induces *Ccl2* and *Cxcl5* expression in SMCC (Unpaired t-test, **p<0.01, ***p<0.001, n =
970 3 biological replication).

971

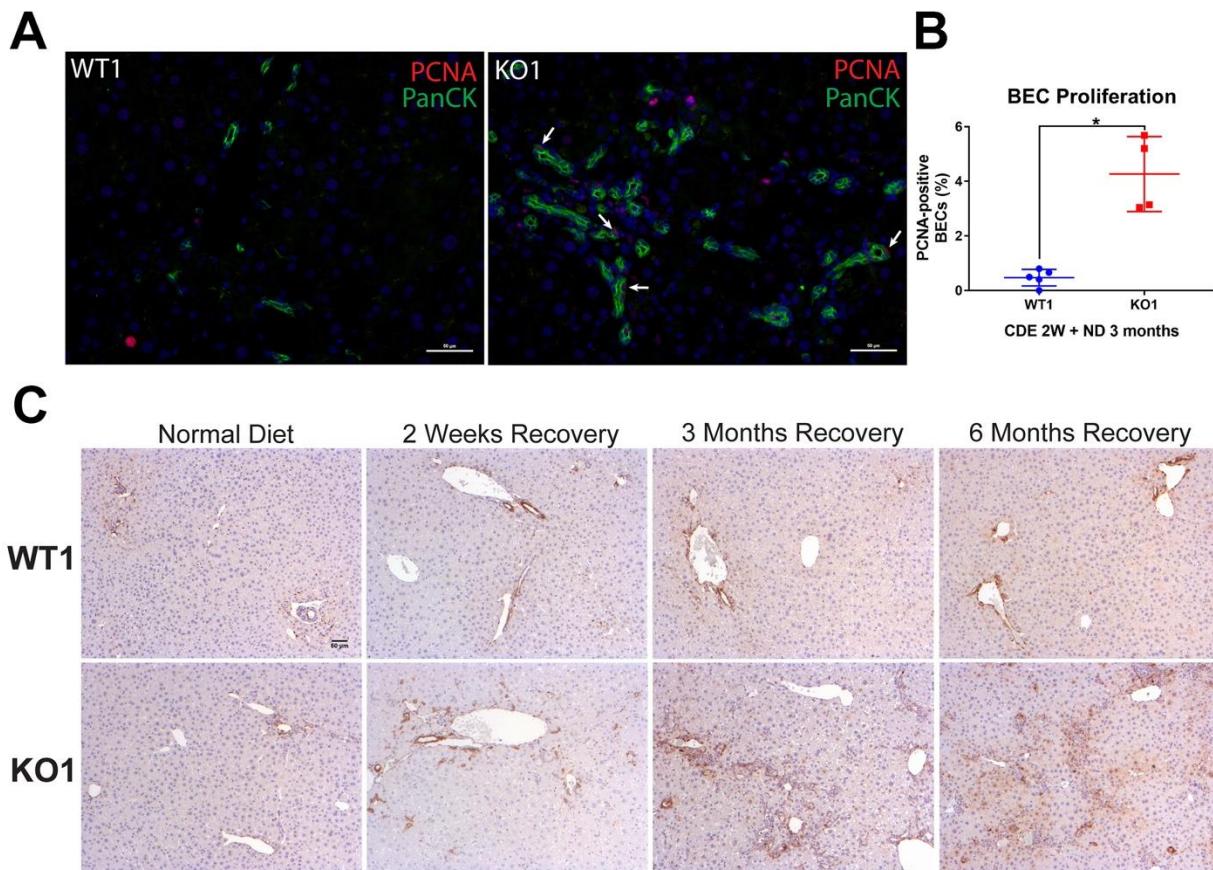
Supplementary Table 1: Patient samples used in the study

Identifier	Age	Sex	Diagnosis	Miscellaneous
PHS16-32066	66	M	Non-neoplastic hepatic parenchyma	Mild nodular regenerative hyperplasia and mild portal reactive changes
PHS16-40535	50	M	Non-neoplastic hepatic parenchyma	Minimal mixed micro-and macrovesicular steatosis involving approximately 5% of the hepatocytes. Mild chronic portal inflammation. Focal mild portal fibrosis.
PHS18-5904	71	M	Background liver	Mild portal inflammation. No significant steatosis or fibrosis
PHS18-11592	60	F	Background liver	Moderate macrovesicular steatosis
PHS18-34295	53	M	Non-neoplastic hepatic parenchyma	Mild nodular regenerative hyperplasia
PHS18-4910	48	M	Alcoholic hepatitis	Micronodular liver cirrhosis with moderate cholestasis, ductular reaction, abundant Mallory-Denk bodies, neutrophilic lobular inflammation, compatible with clinical history of acute alcoholic hepatitis. Chronic active steatohepatitis (Nash score: 5/8), 15% mixed micro- and macrovesicular steatosis.
PHS18-12144	72	M	Alcoholic hepatitis	Active mixed cirrhosis secondary to chronic hepatitis, viral-type C, mildly active. Marked cholestasis and focal parenchymal extinction with prominent ductular reaction.
PHS18-42469	41	M	Alcoholic hepatitis	micronodular cirrhosis with extensive parenchymal extinction and ductular reaction, secondary to alcohol abuse. mixed micro- macrovesicular steatosis involving about 50% of hepatocytes.
PHS19-24672	61	M	Alcoholic hepatitis	mixed micro- and macronodular cirrhosis. clinical history of ethanol use. areas of parenchymal extinction with marked ductular reaction replacement and focal cholestasis.

PHS19-31767	63	M	Nonalcoholic steatohepatitis (NASH)	Mixed macro and micronodular cirrhosis clinically secondary to NASH (Nash activity score: 2/8) (fibrosis stage: 4/4). Areas of parenchymal extinction with marked ductular reaction replacement and focal cholestasis.
PHS19-32169	66	M	Alcoholic hepatitis	Macronodular cirrhosis, clinically due to Hepatitis C and alcoholic steatohepatitis. Focal areas of parenchymal extinction with marked ductular reaction replacement.
PHS19-40351	42	M	Alcoholic hepatitis	Predominantly micronodular cirrhosis secondary to chronic steatohepatitis occurring in setting of obesity and ethanol use. Areas of parenchymal extinction with marked ductular reaction. Hepatocyte ballooning with Mallory-Denk bodies, neutrophils and hepatocanalicular cholestasis. Macrovesicular steatosis involving approximately 30-40% of hepatocytes.
PHS20-9506	54	F	NASH	Mixed micro- and macronodular cirrhosis; clinical non-alcoholic steatohepatitis. a. numerous alpha-1 antitrypsin globules in periportal hepatocytes highlighted by pas/d and AAT immunostain. Mild mixed steatosis involving approximately 5% of hepatocytes. Areas of parenchymal extinction with marked ductular reaction replacement.
PHS20-9600	56	F	Alcoholic hepatitis	Mixed micro- and macronodular cirrhosis with minimal residual steatosis involving <5% of hepatocytes. Clinical history of non-alcoholic steatohepatitis. Areas of parenchymal

				extinction with marked ductular reaction replacement and focal cholestasis.
PHS20-10786	39	F	Alcoholic hepatitis	Predominantly micronodular cirrhosis with large areas of parenchymal extension and florid ductular reaction. Clinically decompensated cirrhosis due to ethanol use. Focal ballooning degeneration with rare, poorly-formed, Mallory-Denk bodies and mega-mitochondria.
PHS16-44914	64	F	Alcoholic hepatitis	Active mixed cirrhosis with focal parenchymal extinction. Focally severe mixed micro-macrosesicular steatosis involving 60-70% of hepatocytes with superimposed steatohepatitis, easily identifiable Mallory-Denk bodies and cholangiolar cholestasis. Consistent with clinical history of alcohol use.
PHS17-14821	62	M	Alcoholic hepatitis	Active mixed but predominantly micronodular cirrhosis with residual mixed steatosis and occasional Mallory's hyaline deposition. Clinical history of alcohol-use. Occasional regenerative nodules with brisk ductular reaction.
PHS16-28155	67	F	Polycystic liver disease	Benign cysts lined by biliary epithelium. Surrounding liver parenchyma with chronic inflammation, patchy scarring and multiple biliary hamartomas (Von Meyenberg complexes). Mild macrosesicular steatosis involving about 10% of hepatocytes. Findings consistent with clinical history of polycystic liver and kidney disease.
PHS12-30089	60	F	Polycystic liver disease	Multiple biliary type cysts, consistent with the clinical history of polycystic liver disease. Vascular congestion

				and mild chronic inflammation of the cyst wall. Small islands of hepatocytes with sinusoidal congestion and mild microvesicular steatosis
PHS15-21076	35	F	Polycystic liver disease	Polycystic liver disease with Von Meyenberg complexes. Nodular regenerative hyperplasia and mild non-specific portal as well as lobular inflammation.
PHS12-35452	50	F	Polycystic liver disease	Multiple biliary cysts, consistent with polycystic liver disease. Extensive hemorrhage, chronic inflammation, and fibrosis in the wall of biliary cysts.
PHS10-4073	48	F	Polycystic liver disease	Multiple biliary cysts and multiple Von Meyenburg's complexes, consistent with the clinical history of adult polycystic kidney and liver disease.
PHS12-34148	34	F	Cystic fibrosis	Bile ductular proliferation with cholangiolitis. Portal fibrosis with focal portal to portal early fibrous bridge formation. Histologic changes are nonspecific and are compatible with the underlying diagnosis of cystic fibrosis.
PHS15-14513	32	M	Cystic fibrosis	Large areas of fibrosis with thick fibrous bands suggestive of marked architectural distortion. Numerous occasional hepatocytes with pseudo-ground glass cytoplasm. Architectural distortion with fibrous bands. The clinical history of lung transplantation secondary to cystic fibrosis is noted. The pattern of fibrosis development in patients with cystic fibrosis can be irregular and focal, leading to incomplete hepatic fibrosis (focal biliary cirrhosis/fibrosis).
PHS16-1251	23	F	Cystic fibrosis	Intact hepatic architecture with diffusely increased hepatocyte


				glycogen. Mild diminution in portal vein caliber. Mild microvesicular steatosis. Mild increase in reticuloendothelial iron stores History of elevated alkaline phosphatase, AST, GGTP and ammonia with normal bilirubin and ALT levels who underwent double lung transplant in november 2015 for treatment of cystic fibrosis.
PHS17-19070	23	M	Cystic fibrosis	Prominent macrovesicular steatosis involving approximately 90% of sampled liver parenchyma with superimposed minimally active steatohepatitis (NAS active score = 4-5/8). Portal, periportal and pericellular fibrosis with scattered delicate non-bridging fibrous septae (fibrosis stage = 2-3/4). Focal marked ductular proliferation with associated cholangiolitis, ductular ectasia and inspissated luminal secretions. Findings consistent with the clinical history of cystic fibrosis
PHS17-35744	22	M	Cystic fibrosis	Cystic fibrosis related liver disease with PAS-positive inspissated bile plugs and patchy periportal/sinusoidal fibrosis (fibrosis stage 2/4). Bile duct dilatation with cholangiolar proliferation, neutrophilic cholangitis, lobular ballooning degeneration and canalicular cholestasis. Consistent with cystic fibrosis.
TP10-P531	31	F	Cystic fibrosis	Decompensated cirrhosis in the setting of cystic fibrosis. Cholangiolitis with marked ductular proliferation, ductular ectasia and biliary sludge consistent with CF. Severe mixed micro- and macrovesicular steatosis. NAS=6/8 and fibrosis stage=4/4

Supplementary Table 2: Sequence of qPCR primers

Gene	Forward (5'-3')	Reverse (5'-3')
<i>Gapdh</i>	AACTTGGCATTGTGGAAGG	ACACATTGGGGTAGGAACA
<i>Rn18s</i>	GTAACCCGTTGAACCCCATT	CCATCCAATCGGTAGTAGCG
<i>Ctnnb1</i>	ACTTGGCACACGTGCAATT	AAGGTTGTGCAGAGTCCCAG
<i>Col1a1</i>	TCCGGCTCCTGCTCCTCTTA	GTATGCAGCTGACTTCAGGGATGT
<i>Tgfb2</i>	GTCCAGCCGGCGGAA	GCGAAGGCAGCAATTATCCT
<i>Krt19</i>	CCAGGAAGCCCCACTACAACAA	TCGAGGGAGGGGTTAGAGTAAA
<i>Epcam</i>	AACACAAGACGACGTGGACA	GCTCTCCGTTCACTCTCAGG
<i>Timp1</i>	TTTGTGGCTCCCTGGAACAG	TCCGTCCACAAGCAATGAGT
<i>Adgre1</i>	CCTGGACGAATCCTGTGAAG	GGTGGGACCACAGAGAGTTG
<i>Itgam</i>	GGGAGGGACAAAAACTGCCTCA	ACAACTAGGATCTCGCAGCAT
<i>Ccl2</i>	TGATCCAATGAGTAGGCT	TCAGATTACGGGTCAACTT
<i>Cxcl5</i>	TCATGAGAAGGCAATGCT	ACATTATGCCATACTACGAAGA

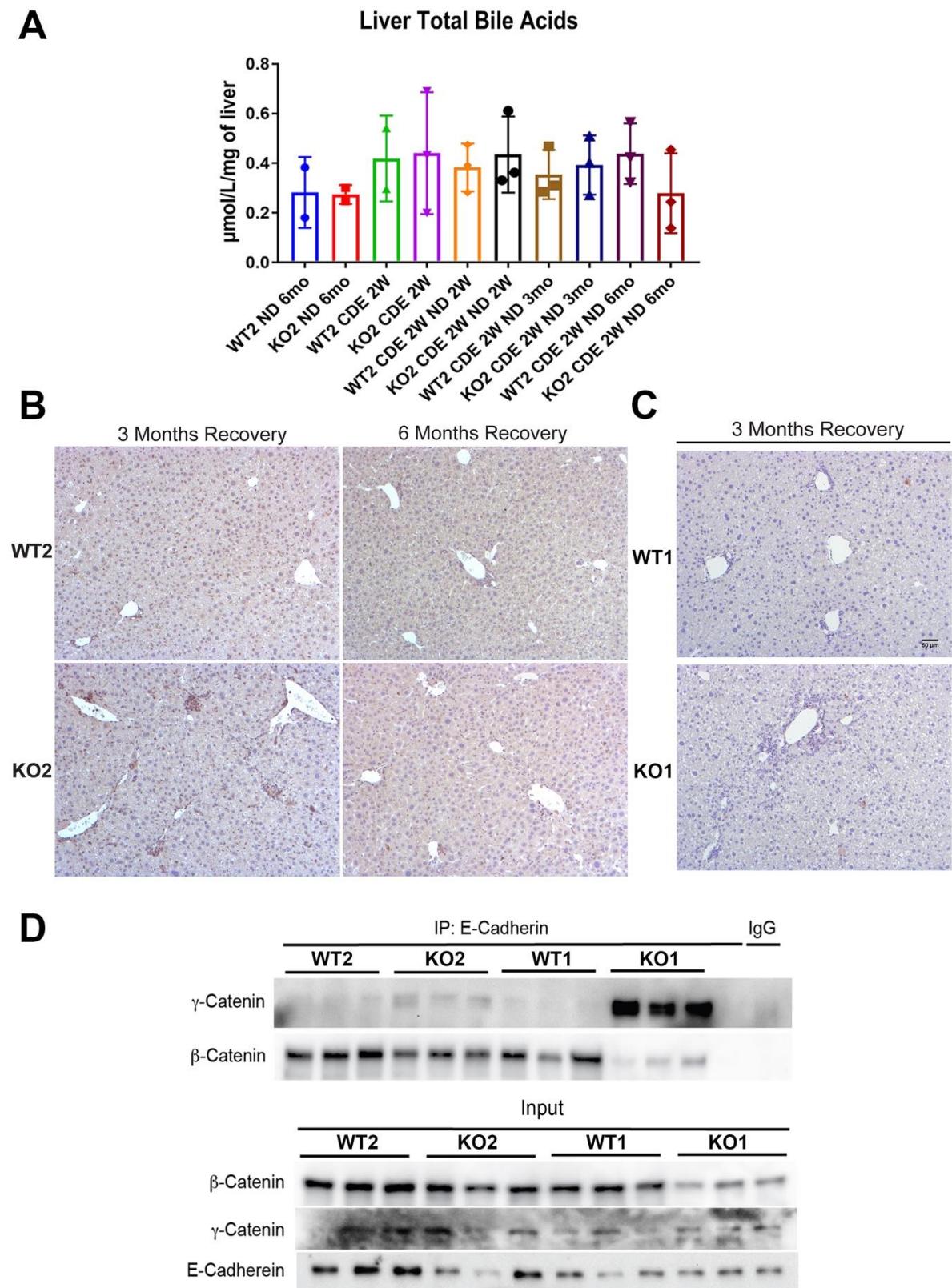
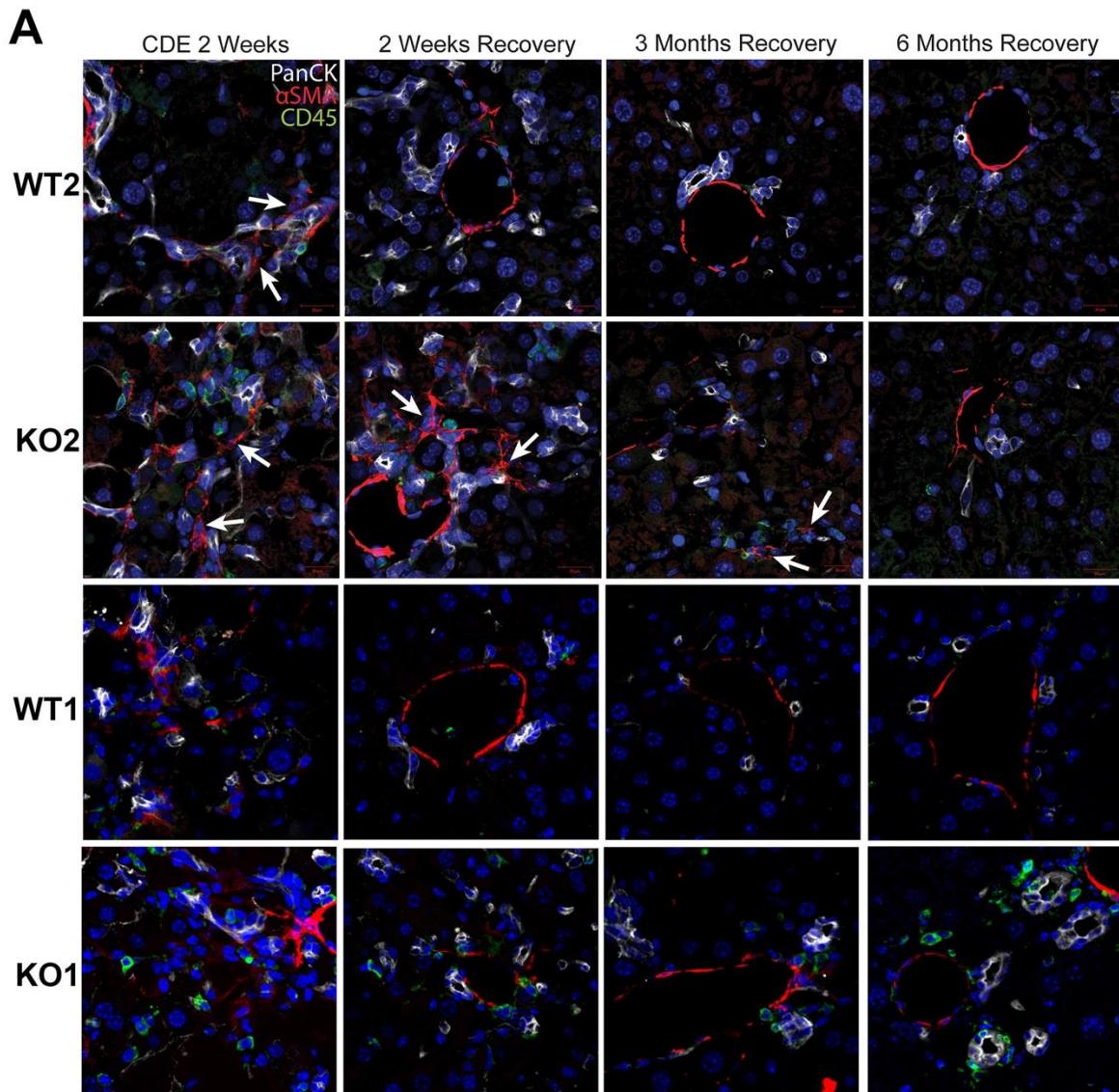
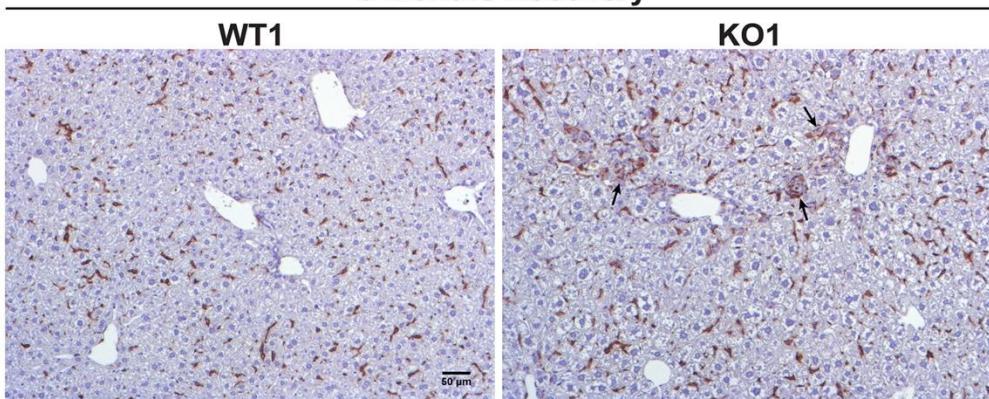

SUPPLEMENTARY FIGURES AND FIGURE LEGENDS

Figure S1:

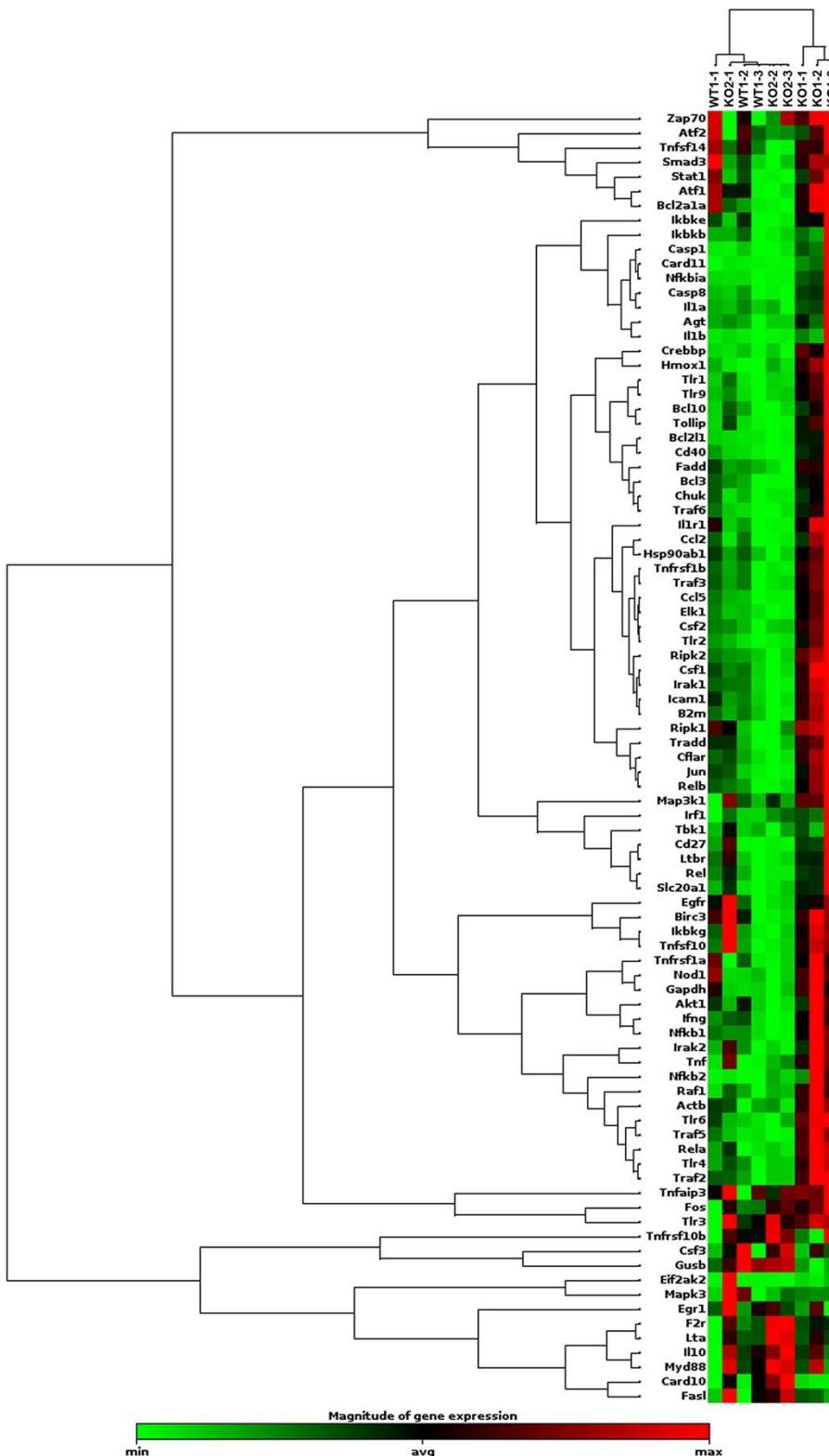
Figure S1: Enhanced PCNA and increased p-Erk staining in BECs in KO1 during recovery on normal diet after initial 2w CDE diet induced injury. A) PanCK (green) and PCNA (red) immunofluorescence in WT1 and KO1 mice at 3m of recovery on normal diet after 2w CDE diet. Scale bar = 50 μ m. B) Quantification of PCNA-positive BECs at 3m recovery on normal diet (ND) from 2w CDE (one-way ANOVA, *p<0.05). C) WT1 and KO1 mice staining with an antibody against phospho-Erk1/2 (Thr202/Tyr204) reveals staining in a subset of BECs in the ductular reaction in KO1 mice. Scale bar = 50 μ m.


Figure S2


Figure S2. Bile acids and cell death are not the basis of fibrosis and ductular reaction due to CDE diet, and differences in adherens junction integrity don't explain phenotypic differences between KO2 and KO1 at 6m of recovery. A)

Quantification of bile acids in whole livers in WT2 and KO2 at 2w after CDE diet and at various time recovery times on normal diet. B) p21 staining shows no positive cells at 3m or 6m of recovery on normal diet in WT2 and KO2 liver sections. C) Cleaved caspase 3 staining reveals almost no ongoing cell death in the livers of WT1 or KO1 mice after 3m of recovery from CDE diet-induced liver injury. Scale bar = 50 μ m. D) Immunoprecipitation studies show E-cadherin association with β -catenin in WT1, WT2 and KO2 livers at 6m of recovery while it associates with γ -catenin in KO1 at the same time due to continued lack of β -catenin in KO1 (top panels). Input verifies low levels of β -catenin in whole liver lysates of KO1 at the same time depicting β -catenin presence in liver non-epithelial cells (bottom panels).

Figure S3:



B **3 Months Recovery**

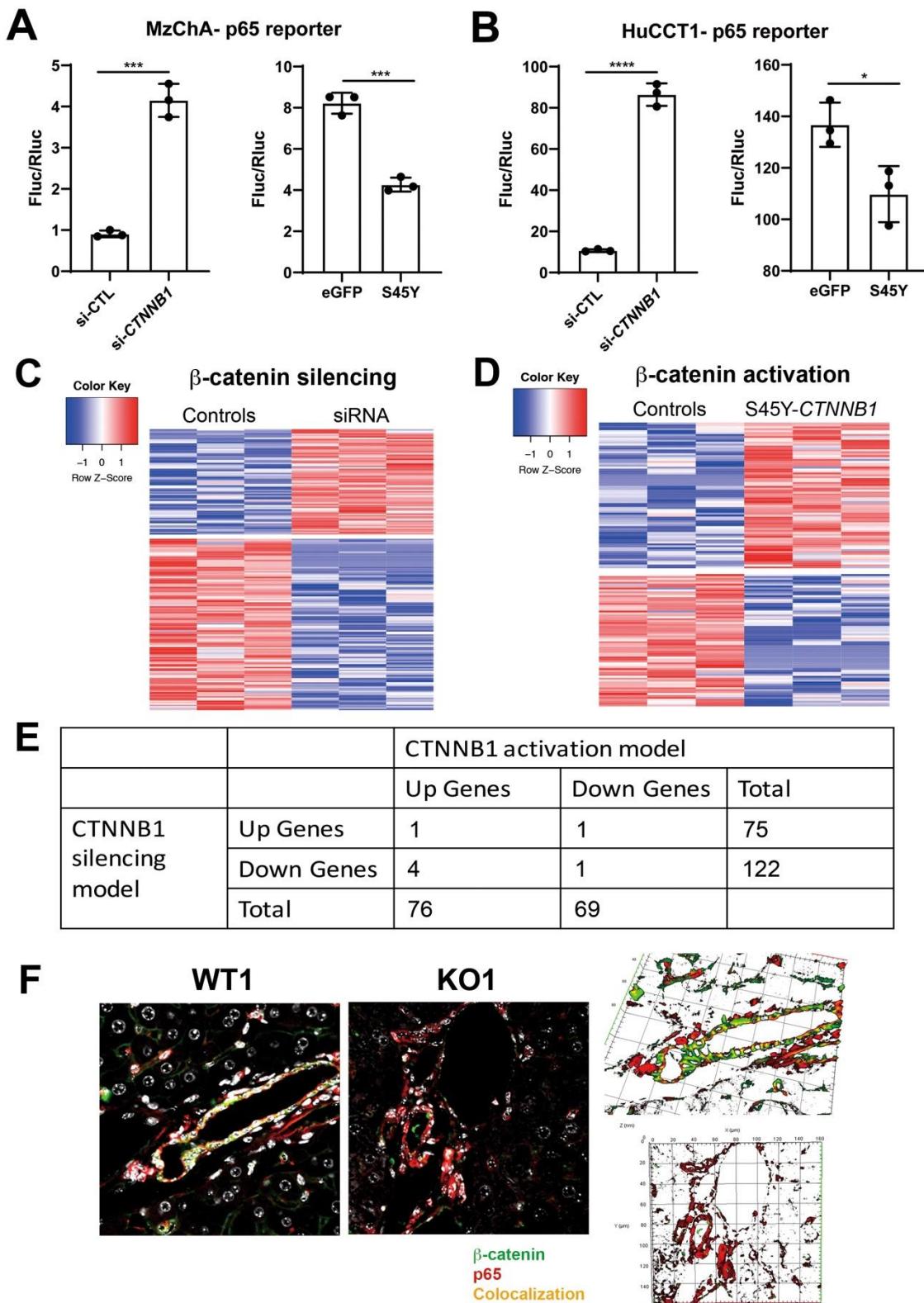

Figure S3. Immune cells continue to prevail in periportal region in KO1 even at 6m of recovery while they subside in all other genotypes after 3m of recovery or earlier. A) Representative confocal image of triple immunofluorescence for PanCK (white), α SMA (red), and CD45 (green) in WT1, KO1, WT2 and KO2 at 2w of CDE diet and recovery on normal diet for 2w, 3m or 6m. Cells expressing α SMA are closely associated with PanCK-positive cells (white arrows). Scale bar = 20 μ m. B) F4/80 staining reveals macrophages closely associated with the DR in KO1 mice at 3m of recovery (black arrows). Scale bar = 50 μ m.

Figure S4:

Figure S4: Evidence of NF-κB activation in KO1 livers but not in WT1 or KO2 livers at 6m of recovery from CDE diet. RNA from whole livers of WT1, KO1 and KO2 (n=3 each) at 6m recovery was assessed for 84 NF-κB downstream target genes by RT-PCR array. Using a fold change threshold = 2, p-value threshold = 0.05, we identified several genes altered in KO1 only and clustergram showed clear separation of KO1 from KO2 and WT1.

Figure S5:

Figure S5: Modulation of β -catenin in cholangiocytes impacts NF- κ B activity due to p65- β -catenin complex. A) Reporter assay shows knockdown of *Ctnnb1* stimulates p65 transcriptional activity (left) while transfection of stable S45Y- β -catenin represses p65 reporter activity (right) in MzChA human cholangiocarcinoma cells (Unpaired t-test, ***p<0.001). B) Reporter assay shows knockdown of *Ctnnb1* stimulates p65 transcriptional activity (left) while expression of constitutively active S45Y- β -catenin suppresses p65 transcriptional activity (right) in HuCCT1 human cholangiocarcinoma cells (Unpaired t-test, *p<0.05, **p<0.01, ****p<0.0001). C) Heatmap of the differentially expressed genes in *Ctnnb1* loss-of-function in SMCC. D) Heatmap of the differentially expressed genes in *CTNNB1* gain-of-function in SMCC. E) Very few common differentially expressed genes between *Ctnnb1* loss- and gain-of-function models were identified, although altogether 335 genes were altered. These genes were assessed for transcription factor (TF) binding profiles by JASPAR (presented in Fig.7E). F) Representative confocal images showing the expression of p65 (red), β -catenin (green) and DAPI (white) in WT1 and KO1 livers (left). To visualize colocalization for p65 (red) and β -catenin (green), 3D images were reconstructed using Zen blue 2012 software (right). The reconstruction was performed with 9 confocal z-stacks with 0.8 μ m increments and yellow region indicates colocalization of p65 (red) and β -Catenin (green) in the projection on the X, Y and Z planes.