

1 **Monomeric IgA antagonizes IgG-mediated enhancement of DENV infection**

2

3 Adam D. Wegman¹, HengSheng Fang¹, Alan L. Rothman², Stephen J. Thomas^{1,3}, Timothy P.
4 Endy¹, Michael K. McCracken⁴, Jeffrey R. Currier⁴, Heather Friberg⁴, Gregory D. Gromowski⁴,
5 Adam T. Waickman^{1,3*}

6

7 ¹ Department of Microbiology and Immunology, State University of New York Upstate Medical
8 University, Syracuse, New York, USA

9 ² Department of Cell and Molecular Biology, Institute for Immunology and Informatics,
10 University of Rhode Island, Providence, RI, United States

11 ³ Institute for Global Health and Translational Sciences, State University of New York Upstate
12 Medical University, Syracuse, New York, USA.

13 ⁴ Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, United
14 States

15

16

17

18

19

20

21

22

23

24

25

26

27

28 *Corresponding author: waickmaa@upstate.edu

29

30

31 **Keywords:** Dengue, DENV, antibody dependent enhancement, IgA

32 **Abstract:**

33 Dengue virus (DENV) is a prevalent human pathogen, infecting approximately 400 million
34 individuals per year and causing symptomatic disease in approximately 100 million. A distinct
35 feature of dengue is the increased risk for severe disease in some individuals with preexisting
36 DENV-specific immunity. One proposed mechanism for this phenomenon is antibody-
37 dependent enhancement (ADE), in which poorly-neutralizing IgG antibodies from a prior
38 infection opsonize DENV to increase infection of F_c gamma receptor-bearing cells. While IgM
39 and IgG are the most commonly studied DENV-reactive antibody isotypes, our group and
40 others have described the induction of DENV-specific serum IgA responses during dengue.
41 We hypothesized that monomeric IgA would be able to neutralize DENV without the possibility
42 of ADE. To test this, we synthesized IgG and IgA versions of two different DENV-reactive
43 monoclonal antibodies. We demonstrate that isotype-switching does not affect the antigen
44 binding and neutralization properties of the two mAbs. We show that DENV-reactive IgG, but
45 not IgA, mediates ADE in an F_c gamma receptor-positive K562 cells. Furthermore, we show
46 that IgA potently antagonizes the ADE activity of IgG. These results suggest that levels of
47 serum DENV-reactive IgA induced by DENV infection might regulate the overall ADE activity of
48 DENV-immune plasma *in vivo* and warrants further study as a predictor of disease risk and/or
49 therapeutic.

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

Introduction

67 Dengue virus (DENV) is one of the most widespread vector-borne viral pathogens in the world.
68 Consisting of four antigenically and genetically distinct serotypes (DENV-1, -2, -3, and -4),
69 DENV is transmitted primarily by the tropical and subtropical mosquitoes *Aedes aegypti* and *A.*
70 *albopictus* [1, 2]. DENV and its mosquito vectors can currently be found across Central and
71 South America, South and South-East Asia, the Western Pacific, and sub-Saharan Africa,
72 meaning 40% of the world's population is currently at risk of exposure and infection [1-3].
73 Consequently, an estimated 400 million DENV infections are thought to occur every year,
74 resulting in 100 million clinically apparent infection [2]. Approximately 500,000 cases per year
75 progress to severe dengue—characterized by thrombocytopenia, vascular leakage and
76 hemorrhage—resulting in nearly 20,000 deaths [4-7].

77 A distinct epidemiological feature of dengue as compared to other flaviviral diseases is the
78 increased risk for severe disease upon heterologous secondary infection [8]. While the risk
79 factors associated with developing severe dengue upon secondary DENV exposure are
80 complex and incompletely understood, the leading mechanistic explanation for this
81 phenomenon is a process known as antibody-dependent enhancement (ADE) [9, 10]. ADE is
82 thought to occur when poorly-neutralizing or sub-neutralizing concentrations of DENV-reactive
83 IgG opsonizes DENV and facilitates its entry into permissive F_cγR-bearing cells [11]. Various
84 lines of evidence support the association of ADE with severe dengue, including increased
85 incidence of severe dengue in infants born to dengue-immune mothers [12-14]; increased
86 viremia in interferon receptor-deficient mice or non-primates passively immunized with anti-
87 DENV antibodies [15, 16]; and increased incidence of severe dengue during the second of
88 sequential/heterologous DENV outbreaks and in patients with a narrow range of preexisting
89 anti-DENV antibody titers [17, 18]. Furthermore, *in-vitro* assessments of serum ADE activity in
90 dengue-primed non-human primates have been shown to correlate with viral titers following
91 heterologous attenuated DENV infection [19].

92 The increased risk of severe dengue upon secondary heterologous infection also presents a
93 challenge to vaccine development as incomplete or waning vaccine-elicited immunity may
94 place recipients at an increased risk of developing severe dengue should they be exposed
95 following vaccination [20]. This is most significantly highlighted by the revelation that the only
96 currently US FDA licensed DENV vaccine (Dengvaxia®) fails to protect previously DENV naïve
97 individuals from infection, and can increase the risk of hospitalization with virologically
98 confirmed dengue [21-23]. Accordingly, understanding the subtleties of both natural and
99 vaccine-elicited DENV humoral immunity is critical for further our understanding of disease risk
100 and infection-associated immunopathogenesis.

101 To date, the literature on dengue serology has overwhelmingly focused on the contribution of
102 immunoglobulin isotypes IgM and IgG to functional dengue immunity and infection-associated
103 immunopathogenesis. During both primary and secondary DENV infection, these isotype
104 antibodies follow a highly predictable pattern of induction, with an IgM response preceding the
105 rise of DENV-reactive IgG, and DENV-reactive IgG reaching significantly higher titers during
106 secondary infection [24, 25]. These characteristics, as well as the assumed importance of IgG-
107 mediated ADE, have left the role of other serum antibody isotypes relatively unexamined.
108 Notably, this includes IgA, the second most prevalent antibody isotype in serum and one that
109 has been suggested to play a unique and non-redundant role in many viral infections [26].

110 Most work on DENV-reactive serum IgA has focused on its potential as a diagnostic tool [27],
111 with a small body of literature examining DENV-reactive serum IgA as a possible correlate of
112 severe disease [28-31].

113 Our group and others recently reported that IgA was the dominant isotype-switched antibody
114 expressed by circulating plasmablasts during acute primary DENV infection [32, 33]. IgA-
115 expressing plasmablasts were also observed in secondary dengue, but constituted a smaller
116 fraction of the total infection-elicited immune response [32, 33]. Importantly, the IgA antibodies
117 expressed by these plasmablasts exhibited comparable DENV-binding and DENV-
118 neutralization activity to IgG antibodies derived from contemporaneous samples [32]. Given
119 the milder symptoms and lower viral burden typically associated with primary dengue relative
120 to secondary dengue, we hypothesized that DENV-reactive IgA may play some role in limiting
121 DENV propagation and potentially the immune-mediated enhancement of diseases.

122 To test this hypothesis, we isotype-switched pairs of monoclonal antibodies to show that
123 conversion of IgG to IgA does not impact the ability of a monoclonal antibody to bind whole
124 DENV virions or to neutralize DC-SIGN-dependent DENV infection of a susceptible cell line.
125 However, while DENV-reactive IgG antibodies exhibited potent infection-enhancing activity in
126 *in vitro* ADE assays, we observed that DENV-reactive IgA is incapable of mediating ADE.
127 Additionally, we observed that adding DENV-reactive monoclonal IgA to either an enhancing
128 concentration of monoclonal IgG or to an enhancing dilution of dengue-immune plasma
129 antagonizes ADE in a dose-dependent fashion. These results shed new light on the role of the
130 IgA component of the humoral response to DENV, and suggest a new avenue of prophylactic
131 and therapeutic approaches to disease.

132

133 Results

134 **DENV binding and neutralizing is unaffected by antibody F_c isotype.** To assess the
135 potential contribution of DENV-reactive IgA to a functional anti-DENV humoral immune
136 response, we synthesized two pairs of previously described DENV-reactive monoclonal
137 antibodies with either an IgG or an IgA Fc domain (**Figure 1A**). Both mAbs selected for this
138 analysis were previously determined to bind the fusion loop of the DENV E protein and to react
139 with all 4 DENV serotypes [32]. However, VDB33 was initially identified as an IgG clone, while
140 VDB50 was discovered as an IgA clone (**Table 1**). This cross-conversion strategy was chosen
141 so as to determine if the native F_c configuration of a given antibody influenced its functionality
142 as either an IgG or IgA protein product.

143 The DENV-binding capacity of the IgG and IgA versions of VDB33 and VDB50 was initially
144 assessed with a DENV virion-capture ELISA. For this analysis, DENV-3 was chosen as the
145 prototypic DENV serotype as previous work demonstrated that the IgG versions of both VDB33
146 and VDB50 exhibited significant DENV-3 reactivity [32]. Consistent with previously published
147 reports, both VDB33 and VDB50 exhibited potent DENV-3 binding activity with VDB33
148 demonstrating ~200 fold higher affinity for DENV-3 than VDB50 (**Figure 1B, Table 2**).
149 However, the DENV-binding capacity of the two mAbs was not impacted by their conversion to
150 either an IgG or IgA format (**Figure 1B, Table 2**). Furthermore, this cross-conversion of VDB33

151 and VDB50 to either an IgG or IgA format minimally impacted the DENV-3 neutralization
152 activity of the clones when assessed using a flow cytometry-based neutralization assay
153 (**Figure 1C, Table 2**). These results indicate that both IgG and IgA isotype antibodies are
154 equally capable of binding and neutralizing DENV, reaffirming that antibody epitope/paratope
155 interactions occur independently of an antibody's F_c domain.

156 **DENV-reactive IgA is incapable of mediating ADE.** Having demonstrated that the antigen
157 binding and neutralization capacity of DENV-reactive monoclonal antibodies is negligibly
158 impacted by the isotype of the construct, we endeavored to determine if the infection-
159 enhancing capability of these antibodies was impacted by their isotype conversion. To this
160 end, we utilized a K562-based ADE assay, wherein antibody/DENV immune complexes were
161 pre-formed and added to the F_c-receptor expressing K652 cell line to assess the ability of
162 defined antibody complexes to enhance DENV infection.

163 The IgG versions of both VDB33 and VDB50 exhibited potent infection-enhancing activity in
164 the K562 ADE assay, with both antibodies capable of facilitating DENV infection/enhancement
165 in a dose-dependent fashion (**Figure 2A-2D**). Consistent with their relative EC₅₀/IC₅₀ values,
166 VDB33-IgG exhibited notably higher ADE activity than VDB50-IgG, but with the peak of ADE
167 activity occurring at a similar antibody concentration. However, no infection enhancement was
168 observed when the same assay was performed with either VDB33-IgA or VDB50-IgA (**Figure**
169 **2A-2D**). This was despite the fact that these IgA isotype antibodies exhibit nearly identical
170 virus binding and neutralization activity as their IgG counterparts, underlining the obligate role
171 of an antibody's F_c domain in determining the ADE potential of an antibody.

172 **DENV-reactive IgA antagonizes IgG-mediated enhancement of DENV infection.** In light of
173 the inability of VDB33-IgA and VDB50-IgA to facilitate ADE of DENV-3, we next endeavored to
174 determine how DENV-reactive IgG and IgA behave in a polyclonal/competitive setting. IgG and
175 IgA antibodies are never found in isolation in a dengue immune individual, so determining how
176 these antibodies function in a complex/poly-immune setting is critical for understanding their
177 potential contribution to function anti-DENV immunity.

178 To this end, we utilized the same K562 ADE assay as previously described, but used a
179 fractional IgG/IgA replacement strategy wherein the total amount of antibody remained the
180 same across the different titration schemes but the ratio of IgG to IgA was varied from 100:0 to
181 0:100. The fractional addition of DENV-reactive IgA significantly reduced the ADE activity
182 observed in cultures containing either VDB33-IgG or VDB50-IgG (**Figure 3**). While both
183 VDB33-IgA and VDB50-IgA were capable of antagonizing IgG-mediated ADE of DENV-3, the
184 highly avid yet non-enhancing VDB33-IgA antibody was capable of dramatically blunting IgG-
185 mediated ADE even when used at low fractional concentrations. Of note, the addition of
186 DENV-reactive IgA to these ADE assays does not appear to shift the antibody dilution at which
187 maximal ADE activity is observed for any of the cultures. Rather, the addition of DENV-reactive
188 IgA reduces the magnitude of infection achieved at any given antibody dilution. These results
189 are consistent with IgA actively antagonizing IgG mediated ADE by competing with DENV-
190 reactive IgG for the same viral epitopes.

191 **DENV-reactive IgA antagonizes DENV-immune serum mediated enhancement of DENV**
192 **infection.** A limitation of the analysis presented thus far is that all the monoclonal antibodies
193 used in this analysis have the same antigen specificity; namely the fusion loop of the DENV E
194 protein. Therefore, it is unclear what impact—if any—DENV-reactive IgA would have in the
195 presence of a polyclonal IgG repertoire of divergent DENV antigen specificity. Therefore, we
196 endeavored to determine how the presence of either VDB33-IgA or VDB50-IgA impacts the
197 infection-enhancing potential of polyclonal/DENV-immune serum.

198 Plasma from DENV-immune donors were screened to identify samples with both high DENV-3
199 reactive IgG titers by ELISA as well as DENV-3 enhancing activity in the K562 ADE assay.
200 Samples from four subjects were selected for additional analysis based on these criteria
201 (**Figure 4A, Supplemental Figure 3, Supplemental Figure 4**). VDB33-IgA or VDB50-IgA
202 were then titrated into cultures containing this enhancing DENV-immune plasma to determine
203 if IgA isotype monoclonal antibodies could antagonize polyclonal enhancement of DENV-3
204 infection.

205 Consistent with what was observed with IgG monoclonal antibodies, the addition of VDB33-IgA
206 or VDB50-IgA significantly suppressed ADE-mediated K562 infection with DENV-3 (**Figure 4B,**
207 **Figure 4C**). The addition of DENV-reactive IgA in these assays suppressed ADE-mediated
208 infection by 75%-90% in a dose-dependent fashion, a result consistent with the concept that
209 IgG antibodies targeting the fusion loop of the DENV E protein are particularly amenable to
210 facilitating ADE activity and are abundant in DENV-immune serum [34, 35]. These data also
211 indicate that even modest concentrations of DENV-reactive IgA can significantly antagonize
212 polyclonal IgG-mediated enhancement of DENV infection, signifying that the presence of
213 DENV E reactive IgA (especially fusion loop reactive IgA) has the potential to significantly
214 modulate DENV infection and associated immunopathogenesis.

215

216 Discussion

217 In this study we demonstrate that DENV-reactive IgA monoclonal antibodies can bind and
218 neutralize DENV but are incapable of facilitating ADE of DENV infection *in vitro*. Furthermore,
219 the presence of DENV-reactive IgA can significantly blunt the DENV-infection enhancing activity
220 of both DENV-reactive monoclonal IgG and polyclonal DENV-immune serum in a competitive
221 fashion. These results suggest an unappreciated role for DENV-reactive IgA during the
222 humoral response to DENV infection and raise the potential that IgA could act as either a
223 natural or therapeutic regulator of DENV dissemination and infection-attendant inflammation.

224 Although we have shown that DENV-reactive IgA is capable of disrupting IgG mediated ADE,
225 IgA may not be unique in this respect. Indeed, the depletion of IgM from flavivirus-immune
226 serum has been shown to increase antibody-dependent enhancement of Zika virus infection of
227 K562 cells, presumably by removing IgM as an antagonist of IgG-mediated infection
228 enhancement [36]. Accordingly, parallel lines of evidence suggest that the ability of DENV-
229 reactive IgG to interact with Fc γ Rs is linked to the infection-enhancing potential of DENV-
230 immune serum and – by extension – the clinical severity of DENV infection. Polymorphisms in

231 Fc γ RIIa – a component of the low-affinity IgG receptor complex – have been associated with a
232 decreased likelihood of becoming either symptomatically infected or progressing to severe
233 dengue after DENV exposure [37-39]. While the mechanism behind the phenomenon is hasn't
234 been definitively established, it has been shown that at least some of these polymorphisms
235 decrease the affinity of Fc γ RIIa for IgG [40]. Furthermore, post-translational modifications of
236 IgG antibodies have been shown to significant impact their affinity for Fc γ R complexes and to
237 correlate with dengue severity [41]. Most notably, the presence of high levels of afucosylated
238 IgG – a post-translational modification which increases the affinity of the IgG Fc domain for
239 Fc γ RIIIa [42] – either before or after DENV infection has been associated with increased
240 dengue severity [43-45]. Finally, the presence of serum complement – such as C1q and C3 -
241 can inhibit IgG mediated ADE both *in vitro* and *in vivo*, ostensibly by interfering with the ability
242 of IgG Fc to interact with Fc γ R and/or forcing a complement-bound antibody into a
243 configuration that is not amenable to fusion and viral entry [46-48].

244 While not found in nature, abolishing the ability of IgG antibodies to interact with Fc γ R through
245 genetic engineering the Fc portion of IgG (LALA mutation) also ablates many of the infection-
246 enhancing properties of DENV-reactive IgG both *in vitro* [35] and *in vivo* [49, 50]. Collectively,
247 these this evidence underlines the importance of IgG/Fc γ R interactions the process of ADE,
248 and emphasize the potential diagnostic and therapeutic implications for factors that can disrupt
249 this immunologic nexus.

250 The data presented herein demonstrate that DENV-reactive IgA is capable of antagonizing IgG
251 mediated enhancement of DENV infection, yet it is still unclear what role this process plays *in*
252 *vivo* during natural DENV infection. Several previous studies have noted that high levels of
253 serum IgA are associated with more severe disease following secondary DENV infection [28-
254 31]. However, we and others have observed a higher frequency of IgA expressing
255 plasmablasts following uncomplicated primary DENV infection than following severe secondary
256 DENV infections [32, 33]. A key takeaway from the analysis performed in this study is that the
257 absolute concentration of a given DENV-reactive antibody isotype may be a incomplete
258 indicator of the infection-enhancing potential of a serum sample. Severe dengue is
259 accompanied by robust production of antibodies of all isotypes, so without additional context
260 the absolute level of any given single antibody isotype may provide an incomplete or
261 misleading impression of immunologic features associated with disease severity.

262

263

264

265

266

267

268

269 **Materials and Methods**

270 **Viruses:** DENV-3 (strain CH53489) propagated in Vero cells were utilized for ELISA,
271 FlowNT50, and ADE assays. Virus for ELISA was purified by ultracentrifugation through a 30%
272 sucrose solution and the virus pellet was resuspended in PBS.

273 **Cell lines:** Human K562 cells were maintained in IMDM supplemented with 10% FBS,
274 penicillin, and streptomycin. U937-DC-SIGN cells were maintained in RPMI supplemented with
275 10% FBS, L-glutamine, penicillin, and streptomycin.

276 **Monoclonal antibodies and serum:** The variable regions from the heavy and light chains
277 were codon optimized, synthesized *in vitro* and subcloned into a pcDNA3.4 vector containing
278 the human IgG1 or IgA1 Fc region by a commercial partner (Genscript). Transfection grade
279 plasmids were purified by maxiprep and transfected into a 293-6E expression system. Cells
280 were grown in serum-free FreeStyle 293 Expression Medium (Thermo Fisher), and the cell
281 supernatants collected on day 6 for antibody purification. Following centrifugation and filtration,
282 the cell culture supernatant was loaded onto an affinity purification column, washed, eluted,
283 and buffer exchanged to the final formulation buffer (PBS). Antibody lot purity was assessed by
284 SDS-PAGE, and the final concentration determined by 280 nm absorption. The clonotype
285 information for all monoclonal antibodies generated as part of this study is listed in **Table 1**.
286 Dengue IgG antibody positive plasma was purchased from SeraCare. Donor ID and batch
287 numbers are shown in **Supplemental Table 1**.

288 **DENV- capture ELISA:** Monoclonal antibody and plasma DENV-reactivity was assessed
289 using a 4G2 DENV capture ELISA protocol. In short, 96 well NUNC MaxSorb flat-bottom plates
290 were coated with 2 μ g/ml flavivirus group-reactive mouse monoclonal antibody 4G2 (Envigo
291 Bioproducts, Inc.) diluted in borate saline buffer. Plates were washed and blocked with 0.25%
292 BSA + 1% Normal Goat Serum in PBS after overnight incubation. DENV-3 (strain CH53489)
293 diluted in blocking buffer was captured for 2 hr, followed by extensive washing with PBS +
294 0.1% Tween 20. Serially diluted monoclonal antibody samples were incubated for 1 hr at RT
295 on the captured virus, and DENV-specific antibody binding quantified using anti-human IgG
296 HRP (Sigma-Aldrich, SAB3701362). Secondary antibody binding was quantified using the
297 TMB Microwell Peroxidase Substrate System (KPL, cat. #50-76-00) and Synergy HT plate
298 reader (BioTek, Winooski, VT). Antibody data were analyzed by nonlinear regression (One site
299 total binding) to determine EC50 titers in GraphPad Prism 8 (GraphPad Software, La Jolla,
300 CA).

301 **Neutralization Assay:** Neutralizing titers of monoclonal antibodies and heat-inactivated
302 plasma were assessed using a flow cytometry-based neutralization assay in U937 cells
303 expressing DC-SIGN as previously described [51, 52]. Four-fold dilutions of antibody or sera
304 were mixed with an equal volume of virus diluted to a concentration to achieve 10%–15%
305 infection of U937-DC-SIGN cells in the absence of antibody. The antibody/virus mixture was
306 incubated for 1 h at 37 °C, after which an equal volume of medium (RPMI-1640 supplemented
307 with 10% FBS, 1% penicillin/streptomycin, 1% L-glutamine (200 mM) containing 5×10^4 U937-
308 DC-SIGN cells was added to each well and incubated 18–20 hr overnight in a 37 °C, 5% CO₂,

309 humidified incubator. Following overnight incubation, the cells were fixed with IC Fixation
310 Buffer (Invitrogen, 00-82222-49), permeabilized using IC Permeabilization Buffer (Invitrogen,
311 00-8333-56) and immunostained with flavivirus group-reactive mouse monoclonal antibody
312 4G2 (Envigo Bioproducts, Inc.), and secondary polyclonal goat anti-mouse IgG PE-conjugated
313 antibody (#550589, BD Biosciences). The percentage of infected cells were quantified on a BD
314 Accuri C6 Plus flow cytometer (BD Biosciences). Data were analyzed by nonlinear regression
315 to determine 50% neutralization titers in GraphPad Prism 8 (GraphPad Software, La Jolla,
316 CA).

317 **ADE Assay:** *In vitro* antibody-dependent enhancement (ADE) of DENV-3 infection was
318 quantified as previously described [32, 53]. Four-fold serial dilutions of antibody or heat-
319 inactivated sera were incubated with virus (in sufficient amounts to infect 10%–15% of U937-
320 DC-SIGN cells) at a 1:1 ratio for 1 h at 37 °C. This mixture was then added to a 96-well plate
321 containing 5×10^4 K562 cells per well in duplicate. Cells were cultured for 18–20 hr overnight
322 in a 37 °C, 5% CO₂, humidified incubator. Processing and quantification continued as outlined
323 in the FlowNT50 methods.

324 **Statistical Analysis:** All statistical analysis was performed using GraphPad Prism 8 Software
325 (GraphPad Software, La Jolla, CA). A P-value < 0.05 was considered significant.

326

327 **Disclaimer:** The opinions or assertions contained herein are the private views of the authors
328 and are not to be construed as reflecting the official views of the US Army or the US
329 Department of Defense. Material has been reviewed by the Walter Reed Army Institute of
330 Research. There is no objection to its presentation and/or publication.

331

332 **Conflict of Interest Statement:** ADW, MKM, JRC, HF, GDG, and ATW are co-inventors on
333 the provisional patent “*IgA monoclonal antibodies as a prophylactic and therapeutic treatment*
334 *for acute flavivirus infection*”. All other authors declare that the research was conducted in the
335 absence of any commercial or financial relationships that could be construed as a potential
336 conflict of interest.

337

338

339

340

341

342

343

344

345

Figure Legends

346

Figure 1: Isotype conversion scheme, DENV binding, and DENV neutralization capacity of VDB33 and VDB50 mAbs. **A)** Schematic of isotype conversion of VDB33 and VDB50 from respective parental isotypes, indicating conservation of antigen-binding domains and alteration of Fc domains. **B)** DENV-3 binding capability of VDB33-IgG, VDB33-IgA, VDB50-IgG, and VDB50-IgA measured by DENV virus-capture ELISA. **C)** DENV-3 neutralization capability of VDB33-IgG, VDB33-IgA, VDB50-IgG, and VDB50-IgA as assessed by FlowNT. Neutralization data are presented as a percent of the positive (no neutralizing mAb) control for each replicate. Error bars +/- SEM.

354

Figure 2: ADE activity of DENV-reactive IgG and IgA isotype antibodies. **A)** ADE activity of VDB33-IgG and VDB33-IgA against DENV-3 in K562 cells. **B)** AUC values of 7 independent experimental replicates of DENV-3 ADE assay with VDB33-IgG and VDB33-IgA **C)** ADE activity of VDB50-IgG and VDB50-IgA against DENV-3 in K562 cells. **D)** AUC values of 7 independent replicates of DENV-3 ADE assay with VDB50-IgG and VDB50-IgA. Error bars +/- SEM. ** p < 0.01, **** p < 0.0001, unpaired t test.

360

Figure 3: Homotypic and heterotypic monoclonal IgA antagonizes IgG-mediated antibody-dependent enhancement. **A)** DENV-3 ADE activity of VDB33-IgG when antagonized with VDB33-IgA. Total antibody concentration for each dilution point was held constant, with varying ratios of VDB33-IgG and VDB33-IgA as indicated. AUC of each ADE titration was calculated and normalized to that of the 100% IgG condition. **B)** DENV-3 ADE activity of VDB33-IgG when antagonized with VDB50-IgA. The AUC of each ADE titration was calculated and normalized to that of the 100% VDB33-IgG condition. **C)** DENV-3 ADE activity of VDB50-IgG when antagonized with VDB33-IgA. AUC of each ADE titration was calculated and normalized to that of the 100% VDB50-IgG condition. **D)** DENV-3 ADE activity of VDB50-IgG when antagonized with VDB50-IgA. AUC of each ADE titration was calculated and normalized to that of the 100% VDB33-IgG condition. Blue = 100% IgG / 0% IgA. Green = 90% IgG / 10% IgA. Orange = 50% IgG / 50% IgA. Red = 0% IgG / 100% IgA. * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001 1-way ANOVA with Dunnett correction for multiple comparisons

374

Figure 4: Monoclonal IgA antagonizes ADE mediated by polyclonal DENV-immune plasma. **A)** DENV immune plasma enhances DENV-3 infection of K562 cells. Each datapoint represents a unique plasma donor (n = 4). **B)** VDB33-IgA antagonizes *in vitro* enhancement of DENV-3 infection mediated by polyclonal DENV-immune serum. Serum used at a 1:50 dilution for ADE assay, n = 4 unique plasma donors. The percentage of DENV-positive cells was normalized to that observed in the plasma-only condition. **C)** VDB50-IgA antagonizes *in vitro* enhancement of DENV-3 infection mediated by polyclonal DENV-immune serum. Serum used at a 1:50 dilution for ADE assay, n = 4 unique plasma donors. The percentage of DENV-positive cells was normalized to that observed in the plasma-only condition. *** p < 0.001, **** p < 0.0001 1-way ANOVA with Dunnett correction for multiple comparisons

384

385

References

1. Gubler, D.J., *Aedes aegypti and Aedes aegypti-borne disease control in the 1990s: top down or bottom up. Charles Franklin Craig Lecture*. Am J Trop Med Hyg, 1989. **40**(6): p. 571-8.
2. Bhatt, S., et al., *The global distribution and burden of dengue*. Nature, 2013. **496**(7446): p. 504-7.
3. Shepard, D.S., et al., *Economic impact of dengue illness in the Americas*. Am J Trop Med Hyg, 2011. **84**(2): p. 200-7.
4. Guzman, M.G. and E. Harris, *Dengue*. Lancet, 2015. **385**(9966): p. 453-65.
5. Sangkawibha, N., et al., *Risk factors in dengue shock syndrome: a prospective epidemiologic study in Rayong, Thailand. I. The 1980 outbreak*. Am J Epidemiol, 1984. **120**(5): p. 653-69.
6. Thein, S., et al., *Risk factors in dengue shock syndrome*. Am J Trop Med Hyg, 1997. **56**(5): p. 566-72.
7. Yoon, I.K., et al., *Characteristics of mild dengue virus infection in Thai children*. Am J Trop Med Hyg, 2013. **89**(6): p. 1081-7.
8. Guzman, M.G., M. Alvarez, and S.B. Halstead, *Secondary infection as a risk factor for dengue hemorrhagic fever/dengue shock syndrome: an historical perspective and role of antibody-dependent enhancement of infection*. Arch Virol, 2013. **158**(7): p. 1445-59.
9. Halstead, S.B., *Dengue Antibody-Dependent Enhancement: Knowns and Unknowns*. Microbiol Spectr, 2014. **2**(6).
10. Diamond, M.S. and T.C. Pierson, *Molecular Insight into Dengue Virus Pathogenesis and Its Implications for Disease Control*. Cell, 2015. **162**(3): p. 488-92.
11. Halstead, S.B., *Neutralization and antibody-dependent enhancement of dengue viruses*. Adv Virus Res, 2003. **60**: p. 421-67.
12. Kliks, S.C., et al., *Evidence that maternal dengue antibodies are important in the development of dengue hemorrhagic fever in infants*. Am J Trop Med Hyg, 1988. **38**(2): p. 411-9.
13. Chau, T.N., et al., *Dengue virus infections and maternal antibody decay in a prospective birth cohort study of Vietnamese infants*. J Infect Dis, 2009. **200**(12): p. 1893-900.
14. Halstead, S.B., et al., *Dengue hemorrhagic fever in infants: research opportunities ignored*. Emerg Infect Dis, 2002. **8**(12): p. 1474-9.
15. Goncalvez, A.P., et al., *Monoclonal antibody-mediated enhancement of dengue virus infection in vitro and in vivo and strategies for prevention*. Proc Natl Acad Sci U S A, 2007. **104**(22): p. 9422-7.
16. Zellweger, R.M., T.R. Prestwood, and S. Shresta, *Enhanced infection of liver sinusoidal endothelial cells in a mouse model of antibody-induced severe dengue disease*. Cell Host Microbe, 2010. **7**(2): p. 128-39.
17. Guzman, M.G. and S. Vazquez, *The complexity of antibody-dependent enhancement of dengue virus infection*. Viruses, 2010. **2**(12): p. 2649-62.
18. Katzelnick, L.C., et al., *Antibody-dependent enhancement of severe dengue disease in humans*. Science, 2017. **358**(6365): p. 929-932.
19. McCracken, M.K., et al., *Enhanced dengue vaccine virus replication and neutralizing antibody responses in immune primed rhesus macaques*. NPJ Vaccines, 2021. **6**(1): p. 77.
20. Thomas, S.J. and T.P. Endy, *Critical issues in dengue vaccine development*. Curr Opin Infect Dis, 2011. **24**(5): p. 442-50.
21. Hadinegoro, S.R., et al., *Efficacy and Long-Term Safety of a Dengue Vaccine in Regions of Endemic Disease*. N Engl J Med, 2015. **373**(13): p. 1195-206.
22. Sridhar, S., et al., *Effect of Dengue Serostatus on Dengue Vaccine Safety and Efficacy*. N Engl J Med, 2018. **379**(4): p. 327-340.
23. Ferguson, N.M., et al., *Benefits and risks of the Sanofi-Pasteur dengue vaccine: Modeling optimal deployment*. Science, 2016. **353**(6303): p. 1033-1036.
24. Guzman, M.G., et al., *Dengue infection*. Nat Rev Dis Primers, 2016. **2**: p. 16055.

- 431 25. St John, A.L. and A.P.S. Rathore, *Adaptive immune responses to primary and secondary dengue virus*
432 *infections*. Nat Rev Immunol, 2019. **19**(4): p. 218-230.
- 433 26. Macpherson, A.J., et al., *The immune geography of IgA induction and function*. Mucosal Immunol, 2008.
434 **1**(1): p. 11-22.
- 435 27. Alagarasu, K., et al., *A meta-analysis of the diagnostic accuracy of dengue virus-specific IgA antibody-*
436 *based tests for detection of dengue infection*. Epidemiol Infect, 2016. **144**(4): p. 876-86.
- 437 28. Koraka, P., et al., *Kinetics of dengue virus-specific serum immunoglobulin classes and subclasses*
438 *correlate with clinical outcome of infection*. J Clin Microbiol, 2001. **39**(12): p. 4332-8.
- 439 29. Vazquez, S., et al., *Dengue specific immunoglobulins M, A, and E in primary and secondary dengue 4*
440 *infected Salvadorian children*. J Med Virol, 2014. **86**(9): p. 1576-83.
- 441 30. Bachal, R., et al., *Higher levels of dengue-virus-specific IgG and IgA during pre-defervescence associated*
442 *with primary dengue hemorrhagic fever*. Arch Virol, 2015. **160**(10): p. 2435-43.
- 443 31. Zhao, H., et al., *Dengue Specific Immunoglobulin A Antibody is Present in Urine and Associated with*
444 *Disease Severity*. Sci Rep, 2016. **6**: p. 27298.
- 445 32. Waickman, A.T., et al., *Transcriptional and clonal characterization of B cell plasmablast diversity*
446 *following primary and secondary natural DENV infection*. EBioMedicine, 2020. **54**: p. 102733.
- 447 33. Rouers, A., et al., *CD27(hi)CD38(hi) plasmablasts are activated B cells of mixed origin with distinct*
448 *function*. iScience, 2021. **24**(5): p. 102482.
- 449 34. Rodenhuis-Zybert, I.A., et al., *A fusion-loop antibody enhances the infectious properties of immature*
450 *flavivirus particles*. J Virol, 2011. **85**(22): p. 11800-8.
- 451 35. Beltramello, M., et al., *The human immune response to Dengue virus is dominated by highly cross-*
452 *reactive antibodies endowed with neutralizing and enhancing activity*. Cell Host Microbe, 2010. **8**(3): p.
453 271-83.
- 454 36. Malafa, S., et al., *Impact of flavivirus vaccine-induced immunity on primary Zika virus antibody response*
455 *in humans*. PLoS Negl Trop Dis, 2020. **14**(2): p. e0008034.
- 456 37. Loke, H., et al., *Susceptibility to dengue hemorrhagic fever in vietnam: evidence of an association with*
457 *variation in the vitamin d receptor and Fc gamma receptor IIA genes*. Am J Trop Med Hyg, 2002. **67**(1): p.
458 102-6.
- 459 38. Mohsin, S.N., et al., *Association of FcgammaRIIa Polymorphism with Clinical Outcome of Dengue*
460 *Infection: First Insight from Pakistan*. Am J Trop Med Hyg, 2015. **93**(4): p. 691-6.
- 461 39. Garcia, G., et al., *Asymptomatic dengue infection in a Cuban population confirms the protective role of*
462 *the RR variant of the FcgammaRIIa polymorphism*. Am J Trop Med Hyg, 2010. **82**(6): p. 1153-6.
- 463 40. Warmerdam, P.A., et al., *A single amino acid in the second Ig-like domain of the human Fc gamma*
464 *receptor II is critical for human IgG2 binding*. J Immunol, 1991. **147**(4): p. 1338-43.
- 465 41. Bournazos, S., A. Gupta, and J.V. Ravetch, *The role of IgG Fc receptors in antibody-dependent*
466 *enhancement*. Nat Rev Immunol, 2020. **20**(10): p. 633-643.
- 467 42. Herter, S., et al., *Preclinical activity of the type II CD20 antibody GA101 (obinutuzumab) compared with*
468 *rituximab and ofatumumab in vitro and in xenograft models*. Mol Cancer Ther, 2013. **12**(10): p. 2031-42.
- 469 43. Bournazos, S., et al., *Antibody fucosylation predicts disease severity in secondary dengue infection*.
470 *Science*, 2021. **372**(6546): p. 1102-1105.
- 471 44. Wang, T.T., et al., *IgG antibodies to dengue enhanced for FcgammaRIIIA binding determine disease*
472 *severity*. Science, 2017. **355**(6323): p. 395-398.
- 473 45. Thulin, N.K., et al., *Maternal Anti-Dengue IgG Fucosylation Predicts Susceptibility to Dengue Disease in*
474 *Infants*. Cell Rep, 2020. **31**(6): p. 107642.
- 475 46. Mehlhop, E., et al., *Complement protein C1q inhibits antibody-dependent enhancement of flavivirus*
476 *infection in an IgG subclass-specific manner*. Cell Host Microbe, 2007. **2**(6): p. 417-26.

- 477 47. Yamanaka, A., S. Kosugi, and E. Konishi, *Infection-enhancing and -neutralizing activities of mouse*
478 *monoclonal antibodies against dengue type 2 and 4 viruses are controlled by complement levels*. J Virol,
479 2008. **82**(2): p. 927-37.
- 480 48. Byrne, A.B. and L.B. Talarico, *Role of the complement system in antibody-dependent enhancement of*
481 *flavivirus infections*. Int J Infect Dis, 2021. **103**: p. 404-411.
- 482 49. Xu, M., et al., *A potent neutralizing antibody with therapeutic potential against all four serotypes of*
483 *dengue virus*. NPJ Vaccines, 2017. **2**: p. 2.
- 484 50. Balsitis, S.J., et al., *Lethal antibody enhancement of dengue disease in mice is prevented by Fc*
485 *modification*. PLoS Pathog, 2010. **6**(2): p. e1000790.
- 486 51. Kraus, A.A., et al., *Comparison of plaque- and flow cytometry-based methods for measuring dengue virus*
487 *neutralization*. J Clin Microbiol, 2007. **45**(11): p. 3777-80.
- 488 52. de Alwis, R., et al., *Identification of human neutralizing antibodies that bind to complex epitopes on*
489 *dengue virions*. Proc Natl Acad Sci U S A, 2012. **109**(19): p. 7439-44.
- 490 53. McCracken, M.K., et al., *Impact of prior flavivirus immunity on Zika virus infection in rhesus macaques*.
491 PLoS Pathog, 2017. **13**(8): p. e1006487.
- 492
- 493
- 494
- 495
- 496
- 497
- 498
- 499
- 500
- 501
- 502
- 503
- 504
- 505
- 506
- 507
- 508
- 509
- 510

511 **Table 1. Sequence information of DENV-reactive monoclonal antibodies**

Clone name	VDB33	VDB50
Parental Isotype	IgG1	IgA1
Infecting Serotype	DENV-3	DENV-1
Primary/Secondary	Secondary	Primary
H _c CDR3aa	CARLLQYKWNWLFDPW	CAKASQMATVFIDYW
H _c V	IGHV4-39*01	IGHV3-23*03
H _c D	IGHD1-7*01	IGHD5-24*01
H _c J	IGHJ5*02	IGHJ4*02
H _c Total SHM	26	13
L _c CDR3aa	CQVWDSDDHPVF	CQSYDSSLGGVF
L _c V	IGLV3-21*03	IGLV1-40*01
L _c J	IGLJ3*02	IGLJ3*02
L _c Total SHM	14	8
Target residues	W101, G106, L107, F108	G100, W101, F108
E protein epitope	Fusion loop	Fusion loop

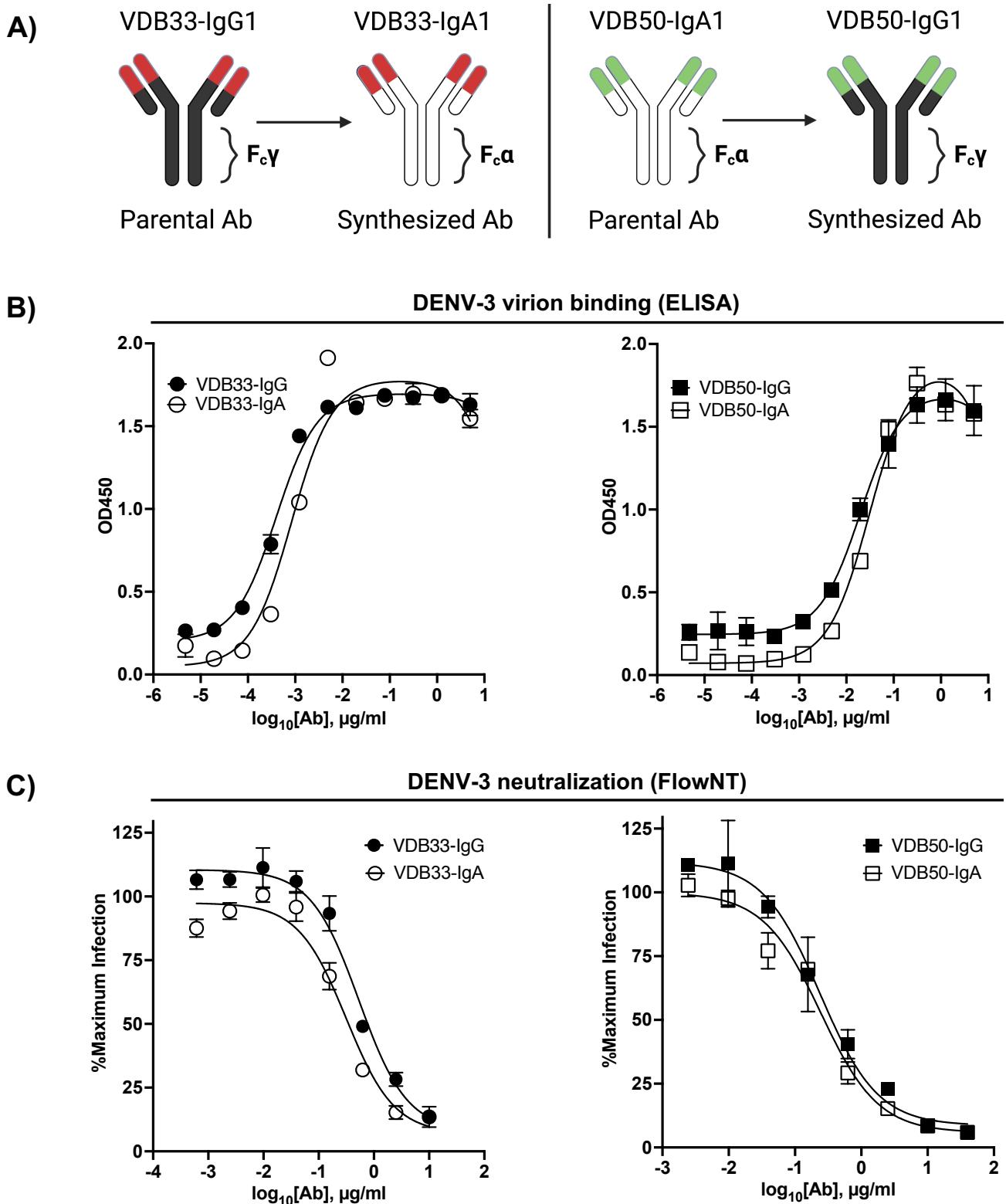
512

513

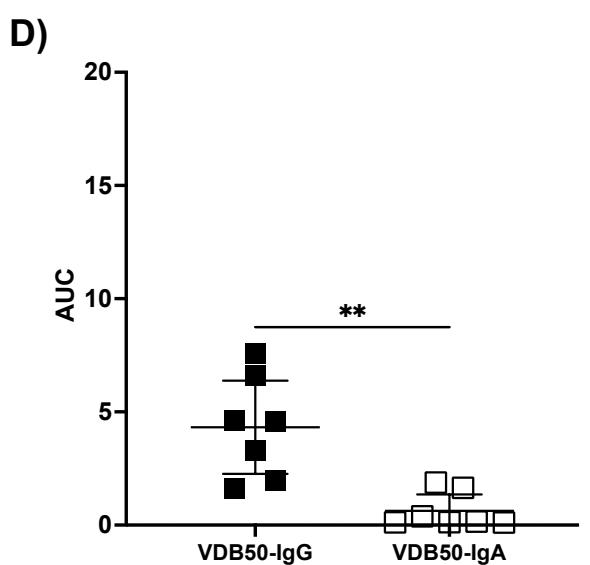
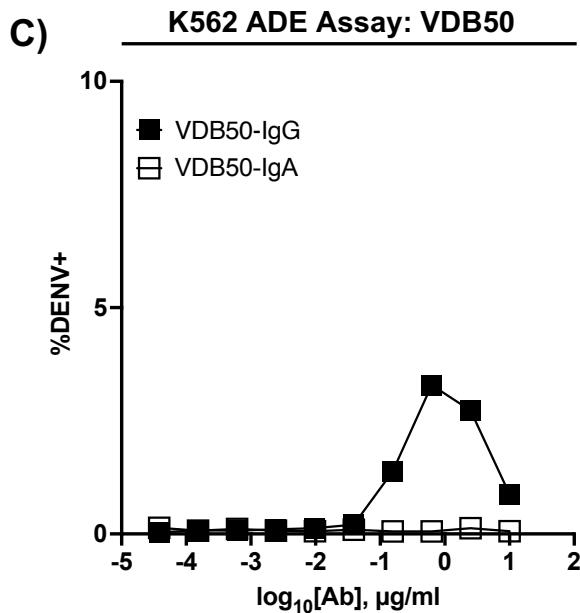
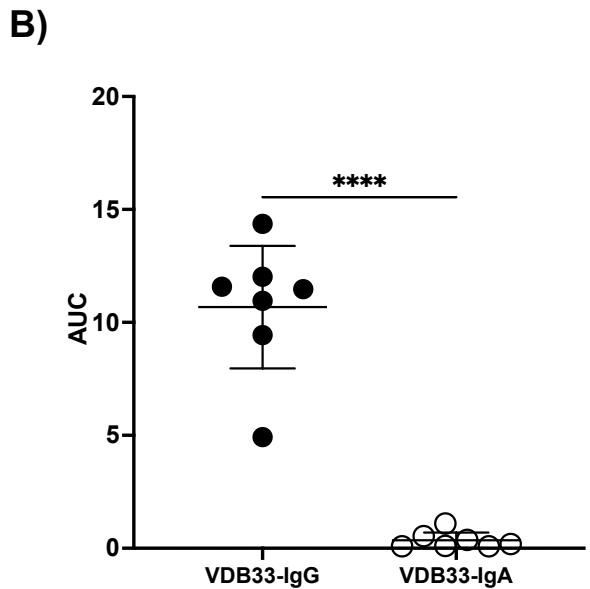
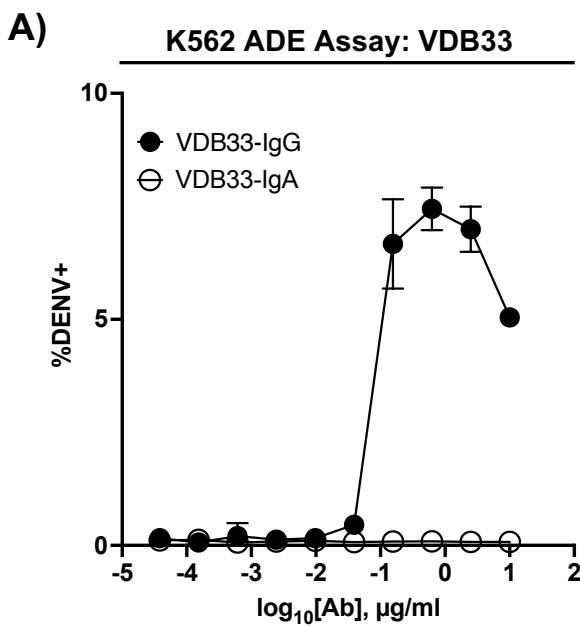
514 **Table 2. Functional characteristics isotype-switched monoclonal antibodies**

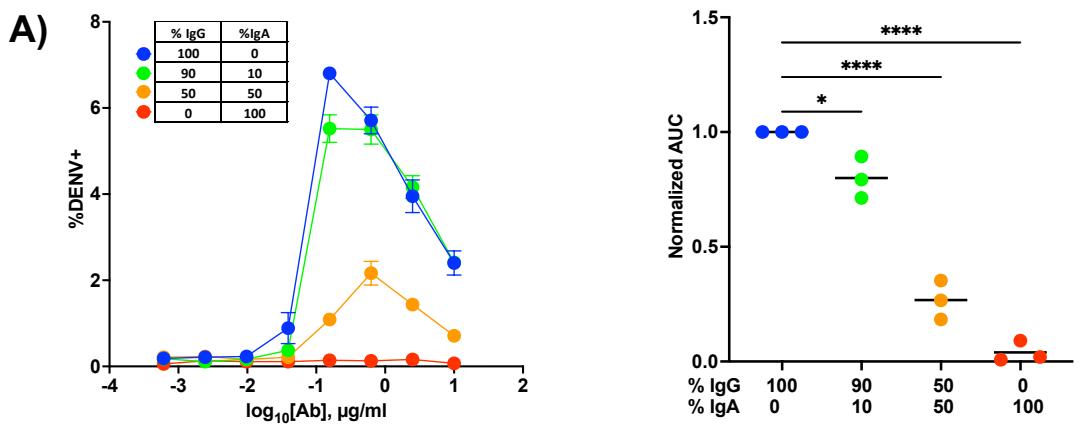
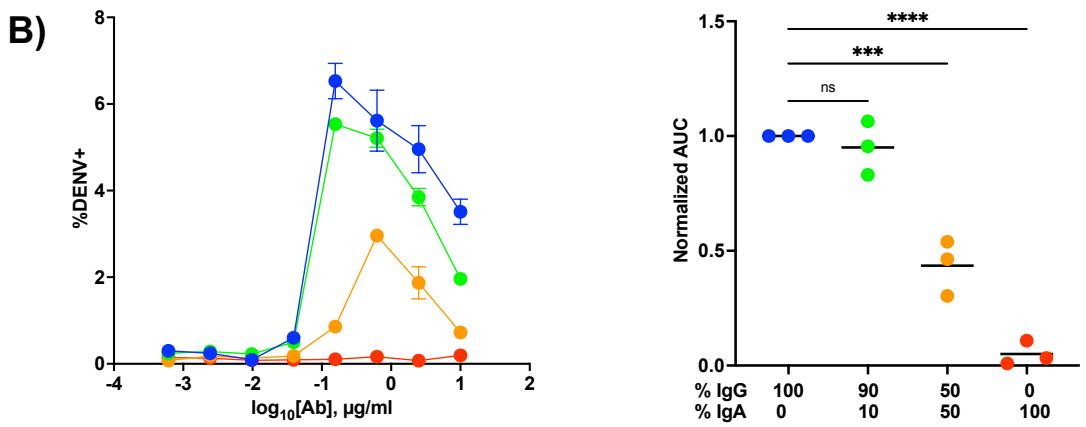
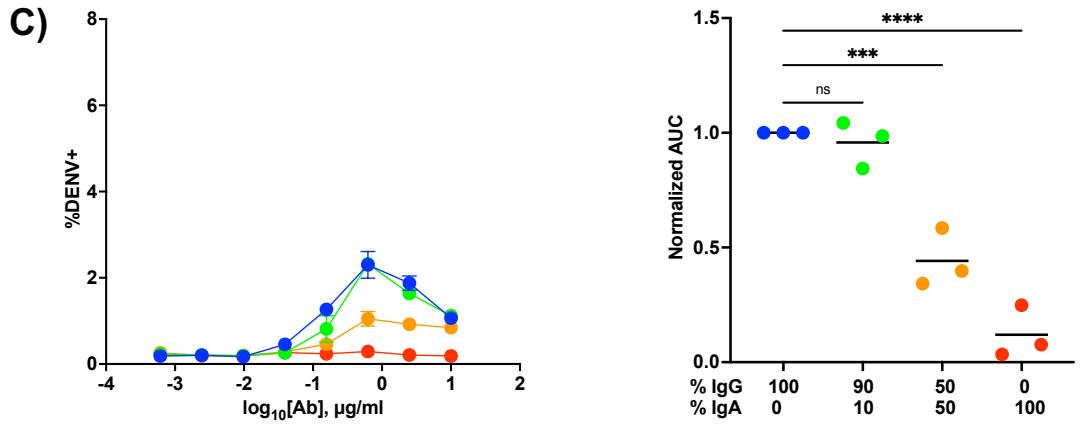
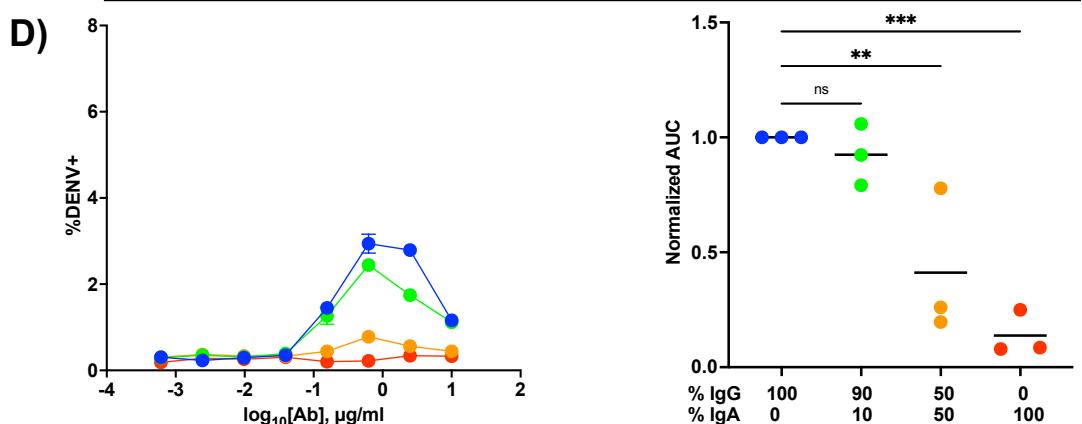
Clone name	VDB33 IgG	VDB33 IgA	VDB50 IgG	VDB50 IgA
Kd (ng/mL)	0.3962	0.8296	19.92	31.12
IC50 (ug/mL)	0.5339	0.3139	0.2391	0.2439

515


516

517





518





519

520

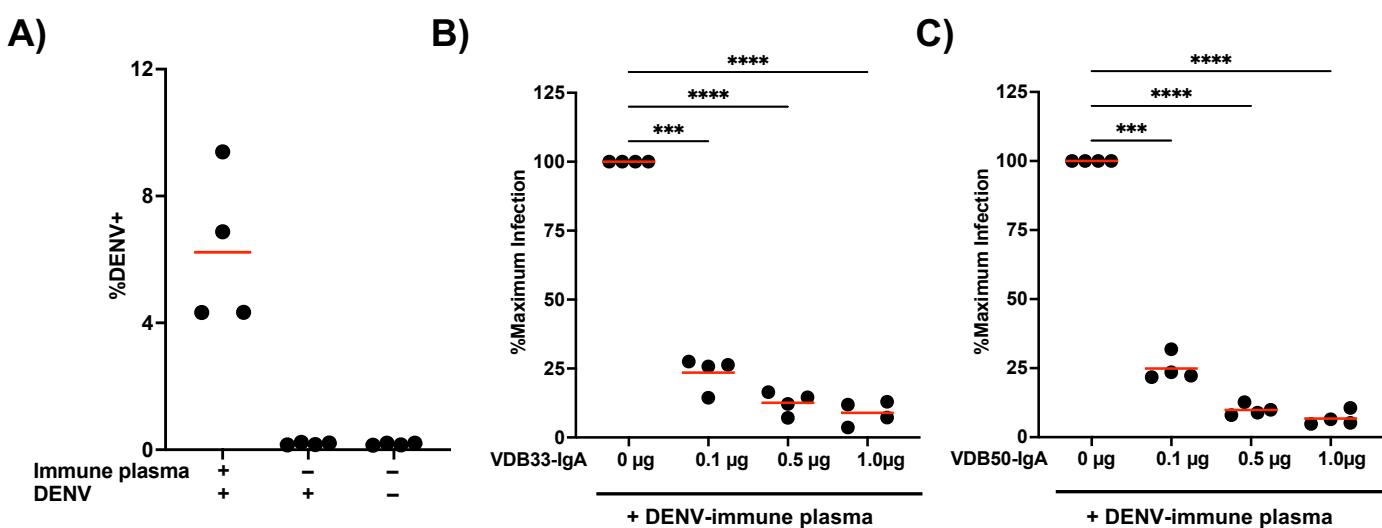

Figure 1

Figure 2

Figure 3**VDB33-IgG + VDB33-IgA****VDB33-IgG + VDB50-IgA****VDB50-IgG + VDB33-IgA****VDB50-IgG + VDB50-IgA**

Figure 4

