bioRxiv preprint doi: https://doi.org/10.1101/2021.09.14.460349; this version posted September 14, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Predicting Individual Cell Division Events from Single-Cell ERK and Akt Dynamics

Alan D Stern', Gregory R Smith?, Luis C Santos’, Deepraj Sarmah?®, Xiang Zhang®,
Xiaoming Lu®, Federico luricich?, Gaurav Pandey®, Ravi lyengar*, and Marc R
Birtwistle™**

! Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai,
New York, New York, USA

? Department of Neurology, Center for Advanced Research on Diagnostic Assays, Icahn
School of Medicine at Mount Sinai, New York, New York, USA

% Department of Chemical and Biomolecular Engineering, Clemson University, Clemson,
SC, USA

* School of Computing, Clemson University, Clemson, SC, USA

® Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount
Sinai, New York, New York, USA

*To whom all correspondence should be addressed: mbirtwi@clemson.edu



https://doi.org/10.1101/2021.09.14.460349
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.09.14.460349; this version posted September 14, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Abstract

Predictive determinants of stochastic single-cell fates have been elusive, even for the
well-studied mammalian cell cycle. What drives proliferation decisions of single cells at
any given time? We monitored single-cell dynamics of the ERK and Akt pathways,
critical cell cycle progression hubs and anti-cancer drug targets, and paired them to
division events in the same single cells using the non-transformed MCF10A epithelial
line. Following growth factor treatment, in cells that divide both ERK and Akt activities
are significantly higher within the S-G2 time window (~8.5-40 hours). Such differences
were much smaller in the pre-S-phase, restriction point window which is traditionally
associated with ERK and Akt activity dependence, suggesting unappreciated roles for
ERK and Akt in S through G2. Machine learning algorithms show that simple metrics of
central tendency in this time window are most predictive for subsequent cell division;
median ERK and Akt activities classify individual division events with an AUC=0.76.
Surprisingly, ERK dynamics alone predict division in individual cells with an AUC=0.74,
suggesting Akt activity dynamics contribute little to the decision driving cell division in
this context. We also find that ERK and Akt activities are less correlated with each other
in cells that divide. Network reconstruction experiments demonstrated that this
correlation behavior was likely not due to crosstalk, as ERK and Akt do not interact in
this context, in contrast to other transformed cell types. Overall, our findings support
roles for ERK and Akt activity throughout the cell cycle as opposed to just before the
restriction point, and suggest ERK activity dynamics are substantially more important
than Akt activity dynamics for driving cell division in this non-transformed context. Single
cell imaging along with machine learning algorithms provide a better basis to
understand cell cycle progression on the single cell level.
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Introduction

The mammalian cell cycle is in large part driven by growth factor activation of the Ras-
ERK!™ and the PI3K-Akt*®*! pathways. Growth factors cause auto-phosphorylation of
receptor tyrosine kinases (RTKs). For the ERK pathway, RTK phosphorylation recruits
the guanine exchange factor SOS to the membrane, catalyzing the exchange of GDP
for GTP bound to Ras, initiating Raf activation ®***°. This in turn activates the MEK-
ERK phosphorylation cascade. When activated, the effector kinases ERK1/2 translocate
from the cytoplasm to the nucleus and activate transcriptional regulators such as Elk-1

and CREB*"*® °_ These transcriptional regulators induce immediate early genes (IEGs)

17,18 1 4,6,8,19-21

like c-fos that then contribute to the expression of cyclin D , a key step in

S-phase entry®.

RTK activation can also initiate Akt pathway signaling. RTK autophosphorylation
recruits adapter proteins like insulin receptor substrate (IRS-1) and GRB2-associated
binder (GAB) ?*2°. These proteins in turn recruit Phosphatidylinositol (PtdIns) 3-kinase
(P13K) to the membrane #?°°% \where it phosphorylates the membrane phospholipid
Ptdins (4,5) P2 (PIP2), generating Ptdins (3,4,5) P3 (PIP3). PIP3 recruits pleckstrin
homology domain (PH)-containing proteins to the membrane such as
phosphatidylinositol-dependent kinase-1 (PDK1)* and the serine/threonine protein
kinases Akt1/2 #*°. PDK1 phosphorylates Akt's activation loop followed by mTORC?2
phosphorylation of a second site on Akt for full activation ®"?'. This doubly
phosphorylated, activated Akt promotes cell cycle progression by: (i) promoting protein
translation via 4E-BP and p70S6K °2!, (i) promoting cyclin D1 ?°*' CDK4/6, c-Myc, and

E2F activity * and (i) inhibiting p21 and p27 * (cyclin-dependent kinase inhibitors).
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While ERK and Akt pathways have established roles prior to the restriction point
marked by S-phase entry, the extent to which they are informative of cell cycle
completion after S-phase is less clear. Beyond S-phase, studies suggest that Ras-ERK
3441 and PI3K-Akt *°%**3 may contribute towards regulating G2 progression. ERK
activity was shown to play a role in the duration of DNA damage-induced G2 arrest™.
Transient ERK activity maintains G2 arrest, whereas sustained ERK activity promotes
escape by reducing p53 levels, and inducing the expression of pro-mitotic factors such
as Plk1 and cyclin B **. Akt activity also contributes to G2-M progression as its inhibition
is associated with reduced cyclin B levels, promoting Chk1 activity and G2 arrest .
These observations motivate a closer look at determining how ERK and Akt dynamics

are informative of cell cycle completion after the canonical restriction point.

On a single cell level, both ERK and Akt activity dynamics have substantial cell-
to-cell and dynamic variation, exhibiting complex pulses and more simple steady activity
1214553 "gych variation, when coupled with the observations that cell cycle progression
is also heterogeneous **°° have prompted investigations into the correlation between
dynamics and cell cycle fate in single cells. What determines proliferation on a single
cell level? What relative contributions do ERK and Akt activity have to the decision of
individual cells to divide? Much prior work has focused on activity dynamics. Both Ras-
ERK °°7°® and PI3K-Akt >° exhibit biphasic growth factor-induced activation dynamics,
with a transient peak followed by sustained activity hours later. The dynamics of each
phase contributes differently towards driving progression to S-phase and is cell type
dependent **°*, Live-cell imaging and analysis of recently divided sister cells reveal that

time-integrated ERK activity has some predictive power of the timing to S-phase entry”.
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Time-integrated ERK dynamics were found to influence proliferation decisions in
daughter cells *°. Predicting PC12 cell differentiation/proliferation decisions required
both ERK and Akt activity dynamics to best define the decision boundary between these
two cell fate outcomes ®. Yet, the extent to which both ERK and Akt activities

throughout the cell cycle are predictive of division in single cells remains unclear.

Here, we use live-cell imaging to pair measurements of growth factor-induced
ERK and Akt activity to cell division outcomes in the same single cells. We aim to
assess the extent to which these activities are associated with cell cycle progression
beyond S-phase entry, and to evaluate their ability to predict single cell division
responses jointly in the well-established non-transformed breast epithelial MCF10A cell
line, a model system that is commonly used to study epithelial signaling biology and cell
division control #°%%% e found that following treatment of synchronized cells with
growth factors EGF and insulin, both ERK and Akt activity are significantly higher within
the S-G2 interval in dividing cells. Such differences were much smaller in the pre-S-
phase window, which is traditionally associated with ERK and Akt activity

dependence®®®*

, suggesting unappreciated roles for ERK and Akt in S through G2.
These higher activities could classify division events with AUC=0.76. Surprisingly, ERK
activity dynamics alone enable AUC=0.74, suggesting Akt activity dynamics contribute
little to the decision governing cell division in this context. Interestingly, we found that
ERK and Akt activities are less correlated in cells that divide. Network reconstruction
experiments demonstrated that this correlation behavior was not due to crosstalk, as

ERK and Akt do not interact in this context, in contrast to other cell types *°. Overall, our

findings support roles for ERK and Akt activity throughout the cell cycle as opposed to
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just before the restriction point, and suggest ERK activity dynamics are substantially
more important than Akt activity dynamics for driving cell division in this non-

transformed context.


https://doi.org/10.1101/2021.09.14.460349
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.09.14.460349; this version posted September 14, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Results

Predictability of Cell Division Events from Univariate ERK and Akt Dynamics. To
evaluate if ERK or Akt signaling dynamics are predictive of cell division we first
conducted a series of live cell imaging experiments in MCF10A cells that express either
ERK*™ or Akt*® kinase translocation reporters (KTRs), but not yet both at once, and
paired those single cell dynamics to cell division events (Fig. 1A). We first verified that
cell cycle progression and division are related to ERK and Akt activity dynamics in
MCF10A cells using small molecule inhibitor experiments (Fig S1). KTR-expressing
cells were GO-synchronized by serum and growth factor starvation for 24 hours. After
acquiring 1 hour of baseline ERK or Akt activity, cells were treated with EGF and insulin,
growth factors that promote cell division in MCF10A cells”. Images were acquired every
15 minutes for 48 hours, and then single-cell data for kinase activity and division
outcome were extracted using custom-built image processing pipelines (see Methods).
Dynamic regimes of KTR specificity were determined using two independent (four total)
MEK and Akt inhibitors (Fig. S2). ERK KTR was found to be specific in all regimes
explored here, whereas the Akt KTR was found to be specific >~ 1 hour after EGF and

insulin co-stimulation.

Single cell traces of ERK or Akt activity (thin lines) along with the population
median (bold line) show rapid activation following growth factor treatment, which largely
persists for the duration of the experiment, without recognizable pulsing (Fig. 1B,C). In
(blue) dividing cells, population median ERK and Akt activity dynamics are higher
throughout the cell cycle compared to non-dividing cells, with larger differences evident

for ERK. In the pre-S-phase entry window (~< 8 hours after growth factor treatment),
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there are slight differences between dividing and non-dividing cells in terms of
population median ERK and Akt dynamics. These differences grow larger in the
subsequent 8.5—40 hour interval post growth factor addition, which largely corresponds
to S and G2 phases. These trends were also evident with 10-fold less concentration of
growth factors (Fig. 1C). These results suggest that ERK and Akt activity may have

importance after S through G2 phase.

To assess the statistical significance of this finding, we calculated the median
ERK or Akt activity for individual single cells within the 8.5 — 40 hour window post-
growth factor treatment, and then compared median activity between dividing and non-
dividing cells with the rank-sum test (Fig. 1D-E). Individual dots in the boxplot represent
the median ERK or Akt activity calculated within the 8.5 — 40 hour interval in a single
cell. These median single cell activities were significantly different in dividing vs. non-
dividing populations (Fig. 1E). Yet, there is substantial overlap in the two populations.
We evaluated whether single cell median ERK or Akt dynamics are predictive of cell
division using a logistic regression classification model, and ROC analysis to quantify
the outcome. Both ERK and Akt dynamics have some predictive power for cell division
under high and low growth factor conditions, with high growth factor conditions having
slightly elevated predictive power, as quantified by the area under the ROC curve
(AUC). ERK dynamics have more predictive power than Akt dynamics. Yet, the best
achieved AUC is 0.74, indicating there are other factors driving differences in cell

division fate.

Predictability of Cell Division Events Using Measurements of Both ERK and Akt

Dynamics in the Same Single Cells. As shown above, ERK and Akt activity dynamics
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alone contain information about subsequent cell division. Would simultaneous
measurements of both ERK and Akt activity dynamics in the same single cell improve
cell division predictions? To answer this question, we performed a similar experiment as
described above using dual reporter expressing MCF10A cells (see Methods). For the
duration of the time course, population median ERK and Akt dynamics are again
elevated in dividing cells compared to non-dividing cells (Fig. 2A), with larger
differences observed in the 8.5 — 40 hr interval. To evaluate median ERK and Akt
dynamics as bivariate predictors of cell division, we trained a support vector machine
(SVM) classifier (Fig. 2B). ROC evaluation of SVM performance shows some, albeit
small improvements from the ERK-only classifier performance (AUC = 0.76 vs. 0.74 and
0.72 vs. 0.68, Fig. 2D). These results were confirmed in an independent experiment
(Fig. S3A-C). Thus, Akt dynamics add comparatively little new information to ERK

dynamics for predicting single cell division events in this context.

Measurements of Central Tendency Dominate Predictive Dynamic Features. The above
analysis focused on simple median features of ERK and Akt dynamics as predictors of
cell division. However, it was not clear a priori what dynamic features may be relevant to
this prediction task. To determine if there are additional time series features that can
improve cell division predictions, we utilized the machine learning-based highly
comparative time-series analysis (hctsa) package >"3. We calculated hctsa features on
raw time series data for dividing and non-dividing cells in dual ERK and Akt KTR
reporter expressing lines. Features that best discriminate dividing from non-dividing

cells are all measures of central tendency (Table 1). Thus, we conclude that the above
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analysis focused on median activity is likely to be sufficient for assessing how predictive

ERK or Akt dynamics are for cell division events in the studied context.

Inferring the Topology of the ERK-Akt Network. Information content is related to
correlation, so we investigated the extent to which ERK and Akt dynamics in the same
single cells were correlated, looking across every cell and every time point (Fig. 3A,
replicate Fig. S3D). Interestingly, in dividing cells, single cell ERK and Akt dynamics
within the 8.5-40 hour window are significantly less correlated than in non-dividing cells,
at both high and low growth factor doses. Network topology can strongly influence
correlated behaviors. In different studies, ERK and Akt have been reported to exhibit
very different network behavior, such as cross-pathway activation, inhibition®2%2%:69.74-79
and non-interaction®®¥%. Factors such as cell type and growth factor context can
influence these discrepant network topologies®®. Previous work conducted in panel of
growth factors and cell lines show varying probabilities of forming an interaction network
edge between ERK and Akt®. The differences in network edge formation can affect
downstream signaling and cell fate decisions®. Could ERK and Akt network topology be

dynamic, and give insight into the division-related correlated behaviors observed

above?

To reconstruct the ERK and Akt network in MCF10A cells, we implemented
recent theory from our lab that specifies a sufficient experimental design for such tasks,
based on perturbation time course data®’. Specifically, for this 2-node network, three
time course experiments should be done: response of ERK and Akt activity to EGF and
Insulin co-treatment with (i) no inhibitor; (i) an ERK pathway inhibitor; and (iii) an Akt

pathway inhibitor. Additionally, we wanted to understand whether the network would be

10
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different in the acute phase of growth factor treatment from a serum starved state vs.
the “chronic” condition where ERK and Akt activities are steady over time, particularly
because these time regimes seem to have different biological information encoded for

cell division decisions.

In the acute regime (Fig. 3B), MCF10A cells expressing either ERK or Akt KTR
were seeded, serum and growth factor starved for 24 hours, and then pretreated with
either a MEK (PD0325901) or an Akt (MK2206) inhibitor for 30 minutes. The
concentrations utilized were determined via titration experiments shown to ensure
minimum possible doses were being used (Fig. S1, S2, S4). Following drug treatment,
baseline KTR activity was acquired every 15 minutes for 1 hour. Then, we treated cells
with EGF and insulin and imaged. Single cell traces (thin) and population median
activity (bold) were calculated for each condition, showing robust ERK and Akt
activation (Fig. 3C). MEK inhibition ablates ERK activation and has a negligible effect on
Akt activation (Fig. 3C). Akt inhibition ablates Akt activation and has a negligible effect
on ERK activation (Fig. 3C). Although the Akt KTR may reflect kinase activity other than
Akt in this acute stimulus regime, the fact that complete inhibition of the ERK pathway
has negligible impact on the Akt KTR readout means that ERK does not impact Akt or
the others. These results show that in the acute stimulus regime, ERK and Akt exhibit

negligible crosstalk after treatment with EGF and insulin.

In the chronic regime, cells were pretreated with either EGF and insulin for 30
minutes followed by 30 minutes of baseline acquisition, leading to robust ERK and Akt
activation (Fig. 3D-E, Replicates in S5). Akt inhibition reduces Akt activity, as expected,

but negligibly affects ERK activity. MEK inhibition reduces ERK activity, as expected,

11
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but does not appreciably affect Akt activity. These conclusions are also consistent when
a second set of MEK and Akt inhibitors are used (Fig. S4). Therefore, in the chronic
regime ERK and Akt also do not exhibit appreciable cross pathway interactions after
EGF and insulin co-treatment. We conclude it is unlikely that crosstalk interactions

account for correlations that change in dividing vs. non-dividing cells.

12
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Discussion

Binary single-cell responses, like division, to perturbations such as growth factor
and drug treatments, are almost universally heterogeneous even in clonally derived
populations. However, predictive biochemical features, present either before the
perturbation, or from dynamics following the perturbation, are seldom known. The ability
to predict such binary responses would not only reflect a deep and fundamental
understanding of the systems governing important cellular responses, but also have
significant translational applications such as antibiotic resistance, tissue engineering,
and anticancer therapy, where the fates of single cells can be of great importance.
Here, we investigated growth-factor induced cell division fates in the well-studied, non-
transformed mammalian epithelial cell line MCF10A, and how they may be predicted by
the dynamics of two central signaling pathways, PI-3K/Akt and Ras/ERK. Answering
such questions requires single-cell, non-destructive analysis of biochemical features, in
this case ERK and Akt activities, that are paired to the eventual cell division outcome.
They also must be carried out in a high-throughput manner to observe enough events to
make statistically-supported conclusions. After setting up this experimental system and
understanding its ranges of validity, we learned that (i) ERK and Akt activities are higher
in the 8.5-40 hour window after growth factor treatment in cells that divide, suggesting
underappreciated roles post-restriction point, into S and G2 phases; (i) median
activities in this time window predict single cell division outcome with AUC=0.76 with
ERK dynamics alone giving AUC=0.74, suggesting Akt dynamics add little to the
decision driving division in this context; (iii) metrics of central tendency are the most

predictive features; (iv) ERK and Akt activities are less correlated in cells that divide;

13
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and (v) ERK and Akt do not exhibit crosstalk in this system, so division-related

correlation is unlikely related to crosstalk.

We have performed these studies in the MCF10A cell line, a well-established
model for non-transformed epithelial cells. An obvious next question is how the
relationships between ERK, Akt and cell division found here translate to different cell
lines, and transformation contexts. Many other cell lines are cancer-derived and
genetically unstable, and/or contain multiple alterations to the systems that control cell
cycle progression and division. A firm understanding of how ERK and Akt systems
control the cell cycle in a system such as MCF10A is an important foundation for
subsequently understanding how it may be altered in other cell lines, and also across
different microenvironmental contexts, such as confluent settings. Indeed, there is a
growing body of work that focuses on answering fundamental cell biological questions
82)

using studies on the MCF10A system alone (e.g. ™). It is appealing to consider

MCF10A as an emerging model system for mammalian epithelial cells.

Nearly all the cells we observed had relatively simple dynamics for ERK and Akt
activity, a rise then a somewhat constant higher than baseline steady-state. Other
recent single cell studies have reported pulsatile ERK dynamics™*?®*%4 Some of this
may be related to differences in growth factor concentration, the reporters used, being
FRET-based ®° or translocation based . No live-cell imaging probe is perfect and of
course has its drawbacks, some of which may be related to off-target responses, which
may partly explain our Akt activity data in the “acute” phase first following growth factor
treatment. For example, kinases other than Akt may recognize and phosphorylate the

FOXO1-based Akt KTR docking site ®*°°. EGF and insulin stimulation may also

14
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promote activation of such kinases including PLK1 ®*, SGK and PKA®. Another aspect
may have to do with cell-cell contact and density. In our study, cells were seeded at low
density and serum/growth factor-starved prior to analysis, whereas pulsatile signaling
was reported in high density environments in asynchronously cycling settings®*. Yet
others have found pulsatile dynamics can induce different sets of genes as compared to
sustained dynamics®®. However, phenotypic consequences, at least in terms of cell
proliferation still seem to be related to simple time-integrated signaling dynamics**°,

similar to what we found here.

ERK and Akt activity dynamics are only a subset of the potentially important
variations that drive phenotypic variability in cell division responses, as shown by the
AUC=0.76 that was obtained. ERK dynamics account for nearly all this predictive
power. This reinforces Akt activity as perhaps more relevant for cell maintenance and
health, and more as a “checkpoint” for division but not a significant driver, at least in the
studied system. As noted above, cell contacts and density are important. Such
phenomena may potentially be controlled through micropatterning experiments, where
cell shape and placement can be carefully controlled®*®*. Cell “state”, corresponding to
different epigenetic and/or metabolic states of cells prior to the experiment, has been
reasonably well documented ubiquitously, and can contribute to variability, although is
difficult to assess in the “track and follow” manner that can be done with live-cell kinase
reporters. Metabolic or organelle abundance variability may also contribute®>. Of
course, there are other pathways and biochemical correlates that are likely important,

54,67,97

such as a balance between p53 and p2l1 and/or CDK2 activity . Given the

multitude of fluorescent proteins, and improvements in cell tracking from non-labeled

15
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98,99

bright field images™ ", one may be able to measure more important biochemical
readouts simultaneously for such purposes. There are also multiple checkpoints
between growth factor treatment and cell division, such as the restriction point, and
DNA damage checkpoints, that may contribute. Monitoring division with probes like the

Fucci system that gives readouts of each cell cycle phase may help explore such

phenomena®®.

An interesting aspect of our study was the surprising larger differences between
dividing and non-dividing cells in the time period that corresponds to S/G2 phases of the
cell cycle, as opposed to pre-S-phase. The roles of growth factor signaling through ERK
and Akt pathways historically focused on passing the restriction point into S-phase®.
Thus, our results suggest potential functional roles for ERK and Akt beyond this
canonical understanding. Indeed, a recent study found time-integrated ERK activity in a
mother cell's G2 phase influenced the cell cycle progression in the subsequently
daughter cells®. The mechanisms that may be driving such functional roles are a

potentially interesting area of future study.

We also studied the ERK and Akt activity network, since we found that ERK and
Akt activity are less correlated with each other in dividing cells compared to non-dividing
cells. We found that the observed differences in correlation are likely not a result of
network topology as ERK and Akt do not appreciably interact. This lack of interaction is
surprising given that some prior studies describe these pathway as exhibiting cross

pathway interactions 2397

, albeit in other cell lines and in response to other growth
factors. However, other studies in MCF10A cells across a panel of different growth

factors show that ERK and Akt are insular, and do not interact ®°. Similar to MCF10A
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cells, 32D-EpoR; BaF3-EpoR; CFU-E cell lines exhibit minimal ERK and Akt cross
pathway interaction under erythropoietin stimulation, a growth factor that activates both
ERK and Akt ®. These studies reveal that in non-interacting pathways, differences in
protein expression influence the flow of erythropoietin signaling ®. Therefore, in our
model system, it is possible that the observed differences in ERK and Akt correlation
may arise from differences in protein expression across dividing and non-dividing cells.
It may also be that differences in upstream signaling capacity to ERK and Akt may be
related. Characterizing the differences in protein expression level in single cells, and
following cell signaling and cell division can provide insight; but this becomes a quite

challenging experiment given the number of probes to be measured simultaneously.

In conclusion, we have studied the relationship between ERK activity dynamics,
Akt activity dynamics, and cell division, and found that simple measures of central
tendency of these dynamics in a time coinciding with S/G2 phase are most predictive of
cell division in single cells. This implies unappreciated roles for ERK and Akt beyond the
canonical restriction point. ERK accounts for much of this predictive capacity,
suggesting Akt contributes little to the decision to divide in this context. Yet, AUC=0.76
is far from perfect so it is clear other biochemical pathways are important factors for
predicting single cell division events. ERK and Akt do not interact with one another in
the studied contexts, despite the fact that their activities are more correlated in cells that
do not divide. These studies conducted in the non-transformed context provide a
foundation to explore how cell transformation through oncogenic and/or loss-of-function
mutations shape network topology, signaling dynamics, and cell division outcome in

cancer, with the potential to identify and target pathway compensation behaviors that
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promote cell proliferation and survival **?

in the diseased context. In addition, exploring
the role of spatial temporal propagation of ERK and Akt signaling in a 3D tissue context,
a model system that MCF10A cells are suited for, can provide insight into how these

pathways regulate tissue homeostasis and how transformation disrupts this

homeostasis.
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Methods

Cell Culture. MCF10A cells were gifted by Dr. Gordon Mills and cultured in complete
sterile filtered (VWR 10040-436) media, consisting of DMEM F12 (Gibco #11330-032)
supplemented with 2 mM L-Glutamine (Gibco # 25-005-Cl), 20ng/mL EGF (Peprotech
AF-100-15), 10ug/ml insulin (Sigma #1-1882), 0.5ug/ml hydrocortisone (Sigma #H-
0888), 100ng/ml cholera toxin (Sigma #C-8052) and 5% horse serum (Invitrogen
#16050-122). Cells were passaged with 0.25% trypsin (Gibco #25200056) to maintain
sub confluency. Cells were maintained at 37°C, 5% CO,. Starvation media and imaging
media is phenol red free DMEM F12 (Fisher #11039-021) supplemented with 100ng/ml

cholera toxin.

HEK293T cells were gifted by the Dr. Dominguez and Dr. Pappapetrou labs and
cultured in complete sterile filtered (VWR 10040-436) media, consisting of DMEM
(Gibco #11965118) supplemented with 2 mM L-Glutamine (Gibco #25-005-Cl) and 10%
heat inactivated fetal bovine serum (Gibco #16140071). Cells were passaged with

0.05% trypsin (Gibco #25300054) to maintain sub confluency.

All inhibitors used for KTR validation were formulated as 10mM stock solutions in
DMSO (Sigma Aldrich D2650-5X0ML) and sterile filtered with a 0.22-micron syringe
filter. PD0325901 (MEK inhibitor 1) was purchased from Sigma Aldrich (PZ0162-5MG).
Trametinib (S2673) (MEK inhibitor 2) and Ipatasertib (S2808) (Akt inhibitor 2) were
purchased from Selleck Chemicals. MK2206 (#CT-MK2206) (Akt inhibitor 1) was

purchased from Chemietek.
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Imaging. All live cell imaging experiments were acquired using the InCell 2200
microscope (GE Healthcare) under environmental control (37°C, 5% CO,.) with a Nikon
20X/0.75, Plan Apo, CFI/60 objective. For KTR imaging the following filter sets were
utilized: FITC (Excitation: 475/28nm Emission: 511/23nm) (ERK-mClover, Akt-mClover
KTR); Cy3 (Excitation: 542/27nm Emission:597/45nm) (H2B-mRuby2, mCherry-NLS);

Cy5 (Excitation: 632/22nm Emission: 679/34nm) (ERK-IRFP); Brightfield.

KTR-expressing MCF10A cell lines (see below) were seeded in separate rows of
a 96 well plate (Corning #3603) at 5000 cells / well and treated as described. After
growth factor and serum starvation, starvation media was aspirated, cells were washed
with PBS and 100 uL imaging media was then placed in the wells. Following baseline
imaging, cells were treated as indicated by adding 100 uL of 2X solutions in imaging

media. Acquired images were processed as described Computational Image Analysis.

Flow Cytometry. EdU flow cytometry assays were performed using the Molecular
Probes Click-iT Plus EdU flow cytometry assay kit (C10633 molecular probes). MCF10A
cells were seeded in 6 well plates (Corning 353046) at a density of 127 cellssmm? in
complete DMEM F12 media. The following day, we serum and serum and growth factor
starved cells in DMEM F12 media supplemented with 100ng/mL cholera toxin for 24
hours. Following starvation, cells were pretreated with a final concentration of 100nM of
MEK inhibitor 1 (PD0325901) or 10uM of Akt inhibitor 1 (MK2206) or DMSO control for
30 minutes. Cells that did not receive inhibitor pretreatment were treated with either
MEK inhibitor 1 or Akt inhibitor 1 2, 4, 8, or 12 hours post EGF and insulin addition
(Final growth factor concentration: 20ng/mL EGF, 10ug/mL insulin). 22 hours post

growth factor addition, a final concentration of 10 uM of EdU was added to each well
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and incubated for two hours. Two hours post EdU addition, cells were washed with PBS
and lifted with 0.25% Trypsin for 10 minutes. Trypsin was neutralized with complete
DMEM F12 media. Cells were pelleted at 100xG for 5 minutes, resuspended in 100uL
of PBS, and processed as recommended by the manufacturer’'s protocol (Molecular
Probes Click-iT Plus EdU flow cytometry assay kit). During the last 5 minutes of
permeabilization, 100uL of diluted 1ug/mL Hoechst 33342 (Thermo Fisher H3570) stain
was added. Cells were then washed with a 1 % (g/100mL) bovine serum albumin PBS
solution and pelleted at 100g. Cells were resuspended in permeabilization buffer and
stained with EdU Click-iT reaction cocktail for 30 minutes at room temperature protected
from light. Following EdU Click-iT labeling, cells were washed and resuspended in
permeabilization buffer and analyzed using the BD Canto Il flow cytometer configured
with the following laser lines: excitation 640nm, emission filter 660/20, excitation 405nm,
and emission filter 450/50. Data were gated and processed using FCS Express
(Denovo Software).

Cloning. Akt KTR was modified from the transposase transfection system PSBbi-
FoxO1_1R_10A_3D vector (Addgene # 106278)* for lentiviral production (Fig. S6A).
The lentiviral expression vector was developed using overlap PCR from fragments
generated from the source vector PSBbi-FoxO1 1R _10A_3D: SV40NLS-mCherry-P2A
and Gly-FT2DDD-KTR-mClover. Primer sequences are shown in Table S1 and were
designed in SnapGene and ordered from Sigma Aldrich. Fragments for lentiviral vector
construction were generated via PCR using Q5 polymerase (NEB M0491S) and primers
specific to SV40NLS-mCherry-P2A and Gly-FT2DDD-KTR-mClover (Table S1) regions

of PSBhi-FoxO1 1R 10A 3D (Fig. S6, Fragment 1,2). Fragments were gel purified
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using the NEB Monarch gel extraction kit (NEB T1020S). Following gel extraction, a 10
cycle PCR reaction was performed using Q5 polymerase and equimolar SV40NLS-
mCherry-P2A and Gly-FT2DDD-KTR-mClover fragments wusing an annealing
temperature of 72°C. 5 uL of the product was amplified using end primers (F: SV40NLS-
mCherry-P2A, R: Gly-FT2DDD-KTR-mClover, T,=69°C, Table S1). Gateway ATTB sites
were inserted at flanking ends using PCR and the ATTB primers (Table S1). The
Gateway cloning compatible fragment was inserted into donor vector pDONR221
(Invitrogen™ 12536017) using BP Clonase II (Thermo Fisher# 11789020). High
Efficiency NEB-5-alpha Competent E. coli (NEB C29871) were transformed with
pDONR221 containing the Akt KTR. Transformants were miniprepped with the
PureYield™ Plasmid Miniprep System (Promega A1223) and Sanger sequenced
verified with GeneWiz. Akt KTR expression vector was generated by performing a LR
reaction using pDONR 221-Akt, LR Clonase Il (Thermofisher #11791020) and the
lentiviral expression vector pLenti CMV Hygro DEST (Addgene #17454) generating the
final product, a bi-cistronic hygromycin selectable lentiviral expression vector. The
product was transformed into NEB® 5-alpha Competent E. coli. Transformations with
the correct sequence were maxiprepped with PureYield™ Plasmid Maxiprep System

(Promega # A2392) and utilized for lentiviral production.

We exchanged the antibiotic selectable marker on the lentiviral expression vector H2B-
mRuby2 (Addgene #90236) from hygromycin to puromycin. Specifically, we transferred
pLentiPGK Hygro DEST H2B-mRuby2 into pLentiCMV puromycin DEST (Addgene
#17452) using BP Clonase Il followed by LR Clonase Il generating pLentiCMV

puromycin DEST H2B-mRuby2 (H2B-mRuby?2).
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Lentiviral Production. The lentiviral constructs for each cell line are shown in Fig. S6B.
Lentiviral particles were generated by transfecting 5 million HEK293T cells seeded in a
T75 flask and allowed to attach overnight (Corning® T-75 flasks catalog #430641) using
the TransIT-293 transfection reagent (Mirus Bio MIR2704) along with expression vector
ERK KTR (mClover or iRFP), H2B-mRuby2, or Akt KTR along with packaging plasmid
pPAX (Addgene #12260), and envelope protein pCMV-VSV-G (Addgene #8454)
according to the manufacturer’s instructions. Two days post transfection, supernatant
from was collected and concentrated using Amicon Ultra-15 100 kD centrifugation filters
(Millipore #UFC910008). The concentrated lentiviral supernatant was aliquoted and

stored at -80°C.

Lentiviral Transduction. 100,000 MCF10A cells were transduced in suspension in a 6
well plate (Corning 353046) containing complete DMEM F12 medium along with 100uL
lentiviral supernatant. Two days later, expression was validated by fluorescence
imaging. ERK KTR MCF10A cell lines (ERK KTR-mClover Hygro, H2B-mRuby2 Puro)
were selected in complete DMEM F12 media supplemented with hygromycin (35ug/mL)
and puromycin (2ug/ml). Akt KTR expressing MCF10A cell lines (SV40nls-mCherry-Akt
KTR-mClover Hygro) were selected with DMEM F12 media containing hygromycin
(35ug/ml). Cells were passaged every two to three days in selection media for about
two weeks. Following selection, cells were expanded in complete DMEM F12
maintenance media containing either both hygromycin (1.5ug/ml) and puromycin
(0.1ug/ml) (ERK KTR-mClover expressing cells) or hygromycin (1.5ug/ml) (Akt-KTR-
mClover expressing cells). Live-cell imaging was conducted in the absence of selection

antibiotics. Dual reporter expressing cells (ERK KTR-iRFP, Akt-KTR-mClover) lines

23


https://doi.org/10.1101/2021.09.14.460349
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.09.14.460349; this version posted September 14, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

were not selected, as the ERK KTR iRFP (Addgene #59150) lentiviral expression vector
does not confer antibiotic resistance. For these, ERK KTR iRFP virus was added to

cells for 24 hours, and then subcultured as above prior to live-cell imaging analysis.

103-105

Computational Image Analysis. While many image analysis tools exist , each

application still requires much novel development tuned to the problem at hand. We

k 1% and CellProfiler

developed an automated image analysis pipeline using both iLasti
195 software packages, along with MATLAB scripts (Fig. S2C). It is available at the
Birtwistle Lab github repository (github.com/birtwistlelab/Predicting-Individual-Cell-
Division-Events-from-Single-Cell-ERK-and-Akt-Dynamics),  which includes some
dockerized scripts. The analysis pipeline consists of (1) cell nuclei and cytoplasmic
segmentation, (2) quantification of KTR fluorescence in both nuclei and cytoplasmic

compartments, (3) tracking single cells across a time series, and (4) automatic detection

of cell division.

1. Prior to segmentation images were flatfield corrected and background subtracted
using CellProfiler. Images of nuclear localized fluorescent protein H2B-mRuby2 (ERK
KTR) and NLS-mCherry (Akt KTR) were input into iLastik. Nuclei were identified using a

series of features- object intensity, edge detection and texture.

2. The binary mask outputs from iLastik were input into CellProfiler to create a

perinuclear ring known as the ‘Cytoring’*”’

which extends 10 pixels from the binary
nuclei mask and into the cytoplasm (Fig S2C). Calculating the cytoplasmic to nuclear
KTR fluorescence ratio provides the relative activity of the pathway of interest for that

particular cell at that time point.
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3. Segmented nuclei identified with iLastik were tracked using CellProfiler's

104105108 and Follow Neighbors'®. Each identified nucleus was

TrackObjects module
assigned a numerical ID, which corresponds to the same cell across each timepoint. We
filter tracks that are shorter than the duration of the time course to prevent quantification

of cells that were transiently tracked.

4. Cell division was detected using a feature of cytoplasmic to nuclear KTR
fluorescence (C/N ratio) that is unique to dividing cells. As cells divide, there is a change
in morphology resulting in a rapid decrease in C/N ratio (Fig. S7). MATLAB'’s findpeaks
function was used to detect when this steep decrease occurs. We then truncated the
time series 5 timepoints before the identified peak, which is attributed to actual kinase

activity.

The CellProfiler pipeline exports CSV files first preprocessed in Microsoft Excel then
analyzed in MATLAB. First, the csv are input into batchreader.m, which generates a
cell array of tables containing each cell's measured parameters. The data is then input
into the script ktrTablePlotter.m, which plots KTR dynamics. Cell division events are
detected using the script Div_detection.m. Division events were confirmed by directly
observing nuclear fission via H2B-mRuby2 or NLS-mCherry fluorescence. Cells were

separated by division status, and KTR dynamics were plotted for each class.

Statistics, Classification, and Visualization. Rank-sum tests were used to calculate p-
values for differences between dividing and non-dividing cells. For single reporter
expressing lines the MATLAB function fitglm was used with median ERK or Akt activity

within the 8.5-40 hour interval as the predictor class. ROC curves were generated using
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the MATLAB function perfcurve. For dual ERK and Akt KTR expressing MCF10A cell
lines, 150 randomly selected dividing and non-dividing cells were used to develop a
linear SVM classifier using the MATLAB function fitcsvym. The MATLAB function
resubPredict was used to calculate the SVM classification performance between the two

classes.

NotBoxPlot was retrieved from MATLAB Central File Exchange (Rob Campbell, 2021).
Scatter plots of single cell ERK and Akt activity across all timepoints within the 8.5-40
hour interval were generated using the MATLAB Central File Exchange script
Scatplot.m - Alex Sanchez (2020). To assess statistical significance of the correlation
coefficient, the mean (u) and covariance (o) between ERK and Akt were calculated
across all biological replicates and used to sample matched numbers of data points
from random multivariate normal distributions for dividing cells and non-dividing cells.
This was repeated 1000 times to define the range of correlation coefficients between
the 5™ and 95" percentiles, which was reported and rounded up to the nearest 0.01.

The hctsa package’®"®

was installed according to the published documentation. We
initialized our data set from data acquired under high concentrations of EGF and insulin
stimulation using the custom MATLAB script hctsa_prep_dualrep.m. The number of
cells that were input into hctsa were chosen based on the smallest population of either
dividing /non-dividing cells. A random permutation was then used to choose an equal
number of the largest population of cells to input into hctsa. The data set was initialized

using the hctsa’s TS init command, followed by TS compute command. The processed

datasets were labeled for hctsa format as 1-dividing or 0-non-dividing using
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TS LabelGroups. The top predictive features were identified using the raw computed

hctsa values and the function TS_TopFeatures for both ERK and Akt time course data.
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Figure Legends

Figure 1. Evaluating the predictability of cell division from univariate single cell
ERK or Akt dynamics. In these experiments, cells were either expressing the ERK or
the Akt KTR. (A) Cell treatment workflow for pairing single cell KTR dynamics to cell
division. ERK or Akt KTR expressing MCF10A cells were seeded, allowed to attach
overnight, and then serum and growth factor starved. Following starvation, baseline
images were acquired, cells were treated with EGF and insulin, and then imaged every
15 minutes for 48 hours. Images were quantified using the analysis pipeline described
in the methods. (B, C) Quantified ERK or Akt KTR dynamics paired to division events
for EGF and Insulin doses that match those used in culture medium (B) or 10-fold less
(C). Single cell traces of dividing (blue) and non-dividing (red) cells are shown with thin
lines, and population median (per time point) is shown with thick lines. (D) Left,
representative single cell trace of ERK KTR for a dividing (blue) or non-dividing (red)
cell. Median ERK activity within the 8.5-40 hour interval for each cell becomes a single
dot in the boxplots. (E) Left: notBoxplots for single cell median ERK or Akt activity within
the 8.5-40 hour interval for EGF and Insulin doses that match those used in culture
medium (top) or 10-fold less (bottom). p-values for right tailed rank-sum test were
calculated at the 95% confidence interval. D: dividing; ND: Non-dividing. Right: ROC
curve for classifying cell division events from single cell median ERK (red) or Akt (black)

activity using a logistic regression model.
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Figure 2. Evaluating the predictability of cell division from paired, bivariate single-
cell ERK and Akt dynamics. In these experiments, cells were expressing both the
ERK and Akt KTR simultaneously. (A) Quantified ERK and Akt dynamics for EGF and
Insulin doses that match those used in culture medium (top) or 10-fold less (bottom).
Single cell traces of dividing (blue) and non-dividing (red) cells are shown with thin lines,
and population median (per time point) is shown with thick lines. (B) Scatter plot of ERK
vs. Akt KTR median activity in the 8.5-40 hour window from 150 randomly sampled
cells. Each dot is a single cell. Dividing cells are blue and non-dividing cells are red. The
dotted line is the SVM hyperplane for classifying dividing and non-dividing cells. Left
and right are high and low growth factor concentrations, respectively. (C) ROC curve for
SVM classification performance for EGF and Insulin doses that match those used in

culture medium (left) or 10-fold less (right).

Figure 3. Investigating properties of the ERK and Akt network. (A) Single cell ERK
and Akt activity plotted across all time points within the 8.5-40 hour interval for dividing
and non-dividing cells. These cells expressed both the ERK and Akt KTR. Pearson
correlation coefficient, along with the number of cell-time datapoint combinations are
indicated. Uncertainty in the correlation coefficients is calculated as described in
Methods. (B) Cell treatment workflow for network reconstruction in the “acute” regime.
Single ERK or Akt KTR expressing MCF10A cells were seeded, allowed to attach
overnight, and then serum and growth factor starved. Following starvation, inhibitor was
added (PD: PD0325091; MK: MK2206), baseline images were acquired, cells were
treated with EGF and insulin, and then imaged every 15 minutes for 12 hours. Images

were gquantified using the analysis pipeline described in the methods. (C) Quantified
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ERK and Akt activity dynamics in the acute regime. Solid lines are population median
(per time point), and shaded areas denote the standard deviation. (D) Cell treatment
workflow for network reconstruction in the “chronic” regime. Dual ERK and Akt KTR
expressing MCF10A cells were seeded, allowed to attach overnight, and then serum
and growth factor starved. Following starvation, EGF and insulin were added, baseline
images were acquired, cells were treated inhibitor, and then imaged every 6.5 minutes
for the remaining ~hour. Images were quantified using the analysis pipeline described in
the methods. (E) Quantified ERK and Akt activity dynamics in the chronic regime. Solid
lines are population median (per time point), and shaded areas denote the standard

deviation.
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Supplementary Figure Legends

Figure S1. Roles of ERK and Akt activity in cell cycle progression in MCF10A
cells. (A) Live cell imaging pipeline for quantifying cell division events in MCF10A cells
under EGF, insulin, and EGF & insulin stimulation. MCF10A cells were seeded, serum
and growth factor starved as described in the methods. Following starvation, cells were
pre-incubated with or without MEK inhibitors 1,2 (PD0325901, Trametinib) or Akt
inhibitors1,2 (MK2206, Ipatasertib) for 30 minutes. Following inhibitor preincubation,
growth factors EGF (20ng/mL), insulin (10ug/mL), or EGF (20ng/mL) & insulin
(10ug/mL) were added. Cells were imaged under brightfield every hour for 48 hours. (B)
Top: Representative brightfield images of cells under EGF and insulin stimulation.
Arrows point to representative cell division events. The number of cell division events at
selected time points were counted in this manner. Bottom: The relative number of cell
division events were calculated by summing the number of observed cell division events
across each field of view per condition divided by the total number of observed division
events under EGF and insulin stimulation. Error bars represent the standard deviation of
normalized cell counts per field per condition. Insulin induces essentially no cell division,
but when in combination with EGF, has a more than additive effect. Both ERK and Akt
activities appear essential for cell division in this context. (C) Experimental outline for
relating ERK and Akt dynamics in driving S-phase entry in MCF10A cells. MCF10A cells
were seeded, serum and growth factor starved as described in the methods. Post
starvation, cells were treated with MEK or Akt inhibitors 1 (PD-10nM and MK-10 uM,
according to minimum effective concentrations above) at the times indicated relative to

EGF and insulin addition. 22 hours post growth factor addition, EAU was spiked in for 2
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hours. (D) The average percentage of the cell population in S-phase for each of the
conditions shown. A single tailed Student’s t-Test was used to calculate the significance
between the average percentage of cells entering S-phase between 4 & 12 hours and 8
& 12 hours at the 95% confidence interval (p< 0.00045). Error bars are from biological
triplicates. These results are consistent with the model that time integrated ERK and Akt

activities for at least 8-12 hours are necessary for S-phase entry.

Figure S2. Live cell imaging assays to establish regimes of validity for kinase
translocation reporters. (A) Cartoon representation of kinase translocation reporter in
the inactive (nuclear) and activated (cytoplasmic) state. (B) Acute stimulus kinase
translocation reporter validation pipeline. (C) Steps in the computational image analysis
pipeline for nuclei, cytoplasmic identification, cell tracking and quantification of reported
KTR dynamics. (D) Single cell traces (gray thin lines) of quantified ERK KTR (C/N
Ratio) under EGF (20 ng/mL) and insulin (10 ug/mL) stimulation. Population median
(per time point) response is shown in thick black. Representative images of cells
expressing ERK KTR are shown below each time point: 0, 30, and 60 minutes. Prior to
EGF addition, ERK KTR is mainly nuclear localized (0-15 minutes). By 15 minutes post
EGF and insulin addition, ERK KTR is cytoplasmic localized, which is reflected by the
increase in the C/N ratio. The panel to the right shows the population median C/N traces
for each inhibitor dose condition. KTR activity is ablated with ~10 nM of both MEK
inhibitors. MEK inhibitors 1 and 2 are PD0325901 and Trametinib, respectively. (E)
Single cell traces (gray thin lines) of Akt KTR (C/N Ratio) under EGF (20 ng/mL) and
insulin (10 ug/mL) stimulation. Population median (per time point) response is shown in

thick black. Prior to EGF and Insulin stimulation, Akt KTR exhibits slightly elevated C/N
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Ratio, indicative of some basal activity. By 15 minutes post growth factor stimulation,
Akt KTR is cytoplasmic localized as shown by C/N Ratio values. Shown to the right are
the population median traces for each inhibitor dose condition. Even at 10 uM of each
Akt inhibitor, there is significant Akt KTR activity, indicating that at least in the first ~1
hour post-EGF and insulin treatment, the Akt KTR activity likely reports on other
kinases. Akt inhibitors 1 and 2 are MK2206 and Ipatasertib, respectively. (F) Live cell
imaging pipeline to investigate Akt KTR validity under chronic EGF and insulin
stimulation. (G) Population median Akt KTR dynamics for each inhibitor dose condition.
After 1 hour of EGF and insulin treatment, 10 uM of either Akt inhibitor completely

ablates Akt KTR reporter activity.

Figure S3. Biological replicates for data presented in Figures 2 and 3. Please see

those legends for detalils.

Figure S4. Biological replicates for KTR range of validity and network
reconstruction in the chronic setting using single reporter cell lines. MCF10A cells
expressing either ERK or Akt KTR were pre-incubated with EGF and insulin for 90
minutes followed by baseline KTR acquisition. Following baseline, either a MEK or an
Akt inhibitor was added. Population median KTR activity calculated across cells for each
timepoint are shown for both inhibitor 1 and 2. MEK inhibitors 1,2 are PD0325901 and

Trametinib and Akt inhibitors 1 and 2 are MK2206 and Ipatasertib.

Figure S5. Biological replicates for chronic regime network reconstruction. Thick
lines are population median (per time point), and shaded regions +/- standard deviations

across single cell responses. Please see Figure 3 for more detalils.
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Figure S6. KTR construction and cell lines. (A) Converting the Akt KTR from the
transposon backbone to the lentiviral backbone. (B) Cartoon representation of
constructs used to generate KTR expressing MCF10A cell lines. (C) PCR primers used

for the different vector construction steps.

Figure S7. Identification of cell division events. A representative time course and
selected images from an Akt KTR expressing MCF10A cell that divides in response to
EGF and insulin treatment is highlighted. The nuclear marker is mCherry-NLS. Tp

denotes the time of division which is determined by the rapid decrease in C/N ratio.
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ERK KTR Features Akt KTR Features

Operation -log10 p-value Operation -log10 p-value
(HCTSA) (Rank sum) (HCTSA) (Rank sum)
[10] midhinge 3.39 [16] rms 6.79
[16] rms 3.32 [6] timmed mean_5 6.74
[5] trimmed mean_1 3.31 [7] trimmed mean_10 6.72
[2] mean 3.30 [8] trimmed mean_25 6.72
[3] harmonic_mean 3.29 [5] trimmed mean_1 6.71

The top 5 features of ERK and Akt signaling dynamics for
prediction of cell division as determined by HCTSA analysis of
dual ERK and Akt KTR expressing lines under 20ng/mL EGF,
and 10ug/mL insulin. The top features shown are related to
measurements of central tendency using different operation
parameters corresponding to the values within the brackets [].
These operations parameters and their corresponding functions
can be found in hctsa documentation.
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F- ACCATGAGTCCTAAGAAAAAGCGGA
SV40NLS-mCherry-P2A

R- CTCTGCCATACCGGGGCCAGGATTCTCCTCG

Gly-FT2DDD-KTR-mClover F- ATCCTGGCCCCGGTATGGCAGAGGCTCCCC

R- CTAGACCTCGAGGGATCCCAGT

ATTB F-GGGGACAAGTTTGTACAAAAAAGCAGGCTTAACCATGAGTCCTAAGAAAAAGCGGA

R- GGGGACCACTTTGTACAAGAAAGCTGGGTTCTAGACCTCGAGGGATCCCAG
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