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Abstract

Recurring outbreaks of crown-of-thorns starfish (COTS) severely damage
healthy corals in the Western Pacific Ocean. To determine the source of
outbreaking COTS larvae and their dispersal routes across the Western Pacific,
complete mitochondrial genomes were sequenced from 243 individuals
collected in 11 reef regions. Our results indicate that Pacific COTS comprise two
major clades, an East-Central Pacific clade (ECP-C) and a Pan-Pacific clade
(PP-C). The ECP-C consists of COTS from French Polynesia (FP), Fiji, Vanuatu
and the Great Barrier Reef (GBR), and does not appear prone to outbreaks. In
contrast, the PP-C, which repeatedly spawns outbreaks, is a large clade
comprising COTS from FP, Fiji, Vanuatu, GBR, Papua New Guinea, Vietnam,
the Philippines, Japan, Micronesia, and the Marshall Islands. Given the nature of
Pacific Ocean currents, the vast area encompassing FP, Fiji, Vanuatu, and the
GBR likely supplies larvae for repeated outbreaks, exacerbated by

anthropogenic environmental changes, such as eutrophication.
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Introduction

Coral reefs are the most biodiverse marine ecosystems and because they
nurture edible marine species, furnish biochemicals and novel pharmaceutical
leads, provide coastal protection and employment, and contribute to regional
cultures, marine managers, communities and governments are calling for their
preservation (De’ath et al. 2012). However, many coral reefs are currently
experiencing severe, cumulative disturbances, including coral bleaching
(Hughes et al. 2017), cyclones/typhoons (Harmelin-Vivien 1994), and massive
outbreaks of crown-of-thorns starfish (COTS), Acanthaster cf. solaris (previously,
Acanthaster planci) (Birkeland and Lucas 1990; Yasuda et al. 2009; Timmers et
al. 2012; Hughes et al. 2014; Yasuda 2018).

COTS are considered the major and most destructive predators of
reef-building corals in the Indo-Pacific (Birkeland 1990). Although they are highly
fecund (Birkeland and Lucas 1990), under normal, undisturbed conditions COTS
populations remain relatively constant and their impacts on coral communities
are minimal (Fabricius et al. 2010). On the other hand, recent anthropogenic
activities have adversely affected the marine environment resulting in an
increased discharge of nutrients (Fabricius et al. 2010) and climate change
(Uthicke et al. 2013), both of which are linked to increased COTS pelagic larval
duration (PLD) (Yamaguch 1973). This relatively long PLD, which can last
several weeks, greatly increases the overall survival rate and may assist
expansion of COTS into new habitats with comparatively homogeneous
populations in widespread localities (Birkeland and Lucas 1990; Vogler et al.
2013). This extended PLD, in association with strong ocean currents, is
hypothesized to cause successive secondary population outbreaks of COTS,
especially in the Great Barrier Reef (GBR) of Australia, and Japan (Birkeland
and Lucas 1990; Benzie and Stoddart 1992; Kenchington 1997; Yasuda, 2018),
with substantial loss of coral cover, thereby diminishing the integrity and
resilience of reef ecosystems (Timmers et al. 2012; Hughes et al. 2014). In the

GBR, one-third of coral reef damage is attributed to COTS predation (Timmers
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97 etal. 2012). Similarly, in the Ryukyu Archipelago (RA) and temperate regions of
98  Japan, at least two waves of chronic and successive outbreaks spanning 60

99  years have decimated corals. Since 2000, over 980,000 COTS have been

100  removed from reefs of Amami Island and the Ryukyus (Nakamura et al. 2014,
101 Yasuda 2018) (website http://www.churaumi.net/onihitode/onihitodel1.html), and
102  from 2011 well over 300,000 COTS have been collected in the GBR (website

103 http://www.environment.gov.au/marine/gbr/case-studies/crown-of-thorns),

104  highlighting the protracted nature and high cost of programs to maintain healthy
105  coral reefs.

106 Extensive studies of COTS biology, including population genetics, have
107 been conducted (Benzie 1992; Yasuda et al. 2009; Yasuda et al. 2015; Harrison
108 etal. 2017; Pratchett et al. 2017). For example, genetic studies based on partial
109  mitochondrial gene sequences revealed the geographic distributions of four

110  COTS lineages, two in the Indian Ocean, one in the Red Sea, and one in the

111 Pacific Ocean (Vogler et al. 2008). Studies using either genes of mitochondrial
112 cytochrome oxidase subunit I, Il and 11l or microsatellite locus heterozygosity, or
113 both, have generally demonstrated a genetically homogenous pattern of A. cf.
114 solaris in the Western Pacific (Vogler et al. 2013; Tusso et al. 2016), as well as in
115 regions associated with western boundary currents (Yasuda et al. 2009), the

116  Hawaiian Islands (Timmers et al. 2011), French Polynesia (Yasuda et al. 2015),
117 and the GBR (Harrison et al. 2017). However, no study has addressed which
118  lineage of extant Pacific COTS is the oldest, what mechanisms supported their
119  expansion across the entire Pacific Ocean, and does COTS genetic connectivity
120 facilitate outbreaks, especially in the Western Pacific. To answer these questions,
121 we sequenced entire mitochondrial genomes (Inoue et al. 2020) of 243 COTS
122 specimens collected from 11 representative localities of the Pacific and

123 conducted molecular phylogenetic analyses.
124
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125  Methods
126

127 Acanthaster cf. solaris

128  Atotal of 243 adult crown-of-thorns starfish were collected from 2006~2018 at
129  reefs in the Pacific Ocean (Fig. 1). Fifty-three specimens were collected in

130  French Polynesia, including 13 specimens from Bora-Bora, 16 from Moorea, 9
131 from Raiatea, and 15 from Tahiti (Supplementary Table S1). Ten specimens

132 were collected from Fiji, 31 from Vanuatu, and 20 from the GBR (10 each from
133 Clack and Shell Reefs). We collected 9 specimens from Papua New Guinea, 4
134 from the Philippines, 10 from Vietnam, 48 from the Ryukyu Archipelago of Japan
135 and 29 from the Kagoshima Islands of Japan (Table S1). In addition, 9

136  specimens from Micronesia, 8 from the Marshall Islands, and 12 from the USA (9
137  from Hawaii and 3 from California) were also collected. Collection sites and

138 sample numbers are reported in Supplementary Table 1.

139

140  DNA sequencing and assembly of mitochondria genomes

141 Tube feet of adult COTS were dissected with scissors and fixed in 99.5% ethanol.
142 Specimens were kept at 4°C until use for DNA sequencing. Genomic and

143 mitochondrial DNA were extracted using the automated Nextractor® NX-48S
144 system. Extraction was performed following the manufacturer's protocol using an
145  NX-48 Tissue DNA kit (Genolution Inc., Seoul, Korea). Tube foot tissue was

146  incubated in lysis buffer overnight and extracted DNA was purified with

147 Agencourt AMPure XP magnetic beads immediately before library preparation.
148 DNA concentration was determined with Qubit dsDNA broad range (Thermo

149  Scientific Inc., USA), and the quality of high molecular-weight DNA was checked
150  using an Agilent 4150 TapeStation (Agilent, USA). PCR-free shotgun libraries
151 were constructed using NEBNext® Ultra™ 1l FS DNA Library Prep Kits for

152 lllumina (New England BioLabs Inc, UK), following the manufacturer’s protocols.
153 Sequencing was performed using an lllumina NovaSeq 6000 sequencer

154 (lllumina Inc., USA).

155 Sequencing was performed using Illumina HiSeq 2500 and Novaseq

156  sequencers. Approximately 10X coverage of nuclear genome DNA sequences
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157  was obtained. After removing low-quality reads, under default parameters,

158  paired-end reads were assembled using GS De novo Assembler version 2.3
159  (Newbler, Roche) and NOVOPIlasty 2.6.3 (Dierckxsens et al. 2017) with the

160  published A. planci sequence | (Yasuda et al. 2006) as seed input. Usually, the
161  largest scaffolds contained mitochondrial DNA sequences. Analysis of the

162 genomes using MitoAnnotator (lwasaki et al. 2013) resulted in the circular

163  structure of the genome. That is, the genome consists of a gene set of

164  cytochrome oxidase subunits I, Il and Il (COI, COIl and COIll), cytochrome b
165 (Cyt b), NADH dehydrogenase subunits 1-6 and 4L (ND1-6 and 4L), ATPase
166  subunits 6 and 8 (ATPase6 and 8), two rRNAs, and 22 tRNAs (see Fig. 1 of 26).
167 As mentioned above, we collected 243 individuals representing 11 coral
168  reef regions of the Pacific Ocean (Fig. 1) and determined the complete

169  mitochondrial genome sequences (16,210~16,246 bp, depending on the

170 individual) of all specimens. Genome sequencing coverage per individual was
171 1,827X on average, ranging from 34X to 136,220X, indicating the data

172 robustness from each specimen. We unambiguously aligned 16,218 bp of

173 sequences, including 1,822 variable sites, which were used for unrooted tree
174 analyses (Fig. 2). On the other hand, 16,219 bp of unambiguously aligned sites,
175  including 3,159 variable sites, were used for rooted tree analyses, with

176 mitochondrial sequences of A. brevispinus as an out group (Fig. 3).

1717

178  Phylogenetic analysis

179  Whole mitochondrial genome sequences were aligned using MAFFT (Katoh et al.

180  2005). Multiple sequence alignments were trimmed by removing poorly aligned
181  regions using TRIMAL 1.2 (Capella-Gutiérrez et al. 2009) with the option

182  “gappyout.” To examine population structures, maximum likelihood (ML) trees
183  were created using RAXML 8.2.6 (Stamatakis 2014). Trees were estimated with
184  the “-f @” option, which invokes rapid bootstrap analysis with 100 replicates and
185 searches for the best-scoring ML tree, using the GTRCAT model (Stamatakis

186 20086).
187
188  Principal component analysis (PCA)
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Population structures were analyzed using model-free approaches. Based on
mitochondrial genome sequences, principal component analysis (PCA) was
performed on all individuals, using PLINK 1.9 (Purcell and Chang 2015).
Pairwise genetic distances among localities were estimated with Weir and
Cockerham's F . (Weir and Cockerham 1984) and Nei's genetic distance (Nei

1972) using StAMPP (Pembleton et al. 2013).

Results and Discussion

A total of 243 adult COTS were collected from 11 representative coral reef
regions (14 countries) throughout the Pacific Ocean (Fig. 1; Supplementary
Table S1), including Bora Bora, Moorea, Raiatea, and Tahiti in French Polynesia,
Fiji, Vanuatu, the GBR (Clack and Shell Reefs) of Australia, Papua New Guinea,
the Philippines, Vietnam, Japan (the Ryukyu Archipelago and islands of
Kagoshima), Micronesia, the Marshall Islands, and Hawaii and California, USA.

Complete mitochondrial genome sequences (a circular genome
consisting of 16,221 bp, on average) (Inoue et al. 2010) were determined for all
specimens (Supplementary Fig. S1). The mean read coverage was 1,827X,
ranging from 34 to 136,220X, indicating that data were robust and suitable for
establishing the complete sequence of each individual and for subsequent
molecular phylogenetic analyses and principal component analysis (PCA).

An unrooted molecular phylogenetic tree was constructed for all
specimens, based on 16,218 unambiguously aligned bases, including 1,822
variable sites (Fig. 2). Arooted tree using the corresponding mitochondrial
sequence of Acanthaster brevispinus (Yasuda et al. 2006), a closely related, and
possibly ancestral species of A. planci, sensu lato (Lucas and Jones 1976) was
used as an outgroup (Fig. 3). The rooted tree was based on 16,219
unambiguously aligned bp, including 3,159 variable sites. Both trees yielded
similar profiles of COTS population diversification.

Both trees indicated that COTS populations in the Pacific represent two
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major clades, tentatively called the East-Central Pacific clade (ECP-C) and
Pan-Pacific clade (PP-C). Diversification of the two clades was evident in a long
branch distance between the two in the unrooted tree. That is, the two clades are
separated by 0.004 mitochondrial DNA sequence substitutions per site (Fig. 2),
and there is discrete branching of the two groups in the rooted tree (Fig. 3).

The ECP-C consists of four major lineages, tentatively called the
Eastern Pacific lineage (EP-L), the East-Central Pacific lineages, ECP-L1 and
L2, and the Hawaiian lineage (ECP-H) (Figs. 2 and 3). The EP-L consists of
COTS from French Polynesia (Tahiti, Bora Bora, Moorea, and Raiatea) and
California (Fig. 3). ECP-L1, contains COTS from French Polynesia, plus
populations from California and Fiji. ECP-L2 comprises two subgroups, but both
include COTS of French Polynesia, Fiji, Vanuatu, and GBR (Clack and Shell
Reefs). The genetic homogeneity of COTS among these French Polynesian
populations was noted in a previous study (Yasuda et al. 2015). The two
California COTS pertain to EPC-C, one belonging to EP-L and the other to
EC1-L (Fig. 3). The external morphology of the California COTS is significantly
different from counterparts in other areas of the Pacific. Specifically, they tend to
have shorter arms, and were initially classified as a separate species,
Acanthaster elichii (Timmers et al. 2012). However, allozyme analysis revealed
them to have stronger affinity to COTS of the Western Pacific than to their
closest geographical neighbors, the Hawaiian COTS (discussed later), and were
therefore renamed Acanthaster planci (Nishida and Lucas 1988). This suggests
a common ancestry for Eastern Pacific COTS and California COTS. Accordingly,
all COTS are now classified as Acanthaster cf solaris (Haszprunar and Spies,
2014)

Near the root position, as viewed from the ECP-C/PP-C boundary of the
unrooted tree (Fig. 2) and in the third branch of the rooted tree (Fig. 3), ten
Hawaiian COTS formed a discrete group, without individuals from any other
Pacific reefs (ECP-H). This genetic isolation was exceptional but had 100%
bootstrap support (Fig. 3). This result agrees well with previous studies,

suggesting that North Central Pacific COTS, including Hawaii, form a distinct
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clade among Pacific COTS (Timmers et al. 2012; Vogler et al. 2013). ECP-H is
likely independent of other Pacific COTS or of cryptic COTS species. Future
nuclear genomic studies should be able to confirm this possibility.

In contrast to the four lineages of ECP-C, all of which are comparatively
well separated or isolated, eight lineages or subgroups of PP-C, PP-L1, PP-L2
and PP-L3A-L3F, appeared more genetically similar (Figs. 2 and 3). PP-L1,
which includes COTS from Fiji, the Philippines and Japan, and PP-L2, which
comprises starfish from Fiji, Vanuatu, and Japan, branched earlier and are
separated from the other PP lineages (Fig. 2, Fig. 3). PP-L3 is a very large group,
including not only Western Pacific COTS, but also Eastern Pacific populations
from French Polynesia, Fiji, Vanuatu, GBR, Papua New Guinea, the Philippines,
Japan, Micronesia, and the Marshall Islands. It consists of six lineages (PP-L3A
to PP-L3F) that are not strictly geographically defined, in that each subgroup
comprises individuals from several of these areas. Of special interest is PP-L3B,
which has the largest geographic, including COTS from all locations of French
Polynesia, Fiji, Vanuatu, GBR, Papua New Guinea, the Philippines, Vietnam,
Japan, Micronesia, and the Marshall Islands. PP-L3C also includes COTS from
various locations including Vanuatu, GBR, Papua New Guinea, Japan,
Micronesia, and the Marshall Islands. PP-L3D includes COTS not only from
Japan, Micronesia and the Marshall Islands, but also Fiji. On the other hand,
PP-L3F appears to be a lineage more specific to East Asia, comprising COTS
populations in the Philippines, Vietham, and Japan.

Principle component analysis (PCA) of specimens from all sampling
locations (Supplementary Table S1) supported the results of molecular
phylogenetic analyses (Fig. 4). PCA resulted in five independent groups,
corresponding to EP-L, ECP-L1, EPC-L2, ECP-H, and PP-L, respectively.
Notably, a mixture of COTS from all locations across the Pacific was evident in
PP-L (Fig. 4, upper right corner). When compared to molecular phylogeny
results (Figs. 2 and 3), grouping of EP-L, ECP-L1 and EPC-H was more strongly
demonstrated in PCA (Fig. 4). In addition, PCA suggested an affinity of ECP-L2
with PP-L, although this was not as strong (Fig. 4).

10
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283 The present results provide several clues regarding the evolutionary

284  history of COTS in the Pacific Ocean. First, based on comparisons of complete
285  mitochondrial DNA sequences, COTS in the Pacific are genetically subdivided
286  into two major clades, ECP-C and PP-C. We speculate that because ECP-C

287  COTS are confined to the Eastern and Central Pacific and are less affected by
288  anthropogenic factors, they are not prone to major outbreaks, even though they
289  show local outbreaks (Birkeland 1990). In contrast, PP-C which occurs across
290  the entire Pacific, including more highly populated regions, spawns massive

291  outbreaks.

292 ECP-C was divided into four sub-groups, EP-L, ECP-L1, ECP-L2 and
293  ECP-H. The former three are distinguishable by their geographic distributions.
294  EP-Lis confined to four countries of French Polynesia + California, ECP-L1

295  encompasses French Polynesia + California + Fiji, and ECP-L2 is confined to
296  French Polynesia, Vanuatu, and GBR. This sub-grouping suggests two possible
297  scenarios relative to their distributional history in the Eastern and Central Pacific.
298  One is the EP-L ancestry hypothesis, in which COTS originated in French

299  Polynesia, experienced a bottleneck-like founder effect (Yasuda et al. 2015), and
300 then expanded into the central and western regions, ultimately reaching the

301  GBR. In contrast, in the ECP-L2 ancestry hypothesis, a comparatively broad

302  region encompassing GBR, Vanuatu, Fiji and French Polynesia is the original
303  source of COTS, from which EP-L and ECP-L1 became established as separate,
304 independent lineages long ago. The latter scenario is the more plausible and is
305 discussed further below.

306 The inclusion of Californian COTS in EP-L and ECP-L1, as well as the
307  grouping of the independent Hawaiian lineage within EP-L, suggests that COTS
308 larval migration in the Eastern Pacific has played an important role in their

309 expansion across the wider Pacific. Another interesting observation is that

310  COTS of Micronesia and the Marshall Islands may not be members of EP-L but
311 may belong in PP-L. This suggests that the westward flow of the South

312 Equatorial Current into the Coral Sea may become disrupted by complex

313  topography, carrying larvae to the intersection of the Equatorial Counter Current,

11
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314 which is an eastward flowing, wind-driven current, thereby transporting

315  Eastern-Central COTS larvae toward California (Wyrtki 1967) (Fig. 1). While this
316  partially supports the ECP-L2 ancestry scenario, at present, there is no evidence
317  to explain the origin of the Hawaiian COTS population, which arrived by

318 unknown means and has is completely isolated. Given that Hawaiian COTS are
319 independent of current outbreaks in the Pacific (Timmers et al. 2012), their origin
320 remains a key question in future genomic studies.

321 On the other hand, PP-L contains COTS from almost all regions of the
322  Pacific, including French Polynesia, Fiji, Vanuatu, GBR, Papua New Guinea,

323  Vietnam, the Philippines, Japan, Micronesia, and the Marshall Islands. The two
324  PP-L subgroups, PP-L3B and PP-L3C, both contain COTS from all these

325 localities. It is highly likely that this type of population genetic profile reflects the
326 trajectory of repeated outbreaks across the entire Pacific Ocean, with the

327  exception of the U.S. population. One possible explanation is that dispersal of
328 long-lived COTS larvae spawned in the central Pacific is facilitated by the South
329  Equatorial Current, which flows at an average velocity of 20 nautical miles per
330 day from Fiji and Vanuatu toward the GBR, where it bifurcates into the New

331  Guinea Coastal Undercurrent (Treml et al. 2008; Sokolov et al. 2000). In

332  combination with the North Equatorial Current, which originates from the

333  Californian Current, it bifurcates into the strong Kuroshio Current that flows from
334  the northeastern Philippines toward Japan (Qi and Lukas 1996) (Fig. 1). An

335  earlier divergence of PP-L1 and L2, both including COTS from Fiji and Vanuatu,
336  suggests a contribution of these COTS with western Pacific populations via the
337  southernmost branches of the South Equatorial Current.

338 Further support linking repeated outbreaks to the PP-L population

339 comes from comparisons of the entire ~384-Mb genome sequences of the two
340 COTS, one from the GBR and the other from Okinawa (OKIl), separated by over
341 5,000 km (Hall et al. 2017). An unexpected result of this study was the

342 exceptionally low heterozygosity of the genomes, 0.88% and 0.92% for the GBR
343  and OKI populations, respectively. In addition, reciprocal BLAST analysis of

344  scaffolds longer than 10 kb showed 98.8% nucleotide identity between the GBR
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and OKI genomes, evidence of the great similarity of their nuclear DNA
sequences. Inclusion of these two specimens in a rooted tree (Fig. 2 and Fig. 3,
arrows) revealed that GBR COTS belong to PP-L3A and Oki COTS to PP-L3F.
Intriguingly, our results suggest a very strong resemblance of the nuclear
genomes of these two COTS lineages.

These results raise yet another possibility with respect to the
geographical extent of the distribution of various COTS lineages. Most of the
COTS that belong to ECP-L1 are from Vanuatu. However, other Vanuatu COTS
belong to PP-L3B, PP-L3B, or PP-L3D. Both lineages of COTS coexist in
Vanuatu, one with the capacity for large outbreaks and the other without. An
objective of future population genomics studies will be to sequence and compare
complete genomes of both ECP-L and PP-L COTS to try to discover the genetic
and genomic features that encode the capacity for outbreaks.

Based on the combined results of molecular phylogeny and PCA, it is
likely that the oldest lineages of extant Pacific COTS originated from a broad
Pacific region, including Fuji, Vanuatu, GBR, and French Polynesia (Fig. 5).
Some populations have lived harmoniously in these regions, with some lineages
moving eastward toward California. On the other hand, some COTS populations
have extended their range to cover nearly all of the Pacific, and they are
especially prolific in the Western Pacific (Fig. 5). The shorter branch length with
highly diverse haplotypes in the admixed PP-3C implies a founder effect during
their westward migration, followed by population expansion. These populations
have developed a capacity for greatly enhanced larval survival, possibly
triggered by anthropogenic environmental changes, such as eutrophication. Our
results therefore shed light on an important issue in which regulation of future
COTS outbreaks depends on a better management of this pest in the central

Pacific, and better human waste management.

Data accessibility. All the sequence data are accessible under
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Figure Legends

Figure 1. a, A single adult of crown-of-thorns starfish on reef-building corals. b,
An outbreak of crown-of-thorns starfish (COTS) covering and eating
scleractinian corals, causing severe damage to the reef. ¢, Collection sites of
COTS in the Pacific Ocean. 243 COTS were collected at 23 locations in 14
countries, representing 11 reef regions: French Polynesia (Bora Bora, Moorea,
Raiatea and Tabhiti), Fiji, Vanuatu, Great Barrier Reef, Australia (GBR; Clack and
Shell Reefs), Papua New Guinea (PNG), the Philippines, Vietnam, Japan,
Micronesia, the Marshall Islands, and USA (Hawaii and California). Locations in
Japan and French Polynesia are enlarged in (A) and (B). Red arrows show the
main currents in the Pacific Ocean. KC = Kuroshio Current, CC = California
Current, NEC = North Equatorial Current, ECC = Equatorial Countercurrent,
SEC = South Equatorial Current, EAC = East Australian Current and NGCU =
New Guinea Coastal Undercurrent.

Figure 2. An unrooted phylogenetic tree of individual Acanthaster cf. solaris
using the maximume-likelihood (ML) method, based on mitochondrial genome
sequences (16,218 bp, including 1,822 variable sites). Red arrowheads indicate

sequences (OKI and GBR) decoded in the genome paper (Hall et al. 2017).

Figure 3. A rooted phylogenetic tree of Acanthaster cf. solaris using the
maximum-likelihood (ML) method, based on mitochondrial genome sequences
(16,219 bp, including 3,159 variable sites). Numbers at some nodes indicate
bootstrap values (>50%) based on 100 replicates for internal branch support.
Arrowheads at the right indicate sequences (OKI and GBR) decoded in the
genome paper (Hall et al. 2017). The A. brevispinus sequence (NC_007789.1)
was selected for rooting. The color relationship to sampling locations is shown in

the insert (left, bottom).

Figure 4. Principle Component Analysis identifies five COTS populations, EP-L,
ECP-L1, ECP-L2, ECP-H, and WP-CL1/2. WP-L3 contains COTS collected from
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all countries, suggesting that this population is the source of repeated outbreaks

in the Pacific. Color codes are shown at the right side.

Figure 5. A summary diagram to show a possible root for crown-of-thorns
starfish outbreaks in the Western Pacific Ocean. The Pacific hosts two major
groups of COTS. The East-Central Pacific group comprises COTS from French
Polynesia, Fiji, Vanuatu, and the GBR (blue and yellow). The Whole Pacific
group contains COTS from the entire Western Pacific (purple). The latter has
experienced repeated outbreaks, while the former has experienced local
outbreaks. This suggests an importance of better management of this pest in the

central Pacific region, including Fiji, Vanuatu, and the GBR.

Figure S1. An alignment of the complete mitochondrial DNA sequences of
Acanthaster planci (NC_007788.1 and specimen name, M2), All sequence data
are accessible at: https://www.ncbi.nlm.nih.gov/bioproject/PRJDB10499.
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Figure 1. a, A single adult of crown-of-thorns starfish on reef-building corals. b, An outbreak
of crown-of-thorns starfish (COTS) covering and eating scleractinian corals, causing severe
damage to the reef. ¢, Collection sites of COTS in the Pacific Ocean. 243 COTS were collected
at 23 locations in 14 countries, representing 11 reef regions: French Polynesia (Bora Bora,
Moorea, Raiatea and Tahiti), Fiji, Vanuatu, Great Barrier Reef, Australia (GBR; Clack and
Shell Reefs), Papua New Guinea (PNG), the Philippines, Vietnam, Japan, Micronesia, the
Marshall Islands, and USA (Hawaii and California). Locations in Japan and French Polynesia
are enlarged in (A) and (B). Blue arrows show the main currents in the Pacific Ocean. KC =
Kuroshio Current, CC = California Current, NEC = North Equatorial Current, ECC =
Equatorial Countercurrent, SEC = South Equatorial Current, EAC = East Australian Current
and NGCU = New Guinea Coastal Undercurrent.
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Figure 2.
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Figure 2. An unrooted phylogenetic tree of individual Acanthaster cf. solaris using the maxi-
mum-likelihood (ML) method, based on mitochondrial genome sequences (16,218 bp, including
1,822 variable sites). Red arrowheads indicate sequences (OKI and GBR) decoded in the genome
paper (Hall et al. 2017).
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Figure 3.
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Figure 3. A rooted phylogenetic tree of Acanthaster cf. solaris using the maximum-likelihood (ML)
method, based on mitochondrial genome sequences (16,219 bp, including 3,159 variable sites). Numbers
at some nodes indicate bootstrap values (>50%) based on 100 replicates for internal branch support.
Arrowheads at the right indicate sequences (OKI and GBR) decoded in the genome paper (Hall et al.
2017). The A. brevispinus sequence (NC_007789.1) was selected for rooting. The color relationship to
sampling locations is shown in the insert (left, bottom).
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Figure 4. Principle Component Analysis identifies five COTS populations, EP-L, ECP-L1,
ECP-L2, ECP-H, and WP-CL1/2. WP-L3 contains COTS collected from all countries, suggesting
that this population is the source of repeated outbreaks in the Pacific. Color codes are shown at the
right side.
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Figuer 5.

Figure 5. A summary diagram to show a possible root for crown-of-thorns
starfish outbreaks in the Western Pacific Ocean. The Pacific hosts two major
groups of COTS. The East-Central Pacific group comprises COTS from French
Polynesia, Fiji, Vanuatu, and the GBR (blue and yellow). The Whole Pacific
group contains COTS from the entire Western Pacific (purple). The latter has
experienced repeated outbreaks, while the former has experienced local
outbreaks. This suggests an importance of better management of this pest in the
central Pacific region, including Fiji, Vanuatu, and the GBR.
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