

1  
2 **A root for massive crown-of-thorns starfish outbreaks in the**  
3 **Pacific Ocean**

4  
5  
6 **Nina Yasuda<sup>1\*</sup>, June Inoue<sup>2\*</sup>, Michael R. Hall,<sup>3\*</sup> Manoj R. Nair<sup>4</sup>, Mehdi**  
7 **Adjeroud<sup>5,6</sup>, Miguel D. Fortes<sup>7</sup>, Mutsumi Nishida<sup>8</sup>, Nat Tuivavalagi<sup>9</sup>, Rachel**  
8 **Ravago-Gotanco<sup>10</sup>, Zac H. Forsman<sup>11</sup>, Taha Basheir Hassan Soliman,<sup>12</sup> Ryo**  
9 **Koyanagi,<sup>12</sup> Kanako Hisada,<sup>13</sup> Cherie A. Motti,<sup>3</sup> Noriyuki Satoh<sup>13</sup>**

10  
11  
12 <sup>1</sup> Department of Marine Biology and Environmental Science, Faculty of  
13 Agriculture, University of Miyazaki, Miyazaki 889-2192, Japan

14 <sup>2</sup> Center for Earth Surface System Dynamics, Atmosphere and Ocean Research  
15 Institute, University of Tokyo, Kashiwa, Chiba 277-8564, Japan

16 <sup>3</sup> Australia Institute of Marine Science, Townsville, Queensland 4810, Australia

17 <sup>4</sup> Aquaculture Research, Extension, Training & Technology Development,  
18 College of Micronesia Land Grant Program (NIFA, USDA), Pohnpei State 96941,  
19 Federated States of Micronesia

20 <sup>5</sup> Université de la Nouvelle-Calédonie, UMR 9220 ENTROPIE, IRD, Université  
21 de la Réunion, CNRS, IFREMER, Perpignan, France

22 <sup>6</sup> CRIODE - EPHE-UPVD-CNRS & Laboratoire d'Excellence "CORAIL", PSL  
23 Université Paris, USR 3278, Perpignan, France

24 <sup>7</sup> University of the Philippines, Diliman Quezon City 1101, Philippines

25 <sup>8</sup> University of the Ryukyu, Nishihara, Okinawa 903-0213, Japan

26 <sup>9</sup> Cooperative Research & Extension Department, Career & Technical Education  
27 Center, College of Micronesia-FSM, Pohnpei State 96941, Federated States of  
28 Micronesia

29 <sup>10</sup> Marine Science Institute, University of the Philippines, Diliman, Quezon City  
30 1101, Philippines

31 <sup>11</sup> Coral Conservation Genetics & Restoration, Hawai'i Institute of Marine Biology,  
32 University of Hawai'i, Mānoa, HI 96744, U.S.A.

33 <sup>12</sup> DNA Sequencing Section, Okinawa Institute of Science and Technology

34 Graduate University, Onna, Okinawa 904-0495, Japan

35 <sup>13</sup> Marine Genomics Unit, Okinawa Institute of Science and Technology

36 Graduate University, Onna, Okinawa 904-0495, Japan

37

38 \*Equal Contribution

39

40 Corresponding author: [norisky@oist.jp](mailto:norisky@oist.jp)

41 ORCID: 0000-0002-4480-3572 (N.S.)

42

43

44 **Keywords:**

45 crown-of-thorns starfish (COTS), massive outbreaks, complete mitochondrial

46 genome, population genetics, root of larval dispersion

47 **Abstract**

48

49 Recurring outbreaks of crown-of-thorns starfish (COTS) severely damage  
50 healthy corals in the Western Pacific Ocean. To determine the source of  
51 outbreacking COTS larvae and their dispersal routes across the Western Pacific,  
52 complete mitochondrial genomes were sequenced from 243 individuals  
53 collected in 11 reef regions. Our results indicate that Pacific COTS comprise two  
54 major clades, an East-Central Pacific clade (ECP-C) and a Pan-Pacific clade  
55 (PP-C). The ECP-C consists of COTS from French Polynesia (FP), Fiji, Vanuatu  
56 and the Great Barrier Reef (GBR), and does not appear prone to outbreaks. In  
57 contrast, the PP-C, which repeatedly spawns outbreaks, is a large clade  
58 comprising COTS from FP, Fiji, Vanuatu, GBR, Papua New Guinea, Vietnam,  
59 the Philippines, Japan, Micronesia, and the Marshall Islands. Given the nature of  
60 Pacific Ocean currents, the vast area encompassing FP, Fiji, Vanuatu, and the  
61 GBR likely supplies larvae for repeated outbreaks, exacerbated by  
62 anthropogenic environmental changes, such as eutrophication.

63

64

65

66 **Introduction**

67

68 Coral reefs are the most biodiverse marine ecosystems and because they  
69 nurture edible marine species, furnish biochemicals and novel pharmaceutical  
70 leads, provide coastal protection and employment, and contribute to regional  
71 cultures, marine managers, communities and governments are calling for their  
72 preservation (De'ath et al. 2012). However, many coral reefs are currently  
73 experiencing severe, cumulative disturbances, including coral bleaching  
74 (Hughes et al. 2017), cyclones/typhoons (Harmelin-Vivien 1994), and massive  
75 outbreaks of crown-of-thorns starfish (COTS), *Acanthaster cf. solaris* (previously,  
76 *Acanthaster planci*) (Birkeland and Lucas 1990; Yasuda et al. 2009; Timmers et  
77 al. 2012; Hughes et al. 2014; Yasuda 2018).

78 COTS are considered the major and most destructive predators of  
79 reef-building corals in the Indo-Pacific (Birkeland 1990). Although they are highly  
80 fecund (Birkeland and Lucas 1990), under normal, undisturbed conditions COTS  
81 populations remain relatively constant and their impacts on coral communities  
82 are minimal (Fabricius et al. 2010). On the other hand, recent anthropogenic  
83 activities have adversely affected the marine environment resulting in an  
84 increased discharge of nutrients (Fabricius et al. 2010) and climate change  
85 (Uthicke et al. 2013), both of which are linked to increased COTS pelagic larval  
86 duration (PLD) (Yamaguchi 1973). This relatively long PLD, which can last  
87 several weeks, greatly increases the overall survival rate and may assist  
88 expansion of COTS into new habitats with comparatively homogeneous  
89 populations in widespread localities (Birkeland and Lucas 1990; Vogler et al.  
90 2013). This extended PLD, in association with strong ocean currents, is  
91 hypothesized to cause successive secondary population outbreaks of COTS,  
92 especially in the Great Barrier Reef (GBR) of Australia, and Japan (Birkeland  
93 and Lucas 1990; Benzie and Stoddart 1992; Kenchington 1997; Yasuda, 2018),  
94 with substantial loss of coral cover, thereby diminishing the integrity and  
95 resilience of reef ecosystems (Timmers et al. 2012; Hughes et al. 2014). In the  
96 GBR, one-third of coral reef damage is attributed to COTS predation (Timmers

97 et al. 2012). Similarly, in the Ryukyu Archipelago (RA) and temperate regions of  
98 Japan, at least two waves of chronic and successive outbreaks spanning 60  
99 years have decimated corals. Since 2000, over 980,000 COTS have been  
100 removed from reefs of Amami Island and the Ryukyus (Nakamura et al. 2014;  
101 Yasuda 2018) (website <http://www.churaumi.net/onihitode/onihitode1.html>), and  
102 from 2011 well over 300,000 COTS have been collected in the GBR (website  
103 <http://www.environment.gov.au/marine/gbr/case-studies/crown-of-thorns>),  
104 highlighting the protracted nature and high cost of programs to maintain healthy  
105 coral reefs.

106 Extensive studies of COTS biology, including population genetics, have  
107 been conducted (Benzie 1992; Yasuda et al. 2009; Yasuda et al. 2015; Harrison  
108 et al. 2017; Pratchett et al. 2017). For example, genetic studies based on partial  
109 mitochondrial gene sequences revealed the geographic distributions of four  
110 COTS lineages, two in the Indian Ocean, one in the Red Sea, and one in the  
111 Pacific Ocean (Vogler et al. 2008). Studies using either genes of mitochondrial  
112 cytochrome oxidase subunit I, II and III or microsatellite locus heterozygosity, or  
113 both, have generally demonstrated a genetically homogenous pattern of *A. cf.*  
114 *solaris* in the Western Pacific (Vogler et al. 2013; Tusso et al. 2016), as well as in  
115 regions associated with western boundary currents (Yasuda et al. 2009), the  
116 Hawaiian Islands (Timmers et al. 2011), French Polynesia (Yasuda et al. 2015),  
117 and the GBR (Harrison et al. 2017). However, no study has addressed which  
118 lineage of extant Pacific COTS is the oldest, what mechanisms supported their  
119 expansion across the entire Pacific Ocean, and does COTS genetic connectivity  
120 facilitate outbreaks, especially in the Western Pacific. To answer these questions,  
121 we sequenced entire mitochondrial genomes (Inoue et al. 2020) of 243 COTS  
122 specimens collected from 11 representative localities of the Pacific and  
123 conducted molecular phylogenetic analyses.

124

125 **Methods**

126

127 ***Acanthaster cf. solaris***

128 A total of 243 adult crown-of-thorns starfish were collected from 2006–2018 at  
129 reefs in the Pacific Ocean (Fig. 1). Fifty-three specimens were collected in  
130 French Polynesia, including 13 specimens from Bora-Bora, 16 from Moorea, 9  
131 from Raiatea, and 15 from Tahiti (Supplementary Table S1). Ten specimens  
132 were collected from Fiji, 31 from Vanuatu, and 20 from the GBR (10 each from  
133 Clack and Shell Reefs). We collected 9 specimens from Papua New Guinea, 4  
134 from the Philippines, 10 from Vietnam, 48 from the Ryukyu Archipelago of Japan  
135 and 29 from the Kagoshima Islands of Japan (Table S1). In addition, 9  
136 specimens from Micronesia, 8 from the Marshall Islands, and 12 from the USA (9  
137 from Hawaii and 3 from California) were also collected. Collection sites and  
138 sample numbers are reported in Supplementary Table 1.

139

140 **DNA sequencing and assembly of mitochondria genomes**

141 Tube feet of adult COTS were dissected with scissors and fixed in 99.5% ethanol.  
142 Specimens were kept at 4°C until use for DNA sequencing. Genomic and  
143 mitochondrial DNA were extracted using the automated Nextractor® NX-48S  
144 system. Extraction was performed following the manufacturer's protocol using an  
145 NX-48 Tissue DNA kit (Genolution Inc., Seoul, Korea). Tube foot tissue was  
146 incubated in lysis buffer overnight and extracted DNA was purified with  
147 Agencourt AMPure XP magnetic beads immediately before library preparation.  
148 DNA concentration was determined with Qubit dsDNA broad range (Thermo  
149 Scientific Inc., USA), and the quality of high molecular-weight DNA was checked  
150 using an Agilent 4150 TapeStation (Agilent, USA). PCR-free shotgun libraries  
151 were constructed using NEBNext® Ultra™ II FS DNA Library Prep Kits for  
152 Illumina (New England BioLabs Inc, UK), following the manufacturer's protocols.  
153 Sequencing was performed using an Illumina NovaSeq 6000 sequencer  
154 (Illumina Inc., USA).

155 Sequencing was performed using Illumina HiSeq 2500 and Novaseq  
156 sequencers. Approximately 10X coverage of nuclear genome DNA sequences

157 was obtained. After removing low-quality reads, under default parameters,  
158 paired-end reads were assembled using GS *De novo* Assembler version 2.3  
159 (Newbler, Roche) and NOVOPlasty 2.6.3 (Dierckxsens et al. 2017) with the  
160 published *A. planci* sequence I (Yasuda et al. 2006) as seed input. Usually, the  
161 largest scaffolds contained mitochondrial DNA sequences. Analysis of the  
162 genomes using MitoAnnotator (Iwasaki et al. 2013) resulted in the circular  
163 structure of the genome. That is, the genome consists of a gene set of  
164 cytochrome oxidase subunits I, II and III (COI, COII and COIII), cytochrome b  
165 (Cyt b), NADH dehydrogenase subunits 1-6 and 4L (ND1-6 and 4L), ATPase  
166 subunits 6 and 8 (ATPase6 and 8), two rRNAs, and 22 tRNAs (see Fig. 1 of 26).

167 As mentioned above, we collected 243 individuals representing 11 coral  
168 reef regions of the Pacific Ocean (Fig. 1) and determined the complete  
169 mitochondrial genome sequences (16,210~16,246 bp, depending on the  
170 individual) of all specimens. Genome sequencing coverage per individual was  
171 1,827X on average, ranging from 34X to 136,220X, indicating the data  
172 robustness from each specimen. We unambiguously aligned 16,218 bp of  
173 sequences, including 1,822 variable sites, which were used for unrooted tree  
174 analyses (Fig. 2). On the other hand, 16,219 bp of unambiguously aligned sites,  
175 including 3,159 variable sites, were used for rooted tree analyses, with  
176 mitochondrial sequences of *A. brevispinus* as an out group (Fig. 3).

177

### 178 **Phylogenetic analysis**

179 Whole mitochondrial genome sequences were aligned using MAFFT (Katoh et al.  
180 2005). Multiple sequence alignments were trimmed by removing poorly aligned  
181 regions using TRIMAL 1.2 (Capella-Gutiérrez et al. 2009) with the option  
182 “gappyout.” To examine population structures, maximum likelihood (ML) trees  
183 were created using RAxML 8.2.6 (Stamatakis 2014). Trees were estimated with  
184 the “-f a” option, which invokes rapid bootstrap analysis with 100 replicates and  
185 searches for the best-scoring ML tree, using the GTRCAT model (Stamatakis  
186 2006).

187

### 188 **Principal component analysis (PCA)**

189 Population structures were analyzed using model-free approaches. Based on  
190 mitochondrial genome sequences, principal component analysis (PCA) was  
191 performed on all individuals, using PLINK 1.9 (Purcell and Chang 2015).  
192 Pairwise genetic distances among localities were estimated with Weir and  
193 Cockerham's  $F_{ST}$  (Weir and Cockerham 1984) and Nei's genetic distance (Nei  
194 1972) using StAMPP (Pembleton et al. 2013).

195

196

197

## 198 **Results and Discussion**

199

200 A total of 243 adult COTS were collected from 11 representative coral reef  
201 regions (14 countries) throughout the Pacific Ocean (Fig. 1; Supplementary  
202 Table S1), including Bora Bora, Moorea, Raiatea, and Tahiti in French Polynesia,  
203 Fiji, Vanuatu, the GBR (Clack and Shell Reefs) of Australia, Papua New Guinea,  
204 the Philippines, Vietnam, Japan (the Ryukyu Archipelago and islands of  
205 Kagoshima), Micronesia, the Marshall Islands, and Hawaii and California, USA.

206 Complete mitochondrial genome sequences (a circular genome  
207 consisting of 16,221 bp, on average) (Inoue et al. 2010) were determined for all  
208 specimens (Supplementary Fig. S1). The mean read coverage was 1,827X,  
209 ranging from 34 to 136,220X, indicating that data were robust and suitable for  
210 establishing the complete sequence of each individual and for subsequent  
211 molecular phylogenetic analyses and principal component analysis (PCA).

212 An unrooted molecular phylogenetic tree was constructed for all  
213 specimens, based on 16,218 unambiguously aligned bases, including 1,822  
214 variable sites (Fig. 2). A rooted tree using the corresponding mitochondrial  
215 sequence of *Acanthaster brevispinus* (Yasuda et al. 2006), a closely related, and  
216 possibly ancestral species of *A. planci*, *sensu lato* (Lucas and Jones 1976) was  
217 used as an outgroup (Fig. 3). The rooted tree was based on 16,219  
218 unambiguously aligned bp, including 3,159 variable sites. Both trees yielded  
219 similar profiles of COTS population diversification.

220 Both trees indicated that COTS populations in the Pacific represent two

221 major clades, tentatively called the East-Central Pacific clade (ECP-C) and  
222 Pan-Pacific clade (PP-C). Diversification of the two clades was evident in a long  
223 branch distance between the two in the unrooted tree. That is, the two clades are  
224 separated by 0.004 mitochondrial DNA sequence substitutions per site (Fig. 2),  
225 and there is discrete branching of the two groups in the rooted tree (Fig. 3).

226 The ECP-C consists of four major lineages, tentatively called the  
227 Eastern Pacific lineage (EP-L), the East-Central Pacific lineages, ECP-L1 and  
228 L2, and the Hawaiian lineage (ECP-H) (Figs. 2 and 3). The EP-L consists of  
229 COTS from French Polynesia (Tahiti, Bora Bora, Moorea, and Raiatea) and  
230 California (Fig. 3). ECP-L1, contains COTS from French Polynesia, plus  
231 populations from California and Fiji. ECP-L2 comprises two subgroups, but both  
232 include COTS of French Polynesia, Fiji, Vanuatu, and GBR (Clack and Shell  
233 Reefs). The genetic homogeneity of COTS among these French Polynesian  
234 populations was noted in a previous study (Yasuda et al. 2015). The two  
235 California COTS pertain to EPC-C, one belonging to EP-L and the other to  
236 EC1-L (Fig. 3). The external morphology of the California COTS is significantly  
237 different from counterparts in other areas of the Pacific. Specifically, they tend to  
238 have shorter arms, and were initially classified as a separate species,  
239 *Acanthaster elichii* (Timmers et al. 2012). However, allozyme analysis revealed  
240 them to have stronger affinity to COTS of the Western Pacific than to their  
241 closest geographical neighbors, the Hawaiian COTS (discussed later), and were  
242 therefore renamed *Acanthaster planci* (Nishida and Lucas 1988). This suggests  
243 a common ancestry for Eastern Pacific COTS and California COTS. Accordingly,  
244 all COTS are now classified as *Acanthaster cf solaris* (Haszprunar and Spies,  
245 2014)

246 Near the root position, as viewed from the ECP-C/PP-C boundary of the  
247 unrooted tree (Fig. 2) and in the third branch of the rooted tree (Fig. 3), ten  
248 Hawaiian COTS formed a discrete group, without individuals from any other  
249 Pacific reefs (ECP-H). This genetic isolation was exceptional but had 100%  
250 bootstrap support (Fig. 3). This result agrees well with previous studies,  
251 suggesting that North Central Pacific COTS, including Hawaii, form a distinct

252 clade among Pacific COTS (Timmers et al. 2012; Vogler et al. 2013). ECP-H is  
253 likely independent of other Pacific COTS or of cryptic COTS species. Future  
254 nuclear genomic studies should be able to confirm this possibility.

255 In contrast to the four lineages of ECP-C, all of which are comparatively  
256 well separated or isolated, eight lineages or subgroups of PP-C, PP-L1, PP-L2  
257 and PP-L3A-L3F, appeared more genetically similar (Figs. 2 and 3). PP-L1,  
258 which includes COTS from Fiji, the Philippines and Japan, and PP-L2, which  
259 comprises starfish from Fiji, Vanuatu, and Japan, branched earlier and are  
260 separated from the other PP lineages (Fig. 2, Fig. 3). PP-L3 is a very large group,  
261 including not only Western Pacific COTS, but also Eastern Pacific populations  
262 from French Polynesia, Fiji, Vanuatu, GBR, Papua New Guinea, the Philippines,  
263 Japan, Micronesia, and the Marshall Islands. It consists of six lineages (PP-L3A  
264 to PP-L3F) that are not strictly geographically defined, in that each subgroup  
265 comprises individuals from several of these areas. Of special interest is PP-L3B,  
266 which has the largest geographic, including COTS from all locations of French  
267 Polynesia, Fiji, Vanuatu, GBR, Papua New Guinea, the Philippines, Vietnam,  
268 Japan, Micronesia, and the Marshall Islands. PP-L3C also includes COTS from  
269 various locations including Vanuatu, GBR, Papua New Guinea, Japan,  
270 Micronesia, and the Marshall Islands. PP-L3D includes COTS not only from  
271 Japan, Micronesia and the Marshall Islands, but also Fiji. On the other hand,  
272 PP-L3F appears to be a lineage more specific to East Asia, comprising COTS  
273 populations in the Philippines, Vietnam, and Japan.

274 Principle component analysis (PCA) of specimens from all sampling  
275 locations (Supplementary Table S1) supported the results of molecular  
276 phylogenetic analyses (Fig. 4). PCA resulted in five independent groups,  
277 corresponding to EP-L, ECP-L1, EPC-L2, ECP-H, and PP-L, respectively.  
278 Notably, a mixture of COTS from all locations across the Pacific was evident in  
279 PP-L (Fig. 4, upper right corner). When compared to molecular phylogeny  
280 results (Figs. 2 and 3), grouping of EP-L, ECP-L1 and EPC-H was more strongly  
281 demonstrated in PCA (Fig. 4). In addition, PCA suggested an affinity of ECP-L2  
282 with PP-L, although this was not as strong (Fig. 4).

283 The present results provide several clues regarding the evolutionary  
284 history of COTS in the Pacific Ocean. First, based on comparisons of complete  
285 mitochondrial DNA sequences, COTS in the Pacific are genetically subdivided  
286 into two major clades, ECP-C and PP-C. We speculate that because ECP-C  
287 COTS are confined to the Eastern and Central Pacific and are less affected by  
288 anthropogenic factors, they are not prone to major outbreaks, even though they  
289 show local outbreaks (Birkeland 1990). In contrast, PP-C which occurs across  
290 the entire Pacific, including more highly populated regions, spawns massive  
291 outbreaks.

292 ECP-C was divided into four sub-groups, EP-L, ECP-L1, ECP-L2 and  
293 ECP-H. The former three are distinguishable by their geographic distributions.  
294 EP-L is confined to four countries of French Polynesia + California, ECP-L1  
295 encompasses French Polynesia + California + Fiji, and ECP-L2 is confined to  
296 French Polynesia, Vanuatu, and GBR. This sub-grouping suggests two possible  
297 scenarios relative to their distributional history in the Eastern and Central Pacific.  
298 One is the EP-L ancestry hypothesis, in which COTS originated in French  
299 Polynesia, experienced a bottleneck-like founder effect (Yasuda et al. 2015), and  
300 then expanded into the central and western regions, ultimately reaching the  
301 GBR. In contrast, in the ECP-L2 ancestry hypothesis, a comparatively broad  
302 region encompassing GBR, Vanuatu, Fiji and French Polynesia is the original  
303 source of COTS, from which EP-L and ECP-L1 became established as separate,  
304 independent lineages long ago. The latter scenario is the more plausible and is  
305 discussed further below.

306 The inclusion of Californian COTS in EP-L and ECP-L1, as well as the  
307 grouping of the independent Hawaiian lineage within EP-L, suggests that COTS  
308 larval migration in the Eastern Pacific has played an important role in their  
309 expansion across the wider Pacific. Another interesting observation is that  
310 COTS of Micronesia and the Marshall Islands may not be members of EP-L but  
311 may belong in PP-L. This suggests that the westward flow of the South  
312 Equatorial Current into the Coral Sea may become disrupted by complex  
313 topography, carrying larvae to the intersection of the Equatorial Counter Current,

314 which is an eastward flowing, wind-driven current, thereby transporting  
315 Eastern-Central COTS larvae toward California (Wyrtki 1967) (Fig. 1). While this  
316 partially supports the ECP-L2 ancestry scenario, at present, there is no evidence  
317 to explain the origin of the Hawaiian COTS population, which arrived by  
318 unknown means and has is completely isolated. Given that Hawaiian COTS are  
319 independent of current outbreaks in the Pacific (Timmers et al. 2012), their origin  
320 remains a key question in future genomic studies.

321 On the other hand, PP-L contains COTS from almost all regions of the  
322 Pacific, including French Polynesia, Fiji, Vanuatu, GBR, Papua New Guinea,  
323 Vietnam, the Philippines, Japan, Micronesia, and the Marshall Islands. The two  
324 PP-L subgroups, PP-L3B and PP-L3C, both contain COTS from all these  
325 localities. It is highly likely that this type of population genetic profile reflects the  
326 trajectory of repeated outbreaks across the entire Pacific Ocean, with the  
327 exception of the U.S. population. One possible explanation is that dispersal of  
328 long-lived COTS larvae spawned in the central Pacific is facilitated by the South  
329 Equatorial Current, which flows at an average velocity of 20 nautical miles per  
330 day from Fiji and Vanuatu toward the GBR, where it bifurcates into the New  
331 Guinea Coastal Undercurrent (Treml et al. 2008; Sokolov et al. 2000). In  
332 combination with the North Equatorial Current, which originates from the  
333 Californian Current, it bifurcates into the strong Kuroshio Current that flows from  
334 the northeastern Philippines toward Japan (Qi and Lukas 1996) (Fig. 1). An  
335 earlier divergence of PP-L1 and L2, both including COTS from Fiji and Vanuatu,  
336 suggests a contribution of these COTS with western Pacific populations via the  
337 southernmost branches of the South Equatorial Current.

338 Further support linking repeated outbreaks to the PP-L population  
339 comes from comparisons of the entire ~384-Mb genome sequences of the two  
340 COTS, one from the GBR and the other from Okinawa (OKI), separated by over  
341 5,000 km (Hall et al. 2017). An unexpected result of this study was the  
342 exceptionally low heterozygosity of the genomes, 0.88% and 0.92% for the GBR  
343 and OKI populations, respectively. In addition, reciprocal BLAST analysis of  
344 scaffolds longer than 10 kb showed 98.8% nucleotide identity between the GBR

345 and OKI genomes, evidence of the great similarity of their nuclear DNA  
346 sequences. Inclusion of these two specimens in a rooted tree (Fig. 2 and Fig. 3,  
347 arrows) revealed that GBR COTS belong to PP-L3A and Oki COTS to PP-L3F.  
348 Intriguingly, our results suggest a very strong resemblance of the nuclear  
349 genomes of these two COTS lineages.

350 These results raise yet another possibility with respect to the  
351 geographical extent of the distribution of various COTS lineages. Most of the  
352 COTS that belong to ECP-L1 are from Vanuatu. However, other Vanuatu COTS  
353 belong to PP-L3B, PP-L3B, or PP-L3D. Both lineages of COTS coexist in  
354 Vanuatu, one with the capacity for large outbreaks and the other without. An  
355 objective of future population genomics studies will be to sequence and compare  
356 complete genomes of both ECP-L and PP-L COTS to try to discover the genetic  
357 and genomic features that encode the capacity for outbreaks.

358 Based on the combined results of molecular phylogeny and PCA, it is  
359 likely that the oldest lineages of extant Pacific COTS originated from a broad  
360 Pacific region, including Fuji, Vanuatu, GBR, and French Polynesia (Fig. 5).  
361 Some populations have lived harmoniously in these regions, with some lineages  
362 moving eastward toward California. On the other hand, some COTS populations  
363 have extended their range to cover nearly all of the Pacific, and they are  
364 especially prolific in the Western Pacific (Fig. 5). The shorter branch length with  
365 highly diverse haplotypes in the admixed PP-3C implies a founder effect during  
366 their westward migration, followed by population expansion. These populations  
367 have developed a capacity for greatly enhanced larval survival, possibly  
368 triggered by anthropogenic environmental changes, such as eutrophication. Our  
369 results therefore shed light on an important issue in which regulation of future  
370 COTS outbreaks depends on a better management of this pest in the central  
371 Pacific, and better human waste management.

372  
373  
374  
375

376 **Data accessibility.** All the sequence data are accessible under

377 <https://www.ncbi.nlm.nih.gov/bioproject/PRJDB10499>.

378 **Authors' contribution.** N.Y., J.I., M.R.H., C.A.M. and N.S. designed the  
379 research. N.Y., M.R.H., M.R.N., M.A., M.D.F., M.N., N.T., R.R-C. and S.H.F.  
380 collected samples. T.B.H.S. and R.K. sequenced COTS mitochondrial DNA.  
381 N.Y., J.I., K.H., C.A.M. and N.S. analyzed data. N.Y., J.I., C.A.M. and N.S. wrote  
382 the manuscript with input from all authors. All authors gave final approval for  
383 publication.

384

385 **Competing interests.** The authors declare no competing interest.

386

387 **Funding.** This study was supported by OIST funds (POC5 Project) to the Marine  
388 Genomics Unit, and by the Japan Society for the Promotion of Science (JSPS)  
389 Grants-in-Aid for Scientific Researches (17H04996 to NY and 18K06396 to JI.)  
390 This research was also supported in part by the Ms. Sumiko Imano Memorial  
391 Foundation.

392

### 393 **Acknowledgements**

394 We thank the following people for their help with sample collection: Dr. Hugh  
395 Sweatman and the AIMS Bioresources Library for GBR samples, Dr. Molly  
396 Timmers for Hawaiian samples, Geoff Jones and Jeff Kinch for Papua New  
397 Guinean samples, Monal Lal for Fijian samples, Christina Shaw for Vanuatu  
398 samples, Hoang Dinh Chieu for Vietnamese samples, and Hiromitsu Ueno for  
399 Japanese samples. The DNA Sequencing Section of OIST is acknowledged for  
400 its expert help with genome sequencing.

401

402 **References**

403

404 Benzie, J., and Stoddart, J. (1992). Genetic structure of outbreaking and  
405 non-outbreaking crown-of-thorns starfish (*Acanthaster planci*) populations  
406 on the Great Barrier Reef. *Marine Biology* 112, 119-130.

407 Benzie, J. (1992). Review of the genetics, dispersal and recruitment of  
408 crown-of-thorns starfish (*Acanthaster planci*). *Marine and Freshwater*  
409 *Research* 43, 597-610.

410 Birkeland, C. (1990). *Acanthaster planci* : major management problem of coral  
411 reefs / authors, Charles E. Birkeland, John S. Lucas, (Boca Raton: CRC  
412 Press).

413 Birkeland, C., and Lucas, J. (1990). *Acanthaster planci*. Major Management  
414 Problem of Coral Reefs.

415 Capella-Gutiérrez, S., Silla-Martínez, J.M., and Gabaldón, T. (2009). trimAl: a  
416 tool for automated alignment trimming in large-scale phylogenetic analyses.  
417 *Bioinformatics* 25, 1972-1973.

418 De'ath, G., Fabricius, K.E., Sweatman, H., and Puotinen, M. (2012). The 27–  
419 year decline of coral cover on the Great Barrier Reef and its causes.  
420 *Proceedings of the National Academy of Sciences* 109, 17995-17999.

421 Dierckxsens, N., Mardulyn, P., and Smits, G. (2017). NOVOPlasty: *de novo*  
422 assembly of organelle genomes from whole genome data. *Nucleic acids*  
423 *research* 45, e18-e18.

424 Fabricius, K.E., Okaji, K., and De'ath, G. (2010). Three lines of evidence to link  
425 outbreaks of the crown-of-thorns seastar *Acanthaster planci* to the release of  
426 larval food limitation. *Coral Reefs* 29, 593-605.

427 Hall, M.R., Kocot, K.M., Baughman, K.W., Fernandez-Valverde, S.L., Gauthier,  
428 M.E., Hatleberg, W.L., Krishnan, A., McDougall, C., Motti, C.A., and  
429 Shoguchi, E. (2017). The crown-of-thorns starfish genome as a guide for  
430 biocontrol of this coral reef pest. *Nature* 544, 231-23436.

431 Harmelin-Vivien, M.L. (1994). The effects of storms and cyclones on coral reefs:  
432 a review. *Journal of Coastal Research*, 211-231.

433 Harrison, H.B., Pratchett, M.S., Messmer, V., Saenz-Agudelo, P., and Berumen,  
434 M.L. (2017). Microsatellites reveal genetic homogeneity among outbreak  
435 populations of crown-of-thorns starfish (*Acanthaster cf. solaris*) on  
436 Australia's Great Barrier Reef. *Diversity* 9, 16.

437 Haszprunar, G., and Spies, M. (2014). An integrative approach to the taxonomy

438 of the crown-of-thorns starfish species group (Asteroidea: Acanthaster): A  
439 review of names and comparison to recent molecular data. *Zootaxa* 25,  
440 271-284.

441 Hughes, R.N., Hughes, D.J., and Smith, I.P. (2014). Limits to understanding and  
442 managing outbreaks of crown-of-thorns starfish (Acanthaster spp.).  
443 *Oceanography and Marine Biology: An Annual Review* 52, 133-200.

444 Hughes, T.P., Kerry, J.T., Álvarez-Noriega, M., Álvarez-Romero, J.G., Anderson,  
445 K.D., Baird, A.H., Babcock, R.C., Beger, M., Bellwood, D.R., and  
446 Berkelmans, R. (2017). Global warming and recurrent mass bleaching of  
447 corals. *Nature* 543, 373-377.

448 Inoue, J., Hisata, K., Yasuda, N., and Satoh, N. (2020). An Investigation into the  
449 genetic history of Japanese populations of three Starfish, *Acanthaster planci*,  
450 *Linckia laevigata*, and *Asterias amurensis*, based on complete mitochondrial  
451 DNA sequences. *G3: Genes, Genomes, Genetics* 10, 2519-2528.

452 Iwasaki, W., Fukunaga, T., Isagozawa, R., Yamada, K., Maeda, Y., Satoh, T.P.,  
453 Sado, T., Mabuchi, K., Takeshima, H., and Miya, M. (2013). MitoFish and  
454 MitoAnnotator: a mitochondrial genome database of fish with an accurate  
455 and automatic annotation pipeline. *Mol Biol Evol* 30, 2531-2540.

456 Katoh, K., Kuma, K.-i., Toh, H., and Miyata, T. (2005). MAFFT version 5:  
457 improvement in accuracy of multiple sequence alignment. *Nucleic acids*  
458 *research* 33, 511-518.

459 Kenchington, R. (1977). Growth and recruitment of *Acanthaster planci* (L.) on  
460 the Great Barrier Reef. *Biol Conserv* 11, 103 - 118.

461 Lucas, J.S., and Jones, M.M. (1976). Hybrid crown-of-thorns starfish  
462 (*Acanthaster planci* x *A. brevispinus*) reared to maturity in the laboratory.  
463 *Nature* 263, 409-412.

464 Lucas, J.S. (1982). Quantitative studies of feeding and nutrition during larval  
465 development of the coral reef asteroid *Acanthaster planci* (L.). *Journal of*  
466 *Experimental Marine Biology and Ecology* 65, 173-193.

467 Nakamura, M., Okaji, K., Higa, Y., Yamakawa, E., and Mitarai, S. (2014). Spatial  
468 and temporal population dynamics of the crown-of-thorns starfish,  
469 *Acanthaster planci*, over a 24-year period along the central west coast of  
470 Okinawa Island, Japan. *Marine Biology* 161, 2521-2530.

471 Nei, M. (1972). Genetic distance between populations. *The American Naturalist*  
472 106, 283-292.

473 Nishida, M., & Lucas, J. S. (1988). Genetic differences between geographic

474 populations of the crown-of-thorns starfish throughout the Pacific region.  
475 *Marine Biology*, 98(3), 359-368.

476 Pembleton, L.W., Cogan, N.O., and Forster, J.W. (2013). St AMPP: An R  
477 package for calculation of genetic differentiation and structure of mixed-  
478 ploidy level populations. *Molecular ecology resources* 13, 946-952.

479 Pratchett, M.S., Dworjanyn, S., Mos, B., Caballes, C.F., Thompson, C.A., and  
480 Blowes, S. (2017). Larval survivorship and settlement of crown-of-thorns  
481 starfish (*Acanthaster cf. solaris*) at varying algal cell densities. *diversity* 9, 2.

482 Pratchett, M.S., Caballes, C.F., Wilmes, J.C., Matthews, S., Mellin, C.,  
483 Sweatman, H., Nadler, L.E., Brodie, J., Thompson, C.A., and Hoey, J. (2017).  
484 Thirty years of research on crown-of-thorns starfish (1986–2016): scientific  
485 advances and emerging opportunities. *Diversity* 9, 41.

486 Purcell, S., and Chang, C. (2015). PLINK 1.9. Available from: [www.cog-genomics.org/plink/1.9](http://www.cog-genomics.org/plink/1.9).

487 Qiu, B., and Lukas, R. (1996). Seasonal and interannual variability of the North  
488 Equatorial Current, the Mindanao Current, and the Kuroshio along the  
490 Pacific western boundary. *Journal of Geophysical Research: Oceans* 101,  
491 12315-12330.

492 Sokolov, S., and Rintoul, S. (2000). Circulation and water masses of the  
493 southwest Pacific: WOCE section P11, Papua New Guinea to Tasmania.  
494 *Journal of marine research* 58, 223-268.

495 Stamatakis, A. (2006). RAxML-VI-HPC: maximum likelihood-based phylogenetic  
496 analyses with thousands of taxa and mixed models. *Bioinformatics* 22,  
497 2688-2690.

498 Stamatakis, A. (2014). RAxML version 8: a tool for phylogenetic analysis and  
499 post-analysis of large phylogenies. *Bioinformatics* 30, 1312-1313.

500 Timmers, M.A., Andrews, K.R., Bird, C.E., deMintenton, M.J., Brainard, R.E.,  
501 and Toonen, R.J. (2011). Widespread dispersal of the Crown-of-Thorns sea  
502 star, *Acanthaster planci*, across the Hawaiian Archipelago and Johnston  
503 Atoll. *Journal of Marine Biology* 2011, 10.

504 Timmers, M., Bird, C., Skillings, D., Smouse, P., and Toonen, R. (2012). There's  
505 No Place Like Home: Crown-of-Thorns Outbreaks in the Central Pacific Are  
506 Regionally Derived and Independent Events. *PLoS ONE* 7, e31159.

507 Treml, E.A., Halpin, P.N., Urban, D.L., and Pratson, L.F. (2008). Modeling  
508 population connectivity by ocean currents, a graph-theoretic approach for  
509 marine conservation. *Landscape Ecology* 23, 19-36.

510 Tusso, S., Morcinek, K., Vogler, C., Schupp, P.J., Caballes, C.F., Vargas, S., and  
511 Wörheide, G. (2016). Genetic structure of the crown-of-thorns seastar in the  
512 Pacific Ocean, with focus on Guam. *PeerJ* 4, e1970.

513 Uthicke, S., Pecorino, D., Albright, R., Negri, A.P., Cantin, N., Liddy, M.,  
514 Dworjanyn, S., Kamya, P., Byrne, M., and Lamare, M. (2013). Impacts of  
515 ocean acidification on early life-history stages and settlement of the  
516 coral-eating sea star *Acanthaster planci*. *PLoS ONE* 8, e82938.

517 Vogler, C., Benzie, J., Lessios, H., Barber, P., and Wörheide, G. (2008). A threat  
518 to coral reefs multiplied? Four species of crown-of-thorns starfish. *Biol Lett* 4,  
519 696-699.

520 Vogler, C., Benzie, J.A.H., Tenggardjaja, K., Ambariyanto, Barber, P.H., and  
521 Wörheide, G. (2013). Phylogeography of the crown-of-thorns starfish:  
522 genetic structure within the Pacific species. *Coral Reefs* 32, 515-525.

523 Weir, B.S., and Cockerham, C.C. (1984). Estimating F-statistics for the analysis  
524 of population structure. *evolution*, 1358-1370.

525 Wyrtki, K. (1967). Equatorial Pacific Ocean1. *Int J Oceanol & Limnol* 1, 117-147.

526 Yamaguchi, M. (1973). Early life history of coral reef asteroids, with special  
527 reference to *Acanthaster planci* (L.). *Biology and Geology of Coral Reefs*  
528 *Biology* 1 //, 369 - 389.

529 Yasuda, N., Hamaguchi, M., Sasaki, M., Nagai, S., Saba, M., & Nadaoka, K.  
530 (2006). Complete mitochondrial genome sequences for Crown-of-thorns  
531 starfish *Acanthaster planci* and *Acanthaster brevispinus*. *BMC genomics*,  
532 7(1), 17.

533 Yasuda, N., Nagai, S., Hamaguchi, M., Okaji, K., Gérard, K., and Nadaoka, K.  
534 (2009). Gene flow of *Acanthaster planci* (L.) in relation to ocean currents  
535 revealed by microsatellite analysis. *Molecular Ecology* 18, 1574-1590.

536 Yasuda, N., Taquet, C., Nagai, S., Yoshida, T., and Adjeroud, M. (2014). Genetic  
537 connectivity of the coral-eating sea star *Acanthaster planci* during the severe  
538 outbreak of 2006–2009 in the Society Islands, French Polynesia. *Marine*  
539 *Ecology*, n/a-n/a.

540 Yasuda, N. (2018). Distribution Expansion and Historical Population Outbreak  
541 Patterns of Crown-of-Thorns Starfish, *Acanthaster planci* sensu lato, in  
542 Japan from 1912 to 2015. In *Coral Reef Studies of Japan*, A. Iguchi and C.  
543 Hongo, eds. (Singapore: Springer Singapore), pp. 125-148.

544

545 **Figure Legends**

546

547 **Figure 1. a**, A single adult of crown-of-thorns starfish on reef-building corals. **b**,  
548 An outbreak of crown-of-thorns starfish (COTS) covering and eating  
549 scleractinian corals, causing severe damage to the reef. **c**, Collection sites of  
550 COTS in the Pacific Ocean. 243 COTS were collected at 23 locations in 14  
551 countries, representing 11 reef regions: French Polynesia (Bora Bora, Moorea,  
552 Raiatea and Tahiti), Fiji, Vanuatu, Great Barrier Reef, Australia (GBR; Clack and  
553 Shell Reefs), Papua New Guinea (PNG), the Philippines, Vietnam, Japan,  
554 Micronesia, the Marshall Islands, and USA (Hawaii and California). Locations in  
555 Japan and French Polynesia are enlarged in (A) and (B). Red arrows show the  
556 main currents in the Pacific Ocean. KC = Kuroshio Current, CC = California  
557 Current, NEC = North Equatorial Current, ECC = Equatorial Countercurrent,  
558 SEC = South Equatorial Current, EAC = East Australian Current and NGCU =  
559 New Guinea Coastal Undercurrent.

560 **Figure 2.** An unrooted phylogenetic tree of individual *Acanthaster cf. solaris*  
561 using the maximum-likelihood (ML) method, based on mitochondrial genome  
562 sequences (16,218 bp, including 1,822 variable sites). Red arrowheads indicate  
563 sequences (OKI and GBR) decoded in the genome paper (Hall et al. 2017).

564 **Figure 3.** A rooted phylogenetic tree of *Acanthaster cf. solaris* using the  
565 maximum-likelihood (ML) method, based on mitochondrial genome sequences  
566 (16,219 bp, including 3,159 variable sites). Numbers at some nodes indicate  
567 bootstrap values (>50%) based on 100 replicates for internal branch support.  
568 Arrowheads at the right indicate sequences (OKI and GBR) decoded in the  
569 genome paper (Hall et al. 2017). The *A. brevispinus* sequence (NC\_007789.1)  
570 was selected for rooting. The color relationship to sampling locations is shown in  
571 the insert (left, bottom).

572 **Figure 4.** Principle Component Analysis identifies five COTS populations, EP-L,  
573 ECP-L1, ECP-L2, ECP-H, and WP-CL1/2. WP-L3 contains COTS collected from

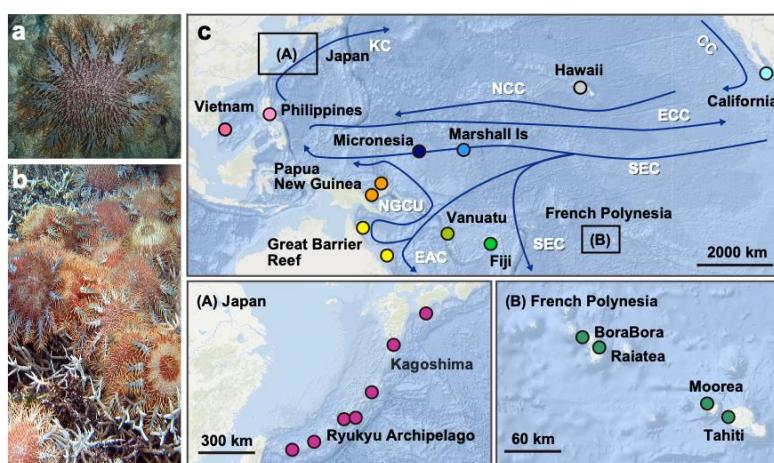
574 all countries, suggesting that this population is the source of repeated outbreaks  
575 in the Pacific. Color codes are shown at the right side.

576

577 **Figure 5.** A summary diagram to show a possible root for crown-of-thorns  
578 starfish outbreaks in the Western Pacific Ocean. The Pacific hosts two major  
579 groups of COTS. The East-Central Pacific group comprises COTS from French  
580 Polynesia, Fiji, Vanuatu, and the GBR (blue and yellow). The Whole Pacific  
581 group contains COTS from the entire Western Pacific (purple). The latter has  
582 experienced repeated outbreaks, while the former has experienced local  
583 outbreaks. This suggests an importance of better management of this pest in the  
584 central Pacific region, including Fiji, Vanuatu, and the GBR.

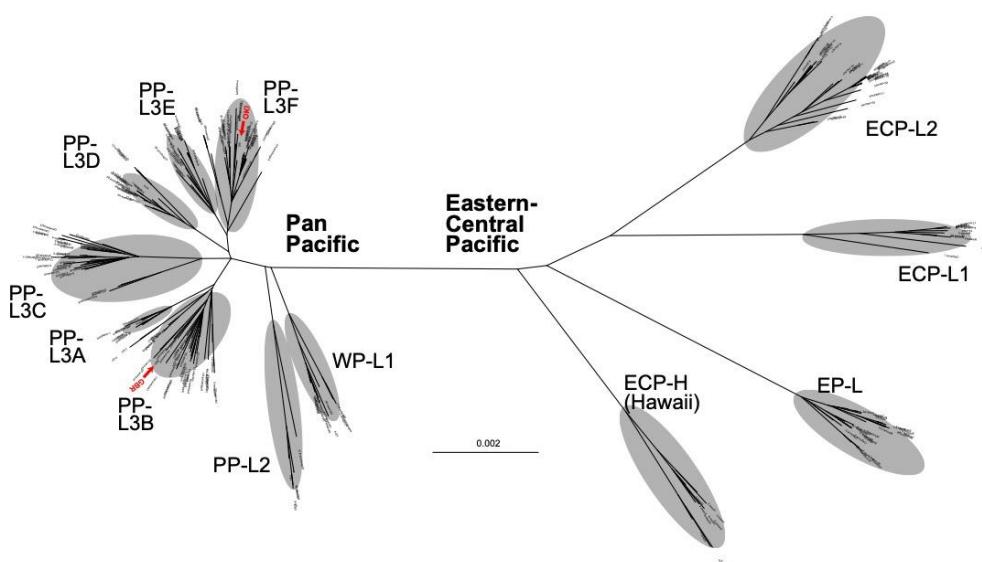
585

586


587

588 **Figure S1.** An alignment of the complete mitochondrial DNA sequences of  
589 *Acanthaster planci* (NC\_007788.1 and specimen name, M2), All sequence data  
590 are accessible at: <https://www.ncbi.nlm.nih.gov/bioproject/PRJDB10499>.

591


592

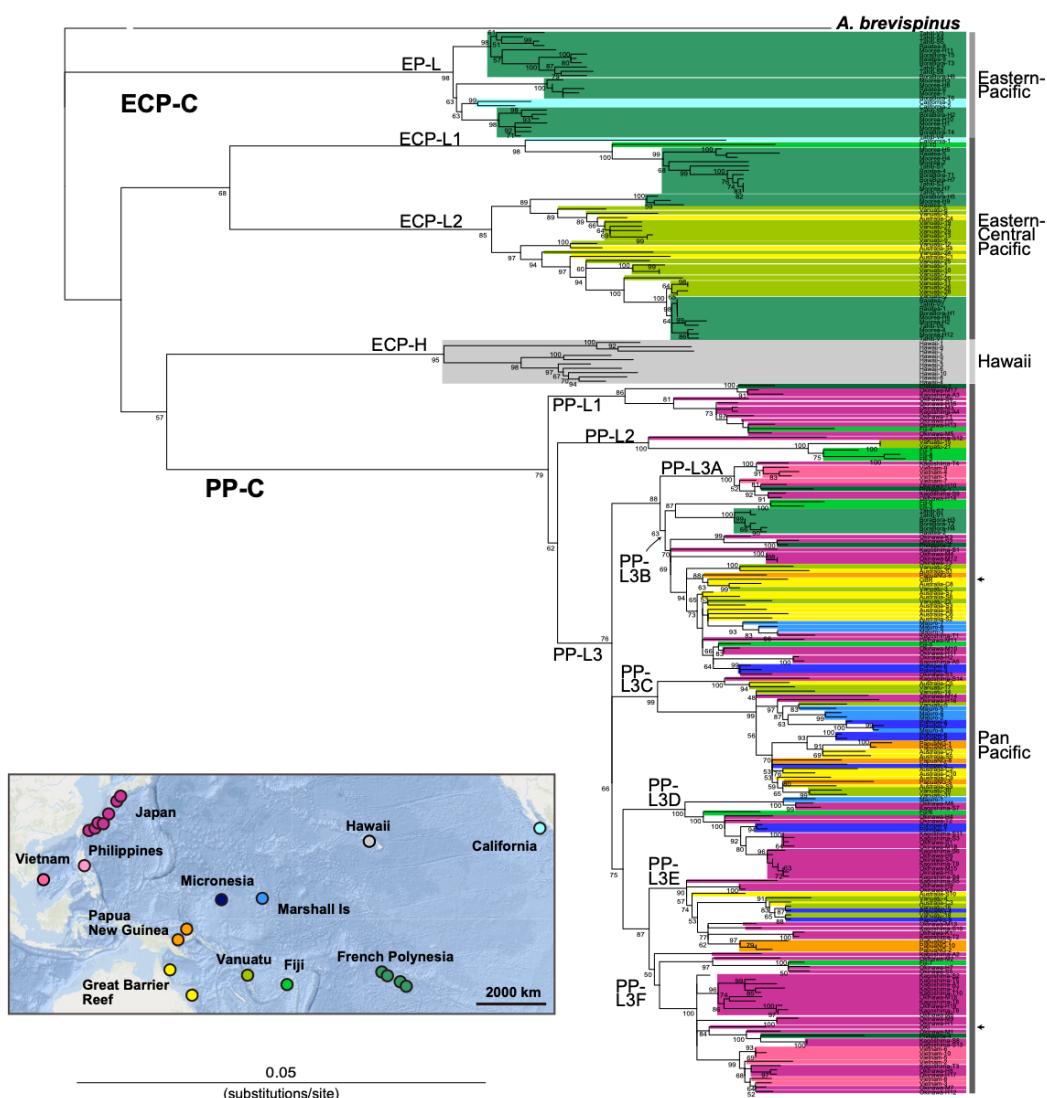
**Figure 1.**



**Figure 1.** **a**, A single adult of crown-of-thorns starfish on reef-building corals. **b**, An outbreak of crown-of-thorns starfish (COTS) covering and eating scleractinian corals, causing severe damage to the reef. **c**, Collection sites of COTS in the Pacific Ocean. 243 COTS were collected at 23 locations in 14 countries, representing 11 reef regions: French Polynesia (Bora Bora, Moorea, Raiatea and Tahiti), Fiji, Vanuatu, Great Barrier Reef, Australia (GBR; Clack and Shell Reefs), Papua New Guinea (PNG), the Philippines, Vietnam, Japan, Micronesia, the Marshall Islands, and USA (Hawaii and California). Locations in Japan and French Polynesia are enlarged in (A) and (B). Blue arrows show the main currents in the Pacific Ocean. KC = Kuroshio Current, CC = California Current, NEC = North Equatorial Current, ECC = Equatorial Counter-current, SEC = South Equatorial Current, EAC = East Australian Current and NGCU = New Guinea Coastal Undercurrent.

**Figure 2.**




**Figure 2.** An unrooted phylogenetic tree of individual *Acanthaster* cf. *solaris* using the maximum-likelihood (ML) method, based on mitochondrial genome sequences (16,218 bp, including 1,822 variable sites). Red arrowheads indicate sequences (OKI and GBR) decoded in the genome paper (Hall et al. 2017).

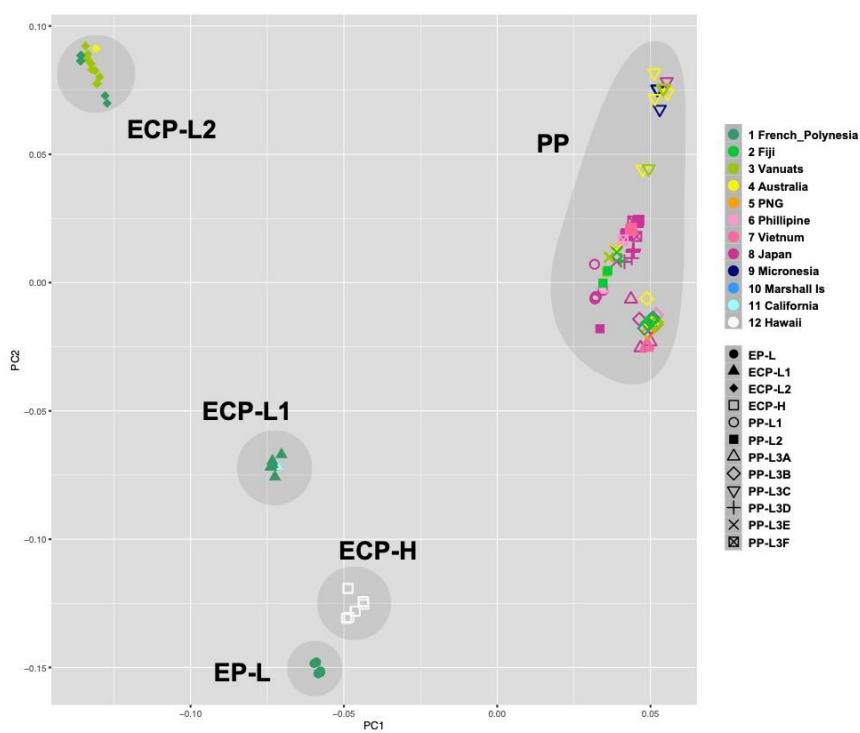
595

596

597

**Figure 3.**




**Figure 3.** A rooted phylogenetic tree of *Acanthaster* cf. *solaris* using the maximum-likelihood (ML) method, based on mitochondrial genome sequences (16,219 bp, including 3,159 variable sites). Numbers at some nodes indicate bootstrap values (>50%) based on 100 replicates for internal branch support. Arrowheads at the right indicate sequences (OKI and GBR) decoded in the genome paper (Hall et al. 2017). The *A. brevispinus* sequence (NC\_007789.1) was selected for rooting. The color relationship to sampling locations is shown in the insert (left, bottom).

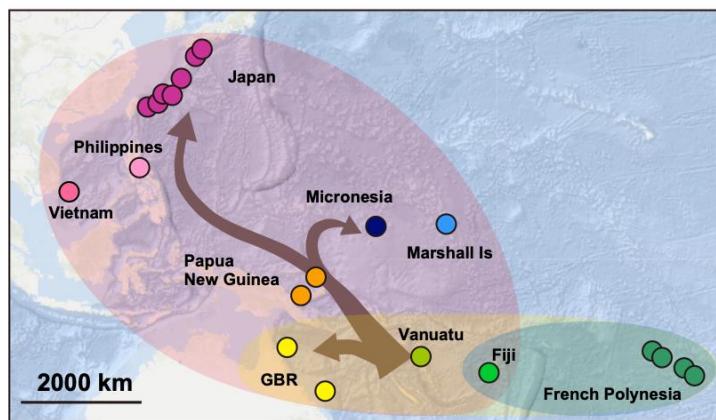
598

599

600

**Figure 4.**




**Figure 4.** Principle Component Analysis identifies five COTS populations, EP-L, ECP-L1, ECP-L2, ECP-H, and WP-CL1/2. WP-L3 contains COTS collected from all countries, suggesting that this population is the source of repeated outbreaks in the Pacific. Color codes are shown at the right side.

601

602

603

**Figure 5.**



**Figure 5.** A summary diagram to show a possible root for crown-of-thorns starfish outbreaks in the Western Pacific Ocean. The Pacific hosts two major groups of COTS. The East-Central Pacific group comprises COTS from French Polynesia, Fiji, Vanuatu, and the GBR (blue and yellow). The Whole Pacific group contains COTS from the entire Western Pacific (purple). The latter has experienced repeated outbreaks, while the former has experienced local outbreaks. This suggests an importance of better management of this pest in the central Pacific region, including Fiji, Vanuatu, and the GBR.

604

605